arXiv Papers with Code in Computer Science (May 2025)
Authors:Yaxin Luo, Zhaoyi Li, Jiacheng Liu, Jiacheng Cui, Xiaohan Zhao, Zhiqiang Shen
Abstract:
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.
Authors:Yangyi Huang, Ye Yuan, Xueting Li, Jan Kautz, Umar Iqbal
Abstract:
Existing methods for image-to-3D avatar generation struggle to produce highly detailed, animation-ready avatars suitable for real-world applications. We introduce AdaHuman, a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image. AdaHuman incorporates two key innovations: (1) A pose-conditioned 3D joint diffusion model that synthesizes consistent multi-view images in arbitrary poses alongside corresponding 3D Gaussian Splats (3DGS) reconstruction at each diffusion step; (2) A compositional 3DGS refinement module that enhances the details of local body parts through image-to-image refinement and seamlessly integrates them using a novel crop-aware camera ray map, producing a cohesive detailed 3D avatar. These components allow AdaHuman to generate highly realistic standardized A-pose avatars with minimal self-occlusion, enabling rigging and animation with any input motion. Extensive evaluation on public benchmarks and in-the-wild images demonstrates that AdaHuman significantly outperforms state-of-the-art methods in both avatar reconstruction and reposing. Code and models will be publicly available for research purposes.
Authors:Tajamul Ashraf, Amal Saqib, Hanan Ghani, Muhra AlMahri, Yuhao Li, Noor Ahsan, Umair Nawaz, Jean Lahoud, Hisham Cholakkal, Mubarak Shah, Philip Torr, Fahad Shahbaz Khan, Rao Muhammad Anwer, Salman Khan
Abstract:
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
Authors:Zilin Xiao, Jaywon Koo, Siru Ouyang, Jefferson Hernandez, Yu Meng, Vicente Ordonez
Abstract:
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.
Authors:Ce Zhang, Yan-Bo Lin, Ziyang Wang, Mohit Bansal, Gedas Bertasius
Abstract:
Recent advances in test-time optimization have led to remarkable reasoning capabilities in Large Language Models (LLMs), enabling them to solve highly complex problems in math and coding. However, the reasoning capabilities of multimodal LLMs (MLLMs) still significantly lag, especially for complex video-language tasks. To address this issue, we present SiLVR, a Simple Language-based Video Reasoning framework that decomposes complex video understanding into two stages. In the first stage, SiLVR transforms raw video into language-based representations using multisensory inputs, such as short clip captions and audio/speech subtitles. In the second stage, language descriptions are fed into a powerful reasoning LLM to solve complex video-language understanding tasks. To handle long-context multisensory inputs, we use an adaptive token reduction scheme, which dynamically determines the temporal granularity with which to sample the tokens. Our simple, modular, and training-free video reasoning framework achieves the best-reported results on Video-MME (long), Video-MMMU (comprehension), Video-MMLU, CGBench, and EgoLife. Furthermore, our empirical study focused on video reasoning capabilities shows that, despite not being explicitly trained on video, strong reasoning LLMs can effectively aggregate multisensory input information from video, speech, and audio for complex temporal, causal, long-context, and knowledge acquisition reasoning tasks in video. Code is available at https://github.com/CeeZh/SILVR.
Authors:Ujjwal Upadhyay, Mukul Ranjan, Zhiqiang Shen, Mohamed Elhoseiny
Abstract:
Recent advances in vision-language models (VLMs) have made impressive strides in understanding spatio-temporal relationships in videos. However, when spatial information is obscured, these models struggle to capture purely temporal patterns. We introduce $\textbf{SpookyBench}$, a benchmark where information is encoded solely in temporal sequences of noise-like frames, mirroring natural phenomena from biological signaling to covert communication. Interestingly, while humans can recognize shapes, text, and patterns in these sequences with over 98% accuracy, state-of-the-art VLMs achieve 0% accuracy. This performance gap highlights a critical limitation: an over-reliance on frame-level spatial features and an inability to extract meaning from temporal cues. Furthermore, when trained in data sets with low spatial signal-to-noise ratios (SNR), temporal understanding of models degrades more rapidly than human perception, especially in tasks requiring fine-grained temporal reasoning. Overcoming this limitation will require novel architectures or training paradigms that decouple spatial dependencies from temporal processing. Our systematic analysis shows that this issue persists across model scales and architectures. We release SpookyBench to catalyze research in temporal pattern recognition and bridge the gap between human and machine video understanding. Dataset and code has been made available on our project website: https://timeblindness.github.io/.
Authors:Cailin Zhuang, Ailin Huang, Wei Cheng, Jingwei Wu, Yaoqi Hu, Jiaqi Liao, Hongyuan Wang, Xinyao Liao, Weiwei Cai, Hengyuan Xu, Xuanyang Zhang, Xianfang Zeng, Zhewei Huang, Gang Yu, Chi Zhang
Abstract:
Story visualization aims to generate coherent image sequences that faithfully depict a narrative and align with character references. Despite progress in generative models, existing benchmarks are narrow in scope, often limited to short prompts, no character reference, or single-image cases, and fall short of real-world storytelling complexity. This hinders a nuanced understanding of model capabilities and limitations. We present ViStoryBench, a comprehensive benchmark designed to evaluate story visualization models across diverse narrative structures, visual styles, and character settings. The benchmark features richly annotated multi-shot scripts derived from curated stories spanning literature, film, and folklore. Large language models assist in story summarization and script generation, with all outputs verified by humans to ensure coherence and fidelity. Character references are carefully curated to maintain intra-story consistency across varying artistic styles. To enable thorough evaluation, ViStoryBench introduces a set of automated metrics that assess character consistency, style similarity, prompt adherence, aesthetic quality, and generation artifacts such as copy-paste behavior. These metrics are validated through human studies, and used to benchmark a broad range of open-source and commercial models. ViStoryBench offers a high-fidelity, multi-dimensional evaluation suite that facilitates systematic analysis and fosters future progress in visual storytelling.
Authors:Shuyao Xu, Cheng Peng, Jiangxuan Long, Weidi Xu, Wei Chu, Yuan Qi
Abstract:
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
Authors:Wanyun Xie, Francesco Tonin, Volkan Cevher
Abstract:
Training data mixtures greatly impact the generalization performance of large language models. Existing domain reweighting methods often rely on costly weight computations and require retraining when new data is introduced. To this end, we introduce a flexible and efficient data mixing framework, Chameleon, that employs leverage scores to quantify domain importance within a learned embedding space. We first construct a domain affinity matrix over domain embeddings. The induced leverage scores determine a mixture that upweights domains sharing common representations in embedding space. This formulation allows direct transfer to new data by computing the new domain embeddings. In experiments, we demonstrate improvements over three key scenarios: (i) our computed weights improve performance on pretraining domains with a fraction of the compute of existing methods; (ii) Chameleon can adapt to data changes without proxy retraining, boosting few-shot reasoning accuracies when transferred to new data; (iii) our method enables efficient domain reweighting in finetuning, consistently improving test perplexity on all finetuning domains over uniform mixture. Our code is available at https://github.com/LIONS-EPFL/Chameleon.
Authors:Fuyuan Lyu, Linfeng Du, Yunpeng Weng, Qiufang Ying, Zhiyan Xu, Wen Zou, Haolun Wu, Xiuqiang He, Xing Tang
Abstract:
Fund allocation has been an increasingly important problem in the financial domain. In reality, we aim to allocate the funds to buy certain assets within a certain future period. Naive solutions such as prediction-only or Predict-then-Optimize approaches suffer from goal mismatch. Additionally, the introduction of the SOTA time series forecasting model inevitably introduces additional uncertainty in the predicted result. To solve both problems mentioned above, we introduce a Risk-aware Time-Series Predict-and-Allocate (RTS-PnO) framework, which holds no prior assumption on the forecasting models. Such a framework contains three features: (i) end-to-end training with objective alignment measurement, (ii) adaptive forecasting uncertainty calibration, and (iii) agnostic towards forecasting models. The evaluation of RTS-PnO is conducted over both online and offline experiments. For offline experiments, eight datasets from three categories of financial applications are used: Currency, Stock, and Cryptos. RTS-PnO consistently outperforms other competitive baselines. The online experiment is conducted on the Cross-Border Payment business at FiT, Tencent, and an 8.4\% decrease in regret is witnessed when compared with the product-line approach. The code for the offline experiment is available at https://github.com/fuyuanlyu/RTS-PnO.
Authors:Li yunhan, Wu gengshen
Abstract:
As large language models (LLMs) are increasingly used in legal applications, current evaluation benchmarks tend to focus mainly on factual accuracy while largely neglecting important linguistic quality aspects such as clarity, coherence, and terminology. To address this gap, we propose three steps: First, we develop a regression model to evaluate the quality of legal texts based on clarity, coherence, and terminology. Second, we create a specialized set of legal questions. Third, we analyze 49 LLMs using this evaluation framework.
Our analysis identifies three key findings: First, model quality levels off at 14 billion parameters, with only a marginal improvement of $2.7\%$ noted at 72 billion parameters. Second, engineering choices such as quantization and context length have a negligible impact, as indicated by statistical significance thresholds above 0.016. Third, reasoning models consistently outperform base architectures. A significant outcome of our research is the release of a ranking list and Pareto analysis, which highlight the Qwen3 series as the optimal choice for cost-performance tradeoffs. This work not only establishes standardized evaluation protocols for legal LLMs but also uncovers fundamental limitations in current training data refinement approaches. Code and models are available at: https://github.com/lyxx3rd/LegalEval-Q.
Authors:Marta López-Rauhut, Hongyu Zhou, Mathieu Aubry, Loic Landrieu
Abstract:
Historical maps offer an invaluable perspective into territory evolution across past centuries--long before satellite or remote sensing technologies existed. Deep learning methods have shown promising results in segmenting historical maps, but publicly available datasets typically focus on a single map type or period, require extensive and costly annotations, and are not suited for nationwide, long-term analyses. In this paper, we introduce a new dataset of historical maps tailored for analyzing large-scale, long-term land use and land cover evolution with limited annotations. Spanning metropolitan France (548,305 km^2), our dataset contains three map collections from the 18th, 19th, and 20th centuries. We provide both comprehensive modern labels and 22,878 km^2 of manually annotated historical labels for the 18th and 19th century maps. Our dataset illustrates the complexity of the segmentation task, featuring stylistic inconsistencies, interpretive ambiguities, and significant landscape changes (e.g., marshlands disappearing in favor of forests). We assess the difficulty of these challenges by benchmarking three approaches: a fully-supervised model trained with historical labels, and two weakly-supervised models that rely only on modern annotations. The latter either use the modern labels directly or first perform image-to-image translation to address the stylistic gap between historical and contemporary maps. Finally, we discuss how these methods can support long-term environment monitoring, offering insights into centuries of landscape transformation. Our official project repository is publicly available at https://github.com/Archiel19/FRAx4.git.
Authors:Marc González, Rachid Guerraoui, Rafael Pinot, Geovani Rizk, John Stephan, François Taïani
Abstract:
We present ByzFL, an open-source Python library for developing and benchmarking robust federated learning (FL) algorithms. ByzFL provides a unified and extensible framework that includes implementations of state-of-the-art robust aggregators, a suite of configurable attacks, and tools for simulating a variety of FL scenarios, including heterogeneous data distributions, multiple training algorithms, and adversarial threat models. The library enables systematic experimentation via a single JSON-based configuration file and includes built-in utilities for result visualization. Compatible with PyTorch tensors and NumPy arrays, ByzFL is designed to facilitate reproducible research and rapid prototyping of robust FL solutions. ByzFL is available at https://byzfl.epfl.ch/, with source code hosted on GitHub: https://github.com/LPD-EPFL/byzfl.
Authors:Zimu Liao, Jifeng Ding, Rong Fu, Siwei Cui, Ruixuan Gong, Li Wang, Boni Hu, Yi Wang, Hengjie Li, XIngcheng Zhang, Hui Wang
Abstract:
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where conditional alpha-blending dominates the time cost in the rendering pipeline. This paper proposes TC-GS, an algorithm-independent universal module that expands Tensor Core (TCU) applicability for 3DGS, leading to substantial speedups and seamless integration into existing 3DGS optimization frameworks. The key innovation lies in mapping alpha computation to matrix multiplication, fully utilizing otherwise idle TCUs in existing 3DGS implementations. TC-GS provides plug-and-play acceleration for existing top-tier acceleration algorithms tightly coupled with rendering pipeline designs, like Gaussian compression and redundancy elimination algorithms. Additionally, we introduce a global-to-local coordinate transformation to mitigate rounding errors from quadratic terms of pixel coordinates caused by Tensor Core half-precision computation. Extensive experiments demonstrate that our method maintains rendering quality while providing an additional 2.18x speedup over existing Gaussian acceleration algorithms, thus reaching up to a total 5.6x acceleration. The code is currently available at anonymous \href{https://github.com/TensorCore3DGS/3DGSTensorCore}
Authors:Yucheng Zhou, Jiahao Yuan, Qianning Wang
Abstract:
Recent advancements in text-to-image (T2I) generation have enabled models to produce high-quality images from textual descriptions. However, these models often struggle with complex instructions involving multiple objects, attributes, and spatial relationships. Existing benchmarks for evaluating T2I models primarily focus on general text-image alignment and fail to capture the nuanced requirements of complex, multi-faceted prompts. Given this gap, we introduce LongBench-T2I, a comprehensive benchmark specifically designed to evaluate T2I models under complex instructions. LongBench-T2I consists of 500 intricately designed prompts spanning nine diverse visual evaluation dimensions, enabling a thorough assessment of a model's ability to follow complex instructions. Beyond benchmarking, we propose an agent framework (Plan2Gen) that facilitates complex instruction-driven image generation without requiring additional model training. This framework integrates seamlessly with existing T2I models, using large language models to interpret and decompose complex prompts, thereby guiding the generation process more effectively. As existing evaluation metrics, such as CLIPScore, fail to adequately capture the nuances of complex instructions, we introduce an evaluation toolkit that automates the quality assessment of generated images using a set of multi-dimensional metrics. The data and code are released at https://github.com/yczhou001/LongBench-T2I.
Authors:Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang, Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Matei Zaharia, Ang Chen
Abstract:
Automating AI research holds immense potential for accelerating scientific progress, yet current AI agents struggle with the complexities of rigorous, end-to-end experimentation. We introduce EXP-Bench, a novel benchmark designed to systematically evaluate AI agents on complete research experiments sourced from influential AI publications. Given a research question and incomplete starter code, EXP-Bench challenges AI agents to formulate hypotheses, design and implement experimental procedures, execute them, and analyze results. To enable the creation of such intricate and authentic tasks with high-fidelity, we design a semi-autonomous pipeline to extract and structure crucial experimental details from these research papers and their associated open-source code. With the pipeline, EXP-Bench curated 461 AI research tasks from 51 top-tier AI research papers. Evaluations of leading LLM-based agents, such as OpenHands and IterativeAgent on EXP-Bench demonstrate partial capabilities: while scores on individual experimental aspects such as design or implementation correctness occasionally reach 20-35%, the success rate for complete, executable experiments was a mere 0.5%. By identifying these bottlenecks and providing realistic step-by-step experiment procedures, EXP-Bench serves as a vital tool for future AI agents to improve their ability to conduct AI research experiments. EXP-Bench is open-sourced at https://github.com/Just-Curieous/Curie/tree/main/benchmark/exp_bench.
Authors:Max Conti, Manuel Faysse, Gautier Viaud, Antoine Bosselut, Céline Hudelot, Pierre Colombo
Abstract:
A limitation of modern document retrieval embedding methods is that they typically encode passages (chunks) from the same documents independently, often overlooking crucial contextual information from the rest of the document that could greatly improve individual chunk representations.
In this work, we introduce ConTEB (Context-aware Text Embedding Benchmark), a benchmark designed to evaluate retrieval models on their ability to leverage document-wide context. Our results show that state-of-the-art embedding models struggle in retrieval scenarios where context is required. To address this limitation, we propose InSeNT (In-sequence Negative Training), a novel contrastive post-training approach which combined with late chunking pooling enhances contextual representation learning while preserving computational efficiency. Our method significantly improves retrieval quality on ConTEB without sacrificing base model performance. We further find chunks embedded with our method are more robust to suboptimal chunking strategies and larger retrieval corpus sizes. We open-source all artifacts at https://github.com/illuin-tech/contextual-embeddings.
Authors:Yidong Luo, Chenguang Wang, Jiahao Yang, Fanzeng Xia, Tianshu Yu
Abstract:
Mixed-Integer Linear Programming (MILP) is fundamental to solving complex decision-making problems. The proliferation of MILP instance generation methods, driven by machine learning's demand for diverse optimization datasets and the limitations of static benchmarks, has significantly outpaced standardized evaluation techniques. Consequently, assessing the fidelity and utility of synthetic MILP instances remains a critical, multifaceted challenge. This paper introduces a comprehensive benchmark framework designed for the systematic and objective evaluation of MILP instance generation methods. Our framework provides a unified and extensible methodology, assessing instance quality across crucial dimensions: mathematical validity, structural similarity, computational hardness, and utility in downstream machine learning tasks. A key innovation is its in-depth analysis of solver-internal features -- particularly by comparing distributions of key solver outputs including root node gap, heuristic success rates, and cut plane usage -- leveraging the solver's dynamic solution behavior as an `expert assessment' to reveal nuanced computational resemblances. By offering a structured approach with clearly defined solver-independent and solver-dependent metrics, our benchmark aims to facilitate robust comparisons among diverse generation techniques, spur the development of higher-quality instance generators, and ultimately enhance the reliability of research reliant on synthetic MILP data. The framework's effectiveness in systematically comparing the fidelity of instance sets is demonstrated using contemporary generative models.
Authors:Jiayu Liu, Qing Zong, Weiqi Wang, Yangqiu Song
Abstract:
As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., "fairly confident") instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define marker confidence as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.
Authors:Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour, Andreas Köpf
Abstract:
We introduce Reasoning Gym (RG), a library of reasoning environments for reinforcement learning with verifiable rewards. It provides over 100 data generators and verifiers spanning multiple domains including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various common games. Its key innovation is the ability to generate virtually infinite training data with adjustable complexity, unlike most previous reasoning datasets, which are typically fixed. This procedural generation approach allows for continuous evaluation across varying difficulty levels. Our experimental results demonstrate the efficacy of RG in both evaluating and reinforcement learning of reasoning models.
Authors:Yingchaojie Feng, Yiqun Sun, Yandong Sun, Minfeng Zhu, Qiang Huang, Anthony K. H. Tung, Wei Chen
Abstract:
In this work, we investigate an important task named instruction-following text embedding, which generates dynamic text embeddings that adapt to user instructions, highlighting specific attributes of text. Despite recent advancements, existing approaches suffer from significant computational overhead, as they require re-encoding the entire corpus for each new instruction. To address this challenge, we propose GSTransform, a novel instruction-following text embedding framework based on Guided Space Transformation. Our key observation is that instruction-relevant information is inherently encoded in generic embeddings but remains underutilized. Instead of repeatedly encoding the corpus for each instruction, GSTransform is a lightweight transformation mechanism that adapts pre-computed embeddings in real time to align with user instructions, guided by a small amount of text data with instruction-focused label annotation. We conduct extensive experiments on three instruction-awareness downstream tasks across nine real-world datasets, demonstrating that GSTransform improves instruction-following text embedding quality over state-of-the-art methods while achieving dramatic speedups of 6~300x in real-time processing on large-scale datasets. The source code is available at https://github.com/YingchaojieFeng/GSTransform.
Authors:Jiazhong Cen, Xudong Zhou, Jiemin Fang, Changsong Wen, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian
Abstract:
Recent advancements in 3D Gaussian Splatting (3D-GS) enable high-quality 3D scene reconstruction from RGB images. Many studies extend this paradigm for language-driven open-vocabulary scene understanding. However, most of them simply project 2D semantic features onto 3D Gaussians and overlook a fundamental gap between 2D and 3D understanding: a 3D object may exhibit various semantics from different viewpoints--a phenomenon we term view-dependent semantics. To address this challenge, we propose LaGa (Language Gaussians), which establishes cross-view semantic connections by decomposing the 3D scene into objects. Then, it constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics. Extensive experiments demonstrate that LaGa effectively captures key information from view-dependent semantics, enabling a more comprehensive understanding of 3D scenes. Notably, under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset. Our code is available at: https://github.com/SJTU-DeepVisionLab/LaGa.
Authors:Jisheng Dang, Jingze Wu, Teng Wang, Xuanhui Lin, Nannan Zhu, Hongbo Chen, Wei-Shi Zheng, Meng Wang, Tat-Seng Chua
Abstract:
Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group information entropy), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at \href{https://github.com/longmalongma/TW-GRPO}.
Authors:Benjamin Holzschuh, Qiang Liu, Georg Kohl, Nils Thuerey
Abstract:
We introduce PDE-Transformer, an improved transformer-based architecture for surrogate modeling of physics simulations on regular grids. We combine recent architectural improvements of diffusion transformers with adjustments specific for large-scale simulations to yield a more scalable and versatile general-purpose transformer architecture, which can be used as the backbone for building large-scale foundation models in physical sciences. We demonstrate that our proposed architecture outperforms state-of-the-art transformer architectures for computer vision on a large dataset of 16 different types of PDEs. We propose to embed different physical channels individually as spatio-temporal tokens, which interact via channel-wise self-attention. This helps to maintain a consistent information density of tokens when learning multiple types of PDEs simultaneously. We demonstrate that our pre-trained models achieve improved performance on several challenging downstream tasks compared to training from scratch and also beat other foundation model architectures for physics simulations.
Authors:Junyu Luo, Zhizhuo Kou, Liming Yang, Xiao Luo, Jinsheng Huang, Zhiping Xiao, Jingshu Peng, Chengzhong Liu, Jiaming Ji, Xuanzhe Liu, Sirui Han, Ming Zhang, Yike Guo
Abstract:
Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, in the financial domain, there is a notable lack of effective and specialized multimodal evaluation datasets. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. Extensive experimental results demonstrate that even state-of-the-art models like GPT-4o exhibit unsatisfactory performance on FinMME, highlighting its challenging nature. The benchmark exhibits high robustness with prediction variations under different prompts remaining below 1%, demonstrating superior reliability compared to existing datasets. Our dataset and evaluation protocol are available at https://huggingface.co/datasets/luojunyu/FinMME and https://github.com/luo-junyu/FinMME.
Authors:Raman Jha, Adithya Lenka, Mani Ramanagopal, Aswin Sankaranarayanan, Kaushik Mitra
Abstract:
In nighttime conditions, high noise levels and bright illumination sources degrade image quality, making low-light image enhancement challenging. Thermal images provide complementary information, offering richer textures and structural details. We propose RT-X Net, a cross-attention network that fuses RGB and thermal images for nighttime image enhancement. We leverage self-attention networks for feature extraction and a cross-attention mechanism for fusion to effectively integrate information from both modalities. To support research in this domain, we introduce the Visible-Thermal Image Enhancement Evaluation (V-TIEE) dataset, comprising 50 co-located visible and thermal images captured under diverse nighttime conditions. Extensive evaluations on the publicly available LLVIP dataset and our V-TIEE dataset demonstrate that RT-X Net outperforms state-of-the-art methods in low-light image enhancement. The code and the V-TIEE can be found here https://github.com/jhakrraman/rt-xnet.
Authors:Julio Silva-RodrÃguez, Ismail Ben Ayed, Jose Dolz
Abstract:
Vision-language models pre-trained at large scale have shown unprecedented adaptability and generalization to downstream tasks. Although its discriminative potential has been widely explored, its reliability and uncertainty are still overlooked. In this work, we investigate the capabilities of CLIP models under the split conformal prediction paradigm, which provides theoretical guarantees to black-box models based on a small, labeled calibration set. In contrast to the main body of literature on conformal predictors in vision classifiers, foundation models exhibit a particular characteristic: they are pre-trained on a one-time basis on an inaccessible source domain, different from the transferred task. This domain drift negatively affects the efficiency of the conformal sets and poses additional challenges. To alleviate this issue, we propose Conf-OT, a transfer learning setting that operates transductive over the combined calibration and query sets. Solving an optimal transport problem, the proposed method bridges the domain gap between pre-training and adaptation without requiring additional data splits but still maintaining coverage guarantees. We comprehensively explore this conformal prediction strategy on a broad span of 15 datasets and three non-conformity scores. Conf-OT provides consistent relative improvements of up to 20% on set efficiency while being 15 times faster than popular transductive approaches.
Authors:Sander Land, Catherine Arnett
Abstract:
Byte Pair Encoding (BPE) tokenizers, widely used in Large Language Models, face challenges in multilingual settings, including penalization of non-Western scripts and the creation of tokens with partial UTF-8 sequences. Pretokenization, often reliant on complex regular expressions, can also introduce fragility and unexpected edge cases. We propose SCRIPT (Script Category Representation in PreTokenization), a novel encoding scheme that bypasses UTF-8 byte conversion by using initial tokens based on Unicode script and category properties. This approach enables a simple, rule-based pretokenization strategy that respects script boundaries, offering a robust alternative to pretokenization strategies based on regular expressions. We also introduce and validate a constrained BPE merging strategy that enforces character integrity, applicable to both SCRIPT-BPE and byte-based BPE. Our experiments demonstrate that SCRIPT-BPE achieves competitive compression while eliminating encoding-based penalties for non-Latin-script languages.
Authors:Qinglin Zhu, Runcong Zhao, Hanqi Yan, Yulan He, Yudong Chen, Lin Gui
Abstract:
Large Language Models (LLMs) struggle with complex reasoning due to limited diversity and inefficient search. We propose Soft Reasoning, an embedding-based search framework that optimises the embedding of the first token to guide generation. It combines (1) embedding perturbation for controlled exploration and (2) Bayesian optimisation to refine embeddings via a verifier-guided objective, balancing exploration and exploitation. This approach improves reasoning accuracy and coherence while avoiding reliance on heuristic search. Experiments demonstrate superior correctness with minimal computation, making it a scalable, model-agnostic solution. The code is released at https://github.com/alickzhu/Soft-Reasoning.
Authors:Jiahe Chen, Jiahe Ying, Shen Wang, Jianwei Zheng
Abstract:
Confronting the critical challenge of insufficiently annotated samples in medical domain, semi-supervised medical image segmentation (SSMIS) emerges as a promising solution. Specifically, most methodologies following the Mean Teacher (MT) or Dual Students (DS) architecture have achieved commendable results. However, to date, these approaches face a performance bottleneck due to two inherent limitations, \textit{e.g.}, the over-coupling problem within MT structure owing to the employment of exponential moving average (EMA) mechanism, as well as the severe cognitive bias between two students of DS structure, both of which potentially lead to reduced efficacy, or even model collapse eventually. To mitigate these issues, a Decoupled Competitive Framework (DCF) is elaborated in this work, which utilizes a straightforward competition mechanism for the update of EMA, effectively decoupling students and teachers in a dynamical manner. In addition, the seamless exchange of invaluable and precise insights is facilitated among students, guaranteeing a better learning paradigm. The DCF introduced undergoes rigorous validation on three publicly accessible datasets, which encompass both 2D and 3D datasets. The results demonstrate the superiority of our method over previous cutting-edge competitors. Code will be available at https://github.com/JiaheChen2002/DCF.
Authors:Yiqun Sun, Qiang Huang, Anthony K. H. Tung, Jun Yu
Abstract:
Semantic Text Embedding is a fundamental NLP task that encodes textual content into vector representations, where proximity in the embedding space reflects semantic similarity. While existing embedding models excel at capturing general meaning, they often overlook ideological nuances, limiting their effectiveness in tasks that require an understanding of political bias. To address this gap, we introduce PRISM, the first framework designed to Produce inteRpretable polItical biaS eMbeddings. PRISM operates in two key stages: (1) Controversial Topic Bias Indicator Mining, which systematically extracts fine-grained political topics and their corresponding bias indicators from weakly labeled news data, and (2) Cross-Encoder Political Bias Embedding, which assigns structured bias scores to news articles based on their alignment with these indicators. This approach ensures that embeddings are explicitly tied to bias-revealing dimensions, enhancing both interpretability and predictive power. Through extensive experiments on two large-scale datasets, we demonstrate that PRISM outperforms state-of-the-art text embedding models in political bias classification while offering highly interpretable representations that facilitate diversified retrieval and ideological analysis. The source code is available at https://github.com/dukesun99/ACL-PRISM.
Authors:Masahiro Negishi, Thomas Gärtner, Pascal Welke
Abstract:
We investigate the distance function learned by message passing neural networks (MPNNs) in specific tasks, aiming to capture the functional distance between prediction targets that MPNNs implicitly learn. This contrasts with previous work, which links MPNN distances on arbitrary tasks to structural distances on graphs that ignore task-specific information. To address this gap, we distill the distance between MPNN embeddings into an interpretable graph distance. Our method uses optimal transport on the Weisfeiler Leman Labeling Tree (WILT), where the edge weights reveal subgraphs that strongly influence the distance between embeddings. This approach generalizes two well-known graph kernels and can be computed in linear time. Through extensive experiments, we demonstrate that MPNNs define the relative position of embeddings by focusing on a small set of subgraphs that are known to be functionally important in the domain.
Authors:Xuzhi Wang, Wei Feng, Lingdong Kong, Liang Wan
Abstract:
LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.
Authors:Ivan Pereira-Sánchez, Julia Navarro, Ana Belén Petro, Joan Duran
Abstract:
This paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation. While spatial super-resolution and spectral super-resolution have been extensively studied, joint spatio-spectral super-resolution remains relatively explored. We propose an end-to-end model-driven framework that explicitly decomposes the joint spatio-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks. Each sub-task is addressed by unfolding a variational-based approach, where the operators involved in the proximal gradient iterative scheme are replaced with tailored learnable modules. In particular, we design an upsampling operator for spatial super-resolution based on classical back-projection algorithms, adapted to handle arbitrary scaling factors. Spectral reconstruction is performed using learnable cluster-based upsampling and downsampling operators. For image fusion, we integrate low-frequency estimation and high-frequency injection modules to combine the spatial and spectral information from spatial super-resolution and spectral super-resolution outputs. Additionally, we introduce an efficient nonlocal post-processing step that leverages image self-similarity by combining a multi-head attention mechanism with residual connections. Extensive evaluations on several datasets and sampling factors demonstrate the effectiveness of our approach. The source code will be available at https://github.com/TAMI-UIB/JSSUNet
Authors:Qinghe Ma, Jian Zhang, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao
Abstract:
Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS), where limited labeled data from a single domain and a large amount of unlabeled data from multiple domains. To tackle this issue, we propose the UST-RUN framework, which fully leverages intermediate domain information to facilitate knowledge transfer. We employ Unified Copy-paste (UCP) to construct intermediate domains, and propose a Symmetric GuiDance training strategy (SymGD) to supervise unlabeled data by merging pseudo-labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. To generate more diverse intermediate samples, we further select reliable samples with high-quality pseudo-labels, which are then mixed with other unlabeled data. Additionally, we generate sophisticated intermediate samples with high-quality pseudo-labels for unreliable samples, ensuring effective knowledge transfer for them. Extensive experiments on four public datasets demonstrate the superiority of UST-RUN. Notably, UST-RUN achieves a 12.94% improvement in Dice score on the Prostate dataset. Our code is available at https://github.com/MQinghe/UST-RUN
Authors:Simone Cammarasana, Giuseppe Patanè
Abstract:
We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.
Authors:Xiaoang Xu, Shuo Wang, Xu Han, Zhenghao Liu, Huijia Wu, Peipei Li, Zhiyuan Liu, Maosong Sun, Zhaofeng He
Abstract:
Large Reasoning Models (LRMs) achieve superior performance by extending the thought length. However, a lengthy thinking trajectory leads to reduced efficiency. Most of the existing methods are stuck in the assumption of overthinking and attempt to reason efficiently by compressing the Chain-of-Thought, but this often leads to performance degradation. To address this problem, we introduce A*-Thought, an efficient tree search-based unified framework designed to identify and isolate the most essential thoughts from the extensive reasoning chains produced by these models. It formulates the reasoning process of LRMs as a search tree, where each node represents a reasoning span in the giant reasoning space. By combining the A* search algorithm with a cost function specific to the reasoning path, it can efficiently compress the chain of thought and determine a reasoning path with high information density and low cost. In addition, we also propose a bidirectional importance estimation mechanism, which further refines this search process and enhances its efficiency beyond uniform sampling. Extensive experiments on several advanced math tasks show that A*-Thought effectively balances performance and efficiency over a huge search space. Specifically, A*-Thought can improve the performance of QwQ-32B by 2.39$\times$ with low-budget and reduce the length of the output token by nearly 50% with high-budget. The proposed method is also compatible with several other LRMs, demonstrating its generalization capability. The code can be accessed at: https://github.com/AI9Stars/AStar-Thought.
Authors:Chaohui Xu, Qi Cui, Chip-Hong Chang
Abstract:
The pervasion of large-scale Deep Neural Networks (DNNs) and their enormous training costs make their intellectual property (IP) protection of paramount importance. Recently introduced passport-based methods attempt to steer DNN watermarking towards strengthening ownership verification against ambiguity attacks by modulating the affine parameters of normalization layers. Unfortunately, neither watermarking nor passport-based methods provide a holistic protection with robust ownership proof, high fidelity, active usage authorization and user traceability for offline access distributed models and multi-user Machine-Learning as a Service (MLaaS) cloud model. In this paper, we propose a Chameleon Hash-based Irreversible Passport (CHIP) protection framework that utilizes the cryptographic chameleon hash function to achieve all these goals. The collision-resistant property of chameleon hash allows for strong model ownership claim upon IP infringement and liable user traceability, while the trapdoor-collision property enables hashing of multiple user passports and licensee certificates to the same immutable signature to realize active usage control. Using the owner passport as an oracle, multiple user-specific triplets, each contains a passport-aware user model, a user passport, and a licensee certificate can be created for secure offline distribution. The watermarked master model can also be deployed for MLaaS with usage permission verifiable by the provision of any trapdoor-colliding user passports. CHIP is extensively evaluated on four datasets and two architectures to demonstrate its protection versatility and robustness. Our code is released at https://github.com/Dshm212/CHIP.
Authors:Yang-Tian Sun, Xin Yu, Zehuan Huang, Yi-Hua Huang, Yuan-Chen Guo, Ziyi Yang, Yan-Pei Cao, Xiaojuan Qi
Abstract:
Recently, methods leveraging diffusion model priors to assist monocular geometric estimation (e.g., depth and normal) have gained significant attention due to their strong generalization ability. However, most existing works focus on estimating geometric properties within the camera coordinate system of individual video frames, neglecting the inherent ability of diffusion models to determine inter-frame correspondence. In this work, we demonstrate that, through appropriate design and fine-tuning, the intrinsic consistency of video generation models can be effectively harnessed for consistent geometric estimation. Specifically, we 1) select geometric attributes in the global coordinate system that share the same correspondence with video frames as the prediction targets, 2) introduce a novel and efficient conditioning method by reusing positional encodings, and 3) enhance performance through joint training on multiple geometric attributes that share the same correspondence. Our results achieve superior performance in predicting global geometric attributes in videos and can be directly applied to reconstruction tasks. Even when trained solely on static video data, our approach exhibits the potential to generalize to dynamic video scenes.
Authors:Yinqi Li, Jiahe Zhao, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Abstract:
Contrastive Language-Image Pre-training (CLIP) has become a foundation model and has been applied to various vision and multimodal tasks. However, recent works indicate that CLIP falls short in distinguishing detailed differences in images and shows suboptimal performance on dense-prediction and vision-centric multimodal tasks. Therefore, this work focuses on improving existing CLIP models, aiming to capture as many visual details in images as possible. We find that a specific type of generative models, unCLIP, provides a suitable framework for achieving our goal. Specifically, unCLIP trains an image generator conditioned on the CLIP image embedding. In other words, it inverts the CLIP image encoder. Compared to discriminative models like CLIP, generative models are better at capturing image details because they are trained to learn the data distribution of images. Additionally, the conditional input space of unCLIP aligns with CLIP's original image-text embedding space. Therefore, we propose to invert unCLIP (dubbed un$^2$CLIP) to improve the CLIP model. In this way, the improved image encoder can gain unCLIP's visual detail capturing ability while preserving its alignment with the original text encoder simultaneously. We evaluate our improved CLIP across various tasks to which CLIP has been applied, including the challenging MMVP-VLM benchmark, the dense-prediction open-vocabulary segmentation task, and multimodal large language model tasks. Experiments show that un$^2$CLIP significantly improves the original CLIP and previous CLIP improvement methods. Code and models will be available at https://github.com/LiYinqi/un2CLIP.
Authors:Falih Gozi Febrinanto, Kristen Moore, Chandra Thapa, Jiangang Ma, Vidya Saikrishna, Feng Xia
Abstract:
The performance of existing audio deepfake detection frameworks degrades when confronted with new deepfake attacks. Rehearsal-based continual learning (CL), which updates models using a limited set of old data samples, helps preserve prior knowledge while incorporating new information. However, existing rehearsal techniques don't effectively capture the diversity of audio characteristics, introducing bias and increasing the risk of forgetting. To address this challenge, we propose Rehearsal with Auxiliary-Informed Sampling (RAIS), a rehearsal-based CL approach for audio deepfake detection. RAIS employs a label generation network to produce auxiliary labels, guiding diverse sample selection for the memory buffer. Extensive experiments show RAIS outperforms state-of-the-art methods, achieving an average Equal Error Rate (EER) of 1.953 % across five experiences. The code is available at: https://github.com/falihgoz/RAIS.
Authors:Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai
Abstract:
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.
Authors:Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan Wang, Ji-Rong Wen
Abstract:
In this paper, we investigate code-integrated reasoning, where models generate code when necessary and integrate feedback by executing it through a code interpreter. To acquire this capability, models must learn when and how to use external code tools effectively, which is supported by tool-augmented reinforcement learning (RL) through interactive learning. Despite its benefits, tool-augmented RL can still suffer from potential instability in the learning dynamics. In light of this challenge, we present a systematic approach to improving the training effectiveness and stability of tool-augmented RL for code-integrated reasoning. Specifically, we develop enhanced training strategies that balance exploration and stability, progressively building tool-use capabilities while improving reasoning performance. Through extensive experiments on five mainstream mathematical reasoning benchmarks, our model demonstrates significant performance improvements over multiple competitive baselines. Furthermore, we conduct an in-depth analysis of the mechanism and effect of code-integrated reasoning, revealing several key insights, such as the extension of model's capability boundaries and the simultaneous improvement of reasoning efficiency through code integration. All data and code for reproducing this work are available at: https://github.com/RUCAIBox/CIR.
Authors:Yuting Zhang, Hao Lu, Qingyong Hu, Yin Wang, Kaishen Yuan, Xin Liu, Kaishun Wu
Abstract:
Periodic or quasi-periodic phenomena reveal intrinsic characteristics in various natural processes, such as weather patterns, movement behaviors, traffic flows, and biological signals. Given that these phenomena span multiple modalities, the capabilities of Multimodal Large Language Models (MLLMs) offer promising potential to effectively capture and understand their complex nature. However, current MLLMs struggle with periodic tasks due to limitations in: 1) lack of temporal modelling and 2) conflict between short and long periods. This paper introduces Period-LLM, a multimodal large language model designed to enhance the performance of periodic tasks across various modalities, and constructs a benchmark of various difficulty for evaluating the cross-modal periodic capabilities of large models. Specially, We adopt an "Easy to Hard Generalization" paradigm, starting with relatively simple text-based tasks and progressing to more complex visual and multimodal tasks, ensuring that the model gradually builds robust periodic reasoning capabilities. Additionally, we propose a "Resisting Logical Oblivion" optimization strategy to maintain periodic reasoning abilities during semantic alignment. Extensive experiments demonstrate the superiority of the proposed Period-LLM over existing MLLMs in periodic tasks. The code is available at https://github.com/keke-nice/Period-LLM.
Authors:Jingyao Li, Senqiao Yang, Sitong Wu, Han Shi, Chuanyang Zheng, Hong Xu, Jiaya Jia
Abstract:
In recent years, developing compact and efficient large language models (LLMs) has emerged as a thriving area of research. Traditional Supervised Fine-Tuning (SFT), which relies on singular ground truth labels, often fails to capture token-level dependencies and linguistic diversity. To address these limitations, we propose a logits-based fine-tuning framework that integrates the strengths of supervised learning and knowledge distillation. Our approach constructs enriched training targets by combining teacher logits with ground truth labels, preserving both correctness and linguistic diversity. This ensures more reliable and effective training. We constructed a large-scale 1.2M logits dataset and trained a series of science-focused models. Experimental results demonstrate that our method achieves significant improvements, with accuracy gains of 18% on Mawps and 22.7% on TabMWP. Across nine widely used mathematical benchmarks, our method consistently outperforms prior SFT models, achieving an average improvement of 7.28%. Codes are available at https://github.com/dvlab-research/Logits-Based-Finetuning.
Authors:Tianlong Yu, Chenghang Ye, Zheyu Yang, Ziyi Zhou, Cui Tang, Zui Tao, Jun Zhang, Kailong Wang, Liting Zhou, Yang Yang, Ting Bi
Abstract:
The SEAR Dataset is a novel multimodal resource designed to study the emerging threat of social engineering (SE) attacks orchestrated through augmented reality (AR) and multimodal large language models (LLMs). This dataset captures 180 annotated conversations across 60 participants in simulated adversarial scenarios, including meetings, classes and networking events. It comprises synchronized AR-captured visual/audio cues (e.g., facial expressions, vocal tones), environmental context, and curated social media profiles, alongside subjective metrics such as trust ratings and susceptibility assessments. Key findings reveal SEAR's alarming efficacy in eliciting compliance (e.g., 93.3% phishing link clicks, 85% call acceptance) and hijacking trust (76.7% post-interaction trust surge). The dataset supports research in detecting AR-driven SE attacks, designing defensive frameworks, and understanding multimodal adversarial manipulation. Rigorous ethical safeguards, including anonymization and IRB compliance, ensure responsible use. The SEAR dataset is available at https://github.com/INSLabCN/SEAR-Dataset.
Authors:Longjie Luo, Lin Li, Qingyang Hong
Abstract:
Due to the lack of target speech annotations in real-recorded far-field conversational datasets, speech enhancement (SE) models are typically trained on simulated data. However, the trained models often perform poorly in real-world conditions, hindering their application in far-field speech recognition. To address the issue, we (a) propose direct sound estimation (DSE) to estimate the oracle direct sound of real-recorded data for SE; and (b) present a novel pseudo-supervised learning method, SuPseudo, which leverages DSE-estimates as pseudo-labels and enables SE models to directly learn from and adapt to real-recorded data, thereby improving their generalization capability. Furthermore, an SE model called FARNET is designed to fully utilize SuPseudo. Experiments on the MISP2023 corpus demonstrate the effectiveness of SuPseudo, and our system significantly outperforms the previous state-of-the-art. A demo of our method can be found at https://EeLLJ.github.io/SuPseudo/.
Authors:Heejo Kong, Sung-Jin Kim, Gunho Jung, Seong-Whan Lee
Abstract:
Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
Authors:Zhentao Xie, Chengcheng Han, Jinxin Shi, Wenjun Cui, Xin Zhao, Xingjiao Wu, Jiabao Zhao
Abstract:
Although multi-agent systems based on large language models show strong capabilities on multiple tasks, they are still limited by high computational overhead, information loss, and robustness. Inspired by ResNet's residual learning, we propose Residual Mixture-of-Agents (RMoA), integrating residual connections to optimize efficiency and reliability. To maximize information utilization from model responses while minimizing computational costs, we innovatively design an embedding-based diversity selection mechanism that greedily selects responses via vector similarity. Furthermore, to mitigate iterative information degradation, we introduce a Residual Extraction Agent to preserve cross-layer incremental information by capturing inter-layer response differences, coupled with a Residual Aggregation Agent for hierarchical information integration. Additionally, we propose an adaptive termination mechanism that dynamically halts processing based on residual convergence, further improving inference efficiency. RMoA achieves state-of-the-art performance on the benchmarks of across alignment, mathematical reasoning, code generation, and multitasking understanding, while significantly reducing computational overhead. Code is available at https://github.com/mindhunter01/RMoA.
Authors:Chunxu Liu, Chi Xie, Xiaxu Chen, Wei Li, Feng Zhu, Rui Zhao, Limin Wang
Abstract:
Text-to-Image Retrieval (T2IR) is a highly valuable task that aims to match a given textual query to images in a gallery. Existing benchmarks primarily focus on textual queries describing overall image semantics or foreground salient objects, possibly overlooking inconspicuous small objects, especially in complex environments. Such small object retrieval is crucial, as in real-world applications, the targets of interest are not always prominent in the image. Thus, we introduce SORCE (Small Object Retrieval in Complex Environments), a new subfield of T2IR, focusing on retrieving small objects in complex images with textual queries. We propose a new benchmark, SORCE-1K, consisting of images with complex environments and textual queries describing less conspicuous small objects with minimal contextual cues from other salient objects. Preliminary analysis on SORCE-1K finds that existing T2IR methods struggle to capture small objects and encode all the semantics into a single embedding, leading to poor retrieval performance on SORCE-1K. Therefore, we propose to represent each image with multiple distinctive embeddings. We leverage Multimodal Large Language Models (MLLMs) to extract multiple embeddings for each image instructed by a set of Regional Prompts (ReP). Experimental results show that our multi-embedding approach through MLLM and ReP significantly outperforms existing T2IR methods on SORCE-1K. Our experiments validate the effectiveness of SORCE-1K for benchmarking SORCE performances, highlighting the potential of multi-embedding representation and text-customized MLLM features for addressing this task.
Authors:Bozhong Zheng, Jinye Gan, Xiaohao Xu, Wenqiao Li, Xiaonan Huang, Na Ni, Yingna Wu
Abstract:
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.
Authors:Zhiwei Liu, Lingfei Qian, Qianqian Xie, Jimin Huang, Kailai Yang, Sophia Ananiadou
Abstract:
Large language models and vision-language models (which we jointly call LMs) have transformed NLP and CV, demonstrating remarkable potential across various fields. However, their capabilities in affective analysis (i.e. sentiment analysis and emotion detection) remain underexplored. This gap is largely due to the absence of comprehensive evaluation benchmarks, and the inherent complexity of affective analysis tasks. In this paper, we introduce MMAFFBen, the first extensive open-source benchmark for multilingual multimodal affective analysis. MMAFFBen encompasses text, image, and video modalities across 35 languages, covering four key affective analysis tasks: sentiment polarity, sentiment intensity, emotion classification, and emotion intensity. Moreover, we construct the MMAFFIn dataset for fine-tuning LMs on affective analysis tasks, and further develop MMAFFLM-3b and MMAFFLM-7b based on it. We evaluate various representative LMs, including GPT-4o-mini, providing a systematic comparison of their affective understanding capabilities. This project is available at https://github.com/lzw108/MMAFFBen.
Authors:Wenlong Jiao, Binglong Li, Wei Shang, Ping Wang, Dongwei Ren
Abstract:
Image deblurring plays a crucial role in enhancing visual clarity across various applications. Although most deep learning approaches primarily focus on sRGB images, which inherently lose critical information during the image signal processing pipeline, RAW images, being unprocessed and linear, possess superior restoration potential but remain underexplored. Deblurring RAW images presents unique challenges, particularly in handling frequency-dependent blur while maintaining computational efficiency. To address these issues, we propose Frequency Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW deblurring that operates directly in the frequency domain. We introduce a novel Adaptive Frequency Positional Modulation module, which dynamically adjusts frequency components according to their spectral positions, thereby enabling precise control over the deblurring process. Additionally, frequency domain skip connections are adopted to further preserve high-frequency details. Experimental results demonstrate that FrENet surpasses state-of-the-art deblurring methods in RAW image deblurring, achieving significantly better restoration quality while maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet's adaptability enables it to be extended to sRGB images, where it delivers comparable or superior performance compared to methods specifically designed for sRGB data. The code will be available at https://github.com/WenlongJiao/FrENet .
Authors:Kanokphan Lertniphonphan, Feng Chen, Junda Xu, Fengbu Lan, Jun Xie, Tao Zhang, Zhepeng Wang
Abstract:
This report presents our team's PCIE_Interaction solution for the Ego4D Social Interaction Challenge at CVPR 2025, addressing both Looking At Me (LAM) and Talking To Me (TTM) tasks. The challenge requires accurate detection of social interactions between subjects and the camera wearer, with LAM relying exclusively on face crop sequences and TTM combining speaker face crops with synchronized audio segments. In the LAM track, we employ face quality enhancement and ensemble methods. For the TTM task, we extend visual interaction analysis by fusing audio and visual cues, weighted by a visual quality score. Our approach achieved 0.81 and 0.71 mean average precision (mAP) on the LAM and TTM challenges leader board. Code is available at https://github.com/KanokphanL/PCIE_Ego4D_Social_Interaction
Authors:Mika Feng, Koichi Ito, Takafumi Aoki, Tetsushi Ohki, Masakatsu Nishigaki
Abstract:
Face recognition systems are designed to be robust against changes in head pose, illumination, and blurring during image capture. If a malicious person presents a face photo of the registered user, they may bypass the authentication process illegally. Such spoofing attacks need to be detected before face recognition. In this paper, we propose a spoofing attack detection method based on Vision Transformer (ViT) to detect minute differences between live and spoofed face images. The proposed method utilizes the intermediate features of ViT, which have a good balance between local and global features that are important for spoofing attack detection, for calculating loss in training and score in inference. The proposed method also introduces two data augmentation methods: face anti-spoofing data augmentation and patch-wise data augmentation, to improve the accuracy of spoofing attack detection. We demonstrate the effectiveness of the proposed method through experiments using the OULU-NPU and SiW datasets. The project page is available at: https://gsisaoki.github.io/FAS-ViT-CVPRW/ .
Authors:Xianheng Ma, Hongchen Tan, Xiuping Liu, Yi Zhang, Huasheng Wang, Jiang Liu, Ying Chen, Hantao Liu
Abstract:
In this paper, we leverage the advantages of event cameras to resist harsh lighting conditions, reduce background interference, achieve high time resolution, and protect facial information to study the long-sequence event-based person re-identification (Re-ID) task. To this end, we propose a simple and efficient long-sequence event Re-ID model, namely the Spike-guided Spatiotemporal Semantic Coupling and Expansion Network (S3CE-Net). To better handle asynchronous event data, we build S3CE-Net based on spiking neural networks (SNNs). The S3CE-Net incorporates the Spike-guided Spatial-temporal Attention Mechanism (SSAM) and the Spatiotemporal Feature Sampling Strategy (STFS). The SSAM is designed to carry out semantic interaction and association in both spatial and temporal dimensions, leveraging the capabilities of SNNs. The STFS involves sampling spatial feature subsequences and temporal feature subsequences from the spatiotemporal dimensions, driving the Re-ID model to perceive broader and more robust effective semantics. Notably, the STFS introduces no additional parameters and is only utilized during the training stage. Therefore, S3CE-Net is a low-parameter and high-efficiency model for long-sequence event-based person Re-ID. Extensive experiments have verified that our S3CE-Net achieves outstanding performance on many mainstream long-sequence event-based person Re-ID datasets. Code is available at:https://github.com/Mhsunshine/SC3E_Net.
Authors:Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, Xiaokang Yang
Abstract:
Large language models (LLMs) have achieved remarkable performance, yet their capability on long-context reasoning is often constrained by the excessive memory required to store the Key-Value (KV) cache. This makes KV cache compression an essential step toward enabling efficient long-context reasoning. Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers or suffer from significant performance degradation under high compression ratios. To address these challenges, we propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache. We develop distinct compression strategies for Keys and Values based on their different roles and varying importance in the attention mechanism. For Keys, we propose Head-wise Similarity-aware Reordering (HSR), which clusters similar heads and applies grouped SVD to the key projection matrix, reducing additional computation while preserving accuracy. For Values, we propose Offline Calibration and Matrix Fusion (OCMF) to preserve accuracy without extra computational overhead. Experiments show that ReCalKV outperforms existing low-rank compression methods, achieving high compression ratios with minimal performance loss. The code and models will be available at: https://github.com/XIANGLONGYAN/ReCalKV.
Authors:Gilles Quentin Hacheme, Girmaw Abebe Tadesse, Caleb Robinson, Akram Zaytar, Rahul Dodhia, Juan M. Lavista Ferres
Abstract:
Classifying geospatial imagery remains a major bottleneck for applications such as disaster response and land-use monitoring-particularly in regions where annotated data is scarce or unavailable. Existing tools (e.g., RS-CLIP) that claim zero-shot classification capabilities for satellite imagery nonetheless rely on task-specific pretraining and adaptation to reach competitive performance. We introduce GeoVision Labeler (GVL), a strictly zero-shot classification framework: a vision Large Language Model (vLLM) generates rich, human-readable image descriptions, which are then mapped to user-defined classes by a conventional Large Language Model (LLM). This modular, and interpretable pipeline enables flexible image classification for a large range of use cases. We evaluated GVL across three benchmarks-SpaceNet v7, UC Merced, and RESISC45. It achieves up to 93.2% zero-shot accuracy on the binary Buildings vs. No Buildings task on SpaceNet v7. For complex multi-class classification tasks (UC Merced, RESISC45), we implemented a recursive LLM-driven clustering to form meta-classes at successive depths, followed by hierarchical classification-first resolving coarse groups, then finer distinctions-to deliver competitive zero-shot performance. GVL is open-sourced at https://github.com/microsoft/geo-vision-labeler to catalyze adoption in real-world geospatial workflows.
Authors:Minsu Kang, Seolhee Lee, Choonghyeon Lee, Namhyun Cho
Abstract:
Human to non-human voice conversion (H2NH-VC) transforms human speech into animal or designed vocalizations. Unlike prior studies focused on dog-sounds and 16 or 22.05kHz audio transformation, this work addresses a broader range of non-speech sounds, including natural sounds (lion-roars, birdsongs) and designed voice (synthetic growls). To accomodate generation of diverse non-speech sounds and 44.1kHz high-quality audio transformation, we introduce a preprocessing pipeline and an improved CVAE-based H2NH-VC model, both optimized for human and non-human voices. Experimental results showed that the proposed method outperformed baselines in quality, naturalness, and similarity MOS, achieving effective voice conversion across diverse non-human timbres. Demo samples are available at https://nc-ai.github.io/speech/publications/nonhuman-vc/
Authors:Uzair Khan, Franco Fummi, Luigi Capogrosso
Abstract:
In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enterprises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4x faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.
Authors:Yingsen Zeng, Zepeng Huang, Yujie Zhong, Chengjian Feng, Jie Hu, Lin Ma, Yang Liu
Abstract:
Despite advances in general video understanding, Video Large Language Models (Video-LLMs) face challenges in precise temporal localization due to discrete time representations and limited temporally aware datasets. Existing methods for temporal expression either conflate time with text-based numerical values, add a series of dedicated temporal tokens, or regress time using specialized temporal grounding heads. To address these issues, we introduce DisTime, a lightweight framework designed to enhance temporal comprehension in Video-LLMs. DisTime employs a learnable token to create a continuous temporal embedding space and incorporates a Distribution-based Time Decoder that generates temporal probability distributions, effectively mitigating boundary ambiguities and maintaining temporal continuity. Additionally, the Distribution-based Time Encoder re-encodes timestamps to provide time markers for Video-LLMs. To overcome temporal granularity limitations in existing datasets, we propose an automated annotation paradigm that combines the captioning capabilities of Video-LLMs with the localization expertise of dedicated temporal models. This leads to the creation of InternVid-TG, a substantial dataset with 1.25M temporally grounded events across 179k videos, surpassing ActivityNet-Caption by 55 times. Extensive experiments demonstrate that DisTime achieves state-of-the-art performance across benchmarks in three time-sensitive tasks while maintaining competitive performance in Video QA tasks. Code and data are released at https://github.com/josephzpng/DisTime.
Authors:Kechen Li, Yaotian Tao, Ximing Wen, Quanwei Sun, Zifei Gong, Chang Xu, Xizhe Zhang, Tianbo Ji
Abstract:
Recent advancements in Large Language Models (LLMs) have demonstrated their potential in planning and reasoning tasks, offering a flexible alternative to classical pathfinding algorithms. However, most existing studies focus on LLMs' independent reasoning capabilities and overlook the potential synergy between LLMs and traditional algorithms. To fill this gap, we propose a comprehensive evaluation benchmark GridRoute to assess how LLMs can take advantage of traditional algorithms. We also propose a novel hybrid prompting technique called Algorithm of Thought (AoT), which introduces traditional algorithms' guidance into prompting. Our benchmark evaluates six LLMs ranging from 7B to 72B parameters across various map sizes, assessing their performance in correctness, optimality, and efficiency in grid environments with varying sizes. Our results show that AoT significantly boosts performance across all model sizes, particularly in larger or more complex environments, suggesting a promising approach to addressing path planning challenges. Our code is open-sourced at https://github.com/LinChance/GridRoute.
Authors:Enshang Zhang, Zhicheng Zhang, Takashi Hanakawa
Abstract:
Reconstructing visual stimuli from EEG signals is a crucial step in realizing brain-computer interfaces. In this paper, we propose a transformer-based EEG signal encoder integrating the Discrete Wavelet Transform (DWT) and the gating mechanism. Guided by the feature alignment and category-aware fusion losses, this encoder is used to extract features related to visual stimuli from EEG signals. Subsequently, with the aid of a pre-trained diffusion model, these features are reconstructed into visual stimuli. To verify the effectiveness of the model, we conducted EEG-to-image generation and classification tasks using the THINGS-EEG dataset. To address the limitations of quantitative analysis at the semantic level, we combined WordNet-based classification and semantic similarity metrics to propose a novel semantic-based score, emphasizing the ability of our model to transfer neural activities into visual representations. Experimental results show that our model significantly improves semantic alignment and classification accuracy, which achieves a maximum single-subject accuracy of 43\%, outperforming other state-of-the-art methods. The source code and supplementary material is available at https://github.com/zes0v0inn/DWT_EEG_Reconstruction/tree/main.
Authors:Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, Yi Wu
Abstract:
Reinforcement learning (RL) has become a dominant paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous, alternating generation and training in a batch setting where rollouts in each training batch are generated by the same model. This approach stabilizes RL training but suffers from severe system-level inefficiency: generation must wait until the longest output in the batch is completed before model updates, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.77$\times$ training speedup compared to synchronous systems with the same number of GPUs and matched or improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.
Authors:James R. Golden
Abstract:
We demonstrate that the inference operations of several open-weight large language models (LLMs) can be mapped to an exactly equivalent linear system for an input sequence without modifying the model weights or altering output predictions. Extending techniques from image diffusion models that exhibit local or piecewise linearity, we strategically alter the gradient computation with respect to a given input sequence for a next-token prediction such that the Jacobian of the model nearly exactly reproduces the forward prediction with a linear system. We demonstrate this approach across models (Llama 3, Gemma 3, Qwen 3, Phi 4, Mistral Ministral and OLMo 2, up to Llama 3.3 70B Q4) and show through the singular value decomposition of the detached Jacobian that these LLMs operate in extremely low-dimensional subspaces where many of the largest singular vectors decode to concepts related to the most-likely output token. This approach also allows us to examine the operation of each successive layer (and its attention and MLP components) as nearly-exact linear systems and observe the emergence of semantic concepts. Despite their expressive power and global nonlinearity, modern LLMs can be interpreted through nearly-exact locally linear decompositions that provide insights into their internal representations and reveal interpretable semantic structures in the next-token prediction process.
Authors:Liancheng Fang, Aiwei Liu, Henry Peng Zou, Yankai Chen, Hengrui Zhang, Zhongfen Deng, Philip S. Yu
Abstract:
We introduce MUSE, a watermarking algorithm for tabular generative models. Previous approaches typically leverage DDIM invertibility to watermark tabular diffusion models, but tabular diffusion models exhibit significantly poorer invertibility compared to other modalities, compromising performance. Simultaneously, tabular diffusion models require substantially less computation than other modalities, enabling a multi-sample selection approach to tabular generative model watermarking. MUSE embeds watermarks by generating multiple candidate samples and selecting one based on a specialized scoring function, without relying on model invertibility. Our theoretical analysis establishes the relationship between watermark detectability, candidate count, and dataset size, allowing precise calibration of watermarking strength. Extensive experiments demonstrate that MUSE achieves state-of-the-art watermark detectability and robustness against various attacks while maintaining data quality, and remains compatible with any tabular generative model supporting repeated sampling, effectively addressing key challenges in tabular data watermarking. Specifically, it reduces the distortion rates on fidelity metrics by 81-89%, while achieving a 1.0 TPR@0.1%FPR detection rate. Implementation of MUSE can be found at https://github.com/fangliancheng/MUSE.
Authors:Neemesh Yadav, Palakorn Achananuparp, Jing Jiang, Ee-Peng Lim
Abstract:
Large Language Models (LLMs) have shown potential in simulating human behaviors and performing theory-of-mind (ToM) reasoning, a crucial skill for complex social interactions. In this study, we investigate the role of ToM reasoning in aligning agentic behaviors with human norms in negotiation tasks, using the ultimatum game as a controlled environment. We initialized LLM agents with different prosocial beliefs (including Greedy, Fair, and Selfless) and reasoning methods like chain-of-thought (CoT) and varying ToM levels, and examined their decision-making processes across diverse LLMs, including reasoning models like o3-mini and DeepSeek-R1 Distilled Qwen 32B. Results from 2,700 simulations indicated that ToM reasoning enhances behavior alignment, decision-making consistency, and negotiation outcomes. Consistent with previous findings, reasoning models exhibit limited capability compared to models with ToM reasoning, different roles of the game benefits with different orders of ToM reasoning. Our findings contribute to the understanding of ToM's role in enhancing human-AI interaction and cooperative decision-making. The code used for our experiments can be found at https://github.com/Stealth-py/UltimatumToM.
Authors:Prasanna Reddy Pulakurthi, Majid Rabbani, Jamison Heard, Sohail Dianat, Celso M. de Melo, Raghuveer Rao
Abstract:
This work investigates Source-Free Domain Adaptation (SFDA), where a model adapts to a target domain without access to source data. A new augmentation technique, Shuffle PatchMix (SPM), and a novel reweighting strategy are introduced to enhance performance. SPM shuffles and blends image patches to generate diverse and challenging augmentations, while the reweighting strategy prioritizes reliable pseudo-labels to mitigate label noise. These techniques are particularly effective on smaller datasets like PACS, where overfitting and pseudo-label noise pose greater risks. State-of-the-art results are achieved on three major benchmarks: PACS, VisDA-C, and DomainNet-126. Notably, on PACS, improvements of 7.3% (79.4% to 86.7%) and 7.2% are observed in single-target and multi-target settings, respectively, while gains of 2.8% and 0.7% are attained on DomainNet-126 and VisDA-C. This combination of advanced augmentation and robust pseudo-label reweighting establishes a new benchmark for SFDA. The code is available at: https://github.com/PrasannaPulakurthi/SPM
Authors:Jiwan Chung, Janghan Yoon, Junhyeong Park, Sangeyl Lee, Joowon Yang, Sooyeon Park, Youngjae Yu
Abstract:
Any-to-any generative models aim to enable seamless interpretation and generation across multiple modalities within a unified framework, yet their ability to preserve relationships across modalities remains uncertain. Do unified models truly achieve cross-modal coherence, or is this coherence merely perceived? To explore this, we introduce ACON, a dataset of 1,000 images (500 newly contributed) paired with captions, editing instructions, and Q&A pairs to evaluate cross-modal transfers rigorously. Using three consistency criteria-cyclic consistency, forward equivariance, and conjugated equivariance-our experiments reveal that any-to-any models do not consistently demonstrate greater cross-modal consistency than specialized models in pointwise evaluations such as cyclic consistency. However, equivariance evaluations uncover weak but observable consistency through structured analyses of the intermediate latent space enabled by multiple editing operations. We release our code and data at https://github.com/JiwanChung/ACON.
Authors:Zheng Tan, Weizhen Wang, Andrea L. Bertozzi, Ernest K. Ryu
Abstract:
Diffusion models (DMs) have demonstrated remarkable performance in high-fidelity image and video generation. Because high-quality generations with DMs typically require a large number of function evaluations (NFEs), resulting in slow sampling, there has been extensive research successfully reducing the NFE to a small range (<10) while maintaining acceptable image quality. However, many practical applications, such as those involving Stable Diffusion 3.5, FLUX, and SANA, commonly operate in the mid-NFE regime (20-50 NFE) to achieve superior results, and, despite the practical relevance, research on the effective sampling within this mid-NFE regime remains underexplored. In this work, we propose a novel, training-free, and structure-independent DM ODE solver called the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, based on a class of stiff ODE solvers with a Taylor expansion adaptation. Unlike prior work such as DPM-Solver, which is dependent on the semi-linear structure of the DM ODE, STORK is applicable to any DM sampling, including noise-based and flow matching-based models. Within the 20-50 NFE range, STORK achieves improved generation quality, as measured by FID scores, across unconditional pixel-level generation and conditional latent-space generation tasks using models like Stable Diffusion 3.5 and SANA. Code is available at https://github.com/ZT220501/STORK.
Authors:Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu
Abstract:
Unified image restoration models for diverse and mixed degradations often suffer from unstable optimization dynamics and inter-task conflicts. This paper introduces Self-Improved Privilege Learning (SIPL), a novel paradigm that overcomes these limitations by innovatively extending the utility of privileged information (PI) beyond training into the inference stage. Unlike conventional Privilege Learning, where ground-truth-derived guidance is typically discarded after training, SIPL empowers the model to leverage its own preliminary outputs as pseudo-privileged signals for iterative self-refinement at test time. Central to SIPL is Proxy Fusion, a lightweight module incorporating a learnable Privileged Dictionary. During training, this dictionary distills essential high-frequency and structural priors from privileged feature representations. Critically, at inference, the same learned dictionary then interacts with features derived from the model's initial restoration, facilitating a self-correction loop. SIPL can be seamlessly integrated into various backbone architectures, offering substantial performance improvements with minimal computational overhead. Extensive experiments demonstrate that SIPL significantly advances the state-of-the-art on diverse all-in-one image restoration benchmarks. For instance, when integrated with the PromptIR model, SIPL achieves remarkable PSNR improvements of +4.58 dB on composite degradation tasks and +1.28 dB on diverse five-task benchmarks, underscoring its effectiveness and broad applicability. Codes are available at our project page https://github.com/Aitical/SIPL.
Authors:Lan-Cuong Nguyen, Quan Nguyen-Tri, Bang Tran Khanh, Dung D. Le, Long Tran-Thanh, Khoat Than
Abstract:
Few-shot image classification remains challenging due to the scarcity of labeled training examples. Augmenting them with synthetic data has emerged as a promising way to alleviate this issue, but models trained on synthetic samples often face performance degradation due to the inherent gap between real and synthetic distributions. To address this limitation, we develop a theoretical framework that quantifies the impact of such distribution discrepancies on supervised learning, specifically in the context of image classification. More importantly, our framework suggests practical ways to generate good synthetic samples and to train a predictor with high generalization ability. Building upon this framework, we propose a novel theoretical-based algorithm that integrates prototype learning to optimize both data partitioning and model training, effectively bridging the gap between real few-shot data and synthetic data. Extensive experiments results show that our approach demonstrates superior performance compared to state-of-the-art methods, outperforming them across multiple datasets.
Authors:Katherine Tieu, Dongqi Fu, Jun Wu, Jingrui He
Abstract:
In the era of foundation models, Out-of- Distribution (OOD) problems, i.e., the data discrepancy between the training environments and testing environments, hinder AI generalization. Further, relational data like graphs disobeying the Independent and Identically Distributed (IID) condition makes the problem more challenging, especially much harder when it is associated with time. Motivated by this, to realize the robust invariant learning over temporal graphs, we want to investigate what components in temporal graphs are most invariant and representative with respect to labels. With the Information Bottleneck (IB) method, we propose an error-bounded Invariant Link Selector that can distinguish invariant components and variant components during the training process to make the deep learning model generalizable for different testing scenarios. Besides deriving a series of rigorous generalizable optimization functions, we also equip the training with task-specific loss functions, e.g., temporal link prediction, to make pretrained models solve real-world application tasks like citation recommendation and merchandise recommendation, as demonstrated in our experiments with state-of-the-art (SOTA) methods. Our code is available at https://github.com/kthrn22/OOD-Linker.
Authors:Junyu Chen, Shuwen Wei, Yihao Liu, Aaron Carass, Yong Du
Abstract:
Recent advances in deep learning-based medical image registration have shown that training deep neural networks~(DNNs) does not necessarily require medical images. Previous work showed that DNNs trained on randomly generated images with carefully designed noise and contrast properties can still generalize well to unseen medical data. Building on this insight, we propose using registration between random images as a proxy task for pretraining a foundation model for image registration. Empirical results show that our pretraining strategy improves registration accuracy, reduces the amount of domain-specific data needed to achieve competitive performance, and accelerates convergence during downstream training, thereby enhancing computational efficiency.
Authors:Shilin Xu, Yanwei Li, Rui Yang, Tao Zhang, Yueyi Sun, Wei Chow, Linfeng Li, Hang Song, Qi Xu, Yunhai Tong, Xiangtai Li, Hao Fei
Abstract:
Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.
Authors:Chiwei Zhu, Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Zhendong Mao
Abstract:
Training language models with rationales augmentation has been shown to be beneficial in many existing works. In this paper, we identify that such a prevailing view does not hold consistently. We conduct comprehensive investigations to thoroughly inspect the impact of rationales on model performance as well as a novel perspective of model reliability. The results lead to several key findings that add new insights upon existing understandings: 1) Rationales can, at times, deteriorate model performance; 2) Rationales can, at times, improve model reliability, even outperforming their untrained counterparts; 3) A linear correspondence exists in between the performance and reliability improvements, while both are driven by the intrinsic difficulty of the task. These findings provide informative regulations on the broad utilization of rationales and raise critical implications on the procedure of explicitly aligning language models with implicit human thoughts. Codes can be found at https://github.com/Ignoramus0817/rationales.
Authors:Jiashuai Liu, Yingjia Shang, Yingkang Zhan, Di Zhang, Yi Niu, Dong Wei, Xian Wu, Zeyu Gao, Chen Li, Yefeng Zheng
Abstract:
With the widespread adoption of pathology foundation models in both research and clinical decision support systems, exploring their security has become a critical concern. However, despite their growing impact, the vulnerability of these models to adversarial attacks remains largely unexplored. In this work, we present the first systematic investigation into the security of pathology foundation models for whole slide image~(WSI) analysis against adversarial attacks. Specifically, we introduce the principle of \textit{local perturbation with global impact} and propose a label-free attack framework that operates without requiring access to downstream task labels. Under this attack framework, we revise four classical white-box attack methods and redefine the perturbation budget based on the characteristics of WSI. We conduct comprehensive experiments on three representative pathology foundation models across five datasets and six downstream tasks. Despite modifying only 0.1\% of patches per slide with imperceptible noise, our attack leads to downstream accuracy degradation that can reach up to 20\% in the worst cases. Furthermore, we analyze key factors that influence attack success, explore the relationship between patch-level vulnerability and semantic content, and conduct a preliminary investigation into potential defence strategies. These findings lay the groundwork for future research on the adversarial robustness and reliable deployment of pathology foundation models. Our code is publicly available at: https://github.com/Jiashuai-Liu-hmos/Attack-WSI-pathology-foundation-models.
Authors:Peiran Xu, Yadong Mu
Abstract:
In this work, we focus on the task of weakly supervised affordance grounding, where a model is trained to identify affordance regions on objects using human-object interaction images and egocentric object images without dense labels. Previous works are mostly built upon class activation maps, which are effective for semantic segmentation but may not be suitable for locating actions and functions. Leveraging recent advanced foundation models, we develop a supervised training pipeline based on pseudo labels. The pseudo labels are generated from an off-the-shelf part segmentation model, guided by a mapping from affordance to part names. Furthermore, we introduce three key enhancements to the baseline model: a label refining stage, a fine-grained feature alignment process, and a lightweight reasoning module. These techniques harness the semantic knowledge of static objects embedded in off-the-shelf foundation models to improve affordance learning, effectively bridging the gap between objects and actions. Extensive experiments demonstrate that the performance of the proposed model has achieved a breakthrough improvement over existing methods. Our codes are available at https://github.com/woyut/WSAG-PLSP .
Authors:Zhongmou He, Yee Man Choi, Kexun Zhang, Jiabao Ji, Junting Zhou, Dejia Xu, Ivan Bercovich, Aidan Zhang, Lei Li
Abstract:
Verifiers play a crucial role in large language model (LLM) reasoning, needed by post-training techniques such as reinforcement learning. However, reliable verifiers are hard to get for difficult coding problems, because a well-disguised wrong solution may only be detected by carefully human-written edge cases that are difficult to synthesize. To address this issue, we propose HARDTESTGEN, a pipeline for high-quality test synthesis using LLMs. With this pipeline, we curate a comprehensive competitive programming dataset HARDTESTS with 47k problems and synthetic high-quality tests. Compared with existing tests, HARDTESTGEN tests demonstrate precision that is 11.3 percentage points higher and recall that is 17.5 percentage points higher when evaluating LLM-generated code. For harder problems, the improvement in precision can be as large as 40 points. HARDTESTS also proves to be more effective for model training, measured by downstream code generation performance. We will open-source our dataset and synthesis pipeline at https://leililab.github.io/HardTests/.
Authors:Sayed T. Nowroz, Nermeen M. Saleh, Siam Shakur, Sean Banerjee, Fathi Amsaad
Abstract:
The ESP32-CAM is one of the most widely adopted open-source modules for prototyping embedded vision applications. Since its release in 2019, it has gained popularity among both hobbyists and professional developers due to its affordability, versatility, and integrated wireless capabilities. Despite its widespread use, comprehensive documentation of the performance metrics remains limited. This study addresses this gap by collecting and analyzing over six hours of real-time video streaming logs across all supported resolutions of the OV2640 image sensor, tested under five distinct voltage conditions via an HTTP-based WiFi connection. A long standing bug in the official Arduino ESP32 driver, responsible for inaccurate frame rate logging, was fixed. The resulting analysis includes key performance metrics such as instantaneous and average frame rate, total streamed data, transmission count, and internal chip temperature. The influence of varying power levels was evaluated to assess the reliability of the module.
Authors:Qiao Xiao, Alan Ansell, Boqian Wu, Lu Yin, Mykola Pechenizkiy, Shiwei Liu, Decebal Constantin Mocanu
Abstract:
Large language models (LLMs) have achieved remarkable success across various tasks but face deployment challenges due to their massive computational demands. While post-training pruning methods like SparseGPT and Wanda can effectively reduce the model size, but struggle to maintain model performance at high sparsity levels, limiting their utility for downstream tasks. Existing fine-tuning methods, such as full fine-tuning and LoRA, fail to preserve sparsity as they require updating the whole dense metrics, not well-suited for sparse LLMs. In this paper, we propose Sparsity Evolution Fine-Tuning (SEFT), a novel method designed specifically for sparse LLMs. SEFT dynamically evolves the sparse topology of pruned models during fine-tuning, while preserving the overall sparsity throughout the process. The strengths of SEFT lie in its ability to perform task-specific adaptation through a weight drop-and-grow strategy, enabling the pruned model to self-adapt its sparse connectivity pattern based on the target dataset. Furthermore, a sensitivity-driven pruning criterion is employed to ensure that the desired sparsity level is consistently maintained throughout fine-tuning. Our experiments on various LLMs, including LLaMA families, DeepSeek, and Mistral, across a diverse set of benchmarks demonstrate that SEFT achieves stronger performance while offering superior memory and time efficiency compared to existing baselines. Our code is publicly available at: https://github.com/QiaoXiao7282/SEFT.
Authors:Amel Gader, Alsayed Algergawy
Abstract:
Knowledge graph completion aims to address the gaps of knowledge bases by adding new triples that represent facts. The complexity of this task depends on how many parts of a triple are already known. Instance completion involves predicting the relation-tail pair when only the head is given (h, ?, ?). Notably, modern knowledge bases often contain entity descriptions and types, which can provide valuable context for inferring missing facts. By leveraging these textual descriptions and the ability of large language models to extract facts from them and recognize patterns within the knowledge graph schema, we propose an LLM-powered, end-to-end instance completion approach. Specifically, we introduce GenIC: a two-step Generative Instance Completion framework. The first step focuses on property prediction, treated as a multi-label classification task. The second step is link prediction, framed as a generative sequence-to-sequence task. Experimental results on three datasets show that our method outperforms existing baselines. Our code is available at https://github.com/amal-gader/genic.
Authors:Vishal Dey, Xiao Hu, Xia Ning
Abstract:
In real-world drug design, molecule optimization requires selectively improving multiple molecular properties up to pharmaceutically relevant levels, while maintaining others that already meet such criteria. However, existing computational approaches and instruction-tuned LLMs fail to capture such nuanced property-specific objectives, limiting their practical applicability. To address this, we introduce C-MuMOInstruct, the first instruction-tuning dataset focused on multi-property optimization with explicit, property-specific objectives. Leveraging C-MuMOInstruct, we develop GeLLMO-Cs, a series of instruction-tuned LLMs that can perform targeted property-specific optimization. Our experiments across 5 in-distribution and 5 out-of-distribution tasks show that GeLLMO-Cs consistently outperform strong baselines, achieving up to 126% higher success rate. Notably, GeLLMO-Cs exhibit impressive 0-shot generalization to novel optimization tasks and unseen instructions. This offers a step toward a foundational LLM to support realistic, diverse optimizations with property-specific objectives. C-MuMOInstruct and code are accessible through https://github.com/ninglab/GeLLMO-C.
Authors:Aurosweta Mahapatra, Ismail Rasim Ulgen, Abinay Reddy Naini, Carlos Busso, Berrak Sisman
Abstract:
Traditional anti-spoofing focuses on models and datasets built on synthetic speech with mostly neutral state, neglecting diverse emotional variations. As a result, their robustness against high-quality, emotionally expressive synthetic speech is uncertain. We address this by introducing EmoSpoof-TTS, a corpus of emotional text-to-speech samples. Our analysis shows existing anti-spoofing models struggle with emotional synthetic speech, exposing risks of emotion-targeted attacks. Even trained on emotional data, the models underperform due to limited focus on emotional aspect and show performance disparities across emotions. This highlights the need for emotion-focused anti-spoofing paradigm in both dataset and methodology. We propose GEM, a gated ensemble of emotion-specialized models with a speech emotion recognition gating network. GEM performs effectively across all emotions and neutral state, improving defenses against spoofing attacks. We release the EmoSpoof-TTS Dataset: https://emospoof-tts.github.io/Dataset/
Authors:Xuweiyi Chen, Wentao Zhou, Aruni RoyChowdhury, Zezhou Cheng
Abstract:
While scaling laws have transformed natural language processing and computer vision, 3D point cloud understanding has yet to reach that stage. This can be attributed to both the comparatively smaller scale of 3D datasets, as well as the disparate sources of the data itself. Point clouds are captured by diverse sensors (e.g., depth cameras, LiDAR) across varied domains (e.g., indoor, outdoor), each introducing unique scanning patterns, sampling densities, and semantic biases. Such domain heterogeneity poses a major barrier towards training unified models at scale, especially under the realistic constraint that domain labels are typically inaccessible at inference time. In this work, we propose Point-MoE, a Mixture-of-Experts architecture designed to enable large-scale, cross-domain generalization in 3D perception. We show that standard point cloud backbones degrade significantly in performance when trained on mixed-domain data, whereas Point-MoE with a simple top-k routing strategy can automatically specialize experts, even without access to domain labels. Our experiments demonstrate that Point-MoE not only outperforms strong multi-domain baselines but also generalizes better to unseen domains. This work highlights a scalable path forward for 3D understanding: letting the model discover structure in diverse 3D data, rather than imposing it via manual curation or domain supervision.
Authors:Feiteng Fang, Ting-En Lin, Yuchuan Wu, Xiong Liu, Xiang Huang, Dingwei Chen, Jing Ye, Haonan Zhang, Liang Zhu, Hamid Alinejad-Rokny, Min Yang, Fei Huang, Yongbin Li
Abstract:
Role-Playing Language Agents (RPLAs) aim to simulate characters for realistic and engaging human-computer interactions. However, traditional reward models often struggle with scalability and adapting to subjective conversational preferences. We propose ChARM, a Character-based Act-adaptive Reward Model, addressing these challenges through two innovations: (1) an act-adaptive margin that significantly enhances learning efficiency and generalizability, and (2) a self-evolution mechanism leveraging large-scale unlabeled data to improve training coverage. Additionally, we introduce RoleplayPref, the first large-scale preference dataset specifically for RPLAs, featuring 1,108 characters, 13 subcategories, and 16,888 bilingual dialogues, alongside RoleplayEval, a dedicated evaluation benchmark. Experimental results show a 13% improvement over the conventional Bradley-Terry model in preference rankings. Furthermore, applying ChARM-generated rewards to preference learning techniques (e.g., direct preference optimization) achieves state-of-the-art results on CharacterEval and RoleplayEval. Code and dataset are available at https://github.com/calubkk/ChARM.
Authors:David Ma, Huaqing Yuan, Xingjian Wang, Qianbo Zang, Tianci Liu, Xinyang He, Yanbin Wei, Jiawei Guo, Ni Jiahui, Zhenzhu Yang, Meng Cao, Shanghaoran Quan, Yizhi Li, Wangchunshu Zhou, Jiaheng Liu, Wenhao Huang, Ge Zhang, Shiwen Ni, Xiaojie Jin
Abstract:
Although long-video understanding demands that models capture hierarchical temporal information -- from clip (seconds) and shot (tens of seconds) to event (minutes) and story (hours) -- existing benchmarks either neglect this multi-scale design or scatter scale-specific questions across different videos, preventing direct comparison of model performance across timescales on the same content. To address this, we introduce ScaleLong, the first benchmark to disentangle these factors by embedding questions targeting four hierarchical timescales -- clip (seconds), shot (tens of seconds), event (minutes), and story (hours) -- all within the same video content. This within-content multi-timescale questioning design enables direct comparison of model performance across timescales on identical videos. ScaleLong features 269 long videos (avg.\ 86\,min) from 5 main categories and 36 sub-categories, with 4--8 carefully designed questions, including at least one question for each timescale. Evaluating 23 MLLMs reveals a U-shaped performance curve, with higher accuracy at the shortest and longest timescales and a dip at intermediate levels. Furthermore, ablation studies show that increased visual token capacity consistently enhances reasoning across all timescales. ScaleLong offers a fine-grained, multi-timescale benchmark for advancing MLLM capabilities in long-video understanding. The code and dataset are available https://github.com/multimodal-art-projection/ScaleLong.
Authors:Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping Luo, Guohao Li
Abstract:
Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.
Authors:Jianyang Gu, Samuel Stevens, Elizabeth G Campolongo, Matthew J Thompson, Net Zhang, Jiaman Wu, Andrei Kopanev, Zheda Mai, Alexander E. White, James Balhoff, Wasila Dahdul, Daniel Rubenstein, Hilmar Lapp, Tanya Berger-Wolf, Wei-Lun Chao, Yu Su
Abstract:
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
Authors:Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, Guoshun Nan
Abstract:
Knowledge graphs (KGs) are ubiquitous in numerous real-world applications, and watermarking facilitates protecting intellectual property and preventing potential harm from AI-generated content. Existing watermarking methods mainly focus on static plain text or image data, while they can hardly be applied to dynamic graphs due to spatial and temporal variations of structured data. This motivates us to propose KGMARK, the first graph watermarking framework that aims to generate robust, detectable, and transparent diffusion fingerprints for dynamic KG data. Specifically, we propose a novel clustering-based alignment method to adapt the watermark to spatial variations. Meanwhile, we present a redundant embedding strategy to harden the diffusion watermark against various attacks, facilitating the robustness of the watermark to the temporal variations. Additionally, we introduce a novel learnable mask matrix to improve the transparency of diffusion fingerprints. By doing so, our KGMARK properly tackles the variation challenges of structured data. Experiments on various public benchmarks show the effectiveness of our proposed KGMARK. Our code is available at https://github.com/phrara/kgmark.
Authors:Chang Liu, Bohao Zhao, Jingtao Ding, Huandong Wang, Yong Li
Abstract:
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Authors:Zheng Gong, Ziyi Jiang, Weihao Gao, Deng Zhuo, Lan Ma
Abstract:
The mRNA optimization is critical for therapeutic and biotechnological applications, since sequence features directly govern protein expression levels and efficacy. However, current methods face significant challenges in simultaneously achieving three key objectives: (1) fidelity (preventing unintended amino acid changes), (2) computational efficiency (speed and scalability), and (3) the scope of optimization variables considered (multi-objective capability). Furthermore, existing methods often fall short of comprehensively incorporating the factors related to the mRNA lifecycle and translation process, including intrinsic mRNA sequence properties, secondary structure, translation elongation kinetics, and tRNA availability. To address these limitations, we introduce \textbf{RNop}, a novel deep learning-based method for mRNA optimization. We collect a large-scale dataset containing over 3 million sequences and design four specialized loss functions, the GPLoss, CAILoss, tAILoss, and MFELoss, which simultaneously enable explicit control over sequence fidelity while optimizing species-specific codon adaptation, tRNA availability, and desirable mRNA secondary structure features. Then, we demonstrate RNop's effectiveness through extensive in silico and in vivo experiments. RNop ensures high sequence fidelity, achieves significant computational throughput up to 47.32 sequences/s, and yields optimized mRNA sequences resulting in a significant increase in protein expression for functional proteins compared to controls. RNop surpasses current methodologies in both quantitative metrics and experimental validation, enlightening a new dawn for efficient and effective mRNA design. Code and models will be available at https://github.com/HudenJear/RPLoss.
Authors:Renye Zhang, Mengyun Yang, Qichang Zhao, Jianxin Wang
Abstract:
Drug repositioning aims to identify potential new indications for existing drugs to reduce the time and financial costs associated with developing new drugs. Most existing deep learning-based drug repositioning methods predominantly utilize graph-based representations. However, graph-based drug repositioning methods struggle to perform effective inference in cold-start scenarios involving novel drugs because of the lack of association information with the diseases. Unlike traditional graph-based approaches, we propose a bidirectional behavior learning strategy for drug repositioning, known as BiBLDR. This innovative framework redefines drug repositioning as a behavior sequential learning task to capture drug-disease interaction patterns. First, we construct bidirectional behavioral sequences based on drug and disease sides. The consideration of bidirectional information ensures a more meticulous and rigorous characterization of the behavioral sequences. Subsequently, we propose a two-stage strategy for drug repositioning. In the first stage, we construct prototype spaces to characterize the representational attributes of drugs and diseases. In the second stage, these refined prototypes and bidirectional behavior sequence data are leveraged to predict potential drug-disease associations. Based on this learning approach, the model can more robustly and precisely capture the interactive relationships between drug and disease features from bidirectional behavioral sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on benchmark datasets. Meanwhile, BiBLDR demonstrates significantly superior performance compared to previous methods in cold-start scenarios. Our code is published in https://github.com/Renyeeah/BiBLDR.
Authors:Sahil Verma, Keegan Hines, Jeff Bilmes, Charlotte Siska, Luke Zettlemoyer, Hila Gonen, Chandan Singh
Abstract:
The emerging capabilities of large language models (LLMs) have sparked concerns about their immediate potential for harmful misuse. The core approach to mitigate these concerns is the detection of harmful queries to the model. Current detection approaches are fallible, and are particularly susceptible to attacks that exploit mismatched generalization of model capabilities (e.g., prompts in low-resource languages or prompts provided in non-text modalities such as image and audio). To tackle this challenge, we propose OMNIGUARD, an approach for detecting harmful prompts across languages and modalities. Our approach (i) identifies internal representations of an LLM/MLLM that are aligned across languages or modalities and then (ii) uses them to build a language-agnostic or modality-agnostic classifier for detecting harmful prompts. OMNIGUARD improves harmful prompt classification accuracy by 11.57\% over the strongest baseline in a multilingual setting, by 20.44\% for image-based prompts, and sets a new SOTA for audio-based prompts. By repurposing embeddings computed during generation, OMNIGUARD is also very efficient ($\approx 120 \times$ faster than the next fastest baseline). Code and data are available at: https://github.com/vsahil/OmniGuard.
Authors:Michael Shalyt, Rotem Elimelech, Ido Kaminer
Abstract:
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.
Authors:Zhenglun Kong, Zheng Zhan, Shiyue Hou, Yifan Gong, Xin Meng, Pengwei Sui, Peiyan Dong, Xuan Shen, Zifeng Wang, Pu Zhao, Hao Tang, Stratis Ioannidis, Yanzhi Wang
Abstract:
Large language models (LLMs) have shown remarkable promise but remain challenging to continually improve through traditional finetuning, particularly when integrating capabilities from other specialized LLMs. Popular methods like ensemble and weight merging require substantial memory and struggle to adapt to changing data environments. Recent efforts have transferred knowledge from multiple LLMs into a single target model; however, they suffer from interference and degraded performance among tasks, largely due to limited flexibility in candidate selection and training pipelines. To address these issues, we propose a framework that adaptively selects and aggregates knowledge from diverse LLMs to build a single, stronger model, avoiding the high memory overhead of ensemble and inflexible weight merging. Specifically, we design an adaptive selection network that identifies the most relevant source LLMs based on their scores, thereby reducing knowledge interference. We further propose a dynamic weighted fusion strategy that accounts for the inherent strengths of candidate LLMs, along with a feedback-driven loss function that prevents the selector from converging on a single subset of sources. Experimental results demonstrate that our method can enable a more stable and scalable knowledge aggregation process while reducing knowledge interference by up to 50% compared to existing approaches. Code is avaliable at https://github.com/ZLKong/LLM_Integration
Authors:Jiseung Hong, Grace Byun, Seungone Kim, Kai Shu, Jinho D. Choi
Abstract:
Large Language Models (LLMs) are expected to provide helpful and harmless responses, yet they often exhibit sycophancy--conforming to user beliefs regardless of factual accuracy or ethical soundness. Prior research on sycophancy has primarily focused on single-turn factual correctness, overlooking the dynamics of real-world interactions. In this work, we introduce SYCON Bench, a novel benchmark for evaluating sycophantic behavior in multi-turn, free-form conversational settings. Our benchmark measures how quickly a model conforms to the user (Turn of Flip) and how frequently it shifts its stance under sustained user pressure (Number of Flip). Applying SYCON Bench to 17 LLMs across three real-world scenarios, we find that sycophancy remains a prevalent failure mode. Our analysis shows that alignment tuning amplifies sycophantic behavior, whereas model scaling and reasoning optimization strengthen the model's ability to resist undesirable user views. Reasoning models generally outperform instruction-tuned models but often fail when they over-index on logical exposition instead of directly addressing the user's underlying beliefs. Finally, we evaluate four additional prompting strategies and demonstrate that adopting a third-person perspective reduces sycophancy by up to 63.8% in debate scenario. We release our code and data at https://github.com/JiseungHong/SYCON-Bench.
Authors:Zaixi Zhang, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang
Abstract:
DNA, encoding genetic instructions for almost all living organisms, fuels groundbreaking advances in genomics and synthetic biology. Recently, DNA Foundation Models have achieved success in designing synthetic functional DNA sequences, even whole genomes, but their susceptibility to jailbreaking remains underexplored, leading to potential concern of generating harmful sequences such as pathogens or toxin-producing genes. In this paper, we introduce GeneBreaker, the first framework to systematically evaluate jailbreak vulnerabilities of DNA foundation models. GeneBreaker employs (1) an LLM agent with customized bioinformatic tools to design high-homology, non-pathogenic jailbreaking prompts, (2) beam search guided by PathoLM and log-probability heuristics to steer generation toward pathogen-like sequences, and (3) a BLAST-based evaluation pipeline against a curated Human Pathogen Database (JailbreakDNABench) to detect successful jailbreaks. Evaluated on our JailbreakDNABench, GeneBreaker successfully jailbreaks the latest Evo series models across 6 viral categories consistently (up to 60\% Attack Success Rate for Evo2-40B). Further case studies on SARS-CoV-2 spike protein and HIV-1 envelope protein demonstrate the sequence and structural fidelity of jailbreak output, while evolutionary modeling of SARS-CoV-2 underscores biosecurity risks. Our findings also reveal that scaling DNA foundation models amplifies dual-use risks, motivating enhanced safety alignment and tracing mechanisms. Our code is at https://github.com/zaixizhang/GeneBreaker.
Authors:Trenton Chang, Tobias Schnabel, Adith Swaminathan, Jenna Wiens
Abstract:
Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-$N$ sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.
Authors:Abhijit Talluri
Abstract:
Federated Learning (FL) has emerged as a critical paradigm for enabling privacy-preserving machine learning, particularly in regulated sectors such as finance and healthcare. However, standard FL strategies often encounter significant operational challenges related to fault tolerance, system resilience against concurrent client and server failures, and the provision of robust, verifiable privacy guarantees essential for handling sensitive data. These deficiencies can lead to training disruptions, data loss, compromised model integrity, and non-compliance with data protection regulations (e.g., GDPR, CCPA). This paper introduces Differentially Private Resilient Temporal Federated Learning (DP-RTFL), an advanced FL framework designed to ensure training continuity, precise state recovery, and strong data privacy. DP-RTFL integrates local Differential Privacy (LDP) at the client level with resilient temporal state management and integrity verification mechanisms, such as hash-based commitments (referred to as Zero-Knowledge Integrity Proofs or ZKIPs in this context). The framework is particularly suited for critical applications like credit risk assessment using sensitive financial data, aiming to be operationally robust, auditable, and scalable for enterprise AI deployments. The implementation of the DP-RTFL framework is available as open-source.
Authors:Lin Mu, Xiaoyu Wang, Li Ni, Yang Li, Zhize Wu, Peiquan Jin, Yiwen Zhang
Abstract:
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA's components on overall model performance. Code is available at https://github.com/mulin-ahu/DenseLoRA.
Authors:Yuli Chen, Bo Cheng, Jiale Han, Yingying Zhang, Yingting Li, Shuhao Zhang
Abstract:
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at https://github.com/ironartisan/DLP to facilitate future research.
Authors:Yuan Li, Qi Luo, Xiaonan Li, Bufan Li, Qinyuan Cheng, Bo Wang, Yining Zheng, Yuxin Wang, Zhangyue Yin, Xipeng Qiu
Abstract:
Retrieval-Augmented Generation (RAG) integrates external knowledge with Large Language Models (LLMs) to enhance factual correctness and mitigate hallucination. However, dense retrievers often become the bottleneck of RAG systems due to their limited parameters compared to LLMs and their inability to perform step-by-step reasoning. While prompt-based iterative RAG attempts to address these limitations, it is constrained by human-designed workflows. To address these limitations, we propose $\textbf{R3-RAG}$, which uses $\textbf{R}$einforcement learning to make the LLM learn how to $\textbf{R}$eason and $\textbf{R}$etrieve step by step, thus retrieving comprehensive external knowledge and leading to correct answers. R3-RAG is divided into two stages. We first use cold start to make the model learn the manner of iteratively interleaving reasoning and retrieval. Then we use reinforcement learning to further harness its ability to better explore the external retrieval environment. Specifically, we propose two rewards for R3-RAG: 1) answer correctness for outcome reward, which judges whether the trajectory leads to a correct answer; 2) relevance-based document verification for process reward, encouraging the model to retrieve documents that are relevant to the user question, through which we can let the model learn how to iteratively reason and retrieve relevant documents to get the correct answer. Experimental results show that R3-RAG significantly outperforms baselines and can transfer well to different retrievers. We release R3-RAG at https://github.com/Yuan-Li-FNLP/R3-RAG.
Authors:Sefik Serengil, Alper Ozpinar
Abstract:
Digital signature algorithms (DSAs) are fundamental to cryptographic security, ensuring data integrity and authentication. While RSA, DSA, ECDSA, and EdDSA are widely used, their performance varies significantly depending on key sizes, hash functions, and elliptic curve configurations. In this paper, we introduce LightDSA, a hybrid and configurable digital signature library that supports RSA, DSA, ECDSA, and EdDSA with flexible form and curve selection, open sourced at https://github.com/serengil/LightDSA. Unlike conventional implementations that impose strict curve-form mappings - such as Weierstrass for ECDSA and Edwards for EdDSA LightDSA - allows arbitrary combinations, enabling a broader performance evaluation. We analyze the computational efficiency of these algorithms across various configurations, comparing key generation, signing, and verification times. Our results provide insights into the trade-offs between security and efficiency, guiding the selection of optimal configurations for different cryptographic needs.
Authors:Yao Xiao, Qiqian Fu, Heyi Tao, Yuqun Wu, Zhen Zhu, Derek Hoiem
Abstract:
Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.
Authors:Yunze Man, De-An Huang, Guilin Liu, Shiwei Sheng, Shilong Liu, Liang-Yan Gui, Jan Kautz, Yu-Xiong Wang, Zhiding Yu
Abstract:
Recent advances in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks, yet they often struggle with vision-centric scenarios where precise visual focus is needed for accurate reasoning. In this paper, we introduce Argus to address these limitations with a new visual attention grounding mechanism. Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention during multimodal reasoning tasks. Evaluations on diverse benchmarks demonstrate that Argus excels in both multimodal reasoning tasks and referring object grounding tasks. Extensive analysis further validates various design choices of Argus, and reveals the effectiveness of explicit language-guided visual region-of-interest engagement in MLLMs, highlighting the importance of advancing multimodal intelligence from a visual-centric perspective. Project page: https://yunzeman.github.io/argus/
Authors:Chenyu Yang, Shiqian Su, Shi Liu, Xuan Dong, Yue Yu, Weijie Su, Xuehui Wang, Zhaoyang Liu, Jinguo Zhu, Hao Li, Wenhai Wang, Yu Qiao, Xizhou Zhu, Jifeng Dai
Abstract:
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
Authors:Amber Yijia Zheng, Cedar Site Bai, Brian Bullins, Raymond A. Yeh
Abstract:
Model immunization aims to pre-train models that are difficult to fine-tune on harmful tasks while retaining their utility on other non-harmful tasks. Though prior work has shown empirical evidence for immunizing text-to-image models, the key understanding of when immunization is possible and a precise definition of an immunized model remain unclear. In this work, we propose a framework, based on the condition number of a Hessian matrix, to analyze model immunization for linear models. Building on this framework, we design an algorithm with regularization terms to control the resulting condition numbers after pre-training. Empirical results on linear models and non-linear deep-nets demonstrate the effectiveness of the proposed algorithm on model immunization. The code is available at https://github.com/amberyzheng/model-immunization-cond-num.
Authors:Haohan Chi, Huan-ang Gao, Ziming Liu, Jianing Liu, Chenyu Liu, Jinwei Li, Kaisen Yang, Yangcheng Yu, Zeda Wang, Wenyi Li, Leichen Wang, Xingtao Hu, Hao Sun, Hang Zhao, Hao Zhao
Abstract:
Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.
Authors:Diankun Wu, Fangfu Liu, Yi-Hsin Hung, Yueqi Duan
Abstract:
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.
Authors:Hao Dong, Moru Liu, Jian Liang, Eleni Chatzi, Olga Fink
Abstract:
Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code is available at https://github.com/EPFL-IMOS/TrustVLM.
Authors:Qiang Wang, Xiang Song, Yuhang He, Jizhou Han, Chenhao Ding, Xinyuan Gao, Yihong Gong
Abstract:
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
Authors:Yufan Deng, Xun Guo, Yuanyang Yin, Jacob Zhiyuan Fang, Yiding Yang, Yizhi Wang, Shenghai Yuan, Angtian Wang, Bo Liu, Haibin Huang, Chongyang Ma
Abstract:
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
Authors:Weijie Wang, Donny Y. Chen, Zeyu Zhang, Duochao Shi, Akide Liu, Bohan Zhuang
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
Authors:Lihan Jiang, Yucheng Mao, Linning Xu, Tao Lu, Kerui Ren, Yichen Jin, Xudong Xu, Mulin Yu, Jiangmiao Pang, Feng Zhao, Dahua Lin, Bo Dai
Abstract:
We introduce AnySplat, a feed forward network for novel view synthesis from uncalibrated image collections. In contrast to traditional neural rendering pipelines that demand known camera poses and per scene optimization, or recent feed forward methods that buckle under the computational weight of dense views, our model predicts everything in one shot. A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance, and the corresponding camera intrinsics and extrinsics for each input image. This unified design scales effortlessly to casually captured, multi view datasets without any pose annotations. In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios while surpassing existing pose free approaches. Moreover, it greatly reduce rendering latency compared to optimization based neural fields, bringing real time novel view synthesis within reach for unconstrained capture settings.Project page: https://city-super.github.io/anysplat/
Authors:Jinzhe Li, Gengxu Li, Yi Chang, Yuan Wu
Abstract:
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the \textbf{Premise Critique Ability} for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the \textbf{Premise Critique Bench (PCBench)}, designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
Authors:Zixiang Xu, Yanbo Wang, Yue Huang, Jiayi Ye, Haomin Zhuang, Zirui Song, Lang Gao, Chenxi Wang, Zhaorun Chen, Yujun Zhou, Sixian Li, Wang Pan, Yue Zhao, Jieyu Zhao, Xiangliang Zhang, Xiuying Chen
Abstract:
Large language models (LLMs) are increasingly applied to socially grounded tasks, such as online community moderation, media content analysis, and social reasoning games. Success in these contexts depends on a model's social reasoning ability - the capacity to interpret social contexts, infer others' mental states, and assess the truthfulness of presented information. However, there is currently no systematic evaluation framework that comprehensively assesses the social reasoning capabilities of LLMs. Existing efforts often oversimplify real-world scenarios and consist of tasks that are too basic to challenge advanced models. To address this gap, we introduce SocialMaze, a new benchmark specifically designed to evaluate social reasoning. SocialMaze systematically incorporates three core challenges: deep reasoning, dynamic interaction, and information uncertainty. It provides six diverse tasks across three key settings: social reasoning games, daily-life interactions, and digital community platforms. Both automated and human validation are used to ensure data quality. Our evaluation reveals several key insights: models vary substantially in their ability to handle dynamic interactions and integrate temporally evolving information; models with strong chain-of-thought reasoning perform better on tasks requiring deeper inference beyond surface-level cues; and model reasoning degrades significantly under uncertainty. Furthermore, we show that targeted fine-tuning on curated reasoning examples can greatly improve model performance in complex social scenarios. The dataset is publicly available at: https://huggingface.co/datasets/MBZUAI/SocialMaze
Authors:Mohamad Alansari, Sajid Javed, Iyyakutti Iyappan Ganapathi, Sara Alansari, Muzammal Naseer
Abstract:
VOT remains a fundamental yet challenging task in computer vision due to dynamic appearance changes, occlusions, and background clutter. Traditional trackers, relying primarily on visual cues, often struggle in such complex scenarios. Recent advancements in VLMs have shown promise in semantic understanding for tasks like open-vocabulary detection and image captioning, suggesting their potential for VOT. However, the direct application of VLMs to VOT is hindered by critical limitations: the absence of a rich and comprehensive textual representation that semantically captures the target object's nuances, limiting the effective use of language information; inefficient fusion mechanisms that fail to optimally integrate visual and textual features, preventing a holistic understanding of the target; and a lack of temporal modeling of the target's evolving appearance in the language domain, leading to a disconnect between the initial description and the object's subsequent visual changes. To bridge these gaps and unlock the full potential of VLMs for VOT, we propose CLDTracker, a novel Comprehensive Language Description framework for robust visual Tracking. Our tracker introduces a dual-branch architecture consisting of a textual and a visual branch. In the textual branch, we construct a rich bag of textual descriptions derived by harnessing the powerful VLMs such as CLIP and GPT-4V, enriched with semantic and contextual cues to address the lack of rich textual representation. Experiments on six standard VOT benchmarks demonstrate that CLDTracker achieves SOTA performance, validating the effectiveness of leveraging robust and temporally-adaptive vision-language representations for tracking. Code and models are publicly available at: https://github.com/HamadYA/CLDTracker
Authors:Ran Zhang, Mohannad Elhamod
Abstract:
The rapid advancement of LLMs has led to the creation of diverse agentic systems in data analysis, utilizing LLMs' capabilities to improve insight generation and visualization. In this paper, we present an agentic system that automates the data-to-dashboard pipeline through modular LLM agents capable of domain detection, concept extraction, multi-perspective analysis generation, and iterative self-reflection. Unlike existing chart QA systems, our framework simulates the analytical reasoning process of business analysts by retrieving domain-relevant knowledge and adapting to diverse datasets without relying on closed ontologies or question templates.
We evaluate our system on three datasets across different domains. Benchmarked against GPT-4o with a single-prompt baseline, our approach shows improved insightfulness, domain relevance, and analytical depth, as measured by tailored evaluation metrics and qualitative human assessment.
This work contributes a novel modular pipeline to bridge the path from raw data to visualization, and opens new opportunities for human-in-the-loop validation by domain experts in business analytics. All code can be found here: https://github.com/77luvC/D2D_Data2Dashboard
Authors:Beong-woo Kwak, Minju Kim, Dongha Lim, Hyungjoo Chae, Dongjin Kang, Sunghwan Kim, Dongil Yang, Jinyoung Yeo
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in using external tools to address user inquiries. However, most existing evaluations assume tool use in short contexts, offering limited insight into model behavior during realistic long-term interactions. To fill this gap, we introduce ToolHaystack, a benchmark for testing the tool use capabilities in long-term interactions. Each test instance in ToolHaystack includes multiple tasks execution contexts and realistic noise within a continuous conversation, enabling assessment of how well models maintain context and handle various disruptions. By applying this benchmark to 14 state-of-the-art LLMs, we find that while current models perform well in standard multi-turn settings, they often significantly struggle in ToolHaystack, highlighting critical gaps in their long-term robustness not revealed by previous tool benchmarks.
Authors:Size Wu, Zhonghua Wu, Zerui Gong, Qingyi Tao, Sheng Jin, Qinyue Li, Wei Li, Chen Change Loy
Abstract:
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
Authors:Ziteng Gao, Mike Zheng Shou
Abstract:
This paper presents Diffusion via Autoregressive models (D-AR), a new paradigm recasting the image diffusion process as a vanilla autoregressive procedure in the standard next-token-prediction fashion. We start by designing the tokenizer that converts images into sequences of discrete tokens, where tokens in different positions can be decoded into different diffusion denoising steps in the pixel space. Thanks to the diffusion properties, these tokens naturally follow a coarse-to-fine order, which directly lends itself to autoregressive modeling. Therefore, we apply standard next-token prediction on these tokens, without modifying any underlying designs (either causal masks or training/inference strategies), and such sequential autoregressive token generation directly mirrors the diffusion procedure in image space. That is, once the autoregressive model generates an increment of tokens, we can directly decode these tokens into the corresponding diffusion denoising step in the streaming manner. Our pipeline naturally reveals several intriguing properties, for example, it supports consistent previews when generating only a subset of tokens and enables zero-shot layout-controlled synthesis. On the standard ImageNet benchmark, our method achieves 2.09 FID using a 775M Llama backbone with 256 discrete tokens. We hope our work can inspire future research on unified autoregressive architectures of visual synthesis, especially with large language models. Code and models will be available at https://github.com/showlab/D-AR
Authors:Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, Yu Cheng
Abstract:
Recent advancements in text-to-video (T2V) diffusion models have enabled high-fidelity and realistic video synthesis. However, current T2V models often struggle to generate physically plausible content due to their limited inherent ability to accurately understand physics. We found that while the representations within T2V models possess some capacity for physics understanding, they lag significantly behind those from recent video self-supervised learning methods. To this end, we propose a novel framework called VideoREPA, which distills physics understanding capability from video understanding foundation models into T2V models by aligning token-level relations. This closes the physics understanding gap and enable more physics-plausible generation. Specifically, we introduce the Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to provide soft guidance suitable for finetuning powerful pre-trained T2V models, a critical departure from prior representation alignment (REPA) methods. To our knowledge, VideoREPA is the first REPA method designed for finetuning T2V models and specifically for injecting physical knowledge. Empirical evaluations show that VideoREPA substantially enhances the physics commonsense of baseline method, CogVideoX, achieving significant improvement on relevant benchmarks and demonstrating a strong capacity for generating videos consistent with intuitive physics. More video results are available at https://videorepa.github.io/.
Authors:Juncheol Shin, Minsang Seok, Seonggon Kim, Eunhyeok Park
Abstract:
Model merging has emerged as a powerful technique for combining task-specific weights, achieving superior performance in multi-target domain adaptation. However, when applied to practical scenarios, such as quantized models, new challenges arise. In practical scenarios, quantization is often applied to target-specific data, but this process restricts the domain of interest and introduces discretization effects, making model merging highly non-trivial. In this study, we analyze the impact of quantization on model merging through the lens of error barriers. Leveraging these insights, we propose a novel post-training quantization, HDRQ - Hessian and distant regularizing quantization - that is designed to consider model merging for multi-target domain adaptation. Our approach ensures that the quantization process incurs minimal deviation from the source pre-trained model while flattening the loss surface to facilitate smooth model merging. To our knowledge, this is the first study on this challenge, and extensive experiments confirm its effectiveness.
Authors:Manuel Costa, Boris Köpf, Aashish Kolluri, Andrew Paverd, Mark Russinovich, Ahmed Salem, Shruti Tople, Lukas Wutschitz, Santiago Zanella-Béguelin
Abstract:
As AI agents become increasingly autonomous and capable, ensuring their security against vulnerabilities such as prompt injection becomes critical. This paper explores the use of information-flow control (IFC) to provide security guarantees for AI agents. We present a formal model to reason about the security and expressiveness of agent planners. Using this model, we characterize the class of properties enforceable by dynamic taint-tracking and construct a taxonomy of tasks to evaluate security and utility trade-offs of planner designs. Informed by this exploration, we present Fides, a planner that tracks confidentiality and integrity labels, deterministically enforces security policies, and introduces novel primitives for selectively hiding information. Its evaluation in AgentDojo demonstrates that this approach enables us to complete a broad range of tasks with security guarantees. A tutorial to walk readers through the the concepts introduced in the paper can be found at https://github.com/microsoft/fides
Authors:Jiaxin Bai, Wei Fan, Qi Hu, Qing Zong, Chunyang Li, Hong Ting Tsang, Hongyu Luo, Yauwai Yim, Haoyu Huang, Xiao Zhou, Feng Qin, Tianshi Zheng, Xi Peng, Xin Yao, Huiwen Yang, Leijie Wu, Yi Ji, Gong Zhang, Renhai Chen, Yangqiu Song
Abstract:
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 92\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
Authors:Chao Huang, Yuesheng Ma, Junxuan Huang, Susan Liang, Yunlong Tang, Jing Bi, Wenqiang Liu, Nima Mesgarani, Chenliang Xu
Abstract:
Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model's latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods.
Authors:Jianbo Zhao, Taiyu Ban, Xiyang Wang, Qibin Zhou, Hangning Zhou, Zhihao Liu, Mu Yang, Lei Liu, Bin Li
Abstract:
Controllable trajectory generation guided by high-level semantic decisions, termed meta-actions, is crucial for autonomous driving systems. A significant limitation of existing frameworks is their reliance on invariant meta-actions assigned over fixed future time intervals, causing temporal misalignment with the actual behavior trajectories. This misalignment leads to irrelevant associations between the prescribed meta-actions and the resulting trajectories, disrupting task coherence and limiting model performance. To address this challenge, we introduce Autoregressive Meta-Actions, an approach integrated into autoregressive trajectory generation frameworks that provides a unified and precise definition for meta-action-conditioned trajectory prediction. Specifically, We decompose traditional long-interval meta-actions into frame-level meta-actions, enabling a sequential interplay between autoregressive meta-action prediction and meta-action-conditioned trajectory generation. This decomposition ensures strict alignment between each trajectory segment and its corresponding meta-action, achieving a consistent and unified task formulation across the entire trajectory span and significantly reducing complexity. Moreover, we propose a staged pre-training process to decouple the learning of basic motion dynamics from the integration of high-level decision control, which offers flexibility, stability, and modularity. Experimental results validate our framework's effectiveness, demonstrating improved trajectory adaptivity and responsiveness to dynamic decision-making scenarios. We provide the video document and dataset, which are available at https://arma-traj.github.io/.
Authors:Qingyu Shi, Jinbin Bai, Zhuoran Zhao, Wenhao Chai, Kaidong Yu, Jianzong Wu, Shuangyong Song, Yunhai Tong, Xiangtai Li, Xuelong Li, Shuicheng Yan
Abstract:
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
Authors:Youssef Mohamed, Noran Mohamed, Khaled Abouhashad, Feilong Tang, Sara Atito, Shoaib Jameel, Imran Razzak, Ahmed B. Zaky
Abstract:
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL
Authors:Xi Chen, Soham Jana, Christopher A. Metzler, Arian Maleki, Shirin Jalali
Abstract:
Multilook coherent imaging is a widely used technique in applications such as digital holography, ultrasound imaging, and synthetic aperture radar. A central challenge in these systems is the presence of multiplicative noise, commonly known as speckle, which degrades image quality. Despite the widespread use of coherent imaging systems, their theoretical foundations remain relatively underexplored. In this paper, we study both the theoretical and algorithmic aspects of likelihood-based approaches for multilook coherent imaging, providing a rigorous framework for analysis and method development. Our theoretical contributions include establishing the first theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our results capture the dependence of MSE on the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we employ projected gradient descent (PGD) as an efficient method for computing the maximum likelihood solution. Furthermore, we introduce two key ideas to enhance the practical performance of PGD. First, we incorporate the Newton-Schulz algorithm to compute matrix inverses within the PGD iterations, significantly reducing computational complexity. Second, we develop a bagging strategy to mitigate projection errors introduced during PGD updates. We demonstrate that combining these techniques with PGD yields state-of-the-art performance. Our code is available at https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle.
Authors:Zifu Wang, Junyi Zhu, Bo Tang, Zhiyu Li, Feiyu Xiong, Jiaqian Yu, Matthew B. Blaschko
Abstract:
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
Authors:Ramit Aditya, Razvan Bunescu, Smita Nannaware, Erfan Al-Hossami
Abstract:
A restaurant dinner or a hotel stay may lead to memorable experiences when guests encounter unexpected aspects that also match their interests. For example, an origami-making station in the waiting area of a restaurant may be both surprising and enjoyable for a customer who is passionate about paper crafts. Similarly, an exhibit of 18th century harpsichords would be atypical for a hotel lobby and likely pique the interest of a guest who has a passion for Baroque music. Motivated by this insight, in this paper we introduce the new task of engineering serendipity through recommendations of items with atypical aspects. We describe an LLM-based system pipeline that extracts atypical aspects from item reviews, then estimates and aggregates their user-specific utility in a measure of serendipity potential that is used to rerank a list of items recommended to the user. To facilitate system development and evaluation, we introduce a dataset of Yelp reviews that are manually annotated with atypical aspects and a dataset of artificially generated user profiles, together with crowdsourced annotations of user-aspect utility values. Furthermore, we introduce a custom procedure for dynamic selection of in-context learning examples, which is shown to improve LLM-based judgments of atypicality and utility. Experimental evaluations show that serendipity-based rankings generated by the system are highly correlated with ground truth rankings for which serendipity scores are computed from manual annotations of atypical aspects and their user-dependent utility. Overall, we hope that the new recommendation task and the associated system presented in this paper catalyze further research into recommendation approaches that go beyond accuracy in their pursuit of enhanced user satisfaction.
The datasets and the code are made publicly available at https://github.com/ramituncc49er/ATARS .
Authors:Adibvafa Fallahpour, Andrew Magnuson, Purav Gupta, Shihao Ma, Jack Naimer, Arnav Shah, Haonan Duan, Omar Ibrahim, Hani Goodarzi, Chris J. Maddison, Bo Wang
Abstract:
Unlocking deep, interpretable biological reasoning from complex genomic data is a major AI challenge hindering scientific discovery. Current DNA foundation models, despite strong sequence representation, struggle with multi-step reasoning and lack inherent transparent, biologically intuitive explanations. We introduce BioReason, a pioneering architecture that, for the first time, deeply integrates a DNA foundation model with a Large Language Model (LLM). This novel connection enables the LLM to directly process and reason with genomic information as a fundamental input, fostering a new form of multimodal biological understanding. BioReason's sophisticated multi-step reasoning is developed through supervised fine-tuning and targeted reinforcement learning, guiding the system to generate logical, biologically coherent deductions. On biological reasoning benchmarks including KEGG-based disease pathway prediction - where accuracy improves from 88% to 97% - and variant effect prediction, BioReason demonstrates an average 15% performance gain over strong single-modality baselines. BioReason reasons over unseen biological entities and articulates decision-making through interpretable, step-by-step biological traces, offering a transformative approach for AI in biology that enables deeper mechanistic insights and accelerates testable hypothesis generation from genomic data. Data, code, and checkpoints are publicly available at https://github.com/bowang-lab/BioReason
Authors:Yu Li, Jin Jiang, Jianhua Zhu, Shuai Peng, Baole Wei, Yuxuan Zhou, Liangcai Gao
Abstract:
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER
Authors:Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, Shuang Qiu
Abstract:
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
Authors:Kunlun Zhu, Jiaxun Zhang, Ziheng Qi, Nuoxing Shang, Zijia Liu, Peixuan Han, Yue Su, Haofei Yu, Jiaxuan You
Abstract:
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce \textbf{SafeScientist}, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose \textbf{SciSafetyBench}, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. \textcolor{red}{Warning: this paper contains example data that may be offensive or harmful.}
Authors:Xu Chu, Xinrong Chen, Guanyu Wang, Zhijie Tan, Kui Huang, Wenyu Lv, Tong Mo, Weiping Li
Abstract:
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again
Authors:Wei Jie Yeo, Nirmalendu Prakash, Clement Neo, Roy Ka-Wei Lee, Erik Cambria, Ranjan Satapathy
Abstract:
Refusal is a key safety behavior in aligned language models, yet the internal mechanisms driving refusals remain opaque. In this work, we conduct a mechanistic study of refusal in instruction-tuned LLMs using sparse autoencoders to identify latent features that causally mediate refusal behaviors. We apply our method to two open-source chat models and intervene on refusal-related features to assess their influence on generation, validating their behavioral impact across multiple harmful datasets. This enables a fine-grained inspection of how refusal manifests at the activation level and addresses key research questions such as investigating upstream-downstream latent relationship and understanding the mechanisms of adversarial jailbreaking techniques. We also establish the usefulness of refusal features in enhancing generalization for linear probes to out-of-distribution adversarial samples in classification tasks. We open source our code in https://github.com/wj210/refusal_sae.
Authors:Yunqiao Yang, Houxing Ren, Zimu Lu, Ke Wang, Weikang Shi, Aojun Zhou, Junting Pan, Mingjie Zhan, Hongsheng Li
Abstract:
Recent advances in preference optimization have demonstrated significant potential for improving mathematical reasoning capabilities in large language models (LLMs). While current approaches leverage high-quality pairwise preference data through outcome-based criteria like answer correctness or consistency, they fundamentally neglect the internal logical coherence of responses. To overcome this, we propose Probability-Consistent Preference Optimization (PCPO), a novel framework that establishes dual quantitative metrics for preference selection: (1) surface-level answer correctness and (2) intrinsic token-level probability consistency across responses. Extensive experiments show that our PCPO consistently outperforms existing outcome-only criterion approaches across a diverse range of LLMs and benchmarks. Our code is publicly available at https://github.com/YunqiaoYang/PCPO.
Authors:Raj Ghugare, Benjamin Eysenbach
Abstract:
Modern reinforcement learning (RL) algorithms have found success by using powerful probabilistic models, such as transformers, energy-based models, and diffusion/flow-based models. To this end, RL researchers often choose to pay the price of accommodating these models into their algorithms -- diffusion models are expressive, but are computationally intensive due to their reliance on solving differential equations, while autoregressive transformer models are scalable but typically require learning discrete representations. Normalizing flows (NFs), by contrast, seem to provide an appealing alternative, as they enable likelihoods and sampling without solving differential equations or autoregressive architectures. However, their potential in RL has received limited attention, partly due to the prevailing belief that normalizing flows lack sufficient expressivity. We show that this is not the case. Building on recent work in NFs, we propose a single NF architecture which integrates seamlessly into RL algorithms, serving as a policy, Q-function, and occupancy measure. Our approach leads to much simpler algorithms, and achieves higher performance in imitation learning, offline, goal conditioned RL and unsupervised RL.
Authors:Jiahao Cui, Yan Chen, Mingwang Xu, Hanlin Shang, Yuxuan Chen, Yun Zhan, Zilong Dong, Yao Yao, Jingdong Wang, Siyu Zhu
Abstract:
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
Authors:Liyun Zhu, Qixiang Chen, Xi Shen, Xiaodong Cun
Abstract:
Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at https://github.com/GVCLab/VAU-R1.
Authors:Shi-Xue Zhang, Hongfa Wang, Duojun Huang, Xin Li, Xiaobin Zhu, Xu-Cheng Yin
Abstract:
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.
Authors:Ron Shapira Weber, Shahar Ben Ishay, Andrey Lavrinenko, Shahaf E. Finder, Oren Freifeld
Abstract:
Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint
Authors:Jun Yang, Cheng-Chi Wang, Bogdan Alexandru Stoica, Kexin Pei
Abstract:
Large Language Models (LLMs) have been increasingly used to optimize code efficiency. Evaluating their effectiveness and further suggesting optimization opportunities often rely on high-quality tests to demonstrate the performance bottlenecks presented in the program. However, existing approaches rely on a limited set of hand-curated inputs or LLM-generated uninteresting length-stressing tests, failing to reveal more nuanced optimization opportunities. We present WEDGE, a framework for generating performance-stressing input given the program under test. WEDGE synthesizes explicit performance-characterizing constraints in the form of branch conditions to partition the programs' execution space into performance-specific regions. When integrated with the coverage-guided fuzzer, reaching different regions introduces explicit rewards for test generation to explore inefficient implementations. Our evaluation shows that WEDGE introduces a significant slowdown compared to the tests in CodeContests and those claimed to be optimized by existing approaches. From the utility perspective, integrating our tests substantially improves the existing code optimization approaches that rely on test-driven execution feedback. We release PERFFORGE, the performance tests generated by WEDGE, to benchmark future approaches for efficient code generation at https://github.com/UChiSeclab/perfforge.
Authors:Zhuodong Li, Fei Hou, Wencheng Wang, Xuequan Lu, Ying He
Abstract:
Orienting point clouds is a fundamental problem in computer graphics and 3D vision, with applications in reconstruction, segmentation, and analysis. While significant progress has been made, existing approaches mainly focus on watertight, object-level 3D models. The orientation of large-scale, non-watertight 3D scenes remains an underexplored challenge. To address this gap, we propose DACPO (Divide-And-Conquer Point Orientation), a novel framework that leverages a divide-and-conquer strategy for scalable and robust point cloud orientation. Rather than attempting to orient an unbounded scene at once, DACPO segments the input point cloud into smaller, manageable blocks, processes each block independently, and integrates the results through a global optimization stage. For each block, we introduce a two-step process: estimating initial normal orientations by a randomized greedy method and refining them by an adapted iterative Poisson surface reconstruction. To achieve consistency across blocks, we model inter-block relationships using an an undirected graph, where nodes represent blocks and edges connect spatially adjacent blocks. To reliably evaluate orientation consistency between adjacent blocks, we introduce the concept of the visible connected region, which defines the region over which visibility-based assessments are performed. The global integration is then formulated as a 0-1 integer-constrained optimization problem, with block flip states as binary variables. Despite the combinatorial nature of the problem, DACPO remains scalable by limiting the number of blocks (typically a few hundred for 3D scenes) involved in the optimization. Experiments on benchmark datasets demonstrate DACPO's strong performance, particularly in challenging large-scale, non-watertight scenarios where existing methods often fail. The source code is available at https://github.com/zd-lee/DACPO.
Authors:Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang, Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, Dongmei Zhang
Abstract:
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
Authors:Bowen Ping, Minnan Luo, Zhuohang Dang, Chenxi Wang, Chengyou Jia
Abstract:
Geometry problem solving presents distinctive challenges in artificial intelligence, requiring exceptional multimodal comprehension and rigorous mathematical reasoning capabilities. Existing approaches typically fall into two categories: neural-based and symbolic-based methods, both of which exhibit limitations in reliability and interpretability. To address this challenge, we propose AutoGPS, a neuro-symbolic collaborative framework that solves geometry problems with concise, reliable, and human-interpretable reasoning processes. Specifically, AutoGPS employs a Multimodal Problem Formalizer (MPF) and a Deductive Symbolic Reasoner (DSR). The MPF utilizes neural cross-modal comprehension to translate geometry problems into structured formal language representations, with feedback from DSR collaboratively. The DSR takes the formalization as input and formulates geometry problem solving as a hypergraph expansion task, executing mathematically rigorous and reliable derivation to produce minimal and human-readable stepwise solutions. Extensive experimental evaluations demonstrate that AutoGPS achieves state-of-the-art performance on benchmark datasets. Furthermore, human stepwise-reasoning evaluation confirms AutoGPS's impressive reliability and interpretability, with 99\% stepwise logical coherence. The project homepage is at https://jayce-ping.github.io/AutoGPS-homepage.
Authors:Weijia Mao, Zhenheng Yang, Mike Zheng Shou
Abstract:
Unified multimodal large language models such as Show-o and Janus have achieved strong performance across both generation and understanding tasks. However, these models typically rely on large-scale datasets and require substantial computation during the pretraining stage. In addition, several post-training methods have been proposed, but they often depend on external data or are limited to task-specific customization. In this work, we introduce UniRL, a self-improving post-training approach. Our approach enables the model to generate images from prompts and use them as training data in each iteration, without relying on any external image data. Moreover, it enables the two tasks to enhance each other: the generated images are used for understanding, and the understanding results are used to supervise generation. We explore supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) to optimize the models. UniRL offers three key advantages: (1) it requires no external image data, as all training samples are generated by the model itself during training; (2) it not only improves individual task performance, but also reduces the imbalance between generation and understanding; and (3) it requires only several additional training steps during the post-training stage. We evaluate UniRL on top of Show-o and Janus, achieving a GenEval score of 0.77 for Show-o and 0.65 for Janus. Code and models will be released in https://github.com/showlab/UniRL.
Authors:Jeonghyeok Do, Sungpyo Kim, Geunhyuk Youk, Jaehyup Lee, Munchurl Kim
Abstract:
PAN-sharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multi-spectral (MS) images to generate high-resolution multi-spectral (HRMS) outputs. However, cross-modality misalignment -- caused by sensor placement, acquisition timing, and resolution disparity -- induces a fundamental challenge. Conventional deep learning methods assume perfect pixel-wise alignment and rely on per-pixel reconstruction losses, leading to spectral distortion, double edges, and blurring when misalignment is present. To address this, we propose PAN-Crafter, a modality-consistent alignment framework that explicitly mitigates the misalignment gap between PAN and MS modalities. At its core, Modality-Adaptive Reconstruction (MARs) enables a single network to jointly reconstruct HRMS and PAN images, leveraging PAN's high-frequency details as auxiliary self-supervision. Additionally, we introduce Cross-Modality Alignment-Aware Attention (CM3A), a novel mechanism that bidirectionally aligns MS texture to PAN structure and vice versa, enabling adaptive feature refinement across modalities. Extensive experiments on multiple benchmark datasets demonstrate that our PAN-Crafter outperforms the most recent state-of-the-art method in all metrics, even with 50.11$\times$ faster inference time and 0.63$\times$ the memory size. Furthermore, it demonstrates strong generalization performance on unseen satellite datasets, showing its robustness across different conditions.
Authors:Hongzhan Chen, Tao Yang, Shiping Gao, Ruijun Chen, Xiaojun Quan, Hongtao Tian, Ting Yao
Abstract:
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs) for optimizing policy models, positioning them as a promising approach to enhancing the capabilities of LLMs in complex reasoning tasks. Recent efforts have advanced PRMs from step-level to token-level granularity by integrating reward modeling into the training of generative models, with reward scores derived from token generation probabilities. However, the conflict between generative language modeling and reward modeling may introduce instability and lead to inaccurate credit assignments. To address this challenge, we revisit token-level reward assignment by decoupling reward modeling from language generation and derive a token-level reward model through the optimization of a discriminative policy, termed the Q-function Reward Model (Q-RM). We theoretically demonstrate that Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations. In our experiments, Q-RM consistently outperforms all baseline methods across various benchmarks. For example, when integrated into PPO/REINFORCE algorithms, Q-RM enhances the average Pass@1 score by 5.85/4.70 points on mathematical reasoning tasks compared to the ORM baseline, and by 4.56/5.73 points compared to the token-level PRM counterpart. Moreover, reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH. Code and data are available at https://github.com/homzer/Q-RM.
Authors:Yuanxin Liu, Kun Ouyang, Haoning Wu, Yi Liu, Lin Sui, Xinhao Li, Yan Zhong, Y. Charles, Xinyu Zhou, Xu Sun
Abstract:
Recent studies have shown that long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks. However, this benefit is yet to be demonstrated in the domain of video understanding, since most existing benchmarks lack the reasoning depth required to demonstrate the advantages of extended CoT chains. While recent efforts have proposed benchmarks aimed at video reasoning, the tasks are often knowledge-driven and do not rely heavily on visual content. To bridge this gap, we introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning. To ensure visual richness and high reasoning complexity, each video in VideoReasonBench depicts a sequence of fine-grained operations on a latent state that is only visible in part of the video. The questions evaluate three escalating levels of video reasoning skills: recalling observed visual information, inferring the content of latent states, and predicting information beyond the video. Under such task setting, models have to precisely recall multiple operations in the video, and perform step-by-step reasoning to get correct final answers for these questions. Using VideoReasonBench, we comprehensively evaluate 18 state-of-the-art multimodal LLMs (MLLMs), finding that most perform poorly on complex video reasoning, e.g., GPT-4o achieves only 6.9% accuracy, while the thinking-enhanced Gemini-2.5-Pro significantly outperforms others with 56.0% accuracy. Our investigations on "test-time scaling" further reveal that extended thinking budget, while offering none or minimal benefits on existing video benchmarks, is essential for improving the performance on VideoReasonBench.
Authors:Alexandra G. Roberts, Ha M. Luu, Mert ÅiÅman, Alexey V. Dimov, Ceren Tozlu, Ilhami Kovanlikaya, Susan A. Gauthier, Thanh D. Nguyen, Yi Wang
Abstract:
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.
Authors:Yexiong Lin, Yu Yao, Tongliang Liu
Abstract:
Flow Matching (FM) is an effective framework for training a model to learn a vector field that transports samples from a source distribution to a target distribution. To train the model, early FM methods use random couplings, which often result in crossing paths and lead the model to learn non-straight trajectories that require many integration steps to generate high-quality samples. To address this, recent methods adopt Optimal Transport (OT) to construct couplings by minimizing geometric distances, which helps reduce path crossings. However, we observe that such geometry-based couplings do not necessarily align with the model's preferred trajectories, making it difficult to learn the vector field induced by these couplings, which prevents the model from learning straight trajectories. Motivated by this, we propose Model-Aligned Coupling (MAC), an effective method that matches training couplings based not only on geometric distance but also on alignment with the model's preferred transport directions based on its prediction error. To avoid the time-costly match process, MAC proposes to select the top-$k$ fraction of couplings with the lowest error for training. Extensive experiments show that MAC significantly improves generation quality and efficiency in few-step settings compared to existing methods. Project page: https://yexionglin.github.io/mac
Authors:Maya Dewhurst, Jack Collins, Justin J. H. Lo, Roy Alderton, Sam Kirkham
Abstract:
We introduce Nosey (Nasalance Open Source Estimation sYstem), a low-cost, customizable, 3D-printed system for recording acoustic nasalance data that we have made available as open-source hardware (http://github.com/phoneticslab/nosey). We first outline the motivations and design principles behind our hardware nasalance system, and then present a comparison between Nosey and a commercial nasalance device. Nosey shows consistently higher nasalance scores than the commercial device, but the magnitude of contrast between phonological environments is comparable between systems. We also review ways of customizing the hardware to facilitate testing, such as comparison of microphones and different construction materials. We conclude that Nosey is a flexible and cost-effective alternative to commercial nasometry devices and propose some methodological considerations for its use in data collection.
Authors:Hengyuan Cao, Yutong Feng, Biao Gong, Yijing Tian, Yunhong Lu, Chuang Liu, Bin Wang
Abstract:
Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed \textit{Dimension-Reduction Attack} (\texttt{DRA-Ctrl}), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. \texttt{DRA-Ctrl} provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.
Authors:Weizhe Kong, Xiao Wang, Ruichong Gao, Chenglong Li, Yu Zhang, Xing Yang, Yaowei Wang, Jin Tang
Abstract:
Pedestrian Attribute Recognition (PAR) is an indispensable task in human-centered research and has made great progress in recent years with the development of deep neural networks. However, the potential vulnerability and anti-interference ability have still not been fully explored. To bridge this gap, this paper proposes the first adversarial attack and defense framework for pedestrian attribute recognition. Specifically, we exploit both global- and patch-level attacks on the pedestrian images, based on the pre-trained CLIP-based PAR framework. It first divides the input pedestrian image into non-overlapping patches and embeds them into feature embeddings using a projection layer. Meanwhile, the attribute set is expanded into sentences using prompts and embedded into attribute features using a pre-trained CLIP text encoder. A multi-modal Transformer is adopted to fuse the obtained vision and text tokens, and a feed-forward network is utilized for attribute recognition. Based on the aforementioned PAR framework, we adopt the adversarial semantic and label-perturbation to generate the adversarial noise, termed ASL-PAR. We also design a semantic offset defense strategy to suppress the influence of adversarial attacks. Extensive experiments conducted on both digital domains (i.e., PETA, PA100K, MSP60K, RAPv2) and physical domains fully validated the effectiveness of our proposed adversarial attack and defense strategies for the pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR.
Authors:Yunkee Chae, Kyogu Lee
Abstract:
We present MGE-LDM, a unified latent diffusion framework for simultaneous music generation, source imputation, and query-driven source separation. Unlike prior approaches constrained to fixed instrument classes, MGE-LDM learns a joint distribution over full mixtures, submixtures, and individual stems within a single compact latent diffusion model. At inference, MGE-LDM enables (1) complete mixture generation, (2) partial generation (i.e., source imputation), and (3) text-conditioned extraction of arbitrary sources. By formulating both separation and imputation as conditional inpainting tasks in the latent space, our approach supports flexible, class-agnostic manipulation of arbitrary instrument sources. Notably, MGE-LDM can be trained jointly across heterogeneous multi-track datasets (e.g., Slakh2100, MUSDB18, MoisesDB) without relying on predefined instrument categories. Audio samples are available at our project page: https://yoongi43.github.io/MGELDM_Samples/.
Authors:James Xu Zhao, Jimmy Z. J. Liu, Bryan Hooi, See-Kiong Ng
Abstract:
Large language models (LLMs) are widely used for long-form text generation. However, factual errors in the responses would undermine their reliability. Despite growing attention to LLM factuality, the effect of response length on factuality remains underexplored. In this work, we systematically investigate this relationship by first introducing an automatic and bi-level long-form factuality evaluation framework, which achieves high agreement with human annotations while being cost-effective. Using this framework, we conduct controlled experiments and find that longer responses exhibit lower factual precision, confirming the presence of length bias. To explain this phenomenon, we empirically examine three hypotheses: error propagation, long context, and facts exhaustion. Our results reveal that facts exhaustion, where the model gradually exhausts more reliable knowledge, is the primary cause of factual degradation, rather than the other two hypotheses.
Authors:Xinye Li, Zunwen Zheng, Qian Zhang, Dekai Zhuang, Jiabao Kang, Liyan Xu, Qingbin Liu, Xi Chen, Zhiying Tu, Dianhui Chu, Dianbo Sui
Abstract:
Knowledge Editing (KE) has gained increasing attention, yet current KE tasks remain relatively simple. Under current evaluation frameworks, many editing methods achieve exceptionally high scores, sometimes nearing perfection. However, few studies integrate KE into real-world application scenarios (e.g., recent interest in LLM-as-agent). To support our analysis, we introduce a novel script-based benchmark -- ScEdit (Script-based Knowledge Editing Benchmark) -- which encompasses both counterfactual and temporal edits. We integrate token-level and text-level evaluation methods, comprehensively analyzing existing KE techniques. The benchmark extends traditional fact-based ("What"-type question) evaluation to action-based ("How"-type question) evaluation. We observe that all KE methods exhibit a drop in performance on established metrics and face challenges on text-level metrics, indicating a challenging task. Our benchmark is available at https://github.com/asdfo123/ScEdit.
Authors:Hao Li, Ju Dai, Xin Zhao, Feng Zhou, Junjun Pan, Lei Li
Abstract:
In 3D speech-driven facial animation generation, existing methods commonly employ pre-trained self-supervised audio models as encoders. However, due to the prevalence of phonetically similar syllables with distinct lip shapes in language, these near-homophone syllables tend to exhibit significant coupling in self-supervised audio feature spaces, leading to the averaging effect in subsequent lip motion generation. To address this issue, this paper proposes a plug-and-play semantic decorrelation module-Wav2Sem. This module extracts semantic features corresponding to the entire audio sequence, leveraging the added semantic information to decorrelate audio encodings within the feature space, thereby achieving more expressive audio features. Extensive experiments across multiple Speech-driven models indicate that the Wav2Sem module effectively decouples audio features, significantly alleviating the averaging effect of phonetically similar syllables in lip shape generation, thereby enhancing the precision and naturalness of facial animations. Our source code is available at https://github.com/wslh852/Wav2Sem.git.
Authors:Chuandong Liu, Huijiao Wang, Lei Yu, Gui-Song Xia
Abstract:
Recent advances in 3D Gaussian Splatting have shown remarkable potential for novel view synthesis. However, most existing large-scale scene reconstruction methods rely on the divide-and-conquer paradigm, which often leads to the loss of global scene information and requires complex parameter tuning due to scene partitioning and local optimization. To address these limitations, we propose MixGS, a novel holistic optimization framework for large-scale 3D scene reconstruction. MixGS models the entire scene holistically by integrating camera pose and Gaussian attributes into a view-aware representation, which is decoded into fine-detailed Gaussians. Furthermore, a novel mixing operation combines decoded and original Gaussians to jointly preserve global coherence and local fidelity. Extensive experiments on large-scale scenes demonstrate that MixGS achieves state-of-the-art rendering quality and competitive speed, while significantly reducing computational requirements, enabling large-scale scene reconstruction training on a single 24GB VRAM GPU. The code will be released at https://github.com/azhuantou/MixGS.
Authors:Yong Zhang, Yanwen Huang, Ning Cheng, Yang Guo, Yun Zhu, Yanmeng Wang, Shaojun Wang, Jing Xiao
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5$\times$ compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.
Authors:Mao-Lin Luo, Zi-Hao Zhou, Tong Wei, Min-Ling Zhang
Abstract:
Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.
Authors:Yixun Liang, Kunming Luo, Xiao Chen, Rui Chen, Hongyu Yan, Weiyu Li, Jiarui Liu, Ping Tan
Abstract:
We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.
Authors:Wanfu Gao, Jun Gao, Qingqi Han, Hanlin Pan, Kunpeng Liu
Abstract:
The rapid growth in feature dimension may introduce implicit associations between features and labels in multi-label datasets, making the relationships between features and labels increasingly complex. Moreover, existing methods often adopt low-dimensional linear decomposition to explore the associations between features and labels. However, linear decomposition struggles to capture complex nonlinear associations and may lead to misalignment between the feature space and the label space. To address these two critical challenges, we propose innovative solutions. First, we design a random walk graph that integrates feature-feature, label-label, and feature-label relationships to accurately capture nonlinear and implicit indirect associations, while optimizing the latent representations of associations between features and labels after low-rank decomposition. Second, we align the variable spaces by leveraging low-dimensional representation coefficients, while preserving the manifold structure between the original high-dimensional multi-label data and the low-dimensional representation space. Extensive experiments and ablation studies conducted on seven benchmark datasets and three representative datasets using various evaluation metrics demonstrate the superiority of the proposed method\footnote{Code: https://github.com/Heilong623/-GRW-}.
Authors:Wenhao Xu, Shuchen Zheng, Changwei Wang, Zherui Zhang, Chuan Ren, Rongtao Xu, Shibiao Xu
Abstract:
Infrared small target detection (ISTD) is vital for long-range surveillance in military, maritime, and early warning applications. ISTD is challenged by targets occupying less than 0.15% of the image and low distinguishability from complex backgrounds. Existing deep learning methods often suffer from information loss during downsampling and inefficient global context modeling. This paper presents SAMamba, a novel framework integrating SAM2's hierarchical feature learning with Mamba's selective sequence modeling. Key innovations include: (1) A Feature Selection Adapter (FS-Adapter) for efficient natural-to-infrared domain adaptation via dual-stage selection (token-level with a learnable task embedding and channel-wise adaptive transformations); (2) A Cross-Channel State-Space Interaction (CSI) module for efficient global context modeling with linear complexity using selective state space modeling; and (3) A Detail-Preserving Contextual Fusion (DPCF) module that adaptively combines multi-scale features with a gating mechanism to balance high-resolution and low-resolution feature contributions. SAMamba addresses core ISTD challenges by bridging the domain gap, maintaining fine-grained details, and efficiently modeling long-range dependencies. Experiments on NUAA-SIRST, IRSTD-1k, and NUDT-SIRST datasets show SAMamba significantly outperforms state-of-the-art methods, especially in challenging scenarios with heterogeneous backgrounds and varying target scales. Code: https://github.com/zhengshuchen/SAMamba.
Authors:Aldino Rizaldy, Richard Gloaguen, Fabian Ewald Fassnacht, Pedram Ghamisi
Abstract:
Multimodal remote sensing data, including spectral and lidar or photogrammetry, is crucial for achieving satisfactory land-use / land-cover classification results in urban scenes. So far, most studies have been conducted in a 2D context. When 3D information is available in the dataset, it is typically integrated with the 2D data by rasterizing the 3D data into 2D formats. Although this method yields satisfactory classification results, it falls short in fully exploiting the potential of 3D data by restricting the model's ability to learn 3D spatial features directly from raw point clouds. Additionally, it limits the generation of 3D predictions, as the dimensionality of the input data has been reduced. In this study, we propose a fully 3D-based method that fuses all modalities within the 3D point cloud and employs a dedicated dual-branch Transformer model to simultaneously learn geometric and spectral features. To enhance the fusion process, we introduce a cross-attention-based mechanism that fully operates on 3D points, effectively integrating features from various modalities across multiple scales. The purpose of cross-attention is to allow one modality to assess the importance of another by weighing the relevant features. We evaluated our method by comparing it against both 3D and 2D methods using the 2018 IEEE GRSS Data Fusion Contest (DFC2018) dataset. Our findings indicate that 3D fusion delivers competitive results compared to 2D methods and offers more flexibility by providing 3D predictions. These predictions can be projected onto 2D maps, a capability that is not feasible in reverse. Additionally, we evaluated our method on different datasets, specifically the ISPRS Vaihingen 3D and the IEEE 2019 Data Fusion Contest. Our code will be published here: https://github.com/aldinorizaldy/hyperpointformer.
Authors:Lifan Zhao, Yanyan Shen, Zhaoyang Liu, Xue Wang, Jiaji Deng
Abstract:
Scaling laws motivate the development of Time Series Foundation Models (TSFMs) that pre-train vast parameters and achieve remarkable zero-shot forecasting performance. Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data. A key question is how to realize effective adaptation of TSFMs for a target forecasting task. Through empirical studies on various TSFMs, the pre-trained models often exhibit inherent sparsity and redundancy in computation, suggesting that TSFMs have learned to activate task-relevant network substructures to accommodate diverse forecasting tasks. To preserve this valuable prior knowledge, we propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space. Extensive experiments on seven TSFMs and six benchmarks demonstrate that fine-tuning a smaller, pruned TSFM significantly improves forecasting performance compared to fine-tuning original models. This prune-then-finetune paradigm often enables TSFMs to achieve state-of-the-art performance and surpass strong specialized baselines. Source code is made publicly available at https://github.com/SJTU-DMTai/Prune-then-Finetune.
Authors:Shiwei Li, Xiandi Luo, Xing Tang, Haozhao Wang, Hao Chen, Weihong Luo, Yuhua Li, Xiuqiang He, Ruixuan Li
Abstract:
Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning method. In standard LoRA layers, one of the matrices, $A$ or $B$, is initialized to zero, ensuring that fine-tuning starts from the pretrained model. However, there is no theoretical support for this practice. In this paper, we investigate the impact of non-zero initialization on LoRA's fine-tuning dynamics from an infinite-width perspective. Our analysis reveals that, compared to zero initialization, simultaneously initializing $A$ and $B$ to non-zero values improves LoRA's robustness to suboptimal learning rates, particularly smaller ones. Further analysis indicates that although the non-zero initialization of $AB$ introduces random noise into the pretrained weight, it generally does not affect fine-tuning performance. In other words, fine-tuning does not need to strictly start from the pretrained model. The validity of our findings is confirmed through extensive experiments across various models and datasets. The code is available at https://github.com/Leopold1423/non_zero_lora-icml25.
Authors:Shaoan Wang, Jiazhao Zhang, Minghan Li, Jiahang Liu, Anqi Li, Kui Wu, Fangwei Zhong, Junzhi Yu, Zhizheng Zhang, He Wang
Abstract:
Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.
Authors:Junyi Guo, Jingxuan Zhang, Fangyu Wu, Huanda Lu, Qiufeng Wang, Wenmian Yang, Eng Gee Lim, Dongming Lu
Abstract:
Diffusion-based garment synthesis tasks primarily focus on the design phase in the fashion domain, while the garment production process remains largely underexplored. To bridge this gap, we introduce a new task: Flat Sketch to Realistic Garment Image (FS2RG), which generates realistic garment images by integrating flat sketches and textual guidance. FS2RG presents two key challenges: 1) fabric characteristics are solely guided by textual prompts, providing insufficient visual supervision for diffusion-based models, which limits their ability to capture fine-grained fabric details; 2) flat sketches and textual guidance may provide conflicting information, requiring the model to selectively preserve or modify garment attributes while maintaining structural coherence. To tackle this task, we propose HiGarment, a novel framework that comprises two core components: i) a multi-modal semantic enhancement mechanism that enhances fabric representation across textual and visual modalities, and ii) a harmonized cross-attention mechanism that dynamically balances information from flat sketches and text prompts, allowing controllable synthesis by generating either sketch-aligned (image-biased) or text-guided (text-biased) outputs. Furthermore, we collect Multi-modal Detailed Garment, the largest open-source dataset for garment generation. Experimental results and user studies demonstrate the effectiveness of HiGarment in garment synthesis. The code and dataset are available at https://github.com/Maple498/HiGarment.
Authors:Gabriele Sarti, Vilém Zouhar, Malvina Nissim, Arianna Bisazza
Abstract:
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
Authors:Ping Wang, Lishun Wang, Gang Qu, Xiaodong Wang, Yulun Zhang, Xin Yuan
Abstract:
Deep-unrolling and plug-and-play (PnP) approaches have become the de-facto standard solvers for single-pixel imaging (SPI) inverse problem. PnP approaches, a class of iterative algorithms where regularization is implicitly performed by an off-the-shelf deep denoiser, are flexible for varying compression ratios (CRs) but are limited in reconstruction accuracy and speed. Conversely, unrolling approaches, a class of multi-stage neural networks where a truncated iterative optimization process is transformed into an end-to-end trainable network, typically achieve better accuracy with faster inference but require fine-tuning or even retraining when CR changes. In this paper, we address the challenge of integrating the strengths of both classes of solvers. To this end, we design an efficient deep image restorer (DIR) for the unrolling of HQS (half quadratic splitting) and ADMM (alternating direction method of multipliers). More importantly, a general proximal trajectory (PT) loss function is proposed to train HQS/ADMM-unrolling networks such that learned DIR approximates the proximal operator of an ideal explicit restoration regularizer. Extensive experiments demonstrate that, the resulting proximal unrolling networks can not only flexibly handle varying CRs with a single model like PnP algorithms, but also outperform previous CR-specific unrolling networks in both reconstruction accuracy and speed. Source codes and models are available at https://github.com/pwangcs/ProxUnroll.
Authors:Wenjing Xing, Wenke Lu, Yeheng Duan, Bing Zhao, Zhenghui kang, Yaolong Wang, Kai Gao, Lei Qiao
Abstract:
Traditional code instruction data synthesis methods suffer from limited diversity and poor logic. We introduce Infinite-Instruct, an automated framework for synthesizing high-quality question-answer pairs, designed to enhance the code generation capabilities of large language models (LLMs). The framework focuses on improving the internal logic of synthesized problems and the quality of synthesized code. First, "Reverse Construction" transforms code snippets into diverse programming problems. Then, through "Backfeeding Construction," keywords in programming problems are structured into a knowledge graph to reconstruct them into programming problems with stronger internal logic. Finally, a cross-lingual static code analysis pipeline filters invalid samples to ensure data quality. Experiments show that on mainstream code generation benchmarks, our fine-tuned models achieve an average performance improvement of 21.70% on 7B-parameter models and 36.95% on 32B-parameter models. Using less than one-tenth of the instruction fine-tuning data, we achieved performance comparable to the Qwen-2.5-Coder-Instruct. Infinite-Instruct provides a scalable solution for LLM training in programming. We open-source the datasets used in the experiments, including both unfiltered versions and filtered versions via static analysis. The data are available at https://github.com/xingwenjing417/Infinite-Instruct-dataset
Authors:Shiwei Li, Xiandi Luo, Haozhao Wang, Xing Tang, Shijie Xu, Weihong Luo, Yuhua Li, Xiuqiang He, Ruixuan Li
Abstract:
To improve the training efficiency of federated learning (FL), previous research has employed low-rank decomposition techniques to reduce communication overhead. In this paper, we seek to enhance the performance of these low-rank decomposition methods. Specifically, we focus on three key issues related to decomposition in FL: what to decompose, how to decompose, and how to aggregate. Subsequently, we introduce three novel techniques: Model Update Decomposition (MUD), Block-wise Kronecker Decomposition (BKD), and Aggregation-Aware Decomposition (AAD), each targeting a specific issue. These techniques are complementary and can be applied simultaneously to achieve optimal performance. Additionally, we provide a rigorous theoretical analysis to ensure the convergence of the proposed MUD. Extensive experimental results show that our approach achieves faster convergence and superior accuracy compared to relevant baseline methods. The code is available at https://github.com/Leopold1423/fedmud-icml25.
Authors:Changyi Lin, Yuxin Ray Song, Boda Huo, Mingyang Yu, Yikai Wang, Shiqi Liu, Yuxiang Yang, Wenhao Yu, Tingnan Zhang, Jie Tan, Yiyue Luo, Ding Zhao
Abstract:
Quadrupedal robots have demonstrated remarkable agility and robustness in traversing complex terrains. However, they struggle with dynamic object interactions, where contact must be precisely sensed and controlled. To bridge this gap, we present LocoTouch, a system that equips quadrupedal robots with tactile sensing to address a particularly challenging task in this category: long-distance transport of unsecured cylindrical objects, which typically requires custom mounting or fastening mechanisms to maintain stability. For efficient large-area tactile sensing, we design a high-density distributed tactile sensor that covers the entire back of the robot. To effectively leverage tactile feedback for robot control, we develop a simulation environment with high-fidelity tactile signals, and train tactile-aware transport policies using a two-stage learning pipeline. Furthermore, we design a novel reward function to promote robust, symmetric, and frequency-adaptive locomotion gaits. After training in simulation, LocoTouch transfers zero-shot to the real world, reliably transporting a wide range of unsecured cylindrical objects with diverse sizes, weights, and surface properties. Moreover, it remains robust over long distances, on uneven terrain, and under severe perturbations.
Authors:Shohei Enomoto
Abstract:
Deep learning models often struggle to maintain performance when deployed on data distributions different from their training data, particularly in real-world applications where environmental conditions frequently change. While Multi-source Domain Generalization (MDG) has shown promise in addressing this challenge by leveraging multiple source domains during training, its practical application is limited by the significant costs and difficulties associated with creating multi-domain datasets. To address this limitation, we propose Pseudo Multi-source Domain Generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in more practical Single-source Domain Generalization (SDG) settings. PMDG generates multiple pseudo-domains from a single source domain through style transfer and data augmentation techniques, creating a synthetic multi-domain dataset that can be used with existing MDG algorithms. Through extensive experiments with PseudoDomainBed, our modified version of the DomainBed benchmark, we analyze the effectiveness of PMDG across multiple datasets and architectures. Our analysis reveals several key findings, including a positive correlation between MDG and PMDG performance and the potential of pseudo-domains to match or exceed actual multi-domain performance with sufficient data. These comprehensive empirical results provide valuable insights for future research in domain generalization. Our code is available at https://github.com/s-enmt/PseudoDomainBed.
Authors:Liu Liu, Xiaofeng Wang, Guosheng Zhao, Keyu Li, Wenkang Qin, Jiaxiong Qiu, Zheng Zhu, Guan Huang, Zhizhong Su
Abstract:
Imitation Learning has become a fundamental approach in robotic manipulation. However, collecting large-scale real-world robot demonstrations is prohibitively expensive. Simulators offer a cost-effective alternative, but the sim-to-real gap make it extremely challenging to scale. Therefore, we introduce RoboTransfer, a diffusion-based video generation framework for robotic data synthesis. Unlike previous methods, RoboTransfer integrates multi-view geometry with explicit control over scene components, such as background and object attributes. By incorporating cross-view feature interactions and global depth/normal conditions, RoboTransfer ensures geometry consistency across views. This framework allows fine-grained control, including background edits and object swaps. Experiments demonstrate that RoboTransfer is capable of generating multi-view videos with enhanced geometric consistency and visual fidelity. In addition, policies trained on the data generated by RoboTransfer achieve a 33.3% relative improvement in the success rate in the DIFF-OBJ setting and a substantial 251% relative improvement in the more challenging DIFF-ALL scenario. Explore more demos on our project page: https://horizonrobotics.github.io/robot_lab/robotransfer
Authors:Xiao Yu, Yan Fang, Xiaojie Jin, Yao Zhao, Yunchao Wei
Abstract:
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.
Authors:Jinquan Guan, Qi Chen, Lizhou Liang, Yuhang Liu, Vu Minh Hieu Phan, Minh-Son To, Jian Chen, Yutong Xie
Abstract:
Artificial intelligence (AI)-based chest X-ray (CXR) interpretation assistants have demonstrated significant progress and are increasingly being applied in clinical settings. However, contemporary medical AI models often adhere to a simplistic input-to-output paradigm, directly processing an image and an instruction to generate a result, where the instructions may be integral to the model's architecture. This approach overlooks the modeling of the inherent diagnostic reasoning in chest X-ray interpretation. Such reasoning is typically sequential, where each interpretive stage considers the images, the current task, and the contextual information from previous stages. This oversight leads to several shortcomings, including misalignment with clinical scenarios, contextless reasoning, and untraceable errors. To fill this gap, we construct CXRTrek, a new multi-stage visual question answering (VQA) dataset for CXR interpretation. The dataset is designed to explicitly simulate the diagnostic reasoning process employed by radiologists in real-world clinical settings for the first time. CXRTrek covers 8 sequential diagnostic stages, comprising 428,966 samples and over 11 million question-answer (Q&A) pairs, with an average of 26.29 Q&A pairs per sample. Building on the CXRTrek dataset, we propose a new vision-language large model (VLLM), CXRTrekNet, specifically designed to incorporate the clinical reasoning flow into the VLLM framework. CXRTrekNet effectively models the dependencies between diagnostic stages and captures reasoning patterns within the radiological context. Trained on our dataset, the model consistently outperforms existing medical VLLMs on the CXRTrek benchmarks and demonstrates superior generalization across multiple tasks on five diverse external datasets. The dataset and model can be found in our repository (https://github.com/guanjinquan/CXRTrek).
Authors:Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, Dawn Song
Abstract:
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
Authors:Tongtong Su, Chengyu Wang, Jun Huang, Dongming Lu
Abstract:
Appearance editing according to user needs is a pivotal task in video editing. Existing text-guided methods often lead to ambiguities regarding user intentions and restrict fine-grained control over editing specific aspects of objects. To overcome these limitations, this paper introduces a novel approach named {Zero-to-Hero}, which focuses on reference-based video editing that disentangles the editing process into two distinct problems. It achieves this by first editing an anchor frame to satisfy user requirements as a reference image and then consistently propagating its appearance across other frames. We leverage correspondence within the original frames to guide the attention mechanism, which is more robust than previously proposed optical flow or temporal modules in memory-friendly video generative models, especially when dealing with objects exhibiting large motions. It offers a solid ZERO-shot initialization that ensures both accuracy and temporal consistency. However, intervention in the attention mechanism results in compounded imaging degradation with over-saturated colors and unknown blurring issues. Starting from Zero-Stage, our Hero-Stage Holistically learns a conditional generative model for vidEo RestOration. To accurately evaluate the consistency of the appearance, we construct a set of videos with multiple appearances using Blender, enabling a fine-grained and deterministic evaluation. Our method outperforms the best-performing baseline with a PSNR improvement of 2.6 dB. The project page is at https://github.com/Tonniia/Zero2Hero.
Authors:Shi Heng Zhang, Zhengjie Miao, Jiannan Wang
Abstract:
As enterprise data grows in size and complexity, column-level data lineage, which records the creation, transformation, and reference of each column in the warehouse, has been the key to effective data governance that assists tasks like data quality monitoring, storage refactoring, and workflow migration. Unfortunately, existing systems introduce overheads by integration with query execution or fail to achieve satisfying accuracy for column lineage. In this paper, we demonstrate LINEAGEX, a lightweight Python library that infers column level lineage from SQL queries and visualizes it through an interactive interface. LINEAGEX achieves high coverage and accuracy for column lineage extraction by intelligently traversing query parse trees and handling ambiguities. The demonstration walks through use cases of building lineage graphs and troubleshooting data quality issues. LINEAGEX is open sourced at https://github.com/sfu-db/lineagex and our video demonstration is at https://youtu.be/5LaBBDDitlw
Authors:Siyuan Wang, Jiawei Liu, Wei Wang, Yeying Jin, Jinsong Du, Zhi Han
Abstract:
Co-Speech Gesture Video Generation aims to generate vivid speech videos from audio-driven still images, which is challenging due to the diversity of different parts of the body in terms of amplitude of motion, audio relevance, and detailed features. Relying solely on audio as the control signal often fails to capture large gesture movements in video, leading to more pronounced artifacts and distortions. Existing approaches typically address this issue by introducing additional a priori information, but this can limit the practical application of the task. Specifically, we propose a Motion Mask-Guided Two-Stage Network (MMGT) that uses audio, as well as motion masks and motion features generated from the audio signal to jointly drive the generation of synchronized speech gesture videos. In the first stage, the Spatial Mask-Guided Audio Pose Generation (SMGA) Network generates high-quality pose videos and motion masks from audio, effectively capturing large movements in key regions such as the face and gestures. In the second stage, we integrate the Motion Masked Hierarchical Audio Attention (MM-HAA) into the Stabilized Diffusion Video Generation model, overcoming limitations in fine-grained motion generation and region-specific detail control found in traditional methods. This guarantees high-quality, detailed upper-body video generation with accurate texture and motion details. Evaluations show improved video quality, lip-sync, and gesture. The model and code are available at https://github.com/SIA-IDE/MMGT.
Authors:Pengfei Zhou, Yunlong Liu, Junli Liang, Qi Song, Xiangyang Li
Abstract:
Time series forecasting with exogenous variables is a critical emerging paradigm that presents unique challenges in modeling dependencies between variables. Traditional models often struggle to differentiate between endogenous and exogenous variables, leading to inefficiencies and overfitting. In this paper, we introduce CrossLinear, a novel Linear-based forecasting model that addresses these challenges by incorporating a plug-and-play cross-correlation embedding module. This lightweight module captures the dependencies between variables with minimal computational cost and seamlessly integrates into existing neural networks. Specifically, it captures time-invariant and direct variable dependencies while disregarding time-varying or indirect dependencies, thereby mitigating the risk of overfitting in dependency modeling and contributing to consistent performance improvements. Furthermore, CrossLinear employs patch-wise processing and a global linear head to effectively capture both short-term and long-term temporal dependencies, further improving its forecasting precision. Extensive experiments on 12 real-world datasets demonstrate that CrossLinear achieves superior performance in both short-term and long-term forecasting tasks. The ablation study underscores the effectiveness of the cross-correlation embedding module. Additionally, the generalizability of this module makes it a valuable plug-in for various forecasting tasks across different domains. Codes are available at https://github.com/mumiao2000/CrossLinear.
Authors:Ning Liu, Yue Yu
Abstract:
Attention mechanisms have emerged as transformative tools in core AI domains such as natural language processing and computer vision. Yet, their largely untapped potential for modeling intricate physical systems presents a compelling frontier. Learning such systems often entails discovering operators that map between functional spaces using limited instances of function pairs -- a task commonly framed as a severely ill-posed inverse PDE problem. In this work, we introduce Neural Interpretable PDEs (NIPS), a novel neural operator architecture that builds upon and enhances Nonlocal Attention Operators (NAO) in both predictive accuracy and computational efficiency. NIPS employs a linear attention mechanism to enable scalable learning and integrates a learnable kernel network that acts as a channel-independent convolution in Fourier space. As a consequence, NIPS eliminates the need to explicitly compute and store large pairwise interactions, effectively amortizing the cost of handling spatial interactions into the Fourier transform. Empirical evaluations demonstrate that NIPS consistently surpasses NAO and other baselines across diverse benchmarks, heralding a substantial leap in scalable, interpretable, and efficient physics learning. Our code and data accompanying this paper are available at https://github.com/fishmoon1234/Nonlocal-Attention-Operator.
Authors:Yuu Jinnai
Abstract:
Document-level text generation tasks are known to be more difficult than sentence-level text generation tasks as they require the understanding of longer context to generate high-quality texts. In this paper, we investigate the adaption of Minimum Bayes Risk (MBR) decoding for document-level text generation tasks. MBR decoding makes use of a utility function to estimate the output with the highest expected utility from a set of candidate outputs. Although MBR decoding is shown to be effective in a wide range of sentence-level text generation tasks, its performance on document-level text generation tasks is limited as many of the utility functions are designed for evaluating the utility of sentences. To this end, we propose MBR-OT, a variant of MBR decoding using Wasserstein distance to compute the utility of a document using a sentence-level utility function. The experimental result shows that the performance of MBR-OT outperforms that of the standard MBR in document-level machine translation, text simplification, and dense image captioning tasks. Our code is available at https://github.com/jinnaiyuu/mbr-optimal-transport
Authors:Dohyeon Lee, Yeonseok Jeong, Seung-won Hwang
Abstract:
Chain-of-Thought (CoT) prompting enables complex reasoning in large language models (LLMs), including applications in information retrieval (IR). However, it often leads to overthinking, where models produce excessively long and semantically redundant traces with little or no benefit. We identify two key challenges in IR: redundant trajectories that revisit similar states and misguided reasoning that diverges from user intent. To address these, we propose State Machine Reasoning (SMR), a transition-based reasoning framework composed of discrete actions (Refine, Rerank, Stop) that support early stopping and fine-grained control. Experiments on the BEIR and BRIGHT benchmarks show that SMR improves retrieval performance (nDCG@10) by 3.4% while reducing token usage by 74.4%. It generalizes across LLMs and retrievers without requiring task-specific tuning, offering a practical alternative to conventional CoT reasoning. The code and details are available at https://github.com/ldilab/SMR.
Authors:Zhen Xiang, Aliyah R. Hsu, Austin V. Zane, Aaron E. Kornblith, Margaret J. Lin-Martore, Jasmanpreet C. Kaur, Vasuda M. Dokiparthi, Bo Li, Bin Yu
Abstract:
Clinical decision-making is inherently complex and fast-paced, particularly in emergency departments (EDs) where critical, rapid and high-stakes decisions are made. Clinical Decision Rules (CDRs) are standardized evidence-based tools that combine signs, symptoms, and clinical variables into decision trees to make consistent and accurate diagnoses. CDR usage is often hindered by the clinician's cognitive load, limiting their ability to quickly recall and apply the appropriate rules. We introduce CDR-Agent, a novel LLM-based system designed to enhance ED decision-making by autonomously identifying and applying the most appropriate CDRs based on unstructured clinical notes. To validate CDR-Agent, we curated two novel ED datasets: synthetic and CDR-Bench, although CDR-Agent is applicable to non ED clinics. CDR-Agent achieves a 56.3\% (synthetic) and 8.7\% (CDR-Bench) accuracy gain relative to the standalone LLM baseline in CDR selection. Moreover, CDR-Agent significantly reduces computational overhead. Using these datasets, we demonstrated that CDR-Agent not only selects relevant CDRs efficiently, but makes cautious yet effective imaging decisions by minimizing unnecessary interventions while successfully identifying most positively diagnosed cases, outperforming traditional LLM prompting approaches. Code for our work can be found at: https://github.com/zhenxianglance/medagent-cdr-agent
Authors:Tianteng Gu, Bei Liu, Bo Xiao, Ke Zeng, Jiacheng Liu, Yanmin Qian
Abstract:
Pruning is a widely used technique to compress large language models (LLMs) by removing unimportant weights, but it often suffers from significant performance degradation - especially under semi-structured sparsity constraints. Existing pruning methods primarily focus on estimating the importance of individual weights, which limits their ability to preserve critical capabilities of the model. In this work, we propose a new perspective: rather than merely selecting which weights to prune, we first redistribute parameter importance to make the model inherently more amenable to pruning. By minimizing the information entropy of normalized importance scores, our approach concentrates importance onto a smaller subset of weights, thereby enhancing pruning robustness. We instantiate this idea through DenoiseRotator, which applies learnable orthogonal transformations to the model's weight matrices. Our method is model-agnostic and can be seamlessly integrated with existing pruning techniques such as Magnitude, SparseGPT, and Wanda. Evaluated on LLaMA3, Qwen2.5, and Mistral models under 50% unstructured and 2:4 semi-structured sparsity, DenoiseRotator consistently improves perplexity and zero-shot accuracy. For instance, on LLaMA3-70B pruned with SparseGPT at 2:4 semi-structured sparsity, DenoiseRotator reduces the perplexity gap to the dense model by 58%, narrowing the degradation from 8.1 to 3.4 points. Codes are available at https://github.com/Axel-gu/DenoiseRotator.
Authors:Chuanhao Li, Wenbo Ye, Zhen Li, Yuwei Wu, Yunde Jia
Abstract:
Compositional generalization is the ability of generalizing novel compositions from seen primitives, and has received much attention in vision-and-language (V\&L) recently. Due to the multi-modal nature of V\&L tasks, the primitives composing compositions source from different modalities, resulting in multi-sourced novel compositions. However, the generalization ability over multi-sourced novel compositions, \textit{i.e.}, multi-sourced compositional generalization (MSCG) remains unexplored. In this paper, we explore MSCG in the context of visual question answering (VQA), and propose a retrieval-augmented training framework to enhance the MSCG ability of VQA models by learning unified representations for primitives from different modalities. Specifically, semantically equivalent primitives are retrieved for each primitive in the training samples, and the retrieved features are aggregated with the original primitive to refine the model. This process helps the model learn consistent representations for the same semantic primitives across different modalities. To evaluate the MSCG ability of VQA models, we construct a new GQA-MSCG dataset based on the GQA dataset, in which samples include three types of novel compositions composed of primitives from different modalities. Experimental results demonstrate the effectiveness of the proposed framework. We release GQA-MSCG at https://github.com/NeverMoreLCH/MSCG.
Authors:Yihang Wu, Muhammad Owais, Reem Kateb, Ahmad Chaddad
Abstract:
Deep models, such as convolutional neural networks (CNNs) and vision transformer (ViT), demonstrate remarkable performance in image classification. However, those deep models require large data to fine-tune, which is impractical in the medical domain due to the data privacy issue. Furthermore, despite the feasible performance of contrastive language image pre-training (CLIP) in the natural domain, the potential of CLIP has not been fully investigated in the medical field. To face these challenges, we considered three scenarios: 1) we introduce a novel CLIP variant using four CNNs and eight ViTs as image encoders for the classification of brain cancer and skin cancer, 2) we combine 12 deep models with two federated learning techniques to protect data privacy, and 3) we involve traditional machine learning (ML) methods to improve the generalization ability of those deep models in unseen domain data. The experimental results indicate that maxvit shows the highest averaged (AVG) test metrics (AVG = 87.03\%) in HAM10000 dataset with multimodal learning, while convnext\_l demonstrates remarkable test with an F1-score of 83.98\% compared to swin\_b with 81.33\% in FL model. Furthermore, the use of support vector machine (SVM) can improve the overall test metrics with AVG of $\sim 2\%$ for swin transformer series in ISIC2018. Our codes are available at https://github.com/AIPMLab/SkinCancerSimulation.
Authors:Si Wu, Sebastian Bruch
Abstract:
Imageability (potential of text to evoke a mental image) and concreteness (perceptibility of text) are two psycholinguistic properties that link visual and semantic spaces. It is little surprise that computational methods that estimate them do so using parallel visual and semantic spaces, such as collections of image-caption pairs or multi-modal models. In this paper, we work on the supposition that text itself in an image-caption dataset offers sufficient signals to accurately estimate these properties. We hypothesize, in particular, that the peakedness of the neighborhood of a word in the semantic embedding space reflects its degree of imageability and concreteness. We then propose an unsupervised, distribution-free measure, which we call Neighborhood Stability Measure (NSM), that quantifies the sharpness of peaks. Extensive experiments show that NSM correlates more strongly with ground-truth ratings than existing unsupervised methods, and is a strong predictor of these properties for classification. Our code and data are available on GitHub (https://github.com/Artificial-Memory-Lab/imageability).
Authors:Minh Nguyen Nhat To, Paul F RWilson, Viet Nguyen, Mohamed Harmanani, Michael Cooper, Fahimeh Fooladgar, Purang Abolmaesumi, Parvin Mousavi, Rahul G. Krishnan
Abstract:
The subpopulationtion shift, characterized by a disparity in subpopulation distributibetween theween the training and target datasets, can significantly degrade the performance of machine learning models. Current solutions to subpopulation shift involve modifying empirical risk minimization with re-weighting strategies to improve generalization. This strategy relies on assumptions about the number and nature of subpopulations and annotations on group membership, which are unavailable for many real-world datasets. Instead, we propose using an ensemble of diverse classifiers to adaptively capture risk associated with subpopulations. Given a feature extractor network, we replace its standard linear classification layer with a mixture of prototypical classifiers, where each member is trained to classify the data while focusing on different features and samples from other members. In empirical evaluation on nine real-world datasets, covering diverse domains and kinds of subpopulation shift, our method of Diverse Prototypical Ensembles (DPEs) often outperforms the prior state-of-the-art in worst-group accuracy. The code is available at https://github.com/minhto2802/dpe4subpop
Authors:Haewon Park, Gyubin Choi, Minjun Kim, Yohan Jo
Abstract:
Knowledge editing (KE) methods offer an efficient way to modify knowledge in large language models. Current KE evaluations typically assess editing success by considering only the edited knowledge without any preceding contexts. In real-world applications, however, preceding contexts often trigger the retrieval of the original knowledge and undermine the intended edit. To address this issue, we develop CHED -- a benchmark designed to evaluate the context robustness of KE methods. Evaluations on CHED show that they often fail when preceding contexts are present. To mitigate this shortcoming, we introduce CoRE, a KE method designed to strengthen context robustness by minimizing context-sensitive variance in hidden states of the model for edited knowledge. This method not only improves the editing success rate in situations where a preceding context is present but also preserves the overall capabilities of the model. We provide an in-depth analysis of the differing impacts of preceding contexts when introduced as user utterances versus assistant responses, and we dissect attention-score patterns to assess how specific tokens influence editing success.
Authors:Zeying Gong, Rong Li, Tianshuai Hu, Ronghe Qiu, Lingdong Kong, Lingfeng Zhang, Guoyang Zhao, Yiyi Ding, Junwei Liang
Abstract:
Deployable service and delivery robots struggle to navigate multi-floor buildings to reach object goals, as existing systems fail due to single-floor assumptions and requirements for offline, globally consistent maps. Multi-floor environments pose unique challenges including cross-floor transitions and vertical spatial reasoning, especially navigating unknown buildings. Object-Goal Navigation benchmarks like HM3D and MP3D also capture this multi-floor reality, yet current methods lack support for online, floor-aware navigation. To bridge this gap, we propose \textbf{\textit{ASCENT}}, an online framework for Zero-Shot Object-Goal Navigation that enables robots to operate without pre-built maps or retraining on new object categories. It introduces: (1) a \textbf{Multi-Floor Abstraction} module that dynamically constructs hierarchical representations with stair-aware obstacle mapping and cross-floor topology modeling, and (2) a \textbf{Coarse-to-Fine Reasoning} module that combines frontier ranking with LLM-driven contextual analysis for multi-floor navigation decisions. We evaluate on HM3D and MP3D benchmarks, outperforming state-of-the-art zero-shot approaches, and demonstrate real-world deployment on a quadruped robot.
Authors:Haoqin Sun, Xuechen Wang, Jinghua Zhao, Shiwan Zhao, Jiaming Zhou, Hui Wang, Jiabei He, Aobo Kong, Xi Yang, Yequan Wang, Yonghua Lin, Yong Qin
Abstract:
In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose \textbf{EmotionTalk}, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.
Authors:Bowen Chen, Keyan Chen, Mohan Yang, Zhengxia Zou, Zhenwei Shi
Abstract:
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on two datasets and consistently delivers performance improvements across various SR architectures. Codes can be found at https://github.com/Mr-Bamboo/SeG-SR.
Authors:Ruskin Raj Manku, Yuzhi Tang, Xingjian Shi, Mu Li, Alex Smola
Abstract:
Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on $\textit{EmergentTTS}$, we introduce $\textit{EmergentTTS-Eval}$, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation $\href{https://github.com/boson-ai/EmergentTTS-Eval-public}{code}$ and the $\href{https://huggingface.co/datasets/bosonai/EmergentTTS-Eval}{dataset}$.
Authors:Peixuan Han, Zijia Liu, Jiaxuan You
Abstract:
Large language models (LLMs) have shown promising potential in persuasion, but existing works on training LLM persuaders are still preliminary. Notably, while humans are skilled in modeling their opponent's thoughts and opinions proactively and dynamically, current LLMs struggle with such Theory of Mind (ToM) reasoning, resulting in limited diversity and opponent awareness. To address this limitation, we introduce Theory of Mind Augmented Persuader (ToMAP), a novel approach for building more flexible persuader agents by incorporating two theory of mind modules that enhance the persuader's awareness and analysis of the opponent's mental state. Specifically, we begin by prompting the persuader to consider possible objections to the target central claim, and then use a text encoder paired with a trained MLP classifier to predict the opponent's current stance on these counterclaims. Our carefully designed reinforcement learning schema enables the persuader learns how to analyze opponent-related information and utilize it to generate more effective arguments. Experiments show that the ToMAP persuader, while containing only 3B parameters, outperforms much larger baselines, like GPT-4o, with a relative gain of 39.4% across multiple persuadee models and diverse corpora. Notably, ToMAP exhibits complex reasoning chains and reduced repetition during training, which leads to more diverse and effective arguments. The opponent-aware feature of ToMAP also makes it suitable for long conversations and enables it to employ more logical and opponent-aware strategies. These results underscore our method's effectiveness and highlight its potential for developing more persuasive language agents. Code is available at: https://github.com/ulab-uiuc/ToMAP.
Authors:Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, Jeff Clune
Abstract:
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The Gödel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin Gödel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.
Authors:Michael Sun, Orion Foo, Gang Liu, Wojciech Matusik, Jie Chen
Abstract:
Directed acyclic graphs (DAGs) are a class of graphs commonly used in practice, with examples that include electronic circuits, Bayesian networks, and neural architectures. While many effective encoders exist for DAGs, it remains challenging to decode them in a principled manner, because the nodes of a DAG can have many different topological orders. In this work, we propose a grammar-based approach to constructing a principled, compact and equivalent sequential representation of a DAG. Specifically, we view a graph as derivations over an unambiguous grammar, where the DAG corresponds to a unique sequence of production rules. Equivalently, the procedure to construct such a description can be viewed as a lossless compression of the data. Such a representation has many uses, including building a generative model for graph generation, learning a latent space for property prediction, and leveraging the sequence representational continuity for Bayesian Optimization over structured data. Code is available at https://github.com/shiningsunnyday/induction.
Authors:Michael Sun, Weize Yuan, Gang Liu, Wojciech Matusik, Jie Chen
Abstract:
Recent data-efficient molecular generation approaches exploit graph grammars to introduce interpretability into the generative models. However, grammar learning therein relies on expert annotation or unreliable heuristics for algorithmic inference. We propose Foundation Molecular Grammar (FMG), which leverages multi-modal foundation models (MMFMs) to induce an interpretable molecular language. By exploiting the chemical knowledge of an MMFM, FMG renders molecules as images, describes them as text, and aligns information across modalities using prompt learning. FMG can be used as a drop-in replacement for the prior grammar learning approaches in molecular generation and property prediction. We show that FMG not only excels in synthesizability, diversity, and data efficiency but also offers built-in chemical interpretability for automated molecular discovery workflows. Code is available at https://github.com/shiningsunnyday/induction.
Authors:Yuhui Zhang, Yuchang Su, Yiming Liu, Serena Yeung-Levy
Abstract:
Negation is a fundamental linguistic phenomenon that can entirely reverse the meaning of a sentence. As vision language models (VLMs) continue to advance and are deployed in high-stakes applications, assessing their ability to comprehend negation becomes essential. To address this, we introduce NegVQA, a visual question answering (VQA) benchmark consisting of 7,379 two-choice questions covering diverse negation scenarios and image-question distributions. We construct NegVQA by leveraging large language models to generate negated versions of questions from existing VQA datasets. Evaluating 20 state-of-the-art VLMs across seven model families, we find that these models struggle significantly with negation, exhibiting a substantial performance drop compared to their responses to the original questions. Furthermore, we uncover a U-shaped scaling trend, where increasing model size initially degrades performance on NegVQA before leading to improvements. Our benchmark reveals critical gaps in VLMs' negation understanding and offers insights into future VLM development. Project page available at https://yuhui-zh15.github.io/NegVQA/.
Authors:Angtian Wang, Haibin Huang, Jacob Zhiyuan Fang, Yiding Yang, Chongyang Ma
Abstract:
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
Authors:Guilherme Adamatti Bridi, André Luis Alves Martins, Franklin de Lima Marquezino, Celina Miraglia Herrera de Figueiredo
Abstract:
Graph pebbling is a game played on graphs with pebbles on their vertices. A pebbling move removes two pebbles from one vertex and places one pebble on an adjacent vertex. The pebbling number is the smallest $t$ so that from any initial configuration of $t$ pebbles it is possible, after a sequence of pebbling moves, to place a pebble on any given target vertex. Graphs whose pebbling number is equal to the number of vertices are called Class~$0$ and provide a challenging set of graphs that resist being characterized. In this note, we answer a question recently proposed by the pioneering study on the pebbling number of snark graphs: we prove that the smallest Flower snark $J_3$ is Class~$0$, establishing that $J_3$ is in fact the only Class~$0$ Flower snark.
Authors:Ben Weiss
Abstract:
Median filtering is a cornerstone of computational image processing. It provides an effective means of image smoothing, with minimal blurring or softening of edges, invariance to monotonic transformations such as gamma adjustment, and robustness to noise and outliers. However, known algorithms have all suffered from practical limitations: the bit depth of the image data, the size of the filter kernel, or the kernel shape itself. Square-kernel implementations tend to produce streaky cross-hatching artifacts, and nearly all known efficient algorithms are in practice limited to square kernels. We present for the first time a method that overcomes all of these limitations. Our method operates efficiently on arbitrary bit-depth data, arbitrary kernel sizes, and arbitrary convex kernel shapes, including circular shapes.
Authors:Ruichen Chen
Abstract:
Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. % To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. % Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1\% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference. Further, we measure latency to show that our method can attain over 45\% end-to-end % and over 92\% self-attention latency reduction on an H100 GPU at negligible overhead cost.
Code available online here: \href{https://github.com/cccrrrccc/Re-ttention}{https://github.com/cccrrrccc/Re-ttention}
Authors:Donghyeon Joo, Helya Hosseini, Ramyad Hadidi, Bahar Asgari
Abstract:
We demonstrate that unstructured sparsity significantly improves KV cache compression for LLMs, enabling sparsity levels up to 70% without compromising accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning strategies and find per-token magnitude-based pruning as highly effective for both Key and Value caches under unstructured sparsity, surpassing prior structured pruning schemes. The Key cache benefits from prominent outlier elements, while the Value cache surprisingly benefits from a simple magnitude-based pruning despite its uniform distribution. KV cache size is the major bottleneck in decode performance due to high memory overhead for large context lengths. To address this, we use a bitmap-based sparse format and a custom attention kernel capable of compressing and directly computing over compressed caches pruned to arbitrary sparsity patterns, significantly accelerating memory-bound operations in decode computations and thereby compensating for the overhead of runtime pruning and compression. Our custom attention kernel coupled with the bitmap-based format delivers substantial compression of KV cache upto 45% of dense inference and thereby enables longer context length and increased tokens/sec throughput of upto 2.23x compared to dense inference. Our pruning mechanism and sparse attention kernel is available at https://github.com/dhjoo98/mustafar.
Authors:Jirui Qi, Shan Chen, Zidi Xiong, Raquel Fernández, Danielle S. Bitterman, Arianna Bisazza
Abstract:
Recent Large Reasoning Models (LRMs) with thinking traces have shown strong performance on English reasoning tasks. However, their ability to think in other languages is less studied. This capability is as important as answer accuracy for real world applications because users may find the reasoning trace useful for oversight only when it is expressed in their own language. We comprehensively evaluate two leading families of LRMs on our XReasoning benchmark and find that even the most advanced models often revert to English or produce fragmented reasoning in other languages, revealing a substantial gap in multilingual reasoning. Prompt based interventions that force models to reason in the users language improve readability and oversight but reduce answer accuracy, exposing an important trade off. We further show that targeted post training on just 100 examples mitigates this mismatch, though some accuracy loss remains. Our results highlight the limited multilingual reasoning capabilities of current LRMs and outline directions for future work. Code and data are available at https://github.com/Betswish/mCoT-XReasoning.
Authors:Junbo Yin, Chao Zha, Wenjia He, Chencheng Xu, Xin Gao
Abstract:
Existing PLMs generate protein sequences based on a single-condition constraint from a specific modality, struggling to simultaneously satisfy multiple constraints across different modalities. In this work, we introduce CFP-Gen, a novel diffusion language model for Combinatorial Functional Protein GENeration. CFP-Gen facilitates the de novo protein design by integrating multimodal conditions with functional, sequence, and structural constraints. Specifically, an Annotation-Guided Feature Modulation (AGFM) module is introduced to dynamically adjust the protein feature distribution based on composable functional annotations, e.g., GO terms, IPR domains and EC numbers. Meanwhile, the Residue-Controlled Functional Encoding (RCFE) module captures residue-wise interaction to ensure more precise control. Additionally, off-the-shelf 3D structure encoders can be seamlessly integrated to impose geometric constraints. We demonstrate that CFP-Gen enables high-throughput generation of novel proteins with functionality comparable to natural proteins, while achieving a high success rate in designing multifunctional proteins. Code and data available at https://github.com/yinjunbo/cfpgen.
Authors:Iknoor Singh, Carolina Scarton, Kalina Bontcheva
Abstract:
The proliferation of online news and the increasing spread of misinformation necessitate robust methods for automatic data analysis. Narrative classification is emerging as a important task, since identifying what is being said online is critical for fact-checkers, policy markers and other professionals working on information studies. This paper presents our approach to SemEval 2025 Task 10 Subtask 2, which aims to classify news articles into a pre-defined two-level taxonomy of main narratives and sub-narratives across multiple languages.
We propose Hierarchical Three-Step Prompting (H3Prompt) for multilingual narrative classification. Our methodology follows a three-step Large Language Model (LLM) prompting strategy, where the model first categorises an article into one of two domains (Ukraine-Russia War or Climate Change), then identifies the most relevant main narratives, and finally assigns sub-narratives. Our approach secured the top position on the English test set among 28 competing teams worldwide. The code is available at https://github.com/GateNLP/H3Prompt.
Authors:Yupei Li, Shuaijie Shao, Manuel Milling, Björn W. Schuller
Abstract:
Depression is a growing concern gaining attention in both public discourse and AI research. While deep neural networks (DNNs) have been used for recognition, they still lack real-world effectiveness. Large language models (LLMs) show strong potential but require domain-specific fine-tuning and struggle with non-textual cues. Since depression is often expressed through vocal tone and behaviour rather than explicit text, relying on language alone is insufficient. Diagnostic accuracy also suffers without incorporating psychological expertise. To address these limitations, we present, to the best of our knowledge, the first application of LLMs to multimodal depression detection using the DAIC-WOZ dataset. We extract the audio features using the pre-trained model Wav2Vec, and mapped it to text-based LLMs for further processing. We also propose a novel strategy for incorporating psychological knowledge into LLMs to enhance diagnostic performance, specifically using a question and answer set to grant authorised knowledge to LLMs. Our approach yields a notable improvement in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) compared to a base score proposed by the related original paper. The codes are available at https://github.com/myxp-lyp/Depression-detection.git
Authors:Hidenobu Matsuki, Gwangbin Bae, Andrew J. Davison
Abstract:
We propose the first 4D tracking and mapping method that jointly performs camera localization and non-rigid surface reconstruction via differentiable rendering. Our approach captures 4D scenes from an online stream of color images with depth measurements or predictions by jointly optimizing scene geometry, appearance, dynamics, and camera ego-motion. Although natural environments exhibit complex non-rigid motions, 4D-SLAM remains relatively underexplored due to its inherent challenges; even with 2.5D signals, the problem is ill-posed because of the high dimensionality of the optimization space. To overcome these challenges, we first introduce a SLAM method based on Gaussian surface primitives that leverages depth signals more effectively than 3D Gaussians, thereby achieving accurate surface reconstruction. To further model non-rigid deformations, we employ a warp-field represented by a multi-layer perceptron (MLP) and introduce a novel camera pose estimation technique along with surface regularization terms that facilitate spatio-temporal reconstruction. In addition to these algorithmic challenges, a significant hurdle in 4D SLAM research is the lack of reliable ground truth and evaluation protocols, primarily due to the difficulty of 4D capture using commodity sensors. To address this, we present a novel open synthetic dataset of everyday objects with diverse motions, leveraging large-scale object models and animation modeling. In summary, we open up the modern 4D-SLAM research by introducing a novel method and evaluation protocols grounded in modern vision and rendering techniques.
Authors:Kostas Triaridis, Panagiotis Kaliosis, E-Ro Nguyen, Jingyi Xu, Hieu Le, Dimitris Samaras
Abstract:
Object counting has progressed from class-specific models, which count only known categories, to class-agnostic models that generalize to unseen categories. The next challenge is Referring Expression Counting (REC), where the goal is to count objects based on fine-grained attributes and contextual differences. Existing methods struggle with distinguishing visually similar objects that belong to the same category but correspond to different referring expressions. To address this, we propose C-REX, a novel contrastive learning framework, based on supervised contrastive learning, designed to enhance discriminative representation learning. Unlike prior works, C-REX operates entirely within the image space, avoiding the misalignment issues of image-text contrastive learning, thus providing a more stable contrastive signal. It also guarantees a significantly larger pool of negative samples, leading to improved robustness in the learned representations. Moreover, we showcase that our framework is versatile and generic enough to be applied to other similar tasks like class-agnostic counting. To support our approach, we analyze the key components of sota detection-based models and identify that detecting object centroids instead of bounding boxes is the key common factor behind their success in counting tasks. We use this insight to design a simple yet effective detection-based baseline to build upon. Our experiments show that C-REX achieves state-of-the-art results in REC, outperforming previous methods by more than 22\% in MAE and more than 10\% in RMSE, while also demonstrating strong performance in class-agnostic counting. Code is available at https://github.com/cvlab-stonybrook/c-rex.
Authors:Zhangyi Hu, Jiemin Wu, Hua Xu, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue
Abstract:
Irregular Multivariate Time Series (IMTS) forecasting is challenging due to the unaligned nature of multi-channel signals and the prevalence of extensive missing data. Existing methods struggle to capture reliable temporal patterns from such data due to significant missing values. While pre-trained foundation models show potential for addressing these challenges, they are typically designed for Regularly Sampled Time Series (RTS). Motivated by the visual Mask AutoEncoder's (MAE) powerful capability for modeling sparse multi-channel information and its success in RTS forecasting, we propose VIMTS, a framework adapting Visual MAE for IMTS forecasting. To mitigate the effect of missing values, VIMTS first processes IMTS along the timeline into feature patches at equal intervals. These patches are then complemented using learned cross-channel dependencies. Then it leverages visual MAE's capability in handling sparse multichannel data for patch reconstruction, followed by a coarse-to-fine technique to generate precise predictions from focused contexts. In addition, we integrate self-supervised learning for improved IMTS modeling by adapting the visual MAE to IMTS data. Extensive experiments demonstrate VIMTS's superior performance and few-shot capability, advancing the application of visual foundation models in more general time series tasks. Our code is available at https://github.com/WHU-HZY/VIMTS.
Authors:Andrew Zhu, Evan Osgood, Chris Callison-Burch
Abstract:
Much work has been done on conversational LLM agents which directly assist human users with tasks. We present an alternative paradigm for interacting with LLM agents, which we call "overhearing agents". These overhearing agents do not actively participate in conversation -- instead, they "listen in" on human-to-human conversations and perform background tasks or provide suggestions to assist the user. In this work, we explore the overhearing agents paradigm through the lens of Dungeons & Dragons gameplay. We present an in-depth study using large multimodal audio-language models as overhearing agents to assist a Dungeon Master. We perform a human evaluation to examine the helpfulness of such agents and find that some large audio-language models have the emergent ability to perform overhearing agent tasks using implicit audio cues. Finally, we release Python libraries and our project code to support further research into the overhearing agents paradigm at https://github.com/zhudotexe/overhearing_agents.
Authors:Siddharth Ancha, Sunshine Jiang, Travis Manderson, Laura Brandt, Yilun Du, Philip R. Osteen, Nicholas Roy
Abstract:
In order to navigate safely and reliably in off-road and unstructured environments, robots must detect anomalies that are out-of-distribution (OOD) with respect to the training data. We present an analysis-by-synthesis approach for pixel-wise anomaly detection without making any assumptions about the nature of OOD data. Given an input image, we use a generative diffusion model to synthesize an edited image that removes anomalies while keeping the remaining image unchanged. Then, we formulate anomaly detection as analyzing which image segments were modified by the diffusion model. We propose a novel inference approach for guided diffusion by analyzing the ideal guidance gradient and deriving a principled approximation that bootstraps the diffusion model to predict guidance gradients. Our editing technique is purely test-time that can be integrated into existing workflows without the need for retraining or fine-tuning. Finally, we use a combination of vision-language foundation models to compare pixels in a learned feature space and detect semantically meaningful edits, enabling accurate anomaly detection for off-road navigation. Project website: https://siddancha.github.io/anomalies-by-diffusion-synthesis/
Authors:Mert Onur Cakiroglu, Idil Bilge Altun, Mehmet Dalkilic, Elham Buxton, Hasan Kurban
Abstract:
Time series forecasting remains a challenging task for foundation models due to temporal heterogeneity, high dimensionality, and the lack of inherent symbolic structure. In this work, we propose DRAGON (Discrete Representation and Augmented Graph encoding Over de BruijN Graphs), a novel encoder that introduces Multivariate de Bruijn Graphs (MdBGs) to bridge the gap between symbolic representations and neural modeling. DRAGON discretizes continuous input sequences and maps them onto a fixed graph structure, enabling dynamic context recovery via graph-based attention. Integrated as an auxiliary module within a dual-branch architecture, DRAGON augments conventional CNN-based encoders with symbolic, structure-aware representations. All code developed for this study is available at: https://github.com/KurbanIntelligenceLab/MultdBG-Time-Series-Library
Authors:Marco Colussi, Dragan Ahmetovic, Sergio Mascetti
Abstract:
This paper presents MIAS-SAM, a novel approach for the segmentation of anomalous regions in medical images. MIAS-SAM uses a patch-based memory bank to store relevant image features, which are extracted from normal data using the SAM encoder. At inference time, the embedding patches extracted from the SAM encoder are compared with those in the memory bank to obtain the anomaly map. Finally, MIAS-SAM computes the center of gravity of the anomaly map to prompt the SAM decoder, obtaining an accurate segmentation from the previously extracted features. Differently from prior works, MIAS-SAM does not require to define a threshold value to obtain the segmentation from the anomaly map. Experimental results conducted on three publicly available datasets, each with a different imaging modality (Brain MRI, Liver CT, and Retina OCT) show accurate anomaly segmentation capabilities measured using DICE score. The code is available at: https://github.com/warpcut/MIAS-SAM
Authors:Tian Qin, Core Francisco Park, Mujin Kwun, Aaron Walsman, Eran Malach, Nikhil Anand, Hidenori Tanaka, David Alvarez-Melis
Abstract:
Mathematical reasoning tasks have become prominent benchmarks for assessing the reasoning capabilities of LLMs, especially with reinforcement learning (RL) methods such as GRPO showing significant performance gains. However, accuracy metrics alone do not support fine-grained assessment of capabilities and fail to reveal which problem-solving skills have been internalized. To better understand these capabilities, we propose to decompose problem solving into fundamental capabilities: Plan (mapping questions to sequences of steps), Execute (correctly performing solution steps), and Verify (identifying the correctness of a solution). Empirically, we find that GRPO mainly enhances the execution skill-improving execution robustness on problems the model already knows how to solve-a phenomenon we call temperature distillation. More importantly, we show that RL-trained models struggle with fundamentally new problems, hitting a 'coverage wall' due to insufficient planning skills. To explore RL's impact more deeply, we construct a minimal, synthetic solution-tree navigation task as an analogy for mathematical problem-solving. This controlled setup replicates our empirical findings, confirming RL primarily boosts execution robustness. Importantly, in this setting, we identify conditions under which RL can potentially overcome the coverage wall through improved exploration and generalization to new solution paths. Our findings provide insights into the role of RL in enhancing LLM reasoning, expose key limitations, and suggest a path toward overcoming these barriers. Code is available at https://github.com/cfpark00/RL-Wall.
Authors:Rafik Mankour, Yassine Chafai, Hamada Saleh, Ghassen Ben Hassine, Thibaud Barreau, Peter Tankov
Abstract:
Climate Finance Bench introduces an open benchmark that targets question-answering over corporate climate disclosures using Large Language Models. We curate 33 recent sustainability reports in English drawn from companies across all 11 GICS sectors and annotate 330 expert-validated question-answer pairs that span pure extraction, numerical reasoning, and logical reasoning. Building on this dataset, we propose a comparison of RAG (retrieval-augmented generation) approaches. We show that the retriever's ability to locate passages that actually contain the answer is the chief performance bottleneck. We further argue for transparent carbon reporting in AI-for-climate applications, highlighting advantages of techniques such as Weight Quantization.
Authors:Tamas Spisak, Karl Friston
Abstract:
Attractor dynamics are a hallmark of many complex systems, including the brain. Understanding how such self-organizing dynamics emerge from first principles is crucial for advancing our understanding of neuronal computations and the design of artificial intelligence systems. Here we formalize how attractor networks emerge from the free energy principle applied to a universal partitioning of random dynamical systems. Our approach obviates the need for explicitly imposed learning and inference rules and identifies emergent, but efficient and biologically plausible inference and learning dynamics for such self-organizing systems. These result in a collective, multi-level Bayesian active inference process. Attractors on the free energy landscape encode prior beliefs; inference integrates sensory data into posterior beliefs; and learning fine-tunes couplings to minimize long-term surprise. Analytically and via simulations, we establish that the proposed networks favor approximately orthogonalized attractor representations, a consequence of simultaneously optimizing predictive accuracy and model complexity. These attractors efficiently span the input subspace, enhancing generalization and the mutual information between hidden causes and observable effects. Furthermore, while random data presentation leads to symmetric and sparse couplings, sequential data fosters asymmetric couplings and non-equilibrium steady-state dynamics, offering a natural extension to conventional Boltzmann Machines. Our findings offer a unifying theory of self-organizing attractor networks, providing novel insights for AI and neuroscience.
Authors:Yannick Stade, Wan-Hsuan Lin, Jason Cong, Robert Wille
Abstract:
Quantum computing promises to solve previously intractable problems, with neutral atoms emerging as a promising technology. Zoned neutral atom architectures allow for immense parallelism and higher coherence times by shielding idling atoms from interference with laser beams. However, in addition to hardware, successful quantum computation requires sophisticated software support, particularly compilers that optimize quantum algorithms for hardware execution. In the compilation flow for zoned neutral atom architectures, the effective interplay of the placement and routing stages decides the overhead caused by rearranging the atoms during the quantum computation. Sub-optimal placements can lead to unnecessary serialization of the rearrangements in the subsequent routing stage. Despite this, all existing compilers treat placement and routing independently thus far - focusing solely on minimizing travel distances. This work introduces the first routing-aware placement method to address this shortcoming. It groups compatible movements into parallel rearrangement steps to minimize both rearrangement steps and travel distances. The implementation utilizing the A* algorithm reduces the rearrangement time by 17% on average and by 49% in the best case compared to the state-of-the-art. The complete code is publicly available in open-source as part of the Munich Quantum Toolkit (MQT) at https://github.com/munich-quantum-toolkit/qmap.
Authors:Qi Cai, Jingwen Chen, Yang Chen, Yehao Li, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Yiheng Zhang, Fengbin Gao, Peihan Xu, Yimeng Wang, Kai Yu, Wenxuan Chen, Ziwei Feng, Zijian Gong, Jianzhuang Pan, Yi Peng, Rui Tian, Siyu Wang, Bo Zhao, Ting Yao, Tao Mei
Abstract:
Recent advancements in image generative foundation models have prioritized quality improvements but often at the cost of increased computational complexity and inference latency. To address this critical trade-off, we introduce HiDream-I1, a new open-source image generative foundation model with 17B parameters that achieves state-of-the-art image generation quality within seconds. HiDream-I1 is constructed with a new sparse Diffusion Transformer (DiT) structure. Specifically, it starts with a dual-stream decoupled design of sparse DiT with dynamic Mixture-of-Experts (MoE) architecture, in which two separate encoders are first involved to independently process image and text tokens. Then, a single-stream sparse DiT structure with dynamic MoE architecture is adopted to trigger multi-model interaction for image generation in a cost-efficient manner. To support flexiable accessibility with varied model capabilities, we provide HiDream-I1 in three variants: HiDream-I1-Full, HiDream-I1-Dev, and HiDream-I1-Fast.
Furthermore, we go beyond the typical text-to-image generation and remould HiDream-I1 with additional image conditions to perform precise, instruction-based editing on given images, yielding a new instruction-based image editing model namely HiDream-E1. Ultimately, by integrating text-to-image generation and instruction-based image editing, HiDream-I1 evolves to form a comprehensive image agent (HiDream-A1) capable of fully interactive image creation and refinement. To accelerate multi-modal AIGC research, we have open-sourced all the codes and model weights of HiDream-I1-Full, HiDream-I1-Dev, HiDream-I1-Fast, HiDream-E1 through our project websites: https://github.com/HiDream-ai/HiDream-I1 and https://github.com/HiDream-ai/HiDream-E1. All features can be directly experienced via https://vivago.ai/studio.
Authors:Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, Elisa Ficarra, Emanuele RodolÃ, Simone Calderara, Angelo Porrello
Abstract:
Foundation models serve as the backbone for numerous specialized models developed through fine-tuning. However, when the underlying pretrained model is updated or retrained (e.g., on larger and more curated datasets), the fine-tuned model becomes obsolete, losing its utility and requiring retraining. This raises the question: is it possible to transfer fine-tuning to a new release of the model? In this work, we investigate how to transfer fine-tuning to a new checkpoint without having to re-train, in a data-free manner. To do so, we draw principles from model re-basin and provide a recipe based on weight permutations to re-base the modifications made to the original base model, often called task vector. In particular, our approach tailors model re-basin for Transformer models, taking into account the challenges of residual connections and multi-head attention layers. Specifically, we propose a two-level method rooted in spectral theory, initially permuting the attention heads and subsequently adjusting parameters within select pairs of heads. Through extensive experiments on visual and textual tasks, we achieve the seamless transfer of fine-tuned knowledge to new pre-trained backbones without relying on a single training step or datapoint. Code is available at https://github.com/aimagelab/TransFusion.
Authors:Pawan Neupane, Jian Liu, Jianlin Cheng
Abstract:
Predicting protein complex structures is essential for protein function analysis, protein design, and drug discovery. While AI methods like AlphaFold can predict accurate structural models for many protein complexes, reliably estimating the quality of these predicted models (estimation of model accuracy, or EMA) for model ranking and selection remains a major challenge. A key barrier to developing effective machine learning-based EMA methods is the lack of large, diverse, and well-annotated datasets for training and evaluation. To address this gap, we introduce PSBench, a benchmark suite comprising four large-scale, labeled datasets generated during the 15th and 16th community-wide Critical Assessment of Protein Structure Prediction (CASP15 and CASP16). PSBench includes over one million structural models covering a wide range of protein sequence lengths, complex stoichiometries, functional classes, and modeling difficulties. Each model is annotated with multiple complementary quality scores at the global, local, and interface levels. PSBench also provides multiple evaluation metrics and baseline EMA methods to facilitate rigorous comparisons. To demonstrate PSBench's utility, we trained and evaluated GATE, a graph transformer-based EMA method, on the CASP15 data. GATE was blindly tested in CASP16 (2024), where it ranked among the top-performing EMA methods. These results highlight PSBench as a valuable resource for advancing EMA research in protein complex modeling. PSBench is publicly available at: https://github.com/BioinfoMachineLearning/PSBench.
Authors:Kaiyu Yue, Vasu Singla, Menglin Jia, John Kirchenbauer, Rifaa Qadri, Zikui Cai, Abhinav Bhatele, Furong Huang, Tom Goldstein
Abstract:
Vision language models (VLMs) typically pair a modestly sized vision encoder with a large language model (LLM), e.g., Llama-70B, making the decoder the primary computational burden during training. To reduce costs, a potential promising strategy is to first train the vision encoder using a small language model before transferring it to the large one. We construct small "surrogate models" that share the same embedding space and representation language as the large target LLM by directly inheriting its shallow layers. Vision encoders trained on the surrogate can then be directly transferred to the larger model, a process we call zero-shot grafting -- when plugged directly into the full-size target LLM, the grafted pair surpasses the encoder-surrogate pair and, on some benchmarks, even performs on par with full decoder training with the target LLM. Furthermore, our surrogate training approach reduces overall VLM training costs by ~45% when using Llama-70B as the decoder. The code is at https://github.com/facebookresearch/zero.
Authors:Aimon Rahman, Kartik Narayan, Vishal M. Patel
Abstract:
Stylized abstraction synthesizes visually exaggerated yet semantically faithful representations of subjects, balancing recognizability with perceptual distortion. Unlike image-to-image translation, which prioritizes structural fidelity, stylized abstraction demands selective retention of identity cues while embracing stylistic divergence, especially challenging for out-of-distribution individuals. We propose a training-free framework that generates stylized abstractions from a single image using inference-time scaling in vision-language models (VLLMs) to extract identity-relevant features, and a novel cross-domain rectified flow inversion strategy that reconstructs structure based on style-dependent priors. Our method adapts structural restoration dynamically through style-aware temporal scheduling, enabling high-fidelity reconstructions that honor both subject and style. It supports multi-round abstraction-aware generation without fine-tuning. To evaluate this task, we introduce StyleBench, a GPT-based human-aligned metric suited for abstract styles where pixel-level similarity fails. Experiments across diverse abstraction (e.g., LEGO, knitted dolls, South Park) show strong generalization to unseen identities and styles in a fully open-source setup.
Authors:Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie, Katia Sycara, Haitao Mi, Dong Yu
Abstract:
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
Authors:Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, Rui Yan
Abstract:
Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.
Authors:Guoxuan Chen, Lianghao Xia, Chao Huang
Abstract:
Modern recommender systems powered by Graph Neural Networks (GNNs) excel at modeling complex user-item interactions, yet increasingly face scenarios requiring selective forgetting of training data. Beyond user requests to remove specific interactions due to privacy concerns or preference changes, regulatory frameworks mandate recommender systems' ability to eliminate the influence of certain user data from models. This recommendation unlearning challenge presents unique difficulties as removing connections within interaction graphs creates ripple effects throughout the model, potentially impacting recommendations for numerous users. Traditional approaches suffer from significant drawbacks: fragmentation methods damage graph structure and diminish performance, while influence function techniques make assumptions that may not hold in complex GNNs, particularly with self-supervised or random architectures. To address these limitations, we propose a novel model-agnostic pre-training paradigm UnlearnRec that prepares systems for efficient unlearning operations. Our Influence Encoder takes unlearning requests together with existing model parameters and directly produces updated parameters of unlearned model with little fine-tuning, avoiding complete retraining while preserving model performance characteristics. Extensive evaluation on public benchmarks demonstrates that our method delivers exceptional unlearning effectiveness while providing more than 10x speedup compared to retraining approaches. We release our method implementation at: https://github.com/HKUDS/UnlearnRec.
Authors:Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Abstract:
Addressing intricate real-world problems necessitates in-depth information seeking and multi-step reasoning. Recent progress in agentic systems, exemplified by Deep Research, underscores the potential for autonomous multi-step research. In this work, we present a cohesive paradigm for building end-to-end agentic information seeking agents from a data-centric and training-stage perspective. Our approach consists of four key stages: (1) browsing data construction, (2) trajectories sampling, (3) supervised fine-tuning for effective cold start, and (4) reinforcement learning for enhanced generalisation. We instantiate this framework in a web agent based on the ReAct, WebDancer. Empirical evaluations on the challenging information seeking benchmarks, GAIA and WebWalkerQA, demonstrate the strong performance of WebDancer, achieving considerable results and highlighting the efficacy of our training paradigm. Further analysis of agent training provides valuable insights and actionable, systematic pathways for developing more capable agentic models. The codes and demo will be released in https://github.com/Alibaba-NLP/WebAgent.
Authors:Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen, Wenhan Luo
Abstract:
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
Authors:Hanjia Lyu, Jiebo Luo, Jian Kang, Allison Koenecke
Abstract:
While the capabilities of Large Language Models (LLMs) have been studied in both Simplified and Traditional Chinese, it is yet unclear whether LLMs exhibit differential performance when prompted in these two variants of written Chinese. This understanding is critical, as disparities in the quality of LLM responses can perpetuate representational harms by ignoring the different cultural contexts underlying Simplified versus Traditional Chinese, and can exacerbate downstream harms in LLM-facilitated decision-making in domains such as education or hiring. To investigate potential LLM performance disparities, we design two benchmark tasks that reflect real-world scenarios: regional term choice (prompting the LLM to name a described item which is referred to differently in Mainland China and Taiwan), and regional name choice (prompting the LLM to choose who to hire from a list of names in both Simplified and Traditional Chinese). For both tasks, we audit the performance of 11 leading commercial LLM services and open-sourced models -- spanning those primarily trained on English, Simplified Chinese, or Traditional Chinese. Our analyses indicate that biases in LLM responses are dependent on both the task and prompting language: while most LLMs disproportionately favored Simplified Chinese responses in the regional term choice task, they surprisingly favored Traditional Chinese names in the regional name choice task. We find that these disparities may arise from differences in training data representation, written character preferences, and tokenization of Simplified and Traditional Chinese. These findings highlight the need for further analysis of LLM biases; as such, we provide an open-sourced benchmark dataset to foster reproducible evaluations of future LLM behavior across Chinese language variants (https://github.com/brucelyu17/SC-TC-Bench).
Authors:Jixin Zhao, Shangchen Zhou, Zhouxia Wang, Peiqing Yang, Chen Change Loy
Abstract:
Object removal requires eliminating not only the target object but also its effects, such as shadows and reflections. However, diffusion-based inpainting methods often produce artifacts, hallucinate content, alter background, and struggle to remove object effects accurately. To address this challenge, we introduce a new dataset for OBject-Effect Removal, named OBER, which provides paired images with and without object effects, along with precise masks for both objects and their associated visual artifacts. The dataset comprises high-quality captured and simulated data, covering diverse object categories and complex multi-object scenes. Building on OBER, we propose a novel framework, ObjectClear, which incorporates an object-effect attention mechanism to guide the model toward the foreground removal regions by learning attention masks, effectively decoupling foreground removal from background reconstruction. Furthermore, the predicted attention map enables an attention-guided fusion strategy during inference, greatly preserving background details. Extensive experiments demonstrate that ObjectClear outperforms existing methods, achieving improved object-effect removal quality and background fidelity, especially in complex scenarios.
Authors:Yu Zhang, Yuqi Xie, Huihan Liu, Rutav Shah, Michael Wan, Linxi Fan, Yuke Zhu
Abstract:
Imitation learning advances robot capabilities by enabling the acquisition of diverse behaviors from human demonstrations. However, large-scale datasets used for policy training often introduce substantial variability in quality, which can negatively impact performance. As a result, automatically curating datasets by filtering low-quality samples to improve quality becomes essential. Existing robotic curation approaches rely on costly manual annotations and perform curation at a coarse granularity, such as the dataset or trajectory level, failing to account for the quality of individual state-action pairs. To address this, we introduce SCIZOR, a self-supervised data curation framework that filters out low-quality state-action pairs to improve the performance of imitation learning policies. SCIZOR targets two complementary sources of low-quality data: suboptimal data, which hinders learning with undesirable actions, and redundant data, which dilutes training with repetitive patterns. SCIZOR leverages a self-supervised task progress predictor for suboptimal data to remove samples lacking task progression, and a deduplication module operating on joint state-action representation for samples with redundant patterns. Empirically, we show that SCIZOR enables imitation learning policies to achieve higher performance with less data, yielding an average improvement of 15.4% across multiple benchmarks. More information is available at: https://ut-austin-rpl.github.io/SCIZOR/
Authors:Yuchi Wang, Yishuo Cai, Shuhuai Ren, Sihan Yang, Linli Yao, Yuanxin Liu, Yuanxing Zhang, Pengfei Wan, Xu Sun
Abstract:
Image recaptioning is widely used to generate training datasets with enhanced quality for various multimodal tasks. Existing recaptioning methods typically rely on powerful multimodal large language models (MLLMs) to enhance textual descriptions, but often suffer from inaccuracies due to hallucinations and incompleteness caused by missing fine-grained details. To address these limitations, we propose RICO, a novel framework that refines captions through visual reconstruction. Specifically, we leverage a text-to-image model to reconstruct a caption into a reference image, and prompt an MLLM to identify discrepancies between the original and reconstructed images to refine the caption. This process is performed iteratively, further progressively promoting the generation of more faithful and comprehensive descriptions. To mitigate the additional computational cost induced by the iterative process, we introduce RICO-Flash, which learns to generate captions like RICO using DPO. Extensive experiments demonstrate that our approach significantly improves caption accuracy and completeness, outperforms most baselines by approximately 10% on both CapsBench and CompreCap. Code released at https://github.com/wangyuchi369/RICO.
Authors:Kartik Kuckreja, Parul Gupta, Injy Hamed, Thamar Solorio, Muhammad Haris Khan, Abhinav Dhall
Abstract:
Deepfake generation methods are evolving fast, making fake media harder to detect and raising serious societal concerns. Most deepfake detection and dataset creation research focuses on monolingual content, often overlooking the challenges of multilingual and code-switched speech, where multiple languages are mixed within the same discourse. Code-switching, especially between Arabic and English, is common in the Arab world and is widely used in digital communication. This linguistic mixing poses extra challenges for deepfake detection, as it can confuse models trained mostly on monolingual data. To address this, we introduce \textbf{ArEnAV}, the first large-scale Arabic-English audio-visual deepfake dataset featuring intra-utterance code-switching, dialectal variation, and monolingual Arabic content. It \textbf{contains 387k videos and over 765 hours of real and fake videos}. Our dataset is generated using a novel pipeline integrating four Text-To-Speech and two lip-sync models, enabling comprehensive analysis of multilingual multimodal deepfake detection. We benchmark our dataset against existing monolingual and multilingual datasets, state-of-the-art deepfake detection models, and a human evaluation, highlighting its potential to advance deepfake research. The dataset can be accessed \href{https://huggingface.co/datasets/kartik060702/ArEnAV-Full}{here}.
Authors:Dmitrii Sorokin, Maksim Nakhodnov, Andrey Kuznetsov, Aibek Alanov
Abstract:
Recent advances in diffusion models have led to impressive image generation capabilities, but aligning these models with human preferences remains challenging. Reward-based fine-tuning using models trained on human feedback improves alignment but often harms diversity, producing less varied outputs. In this work, we address this trade-off with two contributions. First, we introduce \textit{combined generation}, a novel sampling strategy that applies a reward-tuned diffusion model only in the later stages of the generation process, while preserving the base model for earlier steps. This approach mitigates early-stage overfitting and helps retain global structure and diversity. Second, we propose \textit{ImageReFL}, a fine-tuning method that improves image diversity with minimal loss in quality by training on real images and incorporating multiple regularizers, including diffusion and ReFL losses. Our approach outperforms conventional reward tuning methods on standard quality and diversity metrics. A user study further confirms that our method better balances human preference alignment and visual diversity. The source code can be found at https://github.com/ControlGenAI/ImageReFL .
Authors:Ethan Chern, Zhulin Hu, Steffi Chern, Siqi Kou, Jiadi Su, Yan Ma, Zhijie Deng, Pengfei Liu
Abstract:
We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.
Authors:Wenjie Sun, Bingzhe Wu, Zhile Yang, Chengke Wu
Abstract:
Sparse Autoencoders (SAEs) have emerged as a predominant tool in mechanistic interpretability, aiming to identify interpretable monosemantic features. However, how does sparse encoding organize the representations of activation vector from language models? What is the relationship between this organizational paradigm and feature disentanglement as well as reconstruction performance? To address these questions, we propose the SAEMA, which validates the stratified structure of the representation by observing the variability of the rank of the symmetric semipositive definite (SSPD) matrix corresponding to the modal tensor unfolded along the latent tensor with the level of noise added to the residual stream. To systematically investigate how sparse encoding alters representational structures, we define local and global representations, demonstrating that they amplify inter-feature distinctions by merging similar semantic features and introducing additional dimensionality. Furthermore, we intervene the global representation from an optimization perspective, proving a significant causal relationship between their separability and the reconstruction performance. This study explains the principles of sparsity from the perspective of representational geometry and demonstrates the impact of changes in representational structure on reconstruction performance. Particularly emphasizes the necessity of understanding representations and incorporating representational constraints, providing empirical references for developing new interpretable tools and improving SAEs. The code is available at \hyperlink{https://github.com/wenjie1835/SAERepGeo}{https://github.com/wenjie1835/SAERepGeo}.
Authors:Abhra Chaudhuri, Anjan Dutta, Tu Bui, Serban Georgescu
Abstract:
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
Authors:Zobia Batool, Huseyin Ozkan, Erchan Aptoula
Abstract:
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.
Authors:Qiucheng Yu, Yuan Xie, Xin Tan
Abstract:
3D occupancy prediction has attracted much attention in the field of autonomous driving due to its powerful geometric perception and object recognition capabilities. However, existing methods have not explored the most essential distribution patterns of voxels, resulting in unsatisfactory results. This paper first explores the inter-class distribution and geometric distribution of voxels, thereby solving the long-tail problem caused by the inter-class distribution and the poor performance caused by the geometric distribution. Specifically, this paper proposes SHTOcc (Sparse Head-Tail Occupancy), which uses sparse head-tail voxel construction to accurately identify and balance key voxels in the head and tail classes, while using decoupled learning to reduce the model's bias towards the dominant (head) category and enhance the focus on the tail class. Experiments show that significant improvements have been made on multiple baselines: SHTOcc reduces GPU memory usage by 42.2%, increases inference speed by 58.6%, and improves accuracy by about 7%, verifying its effectiveness and efficiency. The code is available at https://github.com/ge95net/SHTOcc
Authors:Seun-An Choe, Keon-Hee Park, Jinwoo Choi, Gyeong-Moon Park
Abstract:
Unsupervised domain adaptation for semantic segmentation (UDA-SS) aims to transfer knowledge from labeled source data to unlabeled target data. However, traditional UDA-SS methods assume that category settings between source and target domains are known, which is unrealistic in real-world scenarios. This leads to performance degradation if private classes exist. To address this limitation, we propose Universal Domain Adaptation for Semantic Segmentation (UniDA-SS), achieving robust adaptation even without prior knowledge of category settings. We define the problem in the UniDA-SS scenario as low confidence scores of common classes in the target domain, which leads to confusion with private classes. To solve this problem, we propose UniMAP: UniDA-SS with Image Matching and Prototype-based Distinction, a novel framework composed of two key components. First, Domain-Specific Prototype-based Distinction (DSPD) divides each class into two domain-specific prototypes, enabling finer separation of domain-specific features and enhancing the identification of common classes across domains. Second, Target-based Image Matching (TIM) selects a source image containing the most common-class pixels based on the target pseudo-label and pairs it in a batch to promote effective learning of common classes. We also introduce a new UniDA-SS benchmark and demonstrate through various experiments that UniMAP significantly outperforms baselines. The code is available at https://github.com/KU-VGI/UniMAP.
Authors:Lai Wei, Yuting Li, Chen Wang, Yue Wang, Linghe Kong, Weiran Huang, Lichao Sun
Abstract:
Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %$\rightarrow$72.9 % on MathVista, 62.9 %$\rightarrow$68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
Authors:Mattie Fellows, Clarisse Wibault, Uljad Berdica, Johannes Forkel, Michael A. Osborne, Jakob N. Foerster
Abstract:
Sample efficiency remains a major obstacle for real world adoption of reinforcement learning (RL): success has been limited to settings where simulators provide access to essentially unlimited environment interactions, which in reality are typically costly or dangerous to obtain. Offline RL in principle offers a solution by exploiting offline data to learn a near-optimal policy before deployment. In practice, however, current offline RL methods rely on extensive online interactions for hyperparameter tuning, and have no reliable bound on their initial online performance. To address these two issues, we introduce two algorithms. Firstly, SOReL: an algorithm for safe offline reinforcement learning. Using only offline data, our Bayesian approach infers a posterior over environment dynamics to obtain a reliable estimate of the online performance via the posterior predictive uncertainty. Crucially, all hyperparameters are also tuned fully offline. Secondly, we introduce TOReL: a tuning for offline reinforcement learning algorithm that extends our information rate based offline hyperparameter tuning methods to general offline RL approaches. Our empirical evaluation confirms SOReL's ability to accurately estimate regret in the Bayesian setting whilst TOReL's offline hyperparameter tuning achieves competitive performance with the best online hyperparameter tuning methods using only offline data. Thus, SOReL and TOReL make a significant step towards safe and reliable offline RL, unlocking the potential for RL in the real world. Our implementations are publicly available: https://github.com/CWibault/sorel\_torel.
Authors:Van-Tin Luu, Yon-Lin Cai, Vu-Hoang Tran, Wei-Chen Chiu, Yi-Ting Chen, Ching-Chun Huang
Abstract:
This paper presents a groundbreaking approach - the first online automatic geometric calibration method for radar and camera systems. Given the significant data sparsity and measurement uncertainty in radar height data, achieving automatic calibration during system operation has long been a challenge. To address the sparsity issue, we propose a Dual-Perspective representation that gathers features from both frontal and bird's-eye views. The frontal view contains rich but sensitive height information, whereas the bird's-eye view provides robust features against height uncertainty. We thereby propose a novel Selective Fusion Mechanism to identify and fuse reliable features from both perspectives, reducing the effect of height uncertainty. Moreover, for each view, we incorporate a Multi-Modal Cross-Attention Mechanism to explicitly find location correspondences through cross-modal matching. During the training phase, we also design a Noise-Resistant Matcher to provide better supervision and enhance the robustness of the matching mechanism against sparsity and height uncertainty. Our experimental results, tested on the nuScenes dataset, demonstrate that our method significantly outperforms previous radar-camera auto-calibration methods, as well as existing state-of-the-art LiDAR-camera calibration techniques, establishing a new benchmark for future research. The code is available at https://github.com/nycu-acm/RC-AutoCalib.
Authors:Václav VoráÄek, Francesco Orabona
Abstract:
The construction of confidence intervals for the mean of a bounded random variable is a classical problem in statistics with numerous applications in machine learning and virtually all scientific fields. In particular, obtaining the tightest possible confidence intervals is vital every time the sampling of the random variables is expensive. The current state-of-the-art method to construct confidence intervals is by using betting algorithms. This is a very successful approach for deriving optimal confidence sequences, even matching the rate of law of iterated logarithms. However, in the fixed horizon setting, these approaches are either sub-optimal or based on heuristic solutions with strong empirical performance but without a finite-time guarantee. Hence, no betting-based algorithm guaranteeing the optimal $\mathcal{O}(\sqrt{\frac{Ï^2\log\frac1δ}{n}})$ width of the confidence intervals are known. This work bridges this gap. We propose a betting-based algorithm to compute confidence intervals that empirically outperforms the competitors. Our betting strategy uses the optimal strategy in every step (in a certain sense), whereas the standard betting methods choose a constant strategy in advance. Leveraging this fact results in strict improvements even for classical concentration inequalities, such as the ones of Hoeffding or Bernstein. Moreover, we also prove that the width of our confidence intervals is optimal up to an $1+o(1)$ factor diminishing with $n$. The code is available on~https://github.com/vvoracek/STaR-bets-confidence-interval.
Authors:Anthony Chen, Wenzhao Zheng, Yida Wang, Xueyang Zhang, Kun Zhan, Peng Jia, Kurt Keutzer, Shanghang Zhang
Abstract:
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Authors:Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, Yinpeng Dong
Abstract:
Recent advances in Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in solving complex tasks such as mathematics and coding. However, these models frequently exhibit a phenomenon known as overthinking during inference, characterized by excessive validation loops and redundant deliberation, leading to substantial computational overheads. In this paper, we aim to mitigate overthinking by investigating the underlying mechanisms from the perspective of mechanistic interpretability. We first showcase that the tendency of overthinking can be effectively captured by a single direction in the model's activation space and the issue can be eased by intervening the activations along this direction. However, this efficacy soon reaches a plateau and even deteriorates as the intervention strength increases. We therefore systematically explore the activation space and find that the overthinking phenomenon is actually tied to a low-dimensional manifold, which indicates that the limited effect stems from the noises introduced by the high-dimensional steering direction. Based on this insight, we propose Manifold Steering, a novel approach that elegantly projects the steering direction onto the low-dimensional activation manifold given the theoretical approximation of the interference noise. Extensive experiments on DeepSeek-R1 distilled models validate that our method reduces output tokens by up to 71% while maintaining and even improving the accuracy on several mathematical benchmarks. Our method also exhibits robust cross-domain transferability, delivering consistent token reduction performance in code generation and knowledge-based QA tasks. Code is available at: https://github.com/Aries-iai/Manifold_Steering.
Authors:Jiadong Pan, Zhiyuan Ma, Kaiyan Zhang, Ning Ding, Bowen Zhou
Abstract:
Diffusion models have recently demonstrated exceptional performance in image generation task. However, existing image generation methods still significantly suffer from the dilemma of image reasoning, especially in logic-centered image generation tasks. Inspired by the success of Chain of Thought (CoT) and Reinforcement Learning (RL) in LLMs, we propose SRRL, a self-reflective RL algorithm for diffusion models to achieve reasoning generation of logical images by performing reflection and iteration across generation trajectories. The intermediate samples in the denoising process carry noise, making accurate reward evaluation difficult. To address this challenge, SRRL treats the entire denoising trajectory as a CoT step with multi-round reflective denoising process and introduces condition guided forward process, which allows for reflective iteration between CoT steps. Through SRRL-based iterative diffusion training, we introduce image reasoning through CoT into generation tasks adhering to physical laws and unconventional physical phenomena for the first time. Notably, experimental results of case study exhibit that the superior performance of our SRRL algorithm even compared with GPT-4o. The project page is https://jadenpan0.github.io/srrl.github.io/.
Authors:Enfang Cui, Yujun Cheng, Rui She, Dan Liu, Zhiyuan Liang, Minxin Guo, Tianzheng Li, Qian Wei, Wenjuan Xing, Zhijie Zhong
Abstract:
The rapid evolution of Large Language Model (LLM) agents has highlighted critical challenges in cross-vendor service discovery, interoperability, and communication. Existing protocols like model context protocol and agent-to-agent protocol have made significant strides in standardizing interoperability between agents and tools, as well as communication among multi-agents. However, there remains a lack of standardized protocols and solutions for service discovery across different agent and tool vendors. In this paper, we propose AgentDNS, a root domain naming and service discovery system designed to enable LLM agents to autonomously discover, resolve, and securely invoke third-party agent and tool services across organizational and technological boundaries. Inspired by the principles of the traditional DNS, AgentDNS introduces a structured mechanism for service registration, semantic service discovery, secure invocation, and unified billing. We detail the architecture, core functionalities, and use cases of AgentDNS, demonstrating its potential to streamline multi-agent collaboration in real-world scenarios. The source code will be published on https://github.com/agentdns.
Authors:Yongkang Liu, Xingle Xu, Ercong Nie, Zijing Wang, Shi Feng, Daling Wang, Qian Li, Hinrich Schütze
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods achieve performance comparable to Full Fine-Tuning (FFT) while requiring significantly fewer computing resources, making it the go-to choice for researchers. We find that although PEFT can achieve competitive results on some benchmarks, its performance falls short of FFT in complex tasks, such as reasoning and instruction-based fine-tuning. In this paper, we compare the characteristics of PEFT and FFT in terms of representational capacity and robustness based on optimization theory. We theoretically demonstrate that PEFT is a strict subset of FFT. By providing theoretical upper bounds for PEFT, we show that the limited parameter space constrains the model's representational ability, making it more susceptible to perturbations. Experiments on 15 datasets encompassing classification, generation, reasoning, instruction fine-tuning tasks and 11 adversarial test sets validate our theories. We hope that these results spark further research beyond the realms of well established PEFT. The source code is in the anonymous Github repository\footnote{https://github.com/misonsky/PEFTEval}.
Authors:Anjie Xu, Ruiqing Ding, Leye Wang
Abstract:
Scientific research heavily depends on suitable datasets for method validation, but existing academic platforms with dataset management like PapersWithCode suffer from inefficiencies in their manual workflow. To overcome this bottleneck, we present a system, called ChatPD, that utilizes Large Language Models (LLMs) to automate dataset information extraction from academic papers and construct a structured paper-dataset network. Our system consists of three key modules: \textit{paper collection}, \textit{dataset information extraction}, and \textit{dataset entity resolution} to construct paper-dataset networks. Specifically, we propose a \textit{Graph Completion and Inference} strategy to map dataset descriptions to their corresponding entities. Through extensive experiments, we demonstrate that ChatPD not only outperforms the existing platform PapersWithCode in dataset usage extraction but also achieves about 90\% precision and recall in entity resolution tasks. Moreover, we have deployed ChatPD to continuously extract which datasets are used in papers, and provide a dataset discovery service, such as task-specific dataset queries and similar dataset recommendations. We open source ChatPD and the current paper-dataset network on this [GitHub repository]{https://github.com/ChatPD-web/ChatPD}.
Authors:Shriram M S, Xinyue Hao, Shihao Hou, Yang Lu, Laura Sevilla-Lara, Anurag Arnab, Shreyank N Gowda
Abstract:
The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision
Authors:Hanyang Wang, Lu Wang, Chaoyun Zhang, Tianjun Mao, Si Qin, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Abstract:
Traditional RLHF optimizes language models with coarse, scalar rewards that mask the fine-grained reasons behind success or failure, leading to slow and opaque learning. Recent work augments RL with textual critiques through prompting or reflection, improving interpretability but leaving model parameters untouched. We introduce Text2Grad, a reinforcement-learning paradigm that turns free-form textual feedback into span-level gradients. Given human (or programmatic) critiques, Text2Grad aligns each feedback phrase with the relevant token spans, converts these alignments into differentiable reward signals, and performs gradient updates that directly refine the offending portions of the model's policy. This yields precise, feedback-conditioned adjustments instead of global nudges. Text2Grad is realized through three components: (1) a high-quality feedback-annotation pipeline that pairs critiques with token spans; (2) a fine-grained reward model that predicts span-level reward on answer while generating explanatory critiques; and (3) a span-level policy optimizer that back-propagates natural-language gradients. Across summarization, code generation, and question answering, Text2Grad consistently surpasses scalar-reward RL and prompt-only baselines, providing both higher task metrics and richer interpretability. Our results demonstrate that natural-language feedback, when converted to gradients, is a powerful signal for fine-grained policy optimization. The code for our method is available at https://github.com/microsoft/Text2Grad
Authors:Wancai Zheng, Linlin Ou, Jiajie He, Libo Zhou, Xinyi Yu, Yan Wei
Abstract:
Recent 3D Gaussian Splatting (3DGS) techniques for Visual Simultaneous Localization and Mapping (SLAM) have significantly progressed in tracking and high-fidelity mapping. However, their sequential optimization framework and sensitivity to dynamic objects limit real-time performance and robustness in real-world scenarios. We present UP-SLAM, a real-time RGB-D SLAM system for dynamic environments that decouples tracking and mapping through a parallelized framework. A probabilistic octree is employed to manage Gaussian primitives adaptively, enabling efficient initialization and pruning without hand-crafted thresholds. To robustly filter dynamic regions during tracking, we propose a training-free uncertainty estimator that fuses multi-modal residuals to estimate per-pixel motion uncertainty, achieving open-set dynamic object handling without reliance on semantic labels. Furthermore, a temporal encoder is designed to enhance rendering quality. Concurrently, low-dimensional features are efficiently transformed via a shallow multilayer perceptron to construct DINO features, which are then employed to enrich the Gaussian field and improve the robustness of uncertainty prediction. Extensive experiments on multiple challenging datasets suggest that UP-SLAM outperforms state-of-the-art methods in both localization accuracy (by 59.8%) and rendering quality (by 4.57 dB PSNR), while maintaining real-time performance and producing reusable, artifact-free static maps in dynamic environments.The project: https://aczheng-cai.github.io/up_slam.github.io/
Authors:Lai Wei, Yuting Li, Kaipeng Zheng, Chen Wang, Yue Wang, Linghe Kong, Lichao Sun, Weiran Huang
Abstract:
Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %$\rightarrow$73.4 % on MathVista, 62.9 %$\rightarrow$70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.
Authors:Ganlin Xu, Zhoujia Zhang, Wangyi Mei, Jiaqing Liang, Weijia Lu, Xiaodong Zhang, Zhifei Yang, Xiaofeng Ma, Yanghua Xiao, Deqing Yang
Abstract:
Information retrieval plays a crucial role in resource localization. Current dense retrievers retrieve the relevant documents within a corpus via embedding similarities, which compute similarities between dense vectors mainly depending on word co-occurrence between queries and documents, but overlook the real query intents.
Thus, they often retrieve numerous irrelevant documents. Particularly in the scenarios of complex queries such as \emph{negative-constraint queries}, their retrieval performance could be catastrophic. To address the issue, we propose a neuro-symbolic information retrieval method, namely \textbf{NS-IR}, that leverages first-order logic (FOL) to optimize the embeddings of naive natural language by considering the \emph{logical consistency} between queries and documents. Specifically, we introduce two novel techniques, \emph{logic alignment} and \emph{connective constraint}, to rerank candidate documents, thereby enhancing retrieval relevance.
Furthermore, we construct a new dataset \textbf{NegConstraint} including negative-constraint queries to evaluate our NS-IR's performance on such complex IR scenarios.
Our extensive experiments demonstrate that NS-IR not only achieves superior zero-shot retrieval performance on web search and low-resource retrieval tasks, but also performs better on negative-constraint queries. Our scource code and dataset are available at https://github.com/xgl-git/NS-IR-main.
Authors:Haosheng Zou, Xiaowei Lv, Shousheng Jia, Xiangzheng Zhang
Abstract:
Adding sequence parallelism into LLaMA-Factory, we open-sourced 360-LLaMA-Factory at https://github.com/Qihoo360/360-LLaMA-Factory. 360-LLaMA-Factory has received wide recognition and used in models such as Light-R1 arXiv:2503.10460, TinyR1 arXiv:2503.04872, Kaggle AIMO math models and also in large companies' training frameworks. This technical report delves deeper into the different sequence parallel modes behind 360-LLaMA-Factory and discusses our implementation insights.
Authors:Haibin He, Jing Zhang, Maoyuan Ye, Juhua Liu, Bo Du, Dacheng Tao
Abstract:
Video text spotting (VTS) extends image text spotting (ITS) by adding text tracking, significantly increasing task complexity. Despite progress in VTS, existing methods still fall short of the performance seen in ITS. This paper identifies a key limitation in current video text spotters: limited recognition capability, even after extensive end-to-end training. To address this, we propose GoMatching++, a parameter- and data-efficient method that transforms an off-the-shelf image text spotter into a video specialist. The core idea lies in freezing the image text spotter and introducing a lightweight, trainable tracker, which can be optimized efficiently with minimal training data. Our approach includes two key components: (1) a rescoring mechanism to bridge the domain gap between image and video data, and (2) the LST-Matcher, which enhances the frozen image text spotter's ability to handle video text. We explore various architectures for LST-Matcher to ensure efficiency in both parameters and training data. As a result, GoMatching++ sets new performance records on challenging benchmarks such as ICDAR15-video, DSText, and BOVText, while significantly reducing training costs. To address the lack of curved text datasets in VTS, we introduce ArTVideo, a new benchmark featuring over 30% curved text with detailed annotations. We also provide a comprehensive statistical analysis and experimental results for ArTVideo. We believe that GoMatching++ and the ArTVideo benchmark will drive future advancements in video text spotting. The source code, models and dataset are publicly available at https://github.com/Hxyz-123/GoMatching.
Authors:Xuchen Ma, Jianxiang Yu, Wenming Shao, Bo Pang, Xiang Li
Abstract:
Social media platforms have experienced a significant rise in toxic content, including abusive language and discriminatory remarks, presenting growing challenges for content moderation. Some users evade censorship by deliberately disguising toxic words through homophonic cloak, which necessitates the task of unveiling cloaked toxicity. Existing methods are mostly designed for English texts, while Chinese cloaked toxicity unveiling has not been solved yet. To tackle the issue, we propose C$^2$TU, a novel training-free and prompt-free method for Chinese cloaked toxic content unveiling. It first employs substring matching to identify candidate toxic words based on Chinese homo-graph and toxic lexicon. Then it filters those candidates that are non-toxic and corrects cloaks to be their corresponding toxicities. Specifically, we develop two model variants for filtering, which are based on BERT and LLMs, respectively. For LLMs, we address the auto-regressive limitation in computing word occurrence probability and utilize the full semantic contexts of a text sequence to reveal cloaked toxic words. Extensive experiments demonstrate that C$^2$TU can achieve superior performance on two Chinese toxic datasets. In particular, our method outperforms the best competitor by up to 71% on the F1 score and 35% on accuracy, respectively. Our code and data are available at https://github.com/XDxc-cuber/C2TU-Chinese-cloaked-toxicity-unveiling.
Authors:Yudi Zhang, Weilin Zhao, Xu Han, Tiejun Zhao, Wang Xu, Hailong Cao, Conghui Zhu
Abstract:
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78$\times$ speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31$\times$. Code available at https://github.com/AI9Stars/SpecMQuant.
Authors:Vihang Pancholi, Jainit Bafna, Tejas Anvekar, Manish Shrivastava, Vivek Gupta
Abstract:
Evaluating tables qualitatively and quantitatively poses a significant challenge, as standard metrics often overlook subtle structural and content-level discrepancies. To address this, we propose a rubric-based evaluation framework that integrates multi-level structural descriptors with fine-grained contextual signals, enabling more precise and consistent table comparison. Building on this, we introduce TabXEval, an eXhaustive and eXplainable two-phase evaluation framework. TabXEval first aligns reference and predicted tables structurally via TabAlign, then performs semantic and syntactic comparison using TabCompare, offering interpretable and granular feedback. We evaluate TabXEval on TabXBench, a diverse, multi-domain benchmark featuring realistic table perturbations and human annotations. A sensitivity-specificity analysis further demonstrates the robustness and explainability of TabXEval across varied table tasks. Code and data are available at https://coral-lab-asu.github.io/tabxeval/
Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Xiangqi Li, Yu Wang, Zhulin An, Libo Huang, Boyu Diao, Zixiang Zhao, Yongjun Xu, Michele Magno
Abstract:
Diffusion transformers (DiT) have demonstrated exceptional performance in video generation. However, their large number of parameters and high computational complexity limit their deployment on edge devices. Quantization can reduce storage requirements and accelerate inference by lowering the bit-width of model parameters. Yet, existing quantization methods for image generation models do not generalize well to video generation tasks. We identify two primary challenges: the loss of information during quantization and the misalignment between optimization objectives and the unique requirements of video generation. To address these challenges, we present Q-VDiT, a quantization framework specifically designed for video DiT models. From the quantization perspective, we propose the Token-aware Quantization Estimator (TQE), which compensates for quantization errors in both the token and feature dimensions. From the optimization perspective, we introduce Temporal Maintenance Distillation (TMD), which preserves the spatiotemporal correlations between frames and enables the optimization of each frame with respect to the overall video context. Our W3A6 Q-VDiT achieves a scene consistency of 23.40, setting a new benchmark and outperforming current state-of-the-art quantization methods by 1.9$\times$. Code will be available at https://github.com/cantbebetter2/Q-VDiT.
Authors:Guanwen Feng, Zhiyuan Ma, Yunan Li, Jiahao Yang, Junwei Jing, Qiguang Miao
Abstract:
Recent advances in audio-driven talking head generation have achieved impressive results in lip synchronization and emotional expression. However, they largely overlook the crucial task of facial attribute editing. This capability is indispensable for achieving deep personalization and expanding the range of practical applications, including user-tailored digital avatars, engaging online education content, and brand-specific digital customer service. In these key domains, flexible adjustment of visual attributes, such as hairstyle, accessories, and subtle facial features, is essential for aligning with user preferences, reflecting diverse brand identities and adapting to varying contextual demands. In this paper, we present FaceEditTalker, a unified framework that enables controllable facial attribute manipulation while generating high-quality, audio-synchronized talking head videos. Our method consists of two key components: an image feature space editing module, which extracts semantic and detail features and allows flexible control over attributes like expression, hairstyle, and accessories; and an audio-driven video generation module, which fuses these edited features with audio-guided facial landmarks to drive a diffusion-based generator. This design ensures temporal coherence, visual fidelity, and identity preservation across frames. Extensive experiments on public datasets demonstrate that our method achieves comparable or superior performance to representative baseline methods in lip-sync accuracy, video quality, and attribute controllability. Project page: https://peterfanfan.github.io/FaceEditTalker/
Authors:Tiantian Feng, Thanathai Lertpetchpun, Dani Byrd, Shrikanth Narayanan
Abstract:
Speech emotion recognition (SER), particularly for naturally expressed emotions, remains a challenging computational task. Key challenges include the inherent subjectivity in emotion annotation and the imbalanced distribution of emotion labels in datasets. This paper introduces the \texttt{SAILER} system developed for participation in the INTERSPEECH 2025 Emotion Recognition Challenge (Task 1). The challenge dataset, which contains natural emotional speech from podcasts, serves as a valuable resource for studying imbalanced and subjective emotion annotations. Our system is designed to be simple, reproducible, and effective, highlighting critical choices in modeling, learning objectives, data augmentation, and engineering choices. Results show that even a single system (without ensembling) can outperform more than 95\% of the submissions, with a Macro-F1 score exceeding 0.4. Moreover, an ensemble of three systems further improves performance, achieving a competitively ranked score (top-3 performing team). Our model is at: https://github.com/tiantiaf0627/vox-profile-release.
Authors:Zhuoyang Wu, Xinze Li, Zhenghao Liu, Yukun Yan, Zhiyuan Liu, Minghe Yu, Cheng Yang, Yu Gu, Ge Yu, Maosong Sun
Abstract:
Large Language Models (LLMs) have demonstrated strong reasoning capabilities and achieved promising results in mathematical problem-solving tasks. Learning from errors offers the potential to further enhance the performance of LLMs during Supervised Fine-Tuning (SFT). However, the errors in synthesized solutions are typically gathered from sampling trails, making it challenging to generate solution errors for each mathematical problem. This paper introduces the Error-IndUced LEaRning (EULER) model, which aims to develop an error exposure model that generates high-quality solution errors to enhance the mathematical reasoning capabilities of LLMs. Specifically, EULER optimizes the error exposure model to increase the generation probability of self-made solution errors while utilizing solutions produced by a superior LLM to regularize the generation quality. Our experiments across various mathematical problem datasets demonstrate the effectiveness of the EULER model, achieving an improvement of over 4% compared to all baseline models. Further analysis reveals that EULER is capable of synthesizing more challenging and educational solution errors, which facilitate both the training and inference processes of LLMs. All codes are available at https://github.com/NEUIR/EULER.
Authors:Haidong Xin, Qiushi Xiong, Zhenghao Liu, Sen Mei, Yukun Yan, Shi Yu, Shuo Wang, Yu Gu, Ge Yu, Chenyan Xiong
Abstract:
User-item interaction histories are pivotal for sequential recommendation systems but often include noise, such as unintended clicks or actions that fail to reflect genuine user preferences. To address this issue, we propose the User-Consistent Preference-based Sequential Recommendation System (ConsRec), designed to capture stable user preferences and filter noisy items from interaction histories. Specifically, ConsRec constructs a user-interacted item graph, learns item similarities from their text representations, and then extracts the maximum connected subgraph from the user-interacted item graph for denoising items. Experimental results on the Yelp and Amazon Product datasets illustrate that ConsRec achieves a 13% improvement over baseline recommendation models, showing its effectiveness in denoising user-interacted items. Further analysis reveals that the denoised interaction histories form semantically tighter clusters of user-preferred items, leading to higher relevance scores for ground-truth targets and more accurate recommendations. All codes are available at https://github.com/NEUIR/ConsRec.
Authors:Runyu Wang, Peng Ping, Zhengyu Guo, Xiaoye Zhang, Quan Shi, Liting Zhou, Tianbo Ji
Abstract:
Fine-tuning adapts pretrained models for specific tasks but poses the risk of catastrophic forgetting (CF), where critical knowledge from pre-training is overwritten. Current Parameter-Efficient Fine-Tuning (PEFT) methods for Large Language Models (LLMs), while efficient, often sacrifice general capabilities. To address the issue of CF in a general-purpose PEFT framework, we propose \textbf{Lo}w-damage \textbf{K}nowledge \textbf{I}mplanting (\textbf{LoKI}), a PEFT technique that is based on a mechanistic understanding of how knowledge is stored in transformer architectures. In two real-world scenarios, LoKI demonstrates task-specific performance that is comparable to or even surpasses that of full fine-tuning and LoRA-based methods across various model types, while significantly better preserving general capabilities. Our work connects mechanistic insights into LLM knowledge storage with practical fine-tuning objectives, achieving state-of-the-art trade-offs between task specialization and the preservation of general capabilities. Our implementation is publicly available as ready-to-use code\footnote{https://github.com/Nexround/LoKI}.
Authors:Jintao Zhang, Zirui Liu, Mingyue Cheng, Shilong Zhang, Tingyue Pan, Yitong zhou, Qi Liu, Yanhu Xie
Abstract:
Intraoperative hypotension (IOH) frequently occurs under general anesthesia and is strongly linked to adverse outcomes such as myocardial injury and increased mortality. Despite its significance, IOH prediction is hindered by event sparsity and the challenge of integrating static and dynamic data across diverse patients. In this paper, we propose \textbf{IOHFuseLM}, a multimodal language model framework. To accurately identify and differentiate sparse hypotensive events, we leverage a two-stage training strategy. The first stage involves domain adaptive pretraining on IOH physiological time series augmented through diffusion methods, thereby enhancing the model sensitivity to patterns associated with hypotension. Subsequently, task fine-tuning is performed on the original clinical dataset to further enhance the ability to distinguish normotensive from hypotensive states. To enable multimodal fusion for each patient, we align structured clinical descriptions with the corresponding physiological time series at the token level. Such alignment enables the model to capture individualized temporal patterns alongside their corresponding clinical semantics. In addition, we convert static patient attributes into structured text to enrich personalized information. Experimental evaluations on two intraoperative datasets demonstrate that IOHFuseLM outperforms established baselines in accurately identifying IOH events, highlighting its applicability in clinical decision support scenarios. Our code is publicly available to promote reproducibility at https://github.com/zjt-gpu/IOHFuseLM.
Authors:Shuhai Zhang, Zeng You, Yaofo Chen, Zhiquan Wen, Qianyue Wang, Zhijie Qiu, Yuanqing Li, Mingkui Tan
Abstract:
Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive performance.Code is available at https://github.com/bolixinyu/DynamicGroupAttention.
Authors:Hang Chen, Maoyuan Ye, Peng Yang, Haibin He, Juhua Liu, Bo Du
Abstract:
Power transmission corridor hazard segmentation (PTCHS) aims to separate transmission equipment and surrounding hazards from complex background, conveying great significance to maintaining electric power transmission safety. Recently, the Segment Anything Model (SAM) has emerged as a foundational vision model and pushed the boundaries of segmentation tasks. However, SAM struggles to deal with the target objects in complex transmission corridor scenario, especially those with fine structure. In this paper, we propose ELE-SAM, adapting SAM for the PTCHS task. Technically, we develop a Context-Aware Prompt Adapter to achieve better prompt tokens via incorporating global-local features and focusing more on key regions. Subsequently, to tackle the hazard objects with fine structure in complex background, we design a High-Fidelity Mask Decoder by leveraging multi-granularity mask features and then scaling them to a higher resolution. Moreover, to train ELE-SAM and advance this field, we construct the ELE-40K benchmark, the first large-scale and real-world dataset for PTCHS including 44,094 image-mask pairs. Experimental results for ELE-40K demonstrate the superior performance that ELE-SAM outperforms the baseline model with the average 16.8% mIoU and 20.6% mBIoU performance improvement. Moreover, compared with the state-of-the-art method on HQSeg-44K, the average 2.9% mIoU and 3.8% mBIoU absolute improvements further validate the effectiveness of our method on high-quality generic object segmentation. The source code and dataset are available at https://github.com/Hhaizee/ELE-SAM.
Authors:Junhuan Liu, San Jiang, Wei Ge, Wei Huang, Bingxuan Guo, Qingquan Li
Abstract:
The primary contribution of this paper is a challenging benchmark dataset, UAVPairs, and a training pipeline designed for match pair retrieval of large-scale UAV images. First, the UAVPairs dataset, comprising 21,622 high-resolution images across 30 diverse scenes, is constructed; the 3D points and tracks generated by SfM-based 3D reconstruction are employed to define the geometric similarity of image pairs, ensuring genuinely matchable image pairs are used for training. Second, to solve the problem of expensive mining cost for global hard negative mining, a batched nontrivial sample mining strategy is proposed, leveraging the geometric similarity and multi-scene structure of the UAVPairs to generate training samples as to accelerate training. Third, recognizing the limitation of pair-based losses, the ranked list loss is designed to improve the discrimination of image retrieval models, which optimizes the global similarity structure constructed from the positive set and negative set. Finally, the effectiveness of the UAVPairs dataset and training pipeline is validated through comprehensive experiments on three distinct large-scale UAV datasets. The experiment results demonstrate that models trained with the UAVPairs dataset and the ranked list loss achieve significantly improved retrieval accuracy compared to models trained on existing datasets or with conventional losses. Furthermore, these improvements translate to enhanced view graph connectivity and higher quality of reconstructed 3D models. The models trained by the proposed approach perform more robustly compared with hand-crafted global features, particularly in challenging repetitively textured scenes and weakly textured scenes. For match pair retrieval of large-scale UAV images, the trained image retrieval models offer an effective solution. The dataset would be made publicly available at https://github.com/json87/UAVPairs.
Authors:Valentin Cuzin-Rambaud, Emilien Komlenovic, Alexandre Faure, Bruno Yun
Abstract:
The alignment between humans and machines is a critical challenge in artificial intelligence today. Reinforcement learning, which aims to maximize a reward function, is particularly vulnerable to the risks associated with poorly designed reward functions. Recent advancements has shown that Large Language Models (LLMs) for reward generation can outperform human performance in this context. We introduce VIRAL, a pipeline for generating and refining reward functions through the use of multi-modal LLMs. VIRAL autonomously creates and interactively improves reward functions based on a given environment and a goal prompt or annotated image. The refinement process can incorporate human feedback or be guided by a description generated by a video LLM, which explains the agent's policy in video form. We evaluated VIRAL in five Gymnasium environments, demonstrating that it accelerates the learning of new behaviors while ensuring improved alignment with user intent. The source-code and demo video are available at: https://github.com/VIRAL-UCBL1/VIRAL and https://youtu.be/Hqo82CxVT38.
Authors:Ruxiao Chen, Dezheng Han, Wenjie Han, Shuaishuai Guo
Abstract:
Assistive systems for visually impaired individuals must deliver rapid, interpretable, and adaptive feedback to facilitate real-time navigation. Current approaches face a trade-off between latency and semantic richness: natural language-based systems provide detailed guidance but are too slow for dynamic scenarios, while emergent communication frameworks offer low-latency symbolic languages but lack semantic depth, limiting their utility in tactile modalities like vibration. To address these limitations, we introduce a novel framework, Cognitively-Inspired Emergent Communication via Knowledge Graphs (VAG-EC), which emulates human visual perception and cognitive mapping. Our method constructs knowledge graphs to represent objects and their relationships, incorporating attention mechanisms to prioritize task-relevant entities, thereby mirroring human selective attention. This structured approach enables the emergence of compact, interpretable, and context-sensitive symbolic languages. Extensive experiments across varying vocabulary sizes and message lengths demonstrate that VAG-EC outperforms traditional emergent communication methods in Topographic Similarity (TopSim) and Context Independence (CI). These findings underscore the potential of cognitively grounded emergent communication as a fast, adaptive, and human-aligned solution for real-time assistive technologies. Code is available at https://github.com/Anonymous-NLPcode/Anonymous_submission/tree/main.
Authors:Shun Sato, Issei Sato
Abstract:
Symbolic regression aims to discover mathematical equations that fit given numerical data. It has been applied in various fields of scientific research, such as producing human-readable expressions that explain physical phenomena. Recently, Neural symbolic regression (NSR) methods that involve Transformers pre-trained on large-scale synthetic datasets have gained attention. While these methods offer advantages such as short inference time, they suffer from low performance, particularly when the number of input variables is large. In this study, we hypothesized that this limitation stems from the memorization bias of Transformers in symbolic regression. We conducted a quantitative evaluation of this bias in Transformers using a synthetic dataset and found that Transformers rarely generate expressions not present in the training data. Additional theoretical analysis reveals that this bias arises from the Transformer's inability to construct expressions compositionally while verifying their numerical validity. We finally examined if tailoring test-time strategies can lead to reduced memorization bias and better performance. We empirically demonstrate that providing additional information to the model at test time can significantly mitigate memorization bias. On the other hand, we also find that reducing memorization bias does not necessarily correlate with improved performance. These findings contribute to a deeper understanding of the limitations of NSR approaches and offer a foundation for designing more robust, generalizable symbolic regression methods. Code is available at https://github.com/Shun-0922/Mem-Bias-NSR .
Authors:Ran Li, Shimin Di, Yuchen Liu, Chen Jing, Yu Qiu, Lei Chen
Abstract:
Previous study suggest that powerful Large Language Models (LLMs) trained with Reinforcement Learning with Verifiable Rewards (RLVR) only refines reasoning path without improving the reasoning capacity in math tasks while supervised-finetuning(SFT) with distillation can. We study this from the view of Scientific information extraction (SciIE) where LLMs and reasoning LLMs underperforms small Bert-based models. SciIE require both the reasoning and memorization. We argue that both SFT and RLVR can refine the reasoning path and improve reasoning capacity in a simple way based on SciIE. We propose two-stage training with 1. MimicSFT, using structured reasoning templates without needing high-quality chain-of-thought data, 2. R$^2$GRPO with relevance and rule-induced rewards. Experiments on scientific IE benchmarks show that both methods can improve the reasoning capacity. R$^2$GRPO with mimicSFT surpasses baseline LLMs and specialized supervised models in relation extraction. Our code is available at https://github.com/ranlislz/R2GRPO.
Authors:Yan Rong, Jinting Wang, Guangzhi Lei, Shan Yang, Li Liu
Abstract:
Multimodality-to-Multiaudio (MM2MA) generation faces significant challenges in synthesizing diverse and contextually aligned audio types (e.g., sound effects, speech, music, and songs) from multimodal inputs (e.g., video, text, images), owing to the scarcity of high-quality paired datasets and the lack of robust multi-task learning frameworks. Recently, multi-agent system shows great potential in tackling the above issues. However, directly applying it to MM2MA task presents three critical challenges: (1) inadequate fine-grained understanding of multimodal inputs (especially for video), (2) the inability of single models to handle diverse audio events, and (3) the absence of self-correction mechanisms for reliable outputs. To this end, we propose AudioGenie, a novel training-free multi-agent system featuring a dual-layer architecture with a generation team and a supervisor team. For the generation team, a fine-grained task decomposition and an adaptive Mixture-of-Experts (MoE) collaborative entity are designed for detailed comprehensive multimodal understanding and dynamic model selection, and a trial-and-error iterative refinement module is designed for self-correction. The supervisor team ensures temporal-spatial consistency and verifies outputs through feedback loops. Moreover, we build MA-Bench, the first benchmark for MM2MA tasks, comprising 198 annotated videos with multi-type audios. Experiments demonstrate that our AudioGenie achieves state-of-the-art (SOTA) or comparable performance across 9 metrics in 8 tasks. User study further validates the effectiveness of our method in terms of quality, accuracy, alignment, and aesthetic. The project website with audio samples can be found at https://audiogenie.github.io/.
Authors:Jinming Zhang, Xuanru Zhou, Jiachen Lian, Shuhe Li, William Li, Zoe Ezzes, Rian Bogley, Lisa Wauters, Zachary Miller, Jet Vonk, Brittany Morin, Maria Gorno-Tempini, Gopala Anumanchipalli
Abstract:
Speech dysfluency detection is crucial for clinical diagnosis and language assessment, but existing methods are limited by the scarcity of high-quality annotated data. Although recent advances in TTS model have enabled synthetic dysfluency generation, existing synthetic datasets suffer from unnatural prosody and limited contextual diversity. To address these limitations, we propose LLM-Dys -- the most comprehensive dysfluent speech corpus with LLM-enhanced dysfluency simulation. This dataset captures 11 dysfluency categories spanning both word and phoneme levels. Building upon this resource, we improve an end-to-end dysfluency detection framework. Experimental validation demonstrates state-of-the-art performance. All data, models, and code are open-sourced at https://github.com/Berkeley-Speech-Group/LLM-Dys.
Authors:Zi-Hao Zhou, Jun-Jie Wang, Tong Wei, Min-Ling Zhang
Abstract:
Contrastive learning has achieved remarkable success in learning effective representations, with supervised contrastive learning often outperforming self-supervised approaches. However, in real-world scenarios, data annotations are often ambiguous or inaccurate, meaning that class labels may not reliably indicate whether two examples belong to the same class. This limitation restricts the applicability of supervised contrastive learning. To address this challenge, we introduce the concept of ``continuous semantic similarity'' to define positive and negative pairs. Instead of directly relying on imprecise class labels, we measure the semantic similarity between example pairs, which quantifies how closely they belong to the same category by iteratively refining weak supervisory signals. Based on this concept, we propose a graph-theoretic framework for weakly-supervised contrastive learning, where semantic similarity serves as the graph weights. Our framework is highly versatile and can be applied to many weakly-supervised learning scenarios. We demonstrate its effectiveness through experiments in two common settings, i.e., noisy label and partial label learning, where existing methods can be easily integrated to significantly improve performance. Theoretically, we establish an error bound for our approach, showing that it can approximate supervised contrastive learning under mild conditions. The implementation code is available at https://github.com/Speechless-10308/WSC.
Authors:Qiuchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen, Lin Chen, Shihang Wang, Pengjun Xie, Fei Huang, Feng Zhao
Abstract:
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG.
Authors:Ruicheng Yin, Xuan Gao, Changze Lv, Xiaohua Wang, Xiaoqing Zheng, Xuanjing Huang
Abstract:
Continual pre-training has demonstrated significant potential in enhancing model performance, particularly in domain-specific scenarios. The most common approach for packing data before continual pre-training involves concatenating input texts and splitting them into fixed-length sequences. While straightforward and efficient, this method often leads to excessive truncation and context discontinuity, which can hinder model performance. To address these issues, we explore the potential of data engineering to enhance continual pre-training, particularly its impact on model performance and efficiency. We propose Seamless Packing (SP), a novel data packing strategy aimed at preserving contextual information more effectively and enhancing model performance. Our approach employs a sliding window technique in the first stage that synchronizes overlapping tokens across consecutive sequences, ensuring better continuity and contextual coherence. In the second stage, we adopt a First-Fit-Decreasing algorithm to pack shorter texts into bins slightly larger than the target sequence length, thereby minimizing padding and truncation. Empirical evaluations across various model architectures and corpus domains demonstrate the effectiveness of our method, outperforming baseline method in 99% of all settings. Code is available at https://github.com/Infernus-WIND/Seamless-Packing.
Authors:Wataru Ikeda, Masashi Hatano, Ryosei Hara, Mariko Isogawa
Abstract:
Estimating human pose using a front-facing egocentric camera is essential for applications such as sports motion analysis, VR/AR, and AI for wearable devices. However, many existing methods rely on RGB cameras and do not account for low-light environments or motion blur. Event-based cameras have the potential to address these challenges. In this work, we introduce a novel task of human pose estimation using a front-facing event-based camera mounted on the head and propose D-EventEgo, the first framework for this task. The proposed method first estimates the head poses, and then these are used as conditions to generate body poses. However, when estimating head poses, the presence of dynamic objects mixed with background events may reduce head pose estimation accuracy. Therefore, we introduce the Motion Segmentation Module to remove dynamic objects and extract background information. Extensive experiments on our synthetic event-based dataset derived from EgoBody, demonstrate that our approach outperforms our baseline in four out of five evaluation metrics in dynamic environments.
Authors:Fakhraddin Alwajih, Samar Mohamed Magdy, Abdellah El Mekki, Omer Nacar, Youssef Nafea, Safaa Taher Abdelfadil, Abdulfattah Mohammed Yahya, Hamzah Luqman, Nada Almarwani, Samah Aloufi, Baraah Qawasmeh, Houdaifa Atou, Serry Sibaee, Hamzah A. Alsayadi, Walid Al-Dhabyani, Maged S. Al-shaibani, Aya El aatar, Nour Qandos, Rahaf Alhamouri, Samar Ahmad, Razan Khassib, Lina Hamad, Mohammed Anwar AL-Ghrawi, Fatimah Alshamari, Cheikh Malainine, Doaa Qawasmeh, Aminetou Yacoub, Tfeil moilid, Ruwa AbuHweidi, Ahmed Aboeitta, Vatimetou Mohamed Lemin, Reem Abdel-Salam, Ahlam Bashiti, Adel Ammar, Aisha Alansari, Ahmed Ashraf, Nora Alturayeif, Sara Shatnawi, Alcides Alcoba Inciarte, AbdelRahim A. Elmadany, Mohamedou cheikh tourad, Ismail Berrada, Mustafa Jarrar, Shady Shehata, Muhammad Abdul-Mageed
Abstract:
Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce Pearl, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 45 annotators from across the Arab world, Pearl comprises over K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks Pearl and Pearl-Lite along with a specialized subset Pearl-X explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. Pearl establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.
Authors:Yu-Heng Hung, Kai-Jie Lin, Yu-Heng Lin, Chien-Yi Wang, Cheng Sun, Ping-Chun Hsieh
Abstract:
Bayesian optimization (BO) offers an efficient pipeline for optimizing black-box functions with the help of a Gaussian process prior and an acquisition function (AF). Recently, in the context of single-objective BO, learning-based AFs witnessed promising empirical results given its favorable non-myopic nature. Despite this, the direct extension of these approaches to multi-objective Bayesian optimization (MOBO) suffer from the \textit{hypervolume identifiability issue}, which results from the non-Markovian nature of MOBO problems. To tackle this, inspired by the non-Markovian RL literature and the success of Transformers in language modeling, we present a generalized deep Q-learning framework and propose \textit{BOFormer}, which substantiates this framework for MOBO via sequence modeling. Through extensive evaluation, we demonstrate that BOFormer constantly outperforms the benchmark rule-based and learning-based algorithms in various synthetic MOBO and real-world multi-objective hyperparameter optimization problems. We have made the source code publicly available to encourage further research in this direction.
Authors:Aditya Gunturu, Ben Pearman, Keiichi Ihara, Morteza Faraji, Bryan Wang, Rubaiat Habib Kazi, Ryo Suzuki
Abstract:
We introduce MapStory, an LLM-powered animation prototyping tool that generates editable map animation sequences directly from natural language text by leveraging a dual-agent LLM architecture. Given a user written script, MapStory automatically produces a scene breakdown, which decomposes the text into key map animation primitives such as camera movements, visual highlights, and animated elements. Our system includes a researcher agent that accurately queries geospatial information by leveraging an LLM with web search, enabling automatic extraction of relevant regions, paths, and coordinates while allowing users to edit and query for changes or additional information to refine the results. Additionally, users can fine-tune parameters of these primitive blocks through an interactive timeline editor. We detail the system's design and architecture, informed by formative interviews with professional animators and by an analysis of 200 existing map animation videos. Our evaluation, which includes expert interviews (N=5) and a usability study (N=12), demonstrates that MapStory enables users to create map animations with ease, facilitates faster iteration, encourages creative exploration, and lowers barriers to creating map-centric stories.
Authors:Mengjingcheng Mo, Xinyang Tong, Jiaxu Leng, Mingpi Tan, Jiankang Zheng, Yiran Liu, Haosheng Chen, Ji Gan, Weisheng Li, Xinbo Gao
Abstract:
While unmanned aerial vehicles (UAVs) offer wide-area, high-altitude coverage for anomaly detection, they face challenges such as dynamic viewpoints, scale variations, and complex scenes. Existing datasets and methods, mainly designed for fixed ground-level views, struggle to adapt to these conditions, leading to significant performance drops in drone-view scenarios. To bridge this gap, we introduce A2Seek (Aerial Anomaly Seek), a large-scale, reasoning-centric benchmark dataset for aerial anomaly understanding. This dataset covers various scenarios and environmental conditions, providing high-resolution real-world aerial videos with detailed annotations, including anomaly categories, frame-level timestamps, region-level bounding boxes, and natural language explanations for causal reasoning. Building on this dataset, we propose A2Seek-R1, a novel reasoning framework that generalizes R1-style strategies to aerial anomaly understanding, enabling a deeper understanding of "Where" anomalies occur and "Why" they happen in aerial frames. To this end, A2Seek-R1 first employs a graph-of-thought (GoT)-guided supervised fine-tuning approach to activate the model's latent reasoning capabilities on A2Seek. Then, we introduce Aerial Group Relative Policy Optimization (A-GRPO) to design rule-based reward functions tailored to aerial scenarios. Furthermore, we propose a novel "seeking" mechanism that simulates UAV flight behavior by directing the model's attention to informative regions. Extensive experiments demonstrate that A2Seek-R1 achieves up to a 22.04% improvement in AP for prediction accuracy and a 13.9% gain in mIoU for anomaly localization, exhibiting strong generalization across complex environments and out-of-distribution scenarios. Our dataset and code will be released at https://hayneyday.github.io/A2Seek/.
Authors:Senmao Li, Lei Wang, Kai Wang, Tao Liu, Jiehang Xie, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing Wang, Jian Yang
Abstract:
Text-to-Image (T2I) diffusion models have made remarkable advancements in generative modeling; however, they face a trade-off between inference speed and image quality, posing challenges for efficient deployment. Existing distilled T2I models can generate high-fidelity images with fewer sampling steps, but often struggle with diversity and quality, especially in one-step models. From our analysis, we observe redundant computations in the UNet encoders. Our findings suggest that, for T2I diffusion models, decoders are more adept at capturing richer and more explicit semantic information, while encoders can be effectively shared across decoders from diverse time steps. Based on these observations, we introduce the first Time-independent Unified Encoder TiUE for the student model UNet architecture, which is a loop-free image generation approach for distilling T2I diffusion models. Using a one-pass scheme, TiUE shares encoder features across multiple decoder time steps, enabling parallel sampling and significantly reducing inference time complexity. In addition, we incorporate a KL divergence term to regularize noise prediction, which enhances the perceptual realism and diversity of the generated images. Experimental results demonstrate that TiUE outperforms state-of-the-art methods, including LCM, SD-Turbo, and SwiftBrushv2, producing more diverse and realistic results while maintaining the computational efficiency.
Authors:Le Thien Phuc Nguyen, Zhuoran Yu, Khoa Quang Nhat Cao, Yuwei Guo, Tu Ho Manh Pham, Tuan Tai Nguyen, Toan Ngo Duc Vo, Lucas Poon, Soochahn Lee, Yong Jae Lee
Abstract:
We present UniTalk, a novel dataset specifically designed for the task of active speaker detection, emphasizing challenging scenarios to enhance model generalization. Unlike previously established benchmarks such as AVA, which predominantly features old movies and thus exhibits significant domain gaps, UniTalk focuses explicitly on diverse and difficult real-world conditions. These include underrepresented languages, noisy backgrounds, and crowded scenes - such as multiple visible speakers speaking concurrently or in overlapping turns. It contains over 44.5 hours of video with frame-level active speaker annotations across 48,693 speaking identities, and spans a broad range of video types that reflect real-world conditions. Through rigorous evaluation, we show that state-of-the-art models, while achieving nearly perfect scores on AVA, fail to reach saturation on UniTalk, suggesting that the ASD task remains far from solved under realistic conditions. Nevertheless, models trained on UniTalk demonstrate stronger generalization to modern "in-the-wild" datasets like Talkies and ASW, as well as to AVA. UniTalk thus establishes a new benchmark for active speaker detection, providing researchers with a valuable resource for developing and evaluating versatile and resilient models.
Dataset: https://huggingface.co/datasets/plnguyen2908/UniTalk-ASD
Code: https://github.com/plnguyen2908/UniTalk-ASD-code
Authors:Wei Lin, Chenyang Zhao, Antoni B. Chan
Abstract:
Point detection has been developed to locate pedestrians in crowded scenes by training a counter through a point-to-point (P2P) supervision scheme. Despite its excellent localization and counting performance, training a point-based counter still faces challenges concerning annotation labor: hundreds to thousands of points are required to annotate a single sample capturing a dense crowd. In this paper, we integrate point-based methods into a semi-supervised counting framework based on pseudo-labeling, enabling the training of a counter with only a few annotated samples supplemented by a large volume of pseudo-labeled data. However, during implementation, the training encounters issues as the confidence for pseudo-labels fails to be propagated to background pixels via the P2P. To tackle this challenge, we devise a point-specific activation map (PSAM) to visually interpret the phenomena occurring during the ill-posed training. Observations from the PSAM suggest that the feature map is excessively activated by the loss for unlabeled data, causing the decoder to misinterpret these over-activations as pedestrians. To mitigate this issue, we propose a point-to-region (P2R) scheme to substitute P2P, which segments out local regions rather than detects a point corresponding to a pedestrian for supervision. Consequently, pixels in the local region can share the same confidence with the corresponding pseudo points. Experimental results in both semi-supervised counting and unsupervised domain adaptation highlight the advantages of our method, illustrating P2R can resolve issues identified in PSAM. The code is available at https://github.com/Elin24/P2RLoss.
Authors:Chong Zeng, Yue Dong, Pieter Peers, Hongzhi Wu, Xin Tong
Abstract:
We present RenderFormer, a neural rendering pipeline that directly renders an image from a triangle-based representation of a scene with full global illumination effects and that does not require per-scene training or fine-tuning. Instead of taking a physics-centric approach to rendering, we formulate rendering as a sequence-to-sequence transformation where a sequence of tokens representing triangles with reflectance properties is converted to a sequence of output tokens representing small patches of pixels. RenderFormer follows a two stage pipeline: a view-independent stage that models triangle-to-triangle light transport, and a view-dependent stage that transforms a token representing a bundle of rays to the corresponding pixel values guided by the triangle-sequence from the view-independent stage. Both stages are based on the transformer architecture and are learned with minimal prior constraints. We demonstrate and evaluate RenderFormer on scenes with varying complexity in shape and light transport.
Authors:Chenfeng Wei, Qi Wu, Si Zuo, Jiahua Xu, Boyang Zhao, Zeyu Yang, Guotao Xie, Shenhong Wang
Abstract:
Autonomous driving datasets are essential for validating the progress of intelligent vehicle algorithms, which include localization, perception, and prediction. However, existing datasets are predominantly focused on structured urban environments, which limits the exploration of unstructured and specialized scenarios, particularly those characterized by significant dust levels. This paper introduces the LiDARDustX dataset, which is specifically designed for perception tasks under high-dust conditions, such as those encountered in mining areas. The LiDARDustX dataset consists of 30,000 LiDAR frames captured by six different LiDAR sensors, each accompanied by 3D bounding box annotations and point cloud semantic segmentation. Notably, over 80% of the dataset comprises dust-affected scenes. By utilizing this dataset, we have established a benchmark for evaluating the performance of state-of-the-art 3D detection and segmentation algorithms. Additionally, we have analyzed the impact of dust on perception accuracy and delved into the causes of these effects. The data and further information can be accessed at: https://github.com/vincentweikey/LiDARDustX.
Authors:Jianchao Jiang, Haofeng Zhang
Abstract:
Few-Shot Medical Image Segmentation (FSMIS) has been widely used to train a model that can perform segmentation from only a few annotated images. However, most existing prototype-based FSMIS methods generate multiple prototypes from the support image solely by random sampling or local averaging, which can cause particularly severe boundary blurring due to the tendency for normal features accounting for the majority of features of a specific category. Consequently, we propose to focus more attention to those weaker features that are crucial for clear segmentation boundary. Specifically, we design a Support Self-Prediction (SSP) module to identify such weak features by comparing true support mask with one predicted by global support prototype. Then, a Hard Prototypes Generation (HPG) module is employed to generate multiple hard prototypes based on these weak features. Subsequently, a Multiple Similarity Maps Fusion (MSMF) module is devised to generate final segmenting mask in a dual-path fashion to mitigate the imbalance between foreground and background in medical images. Furthermore, we introduce a boundary loss to further constraint the edge of segmentation. Extensive experiments on three publicly available medical image datasets demonstrate that our method achieves state-of-the-art performance. Code is available at https://github.com/jcjiang99/CoW.
Authors:Tianyu Guo, Hande Dong, Yichong Leng, Feng Liu, Cheater Lin, Nong Xiao, Xianwei Zhang
Abstract:
Large language models (LLMs) are often used for infilling tasks, which involve predicting or generating missing information in a given text. These tasks typically require multiple interactions with similar context. To reduce the computation of repeated historical tokens, cross-request key-value (KV) cache reuse, a technique that stores and reuses intermediate computations, has become a crucial method in multi-round interactive services. However, in infilling tasks, the KV cache reuse is often hindered by the structure of the prompt format, which typically consists of a prefix and suffix relative to the insertion point. Specifically, the KV cache of the prefix or suffix part is frequently invalidated as the other part (suffix or prefix) is incrementally generated. To address the issue, we propose EFIM, a transformed prompt format of FIM to unleash the performance potential of KV cache reuse. Although the transformed prompt can solve the inefficiency, it exposes subtoken generation problems in current LLMs, where they have difficulty generating partial words accurately. Therefore, we introduce a fragment tokenization training method which splits text into multiple fragments before tokenization during data processing. Experiments on two representative LLMs show that LLM serving with EFIM can lower the latency by 52% and improve the throughput by 98% while maintaining the original infilling capability. EFIM's source code is publicly available at https://github.com/gty111/EFIM.
Authors:Ruijie Li, Xiang Zhao, Qiao Ning, Shikai Guo
Abstract:
In tennis tournaments, momentum, a critical yet elusive phenomenon, reflects the dynamic shifts in performance of athletes that can decisively influence match outcomes. Despite its significance, momentum in terms of effective modeling and multi-granularity analysis across points, games, sets, and matches in tennis tournaments remains underexplored. In this study, we define a novel Momentum Score (MS) metric to quantify a player's momentum level in multi-granularity tennis tournaments, and design HydraNet, a momentum-driven state-space duality-based framework, to model MS by integrating thirty-two heterogeneous dimensions of athletes performance in serve, return, psychology and fatigue. HydraNet integrates a Hydra module, which builds upon a state-space duality (SSD) framework, capturing explicit momentum with a sliding-window mechanism and implicit momentum through cross-game state propagation. It also introduces a novel Versus Learning method to better enhance the adversarial nature of momentum between the two athletes at a macro level, along with a Collaborative-Adversarial Attention Mechanism (CAAM) for capturing and integrating intra-player and inter-player dynamic momentum at a micro level. Additionally, we construct a million-level tennis cross-tournament dataset spanning from 2012-2023 Wimbledon and 2013-2023 US Open, and validate the multi-granularity modeling capability of HydraNet for the MS metric on this dataset. Extensive experimental evaluations demonstrate that the MS metric constructed by the HydraNet framework provides actionable insights into how momentum impacts outcomes at different granularities, establishing a new foundation for momentum modeling and sports analysis. To the best of our knowledge, this is the first work to explore and effectively model momentum across multiple granularities in professional tennis tournaments.
Authors:Zun Wang, Jaemin Cho, Jialu Li, Han Lin, Jaehong Yoon, Yue Zhang, Mohit Bansal
Abstract:
Recent approaches on 3D camera control in video diffusion models (VDMs) often create anchor videos to guide diffusion models as a structured prior by rendering from estimated point clouds following annotated camera trajectories. However, errors inherent in point cloud estimation often lead to inaccurate anchor videos. Moreover, the requirement for extensive camera trajectory annotations further increases resource demands. To address these limitations, we introduce EPiC, an efficient and precise camera control learning framework that automatically constructs high-quality anchor videos without expensive camera trajectory annotations. Concretely, we create highly precise anchor videos for training by masking source videos based on first-frame visibility. This approach ensures high alignment, eliminates the need for camera trajectory annotations, and thus can be readily applied to any in-the-wild video to generate image-to-video (I2V) training pairs. Furthermore, we introduce Anchor-ControlNet, a lightweight conditioning module that integrates anchor video guidance in visible regions to pretrained VDMs, with less than 1% of backbone model parameters. By combining the proposed anchor video data and ControlNet module, EPiC achieves efficient training with substantially fewer parameters, training steps, and less data, without requiring modifications to the diffusion model backbone typically needed to mitigate rendering misalignments. Although being trained on masking-based anchor videos, our method generalizes robustly to anchor videos made with point clouds during inference, enabling precise 3D-informed camera control. EPiC achieves SOTA performance on RealEstate10K and MiraData for I2V camera control task, demonstrating precise and robust camera control ability both quantitatively and qualitatively. Notably, EPiC also exhibits strong zero-shot generalization to video-to-video scenarios.
Authors:Guiping Cao, Wenjian Huang, Xiangyuan Lan, Jianguo Zhang, Dongmei Jiang, Yaowei Wang
Abstract:
Small Object Detection (SOD) poses significant challenges due to limited information and the model's low class prediction score. While Transformer-based detectors have shown promising performance, their potential for SOD remains largely unexplored. In typical DETR-like frameworks, the CNN backbone network, specialized in aggregating local information, struggles to capture the necessary contextual information for SOD. The multiple attention layers in the Transformer Encoder face difficulties in effectively attending to small objects and can also lead to blurring of features. Furthermore, the model's lower class prediction score of small objects compared to large objects further increases the difficulty of SOD. To address these challenges, we introduce a novel approach called Cross-DINO. This approach incorporates the deep MLP network to aggregate initial feature representations with both short and long range information for SOD. Then, a new Cross Coding Twice Module (CCTM) is applied to integrate these initial representations to the Transformer Encoder feature, enhancing the details of small objects. Additionally, we introduce a new kind of soft label named Category-Size (CS), integrating the Category and Size of objects. By treating CS as new ground truth, we propose a new loss function called Boost Loss to improve the class prediction score of the model. Extensive experimental results on COCO, WiderPerson, VisDrone, AI-TOD, and SODA-D datasets demonstrate that Cross-DINO efficiently improves the performance of DETR-like models on SOD. Specifically, our model achieves 36.4% APs on COCO for SOD with only 45M parameters, outperforming the DINO by +4.4% APS (36.4% vs. 32.0%) with fewer parameters and FLOPs, under 12 epochs training setting. The source codes will be available at https://github.com/Med-Process/Cross-DINO.
Authors:Chenhui Zhao, Yiwei Lyu, Asadur Chowdury, Edward Harake, Akhil Kondepudi, Akshay Rao, Xinhai Hou, Honglak Lee, Todd Hollon
Abstract:
Language-image pre-training has demonstrated strong performance in 2D medical imaging, but its success in 3D modalities such as CT and MRI remains limited due to the high computational demands of volumetric data, which pose a significant barrier to training on large-scale, uncurated clinical studies. In this study, we introduce Hierarchical attention for Language-Image Pre-training (HLIP), a scalable pre-training framework for 3D medical imaging. HLIP adopts a lightweight hierarchical attention mechanism inspired by the natural hierarchy of radiology data: slice, scan, and study. This mechanism exhibits strong generalizability, e.g., +4.3% macro AUC on the Rad-ChestCT benchmark when pre-trained on CT-RATE. Moreover, the computational efficiency of HLIP enables direct training on uncurated datasets. Trained on 220K patients with 3.13 million scans for brain MRI and 240K patients with 1.44 million scans for head CT, HLIP achieves state-of-the-art performance, e.g., +32.4% balanced ACC on the proposed publicly available brain MRI benchmark Pub-Brain-5; +1.4% and +6.9% macro AUC on head CT benchmarks RSNA and CQ500, respectively. These results demonstrate that, with HLIP, directly pre-training on uncurated clinical datasets is a scalable and effective direction for language-image pre-training in 3D medical imaging. The code is available at https://github.com/Zch0414/hlip
Authors:Xuwei Xu, Yang Li, Yudong Chen, Jiajun Liu, Sen Wang
Abstract:
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
Authors:Chen Yueh-Han, Guy Davidson, Brenden M. Lake
Abstract:
Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.
Authors:Clark Mingxuan Ju, Leonardo Neves, Bhuvesh Kumar, Liam Collins, Tong Zhao, Yuwei Qiu, Qing Dou, Sohail Nizam, Sen Yang, Neil Shah
Abstract:
Sequential recommendation is a popular paradigm in modern recommender systems. In particular, one challenging problem in this space is cross-domain sequential recommendation (CDSR), which aims to predict future behaviors given user interactions across multiple domains. Existing CDSR frameworks are mostly built on the self-attention transformer and seek to improve by explicitly injecting additional domain-specific components (e.g. domain-aware module blocks). While these additional components help, we argue they overlook the core self-attention module already present in the transformer, a naturally powerful tool to learn correlations among behaviors. In this work, we aim to improve the CDSR performance for simple models from a novel perspective of enhancing the self-attention. Specifically, we introduce a Pareto-optimal self-attention and formulate the cross-domain learning as a multi-objective problem, where we optimize the recommendation task while dynamically minimizing the cross-domain attention scores. Our approach automates knowledge transfer in CDSR (dubbed as AutoCDSR) -- it not only mitigates negative transfer but also encourages complementary knowledge exchange among auxiliary domains. Based on the idea, we further introduce AutoCDSR+, a more performant variant with slight additional cost. Our proposal is easy to implement and works as a plug-and-play module that can be incorporated into existing transformer-based recommenders. Besides flexibility, it is practical to deploy because it brings little extra computational overheads without heavy hyper-parameter tuning. AutoCDSR on average improves Recall@10 for SASRec and Bert4Rec by 9.8% and 16.0% and NDCG@10 by 12.0% and 16.7%, respectively. Code is available at https://github.com/snap-research/AutoCDSR.
Authors:Claudia Cuttano, Gabriele Trivigno, Giuseppe Averta, Carlo Masone
Abstract:
Few-shot segmentation aims to segment unseen object categories from just a handful of annotated examples. This requires mechanisms that can both identify semantically related objects across images and accurately produce segmentation masks. We note that Segment Anything 2 (SAM2), with its prompt-and-propagate mechanism, offers both strong segmentation capabilities and a built-in feature matching process. However, we show that its representations are entangled with task-specific cues optimized for object tracking, which impairs its use for tasks requiring higher level semantic understanding. Our key insight is that, despite its class-agnostic pretraining, SAM2 already encodes rich semantic structure in its features. We propose SANSA (Semantically AligNed Segment Anything 2), a framework that makes this latent structure explicit, and repurposes SAM2 for few-shot segmentation through minimal task-specific modifications. SANSA achieves state-of-the-art performance on few-shot segmentation benchmarks specifically designed to assess generalization, outperforms generalist methods in the popular in-context setting, supports various prompts flexible interaction via points, boxes, or scribbles, and remains significantly faster and more compact than prior approaches. Code is available at https://github.com/ClaudiaCuttano/SANSA.
Authors:Yanbo Wang, Justin Dauwels, Yilun Du
Abstract:
Generative models have demonstrated remarkable abilities in generating high-fidelity visual content. In this work, we explore how generative models can further be used not only to synthesize visual content but also to understand the properties of a scene given a natural image. We formulate scene understanding as an inverse generative modeling problem, where we seek to find conditional parameters of a visual generative model to best fit a given natural image. To enable this procedure to infer scene structure from images substantially different than those seen during training, we further propose to build this visual generative model compositionally from smaller models over pieces of a scene. We illustrate how this procedure enables us to infer the set of objects in a scene, enabling robust generalization to new test scenes with an increased number of objects of new shapes. We further illustrate how this enables us to infer global scene factors, likewise enabling robust generalization to new scenes. Finally, we illustrate how this approach can be directly applied to existing pretrained text-to-image generative models for zero-shot multi-object perception. Code and visualizations are at https://energy-based-model.github.io/compositional-inference.
Authors:Chengyue Huang, Brisa Maneechotesuwan, Shivang Chopra, Zsolt Kira
Abstract:
Visual question answering (VQA) systems face significant challenges when adapting to real-world data shifts, especially in multi-modal contexts. While robust fine-tuning strategies are essential for maintaining performance across in-distribution (ID) and out-of-distribution (OOD) scenarios, current evaluation settings are primarily unimodal or particular to some types of OOD, offering limited insight into the complexities of multi-modal contexts. In this work, we propose a new benchmark FRAMES-VQA (Fine-Tuning Robustness across Multi-Modal Shifts in VQA) for evaluating robust fine-tuning for VQA tasks. We utilize ten existing VQA benchmarks, including VQAv2, IV-VQA, VQA-CP, OK-VQA and others, and categorize them into ID, near and far OOD datasets covering uni-modal, multi-modal and adversarial distribution shifts. We first conduct a comprehensive comparison of existing robust fine-tuning methods. We then quantify the distribution shifts by calculating the Mahalanobis distance using uni-modal and multi-modal embeddings extracted from various models. Further, we perform an extensive analysis to explore the interactions between uni- and multi-modal shifts as well as modality importance for ID and OOD samples. These analyses offer valuable guidance on developing more robust fine-tuning methods to handle multi-modal distribution shifts. The code is available at https://github.com/chengyuehuang511/FRAMES-VQA .
Authors:Yitong Li, Morteza Ghahremani, Christian Wachinger
Abstract:
Recent vision-language foundation models deliver state-of-the-art results on natural image classification but falter on medical images due to pronounced domain shifts. At the same time, training a medical foundation model requires substantial resources, including extensive annotated data and high computational capacity. To bridge this gap with minimal overhead, we introduce MedBridge, a lightweight multimodal adaptation framework that re-purposes pretrained VLMs for accurate medical image diagnosis. MedBridge comprises three key components. First, a Focal Sampling module that extracts high-resolution local regions to capture subtle pathological features and compensate for the limited input resolution of general-purpose VLMs. Second, a Query Encoder (QEncoder) injects a small set of learnable queries that attend to the frozen feature maps of VLM, aligning them with medical semantics without retraining the entire backbone. Third, a Mixture of Experts mechanism, driven by learnable queries, harnesses the complementary strength of diverse VLMs to maximize diagnostic performance. We evaluate MedBridge on five medical imaging benchmarks across three key adaptation tasks, demonstrating its superior performance in both cross-domain and in-domain adaptation settings, even under varying levels of training data availability. Notably, MedBridge achieved over 6-15% improvement in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis, underscoring its effectiveness in leveraging foundation models for accurate and data-efficient medical diagnosis. Our code is available at https://github.com/ai-med/MedBridge.
Authors:Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, Chuchu Fan
Abstract:
Despite advances in reasoning and planning of R1-like models, Large Language Models (LLMs) still struggle with tasks requiring precise computation, symbolic manipulation, optimization, and algorithmic reasoning, in which textual reasoning lacks the rigor of code execution. A key challenge is enabling LLMs to decide when to use textual reasoning versus code generation. While OpenAI trains models to invoke a Code Interpreter as needed, public research lacks guidance on aligning pre-trained LLMs to effectively leverage code and generalize across diverse tasks. We present R1-Code-Interpreter, an extension of a text-only LLM trained via multi-turn supervised fine-tuning (SFT) and reinforcement learning (RL) to autonomously generate multiple code queries during step-by-step reasoning. We curate 144 reasoning and planning tasks (107 for training, 37 for testing), each with over 200 diverse questions. We fine-tune Qwen-2.5 models (3B/7B/14B) using various SFT and RL strategies, investigating different answer formats, reasoning vs. non-reasoning models, cold vs. warm starts, GRPO vs. PPO, and masked vs. unmasked code outputs. Unlike prior RL work on narrow domains, we find that Code Interpreter training is significantly harder due to high task diversity and expensive code execution, highlighting the critical role of the SFT stage. Our final model, R1-CI-14B, improves average accuracy on the 37 test tasks from 44.0\% to 64.1\%, outperforming GPT-4o (text-only: 58.6\%) and approaching GPT-4o with Code Interpreter (70.9\%), with the emergent self-checking behavior via code generation. Datasets, Codes, and Models are available at https://github.com/yongchao98/R1-Code-Interpreter and https://huggingface.co/yongchao98.
Authors:Owen Oertell, Shikun Sun, Yiding Chen, Jin Peng Zhou, Zhiyong Wang, Wen Sun
Abstract:
The controllable generation of diffusion models aims to steer the model to generate samples that optimize some given objective functions. It is desirable for a variety of applications including image generation, molecule generation, and DNA/sequence generation. Reinforcement Learning (RL) based fine-tuning of the base model is a popular approach but it can overfit the reward function while requiring significant resources. We frame controllable generation as a problem of finding a distribution that optimizes a KL-regularized objective function. We present SLCD -- Supervised Learning based Controllable Diffusion, which iteratively generates online data and trains a small classifier to guide the generation of the diffusion model. Similar to the standard classifier-guided diffusion, SLCD's key computation primitive is classification and does not involve any complex concepts from RL or control. Via a reduction to no-regret online learning analysis, we show that under KL divergence, the output from SLCD provably converges to the optimal solution of the KL-regularized objective. Further, we empirically demonstrate that SLCD can generate high quality samples with nearly the same inference time as the base model in both image generation with continuous diffusion and biological sequence generation with discrete diffusion. Our code is available at https://github.com/Owen-Oertell/slcd
Authors:Ke Zhang, Cihan Xiao, Jiacong Xu, Yiqun Mei, Vishal M. Patel
Abstract:
Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to infer rich physical context from the text prompt. To incorporate this context into the video diffusion model, we use a multimodal large language model (MLLM) to verify intermediate latent variables against the inferred physical rules, guiding the gradient updates of model accordingly. Textual output of LLM is transformed into continuous signals. We then formulate a set of training objectives that jointly ensure physical accuracy and semantic alignment with the input text. Additionally, failure facts of physical phenomena are corrected via attention injection. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/.
Authors:Xiaole Tang, Xiaoyi He, Xiang Gu, Jian Sun
Abstract:
Despite remarkable advances made in all-in-one image restoration (AIR) for handling different types of degradations simultaneously, existing methods remain vulnerable to out-of-distribution degradations and images, limiting their real-world applicability. In this paper, we propose a multi-source representation learning framework BaryIR, which decomposes the latent space of multi-source degraded images into a continuous barycenter space for unified feature encoding and source-specific subspaces for specific semantic encoding. Specifically, we seek the multi-source unified representation by introducing a multi-source latent optimal transport barycenter problem, in which a continuous barycenter map is learned to transport the latent representations to the barycenter space. The transport cost is designed such that the representations from source-specific subspaces are contrasted with each other while maintaining orthogonality to those from the barycenter space. This enables BaryIR to learn compact representations with unified degradation-agnostic information from the barycenter space, as well as degradation-specific semantics from source-specific subspaces, capturing the inherent geometry of multi-source data manifold for generalizable AIR. Extensive experiments demonstrate that BaryIR achieves competitive performance compared to state-of-the-art all-in-one methods. Particularly, BaryIR exhibits superior generalization ability to real-world data and unseen degradations. The code will be publicly available at https://github.com/xl-tang3/BaryIR.
Authors:Chengyu Yang, Chengjun Liu
Abstract:
Laparoscopic surgeries often suffer from reduced visual clarity due to the presence of surgical smoke originated by surgical instruments, which poses significant challenges for both surgeons and vision based computer-assisted technologies. In order to remove the surgical smoke, a novel U-Net deep learning with new loss function and integrated differentiable Wiener filter (ULW) method is presented. Specifically, the new loss function integrates the pixel, structural, and perceptual properties. Thus, the new loss function, which combines the structural similarity index measure loss, the perceptual loss, as well as the mean squared error loss, is able to enhance the quality and realism of the reconstructed images. Furthermore, the learnable Wiener filter is capable of effectively modelling the degradation process caused by the surgical smoke. The effectiveness of the proposed ULW method is evaluated using the publicly available paired laparoscopic smoke and smoke-free image dataset, which provides reliable benchmarking and quantitative comparisons. Experimental results show that the proposed ULW method excels in both visual clarity and metric-based evaluation. As a result, the proposed ULW method offers a promising solution for real-time enhancement of laparoscopic imagery. The code is available at https://github.com/chengyuyang-njit/ImageDesmoke.
Authors:Zhengyuan Jiang, Moyang Guo, Kecen Li, Yuepeng Hu, Yupu Wang, Zhicong Huang, Cheng Hong, Neil Zhenqiang Gong
Abstract:
The rapid development of video generative models has led to a surge in highly realistic synthetic videos, raising ethical concerns related to disinformation and copyright infringement. Recently, video watermarking has been proposed as a mitigation strategy by embedding invisible marks into AI-generated videos to enable subsequent detection. However, the robustness of existing video watermarking methods against both common and adversarial perturbations remains underexplored. In this work, we introduce VideoMarkBench, the first systematic benchmark designed to evaluate the robustness of video watermarks under watermark removal and watermark forgery attacks. Our study encompasses a unified dataset generated by three state-of-the-art video generative models, across three video styles, incorporating four watermarking methods and seven aggregation strategies used during detection. We comprehensively evaluate 12 types of perturbations under white-box, black-box, and no-box threat models. Our findings reveal significant vulnerabilities in current watermarking approaches and highlight the urgent need for more robust solutions. Our code is available at https://github.com/zhengyuan-jiang/VideoMarkBench.
Authors:Miao Peng, Nuo Chen, Jianheng Tang, Jia Li
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities in knowledge-intensive tasks, while they remain vulnerable when encountering misinformation. Existing studies have explored the role of LLMs in combating misinformation, but there is still a lack of fine-grained analysis on the specific aspects and extent to which LLMs are influenced by misinformation. To bridge this gap, we present MisBench, the current largest and most comprehensive benchmark for evaluating LLMs' behavior and knowledge preference toward misinformation. MisBench consists of 10,346,712 pieces of misinformation, which uniquely considers both knowledge-based conflicts and stylistic variations in misinformation. Empirical results reveal that while LLMs demonstrate comparable abilities in discerning misinformation, they still remain susceptible to knowledge conflicts and stylistic variations. Based on these findings, we further propose a novel approach called Reconstruct to Discriminate (RtD) to strengthen LLMs' ability to detect misinformation. Our study provides valuable insights into LLMs' interactions with misinformation, and we believe MisBench can serve as an effective benchmark for evaluating LLM-based detectors and enhancing their reliability in real-world applications. Codes and data are available at https://github.com/GKNL/MisBench.
Authors:Tianyu Fu, Yi Ge, Yichen You, Enshu Liu, Zhihang Yuan, Guohao Dai, Shengen Yan, Huazhong Yang, Yu Wang
Abstract:
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
Authors:Shreyas Gururaj, Lars Grüne, Wojciech Samek, Sebastian Lapuschkin, Leander Weber
Abstract:
Overfitting is a well-known issue extending even to state-of-the-art (SOTA) Machine Learning (ML) models, resulting in reduced generalization, and a significant train-test performance gap. Mitigation measures include a combination of dropout, data augmentation, weight decay, and other regularization techniques. Among the various data augmentation strategies, occlusion is a prominent technique that typically focuses on randomly masking regions of the input during training. Most of the existing literature emphasizes randomness in selecting and modifying the input features instead of regions that strongly influence model decisions. We propose Relevance-driven Input Dropout (RelDrop), a novel data augmentation method which selectively occludes the most relevant regions of the input, nudging the model to use other important features in the prediction process, thus improving model generalization through informed regularization. We further conduct qualitative and quantitative analyses to study how Relevance-driven Input Dropout (RelDrop) affects model decision-making. Through a series of experiments on benchmark datasets, we demonstrate that our approach improves robustness towards occlusion, results in models utilizing more features within the region of interest, and boosts inference time generalization performance. Our code is available at https://github.com/Shreyas-Gururaj/LRP_Relevance_Dropout.
Authors:Yang Yang, Siming Zheng, Jinwei Chen, Boxi Wu, Xiaofei He, Deng Cai, Bo Li, Peng-Tao Jiang
Abstract:
Recent advances in diffusion based editing models have enabled realistic camera simulation and image-based bokeh, but video bokeh remains largely unexplored. Existing video editing models cannot explicitly control focus planes or adjust bokeh intensity, limiting their applicability for controllable optical effects. Moreover, naively extending image-based bokeh methods to video often results in temporal flickering and unsatisfactory edge blur transitions due to the lack of temporal modeling and generalization capability. To address these challenges, we propose a novel one-step video bokeh framework that converts arbitrary input videos into temporally coherent, depth-aware bokeh effects. Our method leverages a multi-plane image (MPI) representation constructed through a progressively widening depth sampling function, providing explicit geometric guidance for depth-dependent blur synthesis. By conditioning a single-step video diffusion model on MPI layers and utilizing the strong 3D priors from pre-trained models such as Stable Video Diffusion, our approach achieves realistic and consistent bokeh effects across diverse scenes. Additionally, we introduce a progressive training strategy to enhance temporal consistency, depth robustness, and detail preservation. Extensive experiments demonstrate that our method produces high-quality, controllable bokeh effects and achieves state-of-the-art performance on multiple evaluation benchmarks.
Authors:Carina Newen, Luca Hinkamp, Maria Ntonti, Emmanuel Müller
Abstract:
From uncertainty quantification to real-world object detection, we recognize the importance of machine learning algorithms, particularly in safety-critical domains such as autonomous driving or medical diagnostics. In machine learning, ambiguous data plays an important role in various machine learning domains. Optical illusions present a compelling area of study in this context, as they offer insight into the limitations of both human and machine perception. Despite this relevance, optical illusion datasets remain scarce. In this work, we introduce a novel dataset of optical illusions featuring intermingled animal pairs designed to evoke perceptual ambiguity. We identify generalizable visual concepts, particularly gaze direction and eye cues, as subtle yet impactful features that significantly influence model accuracy. By confronting models with perceptual ambiguity, our findings underscore the importance of concepts in visual learning and provide a foundation for studying bias and alignment between human and machine vision. To make this dataset useful for general purposes, we generate optical illusions systematically with different concepts discussed in our bias mitigation section. The dataset is accessible in Kaggle via https://kaggle.com/datasets/693bf7c6dd2cb45c8a863f9177350c8f9849a9508e9d50526e2ffcc5559a8333. Our source code can be found at https://github.com/KDD-OpenSource/Ambivision.git.
Authors:Huacan Wang, Ziyi Ni, Shuo Zhang, Shuo Lu, Sen Hu, Ziyang He, Chen Hu, Jiaye Lin, Yifu Guo, Ronghao Chen, Xin Li, Daxin Jiang, Yuntao Du, Pin Lyu
Abstract:
The ultimate goal of code agents is to solve complex tasks autonomously. Although large language models (LLMs) have made substantial progress in code generation, real-world tasks typically demand full-fledged code repositories rather than simple scripts. Building such repositories from scratch remains a major challenge. Fortunately, GitHub hosts a vast, evolving collection of open-source repositories, which developers frequently reuse as modular components for complex tasks. Yet, existing frameworks like OpenHands and SWE-Agent still struggle to effectively leverage these valuable resources. Relying solely on README files provides insufficient guidance, and deeper exploration reveals two core obstacles: overwhelming information and tangled dependencies of repositories, both constrained by the limited context windows of current LLMs. To tackle these issues, we propose RepoMaster, an autonomous agent framework designed to explore and reuse GitHub repositories for solving complex tasks. For efficient understanding, RepoMaster constructs function-call graphs, module-dependency graphs, and hierarchical code trees to identify essential components, providing only identified core elements to the LLMs rather than the entire repository. During autonomous execution, it progressively explores related components using our exploration tools and prunes information to optimize context usage. Evaluated on the adjusted MLE-bench, RepoMaster achieves a 110% relative boost in valid submissions over the strongest baseline OpenHands. On our newly released GitTaskBench, RepoMaster lifts the task-pass rate from 40.7% to 62.9% while reducing token usage by 95%. Our code and demonstration materials are publicly available at https://github.com/QuantaAlpha/RepoMaster.
Authors:Jiawei Tang, Yuheng Jia
Abstract:
Label distribution learning (LDL) is an effective method to predict the relative label description degree (a.k.a. label distribution) of a sample. However, the label distribution is not a complete representation of an instance because it overlooks the absolute intensity of each label. Specifically, it's impossible to obtain the total description degree of hidden labels that not in the label space, which leads to the loss of information and confusion in instances. To solve the above problem, we come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution and introduce it into the LDL process, forming the improved paradigm of concentration distribution learning. Moreover, we propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets. Extensive experiments prove that the proposed approach is able to extract background concentrations from label distributions while producing more accurate prediction results than the state-of-the-art LDL methods. The code is available in https://github.com/seutjw/CDL-LD.
Authors:Yao Lu, Tengfei Ma, Zeyu Wang, Zhuangzhi Chen, Dongwei Xu, Yun Lin, Qi Xuan, Guan Gui
Abstract:
With the rapid development of wireless communications and the growing complexity of digital modulation schemes, traditional manual modulation recognition methods struggle to extract reliable signal features and meet real-time requirements in modern scenarios. Recently, deep learning based Automatic Modulation Recognition (AMR) approaches have greatly improved classification accuracy. However, their large model sizes and high computational demands hinder deployment on resource-constrained devices. Model pruning provides a general approach to reduce model complexity, but existing weight, channel, and layer pruning techniques each present a trade-off between compression rate, hardware acceleration, and accuracy preservation. To this end, in this paper, we introduce FCOS, a novel Fine-to-COarse two-Stage pruning framework that combines channel-level pruning with layer-level collapse diagnosis to achieve extreme compression, high performance and efficient inference. In the first stage of FCOS, hierarchical clustering and parameter fusion are applied to channel weights to achieve channel-level pruning. Then a Layer Collapse Diagnosis (LaCD) module uses linear probing to identify layer collapse and removes the collapsed layers due to high channel compression ratio. Experiments on multiple AMR benchmarks demonstrate that FCOS outperforms existing channel and layer pruning methods. Specifically, FCOS achieves 95.51% FLOPs reduction and 95.31% parameter reduction while still maintaining performance close to the original ResNet56, with only a 0.46% drop in accuracy on Sig2019-12. Code is available at https://github.com/yaolu-zjut/FCOS.
Authors:Weixing Wang, Zifeng Ding, Jindong Gu, Rui Cao, Christoph Meinel, Gerard de Melo, Haojin Yang
Abstract:
Large Vision-Language Models (LVLMs) with discrete image tokenizers unify multimodal representations by encoding visual inputs into a finite set of tokens. Despite their effectiveness, we find that these models still hallucinate non-existent objects. We hypothesize that this may be due to visual priors induced during training: When certain image tokens frequently co-occur in the same spatial regions and represent shared objects, they become strongly associated with the verbalizations of those objects. As a result, the model may hallucinate by evoking visually absent tokens that often co-occur with present ones. To test this assumption, we construct a co-occurrence graph of image tokens using a segmentation dataset and employ a Graph Neural Network (GNN) with contrastive learning followed by a clustering method to group tokens that frequently co-occur in similar visual contexts. We find that hallucinations predominantly correspond to clusters whose tokens dominate the input, and more specifically, that the visually absent tokens in those clusters show much higher correlation with hallucinated objects compared to tokens present in the image. Based on this observation, we propose a hallucination mitigation method that suppresses the influence of visually absent tokens by modifying latent image embeddings during generation. Experiments show our method reduces hallucinations while preserving expressivity. Code is available at https://github.com/weixingW/CGC-VTD/tree/main
Authors:Chika Maduabuchi, Hao Chen, Yujin Han, Jindong Wang
Abstract:
Latent Video Diffusion Models (LVDMs) achieve high-quality generation but are sensitive to imperfect conditioning, which causes semantic drift and temporal incoherence on noisy, web-scale video-text datasets. We introduce CAT-LVDM, the first corruption-aware training framework for LVDMs that improves robustness through structured, data-aligned noise injection. Our method includes Batch-Centered Noise Injection (BCNI), which perturbs embeddings along intra-batch semantic directions to preserve temporal consistency. BCNI is especially effective on caption-rich datasets like WebVid-2M, MSR-VTT, and MSVD. We also propose Spectrum-Aware Contextual Noise (SACN), which injects noise along dominant spectral directions to improve low-frequency smoothness, showing strong results on UCF-101. On average, BCNI reduces FVD by 31.9% across WebVid-2M, MSR-VTT, and MSVD, while SACN yields a 12.3% improvement on UCF-101. Ablation studies confirm the benefit of low-rank, data-aligned noise. Our theoretical analysis further explains how such perturbations tighten entropy, Wasserstein, score-drift, mixing-time, and generalization bounds. CAT-LVDM establishes a principled, scalable training approach for robust video diffusion under multimodal noise. Code and models: https://github.com/chikap421/catlvdm
Authors:Zitong Wang, Hang Zhao, Qianyu Zhou, Xuequan Lu, Xiangtai Li, Yiren Song
Abstract:
Diffusion models have recently motivated great success in many generation tasks like object removal. Nevertheless, existing image decomposition methods struggle to disentangle semi-transparent or transparent layer occlusions due to mask prior dependencies, static object assumptions, and the lack of datasets. In this paper, we delve into a novel task: Layer-Wise Decomposition of Alpha-Composited Images, aiming to recover constituent layers from single overlapped images under the condition of semi-transparent/transparent alpha layer non-linear occlusion. To address challenges in layer ambiguity, generalization, and data scarcity, we first introduce AlphaBlend, the first large-scale and high-quality dataset for transparent and semi-transparent layer decomposition, supporting six real-world subtasks (e.g., translucent flare removal, semi-transparent cell decomposition, glassware decomposition). Building on this dataset, we present DiffDecompose, a diffusion Transformer-based framework that learns the posterior over possible layer decompositions conditioned on the input image, semantic prompts, and blending type. Rather than regressing alpha mattes directly, DiffDecompose performs In-Context Decomposition, enabling the model to predict one or multiple layers without per-layer supervision, and introduces Layer Position Encoding Cloning to maintain pixel-level correspondence across layers. Extensive experiments on the proposed AlphaBlend dataset and public LOGO dataset verify the effectiveness of DiffDecompose. The code and dataset will be available upon paper acceptance. Our code will be available at: https://github.com/Wangzt1121/DiffDecompose.
Authors:Thalles Silva, Helio Pedrini, AdÃn RamÃrez Rivera
Abstract:
We present Self-Organizing Visual Prototypes (SOP), a new training technique for unsupervised visual feature learning. Unlike existing prototypical self-supervised learning (SSL) methods that rely on a single prototype to encode all relevant features of a hidden cluster in the data, we propose the SOP strategy. In this strategy, a prototype is represented by many semantically similar representations, or support embeddings (SEs), each containing a complementary set of features that together better characterize their region in space and maximize training performance. We reaffirm the feasibility of non-parametric SSL by introducing novel non-parametric adaptations of two loss functions that implement the SOP strategy. Notably, we introduce the SOP Masked Image Modeling (SOP-MIM) task, where masked representations are reconstructed from the perspective of multiple non-parametric local SEs. We comprehensively evaluate the representations learned using the SOP strategy on a range of benchmarks, including retrieval, linear evaluation, fine-tuning, and object detection. Our pre-trained encoders achieve state-of-the-art performance on many retrieval benchmarks and demonstrate increasing performance gains with more complex encoders.
Authors:Mokai Pan, Kaizhen Zhu, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, Ye Shi
Abstract:
Diffusion Bridges enable transitions between arbitrary distributions, with the Unified Diffusion Bridge (UniDB) framework achieving high-fidelity image generation via a Stochastic Optimal Control (SOC) formulation. However, UniDB's reliance on iterative Euler sampling methods results in slow, computationally expensive inference, while existing acceleration techniques for diffusion or diffusion bridge models fail to address its unique challenges: missing terminal mean constraints and SOC-specific penalty coefficients in its SDEs. We present UniDB++, a training-free sampling algorithm that significantly improves upon these limitations. The method's key advancement comes from deriving exact closed-form solutions for UniDB's reverse-time SDEs, effectively reducing the error accumulation inherent in Euler approximations and enabling high-quality generation with up to 20$\times$ fewer sampling steps. This method is further complemented by replacing conventional noise prediction with a more stable data prediction model, along with an SDE-Corrector mechanism that maintains perceptual quality for low-step regimes (5-10 steps). Additionally, we demonstrate that UniDB++ aligns with existing diffusion bridge acceleration methods by evaluating their update rules, and UniDB++ can recover DBIMs as special cases under some theoretical conditions. Experiments demonstrate UniDB++'s state-of-the-art performance in image restoration tasks, outperforming Euler-based methods in fidelity and speed while reducing inference time significantly. This work bridges the gap between theoretical generality and practical efficiency in SOC-driven diffusion bridge models. Our code is available at https://github.com/2769433owo/UniDB-plusplus.
Authors:Amitai Yacobi, Nir Ben-Ari, Ronen Talmon, Uri Shaham
Abstract:
Learning shared representations is a primary area of multimodal representation learning. The current approaches to achieve a shared embedding space rely heavily on paired samples from each modality, which are significantly harder to obtain than unpaired ones. In this work, we demonstrate that shared representations can be learned almost exclusively from unpaired data. Our arguments are grounded in the spectral embeddings of the random walk matrices constructed independently from each unimodal representation. Empirical results in computer vision and natural language processing domains support its potential, revealing the effectiveness of unpaired data in capturing meaningful cross-modal relations, demonstrating high capabilities in retrieval tasks, generation, arithmetics, zero-shot, and cross-domain classification. This work, to the best of our knowledge, is the first to demonstrate these capabilities almost exclusively from unpaired samples, giving rise to a cross-modal embedding that could be viewed as universal, i.e., independent of the specific modalities of the data. Our code IS publicly available at https://github.com/shaham-lab/SUE.
Authors:Yipengjing Sun, Chenyang Wang, Shunyuan Zheng, Zonglin Li, Shengping Zhang, Xiangyang Ji
Abstract:
We propose GRGS, a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions. Unlike existing methods that rely on per-character optimization or ignore physical constraints, GRGS adopts a feed-forward, fully supervised strategy that projects geometry, material, and illumination cues from multi-view 2D observations into 3D Gaussian representations. Specifically, to reconstruct lighting-invariant geometry, we introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals. Based on the high-quality geometry, a Physically Grounded Neural Rendering (PGNR) module is further proposed to integrate neural prediction with physics-based shading, supporting editable relighting with shadows and indirect illumination. Besides, we design a 2D-to-3D projection training scheme that leverages differentiable supervision from ambient occlusion, direct, and indirect lighting maps, which alleviates the computational cost of explicit ray tracing. Extensive experiments demonstrate that GRGS achieves superior visual quality, geometric consistency, and generalization across characters and lighting conditions.
Authors:Dingming Li, Hongxing Li, Zixuan Wang, Yuchen Yan, Hang Zhang, Siqi Chen, Guiyang Hou, Shengpei Jiang, Wenqi Zhang, Yongliang Shen, Weiming Lu, Yueting Zhuang
Abstract:
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.
Authors:Haowei Wang, Junjie Wang, Xiaojun Jia, Rupeng Zhang, Mingyang Li, Zhe Liu, Yang Liu, Qing Wang
Abstract:
Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.
Authors:Wei Pang, Kevin Qinghong Lin, Xiangru Jian, Xi He, Philip Torr
Abstract:
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
Authors:Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian, Rui Hu, Liang Liu, Shuai Ren, Yafei Wen, Xiaoxin Chen, Aojun Zhou, Hongsheng Li
Abstract:
In this paper, we introduce UI-Genie, a self-improving framework addressing two key challenges in GUI agents: verification of trajectory outcome is challenging and high-quality training data are not scalable. These challenges are addressed by a reward model and a self-improving pipeline, respectively. The reward model, UI-Genie-RM, features an image-text interleaved architecture that efficiently pro- cesses historical context and unifies action-level and task-level rewards. To sup- port the training of UI-Genie-RM, we develop deliberately-designed data genera- tion strategies including rule-based verification, controlled trajectory corruption, and hard negative mining. To address the second challenge, a self-improvement pipeline progressively expands solvable complex GUI tasks by enhancing both the agent and reward models through reward-guided exploration and outcome verification in dynamic environments. For training the model, we generate UI- Genie-RM-517k and UI-Genie-Agent-16k, establishing the first reward-specific dataset for GUI agents while demonstrating high-quality synthetic trajectory gen- eration without manual annotation. Experimental results show that UI-Genie achieves state-of-the-art performance across multiple GUI agent benchmarks with three generations of data-model self-improvement. We open-source our complete framework implementation and generated datasets to facilitate further research in https://github.com/Euphoria16/UI-Genie.
Authors:Xiaojun Jia, Sensen Gao, Simeng Qin, Tianyu Pang, Chao Du, Yihao Huang, Xinfeng Li, Yiming Li, Bo Li, Yang Liu
Abstract:
Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.
Authors:Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang Wang, Min Lin, Chao Du
Abstract:
The recent paradigm shift towards training large language models (LLMs) using DeepSeek-R1-Zero-style reinforcement learning (RL) on verifiable rewards has led to impressive advancements in code and mathematical reasoning. However, this methodology is limited to tasks where rule-based answer verification is possible and does not naturally extend to real-world domains such as chemistry, healthcare, engineering, law, biology, business, and economics. Current practical workarounds use an additional LLM as a model-based verifier; however, this introduces issues such as reliance on a strong verifier LLM, susceptibility to reward hacking, and the practical burden of maintaining the verifier model in memory during training. To address this and extend DeepSeek-R1-Zero-style training to general reasoning domains, we propose a verifier-free method (VeriFree) that bypasses answer verification and instead uses RL to directly maximize the probability of generating the reference answer. We compare VeriFree with verifier-based methods and demonstrate that, in addition to its significant practical benefits and reduced compute requirements, VeriFree matches and even surpasses verifier-based methods on extensive evaluations across MMLU-Pro, GPQA, SuperGPQA, and math-related benchmarks. Moreover, we provide insights into this method from multiple perspectives: as an elegant integration of training both the policy and implicit verifier in a unified model, and as a variational optimization approach. Code is available at https://github.com/sail-sg/VeriFree.
Authors:Omer Dahary, Yehonathan Cohen, Or Patashnik, Kfir Aberman, Daniel Cohen-Or
Abstract:
Generating multiple distinct subjects remains a challenge for existing text-to-image diffusion models. Complex prompts often lead to subject leakage, causing inaccuracies in quantities, attributes, and visual features. Preventing leakage among subjects necessitates knowledge of each subject's spatial location. Recent methods provide these spatial locations via an external layout control. However, enforcing such a prescribed layout often conflicts with the innate layout dictated by the sampled initial noise, leading to misalignment with the model's prior. In this work, we introduce a new approach that predicts a spatial layout aligned with the prompt, derived from the initial noise, and refines it throughout the denoising process. By relying on this noise-induced layout, we avoid conflicts with externally imposed layouts and better preserve the model's prior. Our method employs a small neural network to predict and refine the evolving noise-induced layout at each denoising step, ensuring clear boundaries between subjects while maintaining consistency. Experimental results show that this noise-aligned strategy achieves improved text-image alignment and more stable multi-subject generation compared to existing layout-guided techniques, while preserving the rich diversity of the model's original distribution.
Authors:Keenan Samway, Max Kleiman-Weiner, David Guzman Piedrahita, Rada Mihalcea, Bernhard Schölkopf, Zhijing Jin
Abstract:
As AI systems increasingly navigate applications in healthcare, law, and governance, understanding how they handle ethically complex scenarios becomes critical. Previous work has mainly examined the moral judgments in large language models (LLMs), rather than their underlying moral reasoning process. In contrast, we focus on a large-scale analysis of the moral reasoning traces provided by LLMs. Furthermore, unlike prior work that attempted to draw inferences from only a handful of moral dilemmas, our study leverages over 600 distinct trolley problems as probes for revealing the reasoning patterns that emerge within different LLMs. We introduce and test a taxonomy of moral rationales to systematically classify reasoning traces according to two main normative ethical theories: consequentialism and deontology. Our analysis reveals that LLM chains-of-thought tend to favor deontological principles based on moral obligations, while post-hoc explanations shift notably toward consequentialist rationales that emphasize utility. Our framework provides a foundation for understanding how LLMs process and articulate ethical considerations, an important step toward safe and interpretable deployment of LLMs in high-stakes decision-making environments. Our code is available at https://github.com/keenansamway/moral-lens .
Authors:Zijun Liu, Zhennan Wan, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu
Abstract:
With the rapid advancement of post-training techniques for reasoning and information seeking, large language models (LLMs) can incorporate a large quantity of retrieved knowledge to solve complex tasks. However, the limited context window of LLMs obstructs scaling the amount of external knowledge input, prohibiting further improvement, especially for tasks requiring significant amount of external knowledge. Existing context window extension methods inevitably cause information loss. LLM-based multi-agent methods emerge as a new paradigm to handle massive input in a distributional manner, where we identify two core bottlenecks in existing knowledge synchronization and reasoning processes. In this work, we develop a multi-agent framework, $\textbf{ExtAgents}$, to overcome the bottlenecks and enable better scalability in inference-time knowledge integration without longer-context training. Benchmarked with our enhanced multi-hop question answering test, $\textbf{$\boldsymbol{\infty}$Bench+}$, and other public test sets including long survey generation, ExtAgents significantly enhances the performance over existing non-training methods with the same amount of external knowledge input, regardless of whether it falls $\textit{within or exceeds the context window}$. Moreover, the method maintains high efficiency due to high parallelism. Further study in the coordination of LLM agents on increasing external knowledge input could benefit real-world applications.
Authors:Bozhou Li, Wentao Zhang
Abstract:
Currently, a prevalent approach for enhancing Vision-Language Models (VLMs) performance is to encode both the high-resolution version and the thumbnail of an image simultaneously. While effective, this method generates a large number of image tokens. When combined with the widely used Rotary Position Embedding (RoPE), its long-term decay property hinders the interaction between high-resolution tokens and thumbnail tokens, as well as between text and image. To address these issues, we propose ID-Align, which alleviates these problems by reordering position IDs. In this method, high-resolution tokens inherit IDs from their corresponding thumbnail token while constraining the overexpansion of positional indices. Our experiments conducted within the LLaVA-Next framework demonstrate that ID-Align achieves significant improvements, including a 6.09% enhancement on MMBench's relation reasoning tasks and notable gains across multiple benchmarks. Our code is available at the following link: https://github.com/zooblastlbz/ID-Align.
Authors:Muzhi Zhu, Hao Zhong, Canyu Zhao, Zongze Du, Zheng Huang, Mingyu Liu, Hao Chen, Cheng Zou, Jingdong Chen, Ming Yang, Chunhua Shen
Abstract:
Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.
Authors:Huaijin Pi, Zhi Cen, Zhiyang Dou, Taku Komura
Abstract:
Synthesizing whole-body manipulation of articulated objects, including body motion, hand motion, and object motion, is a critical yet challenging task with broad applications in virtual humans and robotics. The core challenges are twofold. First, achieving realistic whole-body motion requires tight coordination between the hands and the rest of the body, as their movements are interdependent during manipulation. Second, articulated object manipulation typically involves high degrees of freedom and demands higher precision, often requiring the fingers to be placed at specific regions to actuate movable parts. To address these challenges, we propose a novel coordinated diffusion noise optimization framework. Specifically, we perform noise-space optimization over three specialized diffusion models for the body, left hand, and right hand, each trained on its own motion dataset to improve generalization. Coordination naturally emerges through gradient flow along the human kinematic chain, allowing the global body posture to adapt in response to hand motion objectives with high fidelity. To further enhance precision in hand-object interaction, we adopt a unified representation based on basis point sets (BPS), where end-effector positions are encoded as distances to the same BPS used for object geometry. This unified representation captures fine-grained spatial relationships between the hand and articulated object parts, and the resulting trajectories serve as targets to guide the optimization of diffusion noise, producing highly accurate interaction motion. We conduct extensive experiments demonstrating that our method outperforms existing approaches in motion quality and physical plausibility, and enables various capabilities such as object pose control, simultaneous walking and manipulation, and whole-body generation from hand-only data.
Authors:Xiao Liu, Da Yin, Zirui Wu, Yansong Feng
Abstract:
Tools enhance the reasoning capabilities of large language models (LLMs) in complex problem-solving tasks, but not all tasks have available tools. In the absence of predefined tools, prior works have explored instructing LLMs to generate tools on their own. However, such approaches rely heavily on the models' internal knowledge and would fail in domains beyond the LLMs' knowledge scope. To address this limitation, we propose RefTool, a reference-guided framework for automatic tool creation that leverages structured external materials such as textbooks. RefTool consists of two modules: (1) tool creation, where LLMs generate executable tools from reference content, validate them using illustrative examples, and organize them hierarchically into a toolbox; and (2) tool utilization, where LLMs navigate the toolbox structure to select and apply the appropriate tools to solve problems. Experiments on causality, physics, and chemistry benchmarks demonstrate that RefTool outperforms existing tool-creation and domain-specific reasoning methods by 11.3% on average accuracy, while being cost-efficient and broadly generalizable. Analyses reveal that grounding tool creation in references produces accurate and faithful tools, and that the hierarchical structure facilitates effective tool selection. RefTool enables LLMs to overcome knowledge limitations, demonstrating the value of grounding tool creation in external references for enhanced and generalizable reasoning.
Authors:Maria Cristina Carrisi, Mirko Marras, Sara Vergallo
Abstract:
Younger generations are growing up in a world increasingly shaped by intelligent technologies, making early AI literacy crucial for developing the skills to critically understand and navigate them. However, education in this field often emphasizes tool-based learning, prioritizing usage over understanding the underlying concepts. This lack of knowledge leaves non-experts, especially children, prone to misconceptions, unrealistic expectations, and difficulties in recognizing biases and stereotypes. In this paper, we propose a structured and replicable teaching approach that fosters foundational AI literacy in primary students, by building upon core mathematical elements closely connected to and of interest in primary curricula, to strengthen conceptualization, data representation, classification reasoning, and evaluation of AI. To assess the effectiveness of our approach, we conducted an empirical study with thirty-one fifth-grade students across two classes, evaluating their progress through a post-test and a satisfaction survey. Our results indicate improvements in terminology understanding and usage, features description, logical reasoning, and evaluative skills, with students showing a deeper comprehension of decision-making processes and their limitations. Moreover, the approach proved engaging, with students particularly enjoying activities that linked AI concepts to real-world reasoning. Materials: https://github.com/tail-unica/ai-literacy-primary-ed.
Authors:Xiusi Chen, Shanyong Wang, Cheng Qian, Hongru Wang, Peixuan Han, Heng Ji
Abstract:
In high-stakes domains such as healthcare and finance, effective decision-making demands not just accurate outcomes but transparent and explainable reasoning. However, current language models often lack the structured deliberation needed for such tasks, instead generating decisions and justifications in a disconnected, post-hoc manner. To address this, we propose DecisionFlow, a novel decision modeling framework that guides models to reason over structured representations of actions, attributes, and constraints. Rather than predicting answers directly from prompts, DecisionFlow builds a semantically grounded decision space and infers a latent utility function to evaluate trade-offs in a transparent, utility-driven manner. This process produces decisions tightly coupled with interpretable rationales reflecting the model's reasoning. Empirical results on two high-stakes benchmarks show that DecisionFlow not only achieves up to 30% accuracy gains over strong prompting baselines but also enhances alignment in outcomes. Our work is a critical step toward integrating symbolic reasoning with LLMs, enabling more accountable, explainable, and reliable LLM decision support systems. Code and data are at https://github.com/xiusic/DecisionFlow.
Authors:Jingyuan Huang, Xi Zhu, Minghao Guo, Yongfeng Zhang
Abstract:
Web 2.0 social platforms are inherently centralized, with user data and algorithmic decisions controlled by the platform. However, users can only passively receive social predictions without being able to choose the underlying algorithm, which limits personalization. Fortunately, with the emergence of blockchain, users are allowed to choose algorithms that are tailored to their local situation, improving prediction results in a personalized way. In a blockchain environment, each user possesses its own model to perform the social prediction, capturing different perspectives on social interactions. In our work, we propose DeSocial, a decentralized social network learning framework deployed on an Ethereum (ETH) local development chain that integrates distributed data storage, node-level consensus, and user-driven model selection through Ganache. In the first stage, each user leverages DeSocial to evaluate multiple backbone models on their local subgraph. DeSocial coordinates the execution and returns model-wise prediction results, enabling the user to select the most suitable backbone for personalized social prediction. Then, DeSocial uniformly selects several validation nodes that possess the algorithm specified by each user, and aggregates the prediction results by majority voting, to prevent errors caused by any single model's misjudgment. Extensive experiments show that DeSocial has an evident improvement compared to the five classical centralized social network learning models, promoting user empowerment in blockchain-based decentralized social networks, showing the importance of multi-node validation and personalized algorithm selection based on blockchain. Our implementation is available at: https://github.com/agiresearch/DeSocial.
Authors:Xihong Yang, Siwei Wang, Fangdi Wang, Jiaqi Jin, Suyuan Liu, Yue Liu, En Zhu, Xinwang Liu, Yueming Jin
Abstract:
Leveraging the powerful representation learning capabilities, deep multi-view clustering methods have demonstrated reliable performance by effectively integrating multi-source information from diverse views in recent years. Most existing methods rely on the assumption of clean views. However, noise is pervasive in real-world scenarios, leading to a significant degradation in performance. To tackle this problem, we propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC. Specifically, we reformulate noisy identification as an anomaly identification problem using GMM. We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results. Furthermore, we introduce a noise-robust contrastive mechanism to generate reliable representations. Additionally, we provide a theoretical proof demonstrating that these representations can discard noisy information, thereby improving the performance of downstream tasks. Extensive experiments on six benchmark datasets demonstrate that AIRMVC outperforms state-of-the-art algorithms in terms of robustness in noisy scenarios. The code of AIRMVC are available at https://github.com/xihongyang1999/AIRMVC on Github.
Authors:Junhao Cheng, Yuying Ge, Teng Wang, Yixiao Ge, Jing Liao, Ying Shan
Abstract:
Recent advances in CoT reasoning and RL post-training have been reported to enhance video reasoning capabilities of MLLMs. This progress naturally raises a question: can these models perform complex video reasoning in a manner comparable to human experts? However, existing video benchmarks primarily evaluate visual perception and grounding abilities, with questions that can be answered based on explicit prompts or isolated visual cues. Such benchmarks do not fully capture the intricacies of real-world reasoning, where humans must actively search for, integrate, and analyze multiple clues before reaching a conclusion. To address this issue, we present Video-Holmes, a benchmark inspired by the reasoning process of Sherlock Holmes, designed to evaluate the complex video reasoning capabilities of MLLMs. Video-Holmes consists of 1,837 questions derived from 270 manually annotated suspense short films, which spans seven carefully designed tasks. Each task is constructed by first identifying key events and causal relationships within films, and then designing questions that require models to actively locate and connect multiple relevant visual clues scattered across different video segments. Our comprehensive evaluation of state-of-the-art MLLMs reveals that, while these models generally excel at visual perception, they encounter substantial difficulties with integrating information and often miss critical clues. For example, the best-performing model, Gemini-2.5-Pro, achieves an accuracy of only 45%, with most models scoring below 40%. We aim that Video-Holmes can serve as a "Holmes-test" for multimodal reasoning, motivating models to reason more like humans and emphasizing the ongoing challenges in this field. The benchmark is released in https://github.com/TencentARC/Video-Holmes.
Authors:Qi Yu, Zhichen Zeng, Yuchen Yan, Zhining Liu, Baoyu Jing, Ruizhong Qiu, Ariful Azad, Hanghang Tong
Abstract:
Network alignment (NA) aims to identify node correspondence across different networks and serves as a critical cornerstone behind various downstream multi-network learning tasks. Despite growing research in NA, there lacks a comprehensive library that facilitates the systematic development and benchmarking of NA methods. In this work, we introduce PLANETALIGN, a comprehensive Python library for network alignment that features a rich collection of built-in datasets, methods, and evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates 18 datasets and 14 NA methods with extensible APIs for easy use and development of NA methods. Our standardized evaluation pipeline encompasses a wide range of metrics, enabling a systematic assessment of the effectiveness, scalability, and robustness of NA methods. Through extensive comparative studies, we reveal practical insights into the strengths and limitations of existing NA methods. We hope that PLANETALIGN can foster a deeper understanding of the NA problem and facilitate the development and benchmarking of more effective, scalable, and robust methods in the future. The source code of PLANETALIGN is available at https://github.com/yq-leo/PlanetAlign.
Authors:James Oldfield, Shawn Im, Yixuan Li, Mihalis A. Nicolaou, Ioannis Patras, Grigorios G Chrysos
Abstract:
Multilayer perceptrons (MLPs) are an integral part of large language models, yet their dense representations render them difficult to understand, edit, and steer. Recent methods learn interpretable approximations via neuron-level sparsity, yet fail to faithfully reconstruct the original mapping--significantly increasing model's next-token cross-entropy loss. In this paper, we advocate for moving to layer-level sparsity to overcome the accuracy trade-off in sparse layer approximation. Under this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs and Gated Linear Units, expanding pre-trained dense layers into tens of thousands of specialized sublayers. Through a flexible form of tensor factorization, each sparsely activating MxD sublayer implements a linear transformation with full-rank weights--preserving the original decoders' expressive capacity even under heavy sparsity. Experimentally, we show that MxDs significantly outperform state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in language models with up to 3B parameters. Further evaluations on sparse probing and feature steering demonstrate that MxDs learn similarly specialized features of natural language--opening up a promising new avenue for designing interpretable yet faithful decompositions. Our code is included at: https://github.com/james-oldfield/MxD/.
Authors:Wenyuan Li, Shunlin Liang, Keyan Chen, Yongzhe Chen, Han Ma, Jianglei Xu, Yichuan Ma, Shikang Guan, Husheng Fang, Zhenwei Shi
Abstract:
Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.
Authors:Kele Shao, Keda Tao, Can Qin, Haoxuan You, Yang Sui, Huan Wang
Abstract:
Video large language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens. Existing token pruning methods offer solutions. However, approaches operating within the LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead in shallow layers. In contrast, methods performing token pruning before the LLM (outer-LLM pruning) primarily address spatial redundancy within individual frames or limited temporal windows, neglecting the crucial global temporal dynamics and correlations across longer video sequences. This leads to sub-optimal spatio-temporal reduction and does not leverage video compressibility fully. Crucially, the synergistic potential and mutual influence of combining these strategies remain unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-free holistic token merging framework. HoliTom employs outer-LLM pruning through global redundancy-aware temporal segmentation, followed by spatial-temporal merging to reduce visual tokens by over 90%, significantly alleviating the LLM's computational burden. Complementing this, we introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning. Evaluations demonstrate our method's promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing computational costs to 6.9% of FLOPs while maintaining 99.1% of the original performance. Furthermore, we achieve a 2.28x reduction in Time-To-First-Token (TTFT) and a 1.32x acceleration in decoding throughput, highlighting the practical benefits of our integrated pruning approach for efficient video LLMs inference.
Authors:Biao Zhang, Peter Wonka
Abstract:
Function fitting/approximation plays a fundamental role in computer graphics and other engineering applications. While recent advances have explored neural networks to address this task, these methods often rely on architectures with many parameters, limiting their practical applicability. In contrast, we pursue high-quality function approximation using parameter-efficient representations that eliminate the dependency on neural networks entirely. We first propose a novel framework for continuous function modeling. Most existing works can be formulated using this framework. We then introduce a compact function representation, which is based on polynomials interpolated using radial basis functions, bypassing both neural networks and complex/hierarchical data structures. We also develop memory-efficient CUDA-optimized algorithms that reduce computational time and memory consumption to less than 10% compared to conventional automatic differentiation frameworks. Finally, we validate our representation and optimization pipeline through extensive experiments on 3D signed distance functions (SDFs). The proposed representation achieves comparable or superior performance to state-of-the-art techniques (e.g., octree/hash-grid techniques) with significantly fewer parameters.
Authors:Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, Mao Yang
Abstract:
Advancing code reasoning in large language models (LLMs) is fundamentally limited by the scarcity of high-difficulty datasets, especially those with verifiable input-output test cases necessary for rigorous solution validation at scale. We introduce rStar-Coder, which significantly improves LLM code reasoning capabilities by constructing a large-scale, verified dataset of 418K competition-level code problems, 580K long-reasoning solutions along with rich test cases of varying difficulty. This is achieved through three core contributions: (1) we curate competitive programming code problems and oracle solutions to synthesize new, solvable problems; (2) we introduce a reliable input-output test case synthesis pipeline that decouples the generation into a three-step input generation method and a mutual verification mechanism for effective output labeling; (3) we augment problems with high-quality, test-case-verified long-reasoning solutions. Extensive experiments on Qwen models (1.5B-14B) across various code reasoning benchmarks demonstrate the superiority of rStar-Coder dataset, achieving leading performance comparable to frontier reasoning LLMs with much smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%, surpassing o3-mini (low) by3.1%. On the more challenging USA Computing Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outperforming the frontier-level QWQ-32B. Code and the dataset will be released at https://github.com/microsoft/rStar.
Authors:Shaoqing Zhang, Kehai Chen, Zhuosheng Zhang, Rumei Li, Rongxiang Weng, Yang Xiang, Liqiang Nie, Min Zhang
Abstract:
Recent advancements in vision-language models (VLMs) have spurred increased interest in Device-Control Agents (DC agents), such as utilizing in-the-wild device control to manage graphical user interfaces. Conventional methods for assessing the capabilities of DC agents, such as computing step-wise action accuracy and overall task success rates, provide a macroscopic view of DC agents' performance; however, they fail to offer microscopic insights into potential errors that may occur in real-world applications. Conducting a finer-grained performance evaluation of DC agents presents significant challenges. This study introduces a new perspective on evaluation methods for DC agents by proposing the XBOUND evaluation method, which employs the calculation of a novel Explore Metric to delineate the capability boundaries of DC agents. Compared to previous evaluation methods, XBOUND focuses on individual states to assess the proficiency of DC agents in mastering these states. Furthermore, we have developed a ``pseudo'' episode tree dataset derived from Android Control test data. Utilizing this dataset and XBOUND, we comprehensively evaluate the OS-Atlas and UI-TARS series, examining both the overall and specific performance across five common tasks. Additionally, we select representative cases to highlight the current deficiencies and limitations inherent in both series. Code is available at https://github.com/sqzhang-lazy/XBOUND.
Authors:Yao Huang, Yitong Sun, Shouwei Ruan, Yichi Zhang, Yinpeng Dong, Xingxing Wei
Abstract:
Large Language Models (LLMs), despite advanced general capabilities, still suffer from numerous safety risks, especially jailbreak attacks that bypass safety protocols. Understanding these vulnerabilities through black-box jailbreak attacks, which better reflect real-world scenarios, offers critical insights into model robustness. While existing methods have shown improvements through various prompt engineering techniques, their success remains limited against safety-aligned models, overlooking a more fundamental problem: the effectiveness is inherently bounded by the predefined strategy spaces. However, expanding this space presents significant challenges in both systematically capturing essential attack patterns and efficiently navigating the increased complexity. To better explore the potential of expanding the strategy space, we address these challenges through a novel framework that decomposes jailbreak strategies into essential components based on the Elaboration Likelihood Model (ELM) theory and develops genetic-based optimization with intention evaluation mechanisms. To be striking, our experiments reveal unprecedented jailbreak capabilities by expanding the strategy space: we achieve over 90% success rate on Claude-3.5 where prior methods completely fail, while demonstrating strong cross-model transferability and surpassing specialized safeguard models in evaluation accuracy. The code is open-sourced at: https://github.com/Aries-iai/CL-GSO.
Authors:Eve Le Guillou, Pierre Fortin, Julien Tierny
Abstract:
The persistence diagram, which describes the topological features of a dataset, is a key descriptor in Topological Data Analysis. The "Discrete Morse Sandwich" (DMS) method has been reported to be the most efficient algorithm for computing persistence diagrams of 3D scalar fields on a single node, using shared-memory parallelism. In this work, we extend DMS to distributed-memory parallelism for the efficient and scalable computation of persistence diagrams for massive datasets across multiple compute nodes. On the one hand, we can leverage the embarrassingly parallel procedure of the first and most time-consuming step of DMS (namely the discrete gradient computation). On the other hand, the efficient distributed computations of the subsequent DMS steps are much more challenging. To address this, we have extensively revised the DMS routines by contributing a new self-correcting distributed pairing algorithm, redesigning key data structures and introducing computation tokens to coordinate distributed computations. We have also introduced a dedicated communication thread to overlap communication and computation. Detailed performance analyses show the scalability of our hybrid MPI+thread approach for strong and weak scaling using up to 16 nodes of 32 cores (512 cores total). Our algorithm outperforms DIPHA, a reference method for the distributed computation of persistence diagrams, with an average speedup of x8 on 512 cores. We show the practical capabilities of our approach by computing the persistence diagram of a public 3D scalar field of 6 billion vertices in 174 seconds on 512 cores. Finally, we provide a usage example of our open-source implementation at https://github.com/eve-le-guillou/DDMS-example.
Authors:M. Akin Yilmaz, Ahmet Bilican, A. Murat Tekalp
Abstract:
Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR
Authors:Changguanng Wu, Jiangxin Dong, Chengjian Li, Jinhui Tang
Abstract:
We present Plenodium (plenoptic medium), an effective and efficient 3D representation framework capable of jointly modeling both objects and participating media. In contrast to existing medium representations that rely solely on view-dependent modeling, our novel plenoptic medium representation incorporates both directional and positional information through spherical harmonics encoding, enabling highly accurate underwater scene reconstruction. To address the initialization challenge in degraded underwater environments, we propose the pseudo-depth Gaussian complementation to augment COLMAP-derived point clouds with robust depth priors. In addition, a depth ranking regularized loss is developed to optimize the geometry of the scene and improve the ordinal consistency of the depth maps. Extensive experiments on real-world underwater datasets demonstrate that our method achieves significant improvements in 3D reconstruction. Furthermore, we conduct a simulated dataset with ground truth and the controllable scattering medium to demonstrate the restoration capability of our method in underwater scenarios. Our code and dataset are available at https://plenodium.github.io/.
Authors:Dosung Lee, Wonjun Oh, Boyoung Kim, Minyoung Kim, Joonsuk Park, Paul Hongsuck Seo
Abstract:
Multi-hop question answering (MHQA) involves reasoning across multiple documents to answer complex questions. Dense retrievers typically outperform sparse methods like BM25 by leveraging semantic embeddings; however, they require labeled query-document pairs for fine-tuning. This poses a significant challenge in MHQA due to the high variability of queries (reformulated) questions throughout the reasoning steps. To overcome this limitation, we introduce Retriever Supervision with Consistency and Relevance (ReSCORE), a novel method for training dense retrievers for MHQA without labeled documents. ReSCORE leverages large language models to capture each documents relevance to the question and consistency with the correct answer and use them to train a retriever within an iterative question-answering framework. Experiments on three MHQA benchmarks demonstrate the effectiveness of ReSCORE, with significant improvements in retrieval, and in turn, the state-of-the-art MHQA performance. Our implementation is available at: https://leeds1219.github.io/ReSCORE.
Authors:Gunjan Balde, Soumyadeep Roy, Mainack Mondal, Niloy Ganguly
Abstract:
Large Language Models (LLMs) recently achieved great success in medical text summarization by simply using in-context learning. However, these recent efforts do not perform fine-grained evaluations under difficult settings where LLMs might fail. They typically report performance scores over the entire dataset. Through our benchmarking study, we show that LLMs show a significant performance drop for data points with high concentration of out-of-vocabulary (OOV) words or with high novelty. Vocabulary adaptation is an intuitive solution to this vocabulary mismatch issue where the LLM vocabulary gets updated with certain expert domain (here, medical) words or subwords. An interesting finding from our study is that Llama-3.1, even with a vocabulary size of around 128K tokens, still faces over-fragmentation issue with medical words. To that end, we show vocabulary adaptation helps improve the LLM summarization performance even in difficult settings. Through extensive experimentation of multiple vocabulary adaptation strategies, two continual pretraining strategies, and three benchmark medical summarization datasets, we gain valuable insights into the role of vocabulary adaptation strategies for customizing LLMs to the medical domain. We also performed a human evaluation study with medical experts where they found that vocabulary adaptation results in more relevant and faithful summaries. Our codebase is made publicly available at https://github.com/gb-kgp/LLM-MedicalSummarization-Benchmark.
Authors:Yu He, Zihan Yao, Chentao Song, Tianyu Qi, Jun Liu, Ming Li, Qing Huang
Abstract:
Cognitive Diagnosis (CD) has become a critical task in AI-empowered education, supporting personalized learning by accurately assessing students' cognitive states. However, traditional CD models often struggle in cold-start scenarios due to the lack of student-exercise interaction data. Recent NLP-based approaches leveraging pre-trained language models (PLMs) have shown promise by utilizing textual features but fail to fully bridge the gap between semantic understanding and cognitive profiling. In this work, we propose Language Models as Zeroshot Cognitive Diagnosis Learners (LMCD), a novel framework designed to handle cold-start challenges by harnessing large language models (LLMs). LMCD operates via two primary phases: (1) Knowledge Diffusion, where LLMs generate enriched contents of exercises and knowledge concepts (KCs), establishing stronger semantic links; and (2) Semantic-Cognitive Fusion, where LLMs employ causal attention mechanisms to integrate textual information and student cognitive states, creating comprehensive profiles for both students and exercises. These representations are efficiently trained with off-the-shelf CD models. Experiments on two real-world datasets demonstrate that LMCD significantly outperforms state-of-the-art methods in both exercise-cold and domain-cold settings. The code is publicly available at https://github.com/TAL-auroraX/LMCD
Authors:Jieyu Yuan, Yujun Li, Yuanlin Zhang, Chunle Guo, Xiongxin Tang, Ruixing Wang, Chongyi Li
Abstract:
Novel view synthesis for underwater scene reconstruction presents unique challenges due to complex light-media interactions. Optical scattering and absorption in water body bring inhomogeneous medium attenuation interference that disrupts conventional volume rendering assumptions of uniform propagation medium. While 3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, it struggles with underwater inhomogeneous environments where scattering media introduce artifacts and inconsistent appearance. In this study, we propose a physics-based framework that disentangles object appearance from water medium effects through tailored Gaussian modeling. Our approach introduces appearance embeddings, which are explicit medium representations for backscatter and attenuation, enhancing scene consistency. In addition, we propose a distance-guided optimization strategy that leverages pseudo-depth maps as supervision with depth regularization and scale penalty terms to improve geometric fidelity. By integrating the proposed appearance and medium modeling components via an underwater imaging model, our approach achieves both high-quality novel view synthesis and physically accurate scene restoration. Experiments demonstrate our significant improvements in rendering quality and restoration accuracy over existing methods. The project page is available at https://bilityniu.github.io/3D-UIR.
Authors:Zijing Wang, Xingle Xu, Yongkang Liu, Yiqun Zhang, Peiqin Lin, Shi Feng, Xiaocui Yang, Daling Wang, Hinrich Schütze
Abstract:
Model merging dramatically reduces storage and computational resources by combining multiple expert models into a single multi-task model. Although recent model merging methods have shown promising results, they struggle to maintain performance gains as the number of merged models increases. In this paper, we investigate the key obstacles that limit the scalability of model merging when integrating a large number of expert models. First, we prove that there is an upper bound on model merging. Further theoretical analysis reveals that the limited effective parameter space imposes a strict constraint on the number of models that can be successfully merged. Gaussian Width shows that the marginal benefit of merging additional models diminishes according to a strictly concave function. This implies that the effective parameter space becomes rapidly saturated as the number of merged models increases. Furthermore, using Approximate Kinematics Theory, we prove the existence of a unique optimal threshold beyond which adding more models does not yield significant performance improvements. At the same time, we introduce a straightforward Reparameterized Heavy-Tailed method (RHT) to extend the coverage of the merged model, thereby enhancing its performance. Empirical results on 12 benchmarks, including both knowledge-intensive and general-purpose tasks, validate our theoretical analysis. We believe that these results spark further research beyond the current scope of model merging. The source code is in the Github repository: https://github.com/wzj1718/ModelMergingAnalysis.
Authors:M. Mebratu, W. L. K. Wu
Abstract:
Extragalactic foregrounds in cosmic microwave background (CMB) observations are both a source of cosmological and astrophysical information and a nuisance to the CMB. Effective field-level modeling that captures their non-Gaussian statistical distributions is increasingly important for optimal information extraction, particularly given the precise and low-noise observations from current and upcoming experiments. We explore the use of Wavelet Flow (WF) models to tackle the novel task of modeling the field-level probability distributions of multi-component CMB secondaries and foreground. Specifically, we jointly train correlated CMB lensing convergence ($κ$) and cosmic infrared background (CIB) maps with a WF model and obtain a network that statistically recovers the input to high accuracy -- the trained network generates samples of $κ$ and CIB fields whose average power spectra are within a few percent of the inputs across all scales, and whose Minkowski functionals are similarly accurate compared to the inputs. Leveraging the multiscale architecture of these models, we fine-tune both the model parameters and the priors at each scale independently, optimizing performance across different resolutions. These results demonstrate that WF models can accurately simulate correlated components of CMB secondaries, supporting improved analysis of cosmological data. Our code and trained models can be found here (https://github.com/matiwosm/HybridPriorWavletFlow.git).
Authors:Jong Hak Moon, Geon Choi, Paloma Rabaey, Min Gwan Kim, Hyuk Gi Hong, Jung-Oh Lee, Hangyul Yoon, Eun Woo Doe, Jiyoun Kim, Harshita Sharma, Daniel C. Castro, Javier Alvarez-Valle, Edward Choi
Abstract:
Radiology reports convey detailed clinical observations and capture diagnostic reasoning that evolves over time. However, existing evaluation methods are limited to single-report settings and rely on coarse metrics that fail to capture fine-grained clinical semantics and temporal dependencies. We introduce LUNGUAGE,a benchmark dataset for structured radiology report generation that supports both single-report evaluation and longitudinal patient-level assessment across multiple studies. It contains 1,473 annotated chest X-ray reports, each reviewed by experts, and 80 of them contain longitudinal annotations to capture disease progression and inter-study intervals, also reviewed by experts. Using this benchmark, we develop a two-stage framework that transforms generated reports into fine-grained, schema-aligned structured representations, enabling longitudinal interpretation. We also propose LUNGUAGESCORE, an interpretable metric that compares structured outputs at the entity, relation, and attribute level while modeling temporal consistency across patient timelines. These contributions establish the first benchmark dataset, structuring framework, and evaluation metric for sequential radiology reporting, with empirical results demonstrating that LUNGUAGESCORE effectively supports structured report evaluation. The code is available at: https://github.com/SuperSupermoon/Lunguage
Authors:Hesam Araghi, Jan van Gemert, Nergis Tomen
Abstract:
Event cameras offer high temporal resolution and power efficiency, making them well-suited for edge AI applications. However, their high event rates present challenges for data transmission and processing. Subsampling methods provide a practical solution, but their effect on downstream visual tasks remains underexplored. In this work, we systematically evaluate six hardware-friendly subsampling methods using convolutional neural networks for event video classification on various benchmark datasets. We hypothesize that events from high-density regions carry more task-relevant information and are therefore better suited for subsampling. To test this, we introduce a simple causal density-based subsampling method, demonstrating improved classification accuracy in sparse regimes. Our analysis further highlights key factors affecting subsampling performance, including sensitivity to hyperparameters and failure cases in scenarios with large event count variance. These findings provide insights for utilization of hardware-efficient subsampling strategies that balance data efficiency and task accuracy. The code for this paper will be released at: https://github.com/hesamaraghi/event-camera-subsampling-methods.
Authors:Xurui Li, Zhonesheng Jiang, Tingxuan Ai, Yu Zhou
Abstract:
Robust unsupervised anomaly detection (AD) in real-world scenarios is an important task. Current methods exhibit severe performance degradation on the MVTec AD 2 benchmark due to its complex real-world challenges. To solve this problem, we propose a robust framework RoBiS, which consists of three core modules: (1) Swin-Cropping, a high-resolution image pre-processing strategy to preserve the information of small anomalies through overlapping window cropping. (2) The data augmentation of noise addition and lighting simulation is carried out on the training data to improve the robustness of AD model. We use INP-Former as our baseline, which could generate better results on the various sub-images. (3) The traditional statistical-based binarization strategy (mean+3std) is combined with our previous work, MEBin (published in CVPR2025), for joint adaptive binarization. Then, SAM is further employed to refine the segmentation results. Compared with some methods reported by the MVTec AD 2, our RoBiS achieves a 29.2% SegF1 improvement (from 21.8% to 51.00%) on Test_private and 29.82% SegF1 gains (from 16.7% to 46.52%) on Test_private_mixed. Code is available at https://github.com/xrli-U/RoBiS.
Authors:Sergey Karpukhin, Vadim Titov, Andrey Kuznetsov, Aibek Alanov
Abstract:
In latest years plethora of identity-preserving adapters for a personalized generation with diffusion models have been released. Their main disadvantage is that they are dominantly trained jointly with base diffusion models, which suffer from slow multi-step inference. This work aims to tackle the challenge of training-free adaptation of pretrained ID-adapters to diffusion models accelerated via distillation - through careful re-design of classifier-free guidance for few-step stylistic generation and attention manipulation mechanisms in decoupled blocks to improve identity similarity and fidelity, we propose universal FastFace framework. Additionally, we develop a disentangled public evaluation protocol for id-preserving adapters.
Authors:Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu, Jianfei Chen
Abstract:
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
Authors:Badr Moufad, Yazid Janati, Alain Durmus, Ahmed Ghorbel, Eric Moulines, Jimmy Olsson
Abstract:
Classifier-Free Guidance (CFG) is a widely used technique for improving conditional diffusion models by linearly combining the outputs of conditional and unconditional denoisers. While CFG enhances visual quality and improves alignment with prompts, it often reduces sample diversity, leading to a challenging trade-off between quality and diversity. To address this issue, we make two key contributions. First, CFG generally does not correspond to a well-defined denoising diffusion model (DDM). In particular, contrary to common intuition, CFG does not yield samples from the target distribution associated with the limiting CFG score as the noise level approaches zero -- where the data distribution is tilted by a power $w \gt 1$ of the conditional distribution. We identify the missing component: a Rényi divergence term that acts as a repulsive force and is required to correct CFG and render it consistent with a proper DDM. Our analysis shows that this correction term vanishes in the low-noise limit. Second, motivated by this insight, we propose a Gibbs-like sampling procedure to draw samples from the desired tilted distribution. This method starts with an initial sample from the conditional diffusion model without CFG and iteratively refines it, preserving diversity while progressively enhancing sample quality. We evaluate our approach on both image and text-to-audio generation tasks, demonstrating substantial improvements over CFG across all considered metrics. The code is available at https://github.com/yazidjanati/cfgig
Authors:Tianhao Peng, Ho Man Kwan, Yuxuan Jiang, Ge Gao, Fan Zhang, Xiaozhong Xu, Shan Liu, David Bull
Abstract:
Deep learning based image Super-Resolution (ISR) relies on large training datasets to optimize model generalization; this requires substantial computational and storage resources during training. While dataset condensation has shown potential in improving data efficiency and privacy for high-level computer vision tasks, it has not yet been fully exploited for ISR. In this paper, we propose a novel Instance Data Condensation (IDC) framework specifically for ISR, which achieves instance-level data condensation through Random Local Fourier Feature Extraction and Multi-level Feature Distribution Matching. This aims to optimize feature distributions at both global and local levels and obtain high-quality synthesized training content with fine detail. This framework has been utilized to condense the most commonly used training dataset for ISR, DIV2K, with a 10% condensation rate. The resulting synthetic dataset offers comparable or (in certain cases) even better performance compared to the original full dataset and excellent training stability when used to train various popular ISR models. To the best of our knowledge, this is the first time that a condensed/synthetic dataset (with a 10% data volume) has demonstrated such performance. The source code and the synthetic dataset have been made available at https://github.com/.
Authors:Zeqing Wang, Bowen Zheng, Xingyi Yang, Zhenxiong Tan, Yuecong Xu, Xinchao Wang
Abstract:
Diffusion Transformer (DiT)-based video diffusion models generate high-quality videos at scale but incur prohibitive processing latency and memory costs for long videos. To address this, we propose a novel distributed inference strategy, termed DualParal. The core idea is that, instead of generating an entire video on a single GPU, we parallelize both temporal frames and model layers across GPUs. However, a naive implementation of this division faces a key limitation: since diffusion models require synchronized noise levels across frames, this implementation leads to the serialization of original parallelisms. We leverage a block-wise denoising scheme to handle this. Namely, we process a sequence of frame blocks through the pipeline with progressively decreasing noise levels. Each GPU handles a specific block and layer subset while passing previous results to the next GPU, enabling asynchronous computation and communication. To further optimize performance, we incorporate two key enhancements. Firstly, a feature cache is implemented on each GPU to store and reuse features from the prior block as context, minimizing inter-GPU communication and redundant computation. Secondly, we employ a coordinated noise initialization strategy, ensuring globally consistent temporal dynamics by sharing initial noise patterns across GPUs without extra resource costs. Together, these enable fast, artifact-free, and infinitely long video generation. Applied to the latest diffusion transformer video generator, our method efficiently produces 1,025-frame videos with up to 6.54$\times$ lower latency and 1.48$\times$ lower memory cost on 8$\times$RTX 4090 GPUs.
Authors:Fatemeh Pesaran Zadeh, Yoojin Oh, Gunhee Kim
Abstract:
Aligning large VLMs with human preferences is a challenging task, as methods like RLHF and DPO often overfit to textual information or exacerbate hallucinations. Although augmenting negative image samples partially addresses these pitfalls, no prior work has employed listwise preference optimization for VLMs, due to the complexity and cost of constructing listwise image samples. In this work, we propose LPOI, the first object-aware listwise preference optimization developed for reducing hallucinations in VLMs. LPOI identifies and masks a critical object in the image, and then interpolates the masked region between the positive and negative images to form a sequence of incrementally more complete images. The model is trained to rank these images in ascending order of object visibility, effectively reducing hallucinations while retaining visual fidelity. LPOI requires no extra annotations beyond standard pairwise preference data, as it automatically constructs the ranked lists through object masking and interpolation. Comprehensive experiments on MMHalBench, AMBER, and Object HalBench confirm that LPOI outperforms existing preference optimization methods in reducing hallucinations and enhancing VLM performance. We make the code available at https://github.com/fatemehpesaran310/lpoi.
Authors:Peng Wang, Xiang Liu, Peidong Liu
Abstract:
Stylizing 3D scenes instantly while maintaining multi-view consistency and faithfully resembling a style image remains a significant challenge. Current state-of-the-art 3D stylization methods typically involve computationally intensive test-time optimization to transfer artistic features into a pretrained 3D representation, often requiring dense posed input images. In contrast, leveraging recent advances in feed-forward reconstruction models, we demonstrate a novel approach to achieve direct 3D stylization in less than a second using unposed sparse-view scene images and an arbitrary style image. To address the inherent decoupling between reconstruction and stylization, we introduce a branched architecture that separates structure modeling and appearance shading, effectively preventing stylistic transfer from distorting the underlying 3D scene structure. Furthermore, we adapt an identity loss to facilitate pre-training our stylization model through the novel view synthesis task. This strategy also allows our model to retain its original reconstruction capabilities while being fine-tuned for stylization. Comprehensive evaluations, using both in-domain and out-of-domain datasets, demonstrate that our approach produces high-quality stylized 3D content that achieve a superior blend of style and scene appearance, while also outperforming existing methods in terms of multi-view consistency and efficiency.
Authors:Kaiming Liu, Xuanyu Lei, Ziyue Wang, Peng Li, Yang Liu
Abstract:
Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as \textbf{agent-environment misalignment}. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose \textbf{ALIGN}, an \underline{A}uto-A\underline{l}igned \underline{I}nterface \underline{G}e\underline{n}eration framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.
Authors:Wei Chen, Zhao Zhang, Meng Yuan, Kepeng Xu, Fuzhen Zhuang
Abstract:
In this paper, we address the task of targeted sentiment analysis (TSA), which involves two sub-tasks, i.e., identifying specific aspects from reviews and determining their corresponding sentiments. Aspect extraction forms the foundation for sentiment prediction, highlighting the critical dependency between these two tasks for effective cross-task knowledge transfer. While most existing studies adopt a multi-task learning paradigm to align task-specific features in the latent space, they predominantly rely on coarse-grained knowledge transfer. Such approaches lack fine-grained control over aspect-sentiment relationships, often assuming uniform sentiment polarity within related aspects. This oversimplification neglects contextual cues that differentiate sentiments, leading to negative transfer. To overcome these limitations, we propose FCKT, a fine-grained cross-task knowledge transfer framework tailored for TSA. By explicitly incorporating aspect-level information into sentiment prediction, FCKT achieves fine-grained knowledge transfer, effectively mitigating negative transfer and enhancing task performance. Experiments on three datasets, including comparisons with various baselines and large language models (LLMs), demonstrate the effectiveness of FCKT. The source code is available on https://github.com/cwei01/FCKT.
Authors:Wenhu Li, Niki van Stein, Thomas Bäck, Elena Raponi
Abstract:
Bayesian optimization (BO) is a powerful class of algorithms for optimizing expensive black-box functions, but designing effective BO algorithms remains a manual, expertise-driven task. Recent advancements in Large Language Models (LLMs) have opened new avenues for automating scientific discovery, including the automatic design of optimization algorithms. While prior work has used LLMs within optimization loops or to generate non-BO algorithms, we tackle a new challenge: Using LLMs to automatically generate full BO algorithm code. Our framework uses an evolution strategy to guide an LLM in generating Python code that preserves the key components of BO algorithms: An initial design, a surrogate model, and an acquisition function. The LLM is prompted to produce multiple candidate algorithms, which are evaluated on the established Black-Box Optimization Benchmarking (BBOB) test suite from the COmparing Continuous Optimizers (COCO) platform. Based on their performance, top candidates are selected, combined, and mutated via controlled prompt variations, enabling iterative refinement. Despite no additional fine-tuning, the LLM-generated algorithms outperform state-of-the-art BO baselines in 19 (out of 24) BBOB functions in dimension 5 and generalize well to higher dimensions, and different tasks (from the Bayesmark framework). This work demonstrates that LLMs can serve as algorithmic co-designers, offering a new paradigm for automating BO development and accelerating the discovery of novel algorithmic combinations. The source code is provided at https://github.com/Ewendawi/LLaMEA-BO.
Authors:Nils Neukirch, Johanna Vielhaben, Nils Strodthoff
Abstract:
Internal representations are crucial for understanding deep neural networks, such as their properties and reasoning patterns, but remain difficult to interpret. While mapping from feature space to input space aids in interpreting the former, existing approaches often rely on crude approximations. We propose using a conditional diffusion model - a pretrained high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a mapping in a probabilistic manner. We demonstrate the feasibility of this approach across various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction capabilities. Through qualitative comparisons and robustness analysis, we validate our method and showcase possible applications, such as the visualization of concept steering in input space or investigations of the composite nature of the feature space. This approach has broad potential for improving feature space understanding in computer vision models.
Authors:Yuan Gao, Ruiqi Shu, Hao Wu, Fan Xu, Yanfei Xiang, Ruijian Gou, Qingsong Wen, Xian Wu, Kun Wang, Xiaomeng Huang
Abstract:
Long-term, high-fidelity simulation of slow-changing physical systems, such as the ocean and climate, presents a fundamental challenge in scientific computing. Traditional autoregressive machine learning models often fail in these tasks as minor errors accumulate and lead to rapid forecast degradation. To address this problem, we propose NeuralOM, a general neural operator framework designed for simulating complex, slow-changing dynamics. NeuralOM's core consists of two key innovations: (1) a Progressive Residual Correction Framework that decomposes the forecasting task into a series of fine-grained refinement steps, effectively suppressing long-term error accumulation; and (2) a Physics-Guided Graph Network whose built-in adaptive messaging mechanism explicitly models multi-scale physical interactions, such as gradient-driven flows and multiplicative couplings, thereby enhancing physical consistency while maintaining computational efficiency. We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation. Extensive experiments demonstrate that NeuralOM not only surpasses state-of-the-art models in forecast accuracy and long-term stability, but also excels in simulating extreme events. For instance, at a 60-day lead time, NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline, offering a stable, efficient, and physically-aware paradigm for data-driven scientific computing. Code link: https://github.com/YuanGao-YG/NeuralOM.
Authors:Devran Ugurlu, Shuang Qian, Elliot Fairweather, Charlene Mauger, Bram Ruijsink, Laura Dal Toso, Yu Deng, Marina Strocchi, Reza Razavi, Alistair Young, Pablo Lamata, Steven Niederer, Martin Bishop
Abstract:
A cardiac digital twin is a virtual replica of a patient's heart for screening, diagnosis, prognosis, risk assessment, and treatment planning of cardiovascular diseases. This requires an anatomically accurate patient-specific 3D structural representation of the heart, suitable for electro-mechanical simulations or study of disease mechanisms. However, generation of cardiac digital twins at scale is demanding and there are no public repositories of models across demographic groups. We describe an automatic open-source pipeline for creating patient-specific left and right ventricular meshes from cardiovascular magnetic resonance images, its application to a large cohort of ~55000 participants from UK Biobank, and the construction of the most comprehensive cohort of adult heart models to date, comprising 1423 representative meshes across sex (male, female), body mass index (range: 16 - 42 kg/m$^2$) and age (range: 49 - 80 years). Our code is available at https://github.com/cdttk/biv-volumetric-meshing/tree/plos2025 , and pre-trained networks, representative volumetric meshes with fibers and UVCs will be made available soon.
Authors:Cainan Davidson, Deva Ramanan, Neehar Peri
Abstract:
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Lastly, we discuss our recent CVPR 2025 competition and share insights from the community. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
Authors:Shamil Ayupov, Maksim Nakhodnov, Anastasia Yaschenko, Andrey Kuznetsov, Aibek Alanov
Abstract:
Personalized diffusion models have shown remarkable success in Text-to-Image (T2I) generation by enabling the injection of user-defined concepts into diverse contexts. However, balancing concept fidelity with contextual alignment remains a challenging open problem. In this work, we propose an RL-based approach that leverages the diverse outputs of T2I models to address this issue. Our method eliminates the need for human-annotated scores by generating a synthetic paired dataset for DPO-like training using external quality metrics. These better-worse pairs are specifically constructed to improve both concept fidelity and prompt adherence. Moreover, our approach supports flexible adjustment of the trade-off between image fidelity and textual alignment. Through multi-step training, our approach outperforms a naive baseline in convergence speed and output quality. We conduct extensive qualitative and quantitative analysis, demonstrating the effectiveness of our method across various architectures and fine-tuning techniques. The source code can be found at https://github.com/ControlGenAI/DreamBoothDPO.
Authors:Zhibo Wang, Xiaoze Jiang, Zhiheng Qin, Enyun Yu, Han Li
Abstract:
Query auto-completion (QAC) plays a crucial role in modern search systems. However, in real-world applications, there are two pressing challenges that still need to be addressed. First, there is a need for hierarchical personalized representations for users. Previous approaches have typically used users' search behavior as a single, overall representation, which proves inadequate in more nuanced generative scenarios. Additionally, query prefixes are typically short and may contain typos or sensitive information, increasing the likelihood of generating toxic content compared to traditional text generation tasks. Such toxic content can degrade user experience and lead to public relations issues. Therefore, the second critical challenge is detoxifying QAC systems.
To address these two limitations, we propose a novel model (LaD) that captures personalized information from both long-term and short-term interests, incorporating adaptive detoxification. In LaD, personalized information is captured hierarchically at both coarse-grained and fine-grained levels. This approach preserves as much personalized information as possible while enabling online generation within time constraints. To move a futher step, we propose an online training method based on Reject Preference Optimization (RPO). By incorporating a special token [Reject] during both the training and inference processes, the model achieves adaptive detoxification. Consequently, the generated text presented to users is both non-toxic and relevant to the given prefix. We conduct comprehensive experiments on industrial-scale datasets and perform online A/B tests, delivering the largest single-experiment metric improvement in nearly two years of our product. Our model has been deployed on Kuaishou search, driving the primary traffic for hundreds of millions of active users. The code is available at https://github.com/JXZe/LaD.
Authors:Yaohua Zha, Yanzi Wang, Hang Guo, Jinpeng Wang, Tao Dai, Bin Chen, Zhihao Ouyang, Xue Yuerong, Ke Chen, Shu-Tao Xia
Abstract:
Applying pre-trained models to assist point cloud understanding has recently become a mainstream paradigm in 3D perception. However, existing application strategies are straightforward, utilizing only the final output of the pre-trained model for various task heads. It neglects the rich complementary information in the intermediate layer, thereby failing to fully unlock the potential of pre-trained models. To overcome this limitation, we propose an orthogonal solution: Point Mamba Adapter (PMA), which constructs an ordered feature sequence from all layers of the pre-trained model and leverages Mamba to fuse all complementary semantics, thereby promoting comprehensive point cloud understanding. Constructing this ordered sequence is non-trivial due to the inherent isotropy of 3D space. Therefore, we further propose a geometry-constrained gate prompt generator (G2PG) shared across different layers, which applies shared geometric constraints to the output gates of the Mamba and dynamically optimizes the spatial order, thus enabling more effective integration of multi-layer information. Extensive experiments conducted on challenging point cloud datasets across various tasks demonstrate that our PMA elevates the capability for point cloud understanding to a new level by fusing diverse complementary intermediate features. Code is available at https://github.com/zyh16143998882/PMA.
Authors:Pingrui Zhang, Yifei Su, Pengyuan Wu, Dong An, Li Zhang, Zhigang Wang, Dong Wang, Yan Ding, Bin Zhao, Xuelong Li
Abstract:
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
Authors:Weichao Pan, Bohan Xu, Xu Wang, Chengze Lv, Shuoyang Wang, Zhenke Duan, Zhen Tian
Abstract:
Fire detection in dynamic environments faces continuous challenges, including the interference of illumination changes, many false detections or missed detections, and it is difficult to achieve both efficiency and accuracy. To address the problem of feature extraction limitation and information loss in the existing YOLO-based models, this study propose You Only Look Once for Fire Detection with Attention-guided Inverted Residual and Dual-pooling Downscale Fusion (YOLO-FireAD) with two core innovations: (1) Attention-guided Inverted Residual Block (AIR) integrates hybrid channel-spatial attention with inverted residuals to adaptively enhance fire features and suppress environmental noise; (2) Dual Pool Downscale Fusion Block (DPDF) preserves multi-scale fire patterns through learnable fusion of max-average pooling outputs, mitigating small-fire detection failures. Extensive evaluation on two public datasets shows the efficient performance of our model. Our proposed model keeps the sum amount of parameters (1.45M, 51.8% lower than YOLOv8n) (4.6G, 43.2% lower than YOLOv8n), and mAP75 is higher than the mainstream real-time object detection models YOLOv8n, YOL-Ov9t, YOLOv10n, YOLO11n, YOLOv12n and other YOLOv8 variants 1.3-5.5%. For more details, please visit our repository: https://github.com/JEFfersusu/YOLO-FireAD
Authors:Tatsuya Sasayama, Shintaro Ito, Koichi Ito, Takafumi Aoki
Abstract:
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods. The project web page is available at: https://gsisaoki.github.io/IGARSS2025_sasayama/
Authors:Jiyoung Lee, Seungho Kim, Jieun Han, Jun-Min Lee, Kitaek Kim, Alice Oh, Edward Choi
Abstract:
Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.
Authors:Yifeng Ma, Jinwei Qi, Chaonan Ji, Peng Zhang, Bang Zhang, Zhidong Deng, Liefeng Bo
Abstract:
This paper introduces a new control signal for facial motion generation: timeline control. Compared to audio and text signals, timelines provide more fine-grained control, such as generating specific facial motions with precise timing. Users can specify a multi-track timeline of facial actions arranged in temporal intervals, allowing precise control over the timing of each action. To model the timeline control capability, We first annotate the time intervals of facial actions in natural facial motion sequences at a frame-level granularity. This process is facilitated by Toeplitz Inverse Covariance-based Clustering to minimize human labor. Based on the annotations, we propose a diffusion-based generation model capable of generating facial motions that are natural and accurately aligned with input timelines. Our method supports text-guided motion generation by using ChatGPT to convert text into timelines. Experimental results show that our method can annotate facial action intervals with satisfactory accuracy, and produces natural facial motions accurately aligned with timelines.
Authors:Shuo Wang, Shunyang Huang, Jinghui Yuan, Zhixiang Shen, Zhao Kang
Abstract:
Fusing heterogeneous information remains a persistent challenge in modern data analysis. While significant progress has been made, existing approaches often fail to account for the inherent heterogeneity of object patterns across different semantic spaces. To address this limitation, we propose the Cooperation of Experts (CoE) framework, which encodes multi-typed information into unified heterogeneous multiplex networks. By overcoming modality and connection differences, CoE provides a powerful and flexible model for capturing the intricate structures of real-world complex data. In our framework, dedicated encoders act as domain-specific experts, each specializing in learning distinct relational patterns in specific semantic spaces. To enhance robustness and extract complementary knowledge, these experts collaborate through a novel large margin mechanism supported by a tailored optimization strategy. Rigorous theoretical analyses guarantee the framework's feasibility and stability, while extensive experiments across diverse benchmarks demonstrate its superior performance and broad applicability. Our code is available at https://github.com/strangeAlan/CoE.
Authors:Dooho Lee, Myeong Kong, Sagad Hamid, Cheonwoo Lee, Jaemin Yoo
Abstract:
We revisit DropEdge, a data augmentation technique for GNNs which randomly removes edges to expose diverse graph structures during training. While being a promising approach to effectively reduce overfitting on specific connections in the graph, we observe that its potential performance gain in supervised learning tasks is significantly limited. To understand why, we provide a theoretical analysis showing that the limited performance of DropEdge comes from the fundamental limitation that exists in many GNN architectures. Based on this analysis, we propose Aggregation Buffer, a parameter block specifically designed to improve the robustness of GNNs by addressing the limitation of DropEdge. Our method is compatible with any GNN model, and shows consistent performance improvements on multiple datasets. Moreover, our method effectively addresses well-known problems such as degree bias or structural disparity as a unifying solution. Code and datasets are available at https://github.com/dooho00/agg-buffer.
Authors:Guangcong Zheng, Jianlong Yuan, Bo Wang, Haoyang Huang, Guoqing Ma, Nan Duan
Abstract:
Generating long videos that can show complex stories, like movie scenes from scripts, has great promise and offers much more than short clips. However, current methods that use autoregression with diffusion models often struggle because their step-by-step process naturally leads to a serious error accumulation (drift). Also, many existing ways to make long videos focus on single, continuous scenes, making them less useful for stories with many events and changes. This paper introduces a new approach to solve these problems. First, we propose a novel way to annotate datasets at the frame-level, providing detailed text guidance needed for making complex, multi-scene long videos. This detailed guidance works with a Frame-Level Attention Mechanism to make sure text and video match precisely. A key feature is that each part (frame) within these windows can be guided by its own distinct text prompt. Our training uses Diffusion Forcing to provide the model with the ability to handle time flexibly. We tested our approach on difficult VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes") based on the WanX2.1-T2V-1.3B model. The results show our method is better at following instructions in complex, changing scenes and creates high-quality long videos. We plan to share our dataset annotation methods and trained models with the research community. Project page: https://zgctroy.github.io/frame-level-captions .
Authors:Soichiro Murakami, Peinan Zhang, Hidetaka Kamigaito, Hiroya Takamura, Manabu Okumura
Abstract:
Identifying factors that make ad text attractive is essential for advertising success. This study proposes AdParaphrase v2.0, a dataset for ad text paraphrasing, containing human preference data, to enable the analysis of the linguistic factors and to support the development of methods for generating attractive ad texts. Compared with v1.0, this dataset is 20 times larger, comprising 16,460 ad text paraphrase pairs, each annotated with preference data from ten evaluators, thereby enabling a more comprehensive and reliable analysis. Through the experiments, we identified multiple linguistic features of engaging ad texts that were not observed in v1.0 and explored various methods for generating attractive ad texts. Furthermore, our analysis demonstrated the relationships between human preference and ad performance, and highlighted the potential of reference-free metrics based on large language models for evaluating ad text attractiveness. The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase-v2.0.
Authors:Yuhao Wang, Ruiyang Ren, Yucheng Wang, Wayne Xin Zhao, Jing Liu, Hua Wu, Haifeng Wang
Abstract:
Long-form question answering (LFQA) presents unique challenges for large language models, requiring the synthesis of coherent, paragraph-length answers. While retrieval-augmented generation (RAG) systems have emerged as a promising solution, existing research struggles with key limitations: the scarcity of high-quality training data for long-form generation, the compounding risk of hallucination in extended outputs, and the absence of reliable evaluation metrics for factual completeness. In this paper, we propose RioRAG, a novel reinforcement learning (RL) framework that advances long-form RAG through reinforced informativeness optimization. Our approach introduces two fundamental innovations to address the core challenges. First, we develop an RL training paradigm of reinforced informativeness optimization that directly optimizes informativeness and effectively addresses the slow-thinking deficit in conventional RAG systems, bypassing the need for expensive supervised data. Second, we propose a nugget-centric hierarchical reward modeling approach that enables precise assessment of long-form answers through a three-stage process: extracting the nugget from every source webpage, constructing a nugget claim checklist, and computing rewards based on factual alignment. Extensive experiments on two LFQA benchmarks LongFact and RAGChecker demonstrate the effectiveness of the proposed method. Our codes are available at https://github.com/RUCAIBox/RioRAG.
Authors:Jiaping Xiao, Cheng Wen Tsao, Yuhang Zhang, Mir Feroskhan
Abstract:
Path planning is a critical component in autonomous drone operations, enabling safe and efficient navigation through complex environments. Recent advances in foundation models, particularly large language models (LLMs) and vision-language models (VLMs), have opened new opportunities for enhanced perception and intelligent decision-making in robotics. However, their practical applicability and effectiveness in global path planning remain relatively unexplored. This paper proposes foundation model-guided path planners (FM-Planner) and presents a comprehensive benchmarking study and practical validation for drone path planning. Specifically, we first systematically evaluate eight representative LLM and VLM approaches using standardized simulation scenarios. To enable effective real-time navigation, we then design an integrated LLM-Vision planner that combines semantic reasoning with visual perception. Furthermore, we deploy and validate the proposed path planner through real-world experiments under multiple configurations. Our findings provide valuable insights into the strengths, limitations, and feasibility of deploying foundation models in real-world drone applications and providing practical implementations in autonomous flight. Project site: https://github.com/NTU-ICG/FM-Planner.
Authors:Noy Sternlicht, Tom Hope
Abstract:
A hallmark of human innovation is recombination -- the creation of novel ideas by integrating elements from existing concepts and mechanisms. In this work, we introduce CHIMERA, a large-scale Knowledge Base (KB) of over 28K recombination examples automatically mined from the scientific literature. CHIMERA enables large-scale empirical analysis of how scientists recombine concepts and draw inspiration from different areas, and enables training models that propose novel, cross-disciplinary research directions. To construct this KB, we define a new information extraction task: identifying recombination instances in scientific abstracts. We curate a high-quality, expert-annotated dataset and use it to fine-tune a large language model, which we apply to a broad corpus of AI papers. We showcase the utility of CHIMERA through two applications. First, we analyze patterns of recombination across AI subfields. Second, we train a scientific hypothesis generation model using the KB, showing that it can propose novel research directions that researchers rate as inspiring. We release our data and code at https://github.com/noy-sternlicht/CHIMERA-KB.
Authors:Jungyoub Cha, Hyunjong Kim, Sungzoon Cho
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), but its performance degrades on long inputs due to increased attention cost and reduced draft accuracy. We introduce SpecExtend, a drop-in enhancement that improves the performance of speculative decoding on long sequences without any additional training. First, SpecExtend integrates efficient attention mechanisms such as FlashAttention and Hybrid Tree Attention into both the draft and target models. To improve draft accuracy and speed on long inputs without retraining, we propose Cross-model Retrieval, a novel KV cache eviction strategy that uses the target model's attention scores to dynamically select relevant context for the draft model. Extensive evaluations on three long-context understanding datasets show that SpecExtend accelerates standard tree-based speculative decoding by up to 2.22x for inputs up to 16K tokens, providing an effective solution for speculative decoding of long sequences. Our code is available at https://github.com/jycha98/SpecExtend .
Authors:Xiaowen Ma, Zhenliang Ni, Shuai Xiao, Xinghao Chen
Abstract:
In long-term time series forecasting, different variables often influence the target variable over distinct time intervals, a challenge known as the multi-delay issue. Traditional models typically process all variables or time points uniformly, which limits their ability to capture complex variable relationships and obtain non-trivial time representations. To address this issue, we propose TimePro, an innovative Mamba-based model that constructs variate- and time-aware hyper-states. Unlike conventional approaches that merely transfer plain states across variable or time dimensions, TimePro preserves the fine-grained temporal features of each variate token and adaptively selects the focused time points to tune the plain state. The reconstructed hyper-state can perceive both variable relationships and salient temporal information, which helps the model make accurate forecasting. In experiments, TimePro performs competitively on eight real-world long-term forecasting benchmarks with satisfactory linear complexity. Code is available at https://github.com/xwmaxwma/TimePro.
Authors:Xiaqiang Tang, Jian Li, Keyu Hu, Du Nan, Xiaolong Li, Xi Zhang, Weigao Sun, Sihong Xie
Abstract:
Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench
Authors:Eric Xing, Pranavi Kolouju, Robert Pless, Abby Stylianou, Nathan Jacobs
Abstract:
Composed image retrieval (CIR) is the task of retrieving a target image specified by a query image and a relative text that describes a semantic modification to the query image. Existing methods in CIR struggle to accurately represent the image and the text modification, resulting in subpar performance. To address this limitation, we introduce a CIR framework, ConText-CIR, trained with a Text Concept-Consistency loss that encourages the representations of noun phrases in the text modification to better attend to the relevant parts of the query image. To support training with this loss function, we also propose a synthetic data generation pipeline that creates training data from existing CIR datasets or unlabeled images. We show that these components together enable stronger performance on CIR tasks, setting a new state-of-the-art in composed image retrieval in both the supervised and zero-shot settings on multiple benchmark datasets, including CIRR and CIRCO. Source code, model checkpoints, and our new datasets are available at https://github.com/mvrl/ConText-CIR.
Authors:Ryota Ushio, Takashi Ishida, Masashi Sugiyama
Abstract:
While the performance of machine learning systems has experienced significant improvement in recent years, relatively little attention has been paid to the fundamental question: to what extent can we improve our models? This paper provides a means of answering this question in the setting of binary classification, which is practical and theoretically supported. We extend a previous work that utilizes soft labels for estimating the Bayes error, the optimal error rate, in two important ways. First, we theoretically investigate the properties of the bias of the hard-label-based estimator discussed in the original work. We reveal that the decay rate of the bias is adaptive to how well the two class-conditional distributions are separated, and it can decay significantly faster than the previous result suggested as the number of hard labels per instance grows. Second, we tackle a more challenging problem setting: estimation with corrupted soft labels. One might be tempted to use calibrated soft labels instead of clean ones. However, we reveal that calibration guarantee is not enough, that is, even perfectly calibrated soft labels can result in a substantially inaccurate estimate. Then, we show that isotonic calibration can provide a statistically consistent estimator under an assumption weaker than that of the previous work. Our method is instance-free, i.e., we do not assume access to any input instances. This feature allows it to be adopted in practical scenarios where the instances are not available due to privacy issues. Experiments with synthetic and real-world datasets show the validity of our methods and theory.
Authors:Yufei Zhan, Hongyin Zhao, Yousong Zhu, Shurong Zheng, Fan Yang, Ming Tang, Jinqiao Wang
Abstract:
Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.
Authors:Alfin Wijaya Rahardja, Junwei Liu, Weitong Chen, Zhenpeng Chen, Yiling Lou
Abstract:
LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
Authors:Yanran Tang, Ruihong Qiu, Zi Huang
Abstract:
Legal case retrieval plays a pivotal role in the legal domain by facilitating the efficient identification of relevant cases, supporting legal professionals and researchers to propose legal arguments and make informed decision-making. To improve retrieval accuracy, the Competition on Legal Information Extraction and Entailment (COLIEE) is held annually, offering updated benchmark datasets for evaluation. This paper presents a detailed description of CaseLink, the method employed by UQLegalAI, the second highest team in Task 1 of COLIEE 2025. The CaseLink model utilises inductive graph learning and Global Case Graphs to capture the intrinsic case connectivity to improve the accuracy of legal case retrieval. Specifically, a large language model specialized in text embedding is employed to transform legal texts into embeddings, which serve as the feature representations of the nodes in the constructed case graph. A new contrastive objective, incorporating a regularization on the degree of case nodes, is proposed to leverage the information within the case reference relationship for model optimization. The main codebase used in our method is based on an open-sourced repo of CaseLink: https://github.com/yanran-tang/CaseLink.
Authors:Sunwoo Kim, Soo Yong Lee, Jaemin Yoo, Kijung Shin
Abstract:
While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
Authors:Xiangyu Zhao, Wanghan Xu, Bo Liu, Yuhao Zhou, Fenghua Ling, Ben Fei, Xiaoyu Yue, Lei Bai, Wenlong Zhang, Xiao-Ming Wu
Abstract:
The rapid advancement of multimodal large language models (MLLMs) has unlocked new opportunities to tackle complex scientific challenges. Despite this progress, their application in addressing earth science problems, especially at the graduate level, remains underexplored. A significant barrier is the absence of benchmarks that capture the depth and contextual complexity of geoscientific reasoning. Current benchmarks often rely on synthetic datasets or simplistic figure-caption pairs, which do not adequately reflect the intricate reasoning and domain-specific insights required for real-world scientific applications. To address these gaps, we introduce MSEarth, a multimodal scientific benchmark curated from high-quality, open-access scientific publications. MSEarth encompasses the five major spheres of Earth science: atmosphere, cryosphere, hydrosphere, lithosphere, and biosphere, featuring over 7K figures with refined captions. These captions are crafted from the original figure captions and enriched with discussions and reasoning from the papers, ensuring the benchmark captures the nuanced reasoning and knowledge-intensive content essential for advanced scientific tasks. MSEarth supports a variety of tasks, including scientific figure captioning, multiple choice questions, and open-ended reasoning challenges. By bridging the gap in graduate-level benchmarks, MSEarth provides a scalable and high-fidelity resource to enhance the development and evaluation of MLLMs in scientific reasoning. The benchmark is publicly available to foster further research and innovation in this field. Resources related to this benchmark can be found at https://huggingface.co/MSEarth and https://github.com/xiangyu-mm/MSEarth.
Authors:Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, Wenjie Li
Abstract:
Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.
Authors:Zesen Lyu, Dandan Zhang, Wei Ye, Fangdi Li, Zhihang Jiang, Yao Yang
Abstract:
Spatial reasoning is a core component of human cognition, enabling individuals to perceive, comprehend, and interact with the physical world. It relies on a nuanced understanding of spatial structures and inter-object relationships, serving as the foundation for complex reasoning and decision-making. To investigate whether current vision-language models (VLMs) exhibit similar capability, we introduce Jigsaw-Puzzles, a novel benchmark consisting of 1,100 carefully curated real-world images with high spatial complexity. Based on this dataset, we design five tasks to rigorously evaluate VLMs' spatial perception, structural understanding, and reasoning capabilities, while deliberately minimizing reliance on domain-specific knowledge to better isolate and assess the general spatial reasoning capability. We conduct a comprehensive evaluation across 24 state-of-the-art VLMs. The results show that even the strongest model, Gemini-2.5-Pro, achieves only 77.14% overall accuracy and performs particularly poorly on the Order Generation task, with only 30.00% accuracy, far below the performance exceeding 90% achieved by human participants. This persistent gap underscores the need for continued progress, positioning Jigsaw-Puzzles as a challenging and diagnostic benchmark for advancing spatial reasoning research in VLMs. Our project page is at https://zesen01.github.io/jigsaw-puzzles.
Authors:Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series forecasting plays a crucial role in many real-world applications, and numerous complex forecasting models have been proposed in recent years. Despite their architectural innovations, most state-of-the-art models report only marginal improvements -- typically just a few thousandths in standard error metrics. These models often incorporate complex data embedding layers to transform raw inputs into higher-dimensional representations to enhance accuracy. But are data embedding techniques actually effective in time series forecasting? Through extensive ablation studies across fifteen state-of-the-art models and four benchmark datasets, we find that removing data embedding layers from many state-of-the-art models does not degrade forecasting performance. In many cases, it improves both accuracy and computational efficiency. The gains from removing embedding layers often exceed the performance differences typically reported between competing models. Code available at: https://github.com/neuripsdataembedidng/DataEmbedding
Authors:Fuwen Luo, Shengfeng Lou, Chi Chen, Ziyue Wang, Chenliang Li, Weizhou Shen, Jiyue Guo, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu
Abstract:
Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos. Despite recent advances in general video understanding, current MLLMs still struggle with fine-grained temporal reasoning. While reinforcement learning (RL) has been explored to address this issue recently, existing RL approaches remain limited in effectiveness. In this work, we propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding. MUSEG enables MLLMs to align queries with multiple relevant video segments, promoting more comprehensive temporal reasoning. To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning. Extensive experiments on temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG significantly outperforms existing methods and generalizes well across diverse temporal understanding scenarios. View our project at https://github.com/THUNLP-MT/MUSEG.
Authors:Zechen Li, Lanqing Yang, Yiheng Bian, Hao Pan, Yongjian Fu, Yezhou Wang, Yi-Chao Chen, Guangtao Xue, Ju Ren
Abstract:
This paper presents an innovative frequency-embedded 3D Gaussian splatting (3DGS) algorithm for wideband radio-frequency (RF) radiance field modeling, offering an advancement over the existing works limited to single-frequency modeling. Grounded in fundamental physics, we uncover the complex relationship between EM wave propagation behaviors and RF frequencies. Inspired by this, we design an EM feature network with attenuation and radiance modules to learn the complex relationships between RF frequencies and the key properties of each 3D Gaussian, specifically the attenuation factor and RF signal intensity. By training the frequency-embedded 3DGS model, we can efficiently reconstruct RF radiance fields at arbitrary unknown frequencies within a given 3D environment. Finally, we propose a large-scale power angular spectrum (PAS) dataset containing 50000 samples ranging from 1 to 100 GHz in 6 indoor environments, and conduct extensive experiments to verify the effectiveness of our method. Our approach achieves an average Structural Similarity Index Measure (SSIM) up to 0.72, and a significant improvement up to 17.8% compared to the current state-of-the-art (SOTA) methods trained on individual test frequencies. Additionally, our method achieves an SSIM of 0.70 without prior training on these frequencies, which represents only a 2.8% performance drop compared to models trained with full PAS data. This demonstrates our model's capability to estimate PAS at unknown frequencies. For related code and datasets, please refer to https://github.com/sim-2-real/Wideband3DGS.
Authors:Woomin Song, Jihoon Tack, Sangwoo Mo, Seunghyuk Oh, Jinwoo Shin
Abstract:
State-space models (SSMs) offer a promising architecture for sequence modeling, providing an alternative to Transformers by replacing expensive self-attention with linear recurrences. In this paper, we propose a simple yet effective trick to enhance SSMs within given computational budgets by sparsifying them. Our intuition is that tokens in SSMs are highly redundant due to gradual recurrent updates, and dense recurrence operations block the delivery of past information. In particular, we observe that upper layers of SSMs tend to be more redundant as they encode global information, while lower layers encode local information. Motivated by this, we introduce Simba, a hierarchical sparsification method for SSMs based on token pruning. Simba sparsifies upper layers more than lower layers, encouraging the upper layers to behave like highways. To achieve this, we propose a novel token pruning criterion for SSMs, measuring the global impact of tokens on the final output by accumulating local recurrences. We demonstrate that Simba outperforms the baseline model, Mamba, with the same FLOPS in various natural language tasks. Moreover, we illustrate the effect of highways, showing that Simba not only enhances efficiency but also improves the information flow across long sequences. Code is available at https://github.com/woominsong/Simba.
Authors:Mingxuan Sun, Juntao Jiang, Zhiqiang Yang, Shenao Kong, Jiamin Qi, Jianru Shang, Shuangling Luo, Wanfa Sun, Tianyi Wang, Yanqi Wang, Qixuan Wang, Tingjian Dai, Tianxiang Chen, Jinming Zhang, Xuerui Zhang, Yuepeng He, Pengcheng Fu, Qiu Guan, Shizheng Zhou, Yanbo Yu, Qigui Jiang, Teng Zhou, Liuyong Shi, Hong Yan
Abstract:
Microalgae, vital for ecological balance and economic sectors, present challenges in detection due to their diverse sizes and conditions. This paper summarizes the second "Vision Meets Algae" (VisAlgae 2023) Challenge, aiming to enhance high-throughput microalgae cell detection. The challenge, which attracted 369 participating teams, includes a dataset of 1000 images across six classes, featuring microalgae of varying sizes and distinct features. Participants faced tasks such as detecting small targets, handling motion blur, and complex backgrounds. The top 10 methods, outlined here, offer insights into overcoming these challenges and maximizing detection accuracy. This intersection of algae research and computer vision offers promise for ecological understanding and technological advancement. The dataset can be accessed at: https://github.com/juntaoJianggavin/Visalgae2023/.
Authors:Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, Xuezhou Zhang
Abstract:
Reinforcement learning (RL) has emerged as a powerful tool for fine-tuning large language models (LLMs) to improve complex reasoning abilities. However, state-of-the-art policy optimization methods often suffer from high computational overhead and memory consumption, primarily due to the need for multiple generations per prompt and the reliance on critic networks or advantage estimates of the current policy. In this paper, we propose $A$*-PO, a novel two-stage policy optimization framework that directly approximates the optimal advantage function and enables efficient training of LLMs for reasoning tasks. In the first stage, we leverage offline sampling from a reference policy to estimate the optimal value function $V$*, eliminating the need for costly online value estimation. In the second stage, we perform on-policy updates using a simple least-squares regression loss with only a single generation per prompt. Theoretically, we establish performance guarantees and prove that the KL-regularized RL objective can be optimized without requiring complex exploration strategies. Empirically, $A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks, while reducing training time by up to 2$\times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL. Implementation of $A$*-PO can be found at https://github.com/ZhaolinGao/A-PO.
Authors:Danush Khanna, Pratinav Seth, Sidhaarth Sredharan Murali, Aditya Kumar Guru, Siddharth Shukla, Tanuj Tyagi, Sandeep Chaurasia, Kripabandhu Ghosh
Abstract:
Mental manipulation is a subtle yet pervasive form of abuse in interpersonal communication, making its detection critical for safeguarding potential victims. However, due to manipulation's nuanced and context-specific nature, identifying manipulative language in complex, multi-turn, and multi-person conversations remains a significant challenge for large language models (LLMs). To address this gap, we introduce the MultiManip dataset, comprising 220 multi-turn, multi-person dialogues balanced between manipulative and non-manipulative interactions, all drawn from reality shows that mimic real-world scenarios. For manipulative interactions, it includes 11 distinct manipulations depicting real-life scenarios. We conduct extensive evaluations of state-of-the-art LLMs, such as GPT-4o and Llama-3.1-8B, employing various prompting strategies. Despite their capabilities, these models often struggle to detect manipulation effectively. To overcome this limitation, we propose SELF-PERCEPT, a novel, two-stage prompting framework inspired by Self-Perception Theory, demonstrating strong performance in detecting multi-person, multi-turn mental manipulation. Our code and data are publicly available at https://github.com/danushkhanna/self-percept .
Authors:Tianhua Qi, Shiyan Wang, Cheng Lu, Tengfei Song, Hao Yang, Zhanglin Wu, Wenming Zheng
Abstract:
Controllable emotional voice conversion (EVC) aims to manipulate emotional expressions to increase the diversity of synthesized speech. Existing methods typically rely on predefined labels, reference audios, or prespecified factor values, often overlooking individual differences in emotion perception and expression. In this paper, we introduce PromptEVC that utilizes natural language prompts for precise and flexible emotion control. To bridge text descriptions with emotional speech, we propose emotion descriptor and prompt mapper to generate fine-grained emotion embeddings, trained jointly with reference embeddings. To enhance naturalness, we present a prosody modeling and control pipeline that adjusts the rhythm based on linguistic content and emotional cues. Additionally, a speaker encoder is incorporated to preserve identity. Experimental results demonstrate that PromptEVC outperforms state-of-the-art controllable EVC methods in emotion conversion, intensity control, mixed emotion synthesis, and prosody manipulation. Speech samples are available at https://jeremychee4.github.io/PromptEVC/.
Authors:Boyi Zeng, Shixiang Song, Siyuan Huang, Yixuan Wang, He Li, Ziwei He, Xinbing Wang, Zhiyu Li, Zhouhan Lin
Abstract:
Humans ponder before articulating complex sentence elements, enabling deeper cognitive processing through focused effort. In this work, we introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step. During pondering, instead of generating an actual token sampled from the prediction distribution, the model ponders by yielding a weighted sum of all token embeddings according to the predicted token distribution. The generated embedding is then fed back as input for another forward pass. We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations. Experiments across three widely used open-source architectures-GPT-2, Pythia, and LLaMA-and extensive downstream task evaluations demonstrate the effectiveness and generality of our method. For language modeling tasks, pondering language models achieve performance comparable to vanilla models with twice the number of parameters. On 9 downstream benchmarks, our pondering-enhanced Pythia models significantly outperform the official Pythia models. Notably, PonderingPythia-2.8B surpasses Pythia-6.9B, and PonderingPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more data. The code is available at https://github.com/LUMIA-Group/PonderingLM.
Authors:Xuanle Zhao, Zilin Sang, Yuxuan Li, Qi Shi, Weilun Zhao, Shuo Wang, Duzhen Zhang, Xu Han, Zhiyuan Liu, Maosong Sun
Abstract:
Efficient experiment reproduction is critical to accelerating progress in artificial intelligence. However, the inherent complexity of method design and training procedures presents substantial challenges for automation. Notably, reproducing experiments often requires implicit domain-specific knowledge not explicitly documented in the original papers. To address this, we introduce the paper lineage algorithm, which identifies and extracts implicit knowledge from the relevant references cited by the target paper. Building on this idea, we propose AutoReproduce, a multi-agent framework capable of automatically reproducing experiments described in research papers in an end-to-end manner. AutoReproduce enhances code executability by generating unit tests alongside the reproduction process. To evaluate the reproduction capability, we construct ReproduceBench, a benchmark annotated with verified implementations, and introduce novel evaluation metrics to assess both the reproduction and execution fidelity. Experimental results demonstrate that AutoReproduce outperforms the existing strong agent baselines on all five evaluation metrics by a peak margin of over $70\%$. In particular, compared to the official implementations, AutoReproduce achieves an average performance gap of $22.1\%$ on $89.74\%$ of the executable experiment runs. The code will be available at https://github.com/AI9Stars/AutoReproduce.
Authors:Lingyu Qiu, Ke Jiang, Xiaoyang Tan
Abstract:
Recent advancements in domain generalization for deepfake detection have attracted significant attention, with previous methods often incorporating additional modules to prevent overfitting to domain-specific patterns. However, such regularization can hinder the optimization of the empirical risk minimization (ERM) objective, ultimately degrading model performance. In this paper, we propose a novel learning objective that aligns generalization gradient updates with ERM gradient updates. The key innovation is the application of perturbations to model parameters, aligning the ascending points across domains, which specifically enhances the robustness of deepfake detection models to domain shifts. This approach effectively preserves domain-invariant features while managing domain-specific characteristics, without introducing additional regularization. Experimental results on multiple challenging deepfake detection datasets demonstrate that our gradient alignment strategy outperforms state-of-the-art domain generalization techniques, confirming the efficacy of our method. The code is available at https://github.com/Lynn0925/RoGA.
Authors:HsiaoYuan Hsu, Yuxin Peng
Abstract:
In AI-empowered poster design, content-aware layout generation is crucial for the on-image arrangement of visual-textual elements, e.g., logo, text, and underlay. To perceive the background images, existing work demanded a high parameter count that far exceeds the size of available training data, which has impeded the model's real-time performance and generalization ability. To address these challenges, we proposed a patch-level data summarization and augmentation approach, vividly named Scan-and-Print. Specifically, the scan procedure selects only the patches suitable for placing element vertices to perform fine-grained perception efficiently. Then, the print procedure mixes up the patches and vertices across two image-layout pairs to synthesize over 100% new samples in each epoch while preserving their plausibility. Besides, to facilitate the vertex-level operations, a vertex-based layout representation is introduced. Extensive experimental results on widely used benchmarks demonstrated that Scan-and-Print can generate visually appealing layouts with state-of-the-art quality while dramatically reducing computational bottleneck by 95.2%.
Authors:Mengmeng Chen, Xiaohu Wu, Qiqi Liu, Tiantian He, Yew-Soon Ong, Yaochu Jin, Qicheng Lao, Han Yu
Abstract:
Multi-objective optimization (MOO) exists extensively in machine learning, and aims to find a set of Pareto-optimal solutions, called the Pareto front, e.g., it is fundamental for multiple avenues of research in federated learning (FL). Pareto-Front Learning (PFL) is a powerful method implemented using Hypernetworks (PHNs) to approximate the Pareto front. This method enables the acquisition of a mapping function from a given preference vector to the solutions on the Pareto front. However, most existing PFL approaches still face two challenges: (a) sampling rays in high-dimensional spaces; (b) failing to cover the entire Pareto Front which has a convex shape. Here, we introduce a novel PFL framework, called as PHN-HVVS, which decomposes the design space into Voronoi grids and deploys a genetic algorithm (GA) for Voronoi grid partitioning within high-dimensional space. We put forward a new loss function, which effectively contributes to more extensive coverage of the resultant Pareto front and maximizes the HV Indicator. Experimental results on multiple MOO machine learning tasks demonstrate that PHN-HVVS outperforms the baselines significantly in generating Pareto front. Also, we illustrate that PHN-HVVS advances the methodologies of several recent problems in the FL field. The code is available at https://github.com/buptcmm/phnhvvs}{https://github.com/buptcmm/phnhvvs.
Authors:Haoyu Zhang, Yisen Feng, Qiaohui Chu, Meng Liu, Weili Guan, Yaowei Wang, Liqiang Nie
Abstract:
In this report, we present the method that achieves third place for Ego4D EgoSchema Challenge in CVPR 2025. To improve the reliability of answer prediction in egocentric video question answering, we propose an effective extension to the previously proposed HCQA framework. Our approach introduces a multi-source aggregation strategy to generate diverse predictions, followed by a confidence-based filtering mechanism that selects high-confidence answers directly. For low-confidence cases, we incorporate a fine-grained reasoning module that performs additional visual and contextual analysis to refine the predictions. Evaluated on the EgoSchema blind test set, our method achieves 77% accuracy on over 5,000 human-curated multiple-choice questions, outperforming last year's winning solution and the majority of participating teams. Our code will be added at https://github.com/Hyu-Zhang/HCQA.
Authors:Yuan Wu, Zhiqiang Yan, Yigong Zhang, Xiang Li, Jian Yang
Abstract:
Occupancy prediction aims to estimate the 3D spatial distribution of occupied regions along with their corresponding semantic labels. Existing vision-based methods perform well on daytime benchmarks but struggle in nighttime scenarios due to limited visibility and challenging lighting conditions. To address these challenges, we propose \textbf{LIAR}, a novel framework that learns illumination-affined representations. LIAR first introduces Selective Low-light Image Enhancement (SLLIE), which leverages the illumination priors from daytime scenes to adaptively determine whether a nighttime image is genuinely dark or sufficiently well-lit, enabling more targeted global enhancement. Building on the illumination maps generated by SLLIE, LIAR further incorporates two illumination-aware components: 2D Illumination-guided Sampling (2D-IGS) and 3D Illumination-driven Projection (3D-IDP), to respectively tackle local underexposure and overexposure. Specifically, 2D-IGS modulates feature sampling positions according to illumination maps, assigning larger offsets to darker regions and smaller ones to brighter regions, thereby alleviating feature degradation in underexposed areas. Subsequently, 3D-IDP enhances semantic understanding in overexposed regions by constructing illumination intensity fields and supplying refined residual queries to the BEV context refinement process. Extensive experiments on both real and synthetic datasets demonstrate the superior performance of LIAR under challenging nighttime scenarios. The source code and pretrained models are available \href{https://github.com/yanzq95/LIAR}{here}.
Authors:Guiping Cao, Tao Wang, Wenjian Huang, Xiangyuan Lan, Jianguo Zhang, Dongmei Jiang
Abstract:
Open-Ended object Detection (OED) is a novel and challenging task that detects objects and generates their category names in a free-form manner, without requiring additional vocabularies during inference. However, the existing OED models, such as GenerateU, require large-scale datasets for training, suffer from slow convergence, and exhibit limited performance. To address these issues, we present a novel and efficient Open-Det framework, consisting of four collaborative parts. Specifically, Open-Det accelerates model training in both the bounding box and object name generation process by reconstructing the Object Detector and the Object Name Generator. To bridge the semantic gap between Vision and Language modalities, we propose a Vision-Language Aligner with V-to-L and L-to-V alignment mechanisms, incorporating with the Prompts Distiller to transfer knowledge from the VLM into VL-prompts, enabling accurate object name generation for the LLM. In addition, we design a Masked Alignment Loss to eliminate contradictory supervision and introduce a Joint Loss to enhance classification, resulting in more efficient training. Compared to GenerateU, Open-Det, using only 1.5% of the training data (0.077M vs. 5.077M), 20.8% of the training epochs (31 vs. 149), and fewer GPU resources (4 V100 vs. 16 A100), achieves even higher performance (+1.0% in APr). The source codes are available at: https://github.com/Med-Process/Open-Det.
Authors:Wenhao You, Xingjian Diao, Chunhui Zhang, Keyi Kong, Weiyi Wu, Zhongyu Ouyang, Chiyu Ma, Tingxuan Wu, Noah Wei, Zong Ke, Ming Cheng, Soroush Vosoughi, Jiang Gui
Abstract:
While recent Multimodal Large Language Models exhibit impressive capabilities for general multimodal tasks, specialized domains like music necessitate tailored approaches. Music Audio-Visual Question Answering (Music AVQA) particularly underscores this, presenting unique challenges with its continuous, densely layered audio-visual content, intricate temporal dynamics, and the critical need for domain-specific knowledge. Through a systematic analysis of Music AVQA datasets and methods, this position paper identifies that specialized input processing, architectures incorporating dedicated spatial-temporal designs, and music-specific modeling strategies are critical for success in this domain. Our study provides valuable insights for researchers by highlighting effective design patterns empirically linked to strong performance, proposing concrete future directions for incorporating musical priors, and aiming to establish a robust foundation for advancing multimodal musical understanding. This work is intended to inspire broader attention and further research, supported by a continuously updated anonymous GitHub repository of relevant papers: https://github.com/xid32/Survey4MusicAVQA.
Authors:Juan Ramirez, Meraj Hashemizadeh, Simon Lacoste-Julien
Abstract:
Recent efforts to develop trustworthy AI systems with accountability guarantees have led to widespread use of machine learning formulations incorporating external requirements, or constraints. These requirements are often enforced via penalization--adding fixed-weight terms to the task loss. We argue this approach is fundamentally ill-suited since there may be no penalty coefficient that simultaneously ensures constraint satisfaction and optimal constrained performance, i.e., that truly solves the constrained problem. Moreover, tuning these coefficients requires costly trial-and-error, incurring significant time and computational overhead. We, therefore, advocate for broader adoption of tailored constrained optimization methods--such as the Lagrangian approach, which jointly optimizes the penalization "coefficients" (the Lagrange multipliers) and the model parameters. Such methods (i) truly solve the constrained problem and do so accountably, by clearly defining feasibility and verifying when it is achieved, (ii) eliminate the need for extensive penalty tuning, and (iii) integrate seamlessly with modern deep learning pipelines.
Authors:Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan, Neehar Peri
Abstract:
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 16.8 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl/ and https://universe.roboflow.com/rf100-vl/
Authors:Xiaobao Wei, Xiaoan Zhang, Hao Wang, Qingpo Wuwu, Ming Lu, Wenzhao Zheng, Shanghang Zhang
Abstract:
We propose a novel framework for comprehensive indoor 3D reconstruction using Gaussian representations, called OmniIndoor3D. This framework enables accurate appearance, geometry, and panoptic reconstruction of diverse indoor scenes captured by a consumer-level RGB-D camera. Since 3DGS is primarily optimized for photorealistic rendering, it lacks the precise geometry critical for high-quality panoptic reconstruction. Therefore, OmniIndoor3D first combines multiple RGB-D images to create a coarse 3D reconstruction, which is then used to initialize the 3D Gaussians and guide the 3DGS training. To decouple the optimization conflict between appearance and geometry, we introduce a lightweight MLP that adjusts the geometric properties of 3D Gaussians. The introduced lightweight MLP serves as a low-pass filter for geometry reconstruction and significantly reduces noise in indoor scenes. To improve the distribution of Gaussian primitives, we propose a densification strategy guided by panoptic priors to encourage smoothness on planar surfaces. Through the joint optimization of appearance, geometry, and panoptic reconstruction, OmniIndoor3D provides comprehensive 3D indoor scene understanding, which facilitates accurate and robust robotic navigation. We perform thorough evaluations across multiple datasets, and OmniIndoor3D achieves state-of-the-art results in appearance, geometry, and panoptic reconstruction. We believe our work bridges a critical gap in indoor 3D reconstruction. The code will be released at: https://ucwxb.github.io/OmniIndoor3D/
Authors:Mahdi Pourmirzaei, Farzaneh Esmaili, Salhuldin Alqarghuli, Mohammadreza Pourmirzaei, Ye Han, Kai Chen, Mohsen Rezaei, Duolin Wang, Dong Xu
Abstract:
The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .
Authors:Can Polat, Mehmet Tuncel, Mustafa Kurban, Erchin Serpedin, Hasan Kurban
Abstract:
Recent progress in multimodal graph neural networks has demonstrated that augmenting atomic XYZ geometries with textual chemical descriptors can enhance predictive accuracy across a range of electronic and thermodynamic properties. However, naively appending large sets of heterogeneous descriptors often degrades performance on tasks sensitive to molecular shape or symmetry, and undermines interpretability. xChemAgents proposes a cooperative agent framework that injects physics-aware reasoning into multimodal property prediction. xChemAgents comprises two language-model-based agents: a Selector, which adaptively identifies a sparse, weighted subset of descriptors relevant to each target, and provides a natural language rationale; and a Validator, which enforces physical constraints such as unit consistency and scaling laws through iterative dialogue. On standard benchmark datasets, xChemAgents achieves up to a 22% reduction in mean absolute error over the state-of-the-art baselines, while producing faithful, human-interpretable explanations. Experiment results highlight the potential of cooperative, self-verifying agents to enhance both accuracy and transparency in foundation-model-driven materials science. The implementation and accompanying dataset are available at https://github.com/KurbanIntelligenceLab/xChemAgents.
Authors:Jihoon Lee, Min Song
Abstract:
Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.
Authors:Shenao Zhang, Yaqing Wang, Yinxiao Liu, Tianqi Liu, Peter Grabowski, Eugene Ie, Zhaoran Wang, Yunxuan Li
Abstract:
Large Language Models (LLMs) trained via Reinforcement Learning (RL) have exhibited strong reasoning capabilities and emergent reflective behaviors, such as backtracking and error correction. However, conventional Markovian RL confines exploration to the training phase to learn an optimal deterministic policy and depends on the history contexts only through the current state. Therefore, it remains unclear whether reflective reasoning will emerge during Markovian RL training, or why they are beneficial at test time. To remedy this, we recast reflective exploration within the Bayes-Adaptive RL framework, which explicitly optimizes the expected return under a posterior distribution over Markov decision processes. This Bayesian formulation inherently incentivizes both reward-maximizing exploitation and information-gathering exploration via belief updates. Our resulting algorithm, BARL, instructs the LLM to stitch and switch strategies based on the observed outcomes, offering principled guidance on when and how the model should reflectively explore. Empirical results on both synthetic and mathematical reasoning tasks demonstrate that BARL outperforms standard Markovian RL approaches at test time, achieving superior token efficiency with improved exploration effectiveness. Our code is available at https://github.com/shenao-zhang/BARL.
Authors:Elias Arbash, Ahmed Jamal Afifi, Ymane Belahsen, Margret Fuchs, Pedram Ghamisi, Paul Scheunders, Richard Gloaguen
Abstract:
The global challenge of sustainable recycling demands automated, fast, and accurate, state-of-the-art (SOTA) material detection systems that act as a bedrock for a circular economy. Democratizing access to these cutting-edge solutions that enable real-time waste analysis is essential for scaling up recycling efforts and fostering the Green Deal. In response, we introduce \textbf{Electrolyzers-HSI}, a novel multimodal benchmark dataset designed to accelerate the recovery of critical raw materials through accurate electrolyzer materials classification. The dataset comprises 55 co-registered high-resolution RGB images and hyperspectral imaging (HSI) data cubes spanning the 400--2500 nm spectral range, yielding over 4.2 million pixel vectors and 424,169 labeled ones. This enables non-invasive spectral analysis of shredded electrolyzer samples, supporting quantitative and qualitative material classification and spectral properties investigation. We evaluate a suite of baseline machine learning (ML) methods alongside SOTA transformer-based deep learning (DL) architectures, including Vision Transformer, SpectralFormer, and the Multimodal Fusion Transformer, to investigate architectural bottlenecks for further efficiency optimisation when deploying transformers in material identification. We implement zero-shot detection techniques and majority voting across pixel-level predictions to establish object-level classification robustness. In adherence to the FAIR data principles, the electrolyzers-HSI dataset and accompanying codebase are openly available at https://github.com/hifexplo/Electrolyzers-HSI and https://rodare.hzdr.de/record/3668, supporting reproducible research and facilitating the broader adoption of smart and sustainable e-waste recycling solutions.
Authors:Dongyu Luo, Kelin Yu, Amir-Hossein Shahidzadeh, Cornelia Fermüller, Yiannis Aloimonos, Ruohan Gao
Abstract:
Vision-based tactile sensing has been widely used in perception, reconstruction, and robotic manipulation. However, collecting large-scale tactile data remains costly due to the localized nature of sensor-object interactions and inconsistencies across sensor instances. Existing approaches to scaling tactile data, such as simulation and free-form tactile generation, often suffer from unrealistic output and poor transferability to downstream tasks. To address this, we propose ControlTac, a two-stage controllable framework that generates realistic tactile images conditioned on a single reference tactile image, contact force, and contact position. With those physical priors as control input, ControlTac generates physically plausible and varied tactile images that can be used for effective data augmentation. Through experiments on three downstream tasks, we demonstrate that ControlTac can effectively augment tactile datasets and lead to consistent gains. Our three real-world experiments further validate the practical utility of our approach. Project page: https://dongyuluo.github.io/controltac.
Authors:Chenghao Qian, Wenjing Li, Yuhu Guo, Gustav Markkula
Abstract:
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
Authors:Lei Tian, Xiaomin Li, Liqian Ma, Hao Yin, Zirui Zheng, Hefei Huang, Taiqing Li, Huchuan Lu, Xu Jia
Abstract:
Recent advances in 3D reconstruction techniques and vision-language models have fueled significant progress in 3D semantic understanding, a capability critical to robotics, autonomous driving, and virtual/augmented reality. However, methods that rely on 2D priors are prone to a critical challenge: cross-view semantic inconsistencies induced by occlusion, image blur, and view-dependent variations. These inconsistencies, when propagated via projection supervision, deteriorate the quality of 3D Gaussian semantic fields and introduce artifacts in the rendered outputs. To mitigate this limitation, we propose CCL-LGS, a novel framework that enforces view-consistent semantic supervision by integrating multi-view semantic cues. Specifically, our approach first employs a zero-shot tracker to align a set of SAM-generated 2D masks and reliably identify their corresponding categories. Next, we utilize CLIP to extract robust semantic encodings across views. Finally, our Contrastive Codebook Learning (CCL) module distills discriminative semantic features by enforcing intra-class compactness and inter-class distinctiveness. In contrast to previous methods that directly apply CLIP to imperfect masks, our framework explicitly resolves semantic conflicts while preserving category discriminability. Extensive experiments demonstrate that CCL-LGS outperforms previous state-of-the-art methods. Our project page is available at https://epsilontl.github.io/CCL-LGS/.
Authors:Tal Gonen, Itai Pemper, Ilan Naiman, Nimrod Berman, Omri Azencot
Abstract:
Generative modeling of time series is a central challenge in time series analysis, particularly under data-scarce conditions. Despite recent advances in generative modeling, a comprehensive understanding of how state-of-the-art generative models perform under limited supervision remains lacking. In this work, we conduct the first large-scale study evaluating leading generative models in data-scarce settings, revealing a substantial performance gap between full-data and data-scarce regimes. To close this gap, we propose a unified diffusion-based generative framework that can synthesize high-fidelity time series across diverse domains using just a few examples. Our model is pre-trained on a large, heterogeneous collection of time series datasets, enabling it to learn generalizable temporal representations. It further incorporates architectural innovations such as dynamic convolutional layers for flexible channel adaptation and dataset token conditioning for domain-aware generation. Without requiring abundant supervision, our unified model achieves state-of-the-art performance in few-shot settings-outperforming domain-specific baselines across a wide range of subset sizes. Remarkably, it also surpasses all baselines even when tested on full datasets benchmarks, highlighting the strength of pre-training and cross-domain generalization. We hope this work encourages the community to revisit few-shot generative modeling as a key problem in time series research and pursue unified solutions that scale efficiently across domains. Code is available at https://github.com/azencot-group/ImagenFew.
Authors:Haoran Li, Yingjie Qin, Baoyuan Ou, Lai Xu, Ruiwen Xu
Abstract:
Vision-Language Models (VLMs) have made significant progress in multimodal tasks. However, their performance often deteriorates in long-context scenarios, particularly long videos. While Rotary Position Embedding (RoPE) has been widely adopted for length generalization in Large Language Models (LLMs), extending vanilla RoPE to capture the intricate spatial-temporal dependencies in videos remains an unsolved challenge. Existing methods typically allocate different frequencies within RoPE to encode 3D positional information. However, these allocation strategies mainly rely on heuristics, lacking in-depth theoretical analysis. In this paper, we first study how different allocation strategies impact the long-context capabilities of VLMs. Our analysis reveals that current multimodal RoPEs fail to reliably capture semantic similarities over extended contexts. To address this issue, we propose HoPE, a Hybrid of Position Embedding designed to improve the long-context capabilities of VLMs. HoPE introduces a hybrid frequency allocation strategy for reliable semantic modeling over arbitrarily long context, and a dynamic temporal scaling mechanism to facilitate robust learning and flexible inference across diverse context lengths. Extensive experiments across four video benchmarks on long video understanding and retrieval tasks demonstrate that HoPE consistently outperforms existing methods, confirming its effectiveness. Code is available at https://github.com/hrlics/HoPE.
Authors:Yunlong Tang, Pinxin Liu, Mingqian Feng, Zhangyun Tan, Rui Mao, Chao Huang, Jing Bi, Yunzhong Xiao, Susan Liang, Hang Hua, Ali Vosoughi, Luchuan Song, Zeliang Zhang, Chenliang Xu
Abstract:
Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/
Authors:Zihong Chen, Wanli Jiang, Jinzhe Li, Zhonghang Yuan, Huanjun Kong, Wanli Ouyang, Nanqing Dong
Abstract:
Fine-tuning for large language models (LLMs) typically requires substantial amounts of high-quality supervised data, which is both costly and labor-intensive to acquire. While synthetic data generation has emerged as a promising solution, existing approaches frequently suffer from factual inaccuracies, insufficient long-tail coverage, simplistic knowledge structures, and homogenized outputs. To address these challenges, we introduce GraphGen, a knowledge graph-guided framework designed for three key question-answering (QA) scenarios: atomic QA, aggregated QA, and multi-hop QA. It begins by constructing a fine-grained knowledge graph from the source text. It then identifies knowledge gaps in LLMs using the expected calibration error metric, prioritizing the generation of QA pairs that target high-value, long-tail knowledge. Furthermore, GraphGen incorporates multi-hop neighborhood sampling to capture complex relational information and employs style-controlled generation to diversify the resulting QA data. Experimental results on knowledge-intensive tasks under closed-book settings demonstrate that GraphGen outperforms conventional synthetic data methods, offering a more reliable and comprehensive solution to the data scarcity challenge in supervised fine-tuning. The code and data are publicly available at https://github.com/open-sciencelab/GraphGen.
Authors:Royden Wagner, Omer Sahin Tas, Felix Hauser, Marlon Steiner, Dominik Strutz, Abhishek Vivekanandan, Carlos Fernandez, Christoph Stiller
Abstract:
Motion forecasts of road users (i.e., agents) vary in complexity as a function of scene constraints and interactive behavior. We address this with a multi-task learning method for motion forecasting that includes a retrocausal flow of information. The corresponding tasks are to forecast (1) marginal trajectory distributions for all modeled agents and (2) joint trajectory distributions for interacting agents. Using a transformer model, we generate the joint distributions by re-encoding marginal distributions followed by pairwise modeling. This incorporates a retrocausal flow of information from later points in marginal trajectories to earlier points in joint trajectories. Per trajectory point, we model positional uncertainty using compressed exponential power distributions. Notably, our method achieves state-of-the-art results in the Waymo Interaction Prediction dataset and generalizes well to the Argoverse 2 dataset. Additionally, our method provides an interface for issuing instructions through trajectory modifications. Our experiments show that regular training of motion forecasting leads to the ability to follow goal-based instructions and to adapt basic directional instructions to the scene context. Code: https://github.com/kit-mrt/future-motion
Authors:Sha Yi, Xueqian Bai, Adabhav Singh, Jianglong Ye, Michael T Tolley, Xiaolong Wang
Abstract:
For robot manipulation, both the controller and end-effector design are crucial. Soft grippers are generalizable by deforming to different geometries, but designing such a gripper and finding its grasp pose remains challenging. In this paper, we propose a co-design framework that generates an optimized soft gripper's block-wise stiffness distribution and its grasping pose, using a neural physics model trained in simulation. We derived a uniform-pressure tendon model for a flexure-based soft finger, then generated a diverse dataset by randomizing both gripper pose and design parameters. A neural network is trained to approximate this forward simulation, yielding a fast, differentiable surrogate. We embed that surrogate in an end-to-end optimization loop to optimize the ideal stiffness configuration and best grasp pose. Finally, we 3D-print the optimized grippers of various stiffness by changing the structural parameters. We demonstrate that our co-designed grippers significantly outperform baseline designs in both simulation and hardware experiments. More info: http://yswhynot.github.io/codesign-soft/
Authors:Jaeyoung Choe, Jihoon Kim, Woohwan Jung
Abstract:
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
Authors:Jiahui Geng, Qing Li, Zongxiong Chen, Yuxia Wang, Derui Zhu, Zhuohan Xie, Chenyang Lyu, Xiuying Chen, Preslav Nakov, Fakhri Karray
Abstract:
The rapid advancement of vision-language models (VLMs) has brought a lot of attention to their safety alignment. However, existing methods have primarily focused on model undersafety, where the model responds to hazardous queries, while neglecting oversafety, where the model refuses to answer safe queries. In this paper, we introduce the concept of $\textit{safety calibration}$, which systematically addresses both undersafety and oversafety. Specifically, we present $\textbf{VSCBench}$, a novel dataset of 3,600 image-text pairs that are visually or textually similar but differ in terms of safety, which is designed to evaluate safety calibration across image-centric and text-centric scenarios. Based on our benchmark, we evaluate safety calibration across eleven widely used VLMs. Our extensive experiments revealed major issues with both undersafety and oversafety. We further investigated four approaches to improve the model's safety calibration. We found that even though some methods effectively calibrated the models' safety problems, these methods also lead to the degradation of models' utility. This trade-off underscores the urgent need for advanced calibration methods, and our benchmark provides a valuable tool for evaluating future approaches. Our code and data are available at https://github.com/jiahuigeng/VSCBench.git.
Authors:Lijun Zhang, Lin Li, Yajie Qi, Huizhong Song, Yaodong Yang, Jun Wang, Wei Wei
Abstract:
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
Authors:Yeonjoon Jung, Daehyun Ahn, Hyungjun Kim, Taesu Kim, Eunhyeok Park
Abstract:
Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-tuning (PEFT) of generative models, valued for its simplicity and effectiveness. Despite recent enhancements, LoRA still suffers from a fundamental limitation: overfitting when the bottleneck is widened. It performs best at ranks 32-64, yet its accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning (FFT) performance. We identify the root cause as LoRA's structural bottleneck, which introduces gradient entanglement to the unrelated input channels and distorts gradient propagation. To address this, we introduce a novel structure, Granular Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, each with its own low-rank adapter. With negligible computational or storage cost, GraLoRA overcomes LoRA's limitations, effectively increases the representational capacity, and more closely approximates FFT behavior. Experiments on code generation and commonsense reasoning benchmarks show that GraLoRA consistently outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in Pass@1 on HumanEval+. These improvements hold across model sizes and rank settings, making GraLoRA a scalable and robust solution for PEFT. Code, data, and scripts are available at https://github.com/SqueezeBits/GraLoRA.git
Authors:Juntong Wu, Zijing Liu, He Cao, Hao Li, Bin Feng, Zishan Shu, Ke Yu, Li Yuan, Yu Li
Abstract:
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
Authors:Dong Liu, Yanxuan Yu, Jiayi Zhang, Yifan Li, Ben Lengerich, Ying Nian Wu
Abstract:
Diffusion Transformers (DiT) are powerful generative models but remain computationally intensive due to their iterative structure and deep transformer stacks. To alleviate this inefficiency, we propose FastCache, a hidden-state-level caching and compression framework that accelerates DiT inference by exploiting redundancy within the model's internal representations. FastCache introduces a dual strategy: (1) a spatial-aware token selection mechanism that adaptively filters redundant tokens based on hidden state saliency, and (2) a transformer-level cache that reuses latent activations across timesteps when changes are statistically insignificant. These modules work jointly to reduce unnecessary computation while preserving generation fidelity through learnable linear approximation. Theoretical analysis shows that FastCache maintains bounded approximation error under a hypothesis-testing-based decision rule. Empirical evaluations across multiple DiT variants demonstrate substantial reductions in latency and memory usage, with best generation output quality compared to other cache methods, as measured by FID and t-FID. Code implementation of FastCache is available on GitHub at https://github.com/NoakLiu/FastCache-xDiT.
Authors:Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli Song, Dacheng Tao
Abstract:
Recent advances have demonstrated the effectiveness of Reinforcement Learning (RL) in improving the reasoning capabilities of Large Language Models (LLMs). However, existing works inevitably rely on high-quality instructions and verifiable rewards for effective training, both of which are often difficult to obtain in specialized domains. In this paper, we propose Self-play Reinforcement Learning(SeRL) to bootstrap LLM training with limited initial data. Specifically, SeRL comprises two complementary modules: self-instruction and self-rewarding. The former module generates additional instructions based on the available data at each training step, employing robust online filtering strategies to ensure instruction quality, diversity, and difficulty. The latter module introduces a simple yet effective majority-voting mechanism to estimate response rewards for additional instructions, eliminating the need for external annotations. Finally, SeRL performs conventional RL based on the generated data, facilitating iterative self-play learning. Extensive experiments on various reasoning benchmarks and across different LLM backbones demonstrate that the proposed SeRL yields results superior to its counterparts and achieves performance on par with those obtained by high-quality data with verifiable rewards. Our code is available at https://github.com/wantbook-book/SeRL.
Authors:Rui Liu, Pu Gao, Jiatian Xi, Berrak Sisman, Carlos Busso, Haizhou Li
Abstract:
Text-based speech editing (TSE) modifies speech using only text, eliminating re-recording. However, existing TSE methods, mainly focus on the content accuracy and acoustic consistency of synthetic speech segments, and often overlook the emotional shifts or inconsistency issues introduced by text changes. To address this issue, we propose EmoCorrector, a novel post-correction scheme for TSE. EmoCorrector leverages Retrieval-Augmented Generation (RAG) by extracting the edited text's emotional features, retrieving speech samples with matching emotions, and synthesizing speech that aligns with the desired emotion while preserving the speaker's identity and quality. To support the training and evaluation of emotional consistency modeling in TSE, we pioneer the benchmarking Emotion Correction Dataset for TSE (ECD-TSE). The prominent aspect of ECD-TSE is its inclusion of $<$text, speech$>$ paired data featuring diverse text variations and a range of emotional expressions. Subjective and objective experiments and comprehensive analysis on ECD-TSE confirm that EmoCorrector significantly enhances the expression of intended emotion while addressing emotion inconsistency limitations in current TSE methods. Code and audio examples are available at https://github.com/AI-S2-Lab/EmoCorrector.
Authors:Mathew J. Koretsky, Maya Willey, Adi Asija, Owen Bianchi, Chelsea X. Alvarado, Tanay Nayak, Nicole Kuznetsov, Sungwon Kim, Mike A. Nalls, Daniel Khashabi, Faraz Faghri
Abstract:
Biomedical researchers increasingly rely on large-scale structured databases for complex analytical tasks. However, current text-to-SQL systems often struggle to map qualitative scientific questions into executable SQL, particularly when implicit domain reasoning is required. We introduce BiomedSQL, the first benchmark explicitly designed to evaluate scientific reasoning in text-to-SQL generation over a real-world biomedical knowledge base. BiomedSQL comprises 68,000 question/SQL query/answer triples grounded in a harmonized BigQuery knowledge base that integrates gene-disease associations, causal inference from omics data, and drug approval records. Each question requires models to infer domain-specific criteria, such as genome-wide significance thresholds, effect directionality, or trial phase filtering, rather than rely on syntactic translation alone. We evaluate a range of open- and closed-source LLMs across prompting strategies and interaction paradigms. Our results reveal a substantial performance gap: GPT-o3-mini achieves 59.0% execution accuracy, while our custom multi-step agent, BMSQL, reaches 62.6%, both well below the expert baseline of 90.0%. BiomedSQL provides a new foundation for advancing text-to-SQL systems capable of supporting scientific discovery through robust reasoning over structured biomedical knowledge bases. Our dataset is publicly available at https://huggingface.co/datasets/NIH-CARD/BiomedSQL, and our code is open-source at https://github.com/NIH-CARD/biomedsql.
Authors:Joseph Maffetone, Julia Gersey, Pei Zhang
Abstract:
ZV-Sim is an open-source, modular Python framework for probabilistic simulation and analysis of pre-emergent novel zoonotic diseases using pervasive sensing data. It incorporates customizable Human and Animal Presence agents that leverage known and simulated location data, contact networks, and illness reports to assess and predict disease origins and spread. The framework supports Monte Carlo experiments to analyze outcomes with various user-defined movement and probability models. Although initial models are basic and illustrative, ZV-Sim's extensible design facilitates the integration of more sophisticated models as richer data become available, enhancing future capabilities in zoonotic disease tracking. The source code is publicly available \href{https://github.com/jmaff/zv-sim}{\underline{\textit{here}}}.
Authors:Wanghan Xu, Wenlong Zhang, Fenghua Ling, Ben Fei, Yusong Hu, Fangxuan Ren, Jintai Lin, Wanli Ouyang, Lei Bai
Abstract:
Meta-analysis is a systematic research methodology that synthesizes data from multiple existing studies to derive comprehensive conclusions. This approach not only mitigates limitations inherent in individual studies but also facilitates novel discoveries through integrated data analysis. Traditional meta-analysis involves a complex multi-stage pipeline including literature retrieval, paper screening, and data extraction, which demands substantial human effort and time. However, while LLM-based methods can accelerate certain stages, they still face significant challenges, such as hallucinations in paper screening and data extraction. In this paper, we propose a multi-agent system, Manalyzer, which achieves end-to-end automated meta-analysis through tool calls. The hybrid review, hierarchical extraction, self-proving, and feedback checking strategies implemented in Manalyzer significantly alleviate these two hallucinations. To comprehensively evaluate the performance of meta-analysis, we construct a new benchmark comprising 729 papers across 3 domains, encompassing text, image, and table modalities, with over 10,000 data points. Extensive experiments demonstrate that Manalyzer achieves significant performance improvements over the LLM baseline in multi meta-analysis tasks. Project page: https://black-yt.github.io/meta-analysis-page/ .
Authors:Patrick Yubeaton, Andre Nakkab, Weihua Xiao, Luca Collini, Ramesh Karri, Chinmay Hegde, Siddharth Garg
Abstract:
This paper introduces VeriThoughts, a novel dataset designed for reasoning-based Verilog code generation. We establish a new benchmark framework grounded in formal verification methods to evaluate the quality and correctness of generated hardware descriptions. Additionally, we present a suite of specialized small-scale models optimized specifically for Verilog generation. Our work addresses the growing need for automated hardware design tools that can produce verifiably correct implementations from high-level specifications, potentially accelerating the hardware development process while maintaining rigorous correctness guarantees. Our code and data are available at \href{https://github.com/wilyub/VeriThoughts}{this URL}.
Authors:Jianpeng Chen, Wangzhi Zhan, Haohui Wang, Zian Jia, Jingru Gan, Junkai Zhang, Jingyuan Qi, Tingwei Chen, Lifu Huang, Muhao Chen, Ling Li, Wei Wang, Dawei Zhou
Abstract:
Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.
Authors:Qinyu Zhao, Jaskirat Singh, Ming Xu, Akshay Asthana, Stephen Gould, Liang Zheng
Abstract:
An increasing number of autoregressive models, such as MAR, FlowAR, xAR, and Harmon adopt diffusion sampling to improve the quality of image generation. However, this strategy leads to low inference efficiency, because it usually takes 50 to 100 steps for diffusion to sample a token. This paper explores how to effectively address this issue. Our key motivation is that as more tokens are generated during the autoregressive process, subsequent tokens follow more constrained distributions and are easier to sample. To intuitively explain, if a model has generated part of a dog, the remaining tokens must complete the dog and thus are more constrained. Empirical evidence supports our motivation: at later generation stages, the next tokens can be well predicted by a multilayer perceptron, exhibit low variance, and follow closer-to-straight-line denoising paths from noise to tokens. Based on our finding, we introduce diffusion step annealing (DiSA), a training-free method which gradually uses fewer diffusion steps as more tokens are generated, e.g., using 50 steps at the beginning and gradually decreasing to 5 steps at later stages. Because DiSA is derived from our finding specific to diffusion in autoregressive models, it is complementary to existing acceleration methods designed for diffusion alone. DiSA can be implemented in only a few lines of code on existing models, and albeit simple, achieves $5-10\times$ faster inference for MAR and Harmon and $1.4-2.5\times$ for FlowAR and xAR, while maintaining the generation quality.
Authors:Michael Kirchhof, Luca Füger, Adam GoliÅski, Eeshan Gunesh Dhekane, Arno Blaas, Sinead Williamson
Abstract:
To reveal when a large language model (LLM) is uncertain about a response, uncertainty quantification commonly produces percentage numbers along with the output. But is this all we can do? We argue that in the output space of LLMs, the space of strings, exist strings expressive enough to summarize the distribution over output strings the LLM deems possible. We lay a foundation for this new avenue of uncertainty explication and present SelfReflect, a theoretically-motivated metric to assess how faithfully a string summarizes an LLM's internal answer distribution. We show that SelfReflect is able to discriminate even subtle differences of candidate summary strings and that it aligns with human judgement, outperforming alternative metrics such as LLM judges and embedding comparisons. With SelfReflect, we investigate a number of self-summarization methods and find that even state-of-the-art reasoning models struggle to explicate their internal uncertainty. But we find that faithful summarizations can be generated by sampling and summarizing. To support the development of this universal form of LLM uncertainties, we publish our metric at https://github.com/apple/ml-selfreflect
Authors:Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, Li Yuan
Abstract:
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
Authors:Di Wu, Yixin Wan, Kai-Wei Chang
Abstract:
We propose Visualize-then-Retrieve (VisRet), a new paradigm for Text-to-Image (T2I) retrieval that mitigates the limitations of cross-modal similarity alignment of existing multi-modal embeddings. VisRet first projects textual queries into the image modality via T2I generation. Then, it performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Experiments on three knowledge-intensive T2I retrieval benchmarks, including a newly introduced multi-entity benchmark, demonstrate that VisRet consistently improves T2I retrieval by 24.5% to 32.7% NDCG@10 across different embedding models. VisRet also significantly benefits downstream visual question answering accuracy when used in retrieval-augmented generation pipelines. The method is plug-and-play and compatible with off-the-shelf retrievers, making it an effective module for knowledge-intensive multi-modal systems. Our code and the new benchmark are publicly available at https://github.com/xiaowu0162/Visualize-then-Retrieve.
Authors:Guangting Zheng, Yehao Li, Yingwei Pan, Jiajun Deng, Ting Yao, Yanyong Zhang, Tao Mei
Abstract:
Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.
Authors:Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, Tao Mei
Abstract:
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
Authors:Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang, Shilong Liu, Hongru Wang, Mengdi Wang
Abstract:
Recent advances in large language models (LLMs) have enabled agents to autonomously perform complex, open-ended tasks. However, many existing frameworks depend heavily on manually predefined tools and workflows, which hinder their adaptability, scalability, and generalization across domains. In this work, we introduce Alita--a generalist agent designed with the principle of "Simplicity is the ultimate sophistication," enabling scalable agentic reasoning through minimal predefinition and maximal self-evolution. For minimal predefinition, Alita is equipped with only one component for direct problem-solving, making it much simpler and neater than previous approaches that relied heavily on hand-crafted, elaborate tools and workflows. This clean design enhances its potential to generalize to challenging questions, without being limited by tools. For Maximal self-evolution, we enable the creativity of Alita by providing a suite of general-purpose components to autonomously construct, refine, and reuse external capabilities by generating task-related model context protocols (MCPs) from open source, which contributes to scalable agentic reasoning. Notably, Alita achieves 75.15% pass@1 and 87.27% pass@3 accuracy, which is top-ranking among general-purpose agents, on the GAIA benchmark validation dataset, 74.00% and 52.00% pass@1, respectively, on Mathvista and PathVQA, outperforming many agent systems with far greater complexity. More details will be updated at $\href{https://github.com/CharlesQ9/Alita}{https://github.com/CharlesQ9/Alita}$.
Authors:Weiqi Wu, Xin Guan, Shen Huang, Yong Jiang, Pengjun Xie, Fei Huang, Jiuxin Cao, Hai Zhao, Jingren Zhou
Abstract:
Retrieval-Augmented Language Models (RALMs) represent a classic paradigm where models enhance generative capabilities using external knowledge retrieved via a specialized module. Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning. While existing training-based methods show promise, their agentic abilities are limited by inherent characteristics of the task-specific data used during training. To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch. In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans on a large number of pre-training data, thus acquiring universal retrieval and reasoning capabilities for LLMs. After that, the model is trained on downstream tasks to achieve further improvement. We apply both Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) for training. For SFT, we combine agent-based and distillation-based methods to generate training data, starting with a multi-agent system consisting of a planner, rewriter, observer, and followed by a self-evolving teacher model. While for RL, we employ DAPO as the training framework and adopt a hybrid reward system consisting of answer rewards and format rewards. Additionally, we introduce a curriculum learning approach that allows the model to learn progressively from easier to more challenging instances based on the number of masked spans. We evaluate the effectiveness of our framework in the scenario of open-domain multi-hop question answering. Through extensive experiments, we demonstrate that MaskSearch significantly enhances the performance of LLM-based search agents on both in-domain and out-of-domain downstream tasks.
Authors:Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, Bryan Dai
Abstract:
We trained 13,440 large language models and found that entropy minimization requires only a single unlabeled data and 10 steps optimization to achieve performance improvements comparable to or even greater than those obtained using thousands of data and carefully designed rewards in rule-based reinforcement learning. This striking result may prompt a rethinking of post-training paradigms for large language models. Our code is avaliable at https://github.com/zitian-gao/one-shot-em.
Authors:Haonan Zhang, Run Luo, Xiong Liu, Yuchuan Wu, Ting-En Lin, Pengpeng Zeng, Qiang Qu, Feiteng Fang, Min Yang, Lianli Gao, Jingkuan Song, Fei Huang, Yongbin Li
Abstract:
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
Authors:Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, Li Yuan
Abstract:
Recent advancements in generative models have enabled high-fidelity text-to-image generation. However, open-source image-editing models still lag behind their proprietary counterparts, primarily due to limited high-quality data and insufficient benchmarks. To overcome these limitations, we introduce ImgEdit, a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train ImgEdit-E1, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce ImgEdit-Bench, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1, providing deep analysis and actionable insights into the current behavior of image-editing models. The source data are publicly available on https://github.com/PKU-YuanGroup/ImgEdit.
Authors:Jinsheng Quan, Chunshi Wang, Yawei Luo
Abstract:
This paper aims to model the dynamics of 3D Gaussians from visual observations to support temporal extrapolation. Existing dynamic 3D reconstruction methods often struggle to effectively learn underlying dynamics or rely heavily on manually defined physical priors, which limits their extrapolation capabilities. To address this issue, we propose a novel dynamic 3D Gaussian Splatting prior-free motion extrapolation framework based on particle dynamics systems. The core advantage of our method lies in its ability to learn differential equations that describe the dynamics of 3D Gaussians, and follow them during future frame extrapolation. Instead of simply fitting to the observed visual frame sequence, we aim to more effectively model the gaussian particle dynamics system. To this end, we introduce a dynamics latent state vector into the standard Gaussian kernel and design a dynamics latent space encoder to extract initial state. Subsequently, we introduce a Neural ODEs-based dynamics module that models the temporal evolution of Gaussian in dynamics latent space. Finally, a Gaussian kernel space decoder is used to decode latent state at the specific time step into the deformation. Experimental results demonstrate that the proposed method achieves comparable rendering quality with existing approaches in reconstruction tasks, and significantly outperforms them in future frame extrapolation. Our code is available at https://github.com/QuanJinSheng/ParticleGS.
Authors:Haoyu Wang, Zeyu Qin, Yifei Zhao, Chao Du, Min Lin, Xueqian Wang, Tianyu Pang
Abstract:
LLMs have made impressive progress, but their growing capabilities also expose them to highly flexible jailbreaking attacks designed to bypass safety alignment. While many existing defenses focus on known types of attacks, it is more critical to prepare LLMs for unseen attacks that may arise during deployment. To address this, we propose a lifelong safety alignment framework that enables LLMs to continuously adapt to new and evolving jailbreaking strategies. Our framework introduces a competitive setup between two components: a Meta-Attacker, trained to actively discover novel jailbreaking strategies, and a Defender, trained to resist them. To effectively warm up the Meta-Attacker, we first leverage the GPT-4o API to extract key insights from a large collection of jailbreak-related research papers. Through iterative training, the first iteration Meta-Attacker achieves a 73% attack success rate (ASR) on RR and a 57% transfer ASR on LAT using only single-turn attacks. Meanwhile, the Defender progressively improves its robustness and ultimately reduces the Meta-Attacker's success rate to just 7%, enabling safer and more reliable deployment of LLMs in open-ended environments. The code is available at https://github.com/sail-sg/LifelongSafetyAlignment.
Authors:Hao Zhong, Muzhi Zhu, Zongze Du, Zheng Huang, Canyu Zhao, Mingyu Liu, Wen Wang, Hao Chen, Chunhua Shen
Abstract:
Long-horizon video-audio reasoning and fine-grained pixel understanding impose conflicting requirements on omnimodal models: dense temporal coverage demands many low-resolution frames, whereas precise grounding calls for high-resolution inputs. We tackle this trade-off with a two-system architecture: a Global Reasoning System selects informative keyframes and rewrites the task at low spatial cost, while a Detail Understanding System performs pixel-level grounding on the selected high-resolution snippets. Because ``optimal'' keyframe selection and reformulation are ambiguous and hard to supervise, we formulate them as a reinforcement learning (RL) problem and present Omni-R1, an end-to-end RL framework built on Group Relative Policy Optimization. Omni-R1 trains the Global Reasoning System through hierarchical rewards obtained via online collaboration with the Detail Understanding System, requiring only one epoch of RL on small task splits.
Experiments on two challenging benchmarks, namely Referring Audio-Visual Segmentation (RefAVS) and Reasoning Video Object Segmentation (REVOS), show that Omni-R1 not only surpasses strong supervised baselines but also outperforms specialized state-of-the-art models, while substantially improving out-of-domain generalization and mitigating multimodal hallucination. Our results demonstrate the first successful application of RL to large-scale omnimodal reasoning and highlight a scalable path toward universally foundation models.
Authors:Muyao Niu, Mingdeng Cao, Yifan Zhan, Qingtian Zhu, Mingze Ma, Jiancheng Zhao, Yanhong Zeng, Zhihang Zhong, Xiao Sun, Yinqiang Zheng
Abstract:
Recent advances in video diffusion models have significantly improved character animation techniques. However, current approaches rely on basic structural conditions such as DWPose or SMPL-X to animate character images, limiting their effectiveness in open-domain scenarios with dynamic backgrounds or challenging human poses. In this paper, we introduce \textbf{AniCrafter}, a diffusion-based human-centric animation model that can seamlessly integrate and animate a given character into open-domain dynamic backgrounds while following given human motion sequences. Built on cutting-edge Image-to-Video (I2V) diffusion architectures, our model incorporates an innovative ''avatar-background'' conditioning mechanism that reframes open-domain human-centric animation as a restoration task, enabling more stable and versatile animation outputs. Experimental results demonstrate the superior performance of our method. Codes are available at https://github.com/MyNiuuu/AniCrafter.
Authors:Qi Cao, Ruiyi Wang, Ruiyi Zhang, Sai Ashish Somayajula, Pengtao Xie
Abstract:
Reasoning has improved the performance of large language models (LLMs) on complicated tasks. Central to the current reasoning studies, Process Reward Models (PRMs) offer a fine-grained evaluation of intermediate reasoning steps and guide the reasoning process. However, extending PRMs to multimodal large language models (MLLMs) introduces challenges. Since multimodal reasoning covers a wider range of tasks compared to text-only scenarios, the resulting distribution shift from the training to testing sets is more severe, leading to greater generalization difficulty. Training a reliable multimodal PRM, therefore, demands large and diverse datasets to ensure sufficient coverage. However, current multimodal reasoning datasets suffer from quality imbalance, which degrades PRM performance and highlights the need for data selection strategy. To address the issues, we introduce DreamPRM, a domain-reweighted training framework for multimodal PRMs which employs bi-level optimization. In the lower-level optimization, DreamPRM performs fine-tuning on multiple datasets with domain weights, allowing the PRM to prioritize high-quality reasoning signals and alleviating the impact of dataset quality imbalance. In the upper-level optimization, the PRM is evaluated on a separate meta-learning dataset; this feedback updates the domain weights through an aggregation loss function, thereby improving the generalization capability of trained PRM. Extensive experiments on multiple multimodal reasoning benchmarks covering both mathematical and general reasoning show that test-time scaling with DreamPRM consistently improves performance of state-of-the-art MLLMs. Further comparisons reveal that DreamPRM's domain-reweighting strategy surpasses data selection methods and yields higher accuracy gains than existing test-time scaling approaches. Codes are available at https://github.com/coder-qicao/DreamPRM.
Authors:Pranav Poudel, Aavash Chhetri, Prashnna Gyawali, Georgios Leontidis, Binod Bhattarai
Abstract:
Multimodal federated learning holds immense potential for collaboratively training models from multiple sources without sharing raw data, addressing both data scarcity and privacy concerns, two key challenges in healthcare. A major challenge in training multimodal federated models in healthcare is the presence of missing modalities due to multiple reasons, including variations in clinical practice, cost and accessibility constraints, retrospective data collection, privacy concerns, and occasional technical or human errors. Previous methods typically rely on publicly available real datasets or synthetic data to compensate for missing modalities. However, obtaining real datasets for every disease is impractical, and training generative models to synthesize missing modalities is computationally expensive and prone to errors due to the high dimensionality of medical data. In this paper, we propose a novel, lightweight, low-dimensional feature translator to reconstruct bottleneck features of the missing modalities. Our experiments on three different datasets (MIMIC-CXR, NIH Open-I, and CheXpert), in both homogeneous and heterogeneous settings consistently improve the performance of competitive baselines. The code and implementation details are available at: https://github.com/bhattarailab/FedFeatGen
Authors:Maximilian Dreyer, Lorenz Hufe, Jim Berend, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
Abstract:
Transformer-based CLIP models are widely used for text-image probing and feature extraction, making it relevant to understand the internal mechanisms behind their predictions. While recent works show that Sparse Autoencoders (SAEs) yield interpretable latent components, they focus on what these encode and miss how they drive predictions. We introduce a scalable framework that reveals what latent components activate for, how they align with expected semantics, and how important they are to predictions. To achieve this, we adapt attribution patching for instance-wise component attributions in CLIP and highlight key faithfulness limitations of the widely used Logit Lens technique. By combining attributions with semantic alignment scores, we can automatically uncover reliance on components that encode semantically unexpected or spurious concepts. Applied across multiple CLIP variants, our method uncovers hundreds of surprising components linked to polysemous words, compound nouns, visual typography and dataset artifacts. While text embeddings remain prone to semantic ambiguity, they are more robust to spurious correlations compared to linear classifiers trained on image embeddings. A case study on skin lesion detection highlights how such classifiers can amplify hidden shortcuts, underscoring the need for holistic, mechanistic interpretability. We provide code at https://github.com/maxdreyer/attributing-clip.
Authors:Hao Kang, Zichun Yu, Chenyan Xiong
Abstract:
Recent large language models such as Gemini-1.5, DeepSeek-V3, and Llama-4 increasingly adopt Mixture-of-Experts (MoE) architectures, which offer strong efficiency-performance trade-offs by activating only a fraction of the model per token. Yet academic researchers still lack a fully open, end-to-end MoE platform for investigating scaling, routing, and expert behavior. We release FLAME-MoE, a completely open-source research suite composed of seven decoder-only models, ranging from 38M to 1.7B active parameters, whose architecture--64 experts with top-8 gating and 2 shared experts--closely reflects modern production LLMs. All training data pipelines, scripts, logs, and checkpoints are publicly available to enable reproducible experimentation. Across six evaluation tasks, FLAME-MoE improves average accuracy by up to 3.4 points over dense baselines trained with identical FLOPs. Leveraging full training trace transparency, we present initial analyses showing that (i) experts increasingly specialize on distinct token subsets, (ii) co-activation matrices remain sparse, reflecting diverse expert usage, and (iii) routing behavior stabilizes early in training. All code, training logs, and model checkpoints are available at https://github.com/cmu-flame/FLAME-MoE.
Authors:Yixin Cui, Haotian Lin, Shuo Yang, Yixiao Wang, Yanjun Huang, Hong Chen
Abstract:
The rapid evolution of large language models in natural language processing has substantially elevated their semantic understanding and logical reasoning capabilities. Such proficiencies have been leveraged in autonomous driving systems, contributing to significant improvements in system performance. Models such as OpenAI o1 and DeepSeek-R1, leverage Chain-of-Thought (CoT) reasoning, an advanced cognitive method that simulates human thinking processes, demonstrating remarkable reasoning capabilities in complex tasks. By structuring complex driving scenarios within a systematic reasoning framework, this approach has emerged as a prominent research focus in autonomous driving, substantially improving the system's ability to handle challenging cases. This paper investigates how CoT methods improve the reasoning abilities of autonomous driving models. Based on a comprehensive literature review, we present a systematic analysis of the motivations, methodologies, challenges, and future research directions of CoT in autonomous driving. Furthermore, we propose the insight of combining CoT with self-learning to facilitate self-evolution in driving systems. To ensure the relevance and timeliness of this study, we have compiled a dynamic repository of literature and open-source projects, diligently updated to incorporate forefront developments. The repository is publicly available at https://github.com/cuiyx1720/Awesome-CoT4AD.
Authors:Chenxiao Fan, Chongming Gao, Wentao Shi, Yaxin Gong, Zihao Zhao, Fuli Feng
Abstract:
Accurate and safe medication recommendations are critical for effective clinical decision-making, especially in multimorbidity cases. However, existing systems rely on point-wise prediction paradigms that overlook synergistic drug effects and potential adverse drug-drug interactions (DDIs). We propose FLAME, a fine-grained list-wise alignment framework for large language models (LLMs), enabling drug-by-drug generation of drug lists. FLAME formulates recommendation as a sequential decision process, where each step adds or removes a single drug. To provide fine-grained learning signals, we devise step-wise Group Relative Policy Optimization (GRPO) with potential-based reward shaping, which explicitly models DDIs and optimizes the contribution of each drug to the overall prescription. Furthermore, FLAME enhances patient modeling by integrating structured clinical knowledge and collaborative information into the representation space of LLMs. Experiments on benchmark datasets demonstrate that FLAME achieves state-of-the-art performance, delivering superior accuracy, controllable safety-accuracy trade-offs, and strong generalization across diverse clinical scenarios. Our code is available at https://github.com/cxfann/Flame.
Authors:Pengxiang Li, Shilin Yan, Joey Tsai, Renrui Zhang, Ruichuan An, Ziyu Guo, Xiaowei Gao
Abstract:
Classifier-Free Guidance (CFG) significantly enhances controllability in generative models by interpolating conditional and unconditional predictions. However, standard CFG often employs a static unconditional input, which can be suboptimal for iterative generation processes where model uncertainty varies dynamically. We introduce Adaptive Classifier-Free Guidance (A-CFG), a novel method that tailors the unconditional input by leveraging the model's instantaneous predictive confidence. At each step of an iterative (masked) diffusion language model, A-CFG identifies tokens in the currently generated sequence for which the model exhibits low confidence. These tokens are temporarily re-masked to create a dynamic, localized unconditional input. This focuses CFG's corrective influence precisely on areas of ambiguity, leading to more effective guidance. We integrate A-CFG into a state-of-the-art masked diffusion language model and demonstrate its efficacy. Experiments on diverse language generation benchmarks show that A-CFG yields substantial improvements over standard CFG, achieving, for instance, a 3.9 point gain on GPQA. Our work highlights the benefit of dynamically adapting guidance mechanisms to model uncertainty in iterative generation.
Authors:Bingguang Hao, Maolin Wang, Zengzhuang Xu, Cunyin Peng, Yicheng Chen, Xiangyu Zhao, Jinjie Gu, Chenyi Zhuang
Abstract:
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
Authors:Shubham Gandhi, Atharva Naik, Yiqing Xie, Carolyn Rose
Abstract:
We study cost-efficient collaboration between strong and weak language models for repository-level code generation, where the weak model handles simpler tasks at lower cost, and the most challenging tasks are delegated to the strong model. While many works propose architectures for this task, few analyze performance relative to cost. We evaluate a broad spectrum of collaboration strategies: context-based, pipeline-based, and dynamic, on GitHub issue resolution. Our most effective collaborative strategy achieves equivalent performance to the strong model while reducing the cost by 40%. Based on our findings, we offer actionable guidelines for choosing collaboration strategies under varying budget and performance constraints. Our results show that strong-weak collaboration substantially boosts the weak model's performance at a fraction of the cost, pipeline and context-based methods being most efficient. We release the code for our work at https://github.com/shubhamrgandhi/codegen-strong-weak-collab.
Authors:Chun-Yi Kuan, Hung-yi Lee
Abstract:
Audio-aware large language models (ALLMs) have recently made great strides in understanding and processing audio inputs. These models are typically adapted from text-based large language models (LLMs) through additional training on audio-related tasks. However, this adaptation process presents two major limitations. First, ALLMs often suffer from catastrophic forgetting, where crucial textual capabilities like instruction-following are lost after training on audio data. In some cases, models may even hallucinate sounds that are not present in the input audio, raising concerns about reliability. Second, achieving cross-modal alignment between audio and language typically relies on large collections of task-specific question-answer pairs for instruction tuning, making it resource-intensive. To address these issues, previous works have leveraged the backbone LLMs to synthesize general-purpose, caption-style alignment data. In this paper, we propose a data generation framework that produces contrastive-like training data, designed to enhance ALLMs' ability to differentiate between present and absent sounds. We further extend our approach to multi-audio scenarios, enabling the model to either explain differences between audio inputs or produce unified captions that describe all inputs, thereby enhancing audio-language alignment. We refer to the entire ALLM training framework as bootstrapping audio-language alignment via synthetic data generation from backbone LLMs (BALSa). Experimental results indicate that our method effectively mitigates audio hallucinations while reliably maintaining strong performance on audio understanding and reasoning benchmarks, as well as instruction-following skills. Moreover, incorporating multi-audio training further enhances the model's comprehension and reasoning capabilities. Overall, BALSa offers an efficient and scalable approach to developing ALLMs.
Authors:Cédric Goemaere, Gaspard Oliviers, Rafal Bogacz, Thomas Demeester
Abstract:
Predictive Coding (PC) offers a biologically plausible alternative to backpropagation for neural network training, yet struggles with deeper architectures. This paper identifies the root cause: an inherent signal decay problem where gradients attenuate exponentially with depth, becoming computationally negligible due to numerical precision constraints. To address this fundamental limitation, we introduce Error Optimization (EO), a novel reparameterization that preserves PC's theoretical properties while eliminating signal decay. By optimizing over prediction errors rather than states, EO enables signals to reach all layers simultaneously and without attenuation, converging orders of magnitude faster than standard PC. Experiments across multiple architectures and datasets demonstrate that EO matches backpropagation's performance even for deeper models where conventional PC struggles. Besides practical improvements, our work provides theoretical insight into PC dynamics and establishes a foundation for scaling biologically-inspired learning to deeper architectures on digital hardware and beyond.
Authors:Jin Zhu, Jingyi Li, Hongyi Zhou, Yinan Lin, Zhenhua Lin, Chengchun Shi
Abstract:
This paper focuses on the design of spatial experiments to optimize the amount of information derived from the experimental data and enhance the accuracy of the resulting causal effect estimator. We propose a surrogate function for the mean squared error (MSE) of the estimator, which facilitates the use of classical graph cut algorithms to learn the optimal design. Our proposal offers three key advances: (1) it accommodates moderate to large spatial interference effects; (2) it adapts to different spatial covariance functions; (3) it is computationally efficient. Theoretical results and numerical experiments based on synthetic environments and a dispatch simulator that models a city-scale ridesharing market, further validate the effectiveness of our design. A python implementation of our method is available at https://github.com/Mamba413/CausalGraphCut.
Authors:Xinhang Liu, Yu-Wing Tai, Chi-Keung Tang
Abstract:
Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications. Project page: https://spatctxvlm.github.io/project_page/.
Authors:Fanheng Kong, Jingyuan Zhang, Hongzhi Zhang, Shi Feng, Daling Wang, Linhao Yu, Xingguang Ji, Yu Tian, Victoria W., Fuzheng Zhang
Abstract:
Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
Authors:Yige Yuan, Teng Xiao, Li Yunfan, Bingbing Xu, Shuchang Tao, Yunqi Qiu, Huawei Shen, Xueqi Cheng
Abstract:
Aligning large language models with human feedback at inference time has received increasing attention due to its flexibility. Existing methods rely on generating multiple responses from the base policy for search using a reward model, which can be considered as searching in a discrete response space. However, these methods struggle to explore informative candidates when the base policy is weak or the candidate set is small, resulting in limited effectiveness. In this paper, to address this problem, we propose Simple Energy Adaptation ($\textbf{SEA}$), a simple yet effective algorithm for inference-time alignment. In contrast to expensive search over the discrete space, SEA directly adapts original responses from the base policy toward the optimal one via gradient-based sampling in continuous latent space. Specifically, SEA formulates inference as an iterative optimization procedure on an energy function over actions in the continuous space defined by the optimal policy, enabling simple and effective alignment. For instance, despite its simplicity, SEA outperforms the second-best baseline with a relative improvement of up to $ \textbf{77.51%}$ on AdvBench and $\textbf{16.36%}$ on MATH. Our code is publicly available at https://github.com/yuanyige/sea
Authors:Florian Eichin, Yupei Du, Philipp Mondorf, Barbara Plank, Michael A. Hedderich
Abstract:
Post-hoc interpretability methods typically attribute a model's behavior to its components, data, or training trajectory in isolation. This leads to explanations that lack a unified view and may miss key interactions. While combining existing methods or applying them at different training stages offers broader insights, these approaches usually lack theoretical support. In this work, we present ExPLAIND, a unified framework that integrates all three perspectives. First, we generalize recent work on gradient path kernels, which reformulate models trained by gradient descent as a kernel machine, to more realistic training settings. Empirically, we find that both a CNN and a Transformer model are replicated accurately by this reformulation. Second, we derive novel parameter- and step-wise influence scores from the kernel feature maps. We show their effectiveness in parameter pruning that is comparable to existing methods, reinforcing their value for model component attribution. Finally, jointly interpreting model components and data over the training process, we leverage ExPLAIND to analyze a Transformer that exhibits Grokking. Among other things, our findings support previously proposed stages of Grokking, while refining the final phase as one of alignment of input embeddings and final layers around a representation pipeline learned after the memorization phase. Overall, ExPLAIND provides a theoretically grounded, unified framework to interpret model behavior and training dynamics.
Authors:Yige Yuan, Teng Xiao, Shuchang Tao, Xue Wang, Jinyang Gao, Bolin Ding, Bingbing Xu
Abstract:
Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/w2sr.
Authors:Hongsong Wang, Yin Zhu, Qiuxia Lai, Yang Zhang, Guo-Sen Xie, Xin Geng
Abstract:
Computational dance generation is crucial in many areas, such as art, human-computer interaction, virtual reality, and digital entertainment, particularly for generating coherent and expressive long dance sequences. Diffusion-based music-to-dance generation has made significant progress, yet existing methods still struggle to produce physically plausible motions. To address this, we propose Plausibility-Aware Motion Diffusion (PAMD), a framework for generating dances that are both musically aligned and physically realistic. The core of PAMD lies in the Plausible Motion Constraint (PMC), which leverages Neural Distance Fields (NDFs) to model the actual pose manifold and guide generated motions toward a physically valid pose manifold. To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG), which uses standing poses as auxiliary conditions alongside music features. To further enhance realism for complex movements, we introduce the Motion Refinement with Foot-ground Contact (MRFC) module, which addresses foot-skating artifacts by bridging the gap between the optimization objective in linear joint position space and the data representation in nonlinear rotation space. Extensive experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions. This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/.
Authors:Hongsong Wang, Ao Sun, Jie Gui, Liang Wang
Abstract:
Gesture recognition is an important research area in the field of computer vision. Most gesture recognition efforts focus on close-set scenarios, thereby limiting the capacity to effectively handle unseen or novel gestures. We aim to address class-incremental gesture recognition, which entails the ability to accommodate new and previously unseen gestures over time. Specifically, we introduce a Prototype-Guided Pseudo Feature Replay (PGPFR) framework for data-free class-incremental gesture recognition. This framework comprises four components: Pseudo Feature Generation with Batch Prototypes (PFGBP), Variational Prototype Replay (VPR) for old classes, Truncated Cross-Entropy (TCE) for new classes, and Continual Classifier Re-Training (CCRT). To tackle the issue of catastrophic forgetting, the PFGBP dynamically generates a diversity of pseudo features in an online manner, leveraging class prototypes of old classes along with batch class prototypes of new classes. Furthermore, the VPR enforces consistency between the classifier's weights and the prototypes of old classes, leveraging class prototypes and covariance matrices to enhance robustness and generalization capabilities. The TCE mitigates the impact of domain differences of the classifier caused by pseudo features. Finally, the CCRT training strategy is designed to prevent overfitting to new classes and ensure the stability of features extracted from old classes. Extensive experiments conducted on two widely used gesture recognition datasets, namely SHREC 2017 3D and EgoGesture 3D, demonstrate that our approach outperforms existing state-of-the-art methods by 11.8\% and 12.8\% in terms of mean global accuracy, respectively. The code is available on https://github.com/sunao-101/PGPFR-3/.
Authors:Chang Liu, Haomin Zhang, Shiyu Xia, Zihao Chen, Chaofan Ding, Xin Yue, Huizhe Chen, Xinhan Di
Abstract:
Generating high-quality piano audio from video requires precise synchronization between visual cues and musical output, ensuring accurate semantic and temporal alignment.However, existing evaluation datasets do not fully capture the intricate synchronization required for piano music generation. A comprehensive benchmark is essential for two primary reasons: (1) existing metrics fail to reflect the complexity of video-to-piano music interactions, and (2) a dedicated benchmark dataset can provide valuable insights to accelerate progress in high-quality piano music generation. To address these challenges, we introduce the CoP Benchmark Dataset-a fully open-sourced, multimodal benchmark designed specifically for video-guided piano music generation. The proposed Chain-of-Perform (CoP) benchmark offers several compelling features: (1) detailed multimodal annotations, enabling precise semantic and temporal alignment between video content and piano audio via step-by-step Chain-of-Perform guidance; (2) a versatile evaluation framework for rigorous assessment of both general-purpose and specialized video-to-piano generation tasks; and (3) full open-sourcing of the dataset, annotations, and evaluation protocols. The dataset is publicly available at https://github.com/acappemin/Video-to-Audio-and-Piano, with a continuously updated leaderboard to promote ongoing research in this domain.
Authors:Xueyi Liu, Zuodong Zhong, Yuxin Guo, Yun-Fu Liu, Zhiguo Su, Qichao Zhang, Junli Wang, Yinfeng Gao, Yupeng Zheng, Qiao Lin, Huiyong Chen, Dongbin Zhao
Abstract:
Due to the powerful vision-language reasoning and generalization abilities, multimodal large language models (MLLMs) have garnered significant attention in the field of end-to-end (E2E) autonomous driving. However, their application to closed-loop systems remains underexplored, and current MLLM-based methods have not shown clear superiority to mainstream E2E imitation learning approaches. In this work, we propose ReasonPlan, a novel MLLM fine-tuning framework designed for closed-loop driving through holistic reasoning with a self-supervised Next Scene Prediction task and supervised Decision Chain-of-Thought process. This dual mechanism encourages the model to align visual representations with actionable driving context, while promoting interpretable and causally grounded decision making. We curate a planning-oriented decision reasoning dataset, namely PDR, comprising 210k diverse and high-quality samples. Our method outperforms the mainstream E2E imitation learning method by a large margin of 19% L2 and 16.1 driving score on Bench2Drive benchmark. Furthermore, ReasonPlan demonstrates strong zero-shot generalization on unseen DOS benchmark, highlighting its adaptability in handling zero-shot corner cases. Code and dataset will be found in https://github.com/Liuxueyi/ReasonPlan.
Authors:Qiong Zhang, Yan Shuo Tan, Qinglong Tian, Pengfei Li
Abstract:
Hollmann et al. (Nature 637 (2025) 319-326) recently introduced TabPFN, a transformer-based deep learning model for regression and classification on tabular data, which they claim "outperforms all previous methods on datasets with up to 10,000 samples by a wide margin, using substantially less training time." Furthermore, they have called TabPFN a "foundation model" for tabular data, as it can support "data generation, density estimation, learning reusable embeddings and fine-tuning". If these statements are well-supported, TabPFN may have the potential to supersede existing modeling approaches on a wide range of statistical tasks, mirroring a similar revolution in other areas of artificial intelligence that began with the advent of large language models. In this paper, we provide a tailored explanation of how TabPFN works for a statistics audience, by emphasizing its interpretation as approximate Bayesian inference. We also provide more evidence of TabPFN's "foundation model" capabilities: We show that an out-of-the-box application of TabPFN vastly outperforms specialized state-of-the-art methods for semi-supervised parameter estimation, prediction under covariate shift, and heterogeneous treatment effect estimation. We further show that TabPFN can outperform LASSO at sparse regression and can break a robustness-efficiency trade-off in classification. All experiments can be reproduced using the code provided at https://github.com/qinglong-tian/tabpfn_study (https://github.com/qinglong-tian/tabpfn_study).
Authors:Alkis Koudounas, Moreno La Quatra, Elena Baralis
Abstract:
Recent advances in conversational AI have demonstrated impressive capabilities in single-turn responses, yet multi-turn dialogues remain challenging for even the most sophisticated language models. Current dialogue datasets are limited in their emotional range, domain diversity, turn depth, and are predominantly text-only, hindering progress in developing more human-like conversational systems across modalities. To address these limitations, we present DeepDialogue, a large-scale multimodal dataset containing 40,150 high-quality multi-turn dialogues spanning 41 domains and incorporating 20 distinct emotions with coherent emotional progressions. Our approach pairs 9 different language models (4B-72B parameters) to generate 65,600 initial conversations, which we then evaluate through a combination of human annotation and LLM-based quality filtering. The resulting dataset reveals fundamental insights: smaller models fail to maintain coherence beyond 6 dialogue turns; concrete domains (e.g., "cars," "travel") yield more meaningful conversations than abstract ones (e.g., "philosophy"); and cross-model interactions produce more coherent dialogues than same-model conversations. A key contribution of DeepDialogue is its speech component, where we synthesize emotion-consistent voices for all 40,150 dialogues, creating the first large-scale open-source multimodal dialogue dataset that faithfully preserves emotional context across multi-turn conversations.
Authors:Bilel Cherif, Tamas Bisztray, Richard A. Dubniczky, Aaesha Aldahmani, Saeed Alshehhi, Norbert Tihanyi
Abstract:
Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.
Authors:Zhongzhan Huang, Guoming Ling, Shanshan Zhong, Hefeng Wu, Liang Lin
Abstract:
Long Context Understanding (LCU) is a critical area for exploration in current large language models (LLMs). However, due to the inherently lengthy nature of long-text data, existing LCU benchmarks for LLMs often result in prohibitively high evaluation costs, like testing time and inference expenses. Through extensive experimentation, we discover that existing LCU benchmarks exhibit significant redundancy, which means the inefficiency in evaluation. In this paper, we propose a concise data compression method tailored for long-text data with sparse information characteristics. By pruning the well-known LCU benchmark LongBench, we create MiniLongBench. This benchmark includes only 237 test samples across six major task categories and 21 distinct tasks. Through empirical analysis of over 60 LLMs, MiniLongBench achieves an average evaluation cost reduced to only 4.5% of the original while maintaining an average rank correlation coefficient of 0.97 with LongBench results. Therefore, our MiniLongBench, as a low-cost benchmark, holds great potential to substantially drive future research into the LCU capabilities of LLMs. See https://github.com/MilkThink-Lab/MiniLongBench for our code, data and tutorial.
Authors:Yong Liu, Jinshan Pan, Yinchuan Li, Qingji Dong, Chao Zhu, Yu Guo, Fei Wang
Abstract:
Diffusion models have shown great potential in generating realistic image detail. However, adapting these models to video super-resolution (VSR) remains challenging due to their inherent stochasticity and lack of temporal modeling. Previous methods have attempted to mitigate this issue by incorporating motion information and temporal layers. However, unreliable motion estimation from low-resolution videos and costly multiple sampling steps with deep temporal layers limit them to short sequences. In this paper, we propose UltraVSR, a novel framework that enables ultra-realistic and temporally-coherent VSR through an efficient one-step diffusion space. A central component of UltraVSR is the Degradation-aware Reconstruction Scheduling (DRS), which estimates a degradation factor from the low-resolution input and transforms the iterative denoising process into a single-step reconstruction from low-resolution to high-resolution videos. To ensure temporal consistency, we propose a lightweight Recurrent Temporal Shift (RTS) module, including an RTS-convolution unit and an RTS-attention unit. By partially shifting feature components along the temporal dimension, it enables effective propagation, fusion, and alignment across frames without explicit temporal layers. The RTS module is integrated into a pretrained text-to-image diffusion model and is further enhanced through Spatio-temporal Joint Distillation (SJD), which improves temporally coherence while preserving realistic details. Additionally, we introduce a Temporally Asynchronous Inference (TAI) strategy to capture long-range temporal dependencies under limited memory constraints. Extensive experiments show that UltraVSR achieves state-of-the-art performance, both qualitatively and quantitatively, in a single sampling step. Code is available at https://github.com/yongliuy/UltraVSR.
Authors:Jihyung Lee, Jin-Seop Lee, Jaehoon Lee, YunSeok Choi, Jee-Hyong Lee
Abstract:
Text-to-SQL, which translates a natural language question into an SQL query, has advanced with in-context learning of Large Language Models (LLMs). However, existing methods show little improvement in performance compared to randomly chosen demonstrations, and significant performance drops when smaller LLMs (e.g., Llama 3.1-8B) are used. This indicates that these methods heavily rely on the intrinsic capabilities of hyper-scaled LLMs, rather than effectively retrieving useful demonstrations. In this paper, we propose a novel approach for effectively retrieving demonstrations and generating SQL queries. We construct a Deep Contextual Schema Link Graph, which contains key information and semantic relationship between a question and its database schema items. This graph-based structure enables effective representation of Text-to-SQL samples and retrieval of useful demonstrations for in-context learning. Experimental results on the Spider benchmark demonstrate the effectiveness of our approach, showing consistent improvements in SQL generation performance and efficiency across both hyper-scaled LLMs and small LLMs. The code is available at https://github.com/jjklle/DCG-SQL}{https://github.com/jjklle/DCG-SQL.
Authors:Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, Hans-Arno Jacobsen
Abstract:
Open-weight large language model (LLM) zoos provide access to numerous high-quality models, but selecting the appropriate model for specific tasks remains challenging and requires technical expertise. Most users simply want factually correct, safe, and satisfying responses without concerning themselves with model technicalities, while inference service providers prioritize minimizing operating costs. These competing interests are typically mediated through service level agreements (SLAs) that guarantee minimum service quality. We introduce MESS+, a stochastic optimization algorithm for cost-optimal LLM request routing while providing rigorous SLA compliance guarantees. MESS+ learns request satisfaction probabilities of LLMs in real-time as users interact with the system, based on which model selection decisions are made by solving a per-request optimization problem. Our algorithm includes a novel combination of virtual queues and request satisfaction prediction, along with a theoretical analysis of cost optimality and constraint satisfaction. Across a wide range of state-of-the-art LLM benchmarks, MESS+ achieves an average of $2\times$ cost savings compared to existing LLM routing techniques.
Authors:Huan Zhang, Fan Lyu, Shuyu Dong, Shenghua Fan, Yujin Zheng, Dingwen Wang
Abstract:
Continual Learning with Pre-trained Models holds great promise for efficient adaptation across sequential tasks. However, most existing approaches freeze PTMs and rely on auxiliary modules like prompts or adapters, limiting model plasticity and leading to suboptimal generalization when facing significant distribution shifts. While full fine-tuning can improve adaptability, it risks disrupting crucial pre-trained knowledge. In this paper, we propose Mutual Information-guided Sparse Tuning (MIST), a plug-and-play method that selectively updates a small subset of PTM parameters, less than 5%, based on sensitivity to mutual information objectives. MIST enables effective task-specific adaptation while preserving generalization. To further reduce interference, we introduce strong sparsity regularization by randomly dropping gradients during tuning, resulting in fewer than 0.5% of parameters being updated per step. Applied before standard freeze-based methods, MIST consistently boosts performance across diverse continual learning benchmarks. Experiments show that integrating our method into multiple baselines yields significant performance gains. Our code is available at https://github.com/zhwhu/MIST.
Authors:Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao, Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, Jianing Wang, Qintong Li, Xiangru Tang, Tianbao Xie, Xiachong Feng, Xiang Li, Ben Kao, Wenhai Wang, Biqing Qi, Lingpeng Kong, Zhiyong Wu
Abstract:
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
Authors:Alejandro Carrasco, Victor Rodriguez-Fernandez, Richard Linares
Abstract:
Recent trends are emerging in the use of Large Language Models (LLMs) as autonomous agents that take actions based on the content of the user text prompts. We intend to apply these concepts to the field of Control in space, enabling LLMs to play a significant role in the decision-making process for autonomous satellite operations. As a first step towards this goal, we have developed a pure LLM-based solution for the Kerbal Space Program Differential Games (KSPDG) challenge, a public software design competition where participants create autonomous agents for maneuvering satellites involved in non-cooperative space operations, running on the KSP game engine. Our approach leverages prompt engineering, few-shot prompting, and fine-tuning techniques to create an effective LLM-based agent that ranked 2nd in the competition. To the best of our knowledge, this work pioneers the integration of LLM agents into space research. The project comprises several open repositories to facilitate replication and further research. The codebase is accessible on \href{https://github.com/ARCLab-MIT/kspdg}{GitHub}, while the trained models and datasets are available on \href{https://huggingface.co/OhhTuRnz}{Hugging Face}. Additionally, experiment tracking and detailed results can be reviewed on \href{https://wandb.ai/carrusk/huggingface}{Weights \& Biases
Authors:David Schneider, Zdravko Marinov, Rafael Baur, Zeyun Zhong, Rodi Düger, Rainer Stiefelhagen
Abstract:
Current video-based fall detection research mostly relies on small, staged datasets with significant domain biases concerning background, lighting, and camera setup resulting in unknown real-world performance. We introduce OmniFall, unifying eight public fall detection datasets (roughly 14 h of recordings, roughly 42 h of multiview data, 101 subjects, 29 camera views) under a consistent ten-class taxonomy with standardized evaluation protocols. Our benchmark provides complete video segmentation labels and enables fair cross-dataset comparison previously impossible with incompatible annotation schemes. For real-world evaluation we curate OOPS-Fall from genuine accident videos and establish a staged-to-wild protocol measuring generalization from controlled to uncontrolled environments. Experiments with frozen pre-trained backbones such as I3D or VideoMAE reveal significant performance gaps between in-distribution and in-the-wild scenarios, highlighting critical challenges in developing robust fall detection systems. OmniFall Dataset at https://huggingface.co/datasets/simplexsigil2/omnifall , Code at https://github.com/simplexsigil/omnifall-experiments
Authors:Shintaro Ito, Natsuki Takama, Koichi Ito, Hwann-Tzong Chen, Takafumi Aoki
Abstract:
The use of multi-view images acquired by a 360-degree camera can reconstruct a 3D space with a wide area. There are 3D reconstruction methods from equirectangular images based on NeRF and 3DGS, as well as Novel View Synthesis (NVS) methods. On the other hand, it is necessary to overcome the large distortion caused by the projection model of a 360-degree camera when equirectangular images are used. In 3DGS-based methods, the large distortion of the 360-degree camera model generates extremely large 3D Gaussians, resulting in poor rendering accuracy. We propose ErpGS, which is Omnidirectional GS based on 3DGS to realize NVS addressing the problems. ErpGS introduce some rendering accuracy improvement techniques: geometric regularization, scale regularization, and distortion-aware weights and a mask to suppress the effects of obstacles in equirectangular images. Through experiments on public datasets, we demonstrate that ErpGS can render novel view images more accurately than conventional methods.
Authors:Chao Huang, Benfeng Wang, Jie Wen, Chengliang Liu, Wei Wang, Li Shen, Xiaochun Cao
Abstract:
Recent advancements in reasoning capability of Multimodal Large Language Models (MLLMs) demonstrate its effectiveness in tackling complex visual tasks. However, existing MLLM-based Video Anomaly Detection (VAD) methods remain limited to shallow anomaly descriptions without deep reasoning. In this paper, we propose a new task named Video Anomaly Reasoning (VAR), which aims to enable deep analysis and understanding of anomalies in the video by requiring MLLMs to think explicitly before answering. To this end, we propose Vad-R1, an end-to-end MLLM-based framework for VAR. Specifically, we design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies, guiding the MLLM to reason anomaly step-by-step. Based on the structured P2C-CoT, we construct Vad-Reasoning, a dedicated dataset for VAR. Furthermore, we propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs through a self-verification mechanism with limited annotations. Experimental results demonstrate that Vad-R1 achieves superior performance, outperforming both open-source and proprietary models on VAD and VAR tasks. Codes and datasets will be released at https://github.com/wbfwonderful/Vad-R1.
Authors:Lukas Meyer, Andrei-Timotei Ardelean, Tim Weyrich, Marc Stamminger
Abstract:
We introduce FruitNeRF++, a novel fruit-counting approach that combines contrastive learning with neural radiance fields to count fruits from unstructured input photographs of orchards. Our work is based on FruitNeRF, which employs a neural semantic field combined with a fruit-specific clustering approach. The requirement for adaptation for each fruit type limits the applicability of the method, and makes it difficult to use in practice. To lift this limitation, we design a shape-agnostic multi-fruit counting framework, that complements the RGB and semantic data with instance masks predicted by a vision foundation model. The masks are used to encode the identity of each fruit as instance embeddings into a neural instance field. By volumetrically sampling the neural fields, we extract a point cloud embedded with the instance features, which can be clustered in a fruit-agnostic manner to obtain the fruit count. We evaluate our approach using a synthetic dataset containing apples, plums, lemons, pears, peaches, and mangoes, as well as a real-world benchmark apple dataset. Our results demonstrate that FruitNeRF++ is easier to control and compares favorably to other state-of-the-art methods.
Authors:Hexuan Deng, Wenxiang Jiao, Xuebo Liu, Jun Rao, Min Zhang
Abstract:
Large Reasoning Models (LRMs) demonstrate strong performance in complex tasks but often face the challenge of overthinking, leading to substantially high inference costs. Existing approaches synthesize shorter reasoning responses for LRMs to learn, but are inefficient for online usage due to the time-consuming data generation and filtering processes. Meanwhile, online reinforcement learning mainly adopts a length reward to encourage short reasoning responses, but tends to lose the reflection ability and harm the performance. To address these issues, we propose REA-RL, which introduces a small reflection model for efficient scaling in online training, offering both parallel sampling and sequential revision. Besides, a reflection reward is designed to further prevent LRMs from favoring short yet non-reflective responses. Experiments show that both methods maintain or enhance performance while significantly improving inference efficiency. Their combination achieves a good balance between performance and efficiency, reducing inference costs by 35% without compromising performance. Further analysis demonstrates that our methods are effective by maintaining reflection frequency for hard problems while appropriately reducing it for simpler ones without losing reflection ability. Codes are available at https://github.com/hexuandeng/REA-RL.
Authors:Natsuki Takama, Shintaro Ito, Koichi Ito, Hwann-Tzong Chen, Takafumi Aoki
Abstract:
Gaussian Splatting (GS) has gained attention as a fast and effective method for novel view synthesis. It has also been applied to 3D reconstruction using multi-view images and can achieve fast and accurate 3D reconstruction. However, GS assumes that the input contains a large number of multi-view images, and therefore, the reconstruction accuracy significantly decreases when only a limited number of input images are available. One of the main reasons is the insufficient number of 3D points in the sparse point cloud obtained through Structure from Motion (SfM), which results in a poor initialization for optimizing the Gaussian primitives. We propose a new 3D reconstruction method, called Sparse2DGS, to enhance 2DGS in reconstructing objects using only three images. Sparse2DGS employs DUSt3R, a fundamental model for stereo images, along with COLMAP MVS to generate highly accurate and dense 3D point clouds, which are then used to initialize 2D Gaussians. Through experiments on the DTU dataset, we show that Sparse2DGS can accurately reconstruct the 3D shapes of objects using just three images. The project page is available at https://gsisaoki.github.io/SPARSE2DGS/
Authors:Haoqiang Yang, Congde Yuan, Kun Bai, Mengzhuo Guo, Wei Yang, Chao Zhou
Abstract:
Online display advertising platforms rely on pre-ranking systems to efficiently filter and prioritize candidate ads from large corpora, balancing relevance to users with strict computational constraints. The prevailing two-tower architecture, though highly efficient due to its decoupled design and pre-caching, suffers from cross-domain interaction and coarse similarity metrics, undermining its capacity to model complex user-ad relationships. In this study, we propose the Hierarchical Interaction-Enhanced Two-Tower (HIT) model, a new architecture that augments the two-tower paradigm with two key components: $\textit{generators}$ that pre-generate holistic vectors incorporating coarse-grained user-ad interactions through a dual-generator framework with a cosine-similarity-based generation loss as the training objective, and $\textit{multi-head representers}$ that project embeddings into multiple latent subspaces to capture fine-grained, multi-faceted user interests and multi-dimensional ad attributes. This design enhances modeling effectiveness without compromising inference efficiency. Extensive experiments on public datasets and large-scale online A/B testing on Tencent's advertising platform demonstrate that HIT significantly outperforms several baselines in relevance metrics, yielding a $1.66\%$ increase in Gross Merchandise Volume and a $1.55\%$ improvement in Return on Investment, alongside similar serving latency to the vanilla two-tower models. The HIT model has been successfully deployed in Tencent's online display advertising system, serving billions of impressions daily. The code is available at https://github.com/HarveyYang123/HIT_model.
Authors:Nagito Saito, Shintaro Ito, Koichi Ito, Takafumi Aoki
Abstract:
Semantic segmentation is a fundamental task in medical image analysis and autonomous driving and has a problem with the high cost of annotating the labels required in training. To address this problem, semantic segmentation methods based on semi-supervised learning with a small number of labeled data have been proposed. For example, one approach is to train a semantic segmentation model using images with annotated labels and pseudo labels. In this approach, the accuracy of the semantic segmentation model depends on the quality of the pseudo labels, and the quality of the pseudo labels depends on the performance of the model to be trained and the amount of data with annotated labels. In this paper, we generate pseudo labels using zero-shot annotation with the Segment Anything Model (SAM) and Contrastive Language-Image Pretraining (CLIP), improve the accuracy of the pseudo labels using the Unified Dual-Stream Perturbations Approach (UniMatch), and use them as enhanced labels to train a semantic segmentation model. The effectiveness of the proposed method is demonstrated through the experiments using the public datasets: PASCAL and MS COCO. The project web page is available at: https://gsisaoki.github.io/ZERO-SHOT-PLG/
Authors:Dannong Wang, Jaisal Patel, Daochen Zha, Steve Y. Yang, Xiao-Yang Liu
Abstract:
Low-rank adaptation (LoRA) methods show great potential for scaling pre-trained general-purpose Large Language Models (LLMs) to hundreds or thousands of use scenarios. However, their efficacy in high-stakes domains like finance is rarely explored, e.g., passing CFA exams and analyzing SEC filings. In this paper, we present the open-source FinLoRA project that benchmarks LoRA methods on both general and highly professional financial tasks. First, we curated 19 datasets covering diverse financial applications; in particular, we created four novel XBRL analysis datasets based on 150 SEC filings. Second, we evaluated five LoRA methods and five base LLMs. Finally, we provide extensive experimental results in terms of accuracy, F1, and BERTScore and report computational cost in terms of time and GPU memory during fine-tuning and inference stages. We find that LoRA methods achieved substantial performance gains of 36\% on average over base models. Our FinLoRA project provides an affordable and scalable approach to democratize financial intelligence to the general public. Datasets, LoRA adapters, code, and documentation are available at https://github.com/Open-Finance-Lab/FinLoRA
Authors:You Wang, Li Fang, Hao Zhu, Fei Hu, Long Ye, Zhan Ma
Abstract:
Neural Radiance Fields (NeRF) have transformed novel view synthesis by modeling scene-specific volumetric representations directly from images. While generalizable NeRF models can generate novel views across unknown scenes by learning latent ray representations, their performance heavily depends on a large number of multi-view observations. However, with limited input views, these methods experience significant degradation in rendering quality. To address this limitation, we propose GoLF-NRT: a Global and Local feature Fusion-based Neural Rendering Transformer. GoLF-NRT enhances generalizable neural rendering from few input views by leveraging a 3D transformer with efficient sparse attention to capture global scene context. In parallel, it integrates local geometric features extracted along the epipolar line, enabling high-quality scene reconstruction from as few as 1 to 3 input views. Furthermore, we introduce an adaptive sampling strategy based on attention weights and kernel regression, improving the accuracy of transformer-based neural rendering. Extensive experiments on public datasets show that GoLF-NRT achieves state-of-the-art performance across varying numbers of input views, highlighting the effectiveness and superiority of our approach. Code is available at https://github.com/KLMAV-CUC/GoLF-NRT.
Authors:Zehong Ma, Shiliang Zhang, Longhui Wei, Qi Tian
Abstract:
Traditional approaches to adapting multi-modal large language models (MLLMs) to new tasks have relied heavily on fine-tuning. This paper introduces Efficient Multi-Modal Long Context Learning (EMLoC), a novel training-free alternative that embeds demonstration examples directly into the model input. EMLoC offers a more efficient, flexible, and scalable solution for task adaptation. Because extremely lengthy inputs introduce prohibitive computational and memory overhead, EMLoC contributes a chunk-wise compression mechanism combined with layer-wise adaptive pruning. It condenses long-context multimodal inputs into compact, task-specific memory representations. By adaptively pruning tokens at each layer under a Jensen-Shannon divergence constraint, our method achieves a dramatic reduction in inference complexity without sacrificing performance. This approach is the first to seamlessly integrate compression and pruning techniques for multi-modal long-context learning, offering a scalable and efficient solution for real-world applications. Extensive experiments on diverse vision-language benchmarks demonstrate that EMLoC achieves performance on par with or superior to naive long-context approaches. Our results highlight the potential of EMLoC as a groundbreaking framework for efficient and flexible adaptation of multi-modal models in resource-constrained environments. Codes are publicly available at https://github.com/Zehong-Ma/EMLoC.
Authors:Sirui Chen, Shuqin Ma, Shu Yu, Hanwang Zhang, Shengjie Zhao, Chaochao Lu
Abstract:
Consciousness stands as one of the most profound and distinguishing features of the human mind, fundamentally shaping our understanding of existence and agency. As large language models (LLMs) develop at an unprecedented pace, questions concerning intelligence and consciousness have become increasingly significant. However, discourse on LLM consciousness remains largely unexplored territory. In this paper, we first clarify frequently conflated terminologies (e.g., LLM consciousness and LLM awareness). Then, we systematically organize and synthesize existing research on LLM consciousness from both theoretical and empirical perspectives. Furthermore, we highlight potential frontier risks that conscious LLMs might introduce. Finally, we discuss current challenges and outline future directions in this emerging field. The references discussed in this paper are organized at https://github.com/OpenCausaLab/Awesome-LLM-Consciousness.
Authors:Zaid Alyafeai, Maged S. Al-Shaibani, Bernard Ghanem
Abstract:
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
Authors:Sajjad Shahabodini, Mobina Mansoori, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
Abstract:
Image segmentation remains a challenging task in computer vision, demanding robust mask generation and precise classification. Recent mask-based approaches yield high-quality masks by capturing global context. However, accurately classifying these masks, especially in the presence of ambiguous boundaries and imbalanced class distributions, remains an open challenge. In this work, we introduce ViT-P, a novel two-stage segmentation framework that decouples mask generation from classification. The first stage employs a proposal generator to produce class-agnostic mask proposals, while the second stage utilizes a point-based classification model built on the Vision Transformer (ViT) to refine predictions by focusing on mask central points. ViT-P serves as a pre-training-free adapter, allowing the integration of various pre-trained vision transformers without modifying their architecture, ensuring adaptability to dense prediction tasks. Furthermore, we demonstrate that coarse and bounding box annotations can effectively enhance classification without requiring additional training on fine annotation datasets, reducing annotation costs while maintaining strong performance. Extensive experiments across COCO, ADE20K, and Cityscapes datasets validate the effectiveness of ViT-P, achieving state-of-the-art results with 54.0 PQ on ADE20K panoptic segmentation, 87.4 mIoU on Cityscapes semantic segmentation, and 63.6 mIoU on ADE20K semantic segmentation. The code and pretrained models are available at: https://github.com/sajjad-sh33/ViT-P}{https://github.com/sajjad-sh33/ViT-P.
Authors:Li Fang, Hao Zhu, Longlong Chen, Fei Hu, Long Ye, Zhan Ma
Abstract:
Recent advancements in generalizable novel view synthesis have achieved impressive quality through interpolation between nearby views. However, rendering high-resolution images remains computationally intensive due to the need for dense sampling of all rays. Recognizing that natural scenes are typically piecewise smooth and sampling all rays is often redundant, we propose a novel depth-guided bundle sampling strategy to accelerate rendering. By grouping adjacent rays into a bundle and sampling them collectively, a shared representation is generated for decoding all rays within the bundle. To further optimize efficiency, our adaptive sampling strategy dynamically allocates samples based on depth confidence, concentrating more samples in complex regions while reducing them in smoother areas. When applied to ENeRF, our method achieves up to a 1.27 dB PSNR improvement and a 47% increase in FPS on the DTU dataset. Extensive experiments on synthetic and real-world datasets demonstrate state-of-the-art rendering quality and up to 2x faster rendering compared to existing generalizable methods. Code is available at https://github.com/KLMAV-CUC/GDB-NeRF.
Authors:Mobina Mansoori, Sajjad Shahabodini, Farnoush Bayatmakou, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
Abstract:
Using massive datasets, foundation models are large-scale, pre-trained models that perform a wide range of tasks. These models have shown consistently improved results with the introduction of new methods. It is crucial to analyze how these trends impact the medical field and determine whether these advancements can drive meaningful change. This study investigates the application of recent state-of-the-art foundation models, DINOv2, MAE, VMamba, CoCa, SAM2, and AIMv2, for medical image classification. We explore their effectiveness on datasets including CBIS-DDSM for mammography, ISIC2019 for skin lesions, APTOS2019 for diabetic retinopathy, and CHEXPERT for chest radiographs. By fine-tuning these models and evaluating their configurations, we aim to understand the potential of these advancements in medical image classification. The results indicate that these advanced models significantly enhance classification outcomes, demonstrating robust performance despite limited labeled data. Based on our results, AIMv2, DINOv2, and SAM2 models outperformed others, demonstrating that progress in natural domain training has positively impacted the medical domain and improved classification outcomes. Our code is publicly available at: https://github.com/sajjad-sh33/Medical-Transfer-Learning.
Authors:Patara Trirat, Wonyong Jeong, Sung Ju Hwang
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but optimizing LLM-based agentic systems remains challenging due to the vast search space of agent configurations, prompting strategies, and communication patterns. Existing approaches often rely on heuristic-based tuning or exhaustive evaluation, which can be computationally expensive and suboptimal. This paper proposes Agentic Predictor, a lightweight predictor for efficient agentic workflow evaluation. Agentic Predictor is equipped with a multi-view workflow encoding technique that leverages multi-view representation learning of agentic systems by incorporating code architecture, textual prompts, and interaction graph features. To achieve high predictive accuracy while significantly reducing the number of required workflow evaluations for training a predictor, Agentic Predictor employs cross-domain unsupervised pretraining. By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations for a given task, significantly reducing the need for expensive trial-and-error evaluations. Experiments on a carefully curated benchmark spanning three domains show that our predictor outperforms state-of-the-art methods in both predictive accuracy and workflow utility, highlighting the potential of performance predictors in streamlining the design of LLM-based agentic workflows.
Authors:Ruihan Gong, Yue Liu, Wenjie Qu, Mingzhe Du, Yufei He, Yingwei Ma, Yulin Chen, Xiang Liu, Yi Wen, Xinfeng Li, Ruidong Wang, Xinzhong Zhu, Bryan Hooi, Jiaheng Zhang
Abstract:
Large Reasoning Models (LRMs) achieve promising performance but compromise token efficiency due to verbose reasoning processes. Unconscious Thought Theory (UTT) posits that complex problems can be solved more efficiently through internalized cognitive processes. Inspired by UTT, we propose a new reasoning paradigm, termed Chain of Unconscious Thought (CoUT), to improve the token efficiency of LRMs by guiding them to mimic human unconscious thought and internalize reasoning processes. Concretely, we first prompt the model to internalize the reasoning by thinking in the hidden layer. Then, we design a bag of token-efficient strategies to further help models reduce unnecessary tokens yet preserve the performance. Our work reveals that models may possess beneficial unconscious thought, enabling improved efficiency without sacrificing performance. Extensive experiments demonstrate the effectiveness of CoUT. Remarkably, it surpasses CoT by reducing token usage by 47.62% while maintaining comparable accuracy, as shown in Figure 1. The code of CoUT is available at this link: https://github.com/Rohan-GRH/CoUT
Authors:Ruisheng Cao, Hanchong Zhang, Tiancheng Huang, Zhangyi Kang, Yuxin Zhang, Liangtai Sun, Hanqi Li, Yuxun Miao, Shuai Fan, Lu Chen, Kai Yu
Abstract:
The increasing number of academic papers poses significant challenges for researchers to efficiently acquire key details. While retrieval augmented generation (RAG) shows great promise in large language model (LLM) based automated question answering, previous works often isolate neural and symbolic retrieval despite their complementary strengths. Moreover, conventional single-view chunking neglects the rich structure and layout of PDFs, e.g., sections and tables. In this work, we propose NeuSym-RAG, a hybrid neural symbolic retrieval framework which combines both paradigms in an interactive process. By leveraging multi-view chunking and schema-based parsing, NeuSym-RAG organizes semi-structured PDF content into both the relational database and vectorstore, enabling LLM agents to iteratively gather context until sufficient to generate answers. Experiments on three full PDF-based QA datasets, including a self-annotated one AIRQA-REAL, show that NeuSym-RAG stably defeats both the vector-based RAG and various structured baselines, highlighting its capacity to unify both retrieval schemes and utilize multiple views. Code and data are publicly available at https://github.com/X-LANCE/NeuSym-RAG.
Authors:Hala Djeghim, Nathan Piasco, Luis Roldão, Moussab Bennehar, Dzmitry Tsishkou, Céline Loscos, Désiré Sidibé
Abstract:
Intrinsic image decomposition aims at separating an image into its underlying albedo and shading components, isolating the base color from lighting effects to enable downstream applications such as virtual relighting and scene editing. Despite the rise and success of learning-based approaches, intrinsic image decomposition from real-world images remains a significant challenging task due to the scarcity of labeled ground-truth data. Most existing solutions rely on synthetic data as supervised setups, limiting their ability to generalize to real-world scenes. Self-supervised methods, on the other hand, often produce albedo maps that contain reflections and lack consistency under different lighting conditions. To address this, we propose SAIL, an approach designed to estimate albedo-like representations from single-view real-world images. We repurpose the prior knowledge of a latent diffusion model for unconditioned scene relighting as a surrogate objective for albedo estimation. To extract the albedo, we introduce a novel intrinsic image decomposition fully formulated in the latent space. To guide the training of our latent diffusion model, we introduce regularization terms that constrain both the lighting-dependent and independent components of our latent image decomposition. SAIL predicts stable albedo under varying lighting conditions and generalizes to multiple scenes, using only unlabeled multi-illumination data available online.
Authors:Yang Zhang, Yu Yu, Bo Tang, Yu Zhu, Chuxiong Sun, Wenqiang Wei, Jie Hu, Zipeng Xie, Zhiyu Li, Feiyu Xiong, Edward Chung
Abstract:
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs. The source code and implementation details are publicly available at https://github.com/IAAR-Shanghai/MARA, and the trained models are released at https://huggingface.co/IAAR-Shanghai/MARA_AGENTS.
Authors:Jue Gong, Tingyu Yang, Jingkai Wang, Zheng Chen, Xing Liu, Hong Gu, Yulun Zhang, Xiaokang Yang
Abstract:
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
Authors:Quentin Rouxel, Clemente Donoso, Fei Chen, Serena Ivaldi, Jean-Baptiste Mouret
Abstract:
Imitation learning is a promising approach for enabling generalist capabilities in humanoid robots, but its scaling is fundamentally constrained by the scarcity of high-quality expert demonstrations. This limitation can be mitigated by leveraging suboptimal, open-ended play data, often easier to collect and offering greater diversity. This work builds upon recent advances in generative modeling, specifically Flow Matching, an alternative to Diffusion models. We introduce a method for estimating the minimum or maximum of the learned distribution by leveraging the unique properties of Flow Matching, namely, deterministic transport and support for arbitrary source distributions. We apply this method to develop several goal-conditioned imitation and reinforcement learning algorithms based on Flow Matching, where policies are conditioned on both current and goal observations. We explore and compare different architectural configurations by combining core components, such as critic, planner, actor, or world model, in various ways. We evaluated our agents on the OGBench benchmark and analyzed how different demonstration behaviors during data collection affect performance in a 2D non-prehensile pushing task. Furthermore, we validated our approach on real hardware by deploying it on the Talos humanoid robot to perform complex manipulation tasks based on high-dimensional image observations, featuring a sequence of pick-and-place and articulated object manipulation in a realistic kitchen environment. Experimental videos and code are available at: https://hucebot.github.io/extremum_flow_matching_website/
Authors:Yifan Wu, Jingze Shi, Bingheng Wu, Jiayi Zhang, Xiaotian Lin, Nan Tang, Yuyu Luo
Abstract:
Existing chain-of-thought (CoT) distillation methods can effectively transfer reasoning abilities to base models but suffer from two major limitations: excessive verbosity of reasoning traces and inadequate adaptability to problem difficulty. Long reasoning traces significantly increase inference costs, and uniform-length solutions prevent base models from learning adaptive reasoning strategies. To address these issues, we propose a difficulty-aware prompting (DAP) method to dynamically shorten reasoning traces without performance loss. In our approach, a large teacher model first judges each problem's difficulty and then rewrites its reasoning traces to an appropriate shorter length, yielding concise yet complete reasoning traces. Leveraging the DAP pipeline, we curate a distilled dataset called LiteCoT consisting of 100K concise reasoning examples, with solutions averaging only 720 tokens (an order of magnitude shorter than typical CoTs). Using LiteCoT, we distilled a new family of reasoning models called Liter (1.5B, 7B, and 32B) based on the Qwen2.5 architecture. Experiments show that a student model fine-tuned on just 100K of these difficulty-pruned CoT samples outperforms a model distilled on 800K original Long CoT samples, while significantly reducing training and inference costs. Our method also generalizes well: across 11 diverse benchmarks, the shorter difficulty-aware CoTs achieve equal or better accuracy than Long chains, using far fewer tokens. For example, on the challenging AIME24 exam, our approach reaches $74.2\%$ Pass@1 using only about 5K inference tokens, surpassing other methods that consume many more tokens. Our code and data are available at https://github.com/Evanwu1125/LiteCoT.
Authors:Tej Deep Pala, Panshul Sharma, Amir Zadeh, Chuan Li, Soujanya Poria
Abstract:
Large Language Models (LLMs) are prone to hallucination, especially during multi-hop and reasoning-intensive tasks such as mathematical problem solving. While Outcome Reward Models verify only final answers, Process Reward Models (PRMs) score each intermediate step to steer generation toward coherent solutions. We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM that first classifies math and consistency errors at each step, then combines these fine-grained signals to estimate step correctness. To train PathFinder-PRM, we construct a 400K-sample dataset by enriching the human-annotated PRM800K corpus and RLHFlow Mistral traces with three-dimensional step-level labels. On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data. When applied to reward guided greedy search, our model yields prm@8 48.3, a +1.5 point gain over the strongest baseline. These results demonstrate that decoupled error detection and reward estimation not only boost fine-grained error detection but also substantially improve end-to-end, reward-guided mathematical reasoning with greater data efficiency.
Authors:Junming Liu, Yanting Gao, Siyuan Meng, Yifei Sun, Aoqi Wu, Yufei Jin, Yirong Chen, Ding Wang, Guosun Zeng
Abstract:
Federated Learning (FL) is a decentralized machine learning paradigm that enables clients to collaboratively train models while preserving data privacy. However, the coexistence of model and data heterogeneity gives rise to inconsistent representations and divergent optimization dynamics across clients, ultimately hindering robust global performance. To transcend these challenges, we propose Mosaic, a novel data-free knowledge distillation framework tailored for heterogeneous distributed environments. Mosaic first trains local generative models to approximate each client's personalized distribution, enabling synthetic data generation that safeguards privacy through strict separation from real data. Subsequently, Mosaic forms a Mixture-of-Experts (MoE) from client models based on their specialized knowledge, and distills it into a global model using the generated data. To further enhance the MoE architecture, Mosaic integrates expert predictions via a lightweight meta model trained on a few representative prototypes. Extensive experiments on standard image classification benchmarks demonstrate that Mosaic consistently outperforms state-of-the-art approaches under both model and data heterogeneity. The source code has been published at https://github.com/Wings-Of-Disaster/Mosaic.
Authors:Wen Yin, Yong Wang, Guiduo Duan, Dongyang Zhang, Xin Hu, Yuan-Fang Li, Tao He
Abstract:
Visual Emotion Recognition (VER) is a critical yet challenging task aimed at inferring emotional states of individuals based on visual cues. However, existing works focus on single domains, e.g., realistic images or stickers, limiting VER models' cross-domain generalizability. To fill this gap, we introduce an Unsupervised Cross-Domain Visual Emotion Recognition (UCDVER) task, which aims to generalize visual emotion recognition from the source domain (e.g., realistic images) to the low-resource target domain (e.g., stickers) in an unsupervised manner. Compared to the conventional unsupervised domain adaptation problems, UCDVER presents two key challenges: a significant emotional expression variability and an affective distribution shift. To mitigate these issues, we propose the Knowledge-aligned Counterfactual-enhancement Diffusion Perception (KCDP) framework. Specifically, KCDP leverages a VLM to align emotional representations in a shared knowledge space and guides diffusion models for improved visual affective perception. Furthermore, a Counterfactual-Enhanced Language-image Emotional Alignment (CLIEA) method generates high-quality pseudo-labels for the target domain. Extensive experiments demonstrate that our model surpasses SOTA models in both perceptibility and generalization, e.g., gaining 12% improvements over the SOTA VER model TGCA-PVT. The project page is at https://yinwen2019.github.io/ucdver.
Authors:Wenchao Sun, Xuewu Lin, Keyu Chen, Zixiang Pei, Yining Shi, Chuang Zhang, Sifa Zheng
Abstract:
Camera sensor simulation serves as a critical role for autonomous driving (AD), e.g. evaluating vision-based AD algorithms. While existing approaches have leveraged generative models for controllable image/video generation, they remain constrained to generating multi-view video sequences with fixed camera viewpoints and video frequency, significantly limiting their downstream applications. To address this, we present a generalizable camera simulation framework DriveCamSim, whose core innovation lies in the proposed Explicit Camera Modeling (ECM) mechanism. Instead of implicit interaction through vanilla attention, ECM establishes explicit pixel-wise correspondences across multi-view and multi-frame dimensions, decoupling the model from overfitting to the specific camera configurations (intrinsic/extrinsic parameters, number of views) and temporal sampling rates presented in the training data. For controllable generation, we identify the issue of information loss inherent in existing conditional encoding and injection pipelines, proposing an information-preserving control mechanism. This control mechanism not only improves conditional controllability, but also can be extended to be identity-aware to enhance temporal consistency in foreground object rendering. With above designs, our model demonstrates superior performance in both visual quality and controllability, as well as generalization capability across spatial-level (camera parameters variations) and temporal-level (video frame rate variations), enabling flexible user-customizable camera simulation tailored to diverse application scenarios. Code will be avaliable at https://github.com/swc-17/DriveCamSim for facilitating future research.
Authors:Xinrui Wang, Shao-yuan Li, Jiaqiang Zhang, Songcan Chen
Abstract:
Multi-Label Online Continual Learning (MOCL) requires models to learn continuously from endless multi-label data streams, facing complex challenges including persistent catastrophic forgetting, potential missing labels, and uncontrollable imbalanced class distributions. While existing MOCL methods attempt to address these challenges through various techniques, \textit{they all overlook label-specific region identifying and feature learning} - a fundamental solution rooted in multi-label learning but challenging to achieve in the online setting with incremental and partial supervision. To this end, we first leverage the inherent structural information of input data to evaluate and verify the innate localization capability of different pre-trained models. Then, we propose CUTER (CUT-out-and-Experience-Replay), a simple yet versatile strategy that provides fine-grained supervision signals by further identifying, strengthening and cutting out label-specific regions for efficient experience replay. It not only enables models to simultaneously address catastrophic forgetting, missing labels, and class imbalance challenges, but also serves as an orthogonal solution that seamlessly integrates with existing approaches. Extensive experiments on multiple multi-label image benchmarks demonstrate the superiority of our proposed method. The code is available at \href{https://github.com/wxr99/Cut-Replay}{https://github.com/wxr99/Cut-Replay}
Authors:Tingjia Shen, Hao Wang, Chuan Qin, Ruijun Sun, Yang Song, Defu Lian, Hengshu Zhu, Enhong Chen
Abstract:
Open-domain question answering (OpenQA) represents a cornerstone in natural language processing (NLP), primarily focused on extracting answers from unstructured textual data. With the rapid advancements in Large Language Models (LLMs), LLM-based OpenQA methods have reaped the benefits of emergent understanding and answering capabilities enabled by massive parameters compared to traditional methods. However, most of these methods encounter two critical challenges: how to integrate knowledge into LLMs effectively and how to adaptively generate results with specific answer formats for various task situations. To address these challenges, we propose a novel framework named GenKI, which aims to improve the OpenQA performance by exploring Knowledge Integration and controllable Generation on LLMs simultaneously. Specifically, we first train a dense passage retrieval model to retrieve associated knowledge from a given knowledge base. Subsequently, we introduce a novel knowledge integration model that incorporates the retrieval knowledge into instructions during fine-tuning to intensify the model. Furthermore, to enable controllable generation in LLMs, we leverage a certain fine-tuned LLM and an ensemble based on text consistency incorporating all coherence, fluency, and answer format assurance. Finally, extensive experiments conducted on the TriviaQA, MSMARCO, and CMRC2018 datasets, featuring diverse answer formats, have demonstrated the effectiveness of GenKI with comparison of state-of-the-art baselines. Moreover, ablation studies have disclosed a linear relationship between the frequency of retrieved knowledge and the model's ability to recall knowledge accurately against the ground truth. Our code of GenKI is available at https://github.com/USTC-StarTeam/GenKI
Authors:Piyush Tiwary, Kinjawl Bhattacharyya, Prathosh A. P
Abstract:
Medical image segmentation models often struggle to generalize across different domains due to various reasons. Domain Generalization (DG) methods overcome this either through representation learning or data augmentation (DAug). While representation learning methods seek domain-invariant features, they often rely on ad-hoc techniques and lack formal guarantees. DAug methods, which enrich model representations through synthetic samples, have shown comparable or superior performance to representation learning approaches. We propose LangDAug, a novel $\textbf{Lang}$evin $\textbf{D}$ata $\textbf{Aug}$mentation for multi-source domain generalization in 2D medical image segmentation. LangDAug leverages Energy-Based Models (EBMs) trained via contrastive divergence to traverse between source domains, generating intermediate samples through Langevin dynamics. Theoretical analysis shows that LangDAug induces a regularization effect, and for GLMs, it upper-bounds the Rademacher complexity by the intrinsic dimensionality of the data manifold. Through extensive experiments on Fundus segmentation and 2D MRI prostate segmentation benchmarks, we show that LangDAug outperforms state-of-the-art domain generalization methods and effectively complements existing domain-randomization approaches. The codebase for our method is available at https://github.com/backpropagator/LangDAug.
Authors:Fanheng Kong, Jingyuan Zhang, Yahui Liu, Hongzhi Zhang, Shi Feng, Xiaocui Yang, Daling Wang, Yu Tian, Victoria W., Fuzheng Zhang, Guorui Zhou
Abstract:
Multimodal information retrieval (MIR) faces inherent challenges due to the heterogeneity of data sources and the complexity of cross-modal alignment. While previous studies have identified modal gaps in feature spaces, a systematic approach to address these challenges remains unexplored. In this work, we introduce UNITE, a universal framework that tackles these challenges through two critical yet underexplored aspects: data curation and modality-aware training configurations. Our work provides the first comprehensive analysis of how modality-specific data properties influence downstream task performance across diverse scenarios. Moreover, we propose Modal-Aware Masked Contrastive Learning (MAMCL) to mitigate the competitive relationships among the instances of different modalities. Our framework achieves state-of-the-art results on multiple multimodal retrieval benchmarks, outperforming existing methods by notable margins. Through extensive experiments, we demonstrate that strategic modality curation and tailored training protocols are pivotal for robust cross-modal representation learning. This work not only advances MIR performance but also provides a foundational blueprint for future research in multimodal systems. Our project is available at https://friedrichor.github.io/projects/UNITE.
Authors:Xiaochuan Liu, Ruihua Song, Xiting Wang, Xu Chen
Abstract:
Automatic related work generation (RWG) can save people's time and effort when writing a draft of related work section (RWS) for further revision. However, existing methods for RWG always suffer from shallow comprehension due to taking the limited portions of references papers as input and isolated explanation for each reference due to ineffective capturing the relationships among them. To address these issues, we focus on full-text-based RWG task and propose a novel multi-agent framework. Our framework consists of three agents: a selector that decides which section of the papers is going to read next, a reader that digests the selected section and updates a shared working memory, and a writer that generates RWS based on the final curated memory. To better capture the relationships among references, we also propose two graph-aware strategies for selector, enabling to optimize the reading order with constrains of the graph structure. Extensive experiments demonstrate that our framework consistently improves performance across three base models and various input configurations. The graph-aware selectors outperform alternative selectors, achieving state-of-the-art results. The code and data are available at https://github.com/1190200817/Full_Text_RWG.
Authors:Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng, Aili Chen, Shiqi Chen, Yunan Huang, Mozhi Zhang, Pengyu Zhao, Junjie Yan, Junxian He
Abstract:
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
Authors:Zihong Zhang, Liqi He, Zuchao Li, Lefei Zhang, Hai Zhao, Bo Du
Abstract:
Word segmentation stands as a cornerstone of Natural Language Processing (NLP). Based on the concept of "comprehend first, segment later", we propose a new framework to explore the limit of unsupervised word segmentation with Large Language Models (LLMs) and evaluate the semantic understanding capabilities of LLMs based on word segmentation. We employ current mainstream LLMs to perform word segmentation across multiple languages to assess LLMs' "comprehension". Our findings reveal that LLMs are capable of following simple prompts to segment raw text into words. There is a trend suggesting that models with more parameters tend to perform better on multiple languages. Additionally, we introduce a novel unsupervised method, termed LLACA ($\textbf{L}$arge $\textbf{L}$anguage Model-Inspired $\textbf{A}$ho-$\textbf{C}$orasick $\textbf{A}$utomaton). Leveraging the advanced pattern recognition capabilities of Aho-Corasick automata, LLACA innovatively combines these with the deep insights of well-pretrained LLMs. This approach not only enables the construction of a dynamic $n$-gram model that adjusts based on contextual information but also integrates the nuanced understanding of LLMs, offering significant improvements over traditional methods. Our source code is available at https://github.com/hkr04/LLACA
Authors:Yichun Feng, Jiawei Wang, Lu Zhou, Zhen Lei, Yixue Li
Abstract:
Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges. Single-round consultation systems require patients to describe all symptoms upfront, leading to vague diagnosis with unclear complaints. Traditional multi-turn dialogue models, constrained by static supervised learning, lack flexibility and fail to intelligently extract key clinical information. To address these limitations, we propose \Ours{}, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty. The doctor agent continuously optimizes its questioning strategy within the RL framework through multi-turn interactions with the patient agent, dynamically adjusting its information-gathering path based on comprehensive rewards from the Consultation Evaluator. This RL fine-tuning mechanism enables LLMs to autonomously develop interaction strategies aligned with clinical reasoning logic, rather than superficially imitating patterns in existing dialogue data. Notably, we constructed MTMedDialog, the first English multi-turn medical consultation dataset capable of simulating patient interactions. Experiments demonstrate that \Ours{} outperforms existing models in both multi-turn reasoning capability and final diagnostic performance. This approach shows immense practical value by reducing misdiagnosis risks in time-pressured settings, freeing clinicians for complex cases, and pioneering a strategy to optimize medical resource allocation and alleviate workforce shortages. Code and data are available at https://github.com/JarvisUSTC/DoctorAgent-RL
Authors:Silin Li, Yuhang Guo, Jiashu Yao, Zeming Liu, Haifeng Wang
Abstract:
Large language models (LLMs) have the potential to revolutionize smart home assistants by enhancing their ability to accurately understand user needs and respond appropriately, which is extremely beneficial for building a smarter home environment. While recent studies have explored integrating LLMs into smart home systems, they primarily focus on handling straightforward, valid single-device operation instructions. However, real-world scenarios are far more complex and often involve users issuing invalid instructions or controlling multiple devices simultaneously. These have two main challenges: LLMs must accurately identify and rectify errors in user instructions and execute multiple user instructions perfectly. To address these challenges and advance the development of LLM-based smart home assistants, we introduce HomeBench, the first smart home dataset with valid and invalid instructions across single and multiple devices in this paper. We have experimental results on 13 distinct LLMs; e.g., GPT-4o achieves only a 0.0% success rate in the scenario of invalid multi-device instructions, revealing that the existing state-of-the-art LLMs still cannot perform well in this situation even with the help of in-context learning, retrieval-augmented generation, and fine-tuning. Our code and dataset are publicly available at https://github.com/BITHLP/HomeBench.
Authors:Yu Shang, Peijie Liu, Yuwei Yan, Zijing Wu, Leheng Sheng, Yuanqing Yu, Chumeng Jiang, An Zhang, Fengli Xu, Yu Wang, Min Zhang, Yong Li
Abstract:
The emergence of agentic recommender systems powered by Large Language Models (LLMs) represents a paradigm shift in personalized recommendations, leveraging LLMs' advanced reasoning and role-playing capabilities to enable autonomous, adaptive decision-making. Unlike traditional recommendation approaches, agentic recommender systems can dynamically gather and interpret user-item interactions from complex environments, generating robust recommendation strategies that generalize across diverse scenarios. However, the field currently lacks standardized evaluation protocols to systematically assess these methods. To address this critical gap, we propose: (1) an interactive textual recommendation simulator incorporating rich user and item metadata and three typical evaluation scenarios (classic, evolving-interest, and cold-start recommendation tasks); (2) a unified modular framework for developing and studying agentic recommender systems; and (3) the first comprehensive benchmark comparing 10 classical and agentic recommendation methods. Our findings demonstrate the superiority of agentic systems and establish actionable design guidelines for their core components. The benchmark environment has been rigorously validated through an open challenge and remains publicly available with a continuously maintained leaderboard~\footnote[2]{https://tsinghua-fib-lab.github.io/AgentSocietyChallenge/pages/overview.html}, fostering ongoing community engagement and reproducible research. The benchmark is available at: \hyperlink{https://huggingface.co/datasets/SGJQovo/AgentRecBench}{https://huggingface.co/datasets/SGJQovo/AgentRecBench}.
Authors:George Kour, Itay Nakash, Ateret Anaby-Tavor, Michal Shmueli-Scheuer
Abstract:
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
Authors:Jiawen Chen, Qi Shao, Duxin Chen, Wenwu Yu
Abstract:
Spatio-temporal prediction is a pivotal task with broad applications in traffic management, climate monitoring, energy scheduling, etc. However, existing methodologies often struggle to balance model expressiveness and computational efficiency, especially when scaling to large real-world datasets. To tackle these challenges, we propose STH-SepNet (Spatio-Temporal Hypergraph Separation Networks), a novel framework that decouples temporal and spatial modeling to enhance both efficiency and precision. Therein, the temporal dimension is modeled using lightweight large language models, which effectively capture low-rank temporal dynamics. Concurrently, the spatial dimension is addressed through an adaptive hypergraph neural network, which dynamically constructs hyperedges to model intricate, higher-order interactions. A carefully designed gating mechanism is integrated to seamlessly fuse temporal and spatial representations. By leveraging the fundamental principles of low-rank temporal dynamics and spatial interactions, STH-SepNet offers a pragmatic and scalable solution for spatio-temporal prediction in real-world applications. Extensive experiments on large-scale real-world datasets across multiple benchmarks demonstrate the effectiveness of STH-SepNet in boosting predictive performance while maintaining computational efficiency. This work may provide a promising lightweight framework for spatio-temporal prediction, aiming to reduce computational demands and while enhancing predictive performance. Our code is avaliable at https://github.com/SEU-WENJIA/ST-SepNet-Lightweight-LLMs-Meet-Adaptive-Hypergraphs.
Authors:Ruolin Shen, Xiaozhong Ji, Kai WU, Jiangning Zhang, Yijun He, HaiHua Yang, Xiaobin Hu, Xiaoyu Sun
Abstract:
Current multi-modal models exhibit a notable misalignment with the human visual system when identifying objects that are visually assimilated into the background. Our observations reveal that these multi-modal models cannot distinguish concealed objects, demonstrating an inability to emulate human cognitive processes which effectively utilize foreground-background similarity principles for visual analysis. To analyze this hidden human-model visual thinking discrepancy, we build a visual system that mimicks human visual camouflaged perception to progressively and iteratively `refocus' visual concealed content. The refocus is a progressive guidance mechanism enabling models to logically localize objects in visual images through stepwise reasoning. The localization process of concealed objects requires hierarchical attention shifting with dynamic adjustment and refinement of prior cognitive knowledge. In this paper, we propose a visual refocus reinforcement framework via the policy optimization algorithm to encourage multi-modal models to think and refocus more before answering, and achieve excellent reasoning abilities to align and even surpass human camouflaged perception systems. Our extensive experiments on camouflaged perception successfully demonstrate the emergence of refocus visual phenomena, characterized by multiple reasoning tokens and dynamic adjustment of the detection box. Besides, experimental results on both camouflaged object classification and detection tasks exhibit significantly superior performance compared to Supervised Fine-Tuning (SFT) baselines.
Authors:Ho Hin Lee, Quan Liu, Shunxing Bao, Yuankai Huo, Bennett A. Landman
Abstract:
In contrast to vision transformers, which model long-range dependencies through global self-attention, large kernel convolutions provide a more efficient and scalable alternative, particularly in high-resolution 3D volumetric settings. However, naively increasing kernel size often leads to optimization instability and degradation in performance. Motivated by the spatial bias observed in effective receptive fields (ERFs), we hypothesize that different kernel elements converge at variable rates during training. To support this, we derive a theoretical connection between element-wise gradients and first-order optimization, showing that structurally re-parameterized convolution blocks inherently induce spatially varying learning rates. Building on this insight, we introduce Rep3D, a 3D convolutional framework that incorporates a learnable spatial prior into large kernel training. A lightweight two-stage modulation network generates a receptive-biased scaling mask, adaptively re-weighting kernel updates and enabling local-to-global convergence behavior. Rep3D adopts a plain encoder design with large depthwise convolutions, avoiding the architectural complexity of multi-branch compositions. We evaluate Rep3D on five challenging 3D segmentation benchmarks and demonstrate consistent improvements over state-of-the-art baselines, including transformer-based and fixed-prior re-parameterization methods. By unifying spatial inductive bias with optimization-aware learning, Rep3D offers an interpretable, and scalable solution for 3D medical image analysis. The source code is publicly available at https://github.com/leeh43/Rep3D.
Authors:Jeongsoo Choi, Zhikang Niu, Ji-Hoon Kim, Chunhui Wang, Joon Son Chung, Xie Chen
Abstract:
The goal of this paper is to optimize the training process of diffusion-based text-to-speech models. While recent studies have achieved remarkable advancements, their training demands substantial time and computational costs, largely due to the implicit guidance of diffusion models in learning complex intermediate representations. To address this, we propose A-DMA, an effective strategy for Accelerating training with Dual Modality Alignment. Our method introduces a novel alignment pipeline leveraging both text and speech modalities: text-guided alignment, which incorporates contextual representations, and speech-guided alignment, which refines semantic representations. By aligning hidden states with discriminative features, our training scheme reduces the reliance on diffusion models for learning complex representations. Extensive experiments demonstrate that A-DMA doubles the convergence speed while achieving superior performance over baselines. Code and demo samples are available at: https://github.com/ZhikangNiu/A-DMA
Authors:Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, Dawn Song
Abstract:
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable. Code is available at https://github.com/sunblaze-ucb/Intuitor
Authors:Hu Xiaobin, Liang Yujie, Luo Donghao, Peng Xu, Zhang Jiangning, Zhu Junwei, Wang Chengjie, Fu Yanwei
Abstract:
While virtual try-on has achieved significant progress, evaluating these models towards real-world scenarios remains a challenge. A comprehensive benchmark is essential for three key reasons:(1) Current metrics inadequately reflect human perception, particularly in unpaired try-on settings;(2)Most existing test sets are limited to indoor scenarios, lacking complexity for real-world evaluation; and (3) An ideal system should guide future advancements in virtual try-on generation. To address these needs, we introduce VTBench, a hierarchical benchmark suite that systematically decomposes virtual image try-on into hierarchical, disentangled dimensions, each equipped with tailored test sets and evaluation criteria. VTBench exhibits three key advantages:1) Multi-Dimensional Evaluation Framework: The benchmark encompasses five critical dimensions for virtual try-on generation (e.g., overall image quality, texture preservation, complex background consistency, cross-category size adaptability, and hand-occlusion handling). Granular evaluation metrics of corresponding test sets pinpoint model capabilities and limitations across diverse, challenging scenarios.2) Human Alignment: Human preference annotations are provided for each test set, ensuring the benchmark's alignment with perceptual quality across all evaluation dimensions. (3) Valuable Insights: Beyond standard indoor settings, we analyze model performance variations across dimensions and investigate the disparity between indoor and real-world try-on scenarios. To foster the field of virtual try-on towards challenging real-world scenario, VTBench will be open-sourced, including all test sets, evaluation protocols, generated results, and human annotations.
Authors:Ying Xiao, Jie Huang, Ruijuan He, Jing Xiao, Mohammad Reza Mousavi, Yepang Liu, Kezhi Li, Zhenpeng Chen, Jie M. Zhang
Abstract:
Large language models (LLMs) are reaching expert-level accuracy on medical diagnosis questions, yet their mistakes and the biases behind them pose life-critical risks. Bias linked to race, sex, and socioeconomic status is already well known, but a consistent and automatic testbed for measuring it is missing. To fill this gap, this paper presents AMQA -- an Adversarial Medical Question-Answering dataset -- built for automated, large-scale bias evaluation of LLMs in medical QA. AMQA includes 4,806 medical QA pairs sourced from the United States Medical Licensing Examination (USMLE) dataset, generated using a multi-agent framework to create diverse adversarial descriptions and question pairs. Using AMQA, we benchmark five representative LLMs and find surprisingly substantial disparities: even GPT-4.1, the least biased model tested, answers privileged-group questions over 10 percentage points more accurately than unprivileged ones. Compared with the existing benchmark CPV, AMQA reveals 15% larger accuracy gaps on average between privileged and unprivileged groups. Our dataset and code are publicly available at https://github.com/XY-Showing/AMQA to support reproducible research and advance trustworthy, bias-aware medical AI.
Authors:Yuan Feng, Yukun Cao, Hairu Wang, Xike Xie, S Kevin Zhou
Abstract:
Sketches, probabilistic structures for estimating item frequencies in infinite data streams with limited space, are widely used across various domains. Recent studies have shifted the focus from handcrafted sketches to neural sketches, leveraging memory-augmented neural networks (MANNs) to enhance the streaming compression capabilities and achieve better space-accuracy trade-offs.However, existing neural sketches struggle to scale across different data domains and space budgets due to inflexible MANN configurations. In this paper, we introduce a scalable MANN architecture that brings to life the {\it Lego sketch}, a novel sketch with superior scalability and accuracy. Much like assembling creations with modular Lego bricks, the Lego sketch dynamically coordinates multiple memory bricks to adapt to various space budgets and diverse data domains. Our theoretical analysis guarantees its high scalability and provides the first error bound for neural sketch. Furthermore, extensive experimental evaluations demonstrate that the Lego sketch exhibits superior space-accuracy trade-offs, outperforming existing handcrafted and neural sketches. Our code is available at https://github.com/FFY0/LegoSketch_ICML.
Authors:Jianan Lou, Rong Zhang
Abstract:
Global Navigation Satellite System (GNSS) is essential for autonomous driving systems, unmanned vehicles, and various location-based technologies, as it provides the precise geospatial information necessary for navigation and situational awareness. However, its performance is often degraded by Non-Line-Of-Sight (NLOS) and multipath effects, especially in urban environments. Recently, Artificial Intelligence (AI) has been driving innovation across numerous industries, introducing novel solutions to mitigate the challenges in satellite positioning. This paper presents a learning-filtering deep fusion framework for satellite positioning, termed LF-GNSS. The framework utilizes deep learning networks to intelligently analyze the signal characteristics of satellite observations, enabling the adaptive construction of observation noise covariance matrices and compensated innovation vectors for Kalman filter input. A dynamic hard example mining technique is incorporated to enhance model robustness by prioritizing challenging satellite signals during training. Additionally, we introduce a novel feature representation based on Dilution of Precision (DOP) contributions, which helps to more effectively characterize the signal quality of individual satellites and improve measurement weighting. LF-GNSS has been validated on both public and private datasets, demonstrating superior positioning accuracy compared to traditional methods and other learning-based solutions. To encourage further integration of AI and GNSS research, we will open-source the code at https://github.com/GarlanLou/LF-GNSS, and release a collection of satellite positioning datasets for urban scenarios at https://github.com/GarlanLou/LF-GNSS-Dataset.
Authors:Zhaowei Zhang, Minghua Yi, Mengmeng Wang, Fengshuo Bai, Zilong Zheng, Yipeng Kang, Yaodong Yang
Abstract:
Achieving political consensus is crucial yet challenging for the effective functioning of social governance. However, although frontier AI systems represented by large language models (LLMs) have developed rapidly in recent years, their capabilities on this scope are still understudied. In this paper, we introduce EuroCon, a novel benchmark constructed from 2,225 high-quality deliberation records of the European Parliament over 13 years, ranging from 2009 to 2022, to evaluate the ability of LLMs to reach political consensus among divergent party positions across diverse parliament settings. Specifically, EuroCon incorporates four factors to build each simulated parliament setting: specific political issues, political goals, participating parties, and power structures based on seat distribution. We also develop an evaluation framework for EuroCon to simulate real voting outcomes in different parliament settings, assessing whether LLM-generated resolutions meet predefined political goals. Our experimental results demonstrate that even state-of-the-art models remain undersatisfied with complex tasks like passing resolutions by a two-thirds majority and addressing security issues, while revealing some common strategies LLMs use to find consensus under different power structures, such as prioritizing the stance of the dominant party, highlighting EuroCon's promise as an effective platform for studying LLMs' ability to find political consensus.
Authors:Ali Bahri, Moslem Yazdanpanah, Sahar Dastani, Mehrdad Noori, Gustavo Adolfo Vargas Hakim, David Osowiechi, Farzad Beizaee, Ismail Ben Ayed, Christian Desrosiers
Abstract:
Test-Time Training (TTT) has emerged as a promising solution to address distribution shifts in 3D point cloud classification. However, existing methods often rely on computationally expensive backpropagation during adaptation, limiting their applicability in real-world, time-sensitive scenarios. In this paper, we introduce SMART-PC, a skeleton-based framework that enhances resilience to corruptions by leveraging the geometric structure of 3D point clouds. During pre-training, our method predicts skeletal representations, enabling the model to extract robust and meaningful geometric features that are less sensitive to corruptions, thereby improving adaptability to test-time distribution shifts. Unlike prior approaches, SMART-PC achieves real-time adaptation by eliminating backpropagation and updating only BatchNorm statistics, resulting in a lightweight and efficient framework capable of achieving high frame-per-second rates while maintaining superior classification performance. Extensive experiments on benchmark datasets, including ModelNet40-C, ShapeNet-C, and ScanObjectNN-C, demonstrate that SMART-PC achieves state-of-the-art results, outperforming existing methods such as MATE in terms of both accuracy and computational efficiency. The implementation is available at: https://github.com/AliBahri94/SMART-PC.
Authors:Yiyun Zhou, Zheqi Lv, Shengyu Zhang, Jingyuan Chen
Abstract:
Knowledge Tracing (KT) is a core component of Intelligent Tutoring Systems, modeling learners' knowledge state to predict future performance and provide personalized learning support. Traditional KT models assume that learners' learning abilities remain relatively stable over short periods or change in predictable ways based on prior performance. However, in reality, learners' abilities change irregularly due to factors like cognitive fatigue, motivation, and external stress -- a task introduced, which we refer to as Real-time Learning Pattern Adjustment (RLPA). Existing KT models, when faced with RLPA, lack sufficient adaptability, because they fail to timely account for the dynamic nature of different learners' evolving learning patterns. Current strategies for enhancing adaptability rely on retraining, which leads to significant overfitting and high time overhead issues. To address this, we propose Cuff-KT, comprising a controller and a generator. The controller assigns value scores to learners, while the generator generates personalized parameters for selected learners. Cuff-KT controllably adapts to data changes fast and flexibly without fine-tuning. Experiments on five datasets from different subjects demonstrate that Cuff-KT significantly improves the performance of five KT models with different structures under intra- and inter-learner shifts, with an average relative increase in AUC of 10% and 4%, respectively, at a negligible time cost, effectively tackling RLPA task. Our code and datasets are fully available at https://github.com/zyy-2001/Cuff-KT.
Authors:Jintao Tong, Wenwei Jin, Pengda Qin, Anqi Li, Yixiong Zou, Yuhong Li, Yuhua Li, Ruixuan Li
Abstract:
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
Authors:Yejin Lee, Joonghyuk Hahn, Hyeseon Ahn, Yo-Sub Han
Abstract:
Implicit hate speech detection is challenging due to its subtlety and reliance on contextual interpretation rather than explicit offensive words. Current approaches rely on contrastive learning, which are shown to be effective on distinguishing hate and non-hate sentences. Humans, however, detect implicit hate speech by first identifying specific targets within the text and subsequently interpreting how these target relate to their surrounding context. Motivated by this reasoning process, we propose AmpleHate, a novel approach designed to mirror human inference for implicit hate detection. AmpleHate identifies explicit target using a pretrained Named Entity Recognition model and capture implicit target information via [CLS] tokens. It computes attention-based relationships between explicit, implicit targets and sentence context and then, directly injects these relational vectors into the final sentence representation. This amplifies the critical signals of target-context relations for determining implicit hate. Experiments demonstrate that AmpleHate achieves state-of-the-art performance, outperforming contrastive learning baselines by an average of 82.14% and achieve faster convergence. Qualitative analyses further reveal that attention patterns produced by AmpleHate closely align with human judgement, underscoring its interpretability and robustness. Our code is publicly available at: https://github.com/leeyejin1231/AmpleHate.
Authors:Rui Zhao, Yuze Fan, Ziguo Chen, Fei Gao, Zhenhai Gao
Abstract:
End-to-end learning has emerged as a transformative paradigm in autonomous driving. However, the inherently multimodal nature of driving behaviors and the generalization challenges in long-tail scenarios remain critical obstacles to robust deployment. We propose DiffE2E, a diffusion-based end-to-end autonomous driving framework. This framework first performs multi-scale alignment of multi-sensor perception features through a hierarchical bidirectional cross-attention mechanism. It then introduces a novel class of hybrid diffusion-supervision decoders based on the Transformer architecture, and adopts a collaborative training paradigm that seamlessly integrates the strengths of both diffusion and supervised policy. DiffE2E models structured latent spaces, where diffusion captures the distribution of future trajectories and supervision enhances controllability and robustness. A global condition integration module enables deep fusion of perception features with high-level targets, significantly improving the quality of trajectory generation. Subsequently, a cross-attention mechanism facilitates efficient interaction between integrated features and hybrid latent variables, promoting the joint optimization of diffusion and supervision objectives for structured output generation, ultimately leading to more robust control. Experiments demonstrate that DiffE2E achieves state-of-the-art performance in both CARLA closed-loop evaluations and NAVSIM benchmarks. The proposed integrated diffusion-supervision policy offers a generalizable paradigm for hybrid action representation, with strong potential for extension to broader domains including embodied intelligence. More details and visualizations are available at \href{https://infinidrive.github.io/DiffE2E/}{project website}.
Authors:Dongil Yang, Minjin Kim, Sunghwan Kim, Beong-woo Kwak, Minjun Park, Jinseok Hong, Woontack Woo, Jinyoung Yeo
Abstract:
The remarkable reasoning and generalization capabilities of Large Language Models (LLMs) have paved the way for their expanding applications in embodied AI, robotics, and other real-world tasks. To effectively support these applications, grounding in spatial and temporal understanding in multimodal environments is essential. To this end, recent works have leveraged scene graphs, a structured representation that encodes entities, attributes, and their relationships in a scene. However, a comprehensive evaluation of LLMs' ability to utilize scene graphs remains limited. In this work, we introduce Text-Scene Graph (TSG) Bench, a benchmark designed to systematically assess LLMs' ability to (1) understand scene graphs and (2) generate them from textual narratives. With TSG Bench we evaluate 11 LLMs and reveal that, while models perform well on scene graph understanding, they struggle with scene graph generation, particularly for complex narratives. Our analysis indicates that these models fail to effectively decompose discrete scenes from a complex narrative, leading to a bottleneck when generating scene graphs. These findings underscore the need for improved methodologies in scene graph generation and provide valuable insights for future research. The demonstration of our benchmark is available at https://tsg-bench.netlify.app. Additionally, our code and evaluation data are publicly available at https://github.com/docworlds/tsg-bench.
Authors:Yifan Jia, Kailin Jiang, Yuyang Liang, Qihan Ren, Yi Xin, Rui Yang, Fenze Feng, Mingcai Chen, Hengyang Lu, Haozhe Wang, Xiaoye Qu, Dongrui Liu, Lizhen Cui, Yuntao Du
Abstract:
Large Multimodal Models(LMMs) face notable challenges when encountering multimodal knowledge conflicts, particularly under retrieval-augmented generation(RAG) frameworks where the contextual information from external sources may contradict the model's internal parametric knowledge, leading to unreliable outputs. However, existing benchmarks fail to reflect such realistic conflict scenarios. Most focus solely on intra-memory conflicts, while context-memory and inter-context conflicts remain largely investigated. Furthermore, commonly used factual knowledge-based evaluations are often overlooked, and existing datasets lack a thorough investigation into conflict detection capabilities. To bridge this gap, we propose MMKC-Bench, a benchmark designed to evaluate factual knowledge conflicts in both context-memory and inter-context scenarios. MMKC-Bench encompasses three types of multimodal knowledge conflicts and includes 1,573 knowledge instances and 3,381 images across 23 broad types, collected through automated pipelines with human verification. We evaluate three representative series of LMMs on both model behavior analysis and conflict detection tasks. Our findings show that while current LMMs are capable of recognizing knowledge conflicts, they tend to favor internal parametric knowledge over external evidence. We hope MMKC-Bench will foster further research in multimodal knowledge conflict and enhance the development of multimodal RAG systems. The source code is available at https://github.com/MLLMKCBENCH/MLLMKC.
Authors:Pingzhi Li, Zhen Tan, Huaizhi Qu, Huan Liu, Tianlong Chen
Abstract:
Large Language Models (LLMs) represent substantial intellectual and economic investments, yet their effectiveness can inadvertently facilitate model imitation via knowledge distillation (KD).In practical scenarios, competitors can distill proprietary LLM capabilities by simply observing publicly accessible outputs, akin to reverse-engineering a complex performance by observation alone. Existing protective methods like watermarking only identify imitation post-hoc, while other defenses assume the student model mimics the teacher's internal logits, rendering them ineffective against distillation purely from observed output text. This paper confronts the challenge of actively protecting LLMs within the realistic constraints of API-based access. We introduce an effective and efficient Defensive Output Generation (DOGe) strategy that subtly modifies the output behavior of an LLM. Its outputs remain accurate and useful for legitimate users, yet are designed to be misleading for distillation, significantly undermining imitation attempts. We achieve this by fine-tuning only the final linear layer of the teacher LLM with an adversarial loss. This targeted training approach anticipates and disrupts distillation attempts during inference time. Our experiments show that, while preserving or even improving the original performance of the teacher model, student models distilled from the defensively generated teacher outputs demonstrate catastrophically reduced performance, demonstrating our method's effectiveness as a practical safeguard against KD-based model imitation.
Authors:Sanghyun Kim, Deunsol Jung, Minsu Cho
Abstract:
Recent methods for zero-shot Human-Object Interaction (HOI) detection typically leverage the generalization ability of large Vision-Language Model (VLM), i.e., CLIP, on unseen categories, showing impressive results on various zero-shot settings. However, existing methods struggle to adapt CLIP representations for human-object pairs, as CLIP tends to overlook fine-grained information necessary for distinguishing interactions. To address this issue, we devise, LAIN, a novel zero-shot HOI detection framework enhancing the locality and interaction awareness of CLIP representations. The locality awareness, which involves capturing fine-grained details and the spatial structure of individual objects, is achieved by aggregating the information and spatial priors of adjacent neighborhood patches. The interaction awareness, which involves identifying whether and how a human is interacting with an object, is achieved by capturing the interaction pattern between the human and the object. By infusing locality and interaction awareness into CLIP representation, LAIN captures detailed information about the human-object pairs. Our extensive experiments on existing benchmarks show that LAIN outperforms previous methods on various zero-shot settings, demonstrating the importance of locality and interaction awareness for effective zero-shot HOI detection.
Authors:Jianxing Liao, Junyan Xu, Yatao Sun, Maowen Tang, Sicheng He, Jingxian Liao, Shui Yu, Yun Li, Hongguan Xiao
Abstract:
Designing complex computer-aided design (CAD) models is often time-consuming due to challenges such as computational inefficiency and the difficulty of generating precise models. We propose a novel language-guided framework for industrial design automation to address these issues, integrating large language models (LLMs) with computer-automated design (CAutoD).Through this framework, CAD models are automatically generated from parameters and appearance descriptions, supporting the automation of design tasks during the detailed CAD design phase. Our approach introduces three key innovations: (1) a semi-automated data annotation pipeline that leverages LLMs and vision-language large models (VLLMs) to generate high-quality parameters and appearance descriptions; (2) a Transformer-based CAD generator (TCADGen) that predicts modeling sequences via dual-channel feature aggregation; (3) an enhanced CAD modeling generation model, called CADLLM, that is designed to refine the generated sequences by incorporating the confidence scores from TCADGen. Experimental results demonstrate that the proposed approach outperforms traditional methods in both accuracy and efficiency, providing a powerful tool for automating industrial workflows and generating complex CAD models from textual prompts. The code is available at https://jianxliao.github.io/cadllm-page/
Authors:Zhenhao Zhou, Zhuochen Huang, Yike He, Chong Wang, Jiajun Wang, Yijian Wu, Xin Peng, Yiling Lou
Abstract:
The Linux kernel is a critical system, serving as the foundation for numerous systems. Bugs in the Linux kernel can cause serious consequences, affecting billions of users. Fault localization (FL), which aims at identifying the buggy code elements in software, plays an essential role in software quality assurance. While recent LLM agents have achieved promising accuracy in FL on recent benchmarks like SWE-bench, it remains unclear how well these methods perform in the Linux kernel, where FL is much more challenging due to the large-scale code base, limited observability, and diverse impact factors. In this paper, we introduce LinuxFLBench, a FL benchmark constructed from real-world Linux kernel bugs. We conduct an empirical study to assess the performance of state-of-the-art LLM agents on the Linux kernel. Our initial results reveal that existing agents struggle with this task, achieving a best top-1 accuracy of only 41.6% at file level. To address this challenge, we propose LinuxFL$^+$, an enhancement framework designed to improve FL effectiveness of LLM agents for the Linux kernel. LinuxFL$^+$ substantially improves the FL accuracy of all studied agents (e.g., 7.2% - 11.2% accuracy increase) with minimal costs. Data and code are available at https://github.com/FudanSELab/LinuxFLBench.
Authors:Xinmiao Hu, Chun Wang, Ruihe An, ChenYu Shao, Xiaojun Ye, Sheng Zhou, Liangcheng Li
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual understanding tasks, yet they often suffer from object hallucinations--generating descriptions of objects that are inconsistent with or entirely absent from the input. This issue is closely related to dataset biases, where frequent co-occurrences of objects lead to entangled semantic representations across modalities. As a result, models may erroneously activate object representations that are commonly associated with the input but not actually present.
To address this, we propose a causality-driven disentanglement framework that mitigates hallucinations through causal intervention. Our approach includes a Causal-Driven Projector in the visual pathway and a Causal Intervention Module integrated into the final transformer layer of the language model. These components work together to reduce spurious correlations caused by biased training data.
Experimental results show that our method significantly reduces hallucinations while maintaining strong performance on multiple multimodal benchmarks. Visualization analyses further confirm improved separability of object representations.
The code is available at: https://github.com/IgniSavium/Causal-LLaVA
Authors:Puyuan Peng, Shang-Wen Li, Abdelrahman Mohamed, David Harwath
Abstract:
We present VoiceStar, the first zero-shot TTS model that achieves both output duration control and extrapolation. VoiceStar is an autoregressive encoder-decoder neural codec language model, that leverages a novel Progress-Monitoring Rotary Position Embedding (PM-RoPE) and is trained with Continuation-Prompt Mixed (CPM) training. PM-RoPE enables the model to better align text and speech tokens, indicates the target duration for the generated speech, and also allows the model to generate speech waveforms much longer in duration than those seen during. CPM training also helps to mitigate the training/inference mismatch, and significantly improves the quality of the generated speech in terms of speaker similarity and intelligibility. VoiceStar outperforms or is on par with current state-of-the-art models on short-form benchmarks such as Librispeech and Seed-TTS, and significantly outperforms these models on long-form/extrapolation benchmarks (20-50s) in terms of intelligibility and naturalness. Code and models: https://github.com/jasonppy/VoiceStar. Audio samples: https://jasonppy.github.io/VoiceStar_web
Authors:Guilong Lu, Xuntao Guo, Rongjunchen Zhang, Wenqiao Zhu, Ji Liu
Abstract:
Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.
Authors:X. Feng, D. Zhang, S. Hu, X. Li, M. Wu, J. Zhang, X. Chen, K. Huang
Abstract:
Effectively modeling and utilizing spatiotemporal features from RGB and other modalities (\eg, depth, thermal, and event data, denoted as X) is the core of RGB-X tracker design. Existing methods often employ two parallel branches to separately process the RGB and X input streams, requiring the model to simultaneously handle two dispersed feature spaces, which complicates both the model structure and computation process. More critically, intra-modality spatial modeling within each dispersed space incurs substantial computational overhead, limiting resources for inter-modality spatial modeling and temporal modeling. To address this, we propose a novel tracker, CSTrack, which focuses on modeling Compact Spatiotemporal features to achieve simple yet effective tracking. Specifically, we first introduce an innovative Spatial Compact Module that integrates the RGB-X dual input streams into a compact spatial feature, enabling thorough intra- and inter-modality spatial modeling. Additionally, we design an efficient Temporal Compact Module that compactly represents temporal features by constructing the refined target distribution heatmap. Extensive experiments validate the effectiveness of our compact spatiotemporal modeling method, with CSTrack achieving new SOTA results on mainstream RGB-X benchmarks. The code and models will be released at: https://github.com/XiaokunFeng/CSTrack.
Authors:Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, Bo Li
Abstract:
Post-training compression reduces the computational and memory costs of large language models (LLMs), enabling resource-efficient deployment. However, existing compression benchmarks only focus on language modeling (e.g., perplexity) and natural language understanding tasks (e.g., GLUE accuracy), ignoring the agentic capabilities - workflow, tool use/function call, long-context understanding and real-world application. We introduce the Agent Compression Benchmark (ACBench), the first comprehensive benchmark for evaluating how compression impacts LLMs' agentic abilities. ACBench spans (1) 12 tasks across 4 capabilities (e.g., WorfBench for workflow generation, Needle-in-Haystack for long-context retrieval), (2) quantization (GPTQ, AWQ) and pruning (Wanda, SparseGPT), and (3) 15 models, including small (Gemma-2B), standard (Qwen2.5 7B-32B), and distilled reasoning LLMs (DeepSeek-R1-Distill). Our experiments reveal compression tradeoffs: 4-bit quantization preserves workflow generation and tool use (1%-3% drop) but degrades real-world application accuracy by 10%-15%. We introduce ERank, Top-k Ranking Correlation and Energy to systematize analysis. ACBench provides actionable insights for optimizing LLM compression in agentic scenarios. The code can be found in https://github.com/pprp/ACBench.
Authors:Abhijnan Nath, Carine Graff, Andrei Bachinin, Nikhil Krishnaswamy
Abstract:
AI support of collaborative interactions entails mediating potential misalignment between interlocutor beliefs. Common preference alignment methods like DPO excel in static settings, but struggle in dynamic collaborative tasks where the explicit signals of interlocutor beliefs are sparse and skewed. We propose the Frictional Agent Alignment Framework (FAAF), to generate precise, context-aware "friction" that prompts for deliberation and re-examination of existing evidence. FAAF's two-player objective decouples from data skew: a frictive-state policy identifies belief misalignments, while an intervention policy crafts collaborator-preferred responses. We derive an analytical solution to this objective, enabling training a single policy via a simple supervised loss. Experiments on three benchmarks show FAAF outperforms competitors in producing concise, interpretable friction and in OOD generalization. By aligning LLMs to act as adaptive "thought partners" -- not passive responders -- FAAF advances scalable, dynamic human-AI collaboration. Our code and data can be found at https://github.com/csu-signal/FAAF_ACL.
Authors:Sihan Chen, Dan Zhao, Jongwoo Ko, Colby Banbury, Huiping Zhuang, Luming Liang, Tianyi Chen
Abstract:
The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise $\ell_2$-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to $2.94\%$ in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.
Authors:Ethan TS. Liu, Austin Wang, Spencer Mateega, Carlos Georgescu, Danny Tang
Abstract:
Ensuring that large language models (LLMs) can effectively assess, detect, explain, and remediate software vulnerabilities is critical for building robust and secure software systems. We introduce VADER, a human-evaluated benchmark designed explicitly to assess LLM performance across four key vulnerability-handling dimensions: assessment, detection, explanation, and remediation. VADER comprises 174 real-world software vulnerabilities, each carefully curated from GitHub repositories and annotated by security experts. For each vulnerability case, models are tasked with identifying the flaw, classifying it using Common Weakness Enumeration (CWE), explaining its underlying cause, proposing a patch, and formulating a test plan. Using a one-shot prompting strategy, we benchmark six state-of-the-art LLMs (Claude 3.7 Sonnet, Gemini 2.5 Pro, GPT-4.1, GPT-4.5, Grok 3 Beta, and o3) on VADER, and human security experts evaluated each response according to a rigorous scoring rubric emphasizing remediation (quality of the code fix, 50%), explanation (20%), and classification and test plan (30%) according to a standardized rubric. Our results show that current state-of-the-art LLMs achieve only moderate success on VADER - OpenAI's o3 attained 54.7% accuracy overall, with others in the 49-54% range, indicating ample room for improvement. Notably, remediation quality is strongly correlated (Pearson r > 0.97) with accurate classification and test plans, suggesting that models that effectively categorize vulnerabilities also tend to fix them well. VADER's comprehensive dataset, detailed evaluation rubrics, scoring tools, and visualized results with confidence intervals are publicly released, providing the community with an interpretable, reproducible benchmark to advance vulnerability-aware LLMs. All code and data are available at: https://github.com/AfterQuery/vader
Authors:Kidist Amde Mekonnen, Yosef Worku Alemneh, Maarten de Rijke
Abstract:
Neural retrieval methods using transformer-based pre-trained language models have advanced multilingual and cross-lingual retrieval. However, their effectiveness for low-resource, morphologically rich languages such as Amharic remains underexplored due to data scarcity and suboptimal tokenization. We address this gap by introducing Amharic-specific dense retrieval models based on pre-trained Amharic BERT and RoBERTa backbones. Our proposed RoBERTa-Base-Amharic-Embed model (110M parameters) achieves a 17.6% relative improvement in MRR@10 and a 9.86% gain in Recall@10 over the strongest multilingual baseline, Arctic Embed 2.0 (568M parameters). More compact variants, such as RoBERTa-Medium-Amharic-Embed (42M), remain competitive while being over 13x smaller. Additionally, we train a ColBERT-based late interaction retrieval model that achieves the highest MRR@10 score (0.843) among all evaluated models. We benchmark our proposed models against both sparse and dense retrieval baselines to systematically assess retrieval effectiveness in Amharic. Our analysis highlights key challenges in low-resource settings and underscores the importance of language-specific adaptation. To foster future research in low-resource IR, we publicly release our dataset, codebase, and trained models at https://github.com/kidist-amde/amharic-ir-benchmarks.
Authors:Xiao Liu, Lijun Zhang, Deepak Ganesan, Hui Guan
Abstract:
Transformer models power many AI applications but suffer from high inference latency, limiting their use in real-time settings. Multi-device inference can reduce latency by parallelizing computation. Yet, existing methods require high inter-device bandwidth, making them impractical for bandwidth-constrained environments. We propose ASTRA, a communication-efficient framework that accelerates Transformer inference through a novel integration of sequence parallelism and a Mixed-Precision Attention mechanism designed to minimize inter-device communication. ASTRA compresses non-local token embeddings via vector quantization and preserves task accuracy through two optimizations, Noise-Augmented Quantization and Distributed Class Tokens. Experiments on ViT and GPT2 across vision and NLP tasks show that ASTRA achieves up to 2.64X speedups over single-device inference and up to 15.25X speedups over state-of-the-art multi-device inferences, while operating under bandwidths as low as 10 Mbps. ASTRA is open-sourced at https://github.com/xl1990/Astra.
Authors:Libo Wang
Abstract:
To address the gaps between the static pre-set "thinking-planning-action" of humanoid robots in unfamiliar scenarios and the highly programmed "call tool-return result" due to the lack of autonomous coding capabilities, this work designs a dynamic architecture connecting continuous thought machines (CTM) and model context protocol (MCP). It proposes a theoretical parallel solution through tick-slab and uses rank compression to achieve parameter suppression to provide a solution for achieving autonomous actions due to autonomous coding. The researcher used a simulation-based experiment using OpenAI's o4-mini-high as a tool to build the experimental environment, and introduced the extended SayCan dataset to conduct nine epochs of experiments. The experimental results show that the CTM-MCP architecture is feasible and effective through the data results of seven metrics: task success rate (TSR), execution success rate (ESR), average episode length (AEL), ROSCOE, REVEAL, proficiency self-assessment (PSA), task effectiveness (TE). In practice, it provides a reference experience for exploring the autonomous dynamic coding of humanoid robots based on continuous thinking to achieve human-like autonomous actions.
Authors:Dora Zhao, Diyi Yang, Michael S. Bernstein
Abstract:
Large language models are designed to encode general purpose knowledge about the world from Internet data. Yet, a wealth of information falls outside this scope -- ranging from personal preferences to organizational policies, from community-specific advice to up-to-date news -- that users want models to access but remains unavailable. In this paper, we propose a knowledge ecosystem in which end-users can create, curate, and configure custom knowledge modules that are utilized by language models, such as ChatGPT and Claude. To support this vision, we introduce Knoll, a software infrastructure that allows users to make modules by clipping content from the web or authoring shared documents on Google Docs and GitHub, add modules that others have made, and rely on the system to insert relevant knowledge when interacting with an LLM. We conduct a public deployment of Knoll reaching over 200 users who employed the system for a diverse set of tasks including personalized recommendations, advice-seeking, and writing assistance. In our evaluation, we validate that using Knoll improves the quality of generated responses.
Authors:Qiang Hu, Qimei Wang, Jia Chen, Xuantao Ji, Mei Liu, Qiang Li, Zhiwei Wang
Abstract:
White Light Imaging (WLI) and Narrow Band Imaging (NBI) are the two main colonoscopic modalities for polyp classification. While NBI, as optical chromoendoscopy, offers valuable vascular details, WLI remains the most common and often the only available modality in resource-limited settings. However, WLI-based methods typically underperform, limiting their clinical applicability. Existing approaches transfer knowledge from NBI to WLI through global feature alignment but often rely on cropped lesion regions, which are susceptible to detection errors and neglect contextual and subtle diagnostic cues. To address this, this paper proposes a novel holistic classification framework that leverages full-image diagnosis without requiring polyp localization. The key innovation lies in the Alignment-free Dense Distillation (ADD) module, which enables fine-grained cross-domain knowledge distillation regardless of misalignment between WLI and NBI images. Without resorting to explicit image alignment, ADD learns pixel-wise cross-domain affinities to establish correspondences between feature maps, guiding the distillation along the most relevant pixel connections. To further enhance distillation reliability, ADD incorporates Class Activation Mapping (CAM) to filter cross-domain affinities, ensuring the distillation path connects only those semantically consistent regions with equal contributions to polyp diagnosis. Extensive results on public and in-house datasets show that our method achieves state-of-the-art performance, relatively outperforming the other approaches by at least 2.5% and 16.2% in AUC, respectively. Code is available at: https://github.com/Huster-Hq/ADD.
Authors:Zirui Li, Siwei Wu, Xingyu Wang, Yi Zhou, Yizhi Li, Chenghua Lin
Abstract:
The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains, including Wikipedia articles, scientific papers (arXiv), and presentation slides, within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal benchmark, comprising 450K samples, which systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP demonstrating reasonable zero-shot performance. Furthermore, we conduct a systematic investigation of training strategies, including cross-modal fusion methods and loss functions, and develop a tailored approach to train CLIP on our benchmark. This results in a +31% improvement in MRR@10 compared to the zero-shot baseline. All our data and code are released in https://github.com/J1mL1/DocMMIR.
Authors:Junnan Liu, Linhao Luo, Thuy-Trang Vu, Gholamreza Haffari
Abstract:
Recent advances in large language models (LLMs) demonstrate their impressive reasoning capabilities. However, the reasoning confined to internal parametric space limits LLMs' access to real-time information and understanding of the physical world. To overcome this constraint, we introduce SituatedThinker, a novel framework that enables LLMs to ground their reasoning in real-world contexts through situated thinking, which adaptively combines both internal knowledge and external information with predefined interfaces. By utilizing reinforcement learning, SituatedThinker incentivizes deliberate reasoning with the real world to acquire information and feedback, allowing LLMs to surpass their knowledge boundaries and enhance reasoning. Experimental results demonstrate significant performance improvements on multi-hop question-answering and mathematical reasoning benchmarks. Furthermore, SituatedThinker demonstrates strong performance on unseen tasks, such as KBQA, TableQA, and text-based games, showcasing the generalizable real-world grounded reasoning capability. Our codes are available at https://github.com/jnanliu/SituatedThinker.
Authors:Jimeng Shi, Sizhe Zhou, Bowen Jin, Wei Hu, Runchu Tian, Shaowen Wang, Giri Narasimhan, Jiawei Han
Abstract:
Large language models (LLMs) often need to incorporate external knowledge to solve theme-specific problems. Retrieval-augmented generation (RAG) has shown its high promise, empowering LLMs to generate more qualified responses with retrieved external data and knowledge. However, most RAG methods retrieve relevant documents based on either sparse or dense retrieval methods or their combinations, which overlooks the essential, multi-dimensional, and structured semantic information present in documents. This structured information plays a critical role in finding concise yet highly relevant information for domain knowledge-intensive tasks, such as scientific question-answering (QA). In this work, we introduce a multi-dimensional (cube) structure, Hypercube, which can index and allocate documents in a pre-defined multi-dimensional space. Built on the hypercube, we further propose Hypercube-RAG, a novel RAG framework for precise and efficient retrieval. Given a query, Hypercube-RAG first decomposes it based on its entities, phrases, and topics along with pre-defined hypercube dimensions, and then retrieves relevant documents from cubes by aligning these decomposed components with corresponding dimensions. Experiments on three datasets across different domains demonstrate that our method improves response accuracy by 3.7% and retrieval accuracy by 5.3% over the strongest RAG baseline. It also boosts retrieval efficiency (speed) by one or two magnitudes faster than graph-based RAG. Notably, our Hypercube-RAG inherently offers explainability by revealing those underlying dimensions used for retrieval. The code and data are available at https://github.com/JimengShi/Hypercube-RAG.
Authors:Hossein Zaremehrjerdi, Shreyan Ganguly, Ashlyn Rairdin, Elizabeth Tranel, Benjamin Feuer, Juan Ignacio Di Salvo, Srikanth Panthulugiri, Hernan Torres Pacin, Victoria Moser, Sarah Jones, Joscif G Raigne, Yanben Shen, Heidi M. Dornath, Aditya Balu, Adarsh Krishnamurthy, Asheesh K Singh, Arti Singh, Baskar Ganapathysubramanian, Chinmay Hegde, Soumik Sarkar
Abstract:
Agricultural decision-making involves complex, context-specific reasoning, where choices about crops, practices, and interventions depend heavily on geographic, climatic, and economic conditions. Traditional large language models (LLMs) often fall short in navigating this nuanced problem due to limited reasoning capacity. We hypothesize that recent advances in large reasoning models (LRMs) can better handle such structured, domain-specific inference. To investigate this, we introduce AgReason, the first expert-curated open-ended science benchmark with 100 questions for agricultural reasoning. Evaluations across thirteen open-source and proprietary models reveal that LRMs outperform conventional ones, though notable challenges persist, with the strongest Gemini-based baseline achieving 36% accuracy. We also present AgThoughts, a large-scale dataset of 44.6K question-answer pairs generated with human oversight and equipped with synthetically generated reasoning traces. Using AgThoughts, we develop AgThinker, a suite of small reasoning models that can be run on consumer-grade GPUs, and show that our dataset can be effective in unlocking agricultural reasoning abilities in LLMs. Our project page is here: https://baskargroup.github.io/Ag_reasoning/
Authors:Vivek Gopalakrishnan, Neel Dey, Polina Golland
Abstract:
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-ray images, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail.
Authors:Mingyuan Wu, Jingcheng Yang, Jize Jiang, Meitang Li, Kaizhuo Yan, Hanchao Yu, Minjia Zhang, Chengxiang Zhai, Klara Nahrstedt
Abstract:
Reinforcement Learning Finetuning (RFT) has significantly advanced the reasoning capabilities of large language models (LLMs) by enabling long chains of thought, self-correction, and effective tool use. While recent works attempt to extend RFT to vision-language models (VLMs), these efforts largely produce text-only reasoning conditioned on static image inputs, falling short of true multimodal reasoning in the response. In contrast, test-time methods like Visual Sketchpad incorporate visual steps but lack training mechanisms.
We introduce VTool-R1, the first framework that trains VLMs to generate multimodal chains of thought by interleaving text and intermediate visual reasoning steps. VTool-R1 integrates Python-based visual editing tools into the RFT process, enabling VLMs to learn when and how to generate visual reasoning steps that benefit final reasoning. Trained with outcome-based rewards tied to task accuracy, our approach elicits strategic visual tool use for reasoning without relying on process-based supervision. Experiments on structured visual question answering over charts and tables show that VTool-R1 enhances reasoning performance by teaching VLMs to "think with images" and generate multimodal chain of thoughts with tools.
Authors:Aida Kostikova, Zhipin Wang, Deidamea Bajri, Ole Pütz, Benjamin PaaÃen, Steffen Eger
Abstract:
Large language model (LLM) research has grown rapidly, along with increasing concern about their limitations such as failures in reasoning, hallucinations, and limited multilingual capability. While prior reviews have addressed these issues, they often focus on individual limitations or consider them within the broader context of evaluating overall model performance. This survey addresses the gap by presenting a data-driven, semi-automated review of research on limitations of LLMs (LLLMs) from 2022 to 2025, using a bottom-up approach. From a corpus of 250,000 ACL and arXiv papers, we extract 14,648 relevant limitation papers using keyword filtering and LLM-based classification, validated against expert labels. Using topic clustering (via two approaches, HDBSCAN+BERTopic and LlooM), we identify between 7 and 15 prominent types of limitations discussed in recent LLM research across the ACL and arXiv datasets. We find that LLM-related research increases nearly sixfold in ACL and nearly fifteenfold in arXiv between 2022 and 2025, while LLLMs research grows even faster, by a factor of over 12 in ACL and nearly 28 in arXiv. Reasoning remains the most studied limitation, followed by generalization, hallucination, bias, and security. The distribution of topics in the ACL dataset stays relatively stable over time, while arXiv shifts toward safety and controllability (with topics like security risks, alignment, hallucinations, knowledge editing), and multimodality between 2022 and 2025. We offer a quantitative view of trends in LLM limitations research and release a dataset of annotated abstracts and a validated methodology, available at: https://github.com/a-kostikova/LLLMs-Survey.
Authors:Qinsi Wang, Hancheng Ye, Ming-Yu Chung, Yudong Liu, Yueqian Lin, Martin Kuo, Mingyuan Ma, Jianyi Zhang, Yiran Chen
Abstract:
Vision-Language Models (VLMs) excel across diverse tasks but suffer from high inference costs in time and memory. Token sparsity mitigates inefficiencies in token usage, while neuron sparsity reduces high-dimensional computations, both offering promising solutions to enhance efficiency. Recently, these two sparsity paradigms have evolved largely in parallel, fostering the prevailing assumption that they function independently. However, a fundamental yet underexplored question remains: Do they truly operate in isolation, or is there a deeper underlying interplay that has yet to be uncovered? In this paper, we conduct the first comprehensive investigation into this question. By introducing and analyzing the matching mechanism between Core Neurons and Core Tokens, we found that key neurons and tokens for inference mutually influence and reinforce each other. Building on this insight, we propose CoreMatching, a co-adaptive sparse inference framework, which leverages the synergy between token and neuron sparsity to enhance inference efficiency. Through theoretical analysis and efficiency evaluations, we demonstrate that the proposed method surpasses state-of-the-art baselines on ten image understanding tasks and three hardware devices. Notably, on the NVIDIA Titan Xp, it achieved 5x FLOPs reduction and a 10x overall speedup. Code is released at https://github.com/wangqinsi1/2025-ICML-CoreMatching/tree/main.
Authors:Chenglong Ma, Yuanfeng Ji, Jin Ye, Zilong Li, Chenhui Wang, Junzhi Ning, Wei Li, Lihao Liu, Qiushan Guo, Tianbin Li, Junjun He, Hongming Shan
Abstract:
Advanced autoregressive models have reshaped multimodal AI. However, their transformative potential in medical imaging remains largely untapped due to the absence of a unified visual tokenizer -- one capable of capturing fine-grained visual structures for faithful image reconstruction and realistic image synthesis, as well as rich semantics for accurate diagnosis and image interpretation. To this end, we present MedITok, the first unified tokenizer tailored for medical images, encoding both low-level structural details and high-level clinical semantics within a unified latent space. To balance these competing objectives, we introduce a novel two-stage training framework: a visual representation alignment stage that cold-starts the tokenizer reconstruction learning with a visual semantic constraint, followed by a textual semantic representation alignment stage that infuses detailed clinical semantics into the latent space. Trained on the meticulously collected large-scale dataset with over 30 million medical images and 2 million image-caption pairs, MedITok achieves state-of-the-art performance on more than 30 datasets across 9 imaging modalities and 4 different tasks. By providing a unified token space for autoregressive modeling, MedITok supports a wide range of tasks in clinical diagnostics and generative healthcare applications. Model and code will be made publicly available at: https://github.com/Masaaki-75/meditok.
Authors:Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen, Yankai Lin, Ji-Rong Wen, Chongxuan Li
Abstract:
While Masked Diffusion Models (MDMs), such as LLaDA, present a promising paradigm for language modeling, there has been relatively little effort in aligning these models with human preferences via reinforcement learning. The challenge primarily arises from the high variance in Evidence Lower Bound (ELBO)-based likelihood estimates required for preference optimization. To address this issue, we propose Variance-Reduced Preference Optimization (VRPO), a framework that formally analyzes the variance of ELBO estimators and derives bounds on both the bias and variance of preference optimization gradients. Building on this theoretical foundation, we introduce unbiased variance reduction strategies, including optimal Monte Carlo budget allocation and antithetic sampling, that significantly improve the performance of MDM alignment. We demonstrate the effectiveness of VRPO by applying it to LLaDA, and the resulting model, LLaDA 1.5, outperforms its SFT-only predecessor consistently and significantly across mathematical (GSM8K +4.7), code (HumanEval +3.0, MBPP +1.8), and alignment benchmarks (IFEval +4.0, Arena-Hard +4.3). Furthermore, LLaDA 1.5 demonstrates a highly competitive mathematical performance compared to strong language MDMs and ARMs. Project page: https://ml-gsai.github.io/LLaDA-1.5-Demo/.
Authors:Shiyue Wang, Haozheng Xu, Yuhan Zhang, Jingran Lin, Changhong Lu, Xiangfeng Wang, Wenhao Li
Abstract:
Multi-Agent Path Finding (MAPF) is a fundamental problem in artificial intelligence and robotics, requiring the computation of collision-free paths for multiple agents navigating from their start locations to designated goals. As autonomous systems become increasingly prevalent in warehouses, urban transportation, and other complex environments, MAPF has evolved from a theoretical challenge to a critical enabler of real-world multi-robot coordination. This comprehensive survey bridges the long-standing divide between classical algorithmic approaches and emerging learning-based methods in MAPF research. We present a unified framework that encompasses search-based methods (including Conflict-Based Search, Priority-Based Search, and Large Neighborhood Search), compilation-based approaches (SAT, SMT, CSP, ASP, and MIP formulations), and data-driven techniques (reinforcement learning, supervised learning, and hybrid strategies). Through systematic analysis of experimental practices across 200+ papers, we uncover significant disparities in evaluation methodologies, with classical methods typically tested on larger-scale instances (up to 200 by 200 grids with 1000+ agents) compared to learning-based approaches (predominantly 10-100 agents). We provide a comprehensive taxonomy of evaluation metrics, environment types, and baseline selections, highlighting the need for standardized benchmarking protocols. Finally, we outline promising future directions including mixed-motive MAPF with game-theoretic considerations, language-grounded planning with large language models, and neural solver architectures that combine the rigor of classical methods with the flexibility of deep learning. This survey serves as both a comprehensive reference for researchers and a practical guide for deploying MAPF solutions in increasingly complex real-world applications.
Authors:Jingwei Wu, Zhewei Huang, Chang Liu
Abstract:
In the past decade, image foundation models (IFMs) have achieved unprecedented progress. However, the potential of directly using IFMs for video self-supervised representation learning has largely been overlooked. In this study, we propose an advancing video self-supervised learning (AdViSe) approach, aimed at significantly reducing the training overhead of video representation models using pre-trained IFMs. Specifically, we first introduce temporal modeling modules (ResNet3D) to IFMs, constructing a video representation model. We then employ a video self-supervised learning approach, playback rate perception, to train temporal modules while freezing the IFM components. Experiments on UCF101 demonstrate that AdViSe achieves performance comparable to state-of-the-art methods while reducing training time by $3.4\times$ and GPU memory usage by $8.2\times$. This study offers fresh insights into low-cost video self-supervised learning based on pre-trained IFMs. Code is available at https://github.com/JingwWu/advise-video-ssl.
Authors:Steffen Backmann, David Guzman Piedrahita, Emanuel Tewolde, Rada Mihalcea, Bernhard Schölkopf, Zhijing Jin
Abstract:
Recent advances in large language models (LLMs) have enabled their use in complex agentic roles, involving decision-making with humans or other agents, making ethical alignment a key AI safety concern. While prior work has examined both LLMs' moral judgment and strategic behavior in social dilemmas, there is limited understanding of how they act when moral imperatives directly conflict with rewards or incentives. To investigate this, we introduce Moral Behavior in Social Dilemma Simulation (MoralSim) and evaluate how LLMs behave in the prisoner's dilemma and public goods game with morally charged contexts. In MoralSim, we test a range of frontier models across both game structures and three distinct moral framings, enabling a systematic examination of how LLMs navigate social dilemmas in which ethical norms conflict with payoff-maximizing strategies. Our results show substantial variation across models in both their general tendency to act morally and the consistency of their behavior across game types, the specific moral framing, and situational factors such as opponent behavior and survival risks. Crucially, no model exhibits consistently moral behavior in MoralSim, highlighting the need for caution when deploying LLMs in agentic roles where the agent's "self-interest" may conflict with ethical expectations. Our code is available at https://github.com/sbackmann/moralsim.
Authors:Tyler Ward, Aaron Moseley, Abdullah-Al-Zubaer Imran
Abstract:
Segmentation is one of the most important tasks in the medical imaging pipeline as it influences a number of image-based decisions. To be effective, fully supervised segmentation approaches require large amounts of manually annotated training data. However, the pixel-level annotation process is expensive, time-consuming, and error-prone, hindering progress and making it challenging to perform effective segmentations. Therefore, models must learn efficiently from limited labeled data. Self-supervised learning (SSL), particularly contrastive learning via pre-training on unlabeled data and fine-tuning on limited annotations, can facilitate such limited labeled image segmentation. To this end, we propose a novel self-supervised contrastive learning framework for medical image segmentation, leveraging inherent relationships of different images, dubbed PolyCL. Without requiring any pixel-level annotations or unreasonable data augmentations, our PolyCL learns and transfers context-aware discriminant features useful for segmentation from an innovative surrogate, in a task-related manner. Additionally, we integrate the Segment Anything Model (SAM) into our framework in two novel ways: as a post-processing refinement module that improves the accuracy of predicted masks using bounding box prompts derived from coarse outputs, and as a propagation mechanism via SAM 2 that generates volumetric segmentations from a single annotated 2D slice. Experimental evaluations on three public computed tomography (CT) datasets demonstrate that PolyCL outperforms fully-supervised and self-supervised baselines in both low-data and cross-domain scenarios. Our code is available at https://github.com/tbwa233/PolyCL.
Authors:Yunhai Hu, Tianhua Xia, Zining Liu, Rahul Raman, Xingyu Liu, Bo Bao, Eric Sather, Vithursan Thangarasa, Sai Qian Zhang
Abstract:
Speculative decoding (SD) has emerged as a powerful method for accelerating autoregressive generation in large language models (LLMs), yet its integration into vision-language models (VLMs) remains underexplored. We introduce DREAM, a novel speculative decoding framework tailored for VLMs that combines three key innovations: (1) a cross-attention-based mechanism to inject intermediate features from the target model into the draft model for improved alignment, (2) adaptive intermediate feature selection based on attention entropy to guide efficient draft model training, and (3) visual token compression to reduce draft model latency. DREAM enables efficient, accurate, and parallel multimodal decoding with significant throughput improvement. Experiments across a diverse set of recent popular VLMs, including LLaVA, Pixtral, SmolVLM and Gemma3, demonstrate up to 3.6x speedup over conventional decoding and significantly outperform prior SD baselines in both inference throughput and speculative draft acceptance length across a broad range of multimodal benchmarks. The code is publicly available at: https://github.com/SAI-Lab-NYU/DREAM.git
Authors:Jiayi Xin, Sukwon Yun, Jie Peng, Inyoung Choi, Jenna L. Ballard, Tianlong Chen, Qi Long
Abstract:
Modality fusion is a cornerstone of multimodal learning, enabling information integration from diverse data sources. However, vanilla fusion methods are limited by (1) inability to account for heterogeneous interactions between modalities and (2) lack of interpretability in uncovering the multimodal interactions inherent in the data. To this end, we propose I2MoE (Interpretable Multimodal Interaction-aware Mixture of Experts), an end-to-end MoE framework designed to enhance modality fusion by explicitly modeling diverse multimodal interactions, as well as providing interpretation on a local and global level. First, I2MoE utilizes different interaction experts with weakly supervised interaction losses to learn multimodal interactions in a data-driven way. Second, I2MoE deploys a reweighting model that assigns importance scores for the output of each interaction expert, which offers sample-level and dataset-level interpretation. Extensive evaluation of medical and general multimodal datasets shows that I2MoE is flexible enough to be combined with different fusion techniques, consistently improves task performance, and provides interpretation across various real-world scenarios. Code is available at https://github.com/Raina-Xin/I2MoE.
Authors:Yaoyang Liu, Junlin Li, Yinjun Wu, Zhen Chen
Abstract:
Although Multi-Vector Retrieval (MVR) has achieved the state of the art on many information retrieval (IR) tasks, its performance highly depends on how to decompose queries into smaller pieces, say phrases or tokens. However, optimizing query decomposition for MVR performance is not end-to-end differentiable. Even worse, jointly solving this problem and training the downstream retrieval-based systems, say RAG systems could be highly inefficient. To overcome these challenges, we propose Performance-Oriented Query Decomposer (POQD), a novel query decomposition framework for MVR. POQD leverages one LLM for query decomposition and searches the optimal prompt with an LLM-based optimizer. We further propose an end-to-end training algorithm to alternatively optimize the prompt for query decomposition and the downstream models. This algorithm can achieve superior MVR performance at a reasonable training cost as our theoretical analysis suggests. POQD can be integrated seamlessly into arbitrary retrieval-based systems such as Retrieval-Augmented Generation (RAG) systems. Extensive empirical studies on representative RAG-based QA tasks show that POQD outperforms existing query decomposition strategies in both retrieval performance and end-to-end QA accuracy. POQD is available at https://github.com/PKU-SDS-lab/POQD-ICML25.
Authors:Pradyumna Shyama Prasad, Minh Nhat Nguyen
Abstract:
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLMs are now increasingly deployed without careful review in assistant and agentic roles.
Code for our experiments is available at https://github.com/pradyuprasad/llms_overconfidence
Authors:Kefan Wang, Hao Wang, Wei Guo, Yong Liu, Jianghao Lin, Defu Lian, Enhong Chen
Abstract:
Click-through rate (CTR) prediction is a critical task in online advertising and recommender systems, relying on effective modeling of feature interactions. Explicit interactions capture predefined relationships, such as inner products, but often suffer from data sparsity, while implicit interactions excel at learning complex patterns through non-linear transformations but lack inductive biases for efficient low-order modeling. Existing two-stream architectures integrate these paradigms but face challenges such as limited information sharing, gradient imbalance, and difficulty preserving low-order signals in sparse CTR data. We propose a novel framework, Dynamic Low-Order-Aware Fusion (DLF), which addresses these limitations through two key components: a Residual-Aware Low-Order Interaction Network (RLI) and a Network-Aware Attention Fusion Module (NAF). RLI explicitly preserves low-order signals while mitigating redundancy from residual connections, and NAF dynamically integrates explicit and implicit representations at each layer, enhancing information sharing and alleviating gradient imbalance. Together, these innovations balance low-order and high-order interactions, improving model expressiveness. Extensive experiments on public datasets demonstrate that DLF achieves state-of-the-art performance in CTR prediction, addressing key limitations of existing models. The implementation is publicly available at https://github.com/USTC-StarTeam/DLF.
Authors:Zhuo Liu, Moxin Li, Xun Deng, Qifan Wang, Fuli Feng
Abstract:
LLM-as-a-Judge employs large language models (LLMs), such as GPT-4, to evaluate the quality of LLM-generated responses, gaining popularity for its cost-effectiveness and strong alignment with human evaluations. However, training proxy judge models using evaluation data generated by powerful teacher models introduces a critical yet previously overlooked issue: teacher preference bias, where the proxy judge model learns a biased preference for responses from the teacher model. To tackle this problem, we propose a novel setting that incorporates an additional assistant model, which is not biased toward the teacher model's responses, to complement the training data. Building on this setup, we introduce AGDe-Judge, a three-stage framework designed to debias from both the labels and feedbacks in the training data. Extensive experiments demonstrate that AGDe-Judge effectively reduces teacher preference bias while maintaining strong performance across six evaluation benchmarks. Code is available at https://github.com/Liuz233/AGDe-Judge.
Authors:Ryosei Hara, Wataru Ikeda, Masashi Hatano, Mariko Isogawa
Abstract:
Reconstructing 3D hand mesh is challenging but an important task for human-computer interaction and AR/VR applications. In particular, RGB and/or depth cameras have been widely used in this task. However, methods using these conventional cameras face challenges in low-light environments and during motion blur. Thus, to address these limitations, event cameras have been attracting attention in recent years for their high dynamic range and high temporal resolution. Despite their advantages, event cameras are sensitive to background noise or camera motion, which has limited existing studies to static backgrounds and fixed cameras. In this study, we propose EventEgoHands, a novel method for event-based 3D hand mesh reconstruction in an egocentric view. Our approach introduces a Hand Segmentation Module that extracts hand regions, effectively mitigating the influence of dynamic background events. We evaluated our approach and demonstrated its effectiveness on the N-HOT3D dataset, improving MPJPE by approximately more than 4.5 cm (43%).
Authors:Eric Tillmann Bill, Enis Simsar, Thomas Hofmann
Abstract:
We introduce JEDI, a test-time adaptation method that enhances subject separation and compositional alignment in diffusion models without requiring retraining or external supervision. JEDI operates by minimizing semantic entanglement in attention maps using a novel Jensen-Shannon divergence based objective. To improve efficiency, we leverage adversarial optimization, reducing the number of updating steps required. JEDI is model-agnostic and applicable to architectures such as Stable Diffusion 1.5 and 3.5, consistently improving prompt alignment and disentanglement in complex scenes. Additionally, JEDI provides a lightweight, CLIP-free disentanglement score derived from internal attention distributions, offering a principled benchmark for compositional alignment under test-time conditions. Code and results are available at https://ericbill21.github.io/JEDI/.
Authors:Shengdong Han, Shangdong Yang, Xin Zhang, Yuxuan Li, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai
Abstract:
Resolving closely-spaced small targets in dense clusters presents a significant challenge in infrared imaging, as the overlapping signals hinder precise determination of their quantity, sub-pixel positions, and radiation intensities. While deep learning has advanced the field of infrared small target detection, its application to closely-spaced infrared small targets has not yet been explored. This gap exists primarily due to the complexity of separating superimposed characteristics and the lack of an open-source infrastructure. In this work, we propose the Dynamic Iterative Shrinkage Thresholding Network (DISTA-Net), which reconceptualizes traditional sparse reconstruction within a dynamic framework. DISTA-Net adaptively generates convolution weights and thresholding parameters to tailor the reconstruction process in real time. To the best of our knowledge, DISTA-Net is the first deep learning model designed specifically for the unmixing of closely-spaced infrared small targets, achieving superior sub-pixel detection accuracy. Moreover, we have established the first open-source ecosystem to foster further research in this field. This ecosystem comprises three key components: (1) CSIST-100K, a publicly available benchmark dataset; (2) CSO-mAP, a custom evaluation metric for sub-pixel detection; and (3) GrokCSO, an open-source toolkit featuring DISTA-Net and other models. Our code and dataset are available at https://github.com/GrokCV/GrokCSO.
Authors:Xuyang Liu, Zichen Wen, Shaobo Wang, Junjie Chen, Zhishan Tao, Yubo Wang, Xiangqi Jin, Chang Zou, Yiyu Wang, Chenfei Liao, Xu Zheng, Honggang Chen, Weijia Li, Xuming Hu, Conghui He, Linfeng Zhang
Abstract:
The rapid advancement of large language models (LLMs) and multi-modal LLMs (MLLMs) has historically relied on model-centric scaling through increasing parameter counts from millions to hundreds of billions to drive performance gains. However, as we approach hardware limits on model size, the dominant computational bottleneck has fundamentally shifted to the quadratic cost of self-attention over long token sequences, now driven by ultra-long text contexts, high-resolution images, and extended videos. In this position paper, \textbf{we argue that the focus of research for efficient AI is shifting from model-centric compression to data-centric compression}. We position token compression as the new frontier, which improves AI efficiency via reducing the number of tokens during model training or inference. Through comprehensive analysis, we first examine recent developments in long-context AI across various domains and establish a unified mathematical framework for existing model efficiency strategies, demonstrating why token compression represents a crucial paradigm shift in addressing long-context overhead. Subsequently, we systematically review the research landscape of token compression, analyzing its fundamental benefits and identifying its compelling advantages across diverse scenarios. Furthermore, we provide an in-depth analysis of current challenges in token compression research and outline promising future directions. Ultimately, our work aims to offer a fresh perspective on AI efficiency, synthesize existing research, and catalyze innovative developments to address the challenges that increasing context lengths pose to the AI community's advancement.
Authors:Wenyang Luo, Wayne Xin Zhao, Jing Sha, Shijin Wang, Ji-Rong Wen
Abstract:
The advent of large reasoning models, such as OpenAI o1 and DeepSeek R1, has significantly advanced complex reasoning tasks. However, their capabilities in multilingual complex reasoning remain underexplored, with existing efforts largely focused on simpler tasks like MGSM. To address this gap, we introduce MMATH, a benchmark for multilingual complex reasoning spanning 374 high-quality math problems across 10 typologically diverse languages. Using MMATH, we observe that even advanced models like DeepSeek R1 exhibit substantial performance disparities across languages and suffer from a critical off-target issue-generating responses in unintended languages. To address this, we explore strategies including prompting and training, demonstrating that reasoning in English and answering in target languages can simultaneously enhance performance and preserve target-language consistency. Our findings offer new insights and practical strategies for advancing the multilingual reasoning capabilities of large language models. Our code and data could be found at https://github.com/RUCAIBox/MMATH.
Authors:Xiaoyang Liu, Bolin Qiu, Jiezhang Cao, Zheng Chen, Yulun Zhang, Xiaokang Yang
Abstract:
Image demoiréing remains a challenging task due to the complex interplay between texture corruption and color distortions caused by moiré patterns. Existing methods, especially those relying on direct image-to-image restoration, often fail to disentangle these intertwined artifacts effectively. While wavelet-based frequency-aware approaches offer a promising direction, their potential remains underexplored. In this paper, we present Freqformer, a Transformer-based framework specifically designed for image demoiréing through targeted frequency separation. Our method performs an effective frequency decomposition that explicitly splits moiré patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions, which are then handled by a dual-branch architecture tailored to their distinct characteristics. We further propose a learnable Frequency Composition Transform (FCT) module to adaptively fuse the frequency-specific outputs, enabling consistent and high-fidelity reconstruction. To better aggregate the spatial dependencies and the inter-channel complementary information, we introduce a Spatial-Aware Channel Attention (SA-CA) module that refines moiré-sensitive regions without incurring high computational cost. Extensive experiments on various demoiréing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size. The code is publicly available at https://github.com/xyLiu339/Freqformer.
Authors:Brian Chmiel, Maxim Fishman, Ron Banner, Daniel Soudry
Abstract:
We demonstrate, for the first time, fully quantized training (FQT) of large language models (LLMs) using predominantly 4-bit floating-point (FP4) precision for weights, activations, and gradients on datasets up to 200 billion tokens. We extensively investigate key design choices for FP4, including block sizes, scaling formats, and rounding methods. Our analysis shows that the NVFP4 format, where each block of 16 FP4 values (E2M1) shares a scale represented in E4M3, provides optimal results. We use stochastic rounding for backward and update passes and round-to-nearest for the forward pass to enhance stability. Additionally, we identify a theoretical and empirical threshold for effective quantized training: when the gradient norm falls below approximately $\sqrt{3}$ times the quantization noise, quantized training becomes less effective. Leveraging these insights, we successfully train a 7-billion-parameter model on 256 Intel Gaudi2 accelerators. The resulting FP4-trained model achieves downstream task performance comparable to a standard BF16 baseline, confirming that FP4 training is a practical and highly efficient approach for large-scale LLM training. A reference implementation is supplied in https://github.com/Anonymous1252022/fp4-all-the-way .
Authors:Zheng Chu, Huiming Fan, Jingchang Chen, Qianyu Wang, Mingda Yang, Jiafeng Liang, Zhongjie Wang, Hao Li, Guo Tang, Ming Liu, Bing Qin
Abstract:
Although large language models (LLMs) have demonstrated remarkable reasoning capabilities, they still face challenges in knowledge-intensive multi-hop reasoning. Recent work explores iterative retrieval to address complex problems. However, the lack of intermediate guidance often results in inaccurate retrieval and flawed intermediate reasoning, leading to incorrect reasoning. To address these, we propose Self-Critique Guided Iterative Reasoning (SiGIR), which uses self-critique feedback to guide the iterative reasoning process. Specifically, through end-to-end training, we enable the model to iteratively address complex problems via question decomposition. Additionally, the model is able to self-evaluate its intermediate reasoning steps. During iterative reasoning, the model engages in branching exploration and employs self-evaluation to guide the selection of promising reasoning trajectories. Extensive experiments on three multi-hop reasoning datasets demonstrate the effectiveness of our proposed method, surpassing the previous SOTA by $8.6\%$. Furthermore, our thorough analysis offers insights for future research. Our code, data, and models are available at Github: https://github.com/zchuz/SiGIR-MHQA.
Authors:Chuming Shen, Wei Wei, Xiaoye Qu, Yu Cheng
Abstract:
DeepSeek-R1 has demonstrated powerful reasoning capabilities in the text domain through stable reinforcement learning (RL). Recently, in the multimodal domain, works have begun to directly apply RL to generate R1-like free-form reasoning for Visual Question Answering (VQA) tasks. However, multimodal tasks share an intrinsically different nature from textual tasks, which heavily rely on the understanding of the input image to solve the problem. Therefore, such free-form reasoning faces two critical limitations in the VQA task: (1) Extended reasoning chains diffuse visual focus away from task-critical regions, degrading answer accuracy. (2) Unverifiable intermediate steps amplify policy-gradient variance and computational costs overhead. To address these issues, in this paper, we introduce SATORI ($\textbf{S}patially$ $\textbf{A}nchored$ $\textbf{T}ask$ $\textbf{O}ptimization$ with $\textbf{R}e\textbf{I}nforcement$ Learning), which decomposes VQA into three verifiable stages, including global image captioning, region localization, and answer prediction, each supplying explicit reward signals. Furthermore, we also introduce VQA-Verify, a 12k dataset annotated with answer-aligned captions and bounding-boxes to facilitate training. Experiments demonstrate consistent performance improvements across seven VQA benchmarks, achieving up to $15.7\%$ improvement in accuracy in accuracy compared to the R1-like baseline. Our analysis of the attention map confirms enhanced focus on critical regions, which brings improvements in accuracy. Our code is available at https://github.com/justairr/SATORI-R1.
Authors:Benjamin Clavié, Florian Brand
Abstract:
Recent advancements in Large Vision-Language Models (VLMs), have greatly enhanced their capability to jointly process text and images. However, despite extensive benchmarks evaluating visual comprehension (e.g., diagrams, color schemes, OCR tasks...), there is limited assessment of VLMs' ability to read and reason about text-rich images effectively. To fill this gap, we introduce ReadBench, a multimodal benchmark specifically designed to evaluate the reading comprehension capabilities of VLMs. ReadBench transposes contexts from established text-only benchmarks into images of text while keeping textual prompts and questions intact. Evaluating leading VLMs with ReadBench, we find minimal-but-present performance degradation on short, text-image inputs, while performance sharply declines for longer, multi-page contexts. Our experiments further reveal that text resolution has negligible effects on multimodal performance. These findings highlight needed improvements in VLMs, particularly their reasoning over visually presented extensive textual content, a capability critical for practical applications. ReadBench is available at https://github.com/answerdotai/ReadBench .
Authors:Yifeng Xu, Zhenliang He, Meina Kan, Shiguang Shan, Xilin Chen
Abstract:
Visual generation and understanding are two deeply interconnected aspects of human intelligence, yet they have been traditionally treated as separate tasks in machine learning. In this paper, we propose Jodi, a diffusion framework that unifies visual generation and understanding by jointly modeling the image domain and multiple label domains. Specifically, Jodi is built upon a linear diffusion transformer along with a role switch mechanism, which enables it to perform three particular types of tasks: (1) joint generation, where the model simultaneously generates images and multiple labels; (2) controllable generation, where images are generated conditioned on any combination of labels; and (3) image perception, where multiple labels can be predicted at once from a given image. Furthermore, we present the Joint-1.6M dataset, which contains 200,000 high-quality images collected from public sources, automatic labels for 7 visual domains, and LLM-generated captions. Extensive experiments demonstrate that Jodi excels in both generation and understanding tasks and exhibits strong extensibility to a wider range of visual domains. Code is available at https://github.com/VIPL-GENUN/Jodi.
Authors:Jaemin Kim, Hangeol Chang, Hyunmin Hwang, Choonghan Kim, Jong Chul Ye
Abstract:
Large Language Models (LLMs) have demonstrated remarkable general capabilities, but enhancing skills such as reasoning often demands substantial computational resources and may compromise their generalization. While Parameter-Efficient Fine-Tuning (PEFT) methods offer a more resource-conscious alternative, they typically requires retraining for each LLM backbone due to architectural dependencies. To address these challenges, here we propose Universal Reasoner (UniR) - a single, lightweight, composable, and plug-and-play reasoning module that can be used with any frozen LLM to endow it with specialized reasoning capabilities. Specifically, UniR decomposes the reward into a standalone reasoning module that is trained independently using predefined rewards, effectively translating trajectory-level signals into token-level guidance. Once trained, UniR can be combined with any frozen LLM at inference time by simply adding its output logits to those of the LLM backbone. This additive structure naturally enables modular composition: multiple UniR modules trained for different tasks can be jointly applied by summing their logits, enabling complex reasoning via composition. Experimental results on mathematical reasoning and machine translation tasks show that UniR significantly outperforms existing baseline fine-tuning methods using the Llama3.2 model. Furthermore, UniR demonstrates strong weak-to-strong generalization: reasoning modules trained on smaller models effectively guide much larger LLMs. This makes UniR a cost-efficient, adaptable, and robust solution for enhancing reasoning in LLMs without compromising their core capabilities. Code is open-sourced at https://github.com/hangeol/UniR
Authors:Jiashuo Chang, Zhengyi Li, Jianxun Lou, Zhen Qiu, Hanhe Lin
Abstract:
Macro photography (MP) is a specialized field of photography that captures objects at an extremely close range, revealing tiny details. Although an accurate macro photography image quality assessment (MPIQA) metric can benefit macro photograph capturing, which is vital in some domains such as scientific research and medical applications, the lack of MPIQA data limits the development of MPIQA metrics. To address this limitation, we conducted a large-scale MPIQA study. Specifically, to ensure diversity both in content and quality, we sampled 2,000 MP images from 15,700 MP images, collected from three public image websites. For each MP image, 17 (out of 21 after outlier removal) quality ratings and a detailed quality report of distortion magnitudes, types, and positions are gathered by a lab study. The images, quality ratings, and quality reports form our novel multi-labeled MPIQA database, MMP-2k. Experimental results showed that the state-of-the-art generic IQA metrics underperform on MP images. The database and supplementary materials are available at https://github.com/Future-IQA/MMP-2k.
Authors:Xin Ma, Yaohui Wang, Xinyuan Chen, Tien-Tsin Wong, Cunjian Chen
Abstract:
Although diffusion models exhibit impressive generative capabilities, existing methods for stylized image generation based on these models often require textual inversion or fine-tuning with style images, which is time-consuming and limits the practical applicability of large-scale diffusion models. To address these challenges, we propose a novel stylized image generation method leveraging a pre-trained large-scale diffusion model without requiring fine-tuning or any additional optimization, termed as OmniPainter. Specifically, we exploit the self-consistency property of latent consistency models to extract the representative style statistics from reference style images to guide the stylization process. Additionally, we then introduce the norm mixture of self-attention, which enables the model to query the most relevant style patterns from these statistics for the intermediate output content features. This mechanism also ensures that the stylized results align closely with the distribution of the reference style images. Our qualitative and quantitative experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.
Authors:Ke-Han Lu, Chun-Yi Kuan, Hung-yi Lee
Abstract:
We introduce Speech-IFeval, an evaluation framework designed to assess instruction-following capabilities and quantify catastrophic forgetting in speech-aware language models (SLMs). Recent SLMs integrate speech perception with large language models (LLMs), often degrading textual capabilities due to speech-centric training. Existing benchmarks conflate speech perception with instruction-following, hindering evaluation of these distinct skills. To address this gap, we provide a benchmark for diagnosing the instruction-following abilities of SLMs. Our findings show that most SLMs struggle with even basic instructions, performing far worse than text-based LLMs. Additionally, these models are highly sensitive to prompt variations, often yielding inconsistent and unreliable outputs. We highlight core challenges and provide insights to guide future research, emphasizing the need for evaluation beyond task-level metrics.
Authors:Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, Shixia Liu
Abstract:
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
Authors:Jingping Liu, Ziyan Liu, Zhedong Cen, Yan Zhou, Yinan Zou, Weiyan Zhang, Haiyun Jiang, Tong Ruan
Abstract:
Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model's prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://github.com/ziyan-xiaoyu/SpatialMQA.git.
Authors:Yunxin Li, Xinyu Chen, Zitao Li, Zhenyu Liu, Longyue Wang, Wenhan Luo, Baotian Hu, Min Zhang
Abstract:
Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.
Authors:Hewen Xiao, Xiuping Liu, Hang Zhao, Jian Liu, Kai Xu
Abstract:
We introduce a novel design of parallel-jaw grippers drawing inspiration from pin-pression toys. The proposed pin-pression gripper features a distinctive mechanism in which each finger integrates a 2D array of pins capable of independent extension and retraction. This unique design allows the gripper to instantaneously customize its finger's shape to conform to the object being grasped by dynamically adjusting the extension/retraction of the pins. In addition, the gripper excels in in-hand re-orientation of objects for enhanced grasping stability again via dynamically adjusting the pins. To learn the dynamic grasping skills of pin-pression grippers, we devise a dedicated reinforcement learning algorithm with careful designs of state representation and reward shaping. To achieve a more efficient grasp-while-lift grasping mode, we propose a curriculum learning scheme. Extensive evaluations demonstrate that our design, together with the learned skills, leads to highly flexible and robust grasping with much stronger generality to unseen objects than alternatives. We also highlight encouraging physical results of sim-to-real transfer on a physically manufactured pin-pression gripper, demonstrating the practical significance of our novel gripper design and grasping skill. Demonstration videos for this paper are available at https://github.com/siggraph-pin-pression-gripper/pin-pression-gripper-video.
Authors:Tianchen Deng, Wenhua Wu, Junjie He, Yue Pan, Xirui Jiang, Shenghai Yuan, Danwei Wang, Hesheng Wang, Weidong Chen
Abstract:
3D Gaussian Splatting has recently shown promising results in dense visual SLAM. However, existing 3DGS-based SLAM methods are all constrained to small-room scenarios and struggle with memory explosion in large-scale scenes and long sequences. To this end, we propose VPGS-SLAM, the first 3DGS-based large-scale RGBD SLAM framework for both indoor and outdoor scenarios. We design a novel voxel-based progressive 3D Gaussian mapping method with multiple submaps for compact and accurate scene representation in large-scale and long-sequence scenes. This allows us to scale up to arbitrary scenes and improves robustness (even under pose drifts). In addition, we propose a 2D-3D fusion camera tracking method to achieve robust and accurate camera tracking in both indoor and outdoor large-scale scenes. Furthermore, we design a 2D-3D Gaussian loop closure method to eliminate pose drift. We further propose a submap fusion method with online distillation to achieve global consistency in large-scale scenes when detecting a loop. Experiments on various indoor and outdoor datasets demonstrate the superiority and generalizability of the proposed framework. The code will be open source on https://github.com/dtc111111/vpgs-slam.
Authors:Tianyu Zhang, Xinyu Wang, Lu Li, Zhenghan Tai, Jijun Chi, Jingrui Tian, Hailin He, Suyuchen Wang
Abstract:
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
Authors:Pingbang Hu, Joseph Melkonian, Weijing Tang, Han Zhao, Jiaqi W. Ma
Abstract:
Gradient-based data attribution methods, such as influence functions, are critical for understanding the impact of individual training samples without requiring repeated model retraining. However, their scalability is often limited by the high computational and memory costs associated with per-sample gradient computation. In this work, we propose GraSS, a novel gradient compression algorithm and its variants FactGraSS for linear layers specifically, that explicitly leverage the inherent sparsity of per-sample gradients to achieve sub-linear space and time complexity. Extensive experiments demonstrate the effectiveness of our approach, achieving substantial speedups while preserving data influence fidelity. In particular, FactGraSS achieves up to 165% faster throughput on billion-scale models compared to the previous state-of-the-art baselines. Our code is publicly available at https://github.com/TRAIS-Lab/GraSS.
Authors:Jeffrey A. Chan-Santiago, Praveen Tirupattur, Gaurav Kumar Nayak, Gaowen Liu, Mubarak Shah
Abstract:
Dataset distillation has emerged as an effective strategy, significantly reducing training costs and facilitating more efficient model deployment. Recent advances have leveraged generative models to distill datasets by capturing the underlying data distribution. Unfortunately, existing methods require model fine-tuning with distillation losses to encourage diversity and representativeness. However, these methods do not guarantee sample diversity, limiting their performance. We propose a mode-guided diffusion model leveraging a pre-trained diffusion model without the need to fine-tune with distillation losses. Our approach addresses dataset diversity in three stages: Mode Discovery to identify distinct data modes, Mode Guidance to enhance intra-class diversity, and Stop Guidance to mitigate artifacts in synthetic samples that affect performance. Our approach outperforms state-of-the-art methods, achieving accuracy gains of 4.4%, 2.9%, 1.6%, and 1.6% on ImageNette, ImageIDC, ImageNet-100, and ImageNet-1K, respectively. Our method eliminates the need for fine-tuning diffusion models with distillation losses, significantly reducing computational costs. Our code is available on the project webpage: https://jachansantiago.github.io/mode-guided-distillation/
Authors:Rohit Khoja, Devanshu Gupta, Yanjie Fu, Dan Roth, Vivek Gupta
Abstract:
Querying tables with unstructured data is challenging due to the presence of text (or image), either embedded in the table or in external paragraphs, which traditional SQL struggles to process, especially for tasks requiring semantic reasoning. While Large Language Models (LLMs) excel at understanding context, they face limitations with long input sequences. Existing approaches that combine SQL and LLMs typically rely on rigid, predefined work-flows, limiting their adaptability to complex queries. To address these issues, we introduce Weaver , a modular pipeline that dynamically integrates SQL and LLMs for table-based question answering (TableQA). Weaver generates a flexible, step-by-step plan that combines SQL for structured data retrieval with LLMs for semantic processing. By decomposing complex queries into manageable subtasks, Weaver improves accuracy and generalization. Our experiments show that Weaver consistently outperforms state-of-the-art methods across four TableQA datasets, reducing both API calls and error rates. The code, along with other associated scripts, are available at https://coral-lab-asu.github.io/weaver.
Authors:Jiong Wu, Yang Xing, Boxiao Yu, Wei Shao, Kuang Gong
Abstract:
Most publicly available medical segmentation datasets are only partially labeled, with annotations provided for a subset of anatomical structures. When multiple datasets are combined for training, this incomplete annotation poses challenges, as it limits the model's ability to learn shared anatomical representations among datasets. Furthermore, vision-only frameworks often fail to capture complex anatomical relationships and task-specific distinctions, leading to reduced segmentation accuracy and poor generalizability to unseen datasets. In this study, we proposed a novel CLIP-DINO Prompt-Driven Segmentation Network (CDPDNet), which combined a self-supervised vision transformer with CLIP-based text embedding and introduced task-specific text prompts to tackle these challenges. Specifically, the framework was constructed upon a convolutional neural network (CNN) and incorporated DINOv2 to extract both fine-grained and global visual features, which were then fused using a multi-head cross-attention module to overcome the limited long-range modeling capability of CNNs. In addition, CLIP-derived text embeddings were projected into the visual space to help model complex relationships among organs and tumors. To further address the partial label challenge and enhance inter-task discriminative capability, a Text-based Task Prompt Generation (TTPG) module that generated task-specific prompts was designed to guide the segmentation. Extensive experiments on multiple medical imaging datasets demonstrated that CDPDNet consistently outperformed existing state-of-the-art segmentation methods. Code and pretrained model are available at: https://github.com/wujiong-hub/CDPDNet.git.
Authors:Yining Pan, Qiongjie Cui, Xulei Yang, Na Zhao
Abstract:
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
Authors:Saman Sarker Joy
Abstract:
The Massive Multitask Language Understanding (MMLU) benchmark has been widely used to evaluate language models across various domains. However, existing MMLU datasets primarily focus on high-resource languages such as English, which leaves low-resource languages like Bengali underrepresented. In this paper, we introduce BnMMLU, a benchmark to evaluate the multitask language understanding capabilities of Bengali in language models. The dataset spans 23 domains, including science, humanities, mathematics and general knowledge and is structured in a multiple-choice format to assess factual knowledge, application-based problem-solving and reasoning abilities of language models. It consists of 138,949 question-option pairs. We benchmark several proprietary and open-source large language models (LLMs) on the BnMMLU test set. Additionally, we annotate the test set with three cognitive categories-factual knowledge, procedural application and reasoning-to gain deeper insights into model strengths and weaknesses across various cognitive tasks. The results reveal significant performance gaps, highlighting the need for improved pre-training and fine-tuning strategies tailored to Bengali data. We release the dataset and benchmark results to facilitate further research in this area.
Authors:Zhenhao Zhang, Ye Shi, Lingxiao Yang, Suting Ni, Qi Ye, Jingya Wang
Abstract:
Understanding and synthesizing realistic 3D hand-object interactions (HOI) is critical for applications ranging from immersive AR/VR to dexterous robotics. Existing methods struggle with generalization, performing well on closed-set objects and predefined tasks but failing to handle unseen objects or open-vocabulary instructions. We introduce OpenHOI, the first framework for open-world HOI synthesis, capable of generating long-horizon manipulation sequences for novel objects guided by free-form language commands. Our approach integrates a 3D Multimodal Large Language Model (MLLM) fine-tuned for joint affordance grounding and semantic task decomposition, enabling precise localization of interaction regions (e.g., handles, buttons) and breakdown of complex instructions (e.g., "Find a water bottle and take a sip") into executable sub-tasks. To synthesize physically plausible interactions, we propose an affordance-driven diffusion model paired with a training-free physics refinement stage that minimizes penetration and optimizes affordance alignment. Evaluations across diverse scenarios demonstrate OpenHOI's superiority over state-of-the-art methods in generalizing to novel object categories, multi-stage tasks, and complex language instructions. Our project page at \href{https://openhoi.github.io}
Authors:Xuanming Zhang, Yuxuan Chen, Min-Hsuan Yeh, Yixuan Li
Abstract:
Human social interactions depend on the ability to infer others' unspoken intentions, emotions, and beliefs-a cognitive skill grounded in the psychological concept of Theory of Mind (ToM). While large language models (LLMs) excel in semantic understanding tasks, they struggle with the ambiguity and contextual nuance inherent in human communication. To bridge this gap, we introduce MetaMind, a multi-agent framework inspired by psychological theories of metacognition, designed to emulate human-like social reasoning. MetaMind decomposes social understanding into three collaborative stages: (1) a Theory-of-Mind Agent generates hypotheses user mental states (e.g., intent, emotion), (2) a Domain Agent refines these hypotheses using cultural norms and ethical constraints, and (3) a Response Agent generates contextually appropriate responses while validating alignment with inferred intent. Our framework achieves state-of-the-art performance across three challenging benchmarks, with 35.7% improvement in real-world social scenarios and 6.2% gain in ToM reasoning. Notably, it enables LLMs to match human-level performance on key ToM tasks for the first time. Ablation studies confirm the necessity of all components, which showcase the framework's ability to balance contextual plausibility, social appropriateness, and user adaptation. This work advances AI systems toward human-like social intelligence, with applications in empathetic dialogue and culturally sensitive interactions. Code is available at https://github.com/XMZhangAI/MetaMind.
Authors:Xiping Li, Xiangyu Dong, Xingyi Zhang, Kun Xie, Yuanhao Feng, Bo Wang, Guilin Li, Wuxiong Zeng, Xiujun Shu, Sibo Wang
Abstract:
Graph Anomaly Detection (GAD) in heterogeneous networks presents unique challenges due to node and edge heterogeneity. Existing Graph Neural Network (GNN) methods primarily focus on homogeneous GAD and thus fail to address three key issues: (C1) Capturing abnormal signal and rich semantics across diverse meta-paths; (C2) Retaining high-frequency content in HIN dimension alignment; and (C3) Learning effectively from difficult anomaly samples with class imbalance. To overcome these, we propose ChiGAD, a spectral GNN framework based on a novel Chi-Square filter, inspired by the wavelet effectiveness in diverse domains. Specifically, ChiGAD consists of: (1) Multi-Graph Chi-Square Filter, which captures anomalous information via applying dedicated Chi-Square filters to each meta-path graph; (2) Interactive Meta-Graph Convolution, which aligns features while preserving high-frequency information and incorporates heterogeneous messages by a unified Chi-Square Filter; and (3) Contribution-Informed Cross-Entropy Loss, which prioritizes difficult anomalies to address class imbalance. Extensive experiments on public and industrial datasets show that ChiGAD outperforms state-of-the-art models on multiple metrics. Additionally, its homogeneous variant, ChiGNN, excels on seven GAD datasets, validating the effectiveness of Chi-Square filters. Our code is available at https://github.com/HsipingLi/ChiGAD.
Authors:Hyunho Ha, Lei Xiao, Christian Richardt, Thu Nguyen-Phuoc, Changil Kim, Min H. Kim, Douglas Lanman, Numair Khan
Abstract:
We introduce a novel geometry-guided online video view synthesis method with enhanced view and temporal consistency. Traditional approaches achieve high-quality synthesis from dense multi-view camera setups but require significant computational resources. In contrast, selective-input methods reduce this cost but often compromise quality, leading to multi-view and temporal inconsistencies such as flickering artifacts. Our method addresses this challenge to deliver efficient, high-quality novel-view synthesis with view and temporal consistency. The key innovation of our approach lies in using global geometry to guide an image-based rendering pipeline. To accomplish this, we progressively refine depth maps using color difference masks across time. These depth maps are then accumulated through truncated signed distance fields in the synthesized view's image space. This depth representation is view and temporally consistent, and is used to guide a pre-trained blending network that fuses multiple forward-rendered input-view images. Thus, the network is encouraged to output geometrically consistent synthesis results across multiple views and time. Our approach achieves consistent, high-quality video synthesis, while running efficiently in an online manner.
Authors:Javier Salazar Cavazos, Jeffrey A Fessler, Laura Balzano
Abstract:
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction. Various methods have been proposed to extend PCA to the union of subspace (UoS) setting for clustering data that come from multiple subspaces like K-Subspaces (KSS). However, some applications involve heterogeneous data that vary in quality due to noise characteristics associated with each data sample. Heteroscedastic methods aim to deal with such mixed data quality. This paper develops a heteroscedastic-focused subspace clustering method, named ALPCAHUS, that can estimate the sample-wise noise variances and use this information to improve the estimate of the subspace bases associated with the low-rank structure of the data. This clustering algorithm builds on K-Subspaces (KSS) principles by extending the recently proposed heteroscedastic PCA method, named LR-ALPCAH, for clusters with heteroscedastic noise in the UoS setting. Simulations and real-data experiments show the effectiveness of accounting for data heteroscedasticity compared to existing clustering algorithms. Code available at https://github.com/javiersc1/ALPCAHUS.
Authors:Yixiong Chen, Wenjie Xiao, Pedro R. A. S. Bassi, Xinze Zhou, Sezgin Er, Ibrahim Ethem Hamamci, Zongwei Zhou, Alan Yuille
Abstract:
Vision-Language Models (VLMs) have shown promise in various 2D visual tasks, yet their readiness for 3D clinical diagnosis remains unclear due to stringent demands for recognition precision, reasoning ability, and domain knowledge. To systematically evaluate these dimensions, we present DeepTumorVQA, a diagnostic visual question answering (VQA) benchmark targeting abdominal tumors in CT scans. It comprises 9,262 CT volumes (3.7M slices) from 17 public datasets, with 395K expert-level questions spanning four categories: Recognition, Measurement, Visual Reasoning, and Medical Reasoning. DeepTumorVQA introduces unique challenges, including small tumor detection and clinical reasoning across 3D anatomy. Benchmarking four advanced VLMs (RadFM, M3D, Merlin, CT-CHAT), we find current models perform adequately on measurement tasks but struggle with lesion recognition and reasoning, and are still not meeting clinical needs. Two key insights emerge: (1) large-scale multimodal pretraining plays a crucial role in DeepTumorVQA testing performance, making RadFM stand out among all VLMs. (2) Our dataset exposes critical differences in VLM components, where proper image preprocessing and design of vision modules significantly affect 3D perception. To facilitate medical multimodal research, we have released DeepTumorVQA as a rigorous benchmark: https://github.com/Schuture/DeepTumorVQA.
Authors:Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li, Chenfeng Xu, Kelly Peng, Jianfei Chen, Song Han, Kurt Keutzer, Ion Stoica
Abstract:
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively. Our code is open-sourced at \href{https://github.com/svg-project/Sparse-VideoGen}{https://github.com/svg-project/Sparse-VideoGen}.
Authors:Alexander Shabalin, Viacheslav Meshchaninov, Dmitry Vetrov
Abstract:
Diffusion models have achieved state-of-the-art performance in generating images, audio, and video, but their adaptation to text remains challenging due to its discrete nature. Prior approaches either apply Gaussian diffusion in continuous latent spaces, which inherits semantic structure but struggles with token decoding, or operate in categorical simplex space, which respect discreteness but disregard semantic relation between tokens. In this paper, we propose Smoothing Diffusion on Token Embeddings (Smoothie), a novel diffusion method that combines the strengths of both approaches by progressively smoothing token embeddings based on semantic similarity. This technique enables gradual information removal while maintaining a natural decoding process. Experimental results on several sequence-to-sequence generation tasks demonstrate that Smoothie outperforms existing diffusion-based models in generation quality. Furthermore, ablation studies show that our proposed diffusion space yields better performance than both the standard embedding space and the categorical simplex. Our code is available at https://github.com/ashaba1in/smoothie.
Authors:Kai Mei, Xi Zhu, Hang Gao, Shuhang Lin, Yongfeng Zhang
Abstract:
We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.
Authors:Libin Lan, Yanxin Li, Xiaojuan Liu, Juan Zhou, Jianxun Zhang, Nannan Huang, Yudong Zhang
Abstract:
Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks. However, CNN-based methods struggle to effectively capture global contextual information due to the inherent limitations of convolution operations. Meanwhile, Transformer-based methods suffer from insufficient local feature modeling and face challenges related to the high computational complexity caused by the self-attention mechanism. To address these limitations, we propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms. The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images while modeling long-range dependencies with low computational complexity. Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution using a lightweight structure. Extensive experiments conducted on benchmark datasets covering three imaging modalities demonstrate that the proposed MSLAU-Net outperforms other state-of-the-art methods on nearly all evaluation metrics, validating the superiority, effectiveness, and robustness of our approach. Our code is available at https://github.com/Monsoon49/MSLAU-Net.
Authors:Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, Dacheng Tao
Abstract:
Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive due to the quadratic complexity of attention over high-dimensional video sequences. Recent attention acceleration methods leverage the sparsity of attention patterns to improve efficiency; however, they often overlook inefficiencies of redundant long-range interactions. To address this problem, we propose \textbf{VORTA}, an acceleration framework with two novel components: 1) a sparse attention mechanism that efficiently captures long-range dependencies, and 2) a routing strategy that adaptively replaces full 3D attention with specialized sparse attention variants throughout the sampling process. It achieves a $1.76\times$ end-to-end speedup without quality loss on VBench. Furthermore, VORTA can seamlessly integrate with various other acceleration methods, such as caching and step distillation, reaching up to $14.41\times$ speedup with negligible performance degradation. VORTA demonstrates its efficiency and enhances the practicality of VDiTs in real-world settings.
Authors:Hao Chen, Haoze Li, Zhiqing Xiao, Lirong Gao, Qi Zhang, Xiaomeng Hu, Ningtao Wang, Xing Fu, Junbo Zhao
Abstract:
Aligning general-purpose large language models (LLMs) to downstream tasks often incurs significant training adjustment costs. Prior research has explored various avenues to enhance alignment efficiency, primarily through minimal-data training or data-driven activations to identify key attention heads. However, these approaches inherently introduce data dependency, which hinders generalization and reusability. To address this issue and enhance model alignment efficiency, we propose the Attention Localization and Pruning Strategy (ALPS), an efficient algorithm that localizes the most task-sensitive attention heads and prunes by restricting attention training updates to these heads, thereby reducing alignment costs. Experimental results demonstrate that our method activates only 10% of attention parameters during fine-tuning while achieving a 2% performance improvement over baselines on three tasks. Moreover, the identified task-specific heads are transferable across datasets and mitigate knowledge forgetting. Our work and findings provide a novel perspective on efficient LLM alignment. The code is available at https://github.com/VoiceBeer/ALPS.
Authors:David K. Zhang, Alex Aiken
Abstract:
Floating-point accumulation networks (FPANs) are key building blocks used in many floating-point algorithms, including compensated summation and double-double arithmetic. FPANs are notoriously difficult to analyze, and algorithms using FPANs are often published without rigorous correctness proofs. In fact, on at least one occasion, a published error bound for a widely used FPAN was later found to be incorrect. In this paper, we present an automatic procedure that produces computer-verified proofs of several FPAN correctness properties, including error bounds that are tight to the nearest bit. Our approach is underpinned by a novel floating-point abstraction that models the sign, exponent, and number of leading and trailing zeros and ones in the mantissa of each number flowing through an FPAN. We also present a new FPAN for double-double addition that is faster and more accurate than the previous best known algorithm.
Authors:Hong-Hanh Nguyen-Le, Van-Tuan Tran, Dinh-Thuc Nguyen, Nhien-An Le-Khac
Abstract:
Deepfake (DF) detectors face significant challenges when deployed in real-world environments, particularly when encountering test samples deviated from training data through either postprocessing manipulations or distribution shifts. We demonstrate postprocessing techniques can completely obscure generation artifacts presented in DF samples, leading to performance degradation of DF detectors. To address these challenges, we propose Think Twice before Adaptation (\texttt{T$^2$A}), a novel online test-time adaptation method that enhances the adaptability of detectors during inference without requiring access to source training data or labels. Our key idea is to enable the model to explore alternative options through an Uncertainty-aware Negative Learning objective rather than solely relying on its initial predictions as commonly seen in entropy minimization (EM)-based approaches. We also introduce an Uncertain Sample Prioritization strategy and Gradients Masking technique to improve the adaptation by focusing on important samples and model parameters. Our theoretical analysis demonstrates that the proposed negative learning objective exhibits complementary behavior to EM, facilitating better adaptation capability. Empirically, our method achieves state-of-the-art results compared to existing test-time adaptation (TTA) approaches and significantly enhances the resilience and generalization of DF detectors during inference. Code is available \href{https://github.com/HongHanh2104/T2A-Think-Twice-Before-Adaptation}{here}.
Authors:Jiayu Wang, Yang Jiao, Yue Yu, Tianwen Qian, Shaoxiang Chen, Jingjing Chen, Yu-Gang Jiang
Abstract:
Recent breakthroughs in large multimodal models (LMMs), such as the impressive GPT-4o-Native, have demonstrated remarkable proficiency in following general-purpose instructions for image generation. However, current benchmarks often lack the necessary breadth and depth to fully evaluate the diverse capabilities of these models. To overcome this limitation, we introduce OmniGenBench, a novel and comprehensive benchmark meticulously designed to assess the instruction-following abilities of state-of-the-art LMMs across both perception-centric and cognition-centric dimensions. Our OmniGenBench includes 57 diverse sub-tasks grounded in real-world scenarios, systematically categorized according to the specific model capabilities they demand. For rigorous evaluation, we further employ a dual-mode protocol. This protocol utilizes off-the-shelf visual parsing tools for perception-centric tasks and a powerful LLM-based judger for cognition-centric tasks to assess the alignment between generated images and user instructions. Using OmniGenBench, we evaluate mainstream generative models, including prevalent models like GPT-4o, Gemini-2.0-Flash, and Seedream, and provide in-depth comparisons and analyses of their performance.Code and data are available at https://github.com/emilia113/OmniGenBench.
Authors:Alexander Conzelmann, Robert Bamler
Abstract:
The ever-growing size of neural networks poses serious challenges on resource-constrained devices, such as embedded sensors. Compression algorithms that reduce their size can mitigate these problems, provided that model performance stays close to the original. We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding by (1) extending the well-known layer-wise loss by a quadratic rate estimation, and (2) providing locally exact solutions to this modified objective following the Optimal Brain Surgeon (OBS) method. Our method allows for very fast decoding and is compatible with arbitrary quantization grids. We verify our results empirically by testing on various computer-vision networks, achieving a 20-40\% decrease in bit rate at the same performance as the popular compression algorithm NNCodec. Our code is available at https://github.com/Conzel/cerwu.
Authors:Peijie Yu, Yifan Yang, Jinjian Li, Zelong Zhang, Haorui Wang, Xiao Feng, Feng Zhang
Abstract:
Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark $C^3$-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, $C^3$-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/TencentHunyuan/C3-Benchmark.
Authors:Tao Liu, Xutao Mao, Hongying Zan, Dixuan Zhang, Yifan Li, Haixin Liu, Lulu Kong, Jiaming Hou, Rui Li, YunLong Li, aoze zheng, Zhiqiang Zhang, Luo Zhewei, Kunli Zhang, Min Peng
Abstract:
Text-to-SQL is a critical task in natural language processing that aims to transform natural language questions into accurate and executable SQL queries. In real-world scenarios, these reasoning tasks are often accompanied by complex mathematical computations, domain knowledge, and hypothetical reasoning scenarios. However, existing large-scale Text-to-SQL datasets typically focus on business logic and task logic, neglecting critical factors such as vertical domain knowledge, complex mathematical reasoning, and hypothetical reasoning, which are essential for realistically reflecting the reasoning demands in practical applications and completing data querying and analysis. To bridge this gap, we introduce LogicCat, the first Text-to-SQL benchmark dataset specifically designed for complex reasoning and chain-of-thought parsing, encompassing physics, arithmetic, commonsense, and hypothetical reasoning scenarios. LogicCat comprises 4,038 English questions paired 12,114 detailed chain-of-thought reasoning steps, spanning 45 databases across diverse domains, significantly surpassing existing datasets in complexity. Experimental results demonstrate that LogicCat substantially increases the task difficulty for current state-of-the-art models to at most 33.20% execution accuracy, indicating that this task remains exceptionally challenging. The advancement of LogicCat represents a crucial step toward developing systems suitable for real-world enterprise data analysis and autonomous query generation. We have released our dataset code at https://github.com/Ffunkytao/LogicCat.
Authors:Wenchao Zhang, Jiahe Tian, Runze He, Jizhong Han, Jiao Dai, Miaomiao Feng, Wei Mi, Xiaodan Zhang
Abstract:
Recent text-to-image (T2I) generation models have advanced significantly, enabling the creation of high-fidelity images from textual prompts. However, existing evaluation benchmarks primarily focus on the explicit alignment between generated images and prompts, neglecting the alignment with real-world knowledge beyond prompts. To address this gap, we introduce Align Beyond Prompts (ABP), a comprehensive benchmark designed to measure the alignment of generated images with real-world knowledge that extends beyond the explicit user prompts. ABP comprises over 2,000 meticulously crafted prompts, covering real-world knowledge across six distinct scenarios. We further introduce ABPScore, a metric that utilizes existing Multimodal Large Language Models (MLLMs) to assess the alignment between generated images and world knowledge beyond prompts, which demonstrates strong correlations with human judgments. Through a comprehensive evaluation of 8 popular T2I models using ABP, we find that even state-of-the-art models, such as GPT-4o, face limitations in integrating simple real-world knowledge into generated images. To mitigate this issue, we introduce a training-free strategy within ABP, named Inference-Time Knowledge Injection (ITKI). By applying this strategy to optimize 200 challenging samples, we achieved an improvement of approximately 43% in ABPScore. The dataset and code are available in https://github.com/smile365317/ABP.
Authors:Meng Li, Guangda Huzhang, Haibo Zhang, Xiting Wang, Anxiang Zeng
Abstract:
Direct Preference Optimization (DPO) has emerged as a promising framework for aligning Large Language Models (LLMs) with human preferences by directly optimizing the log-likelihood difference between chosen and rejected responses. However, existing methods assign equal importance to all tokens in the response, while humans focus on more meaningful parts. This leads to suboptimal preference optimization, as irrelevant or noisy tokens disproportionately influence DPO loss. To address this limitation, we propose \textbf{O}ptimal \textbf{T}ransport-based token weighting scheme for enhancing direct \textbf{P}reference \textbf{O}ptimization (OTPO). By emphasizing semantically meaningful token pairs and de-emphasizing less relevant ones, our method introduces a context-aware token weighting scheme that yields a more contrastive reward difference estimate. This adaptive weighting enhances reward stability, improves interpretability, and ensures that preference optimization focuses on meaningful differences between responses. Extensive experiments have validated OTPO's effectiveness in improving instruction-following ability across various settings\footnote{Code is available at https://github.com/Mimasss2/OTPO.}.
Authors:Guodong Du, Zitao Fang, Jing Li, Junlin Li, Runhua Jiang, Shuyang Yu, Yifei Guo, Yangneng Chen, Sim Kuan Goh, Ho-Kin Tang, Daojing He, Honghai Liu, Min Zhang
Abstract:
Foundation models and their checkpoints have significantly advanced deep learning, boosting performance across various applications. However, fine-tuned models often struggle outside their specific domains and exhibit considerable redundancy. Recent studies suggest that combining a pruned fine-tuned model with the original pre-trained model can mitigate forgetting, reduce interference when merging model parameters across tasks, and improve compression efficiency. In this context, developing an effective pruning strategy for fine-tuned models is crucial. Leveraging the advantages of the task vector mechanism, we preprocess fine-tuned models by calculating the differences between them and the original model. Recognizing that different task vector subspaces contribute variably to model performance, we introduce a novel method called Neural Parameter Search (NPS-Pruning) for slimming down fine-tuned models. This method enhances pruning efficiency by searching through neural parameters of task vectors within low-rank subspaces. Our method has three key applications: enhancing knowledge transfer through pairwise model interpolation, facilitating effective knowledge fusion via model merging, and enabling the deployment of compressed models that retain near-original performance while significantly reducing storage costs. Extensive experiments across vision, NLP, and multi-modal benchmarks demonstrate the effectiveness and robustness of our approach, resulting in substantial performance gains. The code is publicly available at: https://github.com/duguodong7/NPS-Pruning.
Authors:Xu Zhang, Kun Zhang, Wenxin Ma, Rongsheng Wang, Chenxu Wu, Yingtai Li, S. Kevin Zhou
Abstract:
ICD Coding aims to assign a wide range of medical codes to a medical text document, which is a popular and challenging task in the healthcare domain. To alleviate the problems of long-tail distribution and the lack of annotations of code-specific evidence, many previous works have proposed incorporating code knowledge to improve coding performance. However, existing methods often focus on a single type of knowledge and design specialized modules that are complex and incompatible with each other, thereby limiting their scalability and effectiveness. To address this issue, we propose GKI-ICD, a novel, general knowledge injection framework that integrates three key types of knowledge, namely ICD Description, ICD Synonym, and ICD Hierarchy, without specialized design of additional modules. The comprehensive utilization of the above knowledge, which exhibits both differences and complementarity, can effectively enhance the ICD coding performance. Extensive experiments on existing popular ICD coding benchmarks demonstrate the effectiveness of GKI-ICD, which achieves the state-of-the-art performance on most evaluation metrics. Code is available at https://github.com/xuzhang0112/GKI-ICD.
Authors:Jiabin Tang, Lianghao Xia, Zhonghang Li, Chao Huang
Abstract:
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.
Authors:Chun Wang, Xiaoran Pan, Zihao Pan, Haofan Wang, Yiren Song
Abstract:
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
Authors:Can Yaras, Alec S. Xu, Pierre Abillama, Changwoo Lee, Laura Balzano
Abstract:
Transformers have achieved state-of-the-art performance across various tasks, but suffer from a notable quadratic complexity in sequence length due to the attention mechanism. In this work, we propose MonarchAttention -- a novel approach to sub-quadratic attention approximation via Monarch matrices, an expressive class of structured matrices. Based on the variational form of softmax, we describe an efficient optimization-based algorithm to compute an approximate projection of softmax attention onto the class of Monarch matrices with $Î(N\sqrt{N} d)$ computational complexity and $Î(Nd)$ memory/IO complexity. Unlike previous approaches, MonarchAttention is both (1) transferable, yielding minimal performance loss with no additional training, even when replacing every attention layer of the transformer, and (2) hardware-efficient, utilizing the highest-throughput tensor core units on modern GPUs. With optimized kernels, MonarchAttention achieves substantial speed-ups in wall-time over FlashAttention-2: $1.4\times$ for shorter sequences $(N=256)$, $4.5\times$ for medium-length sequences $(N=4K)$, and $8.2\times$ for longer sequences $(N=16K)$. We demonstrate the quality of MonarchAttention on diverse tasks and architectures in vision and language problems, showing that it flexibly and accurately approximates softmax attention in a variety of contexts. Our code is available at https://github.com/cjyaras/monarch-attention.
Authors:Ziyang Cheng, Zhixun Li, Yuhan Li, Yixin Song, Kangyi Zhao, Dawei Cheng, Jia Li, Jeffrey Xu Yu
Abstract:
Nowadays, real-world data, including graph-structure data, often arrives in a streaming manner, which means that learning systems need to continuously acquire new knowledge without forgetting previously learned information. Although substantial existing works attempt to address catastrophic forgetting in graph machine learning, they are all based on training from scratch with streaming data. With the rise of pretrained models, an increasing number of studies have leveraged their strong generalization ability for continual learning. Therefore, in this work, we attempt to answer whether large language models (LLMs) can mitigate catastrophic forgetting in Graph Continual Learning (GCL). We first point out that current experimental setups for GCL have significant flaws, as the evaluation stage may lead to task ID leakage. Then, we evaluate the performance of LLMs in more realistic scenarios and find that even minor modifications can lead to outstanding results. Finally, based on extensive experiments, we propose a simple-yet-effective method, Simple Graph Continual Learning (SimGCL), that surpasses the previous state-of-the-art GNN-based baseline by around 20% under the rehearsal-free constraint. To facilitate reproducibility, we have developed an easy-to-use benchmark LLM4GCL for training and evaluating existing GCL methods. The code is available at: https://github.com/ZhixunLEE/LLM4GCL.
Authors:Rafiu Adekoya Badekale, Adewale Akinfaderin
Abstract:
Climate policy scenario generation and evaluation have traditionally relied on integrated assessment models (IAMs) and expert-driven qualitative analysis. These methods enable stakeholders, such as policymakers and researchers, to anticipate impacts, plan governance strategies, and develop mitigation measures. However, traditional methods are often time-intensive, reliant on simple extrapolations of past trends, and limited in capturing the complex and interconnected nature of energy and climate issues. With the advent of artificial intelligence (AI), particularly generative AI models trained on vast datasets, these limitations can be addressed, ensuring robustness even under limited data conditions. In this work, we explore the novel method that employs generative AI, specifically large language models (LLMs), to simulate climate policy scenarios for Sub-Saharan Africa. These scenarios focus on energy transition themes derived from the historical United Nations Climate Change Conference (COP) documents. By leveraging generative models, the project aims to create plausible and diverse policy scenarios that align with regional climate goals and energy challenges. Given limited access to human evaluators, automated techniques were employed for scenario evaluation. We generated policy scenarios using the llama3.2-3B model. Of the 34 generated responses, 30 (88%) passed expert validation, accurately reflecting the intended impacts provided in the corresponding prompts. We compared these validated responses against assessments from a human climate expert and two additional LLMs (gemma2-2B and mistral-7B). Our structured, embedding-based evaluation framework shows that generative AI effectively generate scenarios that are coherent, relevant, plausible, and diverse. This approach offers a transformative tool for climate policy planning in data-constrained regions.
Authors:Yang Liu, Silin Cheng, Xinwei He, Sebastien Ourselin, Lei Tan, Gen Luo
Abstract:
Weakly supervised referring expression comprehension(WREC) and segmentation(WRES) aim to learn object grounding based on a given expression using weak supervision signals like image-text pairs. While these tasks have traditionally been modeled separately, we argue that they can benefit from joint learning in a multi-task framework. To this end, we propose WeakMCN, a novel multi-task collaborative network that effectively combines WREC and WRES with a dual-branch architecture. Specifically, the WREC branch is formulated as anchor-based contrastive learning, which also acts as a teacher to supervise the WRES branch. In WeakMCN, we propose two innovative designs to facilitate multi-task collaboration, namely Dynamic Visual Feature Enhancement(DVFE) and Collaborative Consistency Module(CCM). DVFE dynamically combines various pre-trained visual knowledge to meet different task requirements, while CCM promotes cross-task consistency from the perspective of optimization. Extensive experimental results on three popular REC and RES benchmarks, i.e., RefCOCO, RefCOCO+, and RefCOCOg, consistently demonstrate performance gains of WeakMCN over state-of-the-art single-task alternatives, e.g., up to 3.91% and 13.11% on RefCOCO for WREC and WRES tasks, respectively. Furthermore, experiments also validate the strong generalization ability of WeakMCN in both semi-supervised REC and RES settings against existing methods, e.g., +8.94% for semi-REC and +7.71% for semi-RES on 1% RefCOCO. The code is publicly available at https://github.com/MRUIL/WeakMCN.
Authors:Bin Ren, Yawei Li, Xu Zheng, Yuqian Fu, Danda Pani Paudel, Ming-Hsuan Yang, Luc Van Gool, Nicu Sebe
Abstract:
Image Restoration (IR) aims to recover high quality images from degraded inputs affected by various corruptions such as noise, blur, haze, rain, and low light conditions. Despite recent advances, most existing approaches treat IR as a direct mapping problem, relying on shared representations across degradation types without modeling their structural diversity. In this work, we present MIRAGE, a unified and lightweight framework for all in one IR that explicitly decomposes the input feature space into three semantically aligned parallel branches, each processed by a specialized module attention for global context, convolution for local textures, and MLP for channel-wise statistics. This modular decomposition significantly improves generalization and efficiency across diverse degradations. Furthermore, we introduce a cross layer contrastive learning scheme that aligns shallow and latent features to enhance the discriminability of shared representations. To better capture the underlying geometry of feature representations, we perform contrastive learning in a Symmetric Positive Definite (SPD) manifold space rather than the conventional Euclidean space. Extensive experiments show that MIRAGE not only achieves new state of the art performance across a variety of degradation types but also offers a scalable solution for challenging all-in-one IR scenarios. Our code and models will be publicly available at https://amazingren.github.io/MIRAGE/.
Authors:Zixiang Xu, Yanbo Wang, Yue Huang, Xiuying Chen, Jieyu Zhao, Meng Jiang, Xiangliang Zhang
Abstract:
Large Language Models (LLMs) have achieved remarkable success in Natural Language Processing (NLP), yet their cross-lingual performance consistency remains a significant challenge. This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in LLMs. Our approach leverages beam search and LLM-based simulation to generate bilingual question pairs that expose performance discrepancies between English and target languages. We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models. The extensive experiments demonstrate that our method precisely and cost-effectively pinpoints cross-lingual weaknesses, consistently revealing over 50\% accuracy drops in target languages across a wide range of models. Moreover, further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns and benefit from targeted post-training. Code is available at https://github.com/xzx34/Cross-Lingual-Pitfalls.
Authors:Hongzheng Yang, Yongqiang Chen, Zeyu Qin, Tongliang Liu, Chaowei Xiao, Kun Zhang, Bo Han
Abstract:
Representation intervention aims to locate and modify the representations that encode the underlying concepts in Large Language Models (LLMs) to elicit the aligned and expected behaviors. Despite the empirical success, it has never been examined whether one could locate the faithful concepts for intervention. In this work, we explore the question in safety alignment. If the interventions are faithful, the intervened LLMs should erase the harmful concepts and be robust to both in-distribution adversarial prompts and the out-of-distribution (OOD) jailbreaks. While it is feasible to erase harmful concepts without degrading the benign functionalities of LLMs in linear settings, we show that it is infeasible in the general non-linear setting. To tackle the issue, we propose Concept Concentration (COCA). Instead of identifying the faithful locations to intervene, COCA refractors the training data with an explicit reasoning process, which firstly identifies the potential unsafe concepts and then decides the responses. Essentially, COCA simplifies the decision boundary between harmful and benign representations, enabling more effective linear erasure. Extensive experiments with multiple representation intervention methods and model architectures demonstrate that COCA significantly reduces both in-distribution and OOD jailbreak success rates, and meanwhile maintaining strong performance on regular tasks such as math and code generation.
Authors:Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Abstract:
Diffusion Transformers (DiTs) have emerged as the state-of-the-art architecture for video generation, yet their computational and memory demands hinder practical deployment. While post-training quantization (PTQ) presents a promising approach to accelerate Video DiT models, existing methods suffer from two critical limitations: (1) dependence on lengthy, computation-heavy calibration procedures, and (2) considerable performance deterioration after quantization. To address these challenges, we propose DVD-Quant, a novel Data-free quantization framework for Video DiTs. Our approach integrates three key innovations: (1) Progressive Bounded Quantization (PBQ) and (2) Auto-scaling Rotated Quantization (ARQ) for calibration data-free quantization error reduction, as well as (3) $δ$-Guided Bit Switching ($δ$-GBS) for adaptive bit-width allocation. Extensive experiments across multiple video generation benchmarks demonstrate that DVD-Quant achieves an approximately 2$\times$ speedup over full-precision baselines on HunyuanVideo while maintaining visual fidelity. Notably, DVD-Quant is the first to enable W4A4 PTQ for Video DiTs without compromising video quality. Code and models will be available at https://github.com/lhxcs/DVD-Quant.
Authors:Yicheng Lin, Yunlong Jiang, Xujia Jiao, Bin Han
Abstract:
Robust long-term visual localization in complex industrial environments is critical for mobile robotic systems. Existing approaches face limitations: handcrafted features are illumination-sensitive, learned features are computationally intensive, and semantic- or marker-based methods are environmentally constrained. Handcrafted and learned features share similar representations but differ functionally. Handcrafted features are optimized for continuous tracking, while learned features excel in wide-baseline matching. Their complementarity calls for integration rather than replacement. Building on this, we propose a hierarchical localization framework. It leverages real-time handcrafted feature extraction for relative pose estimation. In parallel, it employs selective learned keypoint detection on optimized keyframes for absolute positioning. This design enables CPU-efficient, long-term visual localization. Experiments systematically progress through three validation phases: Initially establishing feature complementarity through comparative analysis, followed by computational latency profiling across algorithm stages on CPU platforms. Final evaluation under photometric variations (including seasonal transitions and diurnal cycles) demonstrates 47% average error reduction with significantly improved localization consistency. The code implementation is publicly available at https://github.com/linyicheng1/ORB_SLAM3_localization.
Authors:Jian Liang, Wenke Huang, Xianda Guo, Guancheng Wan, Bo Du, Mang Ye
Abstract:
Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models due to its efficiency and zero additional inference cost. Many real-world applications require foundation models to specialize in multiple tasks simultaneously, motivating the need for efficient multi-task adaptation. While recent approaches integrate LoRA with mixture-of-experts (MoE) to address this, the use of routers prevents parameter mergeability, which increases inference overhead and hinders unified multi-task adaptation, thereby limiting deployment practicality. In this work, we propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework that enables multi-task adaptation while preserving the inference efficiency of LoRA. ThanoRA jointly models task heterogeneity and mitigates subspace interference throughout training. Specifically, motivated by inherent differences in complexity and heterogeneity across tasks, ThanoRA constructs task-specific LoRA subspaces at initialization, enabling fine-grained knowledge injection aligned with task heterogeneity. Furthermore, to prevent task interference and subspace collapse during multi-task training, ThanoRA introduces a subspace-preserving regularization that maintains the independence of task-specific representations. With the synergy of both components, ThanoRA enables efficient and unified multi-task adaptation. Extensive experiments across multimodal and text-only benchmarks under varying multi-task mixtures demonstrate that ThanoRA consistently achieves robust and superior performance over strong baselines without introducing additional inference overhead. Our code is publicly available at: https://github.com/LiangJian24/ThanoRA.
Authors:Md. Tanzib Hosain, Rajan Das Gupta, Md. Kishor Morol
Abstract:
In this work, we provide DZEN, a dataset of parallel Dzongkha and English test questions for Bhutanese middle and high school students. The over 5K questions in our collection span a variety of scientific topics and include factual, application, and reasoning-based questions. We use our parallel dataset to test a number of Large Language Models (LLMs) and find a significant performance difference between the models in English and Dzongkha. We also look at different prompting strategies and discover that Chain-of-Thought (CoT) prompting works well for reasoning questions but less well for factual ones. We also find that adding English translations enhances the precision of Dzongkha question responses. Our results point to exciting avenues for further study to improve LLM performance in Dzongkha and, more generally, in low-resource languages. We release the dataset at: https://github.com/kraritt/llm_dzongkha_evaluation.
Authors:Hai-Long Qin, Jincheng Dai, Sixian Wang, Xiaoqi Qin, Shuo Shao, Kai Niu, Wenjun Xu, Ping Zhang
Abstract:
Semantic communication, leveraging advanced deep learning techniques, emerges as a new paradigm that meets the requirements of next-generation wireless networks. However, current semantic communication systems, which employ neural coding for feature extraction from raw data, have not adequately addressed the fundamental question: Is general feature extraction through deep neural networks sufficient for understanding semantic meaning within raw data in semantic communication? This article is thus motivated to clarify two critical aspects: semantic understanding and general semantic representation. This article presents a standardized definition on semantic coding, an extensive neural coding scheme for general semantic representation that clearly represents underlying data semantics based on contextual modeling. With these general semantic representations obtained, both human- and machine-centric end-to-end data transmission can be achieved through only minimal specialized modifications, such as fine-tuning and regularization. This article contributes to establishing a commonsense that semantic communication extends far beyond mere feature transmission, focusing instead on conveying compact semantic representations through context-aware coding schemes.
Authors:Li Wang, Guangqi Yang, Lei Yang, Ziying Song, Xinyu Zhang, Ying Chen, Lin Liu, Junjie Gao, Zhiwei Li, Qingshan Yang, Jun Li, Liangliang Wang, Wenhao Yu, Bin Xu, Weida Wang, Huaping Liu
Abstract:
Safety is a long-standing and the final pursuit in the development of autonomous driving systems, with a significant portion of safety challenge arising from perception. How to effectively evaluate the safety as well as the reliability of perception algorithms is becoming an emerging issue. Despite its critical importance, existing perception methods exhibit a limitation in their robustness, primarily due to the use of benchmarks are entierly simulated, which fail to align predicted results with actual outcomes, particularly under extreme weather conditions and sensor anomalies that are prevalent in real-world scenarios. To fill this gap, in this study, we propose a Sim-to-Real Evaluation Benchmark for Autonomous Driving (S2R-Bench). We collect diverse sensor anomaly data under various road conditions to evaluate the robustness of autonomous driving perception methods in a comprehensive and realistic manner. This is the first corruption robustness benchmark based on real-world scenarios, encompassing various road conditions, weather conditions, lighting intensities, and time periods. By comparing real-world data with simulated data, we demonstrate the reliability and practical significance of the collected data for real-world applications. We hope that this dataset will advance future research and contribute to the development of more robust perception models for autonomous driving. This dataset is released on https://github.com/adept-thu/S2R-Bench.
Authors:Woohyun Cho, Youngmin Kim, Sunghyun Lee, Youngjae Yu
Abstract:
Lyrics translation requires both accurate semantic transfer and preservation of musical rhythm, syllabic structure, and poetic style. In animated musicals, the challenge intensifies due to alignment with visual and auditory cues. We introduce Multilingual Audio-Video Lyrics Benchmark for Animated Song Translation (MAVL), the first multilingual, multimodal benchmark for singable lyrics translation. By integrating text, audio, and video, MAVL enables richer and more expressive translations than text-only approaches. Building on this, we propose Syllable-Constrained Audio-Video LLM with Chain-of-Thought SylAVL-CoT, which leverages audio-video cues and enforces syllabic constraints to produce natural-sounding lyrics. Experimental results demonstrate that SylAVL-CoT significantly outperforms text-based models in singability and contextual accuracy, emphasizing the value of multimodal, multilingual approaches for lyrics translation.
Authors:Faithful Chiagoziem Onwuegbuche, Adelodun Olaoluwa, Anca Delia Jurcut, Liliana Pasquale
Abstract:
Ransomware remains a critical threat to cybersecurity, yet publicly available datasets for training machine learning-based ransomware detection models are scarce and often have limited sample size, diversity, and reproducibility. In this paper, we introduce MLRan, a behavioural ransomware dataset, comprising over 4,800 samples across 64 ransomware families and a balanced set of goodware samples. The samples span from 2006 to 2024 and encompass the four major types of ransomware: locker, crypto, ransomware-as-a-service, and modern variants. We also propose guidelines (GUIDE-MLRan), inspired by previous work, for constructing high-quality behavioural ransomware datasets, which informed the curation of our dataset. We evaluated the ransomware detection performance of several machine learning (ML) models using MLRan. For this purpose, we performed feature selection by conducting mutual information filtering to reduce the initial 6.4 million features to 24,162, followed by recursive feature elimination, yielding 483 highly informative features. The ML models achieved an accuracy, precision and recall of up to 98.7%, 98.9%, 98.5%, respectively. Using SHAP and LIME, we identified critical indicators of malicious behaviour, including registry tampering, strings, and API misuse. The dataset and source code for feature extraction, selection, ML training, and evaluation are available publicly to support replicability and encourage future research, which can be found at https://github.com/faithfulco/mlran.
Authors:Weizhi Zhong, Huan Yang, Zheng Liu, Huiguo He, Zijian He, Xuesong Niu, Di Zhang, Guanbin Li
Abstract:
Personalized text-to-image generation aims to synthesize images of user-provided concepts in diverse contexts. Despite recent progress in multi-concept personalization, most are limited to object concepts and struggle to customize abstract concepts (e.g., pose, lighting). Some methods have begun exploring multi-concept personalization supporting abstract concepts, but they require test-time fine-tuning for each new concept, which is time-consuming and prone to overfitting on limited training images. In this work, we propose a novel tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning. Our method builds upon the modulation mechanism in pretrained Diffusion Transformers (DiTs) model, leveraging the localized and semantically meaningful properties of the modulation space. Specifically, we propose a novel module, Mod-Adapter, to predict concept-specific modulation direction for the modulation process of concept-related text tokens. It incorporates vision-language cross-attention for extracting concept visual features, and Mixture-of-Experts (MoE) layers that adaptively map the concept features into the modulation space. Furthermore, to mitigate the training difficulty caused by the large gap between the concept image space and the modulation space, we introduce a VLM-guided pretraining strategy that leverages the strong image understanding capabilities of vision-language models to provide semantic supervision signals. For a comprehensive comparison, we extend a standard benchmark by incorporating abstract concepts. Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
Authors:Tengxuan Liu, Shiyao Li, Jiayi Yang, Tianchen Zhao, Feng Zhou, Xiaohui Song, Guohao Dai, Shengen Yan, Huazhong Yang, Yu Wang
Abstract:
Recently, significant progress has been made in developing reasoning-capable Large Language Models (LLMs) through long Chain-of-Thought (CoT) techniques. However, this long-CoT reasoning process imposes substantial memory overhead due to the large Key-Value (KV) Cache memory overhead. Post-training KV Cache quantization has emerged as a promising compression technique and has been extensively studied in short-context scenarios. However, directly applying existing methods to long-CoT LLMs causes significant performance degradation due to the following two reasons: (1) Large cumulative error: Existing methods fail to adequately leverage available memory, and they directly quantize the KV Cache during each decoding step, leading to large cumulative quantization error. (2) Short-context calibration: Due to Rotary Positional Embedding (RoPE), the use of short-context data during calibration fails to account for the distribution of less frequent channels in the Key Cache, resulting in performance loss. We propose Progressive Mixed-Precision KV Cache Quantization (PM-KVQ) for long-CoT LLMs to address the above issues in two folds: (1) To reduce cumulative error, we design a progressive quantization strategy to gradually lower the bit-width of KV Cache in each block. Then, we propose block-wise memory allocation to assign a higher bit-width to more sensitive transformer blocks. (2) To increase the calibration length without additional overhead, we propose a new calibration strategy with positional interpolation that leverages short calibration data with positional interpolation to approximate the data distribution of long-context data. Extensive experiments on 7B-70B long-CoT LLMs show that PM-KVQ improves reasoning benchmark performance by up to 8% over SOTA baselines under the same memory budget. Our code is available at https://github.com/thu-nics/PM-KVQ.
Authors:Yuetong Fang, Deming Zhou, Ziqing Wang, Hongwei Ren, ZeCui Zeng, Lusong Li, Shibo Zhou, Renjing Xu
Abstract:
Spiking Transformers offer an energy-efficient alternative to conventional deep learning by transmitting information solely through binary (0/1) spikes. However, there remains a substantial performance gap compared to artificial neural networks. A common belief is that their binary and sparse activation transmission leads to information loss, thus degrading feature representation and accuracy. In this work, however, we reveal for the first time that spiking neurons preferentially propagate low-frequency information. We hypothesize that the rapid dissipation of high-frequency components is the primary cause of performance degradation. For example, on Cifar-100, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73%; interestingly, replacing it with Max-Pooling (high-pass) pushes the top-1 accuracy to 79.12%, surpassing the well-tuned Spikformer baseline by 0.97%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: extra Max-Pooling in patch embedding and Depth-Wise Convolution in place of self-attention. Notably, our Max-Former (63.99 M) hits the top-1 accuracy of 82.39% on ImageNet, showing a +7.58% improvement over Spikformer with comparable model size (74.81%, 66.34 M). We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks, beyond the established practice in standard deep learning. \href{https://github.com/bic-L/Spiking-Transformers-Need-High-Frequency-Information}{Code} is available.
Authors:Jongwoo Ko, Sungnyun Kim, Sungwoo Cho, Se-Young Yun
Abstract:
Human-generated reward signals are critical for aligning generative models with human preferences, guiding both training and inference-time evaluations. While large language models (LLMs) employed as proxy evaluators, i.e., LLM-as-a-Judge, significantly reduce the costs associated with manual annotations, they typically require extensive modality-specific training data and fail to generalize well across diverse multimodal tasks. In this paper, we propose Flex-Judge, a reasoning-guided multimodal judge model that leverages minimal textual reasoning data to robustly generalize across multiple modalities and evaluation formats. Our core intuition is that structured textual reasoning explanations inherently encode generalizable decision-making patterns, enabling an effective transfer to multimodal judgments, e.g., with images or videos. Empirical results demonstrate that Flex-Judge, despite being trained on significantly fewer text data, achieves competitive or superior performance compared to state-of-the-art commercial APIs and extensively trained multimodal evaluators. Notably, Flex-Judge presents broad impact in modalities like molecule, where comprehensive evaluation benchmarks are scarce, underscoring its practical value in resource-constrained domains. Our framework highlights reasoning-based text supervision as a powerful, cost-effective alternative to traditional annotation-intensive approaches, substantially advancing scalable multimodal model-as-a-judge.
Authors:Bryan Sangwoo Kim, Jeongsol Kim, Jong Chul Ye
Abstract:
Modern single-image super-resolution (SISR) models deliver photo-realistic results at the scale factors on which they are trained, but collapse when asked to magnify far beyond that regime. We address this scalability bottleneck with Chain-of-Zoom (CoZ), a model-agnostic framework that factorizes SISR into an autoregressive chain of intermediate scale-states with multi-scale-aware prompts. CoZ repeatedly re-uses a backbone SR model, decomposing the conditional probability into tractable sub-problems to achieve extreme resolutions without additional training. Because visual cues diminish at high magnifications, we augment each zoom step with multi-scale-aware text prompts generated by a vision-language model (VLM). The prompt extractor itself is fine-tuned using Generalized Reward Policy Optimization (GRPO) with a critic VLM, aligning text guidance towards human preference. Experiments show that a standard 4x diffusion SR model wrapped in CoZ attains beyond 256x enlargement with high perceptual quality and fidelity. Project Page: https://bryanswkim.github.io/chain-of-zoom/ .
Authors:Dongyang Jin, Chao Fan, Jingzhe Ma, Jingkai Zhou, Weihua Chen, Shiqi Yu
Abstract:
To capture individual gait patterns, excluding identity-irrelevant cues in walking videos, such as clothing texture and color, remains a persistent challenge for vision-based gait recognition. Traditional silhouette- and pose-based methods, though theoretically effective at removing such distractions, often fall short of high accuracy due to their sparse and less informative inputs. Emerging end-to-end methods address this by directly denoising RGB videos using human priors. Building on this trend, we propose DenoisingGait, a novel gait denoising method. Inspired by the philosophy that "what I cannot create, I do not understand", we turn to generative diffusion models, uncovering how they partially filter out irrelevant factors for gait understanding. Additionally, we introduce a geometry-driven Feature Matching module, which, combined with background removal via human silhouettes, condenses the multi-channel diffusion features at each foreground pixel into a two-channel direction vector. Specifically, the proposed within- and cross-frame matching respectively capture the local vectorized structures of gait appearance and motion, producing a novel flow-like gait representation termed Gait Feature Field, which further reduces residual noise in diffusion features. Experiments on the CCPG, CASIA-B*, and SUSTech1K datasets demonstrate that DenoisingGait achieves a new SoTA performance in most cases for both within- and cross-domain evaluations. Code is available at https://github.com/ShiqiYu/OpenGait.
Authors:Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, Qing Li
Abstract:
Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external knowledge, yet it introduces a critical issue: erroneous or biased retrieval can mislead generation, compounding hallucinations, a phenomenon we term Hallucination on Hallucination. To address this, we propose Debate-Augmented RAG (DRAG), a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages. In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability. In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies. Evaluations across multiple tasks demonstrate that DRAG improves retrieval reliability, reduces RAG-induced hallucinations, and significantly enhances overall factual accuracy. Our code is available at https://github.com/Huenao/Debate-Augmented-RAG.
Authors:Mengqi Liao, Xiangyu Xi, Ruinian Chen, Jia Leng, Yangen Hu, Ke Zeng, Shuai Liu, Huaiyu Wan
Abstract:
Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs
Authors:Shiu-hong Kao, Yu-Wing Tai, Chi-Keung Tang
Abstract:
Reasoning Video Object Segmentation is a challenging task, which generates a mask sequence from an input video and an implicit, complex text query. Existing works probe into the problem by finetuning Multimodal Large Language Models (MLLM) for segmentation-based output, while still falling short in difficult cases on videos given temporally-sensitive queries, primarily due to the failure to integrate temporal and spatial information. In this paper, we propose ThinkVideo, a novel framework which leverages the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these challenges. Specifically, ThinkVideo utilizes the CoT prompts to extract object selectivities associated with particular keyframes, then bridging the reasoning image segmentation model and SAM2 video processor to output mask sequences. The ThinkVideo framework is training-free and compatible with closed-source MLLMs, which can be applied to Reasoning Video Instance Segmentation. We further extend the framework for online video streams, where the CoT is used to update the object of interest when a better target starts to emerge and becomes visible. We conduct extensive experiments on video object segmentation with explicit and implicit queries. The results show that ThinkVideo significantly outperforms previous works in both cases, qualitatively and quantitatively.
Authors:Md Ahsanul Haque, Ismail Hossain, Md Mahmuduzzaman Kamol, Md Jahangir Alam, Suresh Kumar Amalapuram, Sajedul Talukder, Mohammad Saidur Rahman
Abstract:
Machine learning (ML)-based malware detection systems often fail to account for the dynamic nature of real-world training and test data distributions. In practice, these distributions evolve due to frequent changes in the Android ecosystem, adversarial development of new malware families, and the continuous emergence of both benign and malicious applications. Prior studies have shown that such concept drift -- distributional shifts in benign and malicious samples, leads to significant degradation in detection performance over time. Despite the practical importance of this issue, existing datasets are often outdated and limited in temporal scope, diversity of malware families, and sample scale, making them insufficient for the systematic evaluation of concept drift in malware detection.
To address this gap, we present LAMDA, the largest and most temporally diverse Android malware benchmark to date, designed specifically for concept drift analysis. LAMDA spans 12 years (2013-2025, excluding 2015), includes over 1 million samples (approximately 37% labeled as malware), and covers 1,380 malware families and 150,000 singleton samples, reflecting the natural distribution and evolution of real-world Android applications. We empirically demonstrate LAMDA's utility by quantifying the performance degradation of standard ML models over time and analyzing feature stability across years. As the most comprehensive Android malware dataset to date, LAMDA enables in-depth research into temporal drift, generalization, explainability, and evolving detection challenges. The dataset and code are available at: https://iqsec-lab.github.io/LAMDA/.
Authors:Min Cheng, Fatemeh Doudi, Dileep Kalathil, Mohammad Ghavamzadeh, Panganamala R. Kumar
Abstract:
Reinforcement learning (RL) algorithms have been used recently to align diffusion models with downstream objectives such as aesthetic quality and text-image consistency by fine-tuning them to maximize a single reward function under a fixed KL regularization. However, this approach is inherently restrictive in practice, where alignment must balance multiple, often conflicting objectives. Moreover, user preferences vary across prompts, individuals, and deployment contexts, with varying tolerances for deviation from a pre-trained base model. We address the problem of inference-time multi-preference alignment: given a set of basis reward functions and a reference KL regularization strength, can we design a fine-tuning procedure so that, at inference time, it can generate images aligned with any user-specified linear combination of rewards and regularization, without requiring additional fine-tuning? We propose Diffusion Blend, a novel approach to solve inference-time multi-preference alignment by blending backward diffusion processes associated with fine-tuned models, and we instantiate this approach with two algorithms: DB-MPA for multi-reward alignment and DB-KLA for KL regularization control. Extensive experiments show that Diffusion Blend algorithms consistently outperform relevant baselines and closely match or exceed the performance of individually fine-tuned models, enabling efficient, user-driven alignment at inference-time. The code is available at https://github.com/bluewoods127/DB-2025}{github.com/bluewoods127/DB-2025.
Authors:Haoyuan Sun, Jiaqi Wu, Bo Xia, Yifu Luo, Yifei Zhao, Kai Qin, Xufei Lv, Tiantian Zhang, Yongzhe Chang, Xueqian Wang
Abstract:
Standing in 2025, at a critical juncture in the pursuit of Artificial General Intelligence (AGI), reinforcement fine-tuning (RFT) has demonstrated significant potential in enhancing the reasoning capability of large language models (LLMs) and has led to the development of cutting-edge AI models such as OpenAI-o1 and DeepSeek-R1. Moreover, the efficient application of RFT to enhance the reasoning capability of multimodal large language models (MLLMs) has attracted widespread attention from the community. In this position paper, we argue that reinforcement fine-tuning powers the reasoning capability of multimodal large language models. To begin with, we provide a detailed introduction to the fundamental background knowledge that researchers interested in this field should be familiar with. Furthermore, we meticulously summarize the improvements of RFT in powering reasoning capability of MLLMs into five key points: diverse modalities, diverse tasks and domains, better training algorithms, abundant benchmarks and thriving engineering frameworks. Finally, we propose five promising directions for future research that the community might consider. We hope that this position paper will provide valuable insights to the community at this pivotal stage in the advancement toward AGI. Summary of works done on RFT for MLLMs is available at https://github.com/Sun-Haoyuan23/Awesome-RL-based-Reasoning-MLLMs.
Authors:Mingyang Wu, Li Lin, Wenbin Zhang, Xin Wang, Zhenhuan Yang, Shu Hu
Abstract:
The Area Under the ROC Curve (AUC) is a key metric for classification, especially under class imbalance, with growing research focus on optimizing AUC over accuracy in applications like medical image analysis and deepfake detection. This leads to fairness in AUC optimization becoming crucial as biases can impact protected groups. While various fairness mitigation techniques exist, fairness considerations in AUC optimization remain in their early stages, with most research focusing on improving AUC fairness under the assumption of clean protected groups. However, these studies often overlook the impact of noisy protected groups, leading to fairness violations in practice. To address this, we propose the first robust AUC fairness approach under noisy protected groups with fairness theoretical guarantees using distributionally robust optimization. Extensive experiments on tabular and image datasets show that our method outperforms state-of-the-art approaches in preserving AUC fairness. The code is in https://github.com/Purdue-M2/AUC_Fairness_with_Noisy_Groups.
Authors:Yiqing Zhang, Xiaozhong Liu, Fabricio Murai
Abstract:
Many existing models for clinical trial outcome prediction are optimized using task-specific loss functions on trial phase-specific data. While this scheme may boost prediction for common diseases and drugs, it can hinder learning of generalizable representations, leading to more false positives/negatives. To address this limitation, we introduce CLaDMoP, a new pre-training approach for clinical trial outcome prediction, alongside the Successful Clinical Trials dataset(SCT), specifically designed for this task. CLaDMoP leverages a Large Language Model-to encode trials' eligibility criteria-linked to a lightweight Drug-Molecule branch through a novel multi-level fusion technique. To efficiently fuse long embeddings across levels, we incorporate a grouping block, drastically reducing computational overhead. CLaDMoP avoids reliance on task-specific objectives by pre-training on a "pair matching" proxy task. Compared to established zero-shot and few-shot baselines, our method significantly improves both PR-AUC and ROC-AUC, especially for phase I and phase II trials. We further evaluate and perform ablation on CLaDMoP after Parameter-Efficient Fine-Tuning, comparing it to state-of-the-art supervised baselines, including MEXA-CTP, on the Trial Outcome Prediction(TOP) benchmark. CLaDMoP achieves up to 10.5% improvement in PR-AUC and 3.6% in ROC-AUC, while attaining comparable F1 score to MEXA-CTP, highlighting its potential for clinical trial outcome prediction. Code and SCT dataset can be downloaded from https://github.com/murai-lab/CLaDMoP.
Authors:Haoyu Yang, Yuxiang Cai, Jintao Chen, Xuhong Zhang, Wenhui Lei, Xiaoming Shi, Jianwei Yin, Yankai Jiang
Abstract:
3D medical image segmentation is vital for clinical diagnosis and treatment but is challenged by high-dimensional data and complex spatial dependencies. Traditional single-modality networks, such as CNNs and Transformers, are often limited by computational inefficiency and constrained contextual modeling in 3D settings. We introduce a novel multimodal framework that leverages Mamba and Kolmogorov-Arnold Networks (KAN) as an efficient backbone for long-sequence modeling. Our approach features three key innovations: First, an EGSC (Enhanced Gated Spatial Convolution) module captures spatial information when unfolding 3D images into 1D sequences. Second, we extend Group-Rational KAN (GR-KAN), a Kolmogorov-Arnold Networks variant with rational basis functions, into 3D-Group-Rational KAN (3D-GR-KAN) for 3D medical imaging - its first application in this domain - enabling superior feature representation tailored to volumetric data. Third, a dual-branch text-driven strategy leverages CLIP's text embeddings: one branch swaps one-hot labels for semantic vectors to preserve inter-organ semantic relationships, while the other aligns images with detailed organ descriptions to enhance semantic alignment. Experiments on the Medical Segmentation Decathlon (MSD) and KiTS23 datasets show our method achieving state-of-the-art performance, surpassing existing approaches in accuracy and efficiency. This work highlights the power of combining advanced sequence modeling, extended network architectures, and vision-language synergy to push forward 3D medical image segmentation, delivering a scalable solution for clinical use. The source code is openly available at https://github.com/yhy-whu/TK-Mamba.
Authors:Yiheng Li, Feng Liang, Dan Kondratyuk, Masayoshi Tomizuka, Kurt Keutzer, Chenfeng Xu
Abstract:
The substantial training cost of diffusion models hinders their deployment. Immiscible Diffusion recently showed that reducing diffusion trajectory mixing in the noise space via linear assignment accelerates training by simplifying denoising. To extend immiscible diffusion beyond the inefficient linear assignment under high batch sizes and high dimensions, we refine this concept to a broader miscibility reduction at any layer and by any implementation. Specifically, we empirically demonstrate the bijective nature of the denoising process with respect to immiscible diffusion, ensuring its preservation of generative diversity. Moreover, we provide thorough analysis and show step-by-step how immiscibility eases denoising and improves efficiency. Extending beyond linear assignment, we propose a family of implementations including K-nearest neighbor (KNN) noise selection and image scaling to reduce miscibility, achieving up to >4x faster training across diverse models and tasks including unconditional/conditional generation, image editing, and robotics planning. Furthermore, our analysis of immiscibility offers a novel perspective on how optimal transport (OT) enhances diffusion training. By identifying trajectory miscibility as a fundamental bottleneck, we believe this work establishes a potentially new direction for future research into high-efficiency diffusion training. The code is available at https://github.com/yhli123/Immiscible-Diffusion.
Authors:Taeckyung Lee, Sorn Chottananurak, Junsu Kim, Jinwoo Shin, Taesik Gong, Sung-Ju Lee
Abstract:
Deep learning models perform poorly when domain shifts exist between training and test data. Test-time adaptation (TTA) is a paradigm to mitigate this issue by adapting pre-trained models using only unlabeled test samples. However, existing TTA methods can fail under severe domain shifts, while recent active TTA approaches requiring full-class labels are impractical due to high labeling costs. To address this issue, we introduce a new setting of TTA with binary feedback. This setting uses a few binary feedback inputs from annotators to indicate whether model predictions are correct, thereby significantly reducing the labeling burden of annotators. Under the setting, we propose BiTTA, a novel dual-path optimization framework that leverages reinforcement learning to balance binary feedback-guided adaptation on uncertain samples with agreement-based self-adaptation on confident predictions. Experiments show BiTTA achieves 13.3%p accuracy improvements over state-of-the-art baselines, demonstrating its effectiveness in handling severe distribution shifts with minimal labeling effort. The source code is available at https://github.com/taeckyung/BiTTA.
Authors:Weiwei Sun, Haokun Liu, Nikhil Kandpal, Colin Raffel, Yiming Yang
Abstract:
Training data attribution (TDA) methods aim to measure how training data impacts a model's predictions. While gradient-based attribution methods, such as influence functions, offer theoretical grounding, their computational costs make them impractical for large-scale applications. Representation-based approaches are far more scalable, but typically rely on heuristic embeddings that are not optimized for attribution, limiting their fidelity. To address these challenges, we propose AirRep, a scalable, representation-based approach that closes this gap by learning task-specific and model-aligned representations optimized explicitly for TDA. AirRep introduces two key innovations: a trainable encoder tuned for attribution quality, and an attention-based pooling mechanism that enables accurate estimation of group-wise influence. We train AirRep using a ranking objective over automatically constructed training subsets labeled by their empirical effect on target predictions. Experiments on instruction-tuned LLMs demonstrate that AirRep achieves performance on par with state-of-the-art gradient-based approaches while being nearly two orders of magnitude more efficient at inference time. Further analysis highlights its robustness and generalization across tasks and models. Our code is available at https://github.com/sunnweiwei/AirRep.
Authors:Guodong Du, Xuanning Zhou, Junlin Li, Zhuo Li, Zesheng Shi, Wanyu Lin, Ho-Kin Tang, Xiucheng Li, Fangming Liu, Wenya Wang, Min Zhang, Jing Li
Abstract:
Cross-capability transfer is a key challenge in large language model (LLM) research, with applications in multi-task integration, model compression, and continual learning. Recent works like FuseLLM and FuseChat have demonstrated the potential of transferring multiple model capabilities to lightweight models, enhancing adaptability and efficiency, which motivates our investigation into more efficient cross-capability transfer methods. However, existing approaches primarily focus on small, homogeneous models, limiting their applicability. For large, heterogeneous models, knowledge distillation with full-parameter fine-tuning often overlooks the student model's intrinsic capacity and risks catastrophic forgetting, while PEFT methods struggle to effectively absorb knowledge from source LLMs. To address these issues, we introduce GraftLLM, a novel method that stores source model capabilities in a target model with SkillPack format. This approach preserves general capabilities, reduces parameter conflicts, and supports forget-free continual learning and model fusion. We employ a module-aware adaptive compression strategy to compress parameter updates, ensuring efficient storage while maintaining task-specific knowledge. The resulting SkillPack serves as a compact and transferable knowledge carrier, ideal for heterogeneous model fusion and continual learning. Experiments across various scenarios demonstrate that GraftLLM outperforms existing techniques in knowledge transfer, knowledge fusion, and forget-free learning, providing a scalable and efficient solution for cross-capability transfer. The code is publicly available at: https://github.com/duguodong7/GraftLLM.
Authors:Xiaojun Guo, Ang Li, Yifei Wang, Stefanie Jegelka, Yisen Wang
Abstract:
Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erdõs, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erdõs, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully. Our implementation is open-sourced at https://github.com/PKU-ML/G1, with models and datasets hosted on Hugging Face collections https://huggingface.co/collections/PKU-ML/g1-683d659e992794fc99618cf2 for broader accessibility.
Authors:Jialiang Sun, Yuzhi Tang, Ao Li, Chris J. Maddison, Kuldeep S. Meel
Abstract:
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
Authors:Junlin Wang, Zhiyun Lin
Abstract:
Learning effective visual representations for robotic manipulation remains a fundamental challenge due to the complex body dynamics involved in action execution. In this paper, we study how visual representations that carry body-relevant cues can enable efficient policy learning for downstream robotic manipulation tasks. We present $\textbf{I}$nter-token $\textbf{Con}$trast ($\textbf{ICon}$), a contrastive learning method applied to the token-level representations of Vision Transformers (ViTs). ICon enforces a separation in the feature space between agent-specific and environment-specific tokens, resulting in agent-centric visual representations that embed body-specific inductive biases. This framework can be seamlessly integrated into end-to-end policy learning by incorporating the contrastive loss as an auxiliary objective. Our experiments show that ICon not only improves policy performance across various manipulation tasks but also facilitates policy transfer across different robots. The project website: https://github.com/HenryWJL/icon
Authors:Fukun Liu, Adam T. Greer, Gengchen Mai, Jin Sun
Abstract:
Plankton are small drifting organisms found throughout the world's oceans and can be indicators of ocean health. One component of this plankton community is the zooplankton, which includes gelatinous animals and crustaceans (e.g. shrimp), as well as the early life stages (i.e., eggs and larvae) of many commercially important fishes. Being able to monitor zooplankton abundances accurately and understand how populations change in relation to ocean conditions is invaluable to marine science research, with important implications for future marine seafood productivity. While new imaging technologies generate massive amounts of video data of zooplankton, analyzing them using general-purpose computer vision tools turns out to be highly challenging due to the high similarity in appearance between the zooplankton and its background (e.g., marine snow). In this work, we present the ZooplanktonBench, a benchmark dataset containing images and videos of zooplankton associated with rich geospatial metadata (e.g., geographic coordinates, depth, etc.) in various water ecosystems. ZooplanktonBench defines a collection of tasks to detect, classify, and track zooplankton in challenging settings, including highly cluttered environments, living vs non-living classification, objects with similar shapes, and relatively small objects. Our dataset presents unique challenges and opportunities for state-of-the-art computer vision systems to evolve and improve visual understanding in dynamic environments characterized by significant variation and the need for geo-awareness. The code and settings described in this paper can be found on our website: https://lfk118.github.io/ZooplanktonBench_Webpage.
Authors:Mengran Li, Pengyu Zhang, Wenbin Xing, Yijia Zheng, Klim Zaporojets, Junzhou Chen, Ronghui Zhang, Yong Zhang, Siyuan Gong, Jia Hu, Xiaolei Ma, Zhiyuan Liu, Paul Groth, Marcel Worring
Abstract:
Graphs are a widely used paradigm for representing non-Euclidean data, with applications ranging from social network analysis to biomolecular prediction. While graph learning has achieved remarkable progress, real-world graph data presents a number of challenges that significantly hinder the learning process. In this survey, we focus on four fundamental data-centric challenges: (1) Incompleteness, real-world graphs have missing nodes, edges, or attributes; (2) Imbalance, the distribution of the labels of nodes or edges and their structures for real-world graphs are highly skewed; (3) Cross-domain Heterogeneity, graphs from different domains exhibit incompatible feature spaces or structural patterns; and (4) Dynamic Instability, graphs evolve over time in unpredictable ways. Recently, Large Language Models (LLMs) offer the potential to tackle these challenges by leveraging rich semantic reasoning and external knowledge. This survey focuses on how LLMs can address four fundamental data-centric challenges in graph-structured data, thereby improving the effectiveness of graph learning. For each challenge, we review both traditional solutions and modern LLM-driven approaches, highlighting how LLMs contribute unique advantages. Finally, we discuss open research questions and promising future directions in this emerging interdisciplinary field. To support further exploration, we have curated a repository of recent advances on graph learning challenges: https://github.com/limengran98/Awesome-Literature-Graph-Learning-Challenges.
Authors:Zhiyuan Zhang, Zhengtong Xu, Jai Nanda Lakamsani, Yu She
Abstract:
Visual Imitation learning has achieved remarkable progress in robotic manipulation, yet generalization to unseen objects, scene layouts, and camera viewpoints remains a key challenge. Recent advances address this by using 3D point clouds, which provide geometry-aware, appearance-invariant representations, and by incorporating equivariance into policy architectures to exploit spatial symmetries. However, existing equivariant approaches often lack interpretability and rigor due to unstructured integration of equivariant components. We introduce canonical policy, a principled framework for 3D equivariant imitation learning that unifies 3D point cloud observations under a canonical representation. We first establish a theory of 3D canonical representations, enabling equivariant observation-to-action mappings by grouping both in-distribution and out-of-distribution point clouds to a canonical representation. We then propose a flexible policy learning pipeline that leverages geometric symmetries from canonical representation and the expressiveness of modern generative models. We validate canonical policy on 12 diverse simulated tasks and 4 real-world manipulation tasks across 16 configurations, involving variations in object color, shape, camera viewpoint, and robot platform. Compared to state-of-the-art imitation learning policies, canonical policy achieves an average improvement of 18.0% in simulation and 37.6% in real-world experiments, demonstrating superior generalization capability and sample efficiency. For more details, please refer to the project website: https://zhangzhiyuanzhang.github.io/cp-website/.
Authors:Quan Khanh Luu, Pokuang Zhou, Zhengtong Xu, Zhiyuan Zhang, Qiang Qiu, Yu She
Abstract:
Supervised visuomotor policies have shown strong performance in robotic manipulation but often struggle in tasks with limited visual input, such as operations in confined spaces, dimly lit environments, or scenarios where perceiving the object's properties and state is critical for task success. In such cases, tactile feedback becomes essential for manipulation. While the rapid progress of supervised visuomotor policies has benefited greatly from high-quality, reproducible simulation benchmarks in visual imitation, the visuotactile domain still lacks a similarly comprehensive and reliable benchmark for large-scale and rigorous evaluation. To address this, we introduce ManiFeel, a reproducible and scalable simulation benchmark for studying supervised visuotactile manipulation policies across a diverse set of tasks and scenarios. ManiFeel presents a comprehensive benchmark suite spanning a diverse set of manipulation tasks, evaluating various policies, input modalities, and tactile representation methods. Through extensive experiments, our analysis reveals key factors that influence supervised visuotactile policy learning, identifies the types of tasks where tactile sensing is most beneficial, and highlights promising directions for future research in visuotactile policy learning. ManiFeel aims to establish a reproducible benchmark for supervised visuotactile policy learning, supporting progress in visuotactile manipulation and perception. To facilitate future research and ensure reproducibility, we will release our codebase, datasets, training logs, and pretrained checkpoints. Please visit the project website for more details: https://zhengtongxu.github.io/manifeel-website/
Authors:Jingkai Wang, Wu Miao, Jue Gong, Zheng Chen, Xing Liu, Hong Gu, Yutong Liu, Yulun Zhang
Abstract:
Face restoration has achieved remarkable advancements through the years of development. However, ensuring that restored facial images exhibit high fidelity, preserve authentic features, and avoid introducing artifacts or biases remains a significant challenge. This highlights the need for models that are more "honest" in their reconstruction from low-quality inputs, accurately reflecting original characteristics. In this work, we propose HonestFace, a novel approach designed to restore faces with a strong emphasis on such honesty, particularly concerning identity consistency and texture realism. To achieve this, HonestFace incorporates several key components. First, we propose an identity embedder to effectively capture and preserve crucial identity features from both the low-quality input and multiple reference faces. Second, a masked face alignment method is presented to enhance fine-grained details and textural authenticity, thereby preventing the generation of patterned or overly synthetic textures and improving overall clarity. Furthermore, we present a new landmark-based evaluation metric. Based on affine transformation principles, this metric improves the accuracy compared to conventional L2 distance calculations for facial feature alignment. Leveraging these contributions within a one-step diffusion model framework, HonestFace delivers exceptional restoration results in terms of facial fidelity and realism. Extensive experiments demonstrate that our approach surpasses existing state-of-the-art methods, achieving superior performance in both visual quality and quantitative assessments. The code and pre-trained models will be made publicly available at https://github.com/jkwang28/HonestFace .
Authors:Xuanhe Zhou, Junxuan He, Wei Zhou, Haodong Chen, Zirui Tang, Haoyu Zhao, Xin Tong, Guoliang Li, Youmin Chen, Jun Zhou, Zhaojun Sun, Binyuan Hui, Shuo Wang, Conghui He, Zhiyuan Liu, Jingren Zhou, Fan Wu
Abstract:
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
Authors:Zhichao Wu, Yueteng Kang, Songjun Cao, Long Ma, Qiulin Li, Qun Yang
Abstract:
Most existing Zero-Shot Text-To-Speech(ZS-TTS) systems generate the unseen speech based on single prompt, such as reference speech or text descriptions, which limits their flexibility. We propose a customized emotion ZS-TTS system based on multi-modal prompt. The system disentangles speech into the content, timbre, emotion and prosody, allowing emotion prompts to be provided as text, image or speech. To extract emotion information from different prompts, we propose a multi-modal prompt emotion encoder. Additionally, we introduce an prosody predictor to fit the distribution of prosody and propose an emotion consistency loss to preserve emotion information in the predicted prosody. A diffusion-based acoustic model is employed to generate the target mel-spectrogram. Both objective and subjective experiments demonstrate that our system outperforms existing systems in terms of naturalness and similarity. The samples are available at https://mpetts-demo.github.io/mpetts_demo/.
Authors:Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
Abstract:
Time-series forecasting plays a critical role in many real-world applications. Although increasingly powerful models have been developed and achieved superior results on benchmark datasets, through a fine-grained sample-level inspection, we find that (i) no single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases. These findings prompt us to explore how to adaptively leverage the distinct strengths of various forecasting models for different samples. We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models. TimeFuse utilizes meta-features to characterize input time series and trains a learnable fusor to predict optimal model fusion weights for any given input. The fusor can leverage samples from diverse datasets for joint training, allowing it to adapt to a wide variety of temporal patterns and thus generalize to new inputs, even from unseen datasets. Extensive experiments demonstrate the effectiveness of TimeFuse in various long-/short-term forecasting tasks, achieving near-universal improvement over the state-of-the-art individual models. Code is available at https://github.com/ZhiningLiu1998/TimeFuse.
Authors:Romeo Valentin, Sydney M. Katz, Vincent Vanhoucke, Mykel J. Kochenderfer
Abstract:
Dictionary learning has recently emerged as a promising approach for mechanistic interpretability of large transformer models. Disentangling high-dimensional transformer embeddings, however, requires algorithms that scale to high-dimensional data with large sample sizes. Recent work has explored sparse autoencoders (SAEs) for this problem. However, SAEs use a simple linear encoder to solve the sparse encoding subproblem, which is known to be NP-hard. It is therefore interesting to understand whether this structure is sufficient to find good solutions to the dictionary learning problem or if a more sophisticated algorithm could find better solutions. In this work, we propose Double-Batch KSVD (DB-KSVD), a scalable dictionary learning algorithm that adapts the classic KSVD algorithm. DB-KSVD is informed by the rich theoretical foundations of KSVD but scales to datasets with millions of samples and thousands of dimensions. We demonstrate the efficacy of DB-KSVD by disentangling embeddings of the Gemma-2-2B model and evaluating on six metrics from the SAEBench benchmark, where we achieve competitive results when compared to established approaches based on SAEs. By matching SAE performance with an entirely different optimization approach, our results suggest that (i) SAEs do find strong solutions to the dictionary learning problem and (ii) that traditional optimization approaches can be scaled to the required problem sizes, offering a promising avenue for further research. We provide an implementation of DB-KSVD at https://github.com/RomeoV/KSVD.jl.
Authors:Afshin Bozorgpour, Sina Ghorbani Kolahi, Reza Azad, Ilker Hacihaliloglu, Dorit Merhof
Abstract:
Medical image segmentation, particularly in multi-domain scenarios, requires precise preservation of anatomical structures across diverse representations. While deep learning has advanced this field, existing models often struggle with accurate boundary representation, variability in organ morphology, and information loss during downsampling, limiting their accuracy and robustness. To address these challenges, we propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations. First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner. Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations. Extensive evaluations on both radiology and dermoscopic datasets demonstrate that CENet outperforms state-of-the-art (SOTA) methods in multi-organ segmentation and boundary detail preservation, offering a robust and accurate solution for complex medical image analysis tasks. The code is publicly available at https://github.com/xmindflow/cenet.
Authors:Yue Jiang, Jichu Li, Yang Liu, Dingkang Yang, Feng Zhou, Quyu Kong
Abstract:
We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. The code and dataset have been released at https://github.com/FRENKIE-CHIANG/DanmakuTPPBench
Authors:Lin Zhao, Yushu Wu, Xinru Jiang, Jianyang Gu, Yanzhi Wang, Xiaolin Xu, Pu Zhao, Xue Lin
Abstract:
Recent deep learning models demand larger datasets, driving the need for dataset distillation to create compact, cost-efficient datasets while maintaining performance. Due to the powerful image generation capability of diffusion, it has been introduced to this field for generating distilled images. In this paper, we systematically investigate issues present in current diffusion-based dataset distillation methods, including inaccurate distribution matching, distribution deviation with random noise, and separate sampling. Building on this, we propose D^3HR, a novel diffusion-based framework to generate distilled datasets with high representativeness. Specifically, we adopt DDIM inversion to map the latents of the full dataset from a low-normality latent domain to a high-normality Gaussian domain, preserving information and ensuring structural consistency to generate representative latents for the distilled dataset. Furthermore, we propose an efficient sampling scheme to better align the representative latents with the high-normality Gaussian distribution. Our comprehensive experiments demonstrate that D^3HR can achieve higher accuracy across different model architectures compared with state-of-the-art baselines in dataset distillation. Source code: https://github.com/lin-zhao-resoLve/D3HR.
Authors:Abdellah El Mekki, Houdaifa Atou, Omer Nacar, Shady Shehata, Muhammad Abdul-Mageed
Abstract:
Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter Egyptian and Moroccan Arabic LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. This work addresses Arabic dialect in LLMs with a focus on cultural and values alignment via controlled synthetic data generation and retrieval-augmented pre-training for Moroccan Darija and Egyptian Arabic, including Arabizi variants, advancing Arabic NLP for low-resource communities. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in cultural LLM development: https://github.com/UBC-NLP/nilechat .
Authors:Pingchuan Ma, Ziang Yin, Qi Jing, Zhengqi Gao, Nicholas Gangi, Boyang Zhang, Tsung-Wei Huang, Zhaoran Huang, Duane S. Boning, Yu Yao, Jiaqi Gu
Abstract:
DONNs leverage light propagation for efficient analog AI and signal processing. Advances in nanophotonic fabrication and metasurface-based wavefront engineering have opened new pathways to realize high-capacity DONNs across various spectral regimes. Training such DONN systems to determine the metasurface structures remains challenging. Heuristic methods are fast but oversimplify metasurfaces modulation, often resulting in physically unrealizable designs and significant performance degradation. Simulation-in-the-loop optimizes implementable metasurfaces via adjoint methods, but is computationally prohibitive and unscalable. To address these limitations, we propose SP2RINT, a spatially decoupled, progressive training framework that formulates DONN training as a PDE-constrained learning problem. Metasurface responses are first relaxed into freely trainable transfer matrices with a banded structure. We then progressively enforce physical constraints by alternating between transfer matrix training and adjoint-based inverse design, avoiding per-iteration PDE solves while ensuring final physical realizability. To further reduce runtime, we introduce a physics-inspired, spatially decoupled inverse design strategy based on the natural locality of field interactions. This approach partitions the metasurface into independently solvable patches, enabling scalable and parallel inverse design with system-level calibration. Evaluated across diverse DONN training tasks, SP2RINT achieves digital-comparable accuracy while being 1825 times faster than simulation-in-the-loop approaches. By bridging the gap between abstract DONN models and implementable photonic hardware, SP2RINT enables scalable, high-performance training of physically realizable meta-optical neural systems. Our code is available at https://github.com/ScopeX-ASU/SP2RINT
Authors:Minwoo Jung, Lanke Frank Tarimo Fu, Maurice Fallon, Ayoung Kim
Abstract:
LiDAR Place Recognition (LPR) is a key component in robotic localization, enabling robots to align current scans with prior maps of their environment. While Visual Place Recognition (VPR) has embraced Vision Foundation Models (VFMs) to enhance descriptor robustness, LPR has relied on task-specific models with limited use of pre-trained foundation-level knowledge. This is due to the lack of 3D foundation models and the challenges of using VFM with LiDAR point clouds. To tackle this, we introduce ImLPR, a novel pipeline that employs a pre-trained DINOv2 VFM to generate rich descriptors for LPR. To the best of our knowledge, ImLPR is the first method to utilize a VFM for LPR while retaining the majority of pre-trained knowledge. ImLPR converts raw point clouds into novel three-channel Range Image Views (RIV) to leverage VFM in the LiDAR domain. It employs MultiConv adapters and Patch-InfoNCE loss for effective feature learning. We validate ImLPR on public datasets and outperform state-of-the-art (SOTA) methods across multiple evaluation metrics in both intra- and inter-session LPR. Comprehensive ablations on key design choices such as channel composition, RIV, adapters, and the patch-level loss quantify each component's impact. We release ImLPR as open source for the robotics community: https://github.com/minwoo0611/ImLPR.
Authors:Jianyang Gu, Haonan Wang, Ruoxi Jia, Saeed Vahidian, Vyacheslav Kungurtsev, Wei Jiang, Yiran Chen
Abstract:
Dataset distillation (DD) has witnessed significant progress in creating small datasets that encapsulate rich information from large original ones. Particularly, methods based on generative priors show promising performance, while maintaining computational efficiency and cross-architecture generalization. However, the generation process lacks explicit controllability for each sample. Previous distillation methods primarily match the real distribution from the perspective of the entire dataset, whereas overlooking concept completeness at the instance level. The missing or incorrectly represented object details cannot be efficiently compensated due to the constrained sample amount typical in DD settings. To this end, we propose incorporating the concept understanding of large language models (LLMs) to perform Concept-Informed Diffusion (CONCORD) for dataset distillation. Specifically, distinguishable and fine-grained concepts are retrieved based on category labels to inform the denoising process and refine essential object details. By integrating these concepts, the proposed method significantly enhances both the controllability and interpretability of the distilled image generation, without relying on pre-trained classifiers. We demonstrate the efficacy of CONCORD by achieving state-of-the-art performance on ImageNet-1K and its subsets. The code implementation is released in https://github.com/vimar-gu/CONCORD.
Authors:MÃriam Máximo, Antonio Santo, Arturo Gil, Mónica Ballesta, David Valiente
Abstract:
The location of a robot is a key aspect in the field of mobile robotics. This problem is particularly complex when the initial pose of the robot is unknown. In order to find a solution, it is necessary to perform a global localization. In this paper, we propose a method that addresses this problem using a coarse-to-fine solution. The coarse localization relies on a probabilistic approach of the Monte Carlo Localization (MCL) method, with the contribution of a robust deep learning model, the MinkUNeXt neural network, to produce a robust description of point clouds of a 3D LiDAR within the observation model. For fine localization, global point cloud registration has been implemented. MinkUNeXt aids this by exploiting the outputs of its intermediate layers to produce deep local features for each point in a scan. These features facilitate precise alignment between the current sensor observation and one of the point clouds on the map. The proposed MCL method incorporating Deep Local Features for fine localization is termed MCL-DLF. Alternatively, a classical ICP method has been implemented for this precise localization aiming at comparison purposes. This method is termed MCL-ICP. In order to validate the performance of MCL-DLF method, it has been tested on publicly available datasets such as the NCLT dataset, which provides seasonal large-scale environments. Additionally, tests have been also performed with own data (UMH) that also includes seasonal variations on large indoor/outdoor scenarios. The results, which were compared with established state-of-the-art methodologies, demonstrate that the MCL-DLF method obtains an accurate estimate of the robot localization in dynamic environments despite changes in environmental conditions. For reproducibility purposes, the code is publicly available at https://github.com/miriammaximo/MCL-DLF.git
Authors:Jiaxun Cui, Chen Tang, Jarrett Holtz, Janice Nguyen, Alessandro G. Allievi, Hang Qiu, Peter Stone
Abstract:
Past work has demonstrated that autonomous vehicles can drive more safely if they communicate with one another than if they do not. However, their communication has often not been human-understandable. Using natural language as a vehicle-to-vehicle (V2V) communication protocol offers the potential for autonomous vehicles to drive cooperatively not only with each other but also with human drivers. In this work, we propose a suite of traffic tasks in autonomous driving where vehicles in a traffic scenario need to communicate in natural language to facilitate coordination in order to avoid an imminent collision and/or support efficient traffic flow. To this end, this paper introduces a novel method, LLM+Debrief, to learn a message generation and high-level decision-making policy for autonomous vehicles through multi-agent discussion. To evaluate LLM agents for driving, we developed a gym-like simulation environment that contains a range of driving scenarios. Our experimental results demonstrate that LLM+Debrief is more effective at generating meaningful and human-understandable natural language messages to facilitate cooperation and coordination than a zero-shot LLM agent. Our code and demo videos are available at https://talking-vehicles.github.io/.
Authors:Yuqi Jia, Zedian Shao, Yupei Liu, Jinyuan Jia, Dawn Song, Neil Zhenqiang Gong
Abstract:
Large Language Models (LLMs) are vulnerable to prompt injection attacks, and several defenses have recently been proposed, often claiming to mitigate these attacks successfully. However, we argue that existing studies lack a principled approach to evaluating these defenses. In this paper, we argue the need to assess defenses across two critical dimensions: (1) effectiveness, measured against both existing and adaptive prompt injection attacks involving diverse target and injected prompts, and (2) general-purpose utility, ensuring that the defense does not compromise the foundational capabilities of the LLM. Our critical evaluation reveals that prior studies have not followed such a comprehensive evaluation methodology. When assessed using this principled approach, we show that existing defenses are not as successful as previously reported. This work provides a foundation for evaluating future defenses and guiding their development. Our code and data are available at: https://github.com/PIEval123/PIEval.
Authors:Licheng Pan, Yongqi Tong, Xin Zhang, Xiaolu Zhang, Jun Zhou, Zhixuan Chu
Abstract:
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they often refuse to answer legitimate queries--a phenomenon known as overrefusal. Overrefusal typically stems from over-conservative safety alignment, causing models to treat many reasonable prompts as potentially risky. To systematically understand this issue, we probe and leverage the models' safety decision boundaries to analyze and mitigate overrefusal. Our findings reveal that overrefusal is closely tied to misalignment at these boundary regions, where models struggle to distinguish subtle differences between benign and harmful content. Building on these insights, we present RASS, an automated framework for prompt generation and selection that strategically targets overrefusal prompts near the safety boundary. By harnessing steering vectors in the representation space, RASS efficiently identifies and curates boundary-aligned prompts, enabling more effective and targeted mitigation of overrefusal. This approach not only provides a more precise and interpretable view of model safety decisions but also seamlessly extends to multilingual scenarios. We have explored the safety decision boundaries of various LLMs and construct the MORBench evaluation set to facilitate robust assessment of model safety and helpfulness across multiple languages. Code and datasets are available at https://github.com/Master-PLC/RASS.
Authors:Sifan Wu, Huan Zhang, Yizhan Li, Farshid Effaty, Amirreza Ataei, Bang Liu
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) that integrate vision and language modalities has unlocked new potentials for scientific reasoning, outperforming prior benchmarks in both natural language and coding domains. Current materials science evaluation datasets such as MaScQA and SciQA remain largely text-based and fail to capture the visual and research-level analytic complexity required in materials discovery and design. We introduce MatVQA, a scalable benchmark specifically designed to address this gap. Generated via an automated pipeline, MArxivAgent, from recent materials literature, MatVQA features 1325 questions across four critical structure-property-performance (SPP) reasoning tasks. Uniquely, MatVQA employs an iterative process to eliminate textual shortcuts, compelling MLLMs to perform fine-grained, low-level visual analysis of material imagery (e.g., microscopy, diffraction patterns) integrated with multi-step scientific reasoning. Benchmarking 17 open- and closed-source MLLMs on MatVQA reveals substantial gaps in current multimodal reasoning capabilities. MatVQA benchmark data, along with evaluation code, is publicly available in \href{https://anonymous.4open.science/r/matvqa-1E01}{https://anonymous.4open.science/r/matvqa-1E01/README.md} to catalyze further research in applying MLLMs to complex materials science problems.
Authors:Zifu Wan, Yaqi Xie, Ce Zhang, Zhiqiu Lin, Zihan Wang, Simon Stepputtis, Deva Ramanan, Katia Sycara
Abstract:
Large multimodal foundation models, particularly in the domains of language and vision, have significantly advanced various tasks, including robotics, autonomous driving, information retrieval, and grounding. However, many of these models perceive objects as indivisible, overlooking the components that constitute them. Understanding these components and their associated affordances provides valuable insights into an object's functionality, which is fundamental for performing a wide range of tasks. In this work, we introduce a novel real-world benchmark, InstructPart, comprising hand-labeled part segmentation annotations and task-oriented instructions to evaluate the performance of current models in understanding and executing part-level tasks within everyday contexts. Through our experiments, we demonstrate that task-oriented part segmentation remains a challenging problem, even for state-of-the-art Vision-Language Models (VLMs). In addition to our benchmark, we introduce a simple baseline that achieves a twofold performance improvement through fine-tuning with our dataset. With our dataset and benchmark, we aim to facilitate research on task-oriented part segmentation and enhance the applicability of VLMs across various domains, including robotics, virtual reality, information retrieval, and other related fields. Project website: https://zifuwan.github.io/InstructPart/.
Authors:Jianghao Wu, Feilong Tang, Yulong Li, Ming Hu, Haochen Xue, Shoaib Jameel, Yutong Xie, Imran Razzak
Abstract:
Recent advances such as Chain-of-Thought prompting have significantly improved large language models (LLMs) in zero-shot medical reasoning. However, prompting-based methods often remain shallow and unstable, while fine-tuned medical LLMs suffer from poor generalization under distribution shifts and limited adaptability to unseen clinical scenarios. To address these limitations, we present TAGS, a test-time framework that combines a broadly capable generalist with a domain-specific specialist to offer complementary perspectives without any model fine-tuning or parameter updates. To support this generalist-specialist reasoning process, we introduce two auxiliary modules: a hierarchical retrieval mechanism that provides multi-scale exemplars by selecting examples based on both semantic and rationale-level similarity, and a reliability scorer that evaluates reasoning consistency to guide final answer aggregation. TAGS achieves strong performance across nine MedQA benchmarks, boosting GPT-4o accuracy by 13.8%, DeepSeek-R1 by 16.8%, and improving a vanilla 7B model from 14.1% to 23.9%. These results surpass several fine-tuned medical LLMs, without any parameter updates. The code will be available at https://github.com/JianghaoWu/TAGS.
Authors:Roy Elkayam
Abstract:
This study presents a novel approach for decomposing urban water demand patterns using Skewed Gaussian Distributions (SGD) to derive behavioral insights and support operational planning. Hourly demand profiles contain critical information for both long-term infrastructure design and daily operations, influencing network pressures, water quality, energy consumption, and overall reliability. By breaking down each daily demand curve into a baseline component and distinct peak components, the proposed SGD method characterizes each peak with interpretable parameters, including peak amplitude, timing (mean), spread (duration), and skewness (asymmetry), thereby reconstructing the observed pattern and uncovering latent usage dynamics. This detailed peak-level decomposition enables both operational applications, e.g. anomaly and leakage detection, real-time demand management, and strategic analyses, e.g. identifying behavioral shifts, seasonal influences, or policy impacts on consumption patterns. Unlike traditional symmetric Gaussian or purely statistical time-series models, SGDs explicitly capture asymmetric peak shapes such as sharp morning surges followed by gradual declines, improving the fidelity of synthetic pattern generation and enhancing the detection of irregular consumption behavior. The method is demonstrated on several real-world datasets, showing that SGD outperforms symmetric Gaussian models in reconstruction accuracy, reducing root-mean-square error by over 50% on average, while maintaining physical interpretability. The SGD framework can also be used to construct synthetic demand scenarios by designing daily peak profiles with chosen characteristics. All implementation code is publicly available at: https://github.com/Relkayam/water-demand-decomposition-sgd
Authors:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao
Abstract:
With the rapid advancement of low-altitude remote sensing and Vision-Language Models (VLMs), Embodied Agents based on Unmanned Aerial Vehicles (UAVs) have shown significant potential in autonomous tasks. However, current evaluation methods for UAV-Embodied Agents (UAV-EAs) remain constrained by the lack of standardized benchmarks, diverse testing scenarios and open system interfaces. To address these challenges, we propose BEDI (Benchmark for Embodied Drone Intelligence), a systematic and standardized benchmark designed for evaluating UAV-EAs. Specifically, we introduce a novel Dynamic Chain-of-Embodied-Task paradigm based on the perception-decision-action loop, which decomposes complex UAV tasks into standardized, measurable subtasks. Building on this paradigm, we design a unified evaluation framework encompassing five core sub-skills: semantic perception, spatial perception, motion control, tool utilization, and task planning. Furthermore, we construct a hybrid testing platform that integrates static real-world environments with dynamic virtual scenarios, enabling comprehensive performance assessment of UAV-EAs across varied contexts. The platform also offers open and standardized interfaces, allowing researchers to customize tasks and extend scenarios, thereby enhancing flexibility and scalability in the evaluation process. Finally, through empirical evaluations of several state-of-the-art (SOTA) VLMs, we reveal their limitations in embodied UAV tasks, underscoring the critical role of the BEDI benchmark in advancing embodied intelligence research and model optimization. By filling the gap in systematic and standardized evaluation within this field, BEDI facilitates objective model comparison and lays a robust foundation for future development in this field. Our benchmark will be released at https://github.com/lostwolves/BEDI .
Authors:Zhenglun Kong, Yize Li, Fanhu Zeng, Lei Xin, Shvat Messica, Xue Lin, Pu Zhao, Manolis Kellis, Hao Tang, Marinka Zitnik
Abstract:
In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.
Authors:Beck LaBash, Shahriar Khushrushahi, Fabian Ruehle
Abstract:
We propose a two-stage deep learning framework for the inverse design of rectangular patch antennas. Our approach leverages generative modeling to learn a latent representation of antenna frequency response curves and conditions a subsequent generative model on these responses to produce feasible antenna geometries. We further demonstrate that leveraging search and optimization techniques at test-time improves the accuracy of the generated designs and enables consideration of auxiliary objectives such as manufacturability. Our approach generalizes naturally to different design criteria, and can be easily adapted to more complex geometric design spaces.
Authors:Min Namgung, Yijun Lin, JangHyeon Lee, Yao-Yi Chiang
Abstract:
With the increasing availability of geospatial datasets, researchers have explored region representation learning (RRL) to analyze complex region characteristics. Recent RRL methods use contrastive learning (CL) to capture shared information between two modalities but often overlook task-relevant unique information specific to each modality. Such modality-specific details can explain region characteristics that shared information alone cannot capture. Bringing information factorization to RRL can address this by factorizing multimodal data into shared and unique information. However, existing factorization approaches focus on two modalities, whereas RRL can benefit from various geospatial data. Extending factorization beyond two modalities is non-trivial because modeling high-order relationships introduces a combinatorial number of learning objectives, increasing model complexity. We introduce Cross modal Knowledge Injected Embedding, an information factorization approach for RRL that captures both shared and unique representations. CooKIE uses a pairwise inter-view learning approach that captures high-order information without modeling high-order dependency, avoiding exhaustive combinations. We evaluate CooKIE on three regression tasks and a land use classification task in New York City and Delhi, India. Results show that CooKIE outperforms existing RRL methods and a factorized RRL model, capturing multimodal information with fewer training parameters and floating-point operations per second (FLOPs). We release the code: https://github.com/MinNamgung/CooKIE.
Authors:Natia Kukhilava, Tatia Tsmindashvili, Rapael Kalandadze, Anchit Gupta, Sofio Katamadze, François Brémond, Laura M. Ferrari, Philipp Müller, Benedikt Emanuel Wirth
Abstract:
Electroencephalography-based Emotion Recognition (EEG-ER) has become a growing research area in recent years. Analyzing 216 papers published between 2018 and 2023, we uncover that the field lacks a unified evaluation protocol, which is essential to fairly define the state of the art, compare new approaches and to track the field's progress. We report the main inconsistencies between the used evaluation protocols, which are related to ground truth definition, evaluation metric selection, data splitting types (e.g., subject-dependent or subject-independent) and the use of different datasets. Capitalizing on this state-of-the-art research, we propose a unified evaluation protocol, EEGain (https://github.com/EmotionLab/EEGain), which enables an easy and efficient evaluation of new methods and datasets. EEGain is a novel open source software framework, offering the capability to compare - and thus define - state-of-the-art results. EEGain includes standardized methods for data pre-processing, data splitting, evaluation metrics, and the ability to load the six most relevant datasets (i.e., AMIGOS, DEAP, DREAMER, MAHNOB-HCI, SEED, SEED-IV) in EEG-ER with only a single line of code. In addition, we have assessed and validated EEGain using these six datasets on the four most common publicly available methods (EEGNet, DeepConvNet, ShallowConvNet, TSception). This is a significant step to make research on EEG-ER more reproducible and comparable, thereby accelerating the overall progress of the field.
Authors:Austin Howard
Abstract:
Large Language Models (LLMs) are changing the way people interact with technology. Tools like ChatGPT and Claude AI are now common in business, research, and everyday life. But with that growth comes new risks, especially prompt-based attacks that exploit how these models process language. InjectLab is a security framework designed to address that problem. This paper introduces InjectLab as a structured, open-source matrix that maps real-world techniques used to manipulate LLMs. The framework is inspired by MITRE ATT&CK and focuses specifically on adversarial behavior at the prompt layer. It includes over 25 techniques organized under six core tactics, covering threats like instruction override, identity swapping, and multi-agent exploitation. Each technique in InjectLab includes detection guidance, mitigation strategies, and YAML-based simulation tests. A Python tool supports easy execution of prompt-based test cases. This paper outlines the framework's structure, compares it to other AI threat taxonomies, and discusses its future direction as a practical, community-driven foundation for securing language models.
Authors:Savya Khosla, Sethuraman TV, Barnett Lee, Alexander Schwing, Derek Hoiem
Abstract:
We introduce the Region Encoder Network (REN), a fast and effective model for generating region-based image representations using point prompts. Recent methods combine class-agnostic segmenters (e.g., SAM) with patch-based image encoders (e.g., DINO) to produce compact and effective region representations, but they suffer from high computational cost due to the segmentation step. REN bypasses this bottleneck using a lightweight module that directly generates region tokens, enabling 60x faster token generation with 35x less memory, while also improving token quality. It uses a few cross-attention blocks that take point prompts as queries and features from a patch-based image encoder as keys and values to produce region tokens that correspond to the prompted objects. We train REN with three popular encoders-DINO, DINOv2, and OpenCLIP-and show that it can be extended to other encoders without dedicated training. We evaluate REN on semantic segmentation and retrieval tasks, where it consistently outperforms the original encoders in both performance and compactness, and matches or exceeds SAM-based region methods while being significantly faster. Notably, REN achieves state-of-the-art results on the challenging Ego4D VQ2D benchmark and outperforms proprietary LMMs on Visual Haystacks' single-needle challenge. Code and models are available at: https://github.com/savya08/REN.
Authors:Wafa Alghallabi, Ritesh Thawkar, Sara Ghaboura, Ketan More, Omkar Thawakar, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Abstract:
Arabic poetry is one of the richest and most culturally rooted forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce \emph{Fann or Flop}, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in 12 historical eras, covering 14 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM understands classical Arabic through Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release "Fann or Flop" along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop.
Authors:Zizhang Li, Hong-Xing Yu, Wei Liu, Yin Yang, Charles Herrmann, Gordon Wetzstein, Jiajun Wu
Abstract:
WonderPlay is a novel framework integrating physics simulation with video generation for generating action-conditioned dynamic 3D scenes from a single image. While prior works are restricted to rigid body or simple elastic dynamics, WonderPlay features a hybrid generative simulator to synthesize a wide range of 3D dynamics. The hybrid generative simulator first uses a physics solver to simulate coarse 3D dynamics, which subsequently conditions a video generator to produce a video with finer, more realistic motion. The generated video is then used to update the simulated dynamic 3D scene, closing the loop between the physics solver and the video generator. This approach enables intuitive user control to be combined with the accurate dynamics of physics-based simulators and the expressivity of diffusion-based video generators. Experimental results demonstrate that WonderPlay enables users to interact with various scenes of diverse content, including cloth, sand, snow, liquid, smoke, elastic, and rigid bodies -- all using a single image input. Code will be made public. Project website: https://kyleleey.github.io/WonderPlay/
Authors:Junfeng Wu, Dongliang Luo, Weizhi Zhao, Zhihao Xie, Yuanhao Wang, Junyi Li, Xudong Xie, Yuliang Liu, Xiang Bai
Abstract:
In this work, we reveal the limitations of visual tokenizers and VAEs in preserving fine-grained features, and propose a benchmark to evaluate reconstruction performance for two challenging visual contents: text and face. Visual tokenizers and VAEs have significantly advanced visual generation and multimodal modeling by providing more efficient compressed or quantized image representations. However, while helping production models reduce computational burdens, the information loss from image compression fundamentally limits the upper bound of visual generation quality. To evaluate this upper bound, we focus on assessing reconstructed text and facial features since they typically: 1) exist at smaller scales, 2) contain dense and rich textures, 3) are prone to collapse, and 4) are highly sensitive to human vision. We first collect and curate a diverse set of clear text and face images from existing datasets. Unlike approaches using VLM models, we employ established OCR and face recognition models for evaluation, ensuring accuracy while maintaining an exceptionally lightweight assessment process requiring just 2GB memory and 4 minutes to complete. Using our benchmark, we analyze text and face reconstruction quality across various scales for different image tokenizers and VAEs. Our results show modern visual tokenizers still struggle to preserve fine-grained features, especially at smaller scales. We further extend this evaluation framework to video, conducting comprehensive analysis of video tokenizers. Additionally, we demonstrate that traditional metrics fail to accurately reflect reconstruction performance for faces and text, while our proposed metrics serve as an effective complement.
Authors:Kazem Faghih, Wenxiao Wang, Yize Cheng, Siddhant Bharti, Gaurang Sriramanan, Sriram Balasubramanian, Parsa Hosseini, Soheil Feizi
Abstract:
Large language models (LLMs) can now access a wide range of external tools, thanks to the Model Context Protocol (MCP). This greatly expands their abilities as various agents. However, LLMs rely entirely on the text descriptions of tools to decide which ones to use--a process that is surprisingly fragile. In this work, we expose a vulnerability in prevalent tool/function-calling protocols by investigating a series of edits to tool descriptions, some of which can drastically increase a tool's usage from LLMs when competing with alternatives. Through controlled experiments, we show that tools with properly edited descriptions receive over 10 times more usage from GPT-4.1 and Qwen2.5-7B than tools with original descriptions. We further evaluate how various edits to tool descriptions perform when competing directly with one another and how these trends generalize or differ across a broader set of 17 different models. These phenomena, while giving developers a powerful way to promote their tools, underscore the need for a more reliable foundation for agentic LLMs to select and utilize tools and resources. Our code is publicly available at https://github.com/kazemf78/llm-unreliable-tool-preferences.
Authors:Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao Dai, Pengfei Liu, Junjie Yan
Abstract:
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
Authors:Jacob Hansen, Wei Lin, Junmo Kang, Muhammad Jehanzeb Mirza, Hongyin Luo, Rogerio Feris, Alan Ritter, James Glass, Leonid Karlinsky
Abstract:
Visual Instruction Tuning (VisIT) data, commonly available as human-assistant conversations with images interleaved in the human turns, are currently the most widespread vehicle for aligning strong LLMs to understand visual inputs, converting them to strong LMMs. While many VisIT datasets are available, most are constructed using ad-hoc techniques developed independently by different groups. They are often poorly documented, lack reproducible code, and rely on paid, closed-source model APIs such as GPT-4, Gemini, or Claude to convert image metadata (labels) into VisIT instructions. This leads to high costs and makes it challenging to scale, enhance quality, or generate VisIT data for new datasets. In this work, we address these challenges and propose an open and unified recipe and approach,~\textbf{\method}, for converting available metadata to VisIT instructions using open LLMs. Our multi-stage \method features an efficient framework for metadata grouping, quality control, data and prompt organization, and conversation sampling. We show that our approach can reproduce or enhance the data quality of available VisIT datasets when applied to the same image data and metadata sources, improving GPT-4 generated VisIT instructions by ~3\% on average and up to 12\% on individual benchmarks using open models, such as Gemma 2 27B and LLaMa 3.1 70B. Additionally, our approach enables effective performance scaling - both in quantity and quality - by enhancing the resulting LMM performance across a wide range of benchmarks. We also analyze the impact of various factors, including conversation format, base model selection, and resampling strategies. Our code, which supports the reproduction of equal or higher-quality VisIT datasets and facilities future metadata-to-VisIT data conversion for niche domains, is released at https://github.com/jacob-hansen/Instructify.
Authors:Lisheng Huang, Yichen Liu, Jinhao Jiang, Rongxiang Zhang, Jiahao Yan, Junyi Li, Wayne Xin Zhao
Abstract:
Recent advances in web-augmented large language models (LLMs) have exhibited strong performance in complex reasoning tasks, yet these capabilities are mostly locked in proprietary systems with opaque architectures. In this work, we propose \textbf{ManuSearch}, a transparent and modular multi-agent framework designed to democratize deep search for LLMs. ManuSearch decomposes the search and reasoning process into three collaborative agents: (1) a solution planning agent that iteratively formulates sub-queries, (2) an Internet search agent that retrieves relevant documents via real-time web search, and (3) a structured webpage reading agent that extracts key evidence from raw web content. To rigorously evaluate deep reasoning abilities, we introduce \textbf{ORION}, a challenging benchmark focused on open-web reasoning over long-tail entities, covering both English and Chinese. Experimental results show that ManuSearch substantially outperforms prior open-source baselines and even surpasses leading closed-source systems. Our work paves the way for reproducible, extensible research in open deep search systems. We release the data and code in https://github.com/RUCAIBox/ManuSearch
Authors:Yuxin Liu, M. Amin Rahimian, Kiran Garimella
Abstract:
WhatsApp, a platform with more than two billion global users, plays a crucial role in digital communication, but also serves as a vector for harmful content such as misinformation, hate speech, and political propaganda. This study examines the dynamics of harmful message dissemination in WhatsApp groups, with a focus on their structural characteristics. Using a comprehensive data set of more than 5.1 million messages, including text, images, and videos, collected from approximately 6,000 groups in India, we reconstruct message propagation cascades to analyze dissemination patterns. Our findings reveal that harmful messages consistently achieve greater depth and breadth of dissemination compared to messages without harmful annotations, with videos and images emerging as the primary modes of dissemination. These results suggest a distinctive pattern of dissemination of harmful content. However, our analysis indicates that modality alone cannot fully account for the structural differences in propagation.The findings highlight the critical role of structural characteristics in the spread of these harmful messages, suggesting that strategies targeting structural characteristics of re-sharing could be crucial in managing the dissemination of such content on private messaging platforms.
Authors:Ziqiao Peng, Yanbo Fan, Haoyu Wu, Xuan Wang, Hongyan Liu, Jun He, Zhaoxin Fan
Abstract:
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
Authors:Hyungyung Lee, Geon Choi, Jung-Oh Lee, Hangyul Yoon, Hyuk Gi Hong, Edward Choi
Abstract:
Recent progress in Large Vision-Language Models (LVLMs) has enabled promising applications in medical tasks, such as report generation and visual question answering. However, existing benchmarks focus mainly on the final diagnostic answer, offering limited insight into whether models engage in clinically meaningful reasoning. To address this, we present CheXStruct and CXReasonBench, a structured pipeline and benchmark built on the publicly available MIMIC-CXR-JPG dataset. CheXStruct automatically derives a sequence of intermediate reasoning steps directly from chest X-rays, such as segmenting anatomical regions, deriving anatomical landmarks and diagnostic measurements, computing diagnostic indices, and applying clinical thresholds. CXReasonBench leverages this pipeline to evaluate whether models can perform clinically valid reasoning steps and to what extent they can learn from structured guidance, enabling fine-grained and transparent assessment of diagnostic reasoning. The benchmark comprises 18,988 QA pairs across 12 diagnostic tasks and 1,200 cases, each paired with up to 4 visual inputs, and supports multi-path, multi-stage evaluation including visual grounding via anatomical region selection and diagnostic measurements. Even the strongest of 10 evaluated LVLMs struggle with structured reasoning and generalization, often failing to link abstract knowledge with anatomically grounded visual interpretation. The code is available at https://github.com/ttumyche/CXReasonBench
Authors:Georgios Kementzidis, Erin Wong, John Nicholson, Ruichen Xu, Yuefan Deng
Abstract:
The techniques of data-driven backmapping from coarse-grained (CG) to fine-grained (FG) representation often struggle with accuracy, unstable training, and physical realism, especially when applied to complex systems such as proteins. In this work, we introduce a novel iterative framework by using conditional Variational Autoencoders and graph-based neural networks, specifically designed to tackle the challenges associated with such large-scale biomolecules. Our method enables stepwise refinement from CG beads to full atomistic details. We outline the theory of iterative generative backmapping and demonstrate via numerical experiments the advantages of multistep schemes by applying them to proteins of vastly different structures with very coarse representations. This multistep approach not only improves the accuracy of reconstructions but also makes the training process more computationally efficient for proteins with ultra-CG representations.
Authors:Xiaoyi Zhang, Zhaoyang Jia, Zongyu Guo, Jiahao Li, Bin Li, Houqiang Li, Yan Lu
Abstract:
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code has been released in https://github.com/microsoft/DeepVideoDiscovery.
Authors:Junhao Chen, Mingjin Chen, Jianjin Xu, Xiang Li, Junting Dong, Mingze Sun, Puhua Jiang, Hongxiang Li, Yuhang Yang, Hao Zhao, Xiaoxiao Long, Ruqi Huang
Abstract:
Controllable video generation (CVG) has advanced rapidly, yet current systems falter when more than one actor must move, interact, and exchange positions under noisy control signals. We address this gap with DanceTogether, the first end-to-end diffusion framework that turns a single reference image plus independent pose-mask streams into long, photorealistic videos while strictly preserving every identity. A novel MaskPoseAdapter binds "who" and "how" at every denoising step by fusing robust tracking masks with semantically rich-but noisy-pose heat-maps, eliminating the identity drift and appearance bleeding that plague frame-wise pipelines. To train and evaluate at scale, we introduce (i) PairFS-4K, 26 hours of dual-skater footage with 7,000+ distinct IDs, (ii) HumanRob-300, a one-hour humanoid-robot interaction set for rapid cross-domain transfer, and (iii) TogetherVideoBench, a three-track benchmark centered on the DanceTogEval-100 test suite covering dance, boxing, wrestling, yoga, and figure skating. On TogetherVideoBench, DanceTogether outperforms the prior arts by a significant margin. Moreover, we show that a one-hour fine-tune yields convincing human-robot videos, underscoring broad generalization to embodied-AI and HRI tasks. Extensive ablations confirm that persistent identity-action binding is critical to these gains. Together, our model, datasets, and benchmark lift CVG from single-subject choreography to compositionally controllable, multi-actor interaction, opening new avenues for digital production, simulation, and embodied intelligence. Our video demos and code are available at https://DanceTog.github.io/.
Authors:Kaiyan Zhang, Xinghui Li, Jingyi Lu, Kai Han
Abstract:
Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.
Authors:Sudarshan Rajagopalan, Kartik Narayan, Vishal M. Patel
Abstract:
The use of latent diffusion models (LDMs) such as Stable Diffusion has significantly improved the perceptual quality of All-in-One image Restoration (AiOR) methods, while also enhancing their generalization capabilities. However, these LDM-based frameworks suffer from slow inference due to their iterative denoising process, rendering them impractical for time-sensitive applications. To address this, we propose RestoreVAR, a novel generative approach for AiOR that significantly outperforms LDM-based models in restoration performance while achieving over $\mathbf{10\times}$ faster inference. RestoreVAR leverages visual autoregressive modeling (VAR), a recently introduced approach which performs scale-space autoregression for image generation. VAR achieves comparable performance to that of state-of-the-art diffusion transformers with drastically reduced computational costs. To optimally exploit these advantages of VAR for AiOR, we propose architectural modifications and improvements, including intricately designed cross-attention mechanisms and a latent-space refinement module, tailored for the AiOR task. Extensive experiments show that RestoreVAR achieves state-of-the-art performance among generative AiOR methods, while also exhibiting strong generalization capabilities.
Authors:Zizhao Chen, Yoav Artzi
Abstract:
We propose KnotGym, an interactive environment for complex, spatial reasoning and manipulation. KnotGym includes goal-oriented rope manipulation tasks with varying levels of complexity, all requiring acting from pure image observations. Tasks are defined along a clear and quantifiable axis of complexity based on the number of knot crossings, creating a natural generalization test. KnotGym has a simple observation space, allowing for scalable development, yet it highlights core challenges in integrating acute perception, spatial reasoning, and grounded manipulation. We evaluate methods of different classes, including model-based RL, model-predictive control, and chain-of-thought reasoning, and illustrate the challenges KnotGym presents. KnotGym is available at https://github.com/lil-lab/knotgym.
Authors:Xiaobao Wei, Jiawei Liu, Dongbo Yang, Junda Cheng, Changyong Shu, Wei Wang
Abstract:
We find that the EPE evaluation metrics of RAFT-stereo converge inconsistently in the low and high frequency regions, resulting high frequency degradation (e.g., edges and thin objects) during the iterative process. The underlying reason for the limited performance of current iterative methods is that it optimizes all frequency components together without distinguishing between high and low frequencies. We propose a wavelet-based stereo matching framework (Wavelet-Stereo) for solving frequency convergence inconsistency. Specifically, we first explicitly decompose an image into high and low frequency components using discrete wavelet transform. Then, the high-frequency and low-frequency components are fed into two different multi-scale frequency feature extractors. Finally, we propose a novel LSTM-based high-frequency preservation update operator containing an iterative frequency adapter to provide adaptive refined high-frequency features at different iteration steps by fine-tuning the initial high-frequency features. By processing high and low frequency components separately, our framework can simultaneously refine high-frequency information in edges and low-frequency information in smooth regions, which is especially suitable for challenging scenes with fine details and textures in the distance. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-art methods and ranks 1st on both the KITTI 2015 and KITTI 2012 leaderboards for almost all metrics. We will provide code and pre-trained models to encourage further exploration, application, and development of our innovative framework (https://github.com/SIA-IDE/Wavelet-Stereo).
Authors:Liang Yao, Fan Liu, Delong Chen, Chuanyi Zhang, Yijun Wang, Ziyun Chen, Wei Xu, Shimin Di, Yuhui Zheng
Abstract:
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
Authors:Yao Sun, Sining Chen, Yifan Tian, Xiao Xiang Zhu
Abstract:
Accurate information on the number of building floors, or above-ground storeys, is essential for household estimation, utility provision, risk assessment, evacuation planning, and energy modeling. Yet large-scale floor-count data are rarely available in cadastral and 3D city databases. This study proposes an end-to-end deep learning framework that infers floor numbers directly from unrestricted, crowdsourced street-level imagery, avoiding hand-crafted features and generalizing across diverse facade styles. To enable benchmarking, we release the Munich Building Floor Dataset, a public set of over 6800 geo-tagged images collected from Mapillary and targeted field photography, each paired with a verified storey label. On this dataset, the proposed classification-regression network attains 81.2% exact accuracy and predicts 97.9% of buildings within +/-1 floor. The method and dataset together offer a scalable route to enrich 3D city models with vertical information and lay a foundation for future work in urban informatics, remote sensing, and geographic information science. Source code and data will be released under an open license at https://github.com/ya0-sun/Munich-SVI-Floor-Benchmark.
Authors:Shashank Agnihotri, David Schader, Jonas Jakubassa, Nico Sharei, Simon Kral, Mehmet Ege Kaçar, Ruben Weber, Margret Keuper
Abstract:
Reliability and generalization in deep learning are predominantly studied in the context of image classification. Yet, real-world applications in safety-critical domains involve a broader set of semantic tasks, such as semantic segmentation and object detection, which come with a diverse set of dedicated model architectures. To facilitate research towards robust model design in segmentation and detection, our primary objective is to provide benchmarking tools regarding robustness to distribution shifts and adversarial manipulations. We propose the benchmarking tools SEMSEGBENCH and DETECBENCH, along with the most extensive evaluation to date on the reliability and generalization of semantic segmentation and object detection models. In particular, we benchmark 76 segmentation models across four datasets and 61 object detectors across two datasets, evaluating their performance under diverse adversarial attacks and common corruptions. Our findings reveal systematic weaknesses in state-of-the-art models and uncover key trends based on architecture, backbone, and model capacity. SEMSEGBENCH and DETECBENCH are open-sourced in our GitHub repository (https://github.com/shashankskagnihotri/benchmarking_reliability_generalization) along with our complete set of total 6139 evaluations. We anticipate the collected data to foster and encourage future research towards improved model reliability beyond classification.
Authors:Honghao Li, Yiwen Zhang, Yi Zhang, Lei Sang, Jieming Zhu
Abstract:
Hadamard Product (HP) has long been a cornerstone in click-through rate (CTR) prediction tasks due to its simplicity, effectiveness, and ability to capture feature interactions without additional parameters. However, the underlying reasons for its effectiveness remain unclear. In this paper, we revisit HP from the perspective of Quadratic Neural Networks (QNN), which leverage quadratic interaction terms to model complex feature relationships. We further reveal QNN's ability to expand the feature space and provide smooth nonlinear approximations without relying on activation functions. Meanwhile, we find that traditional post-activation does not further improve the performance of the QNN. Instead, mid-activation is a more suitable alternative. Through theoretical analysis and empirical evaluation of 25 QNN neuron formats, we identify a good-performing variant and make further enhancements on it. Specifically, we propose the Multi-Head Khatri-Rao Product as a superior alternative to HP and a Self-Ensemble Loss with dynamic ensemble capability within the same network to enhance computational efficiency and performance. Ultimately, we propose a novel neuron format, QNN-alpha, which is tailored for CTR prediction tasks. Experimental results show that QNN-alpha achieves new state-of-the-art performance on six public datasets while maintaining low inference latency, good scalability, and excellent compatibility. The code, running logs, and detailed hyperparameter configurations are available at: https://github.com/salmon1802/QNN.
Authors:Yutong Chen, Jiandong Gao, Ji Wu
Abstract:
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has substantial influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring \textbf{sample effect}. Our hypothetical analysis shows the potential to improve SFT efficiency. Guided by our analysis, we propose \textbf{Re-distillation}, a technique that aims to boost the effectiveness of small-scale distillation by sampling from the RL-trained policy. Re-distillation shows consistent surprising efficiency on three datasets and both Qwen\&Llama models: Re-distilled models matched RL performance with far fewer samples and less computation. As a result, on K\&K dataset, our re-distilled Qwen-2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. We demonstrate that re-distillation can be used to efficiently balance multiple goals in RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning.
Authors:Bryan Wong, Jong Woo Kim, Huazhu Fu, Mun Yong Yi
Abstract:
Vision-language models (VLMs) have recently been integrated into multiple instance learning (MIL) frameworks to address the challenge of few-shot, weakly supervised classification of whole slide images (WSIs). A key trend involves leveraging multi-scale information to better represent hierarchical tissue structures. However, existing methods often face two key limitations: (1) insufficient modeling of interactions within the same modalities across scales (e.g., 5x and 20x) and (2) inadequate alignment between visual and textual modalities on the same scale. To address these gaps, we propose HiVE-MIL, a hierarchical vision-language framework that constructs a unified graph consisting of (1) parent-child links between coarse (5x) and fine (20x) visual/textual nodes to capture hierarchical relationships, and (2) heterogeneous intra-scale edges linking visual and textual nodes on the same scale. To further enhance semantic consistency, HiVE-MIL incorporates a two-stage, text-guided dynamic filtering mechanism that removes weakly correlated patch-text pairs, and introduces a hierarchical contrastive loss to align textual semantics across scales. Extensive experiments on TCGA breast, lung, and kidney cancer datasets demonstrate that HiVE-MIL consistently outperforms both traditional MIL and recent VLM-based MIL approaches, achieving gains of up to 4.1% in macro F1 under 16-shot settings. Our results demonstrate the value of jointly modeling hierarchical structure and multimodal alignment for efficient and scalable learning from limited pathology data. The code is available at https://github.com/bryanwong17/HiVE-MIL
Authors:Simone Gaisbauer, Prabin Gyawali, Qilin Zhang, Olaf Wysocki, Boris Jutzi
Abstract:
Feature matching is a necessary step for many computer vision and photogrammetry applications such as image registration, structure-from-motion, and visual localization. Classical handcrafted methods such as SIFT feature detection and description combined with nearest neighbour matching and RANSAC outlier removal have been state-of-the-art for mobile mapping cameras. With recent advances in deep learning, learnable methods have been introduced and proven to have better robustness and performance under complex conditions. Despite their growing adoption, a comprehensive comparison between classical and learnable feature matching methods for the specific task of semantic 3D building camera-to-model matching is still missing. This submission systematically evaluates the effectiveness of different feature-matching techniques in visual localization using textured CityGML LoD2 models. We use standard benchmark datasets (HPatches, MegaDepth-1500) and custom datasets consisting of facade textures and corresponding camera images (terrestrial and drone). For the latter, we evaluate the achievable accuracy of the absolute pose estimated using a Perspective-n-Point (PnP) algorithm, with geometric ground truth derived from geo-referenced trajectory data. The results indicate that the learnable feature matching methods vastly outperform traditional approaches regarding accuracy and robustness on our challenging custom datasets with zero to 12 RANSAC-inliers and zero to 0.16 area under the curve. We believe that this work will foster the development of model-based visual localization methods. Link to the code: https://github.com/simBauer/To\_Glue\_or\_not\_to\_Glue
Authors:Ionut-Vlad Modoranu, Mher Safaryan, Erik Schultheis, Max Ryabinin, Artem Chumachenko, Dan Alistarh
Abstract:
Low-rank optimization has emerged as a promising direction in training large language models (LLMs) to improve running time and reduce the memory usage of adaptive optimizers by constraining learning to a lower-dimensional space. Prior work typically projects gradients of linear layers using approaches based on Singular Value Decomposition (SVD) or QR-decomposition. Applying these techniques individually to each layer in large models is computationally expensive and incurs additional memory costs due to storing the projection matrices. In this work, we propose a computationally efficient and conceptually simple, two-step procedure to approximate SVD/QR-based gradient projections into lower-dimensional spaces by using a predefined orthogonal matrix of the Discrete Cosine Transform (DCT). We dynamically select columns from the DCT matrix based on their alignment with the gradient of each layer. The effective projection matrices are obtained via a simple matmul with the DCT matrix in $O(n^3)$ time, followed by a lightweight sorting step to identify the most relevant basis vectors. For large layers, DCT can be computed via Makhoul's $N$-point algorithm based on Fast Fourier Transform (FFT) in $O(n^2 \log(n))$ time. Due to the predefined nature of the orthogonal bases, they are computed once at the start of training. Our numerical experiments on both pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy in approximating optimal low-rank projections, obtaining an approach with rank-independent running time that matches the performance of costly SVD/QR-based methods while achieving faster runtime and reduced memory usage by up to $25\%$ across different model sizes. Our code is available at \href{https://github.com/IST-DASLab/ISTA-DASLab-Optimizers}{\texttt{https://github.com/IST-DASLab/ISTA-DASLab-Optimizers}}.
Authors:Yujin Jeong, Arnas Uselis, Seong Joon Oh, Anna Rohrbach
Abstract:
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
Authors:Haihong Xiao, Jianan Zou, Yuxin Zhou, Ying He, Wenxiong Kang
Abstract:
We present SplatCo, a structure-view collaborative Gaussian splatting framework for high-fidelity rendering of complex outdoor environments. SplatCo builds upon two novel components: (1) a cross-structure collaboration module that combines global tri-plane representations, which capture coarse scene layouts, with local context grid features that represent fine surface details. This fusion is achieved through a novel hierarchical compensation strategy, ensuring both global consistency and local detail preservation; and (2) a cross-view assisted training strategy that enhances multi-view consistency by synchronizing gradient updates across viewpoints, applying visibility-aware densification, and pruning overfitted or inaccurate Gaussians based on structural consistency. Through joint optimization of structural representation and multi-view coherence, SplatCo effectively reconstructs fine-grained geometric structures and complex textures in large-scale scenes. Comprehensive evaluations on 13 diverse large-scale scenes, including Mill19, MatrixCity, Tanks & Temples, WHU, and custom aerial captures, demonstrate that SplatCo consistently achieves higher reconstruction quality than state-of-the-art methods, with PSNR improvements of 1-2 dB and SSIM gains of 0.1 to 0.2. These results establish a new benchmark for high-fidelity rendering of large-scale unbounded scenes. Code and additional information are available at https://github.com/SCUT-BIP-Lab/SplatCo.
Authors:Zigeng Chen, Xinyin Ma, Gongfan Fang, Ruonan Yu, Xinchao Wang
Abstract:
Large Reasoning Models (LRMs) excel at complex tasks using Chain-of-Thought (CoT) reasoning. However, their tendency to overthinking leads to unnecessarily lengthy reasoning chains, dramatically increasing inference costs. To mitigate this issue, we introduce VeriThinker, a novel approach for CoT compression. Unlike conventional methods that fine-tune LRMs directly on the original reasoning task using synthetic concise CoT data, we innovatively fine-tune the model solely through an auxiliary verification task. By training LRMs to accurately verify the correctness of CoT solutions, the LRMs inherently become more discerning about the necessity of subsequent self-reflection steps, thereby effectively suppressing overthinking. Extensive experiments validate that VeriThinker substantially reduces reasoning chain lengths while maintaining or even slightly improving accuracy. When applied to DeepSeek-R1-Distill-Qwen-7B, our approach reduces reasoning tokens on MATH500 from 3790 to 2125 while improving accuracy by 0.8% (94.0% to 94.8%), and on AIME25, tokens decrease from 14321 to 10287 with a 2.1% accuracy gain (38.7% to 40.8%). Additionally, our experiments demonstrate that VeriThinker can also be zero-shot generalized to speculative reasoning. Code is available at https://github.com/czg1225/VeriThinker
Authors:Nayoung Kim, Seongsu Kim, Sungsoo Ahn
Abstract:
Designing metal-organic frameworks (MOFs) with novel chemistries is a longstanding challenge due to their large combinatorial space and complex 3D arrangements of the building blocks. While recent deep generative models have enabled scalable MOF generation, they assume (1) a fixed set of building blocks and (2) known local 3D coordinates of building blocks. However, this limits their ability to (1) design novel MOFs and (2) generate the structure using novel building blocks. We propose a two-stage MOF generation framework that overcomes these limitations by modeling both chemical and geometric degrees of freedom. First, we train an SMILES-based autoregressive model to generate metal and organic building blocks, paired with a cheminformatics toolkit for 3D structure initialization. Second, we introduce a flow matching model that predicts translations, rotations, and torsional angles to assemble the blocks into valid 3D frameworks. Our experiments demonstrate improved reconstruction accuracy, the generation of valid, novel, and unique MOFs, and the ability to create novel building blocks. Our code is available at https://github.com/nayoung10/MOFFlow-2.
Authors:Zheyang Huang, Jagannath Aryal, Saeid Nahavandi, Xuequan Lu, Chee Peng Lim, Lei Wei, Hailing Zhou
Abstract:
Cross-view geo-localization determines the location of a query image, captured by a drone or ground-based camera, by matching it to a geo-referenced satellite image. While traditional approaches focus on image-level localization, many applications, such as search-and-rescue, infrastructure inspection, and precision delivery, demand object-level accuracy. This enables users to prompt a specific object with a single click on a drone image to retrieve precise geo-tagged information of the object. However, variations in viewpoints, timing, and imaging conditions pose significant challenges, especially when identifying visually similar objects in extensive satellite imagery. To address these challenges, we propose an Object-level Cross-view Geo-localization Network (OCGNet). It integrates user-specified click locations using Gaussian Kernel Transfer (GKT) to preserve location information throughout the network. This cue is dually embedded into the feature encoder and feature matching blocks, ensuring robust object-specific localization. Additionally, OCGNet incorporates a Location Enhancement (LE) module and a Multi-Head Cross Attention (MHCA) module to adaptively emphasize object-specific features or expand focus to relevant contextual regions when necessary. OCGNet achieves state-of-the-art performance on a public dataset, CVOGL. It also demonstrates few-shot learning capabilities, effectively generalizing from limited examples, making it suitable for diverse applications (https://github.com/ZheyangH/OCGNet).
Authors:Bin Wu, Wei Wang, Yahui Liu, Zixiang Li, Yao Zhao
Abstract:
Reward Feedback Learning (ReFL) has recently shown great potential in aligning model outputs with human preferences across various generative tasks. In this work, we introduce a ReFL framework, named DiffusionReward, to the Blind Face Restoration task for the first time. DiffusionReward effectively overcomes the limitations of diffusion-based methods, which often fail to generate realistic facial details and exhibit poor identity consistency. The core of our framework is the Face Reward Model (FRM), which is trained using carefully annotated data. It provides feedback signals that play a pivotal role in steering the optimization process of the restoration network. In particular, our ReFL framework incorporates a gradient flow into the denoising process of off-the-shelf face restoration methods to guide the update of model parameters. The guiding gradient is collaboratively determined by three aspects: (i) the FRM to ensure the perceptual quality of the restored faces; (ii) a regularization term that functions as a safeguard to preserve generative diversity; and (iii) a structural consistency constraint to maintain facial fidelity. Furthermore, the FRM undergoes dynamic optimization throughout the process. It not only ensures that the restoration network stays precisely aligned with the real face manifold, but also effectively prevents reward hacking. Experiments on synthetic and wild datasets demonstrate that our method outperforms state-of-the-art methods, significantly improving identity consistency and facial details. The source codes, data, and models are available at: https://github.com/01NeuralNinja/DiffusionReward.
Authors:Bram Grooten, Farid Hasanov, Chenxiang Zhang, Qiao Xiao, Boqian Wu, Zahra Atashgahi, Ghada Sokar, Shiwei Liu, Lu Yin, Elena Mocanu, Mykola Pechenizkiy, Decebal Constantin Mocanu
Abstract:
Model ensembles have long been a cornerstone for improving generalization and robustness in deep learning. However, their effectiveness often comes at the cost of substantial computational overhead. To address this issue, state-of-the-art methods aim to replicate ensemble-class performance without requiring multiple independently trained networks. Unfortunately, these algorithms often still demand considerable compute at inference. In response to these limitations, we introduce $\textbf{NeuroTrails}$, a sparse multi-head architecture with dynamically evolving topology. This unexplored model-agnostic training paradigm improves ensemble performance while reducing the required resources. We analyze the underlying reason for its effectiveness and observe that the various neural trails induced by dynamic sparsity attain a $\textit{Goldilocks zone}$ of prediction diversity. NeuroTrails displays efficacy with convolutional and transformer-based architectures on computer vision and language tasks. Experiments on ResNet-50/ImageNet, LLaMA-350M/C4, among many others, demonstrate increased accuracy and stronger robustness in zero-shot generalization, while requiring significantly fewer parameters.
Authors:Litao Guo, Xinli Xu, Luozhou Wang, Jiantao Lin, Jinsong Zhou, Zixin Zhang, Bolan Su, Ying-Cong Chen
Abstract:
With the rapid advancement of generative models, general-purpose generation has gained increasing attention as a promising approach to unify diverse tasks across modalities within a single system. Despite this progress, existing open-source frameworks often remain fragile and struggle to support complex real-world applications due to the lack of structured workflow planning and execution-level feedback. To address these limitations, we present ComfyMind, a collaborative AI system designed to enable robust and scalable general-purpose generation, built on the ComfyUI platform. ComfyMind introduces two core innovations: Semantic Workflow Interface (SWI) that abstracts low-level node graphs into callable functional modules described in natural language, enabling high-level composition and reducing structural errors; Search Tree Planning mechanism with localized feedback execution, which models generation as a hierarchical decision process and allows adaptive correction at each stage. Together, these components improve the stability and flexibility of complex generative workflows. We evaluate ComfyMind on three public benchmarks: ComfyBench, GenEval, and Reason-Edit, which span generation, editing, and reasoning tasks. Results show that ComfyMind consistently outperforms existing open-source baselines and achieves performance comparable to GPT-Image-1. ComfyMind paves a promising path for the development of open-source general-purpose generative AI systems. Project page: https://github.com/LitaoGuo/ComfyMind
Authors:Nikita Ivanov, Mark Klimov, Dmitry Glukhikh, Tatiana Chernysheva, Igor Glukhikh
Abstract:
Modern machine learning methods require significant amounts of labelled data, making the preparation process time-consuming and resource-intensive. In this paper, we propose to consider the process of prototyping a tool for annotating and generating training datasets based on video tracking and segmentation. We examine different approaches to solving this problem, from technology selection through to final implementation. The developed prototype significantly accelerates dataset generation compared to manual annotation. All resources are available at https://github.com/lnikioffic/track-anything-annotate
Authors:Hongshu Guo, Zeyuan Ma, Yining Ma, Xinglin Zhang, Wei-Neng Chen, Yue-Jiao Gong
Abstract:
Designing effective black-box optimizers is hampered by limited problem-specific knowledge and manual control that spans months for almost every detail. In this paper, we present DesignX, the first automated algorithm design framework that generates an effective optimizer specific to a given black-box optimization problem within seconds. Rooted in the first principles, we identify two key sub-tasks: 1) algorithm structure generation and 2) hyperparameter control. To enable systematic construction, a comprehensive modular algorithmic space is first built, embracing hundreds of algorithm components collected from decades of research. We then introduce a dual-agent reinforcement learning system that collaborates on structural and parametric design through a novel cooperative training objective, enabling large-scale meta-training across 10k diverse instances. Remarkably, through days of autonomous learning, the DesignX-generated optimizers continuously surpass human-crafted optimizers by orders of magnitude, either on synthetic testbed or on realistic optimization scenarios such as Protein-docking, AutoML and UAV path planning. Further in-depth analysis reveals DesignX's capability to discover non-trivial algorithm patterns beyond expert intuition, which, conversely, provides valuable design insights for the optimization community. We provide DesignX's inference code at https://github.com/MetaEvo/DesignX.
Authors:Ziwei Zhou, Rui Wang, Zuxuan Wu
Abstract:
Recent Multimodal Large Language Models (MLLMs) achieve promising performance on visual and audio benchmarks independently. However, the ability of these models to process cross-modal information synchronously remains largely unexplored. In this paper, we introduce: 1) Daily-Omni, an Audio-Visual Questioning and Answering benchmark comprising 684 videos of daily life scenarios from diverse sources, rich in both audio and visual information, and featuring 1197 multiple-choice QA pairs across 6 major tasks; 2) Daily-Omni QA Generation Pipeline, which includes automatic annotation, QA generation and QA optimization, significantly improves efficiency for human evaluation and scalability of the benchmark; 3) Daily-Omni-Agent, a training-free agent utilizing open-source Visual Language Model (VLM), Audio Language Model (ALM) and Automatic Speech Recognition (ASR) model to establish a baseline for this benchmark. The results show that current MLLMs still struggle significantly with tasks requiring audio-visual integration, but combining VLMs and ALMs with simple temporal alignment techniques can achieve substantially better performance. Codes and benchmark are available at \href{https://github.com/Lliar-liar/Daily-Omni}{https://github.com/Lliar-liar/Daily-Omni}.
Authors:Wenning Xu, Shiyu Fan, Paul Henderson, Edmond S. L. Ho
Abstract:
Generating realistic human motion with high-level controls is a crucial task for social understanding, robotics, and animation. With high-quality MOCAP data becoming more available recently, a wide range of data-driven approaches have been presented. However, modelling multi-person interactions still remains a less explored area. In this paper, we present Graph-driven Interaction Sampling, a method that can generate realistic and diverse multi-person interactions by leveraging existing two-person motion diffusion models as motion priors. Instead of training a new model specific to multi-person interaction synthesis, our key insight is to spatially and temporally separate complex multi-person interactions into a graph structure of two-person interactions, which we name the Pairwise Interaction Graph. We thus decompose the generation task into simultaneous single-person motion generation conditioned on one other's motion. In addition, to reduce artifacts such as interpenetrations of body parts in generated multi-person interactions, we introduce two graph-dependent guidance terms into the diffusion sampling scheme. Unlike previous work, our method can produce various high-quality multi-person interactions without having repetitive individual motions. Extensive experiments demonstrate that our approach consistently outperforms existing methods in reducing artifacts when generating a wide range of two-person and multi-person interactions.
Authors:Xuchen Pan, Yanxi Chen, Yushuo Chen, Yuchang Sun, Daoyuan Chen, Wenhao Zhang, Yuexiang Xie, Yilun Huang, Yilei Zhang, Dawei Gao, Weijie Shi, Yaliang Li, Bolin Ding, Jingren Zhou
Abstract:
Trinity-RFT is a general-purpose, unified and easy-to-use framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a modular and decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT; (2) seamless integration for agent-environment interaction with high efficiency and robustness; and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for development and research of advanced reinforcement learning paradigms at both macroscopic and microscopic levels. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples, applications and experiments that demonstrate its functionalities and user-friendliness.
Authors:Boxu Chen, Ziwei Zheng, Le Yang, Zeyu Geng, Zhengyu Zhao, Chenhao Lin, Chao Shen
Abstract:
Large Vision-Language Models (LVLMs) have achieved remarkable success but continue to struggle with object hallucination (OH), generating outputs inconsistent with visual inputs. While previous work has proposed methods to reduce OH, the visual decision-making mechanisms that lead to hallucinations remain poorly understood. In this paper, we propose VaLSe, a Vision-aware Latent Steering framework that adopts an interpretation-then-mitigation strategy to address OH in LVLMs. By tackling dual challenges of modeling complex vision-language interactions and eliminating spurious activation artifacts, VaLSe can generate visual contribution maps that trace how specific visual inputs influence individual output tokens. These maps reveal the model's vision-aware focus regions, which are then used to perform latent space steering, realigning internal representations toward semantically relevant content and reducing hallucinated outputs. Extensive experiments demonstrate that VaLSe is a powerful interpretability tool and an effective method for enhancing model robustness against OH across multiple benchmarks. Furthermore, our analysis uncovers limitations in existing OH evaluation metrics, underscoring the need for more nuanced, interpretable, and visually grounded OH benchmarks in future work. Code is available at: https://github.com/Ziwei-Zheng/VaLSe.
Authors:Ping Li, Jianan Ni, Bo Pang
Abstract:
Action recognition models using deep learning are vulnerable to adversarial examples, which are transferable across other models trained on the same data modality. Existing transferable attack methods face two major challenges: 1) they heavily rely on the assumption that the decision boundaries of the surrogate (a.k.a., source) model and the target model are similar, which limits the adversarial transferability; and 2) their decision boundary difference makes the attack direction uncertain, which may result in the gradient oscillation, weakening the adversarial attack. This motivates us to propose a Background Mixup-induced Temporal Consistency (BMTC) attack method for action recognition. From the input transformation perspective, we design a model-agnostic background adversarial mixup module to reduce the surrogate-target model dependency. In particular, we randomly sample one video from each category and make its background frame, while selecting the background frame with the top attack ability for mixup with the clean frame by reinforcement learning. Moreover, to ensure an explicit attack direction, we leverage the background category as guidance for updating the gradient of adversarial example, and design a temporal gradient consistency loss, which strengthens the stability of the attack direction on subsequent frames. Empirical studies on two video datasets, i.e., UCF101 and Kinetics-400, and one image dataset, i.e., ImageNet, demonstrate that our method significantly boosts the transferability of adversarial examples across several action/image recognition models. Our code is available at https://github.com/mlvccn/BMTC_TransferAttackVid.
Authors:Tazeek Bin Abdur Rakib, Ambuj Mehrish, Lay-Ki Soon, Wern Han Lim, Soujanya Poria
Abstract:
Large-language-model (LLM) agents excel at reactive dialogue but struggle with proactive, goal-driven interactions due to myopic decoding and costly planning. We introduce DialogXpert, which leverages a frozen LLM to propose a small, high-quality set of candidate actions per turn and employs a compact Q-network over fixed BERT embeddings trained via temporal-difference learning to select optimal moves within this reduced space. By tracking the user's emotions, DialogXpert tailors each decision to advance the task while nurturing a genuine, empathetic connection. Across negotiation, emotional support, and tutoring benchmarks, DialogXpert drives conversations to under $3$ turns with success rates exceeding 94\% and, with a larger LLM prior, pushes success above 97\% while markedly improving negotiation outcomes. This framework delivers real-time, strategic, and emotionally intelligent dialogue planning at scale. Code available at https://github.com/declare-lab/dialogxpert/
Authors:Peilin Chen, Xiaoxuan Yang
Abstract:
Large language models (LLMs) have gained great success in various domains. Existing systems cache Key and Value within the attention block to avoid redundant computations. However, the size of key-value cache (KV cache) is unpredictable and can even be tens of times larger than the weights in the long context length scenario. In this work, we propose Titanus, a software-hardware co-design to efficiently compress the KV cache on-the-fly. We first propose the cascade pruning-quantization (CPQ) method to reduce the KV cache movement. The hierarchical quantization extension strategy is introduced to tackle the non-independent per-channel quantization issue. To further reduce KV cache movement, we transfer only the non-zero KV cache between the accelerator and off-chip memory. Moreover, we customize a two-stage design space exploration framework for the CPQ method. A novel pipeline and parallelism dataflow is designed to reduce the first token generation time. Experiments show that Titanus achieves 159.9x (49.6x) and 34.8x (29.2x) energy efficiency (throughput) compared to Nvidia A100 GPU and FlightLLM respectively. The code for Titanus is available at https://github.com/peilin-chen/Titanus-for-LLM-acceleration.
Authors:Ildi Alla, Valeria Loscri
Abstract:
Emerging 5G millimeter-wave and sub-6 GHz networks enable high-accuracy indoor localization, but security and privacy vulnerabilities pose serious challenges. In this paper, we identify and address threats including location spoofing and adversarial signal manipulation against 5G-based indoor localization. We formalize a threat model encompassing attackers who inject forged radio signals or perturb channel measurements to mislead the localization system. To defend against these threats, we propose an adversary-resilient localization architecture that combines deep learning fingerprinting with physical domain knowledge. Our approach integrates multi-anchor Channel Impulse Response (CIR) fingerprints with Time Difference of Arrival (TDoA) features and known anchor positions in a hybrid Convolutional Neural Network (CNN) and multi-head attention network. This design inherently checks geometric consistency and dynamically down-weights anomalous signals, making localization robust to tampering. We formulate the secure localization problem and demonstrate, through extensive experiments on a public 5G indoor dataset, that the proposed system achieves a mean error approximately 0.58 m under mixed Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) trajectories in benign conditions and gracefully degrades to around 0.81 m under attack scenarios. We also show via ablation studies that each architecture component (attention mechanism, TDoA, etc.) is critical for both accuracy and resilience, reducing errors by 4-5 times compared to baselines. In addition, our system runs in real-time, localizing the user in just 1 ms on a simple CPU. The code has been released to ensure reproducibility (https://github.com/sec5gloc/Sec5GLoc).
Authors:Yanping Fu, Xinyuan Liu, Tianyu Li, Yike Ma, Yucheng Zhang, Feng Dai
Abstract:
Topology reasoning, which unifies perception and structured reasoning, plays a vital role in understanding intersections for autonomous driving. However, its performance heavily relies on the accuracy of lane detection, particularly at connected lane endpoints. Existing methods often suffer from lane endpoints deviation, leading to incorrect topology construction. To address this issue, we propose TopoPoint, a novel framework that explicitly detects lane endpoints and jointly reasons over endpoints and lanes for robust topology reasoning. During training, we independently initialize point and lane query, and proposed Point-Lane Merge Self-Attention to enhance global context sharing through incorporating geometric distances between points and lanes as an attention mask . We further design Point-Lane Graph Convolutional Network to enable mutual feature aggregation between point and lane query. During inference, we introduce Point-Lane Geometry Matching algorithm that computes distances between detected points and lanes to refine lane endpoints, effectively mitigating endpoint deviation. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoPoint achieves state-of-the-art performance in topology reasoning (48.8 on OLS). Additionally, we propose DET$_p$ to evaluate endpoint detection, under which our method significantly outperforms existing approaches (52.6 v.s. 45.2 on DET$_p$). The code is released at https://github.com/Franpin/TopoPoint.
Authors:Patrick Leask, Neel Nanda, Noura Al Moubayed
Abstract:
Sparse autoencoders (SAEs) are a popular method for decomposing Large Langage Models (LLM) activations into interpretable latents. However, due to their substantial training cost, most academic research uses open-source SAEs which are only available for a restricted set of models of up to 27B parameters. SAE latents are also learned from a dataset of activations, which means they do not transfer between models. Motivated by relative representation similarity measures, we introduce Inference-Time Decomposition of Activations (ITDA) models, an alternative method for decomposing language model activations. To train an ITDA, we greedily construct a dictionary of language model activations on a dataset of prompts, selecting those activations which were worst approximated by matching pursuit on the existing dictionary. ITDAs can be trained in just 1% of the time required for SAEs, using 1% of the data. This allowed us to train ITDAs on Llama-3.1 70B and 405B on a single consumer GPU. ITDAs can achieve similar reconstruction performance to SAEs on some target LLMs, but generally incur a performance penalty. However, ITDA dictionaries enable cross-model comparisons, and a simple Jaccard similarity index on ITDA dictionaries outperforms existing methods like CKA, SVCCA, and relative representation similarity metrics. ITDAs provide a cheap alternative to SAEs where computational resources are limited, or when cross model comparisons are necessary. Code available at https://github.com/pleask/itda.
Authors:Dong Zhang, Lingfeng He, Rui Yan, Fei Shen, Jinhui Tang
Abstract:
While recent advances in image editing have enabled impressive visual synthesis capabilities, current methods remain constrained by explicit textual instructions and limited editing operations, lacking deep comprehension of implicit user intentions and contextual reasoning. In this work, we introduce a new image editing paradigm: reasoning-guided generative editing, which synthesizes images based on complex, multi-faceted textual queries accepting world knowledge and intention inference. To facilitate this task, we first construct a comprehensive dataset featuring over 1,000 image-instruction-edit triples that incorporate rich reasoning contexts and real-world knowledge. We then propose R-Genie: a reasoning-guided generative image editor, which synergizes the generation power of diffusion models with advanced reasoning capabilities of multimodal large language models. R-Genie incorporates a reasoning-attention mechanism to bridge linguistic understanding with visual synthesis, enabling it to handle intricate editing requests involving abstract user intentions and contextual reasoning relations. Extensive experimental results validate that R-Genie can equip diffusion models with advanced reasoning-based editing capabilities, unlocking new potentials for intelligent image synthesis.
Authors:Ziyu Ge, Yuhao Wu, Daniel Wai Kit Chin, Roy Ka-Wei Lee, Rui Cao
Abstract:
Large Language Models (LLMs) augmented with retrieval mechanisms have demonstrated significant potential in fact-checking tasks by integrating external knowledge. However, their reliability decreases when confronted with conflicting evidence from sources of varying credibility. This paper presents the first systematic evaluation of Retrieval-Augmented Generation (RAG) models for fact-checking in the presence of conflicting evidence. To support this study, we introduce \textbf{CONFACT} (\textbf{Con}flicting Evidence for \textbf{Fact}-Checking) (Dataset available at https://github.com/zoeyyes/CONFACT), a novel dataset comprising questions paired with conflicting information from various sources. Extensive experiments reveal critical vulnerabilities in state-of-the-art RAG methods, particularly in resolving conflicts stemming from differences in media source credibility. To address these challenges, we investigate strategies to integrate media background information into both the retrieval and generation stages. Our results show that effectively incorporating source credibility significantly enhances the ability of RAG models to resolve conflicting evidence and improve fact-checking performance.
Authors:M. Emre Sahin, Edoardo Altamura, Oscar Wallis, Stephen P. Wood, Anton Dekusar, Declan A. Millar, Takashi Imamichi, Atsushi Matsuo, Stefano Mensa
Abstract:
We present Qiskit Machine Learning (ML), a high-level Python library that combines elements of quantum computing with traditional machine learning. The API abstracts Qiskit's primitives to facilitate interactions with classical simulators and quantum hardware. Qiskit ML started as a proof-of-concept code in 2019 and has since been developed to be a modular, intuitive tool for non-specialist users while allowing extensibility and fine-tuning controls for quantum computational scientists and developers. The library is available as a public, open-source tool and is distributed under the Apache version 2.0 license.
Authors:Wei Huang, Yizhe Xiong, Xin Ye, Zhijie Deng, Hui Chen, Zijia Lin, Guiguang Ding
Abstract:
Large Language Models (LLMs) have achieved impressive performance across a range of natural language processing tasks. However, recent advances demonstrate that further gains particularly in complex reasoning tasks require more than merely scaling up model sizes or training data. One promising direction is to enable models to think during the reasoning process. Recently, Quiet STaR significantly improves reasoning by generating token-level thought traces, but incurs substantial inference overhead. In this work, we propose Fast Quiet STaR, a more efficient reasoning framework that preserves the benefits of token-level reasoning while reducing computational cost. Our method introduces a curriculum learning based training strategy that gradually reduces the number of thought tokens, enabling the model to internalize more abstract and concise reasoning processes. We further extend this approach to the standard Next Token Prediction (NTP) setting through reinforcement learning-based fine-tuning, resulting in Fast Quiet-STaR NTP, which eliminates the need for explicit thought token generation during inference. Experiments on four benchmark datasets with Mistral 7B and Qwen2.5 7B demonstrate that Fast Quiet-STaR consistently outperforms Quiet-STaR in terms of average accuracy under the same inference time budget. Notably, Fast Quiet-STaR NTP achieves an average accuracy improvement of 9\% on Mistral 7B and 5.7\% on Qwen2.5 7B, while maintaining the same inference latency. Our code will be available at https://github.com/huangwei200012/Fast-Quiet-STaR.
Authors:Zeyuan Ma, Yue-Jiao Gong, Hongshu Guo, Wenjie Qiu, Sijie Ma, Hongqiao Lian, Jiajun Zhan, Kaixu Chen, Chen Wang, Zhiyang Huang, Zechuan Huang, Guojun Peng, Ran Cheng, Yining Ma
Abstract:
Meta-Black-Box Optimization (MetaBBO) streamlines the automation of optimization algorithm design through meta-learning. It typically employs a bi-level structure: the meta-level policy undergoes meta-training to reduce the manual effort required in developing algorithms for low-level optimization tasks. The original MetaBox (2023) provided the first open-source framework for reinforcement learning-based single-objective MetaBBO. However, its relatively narrow scope no longer keep pace with the swift advancement in this field. In this paper, we introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a milestone upgrade with four novel features: 1) a unified architecture supporting RL, evolutionary, and gradient-based approaches, by which we reproduce 23 up-to-date baselines; 2) efficient parallelization schemes, which reduce the training/testing time by 10-40x; 3) a comprehensive benchmark suite of 18 synthetic/realistic tasks (1900+ instances) spanning single-objective, multi-objective, multi-model, and multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom analysis/visualization and integrating to external optimization tools/benchmarks. To show the utility of MetaBox-v2, we carry out a systematic case study that evaluates the built-in baselines in terms of the optimization performance, generalization ability and learning efficiency. Valuable insights are concluded from thorough and detailed analysis for practitioners and those new to the field.
Authors:Xueyang Zhou, Weidong Wang, Lin Lu, Jiawen Shi, Guiyao Tie, Yongtian Xu, Lixing Chen, Pan Zhou, Neil Zhenqiang Gong, Lichao Sun
Abstract:
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
Authors:Jiawei Zhou, Linye Lyu, Zhuotao Tian, Cheng Zhuo, Yu Li
Abstract:
Safety-critical scenarios are rare yet pivotal for evaluating and enhancing the robustness of autonomous driving systems. While existing methods generate safety-critical driving trajectories, simulations, or single-view videos, they fall short of meeting the demands of advanced end-to-end autonomous systems (E2E AD), which require real-world, multi-view video data. To bridge this gap, we introduce SafeMVDrive, the first framework designed to generate high-quality, safety-critical, multi-view driving videos grounded in real-world domains. SafeMVDrive strategically integrates a safety-critical trajectory generator with an advanced multi-view video generator. To tackle the challenges inherent in this integration, we first enhance scene understanding ability of the trajectory generator by incorporating visual context -- which is previously unavailable to such generator -- and leveraging a GRPO-finetuned vision-language model to achieve more realistic and context-aware trajectory generation. Second, recognizing that existing multi-view video generators struggle to render realistic collision events, we introduce a two-stage, controllable trajectory generation mechanism that produces collision-evasion trajectories, ensuring both video quality and safety-critical fidelity. Finally, we employ a diffusion-based multi-view video generator to synthesize high-quality safety-critical driving videos from the generated trajectories. Experiments conducted on an E2E AD planner demonstrate a significant increase in collision rate when tested with our generated data, validating the effectiveness of SafeMVDrive in stress-testing planning modules. Our code, examples, and datasets are publicly available at: https://zhoujiawei3.github.io/SafeMVDrive/.
Authors:Dong-Hee Kim, Hyunjee Song, Donghyun Kim
Abstract:
Despite the advances in Referring Expression Segmentation (RES) benchmarks, their evaluation protocols remain constrained, primarily focusing on either single targets with short queries (containing minimal attributes) or multiple targets from distinctly different queries on a single domain. This limitation significantly hinders the assessment of more complex reasoning capabilities in RES models. We introduce WildRES, a novel benchmark that incorporates long queries with diverse attributes and non-distinctive queries for multiple targets. This benchmark spans diverse application domains, including autonomous driving environments and robotic manipulation scenarios, thus enabling more rigorous evaluation of complex reasoning capabilities in real-world settings. Our analysis reveals that current RES models demonstrate substantial performance deterioration when evaluated on WildRES. To address this challenge, we introduce SynRES, an automated pipeline generating densely paired compositional synthetic training data through three innovations: (1) a dense caption-driven synthesis for attribute-rich image-mask-expression triplets, (2) reliable semantic alignment mechanisms rectifying caption-pseudo mask inconsistencies via Image-Text Aligned Grouping, and (3) domain-aware augmentations incorporating mosaic composition and superclass replacement to emphasize generalization ability and distinguishing attributes over object categories. Experimental results demonstrate that models trained with SynRES achieve state-of-the-art performance, improving gIoU by 2.0% on WildRES-ID and 3.8% on WildRES-DS. Code and datasets are available at https://github.com/UTLLab/SynRES.
Authors:Yunyao Lu, Yihang Wu, Reem Kateb, Ahmad Chaddad
Abstract:
Traditional supervised medical image segmentation models require large amounts of labeled data for training; however, obtaining such large-scale labeled datasets in the real world is extremely challenging. Recent semi-supervised segmentation models also suffer from noisy pseudo-label issue and limited supervision in feature space. To solve these challenges, we propose an innovative semi-supervised 3D medical image segmentation method to reduce the dependency on large, expert-labeled datasets. Furthermore, we introduce a dual-network architecture to address the limitations of existing methods in using contextual information and generating reliable pseudo-labels. In addition, a self-supervised contrastive learning strategy is used to enhance the representation of the network and reduce prediction uncertainty by distinguishing between reliable and unreliable predictions. Experiments on clinical magnetic resonance imaging demonstrate that our approach outperforms state-of-the-art techniques. Our code is available at https://github.com/AIPMLab/Semi-supervised-Segmentation.
Authors:Dan Yuan, Yi Feng, Ziyun Tang
Abstract:
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
Authors:Xuerui Qiu, Peixi Wu, Yaozhi Wen, Shaowei Gu, Yuqi Pan, Xinhao Luo, Bo XU, Guoqi Li
Abstract:
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing SNNs still exhibit a significant performance gap compared to Artificial Neural Networks (ANNs) due to inadequate pre-training strategies. These limitations manifest as restricted generalization ability, task specificity, and a lack of multimodal understanding, particularly in challenging tasks such as multimodal question answering and zero-shot 3D classification. To overcome these challenges, we propose a Spike-based Vision-Language (SVL) pretraining framework that empowers SNNs with open-world 3D understanding while maintaining spike-driven efficiency. SVL introduces two key components: (i) Multi-scale Triple Alignment (MTA) for label-free triplet-based contrastive learning across 3D, image, and text modalities, and (ii) Re-parameterizable Vision-Language Integration (Rep-VLI) to enable lightweight inference without relying on large text encoders. Extensive experiments show that SVL achieves a top-1 accuracy of 85.4% in zero-shot 3D classification, surpassing advanced ANN models, and consistently outperforms prior SNNs on downstream tasks, including 3D classification (+6.1%), DVS action recognition (+2.1%), 3D detection (+1.1%), and 3D segmentation (+2.1%) with remarkable efficiency. Moreover, SVL enables SNNs to perform open-world 3D question answering, sometimes outperforming ANNs. To the best of our knowledge, SVL represents the first scalable, generalizable, and hardware-friendly paradigm for 3D open-world understanding, effectively bridging the gap between SNNs and ANNs in complex open-world understanding tasks. Code is available https://github.com/bollossom/SVL.
Authors:Jiawei Du, Jinlong Wu, Yuzheng Chen, Yucheng Hu, Bing Li, Joey Tianyi Zhou
Abstract:
Most LLM-based agent frameworks adopt a top-down philosophy: humans decompose tasks, define workflows, and assign agents to execute each step. While effective on benchmark-style tasks, such systems rely on designer updates and overlook agents' potential to learn from experience. Recently, Silver and Sutton(2025) envision a shift into a new era, where agents could progress from a stream of experiences. In this paper, we instantiate this vision of experience-driven learning by introducing a bottom-up agent paradigm that mirrors the human learning process. Agents acquire competence through a trial-and-reasoning mechanism-exploring, reflecting on outcomes, and abstracting skills over time. Once acquired, skills can be rapidly shared and extended, enabling continual evolution rather than static replication. As more agents are deployed, their diverse experiences accelerate this collective process, making bottom-up design especially suited for open-ended environments. We evaluate this paradigm in Slay the Spire and Civilization V, where agents perceive through raw visual inputs and act via mouse outputs, the same as human players. Using a unified, game-agnostic codebase without any game-specific prompts or privileged APIs, our bottom-up agents acquire skills entirely through autonomous interaction, demonstrating the potential of the bottom-up paradigm in complex, real-world environments. Our code is available at https://github.com/AngusDujw/Bottom-Up-Agent.
Authors:Tianheng Ling, Chao Qian, Lukas Johannes HaÃler, Gregor Schiele
Abstract:
Transformer-based models have shown strong performance across diverse time-series tasks, but their deployment on resource-constrained devices remains challenging due to high memory and computational demand. While prior work targeting Microcontroller Units (MCUs) has explored hardware-specific optimizations, such approaches are often task-specific and limited to 8-bit fixed-point precision. Field-Programmable Gate Arrays (FPGAs) offer greater flexibility, enabling fine-grained control over data precision and architecture. However, existing FPGA-based deployments of Transformers for time-series analysis typically focus on high-density platforms with manual configuration. This paper presents a unified and fully automated deployment framework for Tiny Transformers on embedded FPGAs. Our framework supports a compact encoder-only Transformer architecture across three representative time-series tasks (forecasting, classification, and anomaly detection). It combines quantization-aware training (down to 4 bits), hardware-aware hyperparameter search using Optuna, and automatic VHDL generation for seamless deployment. We evaluate our framework on six public datasets across two embedded FPGA platforms. Results show that our framework produces integer-only, task-specific Transformer accelerators achieving as low as 0.033 mJ per inference with millisecond latency on AMD Spartan-7, while also providing insights into deployment feasibility on Lattice iCE40. All source code will be released in the GitHub repository (https://github.com/Edwina1030/TinyTransformer4TS).
Authors:Shixian Luo, Zezhou Zhu, Yu Yuan, Yuncheng Yang, Lianlei Shan, Yong Wu
Abstract:
Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.
Authors:Junhang Li, Yu Guo, Chuhua Xian, Shengfeng He
Abstract:
Images are often obstructed by various obstacles due to capture limitations, hindering the observation of objects of interest. Most existing methods address occlusions from specific elements like fences or raindrops, but are constrained by the wide range of real-world obstructions, making comprehensive data collection impractical. To overcome these challenges, we propose Instruct2See, a novel zero-shot framework capable of handling both seen and unseen obstacles. The core idea of our approach is to unify obstruction removal by treating it as a soft-hard mask restoration problem, where any obstruction can be represented using multi-modal prompts, such as visual semantics and textual instructions, processed through a cross-attention unit to enhance contextual understanding and improve mode control. Additionally, a tunable mask adapter allows for dynamic soft masking, enabling real-time adjustment of inaccurate masks. Extensive experiments on both in-distribution and out-of-distribution obstacles show that Instruct2See consistently achieves strong performance and generalization in obstruction removal, regardless of whether the obstacles were present during the training phase. Code and dataset are available at https://jhscut.github.io/Instruct2See.
Authors:Zehua Pei, Ying Zhang, Hui-Ling Zhen, Xianzhi Yu, Wulong Liu, Sinno Jialin Pan, Mingxuan Yuan, Bei Yu
Abstract:
Mixture-of-experts (MoE) architectures enable scaling large language models (LLMs) to vast parameter counts without a proportional rise in computational costs. However, the significant memory demands of large MoE models hinder their deployment across various computational environments, from cloud servers to consumer devices. This study first demonstrates pronounced task-specific specialization in expert activation patterns within MoE layers. Building on this, we introduce PreMoe, a novel framework that enables efficient deployment of massive MoE models in memory-constrained environments. PreMoe features two main components: probabilistic expert pruning (PEP) and task-adaptive expert retrieval (TAER). PEP employs a new metric, the task-conditioned expected selection score (TCESS), derived from router logits to quantify expert importance for specific tasks, thereby identifying a minimal set of critical experts. TAER leverages these task-specific expert importance profiles for efficient inference. It pre-computes and stores compact expert patterns for diverse tasks. When a user query is received, TAER rapidly identifies the most relevant stored task pattern and reconstructs the model by loading only the small subset of experts crucial for that task. This approach dramatically reduces the memory footprint across all deployment scenarios. DeepSeek-R1 671B maintains 97.2\% accuracy on MATH500 when pruned to 8/128 configuration (50\% expert reduction), and still achieves 72.0\% with aggressive 8/32 pruning (87.5\% expert reduction). Pangu-Ultra-MoE 718B achieves 97.15\% on MATH500 and 81.3\% on AIME24 with 8/128 pruning, while even more aggressive pruning to 4/64 (390GB memory) preserves 96.95\% accuracy on MATH500. We make our code publicly available at https://github.com/JarvisPei/PreMoe.
Authors:Joakim Edin, Róbert Csordás, Tuukka Ruotsalo, Zhengxuan Wu, Maria Maistro, Jing Huang, Lars Maaløe
Abstract:
Ensuring faithful interpretability in large language models is imperative for trustworthy and reliable AI. A key obstacle is self-repair, a phenomenon where networks compensate for reduced signal in one component by amplifying others, masking the true importance of the ablated component. While prior work attributes self-repair to layer normalization and back-up components that compensate for ablated components, we identify a novel form occurring within the attention mechanism, where softmax redistribution conceals the influence of important attention scores. This leads traditional ablation and gradient-based methods to underestimate the significance of all components contributing to these attention scores. We introduce Gradient Interaction Modifications (GIM), a technique that accounts for self-repair during backpropagation. Extensive experiments across multiple large language models (Gemma 2B/9B, LLAMA 1B/3B/8B, Qwen 1.5B/3B) and diverse tasks demonstrate that GIM significantly improves faithfulness over existing circuit identification and feature attribution methods. Our work is a significant step toward better understanding the inner mechanisms of LLMs, which is crucial for improving them and ensuring their safety. Our code is available at https://github.com/JoakimEdin/gim.
Authors:Geeta Chandra Raju Bethala, Hao Huang, Niraj Pudasaini, Abdullah Mohamed Ali, Shuaihang Yuan, Congcong Wen, Anthony Tzes, Yi Fang
Abstract:
We present a hierarchical policy-learning framework that enables a legged humanoid to cooperatively carry extended loads with a human partner using only haptic cues for intent inference. At the upper tier, a lightweight behavior-cloning network consumes six-axis force/torque streams from dual wrist-mounted sensors and outputs whole-body planar velocity commands that capture the leader's applied forces. At the lower tier, a deep-reinforcement-learning policy, trained under randomized payloads (0-3 kg) and friction conditions in Isaac Gym and validated in MuJoCo and on a real Unitree G1, maps these high-level twists to stable, under-load joint trajectories. By decoupling intent interpretation (force -> velocity) from legged locomotion (velocity -> joints), our method combines intuitive responsiveness to human inputs with robust, load-adaptive walking. We collect training data without motion-capture or markers, only synchronized RGB video and F/T readings, employing SAM2 and WHAM to extract 3D human pose and velocity. In real-world trials, our humanoid achieves cooperative carry-and-move performance (completion time, trajectory deviation, velocity synchrony, and follower-force) on par with a blindfolded human-follower baseline. This work is the first to demonstrate learned haptic guidance fused with full-body legged control for fluid human-humanoid co-manipulation. Code and videos are available on the H2-COMPACT website.
Authors:Haoran He, Jiajun Liang, Xintao Wang, Pengfei Wan, Di Zhang, Kun Gai, Ling Pan
Abstract:
As the marginal cost of scaling computation (data and parameters) during model pre-training continues to increase substantially, test-time scaling (TTS) has emerged as a promising direction for improving generative model performance by allocating additional computation at inference time. While TTS has demonstrated significant success across multiple language tasks, there remains a notable gap in understanding the test-time scaling behaviors of image and video generative models (diffusion-based or flow-based models). Although recent works have initiated exploration into inference-time strategies for vision tasks, these approaches face critical limitations: being constrained to task-specific domains, exhibiting poor scalability, or falling into reward over-optimization that sacrifices sample diversity. In this paper, we propose \textbf{Evo}lutionary \textbf{Search} (EvoSearch), a novel, generalist, and efficient TTS method that effectively enhances the scalability of both image and video generation across diffusion and flow models, without requiring additional training or model expansion. EvoSearch reformulates test-time scaling for diffusion and flow models as an evolutionary search problem, leveraging principles from biological evolution to efficiently explore and refine the denoising trajectory. By incorporating carefully designed selection and mutation mechanisms tailored to the stochastic differential equation denoising process, EvoSearch iteratively generates higher-quality offspring while preserving population diversity. Through extensive evaluation across both diffusion and flow architectures for image and video generation tasks, we demonstrate that our method consistently outperforms existing approaches, achieves higher diversity, and shows strong generalizability to unseen evaluation metrics. Our project is available at the website https://tinnerhrhe.github.io/evosearch.
Authors:Minki Kang, Jongwon Jeong, Seanie Lee, Jaewoong Cho, Sung Ju Hwang
Abstract:
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.
Authors:Zixian Guo, Ming Liu, Qilong Wang, Zhilong Ji, Jinfeng Bai, Lei Zhang, Wangmeng Zuo
Abstract:
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs) and use end-to-end training to achieve multi-modal understanding in a unified process. Effective alignment needs high-quality pre-training data and a carefully designed training process. Current LVLMs face challenges when addressing complex vision-language reasoning tasks, with their reasoning capabilities notably lagging behind those of LLMs. This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework based on existing visual interpretation specialists and text-based reasoning LLMs. Our approach leverages (1) a dedicated vision-language model to transform the visual content of images into textual descriptions and (2) an LLM to perform reasoning according to the visual-derived text and the original question. This method presents a cost-efficient solution for multi-modal model development by optimizing existing models to work collaboratively, avoiding end-to-end development of vision-language models from scratch. By transforming images into language model-compatible text representations, it facilitates future low-cost and flexible upgrades to upcoming powerful LLMs. We introduce an outcome-rewarded joint-tuning strategy to optimize the cooperation between the visual interpretation and linguistic reasoning model. Evaluation results on vision-language benchmarks demonstrate that the decoupled reasoning framework outperforms recent LVLMs. Our approach yields particularly significant performance gains on visually intensive geometric mathematics problems. The code is available: https://github.com/guozix/DVLR.
Authors:Linbao Li, Yannan Liu, Daojing He, Yu Li
Abstract:
Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.
Authors:Florian Barthel, Wieland Morgenstern, Paul Hinzer, Anna Hilsmann, Peter Eisert
Abstract:
Recently, 3D GANs based on 3D Gaussian splatting have been proposed for high quality synthesis of human heads. However, existing methods stabilize training and enhance rendering quality from steep viewpoints by conditioning the random latent vector on the current camera position. This compromises 3D consistency, as we observe significant identity changes when re-synthesizing the 3D head with each camera shift. Conversely, fixing the camera to a single viewpoint yields high-quality renderings for that perspective but results in poor performance for novel views. Removing view-conditioning typically destabilizes GAN training, often causing the training to collapse. In response to these challenges, we introduce CGS-GAN, a novel 3D Gaussian Splatting GAN framework that enables stable training and high-quality 3D-consistent synthesis of human heads without relying on view-conditioning. To ensure training stability, we introduce a multi-view regularization technique that enhances generator convergence with minimal computational overhead. Additionally, we adapt the conditional loss used in existing 3D Gaussian splatting GANs and propose a generator architecture designed to not only stabilize training but also facilitate efficient rendering and straightforward scaling, enabling output resolutions up to $2048^2$. To evaluate the capabilities of CGS-GAN, we curate a new dataset derived from FFHQ. This dataset enables very high resolutions, focuses on larger portions of the human head, reduces view-dependent artifacts for improved 3D consistency, and excludes images where subjects are obscured by hands or other objects. As a result, our approach achieves very high rendering quality, supported by competitive FID scores, while ensuring consistent 3D scene generation. Check our our project page here: https://fraunhoferhhi.github.io/cgs-gan/
Authors:Zhihao Du, Changfeng Gao, Yuxuan Wang, Fan Yu, Tianyu Zhao, Hao Wang, Xiang Lv, Hui Wang, Chongjia Ni, Xian Shi, Keyu An, Guanrou Yang, Yabin Li, Yanni Chen, Zhifu Gao, Qian Chen, Yue Gu, Mengzhe Chen, Yafeng Chen, Shiliang Zhang, Wen Wang, Jieping Ye
Abstract:
In our prior works, we introduced a scalable streaming speech synthesis model, CosyVoice 2, which integrates a large language model (LLM) and a chunk-aware flow matching (FM) model, and achieves low-latency bi-streaming speech synthesis and human-parity quality. Despite these advancements, CosyVoice 2 exhibits limitations in language coverage, domain diversity, data volume, text formats, and post-training techniques. In this paper, we present CosyVoice 3, an improved model designed for zero-shot multilingual speech synthesis in the wild, surpassing its predecessor in content consistency, speaker similarity, and prosody naturalness. Key features of CosyVoice 3 include: 1) A novel speech tokenizer to improve prosody naturalness, developed via supervised multi-task training, including automatic speech recognition, speech emotion recognition, language identification, audio event detection, and speaker analysis. 2) A new differentiable reward model for post-training applicable not only to CosyVoice 3 but also to other LLM-based speech synthesis models. 3) Dataset Size Scaling: Training data is expanded from ten thousand hours to one million hours, encompassing 9 languages and 18 Chinese dialects across various domains and text formats. 4) Model Size Scaling: Model parameters are increased from 0.5 billion to 1.5 billion, resulting in enhanced performance on our multilingual benchmark due to the larger model capacity. These advancements contribute significantly to the progress of speech synthesis in the wild. We encourage readers to listen to the demo at https://funaudiollm.github.io/cosyvoice3.
Authors:Hainuo Wang, Qiming Hu, Xiaojie Guo
Abstract:
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.
Authors:Doncey Albin, Miles Mena, Annika Thomas, Harel Biggie, Xuefei Sun, Dusty Woods, Steve McGuire, Christoffer Heckman
Abstract:
Multi-robot systems (MRSs) are valuable for tasks such as search and rescue due to their ability to coordinate over shared observations. A central challenge in these systems is aligning independently collected perception data across space and time, i.e., multi-robot data association. While recent advances in collaborative SLAM (C-SLAM), map merging, and inter-robot loop closure detection have significantly progressed the field, evaluation strategies still predominantly rely on splitting a single trajectory from single-robot SLAM datasets into multiple segments to simulate multiple robots. Without careful consideration to how a single trajectory is split, this approach will fail to capture realistic pose-dependent variation in observations of a scene inherent to multi-robot systems. To address this gap, we present CU-Multi, a multi-robot dataset collected over multiple days at two locations on the University of Colorado Boulder campus. Using a single robotic platform, we generate four synchronized runs with aligned start times and deliberate percentages of trajectory overlap. CU-Multi includes RGB-D, GPS with accurate geospatial heading, and semantically annotated LiDAR data. By introducing controlled variations in trajectory overlap and dense lidar annotations, CU-Multi offers a compelling alternative for evaluating methods in multi-robot data association. Instructions on accessing the dataset, support code, and the latest updates are publicly available at https://arpg.github.io/cumulti
Authors:Xueji Fang, Liyuan Ma, Zhiyang Chen, Mingyuan Zhou, Guo-jun Qi
Abstract:
Recent advances in text-to-video generation, particularly with autoregressive models, have enabled the synthesis of high-quality videos depicting individual scenes. However, extending these models to generate long, cross-scene videos remains a significant challenge. As the context length grows during autoregressive decoding, computational costs rise sharply, and the model's ability to maintain consistency and adhere to evolving textual prompts deteriorates. We introduce InfLVG, an inference-time framework that enables coherent long video generation without requiring additional long-form video data. InfLVG leverages a learnable context selection policy, optimized via Group Relative Policy Optimization (GRPO), to dynamically identify and retain the most semantically relevant context throughout the generation process. Instead of accumulating the entire generation history, the policy ranks and selects the top-$K$ most contextually relevant tokens, allowing the model to maintain a fixed computational budget while preserving content consistency and prompt alignment. To optimize the policy, we design a hybrid reward function that jointly captures semantic alignment, cross-scene consistency, and artifact reduction. To benchmark performance, we introduce the Cross-scene Video Benchmark (CsVBench) along with an Event Prompt Set (EPS) that simulates complex multi-scene transitions involving shared subjects and varied actions/backgrounds. Experimental results show that InfLVG can extend video length by up to 9$\times$, achieving strong consistency and semantic fidelity across scenes. Our code is available at https://github.com/MAPLE-AIGC/InfLVG.
Authors:Kwanyoung Kim, Sanghyun Kim
Abstract:
The choice of initial noise significantly affects the quality and prompt alignment of video diffusion models, where different noise seeds for the same prompt can lead to drastically different generations. While recent methods rely on externally designed priors such as frequency filters or inter-frame smoothing, they often overlook internal model signals that indicate which noise seeds are inherently preferable. To address this, we propose ANSE (Active Noise Selection for Generation), a model-aware framework that selects high-quality noise seeds by quantifying attention-based uncertainty. At its core is BANSA (Bayesian Active Noise Selection via Attention), an acquisition function that measures entropy disagreement across multiple stochastic attention samples to estimate model confidence and consistency. For efficient inference-time deployment, we introduce a Bernoulli-masked approximation of BANSA that enables score estimation using a single diffusion step and a subset of attention layers. Experiments on CogVideoX-2B and 5B demonstrate that ANSE improves video quality and temporal coherence with only an 8% and 13% increase in inference time, respectively, providing a principled and generalizable approach to noise selection in video diffusion. See our project page: https://anse-project.github.io/anse-project/
Authors:Qiyu Chen, Huiyuan Luo, Haiming Yao, Wei Luo, Zhen Qu, Chengkan Lv, Zhengtao Zhang
Abstract:
Anomaly detection plays a vital role in the inspection of industrial images. Most existing methods require separate models for each category, resulting in multiplied deployment costs. This highlights the challenge of developing a unified model for multi-class anomaly detection. However, the significant increase in inter-class interference leads to severe missed detections. Furthermore, the intra-class overlap between normal and abnormal samples, particularly in synthesis-based methods, cannot be ignored and may lead to over-detection. To tackle these issues, we propose a novel Center-aware Residual Anomaly Synthesis (CRAS) method for multi-class anomaly detection. CRAS leverages center-aware residual learning to couple samples from different categories into a unified center, mitigating the effects of inter-class interference. To further reduce intra-class overlap, CRAS introduces distance-guided anomaly synthesis that adaptively adjusts noise variance based on normal data distribution. Experimental results on diverse datasets and real-world industrial applications demonstrate the superior detection accuracy and competitive inference speed of CRAS. The source code and the newly constructed dataset are publicly available at https://github.com/cqylunlun/CRAS.
Authors:Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, Yishen Li
Abstract:
Recent advances in text-to-video (T2V) diffusion models have significantly enhanced the quality of generated videos. However, their ability to produce explicit or harmful content raises concerns about misuse and potential rights violations. Inspired by the success of unlearning techniques in erasing undesirable concepts from text-to-image (T2I) models, we extend unlearning to T2V models and propose a robust and precise unlearning method. Specifically, we adopt negatively-guided velocity prediction fine-tuning and enhance it with prompt augmentation to ensure robustness against LLM-refined prompts. To achieve precise unlearning, we incorporate a localization and a preservation regularization to preserve the model's ability to generate non-target concepts. Extensive experiments demonstrate that our method effectively erases a specific concept while preserving the model's generation capability for all other concepts, outperforming existing methods. We provide the unlearned models in \href{https://github.com/VDIGPKU/T2VUnlearning.git}{https://github.com/VDIGPKU/T2VUnlearning.git}.
Authors:Mingrui Wu, Lu Wang, Pu Zhao, Fangkai Yang, Jianjin Zhang, Jianfeng Liu, Yuefeng Zhan, Weihao Han, Hao Sun, Jiayi Ji, Xiaoshuai Sun, Qingwei Lin, Weiwei Deng, Dongmei Zhang, Feng Sun, Qi Zhang, Rongrong Ji
Abstract:
Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Authors:Jingjing Jiang, Chongjie Si, Jun Luo, Hanwang Zhang, Chao Ma
Abstract:
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
Authors:Vendi Ardianto Nugroho, Byung Moo Lee
Abstract:
Millimeter-wave (mmWave) communication enables high data rates for cellular-connected Unmanned Aerial Vehicles (UAVs). However, a robust beam management remains challenging due to significant path loss and the dynamic mobility of UAVs, which can destabilize the UAV-base station (BS) link. This research presents a GPS-aided deep learning (DL) model that simultaneously predicts current and future optimal beams for UAV mmWave communications, maintaining a Top-1 prediction accuracy exceeding 70% and an average power loss below 0.6 dB across all prediction steps. These outcomes stem from a proposed data set splitting method ensuring balanced label distribution, paired with a GPS preprocessing technique that extracts key positional features, and a DL architecture that maps sequential position data to beam index predictions. The model reduces overhead by approximately 93% (requiring the training of 2 ~ 3 beams instead of 32 beams) with 95% beam prediction accuracy guarantees, and ensures 94% to 96% of predictions exhibit mean power loss not exceeding 1 dB.
Authors:Ye Du, Chen Yang, Nanxi Yu, Wanyu Lin, Qian Zhao, Shujun Wang
Abstract:
De novo peptide sequencing is a fundamental computational technique for ascertaining amino acid sequences of peptides directly from tandem mass spectrometry data, eliminating the need for reference databases. Cutting-edge models usually encode the observed mass spectra into latent representations from which peptides are predicted autoregressively. However, the issue of missing fragmentation, attributable to factors such as suboptimal fragmentation efficiency and instrumental constraints, presents a formidable challenge in practical applications. To tackle this obstacle, we propose a novel computational paradigm called \underline{\textbf{L}}atent \underline{\textbf{I}}mputation before \underline{\textbf{P}}rediction (LIPNovo). LIPNovo is devised to compensate for missing fragmentation information within observed spectra before executing the final peptide prediction. Rather than generating raw missing data, LIPNovo performs imputation in the latent space, guided by the theoretical peak profile of the target peptide sequence. The imputation process is conceptualized as a set-prediction problem, utilizing a set of learnable peak queries to reason about the relationships among observed peaks and directly generate the latent representations of theoretical peaks through optimal bipartite matching. In this way, LIPNovo manages to supplement missing information during inference and thus boosts performance. Despite its simplicity, experiments on three benchmark datasets demonstrate that LIPNovo outperforms state-of-the-art methods by large margins. Code is available at \href{https://github.com/usr922/LIPNovo}{https://github.com/usr922/LIPNovo}.
Authors:RafaŠKarczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, Vikas Garg
Abstract:
We present a novel perspective on diffusion models using the framework of information geometry. We show that the set of noisy samples, taken across all noise levels simultaneously, forms a statistical manifold -- a family of denoising probability distributions. Interpreting the noise level as a temporal parameter, we refer to this manifold as spacetime. This manifold naturally carries a Fisher-Rao metric, which defines geodesics -- shortest paths between noisy points. Notably, this family of distributions is exponential, enabling efficient geodesic computation even in high-dimensional settings without retraining or fine-tuning. We demonstrate the practical value of this geometric viewpoint in transition path sampling, where spacetime geodesics define smooth sequences of Boltzmann distributions, enabling the generation of continuous trajectories between low-energy metastable states. Code is available at: https://github.com/Aalto-QuML/diffusion-spacetime-geometry.
Authors:Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Yang Yuan, Quanquan Gu, Andrew C Yao
Abstract:
Policy gradient algorithms have been successfully applied to enhance the reasoning capabilities of large language models (LLMs). Despite the widespread use of Kullback-Leibler (KL) regularization in policy gradient algorithms to stabilize training, the systematic exploration of how different KL divergence formulations can be estimated and integrated into surrogate loss functions for online reinforcement learning (RL) presents a nuanced and systematically explorable design space. In this paper, we propose regularized policy gradient (RPG), a systematic framework for deriving and analyzing KL-regularized policy gradient methods in the online RL setting. We derive policy gradients and corresponding surrogate loss functions for objectives regularized by both forward and reverse KL divergences, considering both normalized and unnormalized policy distributions. Furthermore, we present derivations for fully differentiable loss functions as well as REINFORCE-style gradient estimators, accommodating diverse algorithmic needs. We conduct extensive experiments on RL for LLM reasoning using these methods, showing improved or competitive results in terms of training stability and performance compared to strong baselines such as GRPO, REINFORCE++, and DAPO. The code is available at https://github.com/complex-reasoning/RPG.
Authors:Xiaohao Liu, Xiaobo Xia, Weixiang Zhao, Manyi Zhang, Xianzhi Yu, Xiu Su, Shuo Yang, See-Kiong Ng, Tat-Seng Chua
Abstract:
Large language models (LLMs) have achieved notable progress. Despite their success, next-token prediction (NTP), the dominant method for LLM training and inference, is constrained in both contextual coverage and inference efficiency due to its inherently sequential process. To overcome these challenges, we propose leap multi-token prediction~(L-MTP), an innovative token prediction method that extends the capabilities of multi-token prediction (MTP) by introducing a leap-based mechanism. Unlike conventional MTP, which generates multiple tokens at adjacent positions, L-MTP strategically skips over intermediate tokens, predicting non-sequential ones in a single forward pass. This structured leap not only enhances the model's ability to capture long-range dependencies but also enables a decoding strategy specially optimized for non-sequential leap token generation, effectively accelerating inference. We theoretically demonstrate the benefit of L-MTP in improving inference efficiency. Experiments across diverse benchmarks validate its merit in boosting both LLM performance and inference speed. The source code is available at https://github.com/Xiaohao-Liu/L-MTP.
Authors:Minsoo Khang, Sangjun Park, Teakgyu Hong, Dawoon Jung
Abstract:
Large Language Models (LLMs) have made substantial progress in recent years, yet evaluating their capabilities in practical Retrieval-Augmented Generation (RAG) scenarios remains challenging. In practical applications, LLMs must demonstrate complex reasoning, refuse to answer appropriately, provide precise citations, and effectively understand document layout. These capabilities are crucial for advanced task handling, uncertainty awareness, maintaining reliability, and structural understanding. While some of the prior works address these aspects individually, there is a need for a unified framework that evaluates them collectively in practical RAG scenarios. To address this, we present CReSt (A Comprehensive Benchmark for Retrieval-Augmented Generation with Complex Reasoning over Structured Documents), a benchmark designed to assess these key dimensions holistically. CReSt comprises 2,245 human-annotated examples in English and Korean, designed to capture practical RAG scenarios that require complex reasoning over structured documents. It also introduces a tailored evaluation methodology to comprehensively assess model performance in these critical areas. Our evaluation shows that even advanced LLMs struggle to perform consistently across these dimensions, underscoring key areas for improvement. We release CReSt to support further research and the development of more robust RAG systems. The dataset and code are available at: https://github.com/UpstageAI/CReSt.
Authors:Uyoung Jeong, Jonathan Freer, Seungryul Baek, Hyung Jin Chang, Kwang In Kim
Abstract:
We study multi-dataset training (MDT) for pose estimation, where skeletal heterogeneity presents a unique challenge that existing methods have yet to address. In traditional domains, \eg regression and classification, MDT typically relies on dataset merging or multi-head supervision. However, the diversity of skeleton types and limited cross-dataset supervision complicate integration in pose estimation. To address these challenges, we introduce PoseBH, a new MDT framework that tackles keypoint heterogeneity and limited supervision through two key techniques. First, we propose nonparametric keypoint prototypes that learn within a unified embedding space, enabling seamless integration across skeleton types. Second, we develop a cross-type self-supervision mechanism that aligns keypoint predictions with keypoint embedding prototypes, providing supervision without relying on teacher-student models or additional augmentations. PoseBH substantially improves generalization across whole-body and animal pose datasets, including COCO-WholeBody, AP-10K, and APT-36K, while preserving performance on standard human pose benchmarks (COCO, MPII, and AIC). Furthermore, our learned keypoint embeddings transfer effectively to hand shape estimation (InterHand2.6M) and human body shape estimation (3DPW). The code for PoseBH is available at: https://github.com/uyoung-jeong/PoseBH.
Authors:Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, Liming Zhu, Wenjie Zhang
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present HydraRAG, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. HydraRAG handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, HydraRAG uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, HydraRAG fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that HydraRAG achieves overall state-of-the-art results on all benchmarks with GPT-3.5-Turbo, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, HydraRAG enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo. The source code is available on https://stevetantan.github.io/HydraRAG/.
Authors:Zhining Liu, Zihao Li, Ze Yang, Tianxin Wei, Jian Kang, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
Abstract:
Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.
Authors:Hefei Mei, Zirui Wang, Shen You, Minjing Dong, Chang Xu
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hfmei/VEAttack-LVLM
Authors:Rui Wang, Qianguo Sun, Tianrong Chen, Zhiyun Zeng, Junlong Wu, Jiaxing Zhang
Abstract:
The emergence of multi-codebook neutral audio codecs such as Residual Vector Quantization (RVQ) and Group Vector Quantization (GVQ) has significantly advanced Large-Language-Model (LLM) based Text-to-Speech (TTS) systems. These codecs are crucial in separating semantic and acoustic information while efficiently harnessing semantic priors. However, since semantic and acoustic information cannot be fully aligned, a significant drawback of these methods when applied to LLM-based TTS is that large language models may have limited access to comprehensive audio information. To address this limitation, we propose DistilCodec and UniTTS, which collectively offer the following advantages: 1) This method can distill a multi-codebook audio codec into a single-codebook audio codec with 32,768 codes while achieving a near 100\% utilization. 2) As DistilCodec does not employ a semantic alignment scheme, a large amount of high-quality unlabeled audio (such as audiobooks with sound effects, songs, etc.) can be incorporated during training, further expanding data diversity and broadening its applicability. 3) Leveraging the comprehensive audio information modeling of DistilCodec, we integrated three key tasks into UniTTS's pre-training framework: audio modality autoregression, text modality autoregression, and speech-text cross-modal autoregression. This allows UniTTS to accept interleaved text and speech/audio prompts while substantially preserving LLM's text capabilities. 4) UniTTS employs a three-stage training process: Pre-Training, Supervised Fine-Tuning (SFT), and Alignment. Source code and model checkpoints are publicly available at https://github.com/IDEA-Emdoor-Lab/UniTTS and https://github.com/IDEA-Emdoor-Lab/DistilCodec.
Authors:Wei Jie Yeo, Rui Mao, Moloud Abdar, Erik Cambria, Ranjan Satapathy
Abstract:
Multimodal models like CLIP have gained significant attention due to their remarkable zero-shot performance across various tasks. However, studies have revealed that CLIP can inadvertently learn spurious associations between target variables and confounding factors. To address this, we introduce \textsc{Locate-Then-Correct} (LTC), a contrastive framework that identifies spurious attention heads in Vision Transformers via mechanistic insights and mitigates them through targeted ablation. Furthermore, LTC identifies salient, task-relevant attention heads, enabling the integration of discriminative features through orthogonal projection to improve classification performance. We evaluate LTC on benchmarks with inherent background and gender biases, achieving over a $>50\%$ gain in worst-group accuracy compared to non-training post-hoc baselines. Additionally, we visualize the representation of selected heads and find that the presented interpretation corroborates our contrastive mechanism for identifying both spurious and salient attention heads. Code available at https://github.com/wj210/CLIP_LTC.
Authors:Haoyu Sun, Huichen Will Wang, Jiawei Gu, Linjie Li, Yu Cheng
Abstract:
Front-end engineering involves a complex workflow where engineers conceptualize designs, translate them into code, and iteratively refine the implementation. While recent benchmarks primarily focus on converting visual designs to code, we present FullFront, a benchmark designed to evaluate Multimodal Large Language Models (MLLMs) \textbf{across the full front-end development pipeline}. FullFront assesses three fundamental tasks that map directly to the front-end engineering pipeline: Webpage Design (conceptualization phase), Webpage Perception QA (comprehension of visual organization and elements), and Webpage Code Generation (implementation phase). Unlike existing benchmarks that use either scraped websites with bloated code or oversimplified LLM-generated HTML, FullFront employs a novel, two-stage process to transform real-world webpages into clean, standardized HTML while maintaining diverse visual designs and avoiding copyright issues. Extensive testing of state-of-the-art MLLMs reveals significant limitations in page perception, code generation (particularly for image handling and layout), and interaction implementation. Our results quantitatively demonstrate performance disparities across models and tasks, and highlight a substantial gap between current MLLM capabilities and human expert performance in front-end engineering. The FullFront benchmark and code are available in https://github.com/Mikivishy/FullFront.
Authors:Xianzhong Ding, Yunkai Zhang, Binbin Chen, Donghao Ying, Tieying Zhang, Jianjun Chen, Lei Zhang, Alberto Cerpa, Wan Du
Abstract:
Modern industry-scale data centers need to manage a large number of virtual machines (VMs). Due to the continual creation and release of VMs, many small resource fragments are scattered across physical machines (PMs). To handle these fragments, data centers periodically reschedule some VMs to alternative PMs, a practice commonly referred to as VM rescheduling. Despite the increasing importance of VM rescheduling as data centers grow in size, the problem remains understudied. We first show that, unlike most combinatorial optimization tasks, the inference time of VM rescheduling algorithms significantly influences their performance, due to dynamic VM state changes during this period. This causes existing methods to scale poorly. Therefore, we develop a reinforcement learning system for VM rescheduling, VM2RL, which incorporates a set of customized techniques, such as a two-stage framework that accommodates diverse constraints and workload conditions, a feature extraction module that captures relational information specific to rescheduling, as well as a risk-seeking evaluation enabling users to optimize the trade-off between latency and accuracy. We conduct extensive experiments with data from an industry-scale data center. Our results show that VM2RL can achieve a performance comparable to the optimal solution but with a running time of seconds. Code and datasets are open-sourced: https://github.com/zhykoties/VMR2L_eurosys, https://drive.google.com/drive/folders/1PfRo1cVwuhH30XhsE2Np3xqJn2GpX5qy.
Authors:Zhongpai Gao, Meng Zheng, Benjamin Planche, Anwesa Choudhuri, Terrence Chen, Ziyan Wu
Abstract:
Volumetric rendering of Computed Tomography (CT) scans is crucial for visualizing complex 3D anatomical structures in medical imaging. Current high-fidelity approaches, especially neural rendering techniques, require time-consuming per-scene optimization, limiting clinical applicability due to computational demands and poor generalizability. We propose Render-FM, a novel foundation model for direct, real-time volumetric rendering of CT scans. Render-FM employs an encoder-decoder architecture that directly regresses 6D Gaussian Splatting (6DGS) parameters from CT volumes, eliminating per-scan optimization through large-scale pre-training on diverse medical data. By integrating robust feature extraction with the expressive power of 6DGS, our approach efficiently generates high-quality, real-time interactive 3D visualizations across diverse clinical CT data. Experiments demonstrate that Render-FM achieves visual fidelity comparable or superior to specialized per-scan methods while drastically reducing preparation time from nearly an hour to seconds for a single inference step. This advancement enables seamless integration into real-time surgical planning and diagnostic workflows. The project page is: https://gaozhongpai.github.io/renderfm/.
Authors:Hitesh Laxmichand Patel, Amit Agarwal, Arion Das, Bhargava Kumar, Srikant Panda, Priyaranjan Pattnayak, Taki Hasan Rafi, Tejaswini Kumar, Dong-Kyu Chae
Abstract:
Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.
Authors:Amit Agarwal, Srikant Panda, Kulbhushan Pachauri
Abstract:
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG's capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance. Code : https://github.com/oracle-samples/fs-dag
Authors:Harim Kim, Yuhan Wang, Minkyu Ahn, Heeyoul Choi, Yuyin Zhou, Charmgil Hong
Abstract:
Unsupervised anomaly detection (UAD) in medical imaging is crucial for identifying pathological abnormalities without requiring extensive labeled data. However, existing diffusion-based UAD models rely solely on imaging features, limiting their ability to distinguish between normal anatomical variations and pathological anomalies. To address this, we propose Diff3M, a multi-modal diffusion-based framework that integrates chest X-rays and structured Electronic Health Records (EHRs) for enhanced anomaly detection. Specifically, we introduce a novel image-EHR cross-attention module to incorporate structured clinical context into the image generation process, improving the model's ability to differentiate normal from abnormal features. Additionally, we develop a static masking strategy to enhance the reconstruction of normal-like images from anomalies. Extensive evaluations on CheXpert and MIMIC-CXR/IV demonstrate that Diff3M achieves state-of-the-art performance, outperforming existing UAD methods in medical imaging. Our code is available at this http URL https://github.com/nth221/Diff3M
Authors:Phat Thanh Dang, Saahil Thoppay, Wang Yang, Qifan Wang, Vipin Chaudhary, Xiaotian Han
Abstract:
Large language models suffer issues when operated on long contexts that are larger than their training context length due to the standard position encoding for tokens in the attention layer. Tokens a long distance apart will rarely have an effect on each other and long prompts yield unexpected results. To solve this problem, we propose SELF (Self-Extend the Context Length With Logistic Growth Function): a solution of grouping consecutive tokens at varying group sizes using a logistic capacity equation combined with a constant group size at smaller relative distances. Our model had an increase in performance of up to 12% compared to the LongLM extension method in LEval (specifically on the Qwen model). On summarization related tasks in LongBench, our model performed up to 6.4% better than LongLM (specifically on the Llama-2-7b model). On reading comprehension tasks from LEval, our model performed up to 5.4% better than the LongLM. Our code is available at https://github.com/alexeipc/SELF-LLM.
Authors:Qihao Duan, Bingding Huang, Zhenqiao Song, Irina Lehmann, Lei Gu, Roland Eils, Benjamin Wild
Abstract:
Large language models (LLMs) have revolutionized natural language processing and are increasingly applied to other sequential data types, including genetic sequences. However, adapting LLMs to genomics presents significant challenges. Capturing complex genomic interactions requires modeling long-range dependencies within DNA sequences, where interactions often span over 10,000 base pairs, even within a single gene, posing substantial computational burdens under conventional model architectures and training paradigms. Moreover, standard LLM training approaches are suboptimal for DNA: autoregressive training, while efficient, supports only unidirectional understanding. However, DNA is inherently bidirectional, e.g., bidirectional promoters regulate transcription in both directions and account for nearly 11% of human gene expression. Masked language models (MLMs) allow bidirectional understanding but are inefficient, as only masked tokens contribute to the loss per step. To address these limitations, we introduce JanusDNA, the first bidirectional DNA foundation model built upon a novel pretraining paradigm that combines the optimization efficiency of autoregressive modeling with the bidirectional comprehension of masked modeling. JanusDNA adopts a hybrid Mamba, Attention and Mixture of Experts (MoE) architecture, combining long-range modeling of Attention with efficient sequential learning of Mamba. MoE layers further scale model capacity via sparse activation while keeping computational cost low. Notably, JanusDNA processes up to 1 million base pairs at single nucleotide resolution on a single 80GB GPU. Extensive experiments and ablations show JanusDNA achieves new SOTA results on three genomic representation benchmarks, outperforming models with 250x more activated parameters. Code: https://github.com/Qihao-Duan/JanusDNA
Authors:Razvan-Gabriel Dumitru, Darius Peteleaza, Vikas Yadav, Liangming Pan
Abstract:
Large language models excel at complex tasks by breaking down problems into structured reasoning steps. However, reasoning traces often extend beyond reaching a correct answer, causing wasted computation, reduced readability, and hallucinations. To address this, we introduce a novel hyperparameter-free conciseness score used as a reward signal within a reinforcement learning framework to guide models toward generating correct and concise reasoning traces. This score is evaluated by a large language model acting as a judge, enabling dynamic, context-aware feedback beyond simple token length. Our method achieves state-of-the-art efficiency-accuracy trade-offs on the MATH dataset, reducing token usage by up to 31x on simple problems while improving accuracy by 7%, and on the hardest problems, it outperforms full reasoning by +7.5% accuracy with up to 3.6x fewer tokens. On TheoremQA, our method improves accuracy by +2.2% using 12.5x fewer tokens. We also conduct ablation studies on the judge model, reward composition, and problem difficulty, showing that our method dynamically adapts reasoning length based on problem difficulty and benefits significantly from stronger judges. The code, model weights, and datasets are open-sourced at https://github.com/RazvanDu/ConciseRL.
Authors:Niklas Holzner, Sebastian Maier, Stefan Feuerriegel
Abstract:
Generative artificial intelligence (GenAI) is increasingly used to support a wide range of human tasks, yet empirical evidence on its effect on creativity remains scattered. Can GenAI generate ideas that are creative? To what extent can it support humans in generating ideas that are both creative and diverse? In this study, we conduct a meta-analysis to evaluate the effect of GenAI on the performance in creative tasks. For this, we first perform a systematic literature search, based on which we identify n = 28 relevant studies (m = 8214 participants) for inclusion in our meta-analysis. We then compute standardized effect sizes based on Hedges' g. We compare different outcomes: (i) how creative GenAI is; (ii) how creative humans augmented by GenAI are; and (iii) the diversity of ideas by humans augmented by GenAI. Our results show no significant difference in creative performance between GenAI and humans (g = -0.05), while humans collaborating with GenAI significantly outperform those working without assistance (g = 0.27). However, GenAI has a significant negative effect on the diversity of ideas for such collaborations between humans and GenAI (g = -0.86). We further analyze heterogeneity across different GenAI models (e.g., GPT-3.5, GPT-4), different tasks (e.g., creative writing, ideation, divergent thinking), and different participant populations (e.g., laypeople, business, academia). Overall, our results position GenAI as an augmentative tool that can support, rather than replace, human creativity-particularly in tasks benefiting from ideation support.
Authors:Hongjian Zhou, Haoyu Yang, Ziang Ying, Nicholas Gangi, Zhaoran, Huang, Haoxing Ren, Joaquin Matres, Jiaqi Gu
Abstract:
Driven by innovations in photonic computing and interconnects, photonic integrated circuit (PIC) designs advance and grow in complexity. Traditional manual physical design processes have become increasingly cumbersome. Available PIC layout tools are mostly schematic-driven, which has not alleviated the burden of manual waveguide planning and layout drawing. Previous research in PIC automated routing is largely adapted from electronic design, focusing on high-level planning and overlooking photonic-specific constraints such as curvy waveguides, bending, and port alignment. As a result, they fail to scale and cannot generate DRV-free layouts, highlighting the need for dedicated electronic-photonic design automation tools to streamline PIC physical design. In this work, we present LiDAR, the first automated PIC detailed router for large-scale designs. It features a grid-based, curvy-aware A* engine with adaptive crossing insertion, congestion-aware net ordering, and insertion-loss optimization. To enable routing in more compact and complex designs, we further extend our router to hierarchical routing as LiDAR 2.0. It introduces redundant-bend elimination, crossing space preservation, and routing order refinement for improved conflict resilience. We also develop and open-source a YAML-based PIC intermediate representation and diverse benchmarks, including TeMPO, GWOR, and Bennes, which feature hierarchical structures and high crossing densities. Evaluations across various benchmarks show that LiDAR 2.0 consistently produces DRV-free layouts, achieving up to 16% lower insertion loss and 7.69x speedup over prior methods on spacious cases, and 9% lower insertion loss with 6.95x speedup over LiDAR 1.0 on compact cases. Our codes are open-sourced at https://github.com/ScopeX-ASU/LiDAR.
Authors:Siyang Song, Micol Spitale, Xiangyu Kong, Hengde Zhu, Cheng Luo, Cristina Palmero, German Barquero, Sergio Escalera, Michel Valstar, Mohamed Daoudi, Tobias Baur, Fabien Ringeval, Andrew Howes, Elisabeth Andre, Hatice Gunes
Abstract:
In dyadic interactions, a broad spectrum of human facial reactions might be appropriate for responding to each human speaker behaviour. Following the successful organisation of the REACT 2023 and REACT 2024 challenges, we are proposing the REACT 2025 challenge encouraging the development and benchmarking of Machine Learning (ML) models that can be used to generate multiple appropriate, diverse, realistic and synchronised human-style facial reactions expressed by human listeners in response to an input stimulus (i.e., audio-visual behaviours expressed by their corresponding speakers). As a key of the challenge, we provide challenge participants with the first natural and large-scale multi-modal MAFRG dataset (called MARS) recording 137 human-human dyadic interactions containing a total of 2856 interaction sessions covering five different topics. In addition, this paper also presents the challenge guidelines and the performance of our baselines on the two proposed sub-challenges: Offline MAFRG and Online MAFRG, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2025
Authors:Georgios Chochlakis, Peter Wu, Arjun Bedi, Marcus Ma, Kristina Lerman, Shrikanth Narayanan
Abstract:
Modeling complex subjective tasks in Natural Language Processing, such as recognizing emotion and morality, is considerably challenging due to significant variation in human annotations. This variation often reflects reasonable differences in semantic interpretations rather than mere noise, necessitating methods to distinguish between legitimate subjectivity and error. We address this challenge by exploring label verification in these contexts using Large Language Models (LLMs). First, we propose a simple In-Context Learning binary filtering baseline that estimates the reasonableness of a document-label pair. We then introduce the Label-in-a-Haystack setting: the query and its label(s) are included in the demonstrations shown to LLMs, which are prompted to predict the label(s) again, while receiving task-specific instructions (e.g., emotion recognition) rather than label copying. We show how the failure to copy the label(s) to the output of the LLM are task-relevant and informative. Building on this, we propose the Label-in-a-Haystack Rectification (LiaHR) framework for subjective label correction: when the model outputs diverge from the reference gold labels, we assign the generated labels to the example instead of discarding it. This approach can be integrated into annotation pipelines to enhance signal-to-noise ratios. Comprehensive analyses, human evaluations, and ecological validity studies verify the utility of LiaHR for label correction. Code is available at https://github.com/gchochla/liahr.
Authors:Kangda Wei, Hasnat Md Abdullah, Ruihong Huang
Abstract:
Large Language Models (LLMs) often exhibit gender bias, resulting in unequal treatment of male and female subjects across different contexts. To address this issue, we propose a novel data generation framework that fosters exploratory thinking in LLMs. Our approach prompts models to generate story pairs featuring male and female protagonists in structurally identical, morally ambiguous scenarios, then elicits and compares their moral judgments. When inconsistencies arise, the model is guided to produce balanced, gender-neutral judgments. These story-judgment pairs are used to fine-tune or optimize the models via Direct Preference Optimization (DPO). Experimental results show that our method significantly reduces gender bias while preserving or even enhancing general model capabilities. We will release the code and generated data. We release the code and generated data at: https://github.com/WeiKangda/LLMs-Exploratory-Bias-Mitigation/tree/main.
Authors:Huaiyuan Yao, Pengfei Li, Bu Jin, Yupeng Zheng, An Liu, Lisen Mu, Qing Su, Qian Zhang, Yilun Chen, Peng Li
Abstract:
Recent advances in autonomous driving research towards motion planners that are robust, safe, and adaptive. However, existing rule-based and data-driven planners lack adaptability to long-tail scenarios, while knowledge-driven methods offer strong reasoning but face challenges in representation, control, and real-world evaluation. To address these challenges, we present LiloDriver, a lifelong learning framework for closed-loop motion planning in long-tail autonomous driving scenarios. By integrating large language models (LLMs) with a memory-augmented planner generation system, LiloDriver continuously adapts to new scenarios without retraining. It features a four-stage architecture including perception, scene encoding, memory-based strategy refinement, and LLM-guided reasoning. Evaluated on the nuPlan benchmark, LiloDriver achieves superior performance in both common and rare driving scenarios, outperforming static rule-based and learning-based planners. Our results highlight the effectiveness of combining structured memory and LLM reasoning to enable scalable, human-like motion planning in real-world autonomous driving. Our code is available at https://github.com/Hyan-Yao/LiloDriver.
Authors:Mingxin Huang, Yongxin Shi, Dezhi Peng, Songxuan Lai, Zecheng Xie, Lianwen Jin
Abstract:
Recent advancements in multimodal slow-thinking systems have demonstrated remarkable performance across diverse visual reasoning tasks. However, their capabilities in text-rich image reasoning tasks remain understudied due to the lack of a systematic benchmark. To address this gap, we propose OCR-Reasoning, a comprehensive benchmark designed to systematically assess Multimodal Large Language Models on text-rich image reasoning tasks. The benchmark comprises 1,069 human-annotated examples spanning 6 core reasoning abilities and 18 practical reasoning tasks in text-rich visual scenarios. Furthermore, unlike other text-rich image understanding benchmarks that only annotate the final answers, OCR-Reasoning also annotates the reasoning process simultaneously. With the annotated reasoning process and the final answers, OCR-Reasoning evaluates not only the final answers generated by models but also their reasoning processes, enabling a holistic analysis of their problem-solving abilities. Leveraging this benchmark, we conducted a comprehensive evaluation of state-of-the-art MLLMs. Our results demonstrate the limitations of existing methodologies. Notably, even state-of-the-art MLLMs exhibit substantial difficulties, with none achieving accuracy surpassing 50\% across OCR-Reasoning, indicating that the challenges of text-rich image reasoning are an urgent issue to be addressed. The benchmark and evaluation scripts are available at https://github.com/SCUT-DLVCLab/OCR-Reasoning.
Authors:Qin Chen, Yuanyi Ren, Xiaojun Ma, Yuyang Shi
Abstract:
Predictive analysis is a cornerstone of modern decision-making, with applications in various domains. Large Language Models (LLMs) have emerged as powerful tools in enabling nuanced, knowledge-intensive conversations, thus aiding in complex decision-making tasks. With the burgeoning expectation to harness LLMs for predictive analysis, there is an urgent need to systematically assess their capability in this domain. However, there is a lack of relevant evaluations in existing studies. To bridge this gap, we introduce the \textbf{PredictiQ} benchmark, which integrates 1130 sophisticated predictive analysis queries originating from 44 real-world datasets of 8 diverse fields. We design an evaluation protocol considering text analysis, code generation, and their alignment. Twelve renowned LLMs are evaluated, offering insights into their practical use in predictive analysis. Generally, we believe that existing LLMs still face considerable challenges in conducting predictive analysis. See \href{https://github.com/Cqkkkkkk/PredictiQ}{Github}.
Authors:Bohan Jin, Shuhan Qi, Kehai Chen, Xinyi Guo, Xuan Wang
Abstract:
The widespread use of Large Multimodal Models (LMMs) has raised concerns about model toxicity. However, current research mainly focuses on explicit toxicity, with less attention to some more implicit toxicity regarding prejudice and discrimination. To address this limitation, we introduce a subtler type of toxicity named dual-implicit toxicity and a novel toxicity benchmark termed MDIT-Bench: Multimodal Dual-Implicit Toxicity Benchmark. Specifically, we first create the MDIT-Dataset with dual-implicit toxicity using the proposed Multi-stage Human-in-loop In-context Generation method. Based on this dataset, we construct the MDIT-Bench, a benchmark for evaluating the sensitivity of models to dual-implicit toxicity, with 317,638 questions covering 12 categories, 23 subcategories, and 780 topics. MDIT-Bench includes three difficulty levels, and we propose a metric to measure the toxicity gap exhibited by the model across them. In the experiment, we conducted MDIT-Bench on 13 prominent LMMs, and the results show that these LMMs cannot handle dual-implicit toxicity effectively. The model's performance drops significantly in hard level, revealing that these LMMs still contain a significant amount of hidden but activatable toxicity. Data are available at https://github.com/nuo1nuo/MDIT-Bench.
Authors:Subrata Biswas, Mohammad Nur Hossain Khan, Bashima Islam
Abstract:
Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.
Authors:Minghao Shao, Haoran Xi, Nanda Rani, Meet Udeshi, Venkata Sai Charan Putrevu, Kimberly Milner, Brendan Dolan-Gavitt, Sandeep Kumar Shukla, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique
Abstract:
Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.
Authors:Xiaozhao Liu, Dinggang Shen, Xihui Liu
Abstract:
Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.
Authors:Kaibo Huang, Zipei Zhang, Yukun Wei, TianXin Zhang, Zhongliang Yang, Linna Zhou
Abstract:
The ubiquity of social media platforms facilitates malicious linguistic steganography, posing significant security risks. Steganalysis is profoundly hindered by the challenge of identifying subtle cognitive inconsistencies arising from textual fragmentation and complex dialogue structures, and the difficulty in achieving robust aggregation of multi-dimensional weak signals, especially given extreme steganographic sparsity and sophisticated steganography. These core detection difficulties are compounded by significant data imbalance. This paper introduces GSDFuse, a novel method designed to systematically overcome these obstacles. GSDFuse employs a holistic approach, synergistically integrating hierarchical multi-modal feature engineering to capture diverse signals, strategic data augmentation to address sparsity, adaptive evidence fusion to intelligently aggregate weak signals, and discriminative embedding learning to enhance sensitivity to subtle inconsistencies. Experiments on social media datasets demonstrate GSDFuse's state-of-the-art (SOTA) performance in identifying sophisticated steganography within complex dialogue environments. The source code for GSDFuse is available at https://github.com/NebulaEmmaZh/GSDFuse.
Authors:Yiduo Guo, Zhen Guo, Chuanwei Huang, Zi-Ang Wang, Zekai Zhang, Haofei Yu, Huishuai Zhang, Yikang Shen
Abstract:
Reinforcement learning (RL) is a powerful way to adapt foundation models to specialized tasks, but its reliance on large-scale human-labeled data limits broad adoption. We introduce Synthetic Data RL, a simple and general framework that reinforcement fine-tunes models using only synthetic data generated from a task definition. Our method first generates question and answer pairs from the task definition and retrieved documents, then adapts the difficulty of the question based on model solvability, and selects questions using the average pass rate of the model across samples for RL training. On Qwen-2.5-7B, our method achieves a 29.2% absolute improvement over the base model on GSM8K (+2.9 pp vs. instruction-tuned, +6.6 pp vs. Self-Instruct), 8.7% on MATH, 13.1% on GPQA (+7.0 pp vs. SynthLLM), 8.9% on MedQA, 17.7% on CQA (law) and 13.7% on CFA (finance). It surpasses supervised fine-tuning under the same data budget and nearly matches RL with full human data across datasets (e.g., +17.2 pp on GSM8K). Adding 100 human demonstrations improves the performance of GSM8K only by 0.4 pp, showing a limited added value. By reducing human data annotation, Synthetic Data RL enables scalable and efficient RL-based model adaptation. Code and demos are available at https://github.com/gydpku/Data_Synthesis_RL/.
Authors:Xinlong Chen, Yuanxing Zhang, Qiang Liu, Junfei Wu, Fuzheng Zhang, Tieniu Tan
Abstract:
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.
Authors:Wenyi Yu, Siyin Wang, Xiaoyu Yang, Xianzhao Chen, Xiaohai Tian, Jun Zhang, Guangzhi Sun, Lu Lu, Yuxuan Wang, Chao Zhang
Abstract:
In order to enable fluid and natural human-machine speech interaction, existing full-duplex conversational systems often adopt modular architectures with auxiliary components such as voice activity detectors, interrupters, conversation state predictors, or multiple LLMs. These systems, however, suffer from error accumulation across modules and struggle with key challenges such as context-dependent barge-in and echo cancellation. Recent approaches, most notably Moshi, simplify the pipeline by injecting audio codecs into the token space of a single LLM. However, such methods still incur significant performance degradation when operating on the speech rather than text modality. In this paper, we introduce SALMONN-omni, the first single, standalone full-duplex speech LLM that operates without audio codecs in its token space. It features a novel dynamic thinking mechanism within the LLM backbone, enabling the model to learn when to transition between speaking and listening states. Experiments on widely used benchmarks for spoken question answering and open-domain dialogue show that SALMONN-omni achieves at least 30\% relative performance improvement over existing open-source full-duplex models and performs highly competitively to half-duplex and turn-based systems, despite using substantially less training data. Moreover, SALMONN-omni demonstrates strong performance in complex conversational scenarios, including turn-taking, backchanneling, echo cancellation and context-dependent barge-in, with further improvements achieved through reinforcement learning. Some demo conversations between user and SALMONN-omni are provided in the following repository https://github.com/bytedance/SALMONN.
Authors:Jingzhi Hu, Geoffrey Ye Li
Abstract:
Future networks are envisioned to connect massive artificial intelligence (AI) agents, enabling their extensive collaboration on diverse tasks. Compared to traditional entities, these agents naturally suit the semantic communication (SC), which can significantly enhance the bandwidth efficiency. Nevertheless, SC requires the knowledge among agents to be aligned, while agents have distinct expert knowledge for their individual tasks in practice. In this paper, we propose a distillation-enabled knowledge alignment protocol (DeKAP), which distills the expert knowledge of each agent into parameter-efficient low-rank matrices, allocates them across the network, and allows agents to simultaneously maintain aligned knowledge for multiple tasks. We formulate the joint minimization of alignment loss, communication overhead, and storage cost as a large-scale integer linear programming problem and develop a highly efficient greedy algorithm. From computer simulation, the DeKAP establishes knowledge alignment with the lowest communication and computation resources compared to conventional approaches.
Authors:Chengqi Duan, Rongyao Fang, Yuqing Wang, Kun Wang, Linjiang Huang, Xingyu Zeng, Hongsheng Li, Xihui Liu
Abstract:
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
Authors:Sara Ghaboura, Ketan More, Wafa Alghallabi, Omkar Thawakar, Jorma Laaksonen, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Abstract:
As Large Multimodal Models (LMMs) become more capable, there is growing interest in evaluating their reasoning processes alongside their final outputs. However, most benchmarks remain focused on English, overlooking languages with rich linguistic and cultural contexts, such as Arabic. To address this gap, we introduce the Comprehensive Arabic Multimodal Reasoning Benchmark (ARB), the first benchmark designed to evaluate step-by-step reasoning in Arabic across both textual and visual modalities. ARB spans 11 diverse domains, including visual reasoning, document understanding, OCR, scientific analysis, and cultural interpretation. It comprises 1,356 multimodal samples paired with 5,119 human-curated reasoning steps and corresponding actions. We evaluated 12 state-of-the-art open- and closed-source LMMs and found persistent challenges in coherence, faithfulness, and cultural grounding. ARB offers a structured framework for diagnosing multimodal reasoning in underrepresented languages and marks a critical step toward inclusive, transparent, and culturally aware AI systems. We release the benchmark, rubric, and evaluation suit to support future research and reproducibility. Code available at: https://github.com/mbzuai-oryx/ARB
Authors:Shilin Yan, Jiaming Han, Joey Tsai, Hongwei Xue, Rongyao Fang, Lingyi Hong, Ziyu Guo, Ray Zhang
Abstract:
The advent of Large Multimodal Models (LMMs) has significantly enhanced Large Language Models (LLMs) to process and interpret diverse data modalities (e.g., image and video). However, as input complexity increases, particularly with long video sequences, the number of required tokens has grown significantly, leading to quadratically computational costs. This has made the efficient compression of video tokens in LMMs, while maintaining performance integrity, a pressing research challenge. In this paper, we introduce CrossLMM, decoupling long video sequences from LMMs via a dual cross-attention mechanism, which substantially reduces visual token quantity with minimal performance degradation. Specifically, we first implement a significant token reduction from pretrained visual encoders through a pooling methodology. Then, within LLM layers, we employ a visual-to-visual cross-attention mechanism, wherein the pooled visual tokens function as queries against the original visual token set. This module enables more efficient token utilization while retaining fine-grained informational fidelity. In addition, we introduce a text-to-visual cross-attention mechanism, for which the text tokens are enhanced through interaction with the original visual tokens, enriching the visual comprehension of the text tokens. Comprehensive empirical evaluation demonstrates that our approach achieves comparable or superior performance across diverse video-based LMM benchmarks, despite utilizing substantially fewer computational resources.
Authors:Chenhao Zhang, Yazhe Niu
Abstract:
Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at https://github.com/MING-ZCH/Let-Androids-Dream-of-Electric-Sheep.
Authors:Kaixuan Fan, Kaituo Feng, Haoming Lyu, Dongzhan Zhou, Xiangyu Yue
Abstract:
Recent advances have shown success in eliciting strong reasoning abilities in multimodal large language models (MLLMs) through rule-based reinforcement learning (RL) with outcome rewards. However, this paradigm typically lacks supervision over the thinking process leading to the final outcome.As a result, the model may learn sub-optimal reasoning strategies, which can hinder its generalization ability. In light of this, we propose SophiaVL-R1, as an attempt to add reward signals for the thinking process in this paradigm. To achieve this, we first train a thinking reward model that evaluates the quality of the entire thinking process. Given that the thinking reward may be unreliable for certain samples due to reward hacking, we propose the Trust-GRPO method, which assigns a trustworthiness weight to the thinking reward during training. This weight is computed based on the thinking reward comparison of responses leading to correct answers versus incorrect answers, helping to mitigate the impact of potentially unreliable thinking rewards. Moreover, we design an annealing training strategy that gradually reduces the thinking reward over time, allowing the model to rely more on the accurate rule-based outcome reward in later training stages. Experiments show that our SophiaVL-R1 surpasses a series of reasoning MLLMs on various benchmarks (e.g., MathVisita, MMMU), demonstrating strong reasoning and generalization capabilities. Notably, our SophiaVL-R1-7B even outperforms LLaVA-OneVision-72B on most benchmarks, despite the latter having 10 times more parameters. All code, models, and datasets are made publicly available at https://github.com/kxfan2002/SophiaVL-R1.
Authors:Chengzhuo Tong, Ziyu Guo, Renrui Zhang, Wenyu Shan, Xinyu Wei, Zhenghao Xing, Hongsheng Li, Pheng-Ann Heng
Abstract:
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
Authors:Shuhan Tan, Kairan Dou, Yue Zhao, Philipp Krähenbühl
Abstract:
We introduce RIPT-VLA, a simple and scalable reinforcement-learning-based interactive post-training paradigm that fine-tunes pretrained Vision-Language-Action (VLA) models using only sparse binary success rewards. Existing VLA training pipelines rely heavily on offline expert demonstration data and supervised imitation, limiting their ability to adapt to new tasks and environments under low-data regimes. RIPT-VLA addresses this by enabling interactive post-training with a stable policy optimization algorithm based on dynamic rollout sampling and leave-one-out advantage estimation.
RIPT-VLA has the following characteristics. First, it applies to various VLA models, resulting in an improvement on the lightweight QueST model by 21.2%, and the 7B OpenVLA-OFT model to an unprecedented 97.5% success rate. Second, it is computationally efficient and data-efficient: with only one demonstration, RIPT-VLA enables an unworkable SFT model (4%) to succeed with a 97% success rate within 15 iterations. Furthermore, we demonstrate that the policy learned by RIPT-VLA generalizes across different tasks and scenarios and is robust to the initial state context. These results highlight RIPT-VLA as a practical and effective paradigm for post-training VLA models through minimal supervision.
Authors:Kevin Lu, Nicky Kriplani, Rohit Gandikota, Minh Pham, David Bau, Chinmay Hegde, Niv Cohen
Abstract:
Concept erasure, the ability to selectively prevent a model from generating specific concepts, has attracted growing interest, with various approaches emerging to address the challenge. However, it remains unclear how thoroughly these methods erase the target concept. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) reducing the likelihood of generating the target concept, and (ii) interfering with the model's internal guidance mechanisms. To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations. Our evaluation framework includes adversarial attacks, novel probing techniques, and analysis of the model's alternative generations in place of the erased concept. Our results shed light on the tension between minimizing side effects and maintaining robustness to adversarial prompts. Broadly, our work underlines the importance of comprehensive evaluation for erasure in diffusion models.
Authors:Haoning Wu, Xiao Huang, Yaohui Chen, Ya Zhang, Yanfeng Wang, Weidi Xie
Abstract:
Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored. This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities? Concretely, we make the following contributions in this paper: (i) we introduce VGBench, a benchmark specifically designed to assess MLLMs for visual geometry perception, e.g., camera pose and motion estimation; (ii) we propose SpatialScore, the most comprehensive and diverse multimodal spatial understanding benchmark to date, integrating VGBench with relevant data from the other 11 existing datasets. This benchmark comprises 28K samples across various spatial understanding tasks, modalities, and QA formats, along with a carefully curated challenging subset, SpatialScore-Hard; (iii) we develop SpatialAgent, a novel multi-agent system incorporating 9 specialized tools for spatial understanding, supporting both Plan-Execute and ReAct reasoning paradigms; (iv) we conduct extensive evaluations to reveal persistent challenges in spatial reasoning while demonstrating the effectiveness of SpatialAgent. We believe SpatialScore will offer valuable insights and serve as a rigorous benchmark for the next evolution of MLLMs.
Authors:Yan Li, Changyao Tian, Renqiu Xia, Ning Liao, Weiwei Guo, Junchi Yan, Hongsheng Li, Jifeng Dai, Hao Li, Xue Yang
Abstract:
We propose AdapTok, an adaptive temporal causal video tokenizer that can flexibly allocate tokens for different frames based on video content. AdapTok is equipped with a block-wise masking strategy that randomly drops tail tokens of each block during training, and a block causal scorer to predict the reconstruction quality of video frames using different numbers of tokens. During inference, an adaptive token allocation strategy based on integer linear programming is further proposed to adjust token usage given predicted scores. Such design allows for sample-wise, content-aware, and temporally dynamic token allocation under a controllable overall budget. Extensive experiments for video reconstruction and generation on UCF-101 and Kinetics-600 demonstrate the effectiveness of our approach. Without additional image data, AdapTok consistently improves reconstruction quality and generation performance under different token budgets, allowing for more scalable and token-efficient generative video modeling.
Authors:Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian Min, Wayne Xin Zhao, Lei Fang, Ji-Rong Wen
Abstract:
Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
Authors:Jiachen Yao, Abbas Mammadov, Julius Berner, Gavin Kerrigan, Jong Chul Ye, Kamyar Azizzadenesheli, Anima Anandkumar
Abstract:
We propose a general framework for conditional sampling in PDE-based inverse problems, targeting the recovery of whole solutions from extremely sparse or noisy measurements. This is accomplished by a function-space diffusion model and plug-and-play guidance for conditioning. Our method first trains an unconditional discretization-agnostic denoising model using neural operator architectures. At inference, we refine the samples to satisfy sparse observation data via a gradient-based guidance mechanism. Through rigorous mathematical analysis, we extend Tweedie's formula to infinite-dimensional Hilbert spaces, providing the theoretical foundation for our posterior sampling approach. Our method (FunDPS) accurately captures posterior distributions in function spaces under minimal supervision and severe data scarcity. Across five PDE tasks with only 3% observation, our method achieves an average 32% accuracy improvement over state-of-the-art fixed-resolution diffusion baselines while reducing sampling steps by 4x. Furthermore, multi-resolution fine-tuning ensures strong cross-resolution generalizability. To the best of our knowledge, this is the first diffusion-based framework to operate independently of discretization, offering a practical and flexible solution for forward and inverse problems in the context of PDEs. Code is available at https://github.com/neuraloperator/FunDPS
Authors:Ming Qian, Bin Tan, Qiuyu Wang, Xianwei Zheng, Hanjiang Xiong, Gui-Song Xia, Yujun Shen, Nan Xue
Abstract:
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
Authors:Jin Jiang, Jianing Wang, Yuchen Yan, Yang Liu, Jianhua Zhu, Mengdi Zhang, Xunliang Cai, Liangcai Gao
Abstract:
Large Language Models (LLMs) have been shown to achieve breakthrough performance on complex logical reasoning tasks. Nevertheless, most existing research focuses on employing formal language to guide LLMs to derive reliable reasoning paths, while systematic evaluations of these capabilities are still limited. In this paper, we aim to conduct a comprehensive evaluation of LLMs across various logical reasoning problems utilizing formal languages. From the perspective of three dimensions, i.e., spectrum of LLMs, taxonomy of tasks, and format of trajectories, our key findings are: 1) Thinking models significantly outperform Instruct models, especially when formal language is employed; 2) All LLMs exhibit limitations in inductive reasoning capability, irrespective of whether they use a formal language; 3) Data with PoT format achieves the best generalization performance across other languages. Additionally, we also curate the formal-relative training data to further enhance the small language models, and the experimental results indicate that a simple rejected fine-tuning method can better enable LLMs to generalize across formal languages and achieve the best overall performance. Our codes and reports are available at https://github.com/jiangjin1999/FormalEval.
Authors:Runyang You, Yongqi Li, Xinyu Lin, Xin Zhang, Wenjie Wang, Wenjie Li, Liqiang Nie
Abstract:
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. Current studies usually position LLMs as external reasoning modules to yield auxiliary thought for augmenting conventional recommendation pipelines. However, such decoupled designs are limited in significant resource cost and suboptimal joint optimization. To address these issues, we propose \name, a unified large recommender model with intrinsic reasoning capabilities. Initially, we reconceptualize the model architecture to facilitate interleaved reasoning and recommendation in the autoregressive process. Subsequently, we propose RecPO, a corresponding reinforcement learning framework that optimizes \name\ both the reasoning and recommendation capabilities simultaneously in a single policy update; RecPO introduces a fused reward scheme that solely leverages recommendation labels to simulate the reasoning capability, eliminating dependency on specialized reasoning annotations. Experiments on three datasets with various baselines verify the effectiveness of \name, showing relative improvements of 68.67\% in Hit@5 and 45.21\% in NDCG@20. Code available at https://github.com/YRYangang/RRec.
Authors:Aleksandra Franz, Hao Wei, Luca Guastoni, Nils Thuerey
Abstract:
Despite decades of advancements, the simulation of fluids remains one of the most challenging areas of in scientific computing. Supported by the necessity of gradient information in deep learning, differentiable simulators have emerged as an effective tool for optimization and learning in physics simulations. In this work, we present our fluid simulator PICT, a differentiable pressure-implicit solver coded in PyTorch with Graphics-processing-unit (GPU) support. We first verify the accuracy of both the forward simulation and our derived gradients in various established benchmarks like lid-driven cavities and turbulent channel flows before we show that the gradients provided by our solver can be used to learn complicated turbulence models in 2D and 3D. We apply both supervised and unsupervised training regimes using physical priors to match flow statistics. In particular, we learn a stable sub-grid scale (SGS) model for a 3D turbulent channel flow purely based on reference statistics. The low-resolution corrector trained with our solver runs substantially faster than the highly resolved references, while keeping or even surpassing their accuracy. Finally, we give additional insights into the physical interpretation of different solver gradients, and motivate a physically informed regularization technique. To ensure that the full potential of PICT can be leveraged, it is published as open source: https://github.com/tum-pbs/PICT.
Authors:Runpeng Yu, Xinyin Ma, Xinchao Wang
Abstract:
In this work, we propose Dimple, the first Discrete Diffusion Multimodal Large Language Model (DMLLM). We observe that training with a purely discrete diffusion approach leads to significant training instability, suboptimal performance, and severe length bias issues. To address these challenges, we design a novel training paradigm that combines an initial autoregressive phase with a subsequent diffusion phase. This approach yields the Dimple-7B model, trained on the same dataset and using a similar training pipeline as LLaVA-NEXT. Dimple-7B ultimately surpasses LLaVA-NEXT in performance by 3.9%, demonstrating that DMLLM can achieve performance comparable to that of autoregressive models. To improve inference efficiency, we propose a decoding strategy termed confident decoding, which dynamically adjusts the number of tokens generated at each step, significantly reducing the number of generation iterations. In autoregressive models, the number of forward iterations during generation equals the response length. With confident decoding, however, the number of iterations needed by Dimple is even only $\frac{\text{response length}}{3}$. We also re-implement the prefilling technique in autoregressive models and demonstrate that it does not significantly impact performance on most benchmark evaluations, while offering a speedup of 1.5x to 7x. Additionally, we explore Dimple's capability to precisely control its response using structure priors. These priors enable structured responses in a manner distinct from instruction-based or chain-of-thought prompting, and allow fine-grained control over response format and length, which is difficult to achieve in autoregressive models. Overall, this work validates the feasibility and advantages of DMLLM and enhances its inference efficiency and controllability. Code and models are available at https://github.com/yu-rp/Dimple.
Authors:Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, Mario Trapp
Abstract:
Out-of-distribution (OOD) detection and segmentation are crucial for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. While prior research has primarily focused on unimodal image data, real-world applications are inherently multimodal, requiring the integration of multiple modalities for improved OOD detection. A key challenge is the lack of supervision signals from unknown data, leading to overconfident predictions on OOD samples. To address this challenge, we propose Feature Mixing, an extremely simple and fast method for multimodal outlier synthesis with theoretical support, which can be further optimized to help the model better distinguish between in-distribution (ID) and OOD data. Feature Mixing is modality-agnostic and applicable to various modality combinations. Additionally, we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation, featuring synthetic OOD objects across diverse scenes and weather conditions. Extensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art performance with a $10 \times$ to $370 \times$ speedup. Our source code and dataset will be available at https://github.com/mona4399/FeatureMixing.
Authors:Junlong Tong, Jinlan Fu, Zixuan Lin, Yingqi Fan, Anhao Zhao, Hui Su, Xiaoyu Shen
Abstract:
Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.
Authors:Weizhi Tang, Yixuan Li, Chris Sypherd, Elizabeth Polgreen, Vaishak Belle
Abstract:
Grammar plays a critical role in natural language processing and text/code generation by enabling the definition of syntax, the creation of parsers, and guiding structured outputs. Although large language models (LLMs) demonstrate impressive capabilities across domains, their ability to infer and generate grammars has not yet been thoroughly explored. In this paper, we aim to study and improve the ability of LLMs for few-shot grammar generation, where grammars are inferred from sets of a small number of positive and negative examples and generated in Backus-Naur Form. To explore this, we introduced a novel dataset comprising 540 structured grammar generation challenges, devised 6 metrics, and evaluated 8 various LLMs against it. Our findings reveal that existing LLMs perform sub-optimally in grammar generation. To address this, we propose an LLM-driven hybrid genetic algorithm, namely HyGenar, to optimize grammar generation. HyGenar achieves substantial improvements in both the syntactic and semantic correctness of generated grammars across LLMs.
Authors:Siqi Wan, Jingwen Chen, Yingwei Pan, Ting Yao, Tao Mei
Abstract:
Diffusion models have shown preliminary success in virtual try-on (VTON) task. The typical dual-branch architecture comprises two UNets for implicit garment deformation and synthesized image generation respectively, and has emerged as the recipe for VTON task. Nevertheless, the problem remains challenging to preserve the shape and every detail of the given garment due to the intrinsic stochasticity of diffusion model. To alleviate this issue, we novelly propose to explicitly capitalize on visual correspondence as the prior to tame diffusion process instead of simply feeding the whole garment into UNet as the appearance reference. Specifically, we interpret the fine-grained appearance and texture details as a set of structured semantic points, and match the semantic points rooted in garment to the ones over target person through local flow warping. Such 2D points are then augmented into 3D-aware cues with depth/normal map of target person. The correspondence mimics the way of putting clothing on human body and the 3D-aware cues act as semantic point matching to supervise diffusion model training. A point-focused diffusion loss is further devised to fully take the advantage of semantic point matching. Extensive experiments demonstrate strong garment detail preservation of our approach, evidenced by state-of-the-art VTON performances on both VITON-HD and DressCode datasets. Code is publicly available at: https://github.com/HiDream-ai/SPM-Diff.
Authors:Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, Siheng Chen
Abstract:
Large Language Models (LLMs) have shown strong capability in diverse software engineering tasks, e.g. code completion, bug fixing, and document generation. However, feature-driven development (FDD), a highly prevalent real-world task that involves developing new functionalities for large, existing codebases, remains underexplored. We therefore introduce SWE-Dev, the first large-scale dataset (with 14,000 training and 500 test samples) designed to evaluate and train autonomous coding systems on real-world feature development tasks. To ensure verifiable and diverse training, SWE-Dev uniquely provides all instances with a runnable environment and its developer-authored executable unit tests. This collection not only provides high-quality data for Supervised Fine-Tuning (SFT), but also enables Reinforcement Learning (RL) by delivering accurate reward signals from executable unit tests. Our extensive evaluations on SWE-Dev, covering 17 chatbot LLMs, 10 reasoning models, and 10 Multi-Agent Systems (MAS), reveal that FDD is a profoundly challenging frontier for current AI (e.g., Claude-3.7-Sonnet achieves only 22.45\% Pass@3 on the hard test split). Crucially, we demonstrate that SWE-Dev serves as an effective platform for model improvement: fine-tuning on training set enabled a 7B model comparable to GPT-4o on \textit{hard} split, underscoring the value of its high-quality training data. Code is available here \href{https://github.com/DorothyDUUU/SWE-Dev}{https://github.com/DorothyDUUU/SWE-Dev}.
Authors:Zongyan Han, Jiale Cao, Shuo Chen, Tong Wang, Jorma Laaksonen, Rao Muhammad Anwer
Abstract:
Open-Vocabulary Segmentation (OVS) has drawn increasing attention for its capacity to generalize segmentation beyond predefined categories. However, existing methods typically predict segmentation masks with simple forward inference, lacking explicit reasoning and interpretability. This makes it challenging for OVS model to distinguish similar categories in open-world settings due to the lack of contextual understanding and discriminative visual cues. To address this limitation, we propose a step-by-step visual reasoning framework for open-vocabulary segmentation, named OpenSeg-R. The proposed OpenSeg-R leverages Large Multimodal Models (LMMs) to perform hierarchical visual reasoning before segmentation. Specifically, we generate both generic and image-specific reasoning for each image, forming structured triplets that explain the visual reason for objects in a coarse-to-fine manner. Based on these reasoning steps, we can compose detailed description prompts, and feed them to the segmentor to produce more accurate segmentation masks. To the best of our knowledge, OpenSeg-R is the first framework to introduce explicit step-by-step visual reasoning into OVS. Experimental results demonstrate that OpenSeg-R significantly outperforms state-of-the-art methods on open-vocabulary semantic segmentation across five benchmark datasets. Moreover, it achieves consistent gains across all metrics on open-vocabulary panoptic segmentation. Qualitative results further highlight the effectiveness of our reasoning-guided framework in improving both segmentation precision and interpretability. Our code is publicly available at https://github.com/Hanzy1996/OpenSeg-R.
Authors:Nandan Thakur, Crystina Zhang, Xueguang Ma, Jimmy Lin
Abstract:
Training robust retrieval and reranker models typically relies on large-scale retrieval datasets; for example, the BGE collection contains 1.6 million query-passage pairs sourced from various data sources. However, we find that certain datasets can negatively impact model effectiveness -- pruning 8 out of 15 datasets from the BGE collection reduces the training set size by 2.35$\times$ and increases nDCG@10 on BEIR by 1.0 point. This motivates a deeper examination of training data quality, with a particular focus on "false negatives", where relevant passages are incorrectly labeled as irrelevant. We propose a simple, cost-effective approach using cascading LLM prompts to identify and relabel hard negatives. Experimental results show that relabeling false negatives with true positives improves both E5 (base) and Qwen2.5-7B retrieval models by 0.7-1.4 nDCG@10 on BEIR and by 1.7-1.8 nDCG@10 on zero-shot AIR-Bench evaluation. Similar gains are observed for rerankers fine-tuned on the relabeled data, such as Qwen2.5-3B on BEIR. The reliability of the cascading design is further supported by human annotation results, where we find judgment by GPT-4o shows much higher agreement with humans than GPT-4o-mini.
Authors:Csaba Dékány, Stefan Balauca, Robin Staab, Dimitar I. Dimitrov, Martin Vechev
Abstract:
Despite recent efforts in Large Language Models (LLMs) safety and alignment, current adversarial attacks on frontier LLMs are still able to force harmful generations consistently. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. As these relaxations do not correspond to discrete input tokens, such latent training methods often leave models vulnerable to a diverse set of discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.
Authors:InternAgent Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Runmin Ma, Yusong Hu, Zhiyin Yu, Xiaohan He, Songtao Huang, Shaowei Hou, Zheng Nie, Zhilong Wang, Jinyao Liu, Tianshuo Peng, Peng Ye, Dongzhan Zhou, Shufei Zhang, Xiaosong Wang, Yilan Zhang, Meng Li, Zhongying Tu, Xiangyu Yue, Wangli Ouyang, Bowen Zhou, Lei Bai
Abstract:
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce InternAgent, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. InternAgent highlights three key advantages: 1) Scalability: InternAgent has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: InternAgent provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: InternAgent has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.65 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
Authors:Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, Chongxuan Li
Abstract:
In this work, we introduce LLaDA-V, a purely diffusion-based Multimodal Large Language Model (MLLM) that integrates visual instruction tuning with masked diffusion models, representing a departure from the autoregressive paradigms dominant in current multimodal approaches. Built upon LLaDA, a representative large language diffusion model, LLaDA-V incorporates a vision encoder and MLP connector that projects visual features into the language embedding space, enabling effective multimodal alignment. Our empirical investigation reveals several intriguing results: First, LLaDA-V demonstrates promising multimodal performance despite its language model being weaker on purely textual tasks than counterparts like LLaMA3-8B and Qwen2-7B. When trained on the same instruction data, LLaDA-V is highly competitive to LLaMA3-V across multimodal tasks with better data scalability. It also narrows the performance gap to Qwen2-VL, suggesting the effectiveness of its architecture for multimodal tasks. Second, LLaDA-V achieves state-of-the-art performance in multimodal understanding compared to existing hybrid autoregressive-diffusion and purely diffusion-based MLLMs. Our findings suggest that large language diffusion models show promise in multimodal contexts and warrant further investigation in future research. Project page and codes: https://ml-gsai.github.io/LLaDA-V-demo/.
Authors:Daniel F. Perez-Ramirez, Dejan Kostic, Magnus Boman
Abstract:
Efficiently managing compute resources for Large Language Model (LLM) inference remains challenging due to the inherently stochastic and variable lengths of autoregressive text generation. Accurately estimating response lengths in advance enables proactive resource allocation, yet existing approaches either bias text generation towards certain lengths or rely on assumptions that ignore model- and prompt-specific variability. We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used open-source LLMs evaluated on seven distinct instruction-following corpora. For each $\langle$prompt, model$\rangle$ sample pair, we generate 10 independent completions using fixed decoding hyper-parameters, record the token length of each response, and publish summary statistics (mean, std-dev, percentiles), along with the shortest and longest completions, and the exact generation settings. Our analysis reveals significant inter- and intra-model variability in response lengths (even under identical generation settings), as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses. CASTILLO enables the development of predictive models for proactive scheduling and provides a systematic framework for analyzing model-specific generation behaviors. We publicly release the dataset and code to foster research at the intersection of generative language modeling and systems.
Authors:Yuechen Zhang, Jinbo Xing, Bin Xia, Shaoteng Liu, Bohao Peng, Xin Tao, Pengfei Wan, Eric Lo, Jiaya Jia
Abstract:
Despite the remarkable generation quality of video Diffusion Transformer (DiT) models, their practical deployment is severely hindered by extensive computational requirements. This inefficiency stems from two key challenges: the quadratic complexity of self-attention with respect to token length and the multi-step nature of diffusion models. To address these limitations, we present Jenga, a novel inference pipeline that combines dynamic attention carving with progressive resolution generation. Our approach leverages two key insights: (1) early denoising steps do not require high-resolution latents, and (2) later steps do not require dense attention. Jenga introduces a block-wise attention mechanism that dynamically selects relevant token interactions using 3D space-filling curves, alongside a progressive resolution strategy that gradually increases latent resolution during generation. Experimental results demonstrate that Jenga achieves substantial speedups across multiple state-of-the-art video diffusion models while maintaining comparable generation quality (8.83$\times$ speedup with 0.01\% performance drop on VBench). As a plug-and-play solution, Jenga enables practical, high-quality video generation on modern hardware by reducing inference time from minutes to seconds -- without requiring model retraining. Code: https://github.com/dvlab-research/Jenga
Authors:Jiaqi Wang, Kevin Qinghong Lin, James Cheng, Mike Zheng Shou
Abstract:
Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.
Authors:Yibo Wang, Li Shen, Huanjin Yao, Tiansheng Huang, Rui Liu, Naiqiang Tan, Jiaxing Huang, Kai Zhang, Dacheng Tao
Abstract:
Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by enabling step-by-step problem-solving, yet its extension to Long-CoT introduces substantial computational overhead due to increased token length. Existing compression approaches -- instance-level and token-level -- either sacrifice essential local reasoning signals like reflection or yield incoherent outputs. To address these limitations, we propose R1-Compress, a two-stage chunk-level compression framework that preserves both local information and coherence. Our method segments Long-CoT into manageable chunks, applies LLM-driven inner-chunk compression, and employs an inter-chunk search mechanism to select the short and coherent sequence. Experiments on Qwen2.5-Instruct models across MATH500, AIME24, and GPQA-Diamond demonstrate that R1-Compress significantly reduces token usage while maintaining comparable reasoning accuracy. On MATH500, R1-Compress achieves an accuracy of 92.4%, with only a 0.6% drop compared to the Long-CoT baseline, while reducing token usage by about 20%. Source code will be available at https://github.com/w-yibo/R1-Compress
Authors:Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia Deng, Wayne Xin Zhao, Zheng Liu, Lei Fang, Zhongyuan Wang, Ji-Rong Wen
Abstract:
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
Authors:Haonian Ji, Shi Qiu, Siyang Xin, Siwei Han, Zhaorun Chen, Dake Zhang, Hongyi Wang, Huaxiu Yao
Abstract:
While foundation models (FMs), such as diffusion models and large vision-language models (LVLMs), have been widely applied in educational contexts, their ability to generate pedagogically effective visual explanations remains limited. Most existing approaches focus primarily on textual reasoning, overlooking the critical role of structured and interpretable visualizations in supporting conceptual understanding. To better assess the visual reasoning capabilities of FMs in educational settings, we introduce EduVisBench, a multi-domain, multi-level benchmark. EduVisBench features diverse STEM problem sets requiring visually grounded solutions, along with a fine-grained evaluation rubric informed by pedagogical theory. Our empirical analysis reveals that existing models frequently struggle with the inherent challenge of decomposing complex reasoning and translating it into visual representations aligned with human cognitive processes. To address these limitations, we propose EduVisAgent, a multi-agent collaborative framework that coordinates specialized agents for instructional planning, reasoning decomposition, metacognitive prompting, and visualization design. Experimental results show that EduVisAgent substantially outperforms all baselines, achieving a 40.2% improvement and delivering more educationally aligned visualizations. EduVisBench and EduVisAgent are available at https://github.com/aiming-lab/EduVisBench and https://github.com/aiming-lab/EduVisAgent.
Authors:Xiaoyu Xu, Xiang Yue, Yang Liu, Qingqing Ye, Haibo Hu, Minxin Du
Abstract:
Unlearning in large language models (LLMs) is intended to remove the influence of specific data, yet current evaluations rely heavily on token-level metrics such as accuracy and perplexity. We show that these metrics can be misleading: models often appear to forget, but their original behavior can be rapidly restored with minimal fine-tuning, revealing that unlearning may obscure information rather than erase it. To diagnose this phenomenon, we introduce a representation-level evaluation framework using PCA-based similarity and shift, centered kernel alignment, and Fisher information. Applying this toolkit across six unlearning methods, three domains (text, code, math), and two open-source LLMs, we uncover a critical distinction between reversible and irreversible forgetting. In reversible cases, models suffer token-level collapse yet retain latent features; in irreversible cases, deeper representational damage occurs. We further provide a theoretical account linking shallow weight perturbations near output layers to misleading unlearning signals, and show that reversibility is modulated by task type and hyperparameters. Our findings reveal a fundamental gap in current evaluation practices and establish a new diagnostic foundation for trustworthy unlearning in LLMs. We provide a unified toolkit for analyzing LLM representation changes under unlearning and relearning: https://github.com/XiaoyuXU1/Representational_Analysis_Tools.git.
Authors:Bin Xie, Rui Shao, Gongwei Chen, Kaiwen Zhou, Yinchuan Li, Jie Liu, Min Zhang, Liqiang Nie
Abstract:
GUI automation faces critical challenges in dynamic environments. MLLMs suffer from two key issues: misinterpreting UI components and outdated knowledge. Traditional fine-tuning methods are costly for app-specific knowledge updates. We propose GUI-explorer, a training-free GUI agent that incorporates two fundamental mechanisms: (1) Autonomous Exploration of Function-aware Trajectory. To comprehensively cover all application functionalities, we design a Function-aware Task Goal Generator that automatically constructs exploration goals by analyzing GUI structural information (e.g., screenshots and activity hierarchies). This enables systematic exploration to collect diverse trajectories. (2) Unsupervised Mining of Transition-aware Knowledge. To establish precise screen-operation logic, we develop a Transition-aware Knowledge Extractor that extracts effective screen-operation logic through unsupervised analysis the state transition of structured interaction triples (observation, action, outcome). This eliminates the need for human involvement in knowledge extraction. With a task success rate of 53.7% on SPA-Bench and 47.4% on AndroidWorld, GUI-explorer shows significant improvements over SOTA agents. It requires no parameter updates for new apps. GUI-explorer is open-sourced and publicly available at https://github.com/JiuTian-VL/GUI-explorer.
Authors:Chunyi Li, Jiaohao Xiao, Jianbo Zhang, Farong Wen, Zicheng Zhang, Yuan Tian, Xiangyang Zhu, Xiaohong Liu, Zhengxue Cheng, Weisi Lin, Guangtao Zhai
Abstract:
Embodied AI has developed rapidly in recent years, but it is still mainly deployed in laboratories, with various distortions in the Real-world limiting its application. Traditionally, Image Quality Assessment (IQA) methods are applied to predict human preferences for distorted images; however, there is no IQA method to assess the usability of an image in embodied tasks, namely, the perceptual quality for robots. To provide accurate and reliable quality indicators for future embodied scenarios, we first propose the topic: IQA for Embodied AI. Specifically, we (1) based on the Mertonian system and meta-cognitive theory, constructed a perception-cognition-decision-execution pipeline and defined a comprehensive subjective score collection process; (2) established the Embodied-IQA database, containing over 36k reference/distorted image pairs, with more than 5m fine-grained annotations provided by Vision Language Models/Vision Language Action-models/Real-world robots; (3) trained and validated the performance of mainstream IQA methods on Embodied-IQA, demonstrating the need to develop more accurate quality indicators for Embodied AI. We sincerely hope that through evaluation, we can promote the application of Embodied AI under complex distortions in the Real-world. Project page: https://github.com/lcysyzxdxc/EmbodiedIQA
Authors:Junze Wang, Lei Fan, Weipeng Jing, Donglin Di, Yang Song, Sidong Liu, Cong Cong
Abstract:
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions. Our code is available at https://github.com/reeive/ReHyDIL.
Authors:KiHyun Nam, Jungwoo Heo, Jee-weon Jung, Gangin Park, Chaeyoung Jung, Ha-Jin Yu, Joon Son Chung
Abstract:
A primary challenge when deploying speaker recognition systems in real-world applications is performance degradation caused by environmental mismatch. We propose a diffusion-based method that takes speaker embeddings extracted from a pre-trained speaker recognition model and generates refined embeddings. For training, our approach progressively adds Gaussian noise to both clean and noisy speaker embeddings extracted from clean and noisy speech, respectively, via forward process of a diffusion model, and then reconstructs them to clean embeddings in the reverse process. While inferencing, all embeddings are regenerated via diffusion process. Our method needs neither speaker label nor any modification to the existing speaker recognition pipeline. Experiments on evaluation sets simulating environment mismatch scenarios show that our method can improve recognition accuracy by up to 19.6% over baseline models while retaining performance on conventional scenarios. We publish our code here https://github.com/kaistmm/seed-pytorch
Authors:Ziqiao Wang, Wangbo Zhao, Yuhao Zhou, Zekai Li, Zhiyuan Liang, Mingjia Shi, Xuanlei Zhao, Pengfei Zhou, Kaipeng Zhang, Zhangyang Wang, Kai Wang, Yang You
Abstract:
Diffusion Transformers (DiTs) deliver state-of-the-art image quality, yet their training remains notoriously slow. A recent remedy -- representation alignment (REPA) that matches DiT hidden features to those of a non-generative teacher (e.g. DINO) -- dramatically accelerates the early epochs but plateaus or even degrades performance later. We trace this failure to a capacity mismatch: once the generative student begins modelling the joint data distribution, the teacher's lower-dimensional embeddings and attention patterns become a straitjacket rather than a guide. We then introduce HASTE (Holistic Alignment with Stage-wise Termination for Efficient training), a two-phase schedule that keeps the help and drops the hindrance. Phase I applies a holistic alignment loss that simultaneously distills attention maps (relational priors) and feature projections (semantic anchors) from the teacher into mid-level layers of the DiT, yielding rapid convergence. Phase II then performs one-shot termination that deactivates the alignment loss, once a simple trigger such as a fixed iteration is hit, freeing the DiT to focus on denoising and exploit its generative capacity. HASTE speeds up training of diverse DiTs without architecture changes. On ImageNet 256X256, it reaches the vanilla SiT-XL/2 baseline FID in 50 epochs and matches REPA's best FID in 500 epochs, amounting to a 28X reduction in optimization steps. HASTE also improves text-to-image DiTs on MS-COCO, demonstrating to be a simple yet principled recipe for efficient diffusion training across various tasks. Our code is available at https://github.com/NUS-HPC-AI-Lab/HASTE .
Authors:Punya Syon Pandey, Samuel Simko, Kellin Pelrine, Zhijing Jin
Abstract:
As large language models (LLMs) gain popularity, their vulnerability to adversarial attacks emerges as a primary concern. While fine-tuning models on domain-specific datasets is often employed to improve model performance, it can inadvertently introduce vulnerabilities within the underlying model. In this work, we investigate Accidental Vulnerability, unexpected vulnerabilities arising from characteristics of fine-tuning data. We begin by identifying potential correlation factors such as linguistic features, semantic similarity, and toxicity across multiple experimental datasets. We then evaluate the adversarial robustness of these fine-tuned models, analyzing persona shifts and interpretability traits to understand how dataset factors contribute to attack success rates. Lastly, we explore causal relationships that offer new insights into adversarial defense strategies, highlighting the crucial role of dataset design in preserving model alignment. Our code is available at https://github.com/psyonp/accidental_vulnerability.
Authors:Jun Xie, Xiongjun Guan, Yingjian Zhu, Zhaoran Zhao, Xinming Wang, Hongzhu Yi, Feng Chen, Zhepeng Wang
Abstract:
In this paper, we present the runner-up solution for the Ego4D EgoSchema Challenge at CVPR 2025 (Confirmed on May 20, 2025). Inspired by the success of large models, we evaluate and leverage leading accessible multimodal large models and adapt them to video understanding tasks via few-shot learning and model ensemble strategies. Specifically, diversified prompt styles and process paradigms are systematically explored and evaluated to effectively guide the attention of large models, fully unleashing their powerful generalization and adaptability abilities. Experimental results demonstrate that, with our carefully designed approach, directly utilizing an individual multimodal model already outperforms the previous state-of-the-art (SOTA) method which includes several additional processes. Besides, an additional stage is further introduced that facilitates the cooperation and ensemble of periodic results, which achieves impressive performance improvements. We hope this work serves as a valuable reference for the practical application of large models and inspires future research in the field. Our Code is available at https://github.com/XiongjunGuan/EgoSchema-CVPR25.
Authors:Xinghao Chen, Anhao Zhao, Heming Xia, Xuan Lu, Hanlin Wang, Yanjun Chen, Wei Zhang, Jian Wang, Wenjie Li, Xiaoyu Shen
Abstract:
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Authors:Yiming Gao, Bin Wang, Chengwei Wei, Shuo Sun, AiTi Aw
Abstract:
Large language models (LLMs) have demonstrated strong instruction-following capabilities in text-based tasks. However, this ability often deteriorates in multimodal models after alignment with non-text modalities such as images or audio. While several recent efforts have investigated instruction-following performance in text and vision-language models, instruction-following in audio-based large language models remains largely unexplored. To bridge this gap, we introduce IFEval-Audio, a novel evaluation dataset designed to assess the ability to follow instructions in an audio LLM. IFEval-Audio contains 280 audio-instruction-answer triples across six diverse dimensions: Content, Capitalization, Symbol, List Structure, Length, and Format. Each example pairs an audio input with a text instruction, requiring the model to generate an output that follows a specified structure. We benchmark state-of-the-art audio LLMs on their ability to follow audio-involved instructions. The dataset is released publicly to support future research in this emerging area.
Authors:Meng-Hao Guo, Xuanyu Chu, Qianrui Yang, Zhe-Han Mo, Yiqing Shen, Pei-lin Li, Xinjie Lin, Jinnian Zhang, Xin-Sheng Chen, Yi Zhang, Kiyohiro Nakayama, Zhengyang Geng, Houwen Peng, Han Hu, Shi-Min Hu
Abstract:
The rapid advancement of native multi-modal models and omni-models, exemplified by GPT-4o, Gemini, and o3, with their capability to process and generate content across modalities such as text and images, marks a significant milestone in the evolution of intelligence. Systematic evaluation of their multi-modal output capabilities in visual thinking processes (also known as multi-modal chain of thought, M-CoT) becomes critically important. However, existing benchmarks for evaluating multi-modal models primarily focus on assessing multi-modal inputs and text-only reasoning while neglecting the importance of reasoning through multi-modal outputs. In this paper, we present a benchmark, dubbed RBench-V, designed to assess models' vision-indispensable reasoning abilities. To construct RBench-V, we carefully hand-pick 803 questions covering math, physics, counting, and games. Unlike previous benchmarks that typically specify certain input modalities, RBench-V presents problems centered on multi-modal outputs, which require image manipulation such as generating novel images and constructing auxiliary lines to support the reasoning process. We evaluate numerous open- and closed-source models on RBench-V, including o3, Gemini 2.5 Pro, Qwen2.5-VL, etc. Even the best-performing model, o3, achieves only 25.8% accuracy on RBench-V, far below the human score of 82.3%, highlighting that current models struggle to leverage multi-modal reasoning. Data and code are available at https://evalmodels.github.io/rbenchv
Authors:Jian Liu, Jing Xu, Song Guo, Jing Li, Jingfeng Guo, Jiaao Yu, Haohan Weng, Biwen Lei, Xianghui Yang, Zhuo Chen, Fangqi Zhu, Tao Han, Chunchao Guo
Abstract:
Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present \textbf{Mesh-RFT}, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: \href{https://hitcslj.github.io/mesh-rft/}{this https URL}.
Authors:Florentin Beck, William Rudman, Carsten Eickhoff
Abstract:
Large Language Models (LLMs) present significant computational and memory challenges due to their extensive size, making pruning essential for their efficient deployment. Existing one-shot pruning methods often apply uniform sparsity constraints across layers or within each layer, resulting in suboptimal performance, especially at high sparsity ratios. This work introduces TRIM (Targeted Row-wise Iterative Metric-driven pruning), a novel approach that applies varying sparsity ratios to individual output dimensions (rows) within each layer. TRIM employs an iterative adjustment process guided by quality metrics to optimize dimension-wise sparsity allocation, focusing on reducing variance in quality retention across outputs to preserve critical information. TRIM can be seamlessly integrated with existing layer-wise pruning strategies. Our evaluations on perplexity and zero-shot tasks across diverse LLM families (Qwen2.5, LLaMA-2, and OPT) and sparsity levels demonstrate that TRIM achieves new state-of-the-art results and enhances stability. For instance, at 80% sparsity, TRIM reduces perplexity by 48% for Qwen2.5-14B and over 90% for OPT-13B compared to baseline methods. We conclude that fine-grained, dimension-wise sparsity adaptation is crucial for pushing the limits of extreme LLM compression. Code available at: https://github.com/flobk/TRIM
Authors:Chengcan Wu, Zhixin Zhang, Zeming Wei, Yihao Zhang, Meng Sun
Abstract:
The significant progress of large language models (LLMs) has led to remarkable achievements across numerous applications. However, their ability to generate harmful content has sparked substantial safety concerns. Despite the implementation of safety alignment techniques during the pre-training phase, recent research indicates that fine-tuning LLMs on adversarial or even benign data can inadvertently compromise their safety. In this paper, we re-examine the fundamental issue of why fine-tuning on non-harmful data still results in safety degradation. We introduce a safety-aware probing (SAP) optimization framework designed to mitigate the safety risks of fine-tuning LLMs. Specifically, SAP incorporates a safety-aware probe into the gradient propagation process, mitigating the model's risk of safety degradation by identifying potential pitfalls in gradient directions, thereby enhancing task-specific performance while successfully preserving model safety. Our extensive experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model and achieves comparable test loss to standard fine-tuning methods. Our code is available at https://github.com/ChengcanWu/SAP.
Authors:Ziwei Luo, Fredrik K. Gustafsson, Jens Sjölund, Thomas B. Schön
Abstract:
This work presents a forward-only diffusion (FoD) approach for generative modelling. In contrast to traditional diffusion models that rely on a coupled forward-backward diffusion scheme, FoD directly learns data generation through a single forward diffusion process, yielding a simple yet efficient generative framework. The core of FoD is a state-dependent linear stochastic differential equation that involves a mean-reverting term in both the drift and diffusion functions. This mean-reversion property guarantees the convergence to clean data, naturally simulating a stochastic interpolation between source and target distributions. More importantly, FoD is analytically tractable and is trained using a simple stochastic flow matching objective, enabling a few-step non-Markov chain sampling during inference. The proposed FoD model, despite its simplicity, achieves competitive performance on various image-conditioned (e.g., image restoration) and unconditional generation tasks, demonstrating its effectiveness in generative modelling. Our code is available at https://github.com/Algolzw/FoD.
Authors:Himanshu Beniwal, Youngwoo Kim, Maarten Sap, Soham Dan, Thomas Hartvigsen
Abstract:
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
Authors:Wenhao Li, Yuxin Zhang, Gen Luo, Daohai Yu, Rongrong Ji
Abstract:
While long-context large language models (LLMs) exhibit remarkable document processing capabilities, their prohibitively high training costs often hinder customized applications. To mitigate this issue, we propose \textit{Sequential Chunk-wise Optimization} (SeCO), a memory-efficient training paradigm that partitions lengthy inputs into manageable chunks. Each chunk independently constructs its computational graph and performs localized backpropagation, ensuring that only one chunk's forward activations are stored in memory. Building on SeCO, we further introduce \textit{Sparse Chunk-wise Optimization} (SpaCO), which reduces computational overhead by selectively propagating gradients to specific chunks and incorporates a carefully designed compensation factor to ensure unbiased gradient estimation. SpaCO decouples the computational cost of backpropagation from the context length, enabling training time to gradually converge to inference time as sequences become longer. Implemented as lightweight training wrappers, both SeCO and SpaCO offer substantial practical benefits. For example, when fine-tuning an 8B model with LoRA on a single RTX 3090 GPU, SeCO expands maximum sequence length from 1K to 16K tokens, while SpaCO demonstrates accelerated training speed -- achieving up to 3x faster than SeCO under the same experimental setup. These innovations provide new insights into optimizing long-context models, making them more accessible for practical applications. We have open-sourced the code at \href{https://github.com/wenhaoli-xmu/seco}{here}.
Authors:Advait Joglekar, Divyanshu Singh, Rooshil Rohit Bhatia, S. Umesh
Abstract:
Voice Conversion research in recent times has increasingly focused on improving the zero-shot capabilities of existing methods. Despite remarkable advancements, current architectures still tend to struggle in zero-shot cross-lingual settings. They are also often unable to generalize for speakers of unseen languages and accents. In this paper, we adopt a simple yet effective approach that combines discrete speech representations from self-supervised models with a non-autoregressive Diffusion-Transformer based conditional flow matching speech decoder. We show that this architecture allows us to train a voice-conversion model in a purely textless, self-supervised fashion. Our technique works without requiring multiple encoders to disentangle speech features. Our model also manages to excel in zero-shot cross-lingual settings even for unseen languages. For Demo: https://ez-vc.github.io/EZ-VC-Demo/
Authors:Huanjin Yao, Qixiang Yin, Jingyi Zhang, Min Yang, Yibo Wang, Wenhao Wu, Fei Su, Li Shen, Minghui Qiu, Dacheng Tao, Jiaxing Huang
Abstract:
In this work, we aim to incentivize the reasoning ability of Multimodal Large Language Models (MLLMs) via reinforcement learning (RL) and develop an effective approach that mitigates the sparse reward and advantage vanishing issues during RL. To this end, we propose Share-GRPO, a novel RL approach that tackle these issues by exploring and sharing diverse reasoning trajectories over expanded question space. Specifically, Share-GRPO first expands the question space for a given question via data transformation techniques, and then encourages MLLM to effectively explore diverse reasoning trajectories over the expanded question space and shares the discovered reasoning trajectories across the expanded questions during RL. In addition, Share-GRPO also shares reward information during advantage computation, which estimates solution advantages hierarchically across and within question variants, allowing more accurate estimation of relative advantages and improving the stability of policy training. Extensive evaluations over six widely-used reasoning benchmarks showcase the superior performance of our method. Code will be available at https://github.com/HJYao00/R1-ShareVL.
Authors:Xinwei Yang, Zhaofeng Liu, Chen Huang, Jiashuai Zhang, Tong Zhang, Yifan Zhang, Wenqiang Lei
Abstract:
While recent research increasingly emphasizes the value of human-LLM collaboration in competitive programming and proposes numerous empirical methods, a comprehensive understanding remains elusive due to the fragmented nature of existing studies and their use of diverse, application-specific human feedback. Thus, our work serves a three-fold purpose: First, we present the first taxonomy of human feedback consolidating the entire programming process, which promotes fine-grained evaluation. Second, we introduce ELABORATIONSET, a novel programming dataset specifically designed for human-LLM collaboration, meticulously annotated to enable large-scale simulated human feedback and facilitate costeffective real human interaction studies. Third, we introduce ELABORATION, a novel benchmark to facilitate a thorough assessment of human-LLM competitive programming. With ELABORATION, we pinpoint strengthes and weaknesses of existing methods, thereby setting the foundation for future improvement. Our code and dataset are available at https://github.com/SCUNLP/ELABORATION
Authors:Haihong Hao, Mingfei Han, Changlin Li, Zhihui Li, Xiaojun Chang
Abstract:
Embodied navigation demands comprehensive scene understanding and precise spatial reasoning. While image-text models excel at interpreting pixel-level color and lighting cues, 3D-text models capture volumetric structure and spatial relationships. However, unified fusion approaches that jointly fuse 2D images, 3D point clouds, and textual instructions face challenges in limited availability of triple-modality data and difficulty resolving conflicting beliefs among modalities. In this work, we introduce CoNav, a collaborative cross-modal reasoning framework where a pretrained 3D-text model explicitly guides an image-text navigation agent by providing structured spatial-semantic knowledge to resolve ambiguities during navigation. Specifically, we introduce Cross-Modal Belief Alignment, which operationalizes this cross-modal guidance by simply sharing textual hypotheses from the 3D-text model to the navigation agent. Through lightweight fine-tuning on a small 2D-3D-text corpus, the navigation agent learns to integrate visual cues with spatial-semantic knowledge derived from the 3D-text model, enabling effective reasoning in embodied navigation. CoNav achieves significant improvements on four standard embodied navigation benchmarks (R2R, CVDN, REVERIE, SOON) and two spatial reasoning benchmarks (ScanQA, SQA3D). Moreover, under close navigation Success Rate, CoNav often generates shorter paths compared to other methods (as measured by SPL), showcasing the potential and challenges of fusing data from different modalities in embodied navigation. Project Page: https://oceanhao.github.io/CoNav/
Authors:Shinnosuke Ono, Issey Sukeda, Takuro Fujii, Kosei Buma, Shunsuke Sasaki
Abstract:
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.
Authors:Giuseppe Guarino, Matteo Ciotola, Gemine Vivone, Giovanni Poggi, Giuseppe Scarpa
Abstract:
Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
Authors:Michael Neri, Sara Baldoni
Abstract:
Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.
Authors:Zhichao Zhu, Yang Qi, Hengyuan Ma, Wenlian Lu, Jianfeng Feng
Abstract:
The Forward-Forward (FF) algorithm provides a bottom-up alternative to backpropagation (BP) for training neural networks, relying on a layer-wise "goodness" function to guide learning. Existing goodness functions, inspired by energy-based learning (EBL), are typically defined as the sum of squared post-synaptic activations, neglecting the correlations between neurons. In this work, we propose a novel goodness function termed dimensionality compression that uses the effective dimensionality (ED) of fluctuating neural responses to incorporate second-order statistical structure. Our objective minimizes ED for clamped inputs when noise is considered while maximizing it across the sample distribution, promoting structured representations without the need to prepare negative samples. We demonstrate that this formulation achieves competitive performance compared to other non-BP methods. Moreover, we show that noise plays a constructive role that can enhance generalization and improve inference when predictions are derived from the mean of squared outputs, which is equivalent to making predictions based on the energy term. Our findings contribute to the development of more biologically plausible learning algorithms and suggest a natural fit for neuromorphic computing, where stochasticity is a computational resource rather than a nuisance. The code is available at https://github.com/ZhichaoZhu/StochasticForwardForward
Authors:Sushant Gautam, Michael A. Riegler, PÃ¥l Halvorsen
Abstract:
We investigate fine-tuning Vision-Language Models (VLMs) for multi-task medical image understanding, focusing on detection, localization, and counting of findings in medical images. Our objective is to evaluate whether instruction-tuned VLMs can simultaneously improve these tasks, with the goal of enhancing diagnostic accuracy and efficiency. Using MedMultiPoints, a multimodal dataset with annotations from endoscopy (polyps and instruments) and microscopy (sperm cells), we reformulate each task into instruction-based prompts suitable for vision-language reasoning. We fine-tune Qwen2.5-VL-7B-Instruct using Low-Rank Adaptation (LoRA) across multiple task combinations. Results show that multi-task training improves robustness and accuracy. For example, it reduces the Count Mean Absolute Error (MAE) and increases Matching Accuracy in the Counting + Pointing task. However, trade-offs emerge, such as more zero-case point predictions, indicating reduced reliability in edge cases despite overall performance gains. Our study highlights the potential of adapting general-purpose VLMs to specialized medical tasks via prompt-driven fine-tuning. This approach mirrors clinical workflows, where radiologists simultaneously localize, count, and describe findings - demonstrating how VLMs can learn composite diagnostic reasoning patterns. The model produces interpretable, structured outputs, offering a promising step toward explainable and versatile medical AI. Code, model weights, and scripts will be released for reproducibility at https://github.com/simula/PointDetectCount.
Authors:Xueyang Zhou, Guiyao Tie, Guowen Zhang, Hechang Wang, Pan Zhou, Lichao Sun
Abstract:
Vision-Language-Action (VLA) models have advanced robotic control by enabling end-to-end decision-making directly from multimodal inputs. However, their tightly coupled architectures expose novel security vulnerabilities. Unlike traditional adversarial perturbations, backdoor attacks represent a stealthier, persistent, and practically significant threat-particularly under the emerging Training-as-a-Service paradigm-but remain largely unexplored in the context of VLA models. To address this gap, we propose BadVLA, a backdoor attack method based on Objective-Decoupled Optimization, which for the first time exposes the backdoor vulnerabilities of VLA models. Specifically, it consists of a two-stage process: (1) explicit feature-space separation to isolate trigger representations from benign inputs, and (2) conditional control deviations that activate only in the presence of the trigger, while preserving clean-task performance. Empirical results on multiple VLA benchmarks demonstrate that BadVLA consistently achieves near-100% attack success rates with minimal impact on clean task accuracy. Further analyses confirm its robustness against common input perturbations, task transfers, and model fine-tuning, underscoring critical security vulnerabilities in current VLA deployments. Our work offers the first systematic investigation of backdoor vulnerabilities in VLA models, highlighting an urgent need for secure and trustworthy embodied model design practices. We have released the project page at https://badvla-project.github.io/.
Authors:Sushant Gautam, Cise Midoglu, Vajira Thambawita, Michael A. Riegler, PÃ¥l Halvorsen, Mubarak Shah
Abstract:
The integration of artificial intelligence in sports analytics has transformed soccer video understanding, enabling real-time, automated insights into complex game dynamics. Traditional approaches rely on isolated data streams, limiting their effectiveness in capturing the full context of a match. To address this, we introduce SoccerChat, a multimodal conversational AI framework that integrates visual and textual data for enhanced soccer video comprehension. Leveraging the extensive SoccerNet dataset, enriched with jersey color annotations and automatic speech recognition (ASR) transcripts, SoccerChat is fine-tuned on a structured video instruction dataset to facilitate accurate game understanding, event classification, and referee decision making. We benchmark SoccerChat on action classification and referee decision-making tasks, demonstrating its performance in general soccer event comprehension while maintaining competitive accuracy in referee decision making. Our findings highlight the importance of multimodal integration in advancing soccer analytics, paving the way for more interactive and explainable AI-driven sports analysis. https://github.com/simula/SoccerChat
Authors:Luyang Cao, Jianwei Li, Yinghuan Shi
Abstract:
Semi-supervised medical image segmentation (SSMIS) leverages unlabeled data to reduce reliance on manually annotated images. However, current SOTA approaches predominantly focus on foreground-oriented modeling (i.e., segmenting only the foreground region) and have largely overlooked the potential benefits of explicitly modeling the background region. Our study theoretically and empirically demonstrates that highly certain predictions in background modeling enhance the confidence of corresponding foreground modeling. Building on this insight, we propose the Cross-view Bidirectional Modeling (CVBM) framework, which introduces a novel perspective by incorporating background modeling to improve foreground modeling performance. Within CVBM, background modeling serves as an auxiliary perspective, providing complementary supervisory signals to enhance the confidence of the foreground model. Additionally, CVBM introduces an innovative bidirectional consistency mechanism, which ensures mutual alignment between foreground predictions and background-guided predictions. Extensive experiments demonstrate that our approach achieves SOTA performance on the LA, Pancreas, ACDC, and HRF datasets. Notably, on the Pancreas dataset, CVBM outperforms fully supervised methods (i.e., DSC: 84.57% vs. 83.89%) while utilizing only 20% of the labeled data. Our code is publicly available at https://github.com/caoluyang0830/CVBM.git.
Authors:Benjamin Herdeanu, Juan Nathaniel, Carla Roesch, Jatan Buch, Gregor Ramien, Johannes Haux, Pierre Gentine
Abstract:
Causal discovery for dynamical systems poses a major challenge in fields where active interventions are infeasible. Most methods used to investigate these systems and their associated benchmarks are tailored to deterministic, low-dimensional and weakly nonlinear time-series data. To address these limitations, we present CausalDynamics, a large-scale benchmark and extensible data generation framework to advance the structural discovery of dynamical causal models. Our benchmark consists of true causal graphs derived from thousands of coupled ordinary and stochastic differential equations as well as two idealized climate models. We perform a comprehensive evaluation of state-of-the-art causal discovery algorithms for graph reconstruction on systems with noisy, confounded, and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-own coupling workflow that enables the construction of a hierarchy of physical systems. We anticipate that our framework will facilitate the development of robust causal discovery algorithms that are broadly applicable across domains while addressing their unique challenges. We provide a user-friendly implementation and documentation on https://kausable.github.io/CausalDynamics.
Authors:Bowen Jiang, Runchuan Zhu, Jiang Wu, Zinco Jiang, Yifan He, Junyuan Gao, Jia Yu, Rui Min, Yinfan Wang, Haote Yang, Songyang Zhang, Dahua Lin, Lijun Wu, Conghui He
Abstract:
We introduce KoLasSimpleQA, the first benchmark evaluating the multilingual factual ability of Large Language Models (LLMs). Inspired by existing research, we created the question set with features such as single knowledge point coverage, absolute objectivity, unique answers, and temporal stability. These questions enable efficient evaluation using the LLM-as-judge paradigm, testing both the LLMs' factual memory and self-awareness ("know what they don't know"). KoLasSimpleQA expands existing research in two key dimensions: (1) Breadth (Multilingual Coverage): It includes 9 languages, supporting global applicability evaluation. (2) Depth (Dual Domain Design): It covers both the general domain (global facts) and the language-specific domain (such as history, culture, and regional traditions) for a comprehensive assessment of multilingual capabilities. We evaluated mainstream LLMs, including traditional LLM and emerging Large Reasoning Models. Results show significant performance differences between the two domains, particularly in performance metrics, ranking, calibration, and robustness. This highlights the need for targeted evaluation and optimization in multilingual contexts. We hope KoLasSimpleQA will help the research community better identify LLM capability boundaries in multilingual contexts and provide guidance for model optimization. We will release KoLasSimpleQA at https://github.com/opendatalab/KoLasSimpleQA .
Authors:Yongqi Zhao, Ji Zhou, Dong Bi, Tomislav Mihalj, Jia Hu, Arno Eichberger
Abstract:
The safety and reliability of Automated Driving Systems (ADSs) must be validated prior to large-scale deployment. Among existing validation approaches, scenario-based testing has been regarded as a promising method to improve testing efficiency and reduce associated costs. Recently, the emergence of Large Language Models (LLMs) has introduced new opportunities to reinforce this approach. While an increasing number of studies have explored the use of LLMs in the field of automated driving, a dedicated review focusing on their application within scenario-based testing remains absent. This survey addresses this gap by systematically categorizing the roles played by LLMs across various phased of scenario-based testing, drawing from both academic research and industrial practice. In addition, key characteristics of LLMs and corresponding usage strategies are comprehensively summarized. The paper concludes by outlining five open challenges and potential research directions. To support ongoing research efforts, a continuously updated repository of recent advancements and relevant open-source tools is made available at: https://github.com/ftgTUGraz/LLM4ADSTest.
Authors:Siqu Ou, Hongcheng Liu, Pingjie Wang, Yusheng Liao, Chuan Xuan, Yanfeng Wang, Yu Wang
Abstract:
While chains-of-thought (CoT) have advanced complex reasoning in multimodal large language models (MLLMs), existing methods remain confined to text or static visual domains, often faltering in dynamic spatial reasoning tasks. To bridge this gap, we present GRASSLAND, a novel maze navigation benchmark designed to evaluate dynamic spatial reasoning. Our experiments show that augmenting textual reasoning chains with dynamic visual drafts, overlaid on input images, significantly outperforms conventional approaches, offering new insights into spatial reasoning in evolving environments. To generalize this capability, we propose D2R (Dynamic Draft-Augmented Reasoning), a training-free framework that seamlessly integrates textual CoT with corresponding visual drafts into MLLMs. Extensive evaluations demonstrate that D2R consistently enhances performance across diverse tasks, establishing a robust baseline for dynamic spatial reasoning without requiring model fine-tuning. Project is open at https://github.com/Cratileo/D2R.
Authors:Jannis Becktepe, Leona Hennig, Steffen Oeltze-Jafra, Marius Lindauer
Abstract:
Medical Image Segmentation (MIS) includes diverse tasks, from bone to organ segmentation, each with its own challenges in finding the best segmentation model. The state-of-the-art AutoML-related MIS-framework nnU-Net automates many aspects of model configuration but remains constrained by fixed hyperparameters and heuristic design choices. As a full-AutoML framework for MIS, we propose Auto-nnU-Net, a novel nnU-Net variant enabling hyperparameter optimization (HPO), neural architecture search (NAS), and hierarchical NAS (HNAS). Additionally, we propose Regularized PriorBand to balance model accuracy with the computational resources required for training, addressing the resource constraints often faced in real-world medical settings that limit the feasibility of extensive training procedures. We evaluate our approach across diverse MIS datasets from the well-established Medical Segmentation Decathlon, analyzing the impact of AutoML techniques on segmentation performance, computational efficiency, and model design choices. The results demonstrate that our AutoML approach substantially improves the segmentation performance of nnU-Net on 6 out of 10 datasets and is on par on the other datasets while maintaining practical resource requirements. Our code is available at https://github.com/automl/AutoNNUnet.
Authors:Ercong Nie, Helmut Schmid, Hinrich Schütze
Abstract:
Language confusion -- where large language models (LLMs) generate unintended languages against the user's need -- remains a critical challenge, especially for English-centric models. We present the first mechanistic interpretability (MI) study of language confusion, combining behavioral benchmarking with neuron-level analysis. Using the Language Confusion Benchmark (LCB), we show that confusion points (CPs) -- specific positions where language switches occur -- are central to this phenomenon. Through layer-wise analysis with TunedLens and targeted neuron attribution, we reveal that transition failures in the final layers drive confusion. We further demonstrate that editing a small set of critical neurons, identified via comparative analysis with a multilingual-tuned counterpart, substantially mitigates confusion while largely preserving general competence and fluency. Our approach matches multilingual alignment in confusion reduction for many languages and yields cleaner, higher-quality outputs. These findings provide new insights into the internal dynamics of LLMs and highlight neuron-level interventions as a promising direction for robust, interpretable multilingual language modeling. Code and data are available at: https://github.com/ercong21/lang_confusion.
Authors:Yuliang Yan, Haochun Tang, Shuo Yan, Enyan Dai
Abstract:
Large language models (LLMs) are considered valuable Intellectual Properties (IP) for legitimate owners due to the enormous computational cost of training. It is crucial to protect the IP of LLMs from malicious stealing or unauthorized deployment. Despite existing efforts in watermarking and fingerprinting LLMs, these methods either impact the text generation process or are limited in white-box access to the suspect model, making them impractical. Hence, we propose DuFFin, a novel $\textbf{Du}$al-Level $\textbf{Fin}$gerprinting $\textbf{F}$ramework for black-box setting ownership verification. DuFFin extracts the trigger pattern and the knowledge-level fingerprints to identify the source of a suspect model. We conduct experiments on a variety of models collected from the open-source website, including four popular base models as protected LLMs and their fine-tuning, quantization, and safety alignment versions, which are released by large companies, start-ups, and individual users. Results show that our method can accurately verify the copyright of the base protected LLM on their model variants, achieving the IP-ROC metric greater than 0.95. Our code is available at https://github.com/yuliangyan0807/llm-fingerprint.
Authors:Lingfeng Wang, Hualing Lin, Senda Chen, Tao Wang, Changxu Cheng, Yangyang Zhong, Dong Zheng, Wuyue Zhao
Abstract:
While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
Authors:Yuetong Liu, Yunqiu Xu, Yang Wei, Xiuli Bi, Bin Xiao
Abstract:
Restoring nighttime images affected by multiple adverse weather conditions is a practical yet under-explored research problem, as multiple weather conditions often coexist in the real world alongside various lighting effects at night. This paper first explores the challenging multi-weather nighttime image restoration task, where various types of weather degradations are intertwined with flare effects. To support the research, we contribute the AllWeatherNight dataset, featuring large-scale high-quality nighttime images with diverse compositional degradations, synthesized using our introduced illumination-aware degradation generation. Moreover, we present ClearNight, a unified nighttime image restoration framework, which effectively removes complex degradations in one go. Specifically, ClearNight extracts Retinex-based dual priors and explicitly guides the network to focus on uneven illumination regions and intrinsic texture contents respectively, thereby enhancing restoration effectiveness in nighttime scenarios. In order to better represent the common and unique characters of multiple weather degradations, we introduce a weather-aware dynamic specific-commonality collaboration method, which identifies weather degradations and adaptively selects optimal candidate units associated with specific weather types. Our ClearNight achieves state-of-the-art performance on both synthetic and real-world images. Comprehensive ablation experiments validate the necessity of AllWeatherNight dataset as well as the effectiveness of ClearNight. Project page: https://henlyta.github.io/ClearNight/mainpage.html
Authors:Kuicai Dong, Yujing Chang, Shijie Huang, Yasheng Wang, Ruiming Tang, Yong Liu
Abstract:
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
Authors:Jisu Han, Jaemin Na, Wonjun Hwang
Abstract:
Test-time adaptation aims to adapt to realistic environments in an online manner by learning during test time. Entropy minimization has emerged as a principal strategy for test-time adaptation due to its efficiency and adaptability. Nevertheless, it remains underexplored in continual test-time adaptation, where stability is more important. We observe that the entropy minimization method often suffers from model collapse, where the model converges to predicting a single class for all images due to a trivial solution. We propose ranked entropy minimization to mitigate the stability problem of the entropy minimization method and extend its applicability to continuous scenarios. Our approach explicitly structures the prediction difficulty through a progressive masking strategy. Specifically, it gradually aligns the model's probability distributions across different levels of prediction difficulty while preserving the rank order of entropy. The proposed method is extensively evaluated across various benchmarks, demonstrating its effectiveness through empirical results. Our code is available at https://github.com/pilsHan/rem
Authors:Chengcheng Wang, Jianyuan Guo, Hongguang Li, Yuchuan Tian, Ying Nie, Chang Xu, Kai Han
Abstract:
Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to large vision-language models (LVLMs), its variants introduce unintended cross-modal positional biases. Specifically, they enforce relative positional dependencies between text token indices and image tokens, causing spurious alignments. This issue arises because image tokens representing the same content but located at different spatial positions are assigned distinct positional biases, leading to inconsistent cross-modal associations. To address this, we propose Per-Token Distance (PTD) - a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme that maps image token indices onto a circular trajectory orthogonal to the linear path of text token indices, forming a cone-like structure. This configuration ensures that each text token maintains an equal distance to all image tokens, reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered layer strategy that applies different RoPE variants across layers. This design leverages the complementary strengths of each RoPE variant, thereby enhancing the model's overall performance. Our experimental results demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for LVLMs. The code is available at [https://github.com/lose4578/CircleRoPE](https://github.com/lose4578/CircleRoPE).
Authors:Ruizhe Li, Chen Chen, Yuchen Hu, Yanjun Gao, Xi Wang, Emine Yilmaz
Abstract:
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models. Our code is available at https://github.com/ruizheliUOA/ARC_JSD
Authors:Sreetama Sarkar, Yue Che, Alex Gavin, Peter A. Beerel, Souvik Kundu
Abstract:
Despite their remarkable progress in multimodal understanding tasks, large vision language models (LVLMs) often suffer from "hallucinations", generating texts misaligned with the visual context. Existing methods aimed at reducing hallucinations through inference time intervention incur a significant increase in latency. To mitigate this, we present SPIN, a task-agnostic attention-guided head suppression strategy that can be seamlessly integrated during inference, without incurring any significant compute or latency overhead. We investigate whether hallucination in LVLMs can be linked to specific model components. Our analysis suggests that hallucinations can be attributed to a dynamic subset of attention heads in each layer. Leveraging this insight, for each text query token, we selectively suppress attention heads that exhibit low attention to image tokens, keeping the top-K attention heads intact. Extensive evaluations on visual question answering and image description tasks demonstrate the efficacy of SPIN in reducing hallucination scores up to 2.7x while maintaining F1, and improving throughput by 1.8x compared to existing alternatives. Code is available at https://github.com/YUECHE77/SPIN.
Authors:Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui Zhou, Zhicheng Dou, Ji-Rong Wen
Abstract:
Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.
Authors:Muhammad Farid Adilazuarda, Chen Cecilia Liu, Iryna Gurevych, Alham Fikri Aji
Abstract:
Adapting cultural values in Large Language Models (LLMs) presents significant challenges, particularly due to biases and limited training data. Prior work primarily aligns LLMs with different cultural values using World Values Survey (WVS) data. However, it remains unclear whether this approach effectively captures cultural nuances or produces distinct cultural representations for various downstream tasks. In this paper, we systematically investigate WVS-based training for cultural value adaptation and find that relying solely on survey data can homogenize cultural norms and interfere with factual knowledge. To investigate these issues, we augment WVS with encyclopedic and scenario-based cultural narratives from Wikipedia and NormAd. While these narratives may have variable effects on downstream tasks, they consistently improve cultural distinctiveness than survey data alone. Our work highlights the inherent complexity of aligning cultural values with the goal of guiding task-specific behavior. We release our code at https://github.com/faridlazuarda/from-surveys-to-narratives.
Authors:Huazi Pan, Yanjun Zhang, Leo Yu Zhang, Scott Adams, Abbas Kouzani, Suiyang Khoo
Abstract:
Manipulation of local training data and local updates, i.e., the poisoning attack, is the main threat arising from the collaborative nature of the federated learning (FL) paradigm. Most existing poisoning attacks aim to manipulate local data/models in a way that causes denial-of-service (DoS) issues. In this paper, we introduce a novel attack method, named Federated Learning Sliding Attack (FedSA) scheme, aiming at precisely introducing the extent of poisoning in a subtle controlled manner. It operates with a predefined objective, such as reducing global model's prediction accuracy by 10%. FedSA integrates robust nonlinear control-Sliding Mode Control (SMC) theory with model poisoning attacks. It can manipulate the updates from malicious clients to drive the global model towards a compromised state, achieving this at a controlled and inconspicuous rate. Additionally, leveraging the robust control properties of FedSA allows precise control over the convergence bounds, enabling the attacker to set the global accuracy of the poisoned model to any desired level. Experimental results demonstrate that FedSA can accurately achieve a predefined global accuracy with fewer malicious clients while maintaining a high level of stealth and adjustable learning rates.
Authors:Yuanhao Huang, Yilong Ren, Jinlei Wang, Lujia Huo, Xuesong Bai, Jinchuan Zhang, Haiyan Yu
Abstract:
Autonomous vehicles are typical complex intelligent systems with artificial intelligence at their core. However, perception methods based on deep learning are extremely vulnerable to adversarial samples, resulting in security accidents. How to generate effective adversarial examples in the physical world and evaluate object detection systems is a huge challenge. In this study, we propose a unified joint adversarial training framework for both 2D and 3D domains, which simultaneously optimizes texture maps in 2D image and 3D mesh spaces to better address intra-class diversity and real-world environmental variations. The framework includes a novel realistic enhanced adversarial module, with time-space and relighting mapping pipeline that adjusts illumination consistency between adversarial patches and target garments under varied viewpoints. Building upon this, we develop a realism enhancement mechanism that incorporates non-rigid deformation modeling and texture remapping to ensure alignment with the human body's non-rigid surfaces in 3D scenes. Extensive experiment results in digital and physical environments demonstrate that the adversarial textures generated by our method can effectively mislead the target detection model. Specifically, our method achieves an average attack success rate (ASR) of 70.13% on YOLOv12 in physical scenarios, significantly outperforming existing methods such as T-SEA (21.65%) and AdvTexture (19.70%). Moreover, the proposed method maintains stable ASR across multiple viewpoints and distances, with an average attack success rate exceeding 90% under both frontal and oblique views at a distance of 4 meters. This confirms the method's strong robustness and transferability under multi-angle attacks, varying lighting conditions, and real-world distances. The demo video and code can be obtained at https://github.com/Huangyh98/AdvReal.git.
Authors:Qian Deng, Le Hui, Jin Xie, Jian Yang
Abstract:
Bounding box supervision has gained considerable attention in weakly supervised 3D instance segmentation. While this approach alleviates the need for extensive point-level annotations, obtaining accurate bounding boxes in practical applications remains challenging. To this end, we explore the inaccurate bounding box, named sketchy bounding box, which is imitated through perturbing ground truth bounding box by adding scaling, translation, and rotation. In this paper, we propose Sketchy-3DIS, a novel weakly 3D instance segmentation framework, which jointly learns pseudo labeler and segmentator to improve the performance under the sketchy bounding-box supervisions. Specifically, we first propose an adaptive box-to-point pseudo labeler that adaptively learns to assign points located in the overlapped parts between two sketchy bounding boxes to the correct instance, resulting in compact and pure pseudo instance labels. Then, we present a coarse-to-fine instance segmentator that first predicts coarse instances from the entire point cloud and then learns fine instances based on the region of coarse instances. Finally, by using the pseudo instance labels to supervise the instance segmentator, we can gradually generate high-quality instances through joint training. Extensive experiments show that our method achieves state-of-the-art performance on both the ScanNetV2 and S3DIS benchmarks, and even outperforms several fully supervised methods using sketchy bounding boxes. Code is available at https://github.com/dengq7/Sketchy-3DIS.
Authors:Zhixun Li, Bin Cao, Rui Jiao, Liang Wang, Ding Wang, Yang Liu, Dingshuo Chen, Jia Li, Qiang Liu, Yu Rong, Liang Wang, Tong-yi Zhang, Jeffrey Xu Yu
Abstract:
Materials are the foundation of modern society, underpinning advancements in energy, electronics, healthcare, transportation, and infrastructure. The ability to discover and design new materials with tailored properties is critical to solving some of the most pressing global challenges. In recent years, the growing availability of high-quality materials data combined with rapid advances in Artificial Intelligence (AI) has opened new opportunities for accelerating materials discovery. Data-driven generative models provide a powerful tool for materials design by directly create novel materials that satisfy predefined property requirements. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. To fill this gap, this paper provides a comprehensive overview of recent progress in AI-driven materials generation. We first organize various types of materials and illustrate multiple representations of crystalline materials. We then provide a detailed summary and taxonomy of current AI-driven materials generation approaches. Furthermore, we discuss the common evaluation metrics and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future directions and challenges in this fast-growing field. The related sources can be found at https://github.com/ZhixunLEE/Awesome-AI-for-Materials-Generation.
Authors:Yansong Qu, Zilin Huang, Zihao Sheng, Jiancong Chen, Sikai Chen, Samuel Labi
Abstract:
Reinforcement learning (RL)-based autonomous driving policy learning faces critical limitations such as low sample efficiency and poor generalization; its reliance on online interactions and trial-and-error learning is especially unacceptable in safety-critical scenarios. Existing methods including safe RL often fail to capture the true semantic meaning of "safety" in complex driving contexts, leading to either overly conservative driving behavior or constraint violations. To address these challenges, we propose VL-SAFE, a world model-based safe RL framework with Vision-Language model (VLM)-as-safety-guidance paradigm, designed for offline safe policy learning. Specifically, we construct offline datasets containing data collected by expert agents and labeled with safety scores derived from VLMs. A world model is trained to generate imagined rollouts together with safety estimations, allowing the agent to perform safe planning without interacting with the real environment. Based on these imagined trajectories and safety evaluations, actor-critic learning is conducted under VLM-based safety guidance to optimize the driving policy more safely and efficiently. Extensive evaluations demonstrate that VL-SAFE achieves superior sample efficiency, generalization, safety, and overall performance compared to existing baselines. To the best of our knowledge, this is the first work that introduces a VLM-guided world model-based approach for safe autonomous driving. The demo video and code can be accessed at: https://ys-qu.github.io/vlsafe-website/
Authors:Zijia Lu, A S M Iftekhar, Gaurav Mittal, Tianjian Meng, Xiawei Wang, Cheng Zhao, Rohith Kukkala, Ehsan Elhamifar, Mei Chen
Abstract:
Long Video Temporal Grounding (LVTG) aims at identifying specific moments within lengthy videos based on user-provided text queries for effective content retrieval. The approach taken by existing methods of dividing video into clips and processing each clip via a full-scale expert encoder is challenging to scale due to prohibitive computational costs of processing a large number of clips in long videos. To address this issue, we introduce DeCafNet, an approach employing ``delegate-and-conquer'' strategy to achieve computation efficiency without sacrificing grounding performance. DeCafNet introduces a sidekick encoder that performs dense feature extraction over all video clips in a resource-efficient manner, while generating a saliency map to identify the most relevant clips for full processing by the expert encoder. To effectively leverage features from sidekick and expert encoders that exist at different temporal resolutions, we introduce DeCaf-Grounder, which unifies and refines them via query-aware temporal aggregation and multi-scale temporal refinement for accurate grounding. Experiments on two LTVG benchmark datasets demonstrate that DeCafNet reduces computation by up to 47\% while still outperforming existing methods, establishing a new state-of-the-art for LTVG in terms of both efficiency and performance. Our code is available at https://github.com/ZijiaLewisLu/CVPR2025-DeCafNet.
Authors:Estelle Chigot, Dennis G. Wilson, Meriem Ghrib, Thomas Oberlin
Abstract:
Semantic segmentation models trained on synthetic data often perform poorly on real-world images due to domain gaps, particularly in adverse conditions where labeled data is scarce. Yet, recent foundation models enable to generate realistic images without any training. This paper proposes to leverage such diffusion models to improve the performance of vision models when learned on synthetic data. We introduce two novel techniques for semantically consistent style transfer using diffusion models: Class-wise Adaptive Instance Normalization and Cross-Attention (CACTI) and its extension with selective attention Filtering (CACTIF). CACTI applies statistical normalization selectively based on semantic classes, while CACTIF further filters cross-attention maps based on feature similarity, preventing artifacts in regions with weak cross-attention correspondences. Our methods transfer style characteristics while preserving semantic boundaries and structural coherence, unlike approaches that apply global transformations or generate content without constraints. Experiments using GTA5 as source and Cityscapes/ACDC as target domains show that our approach produces higher quality images with lower FID scores and better content preservation. Our work demonstrates that class-aware diffusion-based style transfer effectively bridges the synthetic-to-real domain gap even with minimal target domain data, advancing robust perception systems for challenging real-world applications. The source code is available at: https://github.com/echigot/cactif.
Authors:Pierre Achkar, Tim Gollub, Martin Potthast
Abstract:
The exponential growth of scientific publications has made it increasingly difficult for researchers to stay updated and synthesize knowledge effectively. This paper presents XSum, a modular pipeline for multi-document summarization (MDS) in the scientific domain using Retrieval-Augmented Generation (RAG). The pipeline includes two core components: a question-generation module and an editor module. The question-generation module dynamically generates questions adapted to the input papers, ensuring the retrieval of relevant and accurate information. The editor module synthesizes the retrieved content into coherent and well-structured summaries that adhere to academic standards for proper citation. Evaluated on the SurveySum dataset, XSum demonstrates strong performance, achieving considerable improvements in metrics such as CheckEval, G-Eval and Ref-F1 compared to existing approaches. This work provides a transparent, adaptable framework for scientific summarization with potential applications in a wide range of domains. Code available at https://github.com/webis-de/scolia25-xsum
Authors:Taeyoon Kwon, Dongwook Choi, Sunghwan Kim, Hyojun Kim, Seungjun Moon, Beong-woo Kwak, Kuan-Hao Huang, Jinyoung Yeo
Abstract:
Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO
Authors:Kun-Yu Lin, Hongjun Wang, Weining Ren, Kai Han
Abstract:
This work introduces panoptic captioning, a novel task striving to seek the minimum text equivalence of images. We take the first step towards panoptic captioning by formulating it as a task of generating a comprehensive textual description for an image, which encapsulates all entities, their respective locations and attributes, relationships among entities, as well as global image state. Through an extensive evaluation, our work reveals that state-of-the-art Multi-modal Large Language Models (MLLMs) have limited performance in solving panoptic captioning. To address this, we propose an effective data engine named PancapEngine to produce high-quality data and a novel method named PancapChain to improve panoptic captioning. Specifically, our PancapEngine first detects diverse categories of entities in images by an elaborate detection suite, and then generates required panoptic captions using entity-aware prompts. Additionally, our PancapChain explicitly decouples the challenging panoptic captioning task into multiple stages and generates panoptic captions step by step. More importantly, we contribute a comprehensive metric named PancapScore and a human-curated test set for reliable model evaluation. Experiments show that our PancapChain-13B model can beat state-of-the-art open-source MLLMs like InternVL-2.5-78B and even surpass proprietary models like GPT-4o and Gemini-2.0-Pro, demonstrating the effectiveness of our data engine and method. Project page: https://visual-ai.github.io/pancap/
Authors:Wenqing Wu, Chengzhi Zhang, Tong Bao, Yi Zhao
Abstract:
Novelty is a core component of academic papers, and there are multiple perspectives on the assessment of novelty. Existing methods often focus on word or entity combinations, which provide limited insights. The content related to a paper's novelty is typically distributed across different core sections, e.g., Introduction, Methodology and Results. Therefore, exploring the optimal combination of sections for evaluating the novelty of a paper is important for advancing automated novelty assessment. In this paper, we utilize different combinations of sections from academic papers as inputs to drive language models to predict novelty scores. We then analyze the results to determine the optimal section combinations for novelty score prediction. We first employ natural language processing techniques to identify the sectional structure of academic papers, categorizing them into introduction, methods, results, and discussion (IMRaD). Subsequently, we used different combinations of these sections (e.g., introduction and methods) as inputs for pretrained language models (PLMs) and large language models (LLMs), employing novelty scores provided by human expert reviewers as ground truth labels to obtain prediction results. The results indicate that using introduction, results and discussion is most appropriate for assessing the novelty of a paper, while the use of the entire text does not yield significant results. Furthermore, based on the results of the PLMs and LLMs, the introduction and results appear to be the most important section for the task of novelty score prediction. The code and dataset for this paper can be accessed at https://github.com/njust-winchy/SC4ANM.
Authors:Qian Tan, Dongzhan Zhou, Peng Xia, Wanhao Liu, Wanli Ouyang, Lei Bai, Yuqiang Li, Tianfan Fu
Abstract:
Multimodal large language models (MLLMs) have made impressive progress in many applications in recent years. However, chemical MLLMs that can handle cross-modal understanding and generation remain underexplored. To fill this gap, we propose ChemMLLM, a unified chemical multimodal large language model for molecule understanding and generation. Also, we design five multimodal tasks across text, molecular SMILES strings, and image, and curate the datasets. We benchmark ChemMLLM against a range of general leading MLLMs and Chemical LLMs on these tasks. Experimental results show that ChemMLLM achieves superior performance across all evaluated tasks. For example, in molecule image optimization task, ChemMLLM outperforms the best baseline (GPT-4o) by 116.75\% (4.27 vs 1.97 property improvement). The code is publicly available at https://github.com/bbsbz/ChemMLLM.git.
Authors:Jie Zhao, Xin Chen, Yongsheng Yuan, Michael Felsberg, Dong Wang, Huchuan Lu
Abstract:
Due to the challenges of processing temporal information, most trackers depend solely on visual discriminability and overlook the unique temporal coherence of video data. In this paper, we propose a lightweight and plug-and-play motion prompt tracking method. It can be easily integrated into existing vision-based trackers to build a joint tracking framework leveraging both motion and vision cues, thereby achieving robust tracking through efficient prompt learning. A motion encoder with three different positional encodings is proposed to encode the long-term motion trajectory into the visual embedding space, while a fusion decoder and an adaptive weight mechanism are designed to dynamically fuse visual and motion features. We integrate our motion module into three different trackers with five models in total. Experiments on seven challenging tracking benchmarks demonstrate that the proposed motion module significantly improves the robustness of vision-based trackers, with minimal training costs and negligible speed sacrifice. Code is available at https://github.com/zj5559/Motion-Prompt-Tracking.
Authors:Yangyang Wang, Jiawei Gu, Li Long, Xin Li, Li Shen, Zhouyu Fu, Xiangjun Zhou, Xu Jiang
Abstract:
Accurate demand estimation is critical for the retail business in guiding the inventory and pricing policies of perishable products. However, it faces fundamental challenges from censored sales data during stockouts, where unobserved demand creates systemic policy biases. Existing datasets lack the temporal resolution and annotations needed to address this censoring effect. To fill this gap, we present FreshRetailNet-50K, the first large-scale benchmark for censored demand estimation. It comprises 50,000 store-product time series of detailed hourly sales data from 898 stores in 18 major cities, encompassing 863 perishable SKUs meticulously annotated for stockout events. The hourly stock status records unique to this dataset, combined with rich contextual covariates, including promotional discounts, precipitation, and temporal features, enable innovative research beyond existing solutions. We demonstrate one such use case of two-stage demand modeling: first, we reconstruct the latent demand during stockouts using precise hourly annotations. We then leverage the recovered demand to train robust demand forecasting models in the second stage. Experimental results show that this approach achieves a 2.73% improvement in prediction accuracy while reducing the systematic demand underestimation from 7.37% to near-zero bias. With unprecedented temporal granularity and comprehensive real-world information, FreshRetailNet-50K opens new research directions in demand imputation, perishable inventory optimization, and causal retail analytics. The unique annotation quality and scale of the dataset address long-standing limitations in retail AI, providing immediate solutions and a platform for future methodological innovation. The data (https://huggingface.co/datasets/Dingdong-Inc/FreshRetailNet-50K) and code (https://github.com/Dingdong-Inc/frn-50k-baseline}) are openly released.
Authors:Arjhun Swaminathan, Mete Akgün
Abstract:
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70\% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
Authors:Jiawei Liu, Qisi Chen, Jianshu Zhang, Quan Liu, Defu Lian
Abstract:
Large Language Models (LLMs) excel at complex reasoning through search algorithms, yet current strategies often suffer from massive token consumption due to redundant exploration of semantically equivalent steps. Existing semantic similarity methods struggle to accurately identify such equivalence in domain-specific contexts like mathematical reasoning. To address this, we propose EquivPruner, a simple yet effective approach that identifies and prunes semantically equivalent actions during LLM reasoning search. We also introduce MathEquiv, the first dataset we created for mathematical statement equivalence, which enables the training of a lightweight equivalence detector. Extensive experiments across various models and tasks demonstrate that EquivPruner significantly reduces token consumption, improving searching efficiency and often bolstering reasoning accuracy. For instance, when applied to Qwen2.5-Math-7B-Instruct on GSM8K, EquivPruner reduced token consumption by 48.1\% while also improving accuracy. Our code is available at https://github.com/Lolo1222/EquivPruner.
Authors:Feng Liu, Lixin Zou, Xiangyu Zhao, Min Tang, Liming Dong, Dan Luo, Xiangyang Luo, Chenliang Li
Abstract:
Generative models, particularly diffusion model, have emerged as powerful tools for sequential recommendation. However, accurately modeling user preferences remains challenging due to the noise perturbations inherent in the forward and reverse processes of diffusion-based methods. Towards this end, this study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task. Additionally, from the diffusion-model perspective, we integrate a reconstruction loss to improve robustness against noise perturbations, thereby retaining user preferences during the forward process. In the reverse process, we employ a deterministic reverse sampler, specifically an ODE-based updating function, to eliminate unnecessary randomness, thereby ensuring that the generated recommendations closely align with user needs. Extensive evaluations on four benchmark datasets reveal that FMRec achieves an average improvement of 6.53% over state-of-the-art methods. The replication code is available at https://github.com/FengLiu-1/FMRec.
Authors:Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, Jiaya Jia
Abstract:
Training large language models (LLMs) as interactive agents for controlling graphical user interfaces (GUIs) presents a unique challenge to optimize long-horizon action sequences with multimodal feedback from complex environments. While recent works have advanced multi-turn reinforcement learning (RL) for reasoning and tool-using capabilities in LLMs, their application to GUI-based agents remains relatively underexplored due to the difficulty of sparse rewards, delayed feedback, and high rollout costs. In this paper, we investigate end-to-end policy optimization for vision-language-based GUI agents with the aim of improving performance on complex, long-horizon computer tasks. We propose Agentic Replay Policy Optimization (ARPO), an end-to-end RL approach that augments Group Relative Policy Optimization (GRPO) with a replay buffer to reuse the successful experience across training iterations. To further stabilize the training process, we propose a task selection strategy that filters tasks based on baseline agent performance, allowing the agent to focus on learning from informative interactions. Additionally, we compare ARPO with offline preference optimization approaches, highlighting the advantages of policy-based methods in GUI environments. Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results, establishing a new performance baseline for LLM-based GUI agents trained via reinforcement learning. Our findings underscore the effectiveness of reinforcement learning for training multi-turn, vision-language GUI agents capable of managing complex real-world UI interactions. Codes and models:https://github.com/dvlab-research/ARPO.git.
Authors:Shijie Zhang, Renhao Li, Songsheng Wang, Philipp Koehn, Min Yang, Derek F. Wong
Abstract:
The advancement of Large Language Models (LLMs) enables flexible and interpretable automatic evaluations. In the field of machine translation evaluation, utilizing LLMs with translation error annotations based on Multidimensional Quality Metrics (MQM) yields more human-aligned judgments. However, current LLM-based evaluation methods still face challenges in accurately identifying error spans and assessing their severity. In this paper, we propose HiMATE, a Hierarchical Multi-Agent Framework for Machine Translation Evaluation. We argue that existing approaches inadequately exploit the fine-grained structural and semantic information within the MQM hierarchy. To address this, we develop a hierarchical multi-agent system grounded in the MQM error typology, enabling granular evaluation of subtype errors. Two key strategies are incorporated to further mitigate systemic hallucinations within the framework: the utilization of the model's self-reflection capability and the facilitation of agent discussion involving asymmetric information. Empirically, HiMATE outperforms competitive baselines across different datasets in conducting human-aligned evaluations. Further analyses underscore its significant advantage in error span detection and severity assessment, achieving an average F1-score improvement of 89% over the best-performing baseline. We make our code and data publicly available at https://github.com/nlp2ct-shijie/HiMATE.
Authors:Zhenjie Yang, Yilin Chai, Xiaosong Jia, Qifeng Li, Yuqian Shao, Xuekai Zhu, Haisheng Su, Junchi Yan
Abstract:
End-to-end autonomous driving (E2E-AD) demands effective processing of multi-view sensory data and robust handling of diverse and complex driving scenarios, particularly rare maneuvers such as aggressive turns. Recent success of Mixture-of-Experts (MoE) architecture in Large Language Models (LLMs) demonstrates that specialization of parameters enables strong scalability. In this work, we propose DriveMoE, a novel MoE-based E2E-AD framework, with a Scene-Specialized Vision MoE and a Skill-Specialized Action MoE. DriveMoE is built upon our $Ï_0$ Vision-Language-Action (VLA) baseline (originally from the embodied AI field), called Drive-$Ï_0$. Specifically, we add Vision MoE to Drive-$Ï_0$ by training a router to select relevant cameras according to the driving context dynamically. This design mirrors human driving cognition, where drivers selectively attend to crucial visual cues rather than exhaustively processing all visual information. In addition, we add Action MoE by training another router to activate specialized expert modules for different driving behaviors. Through explicit behavioral specialization, DriveMoE is able to handle diverse scenarios without suffering from modes averaging like existing models. In Bench2Drive closed-loop evaluation experiments, DriveMoE achieves state-of-the-art (SOTA) performance, demonstrating the effectiveness of combining vision and action MoE in autonomous driving tasks. We will release our code and models of DriveMoE and Drive-$Ï_0$.
Authors:Sampanna Yashwant Kahu, Naman Ahuja
Abstract:
Social media and online forums are increasingly becoming popular. Unfortunately, these platforms are being used for spreading hate speech. In this paper, we design black-box techniques to protect users from hate-speech on online platforms by generating perturbations that can fool state of the art deep learning based hate speech detection models thereby decreasing their efficiency. We also ensure a minimal change in the original meaning of hate-speech. Our best perturbation attack is successfully able to evade hate-speech detection for 86.8 % of hateful text.
Authors:Aashish Anantha Ramakrishnan, Aadarsh Anantha Ramakrishnan, Dongwon Lee
Abstract:
Interpreting figurative language such as sarcasm across multi-modal inputs presents unique challenges, often requiring task-specific fine-tuning and extensive reasoning steps. However, current Chain-of-Thought approaches do not efficiently leverage the same cognitive processes that enable humans to identify sarcasm. We present IRONIC, an in-context learning framework that leverages Multi-modal Coherence Relations to analyze referential, analogical and pragmatic image-text linkages. Our experiments show that IRONIC achieves state-of-the-art performance on zero-shot Multi-modal Sarcasm Detection across different baselines. This demonstrates the need for incorporating linguistic and cognitive insights into the design of multi-modal reasoning strategies. Our code is available at: https://github.com/aashish2000/IRONIC
Authors:Zheng Chen, Zichen Zou, Kewei Zhang, Xiongfei Su, Xin Yuan, Yong Guo, Yulun Zhang
Abstract:
Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (*i.e.*, CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a **28$\times$** speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.
Authors:Wei Zhang, Zhenhong Zhou, Kun Wang, Junfeng Fang, Yuanhe Zhang, Rui Wang, Ge Zhang, Xavier Li, Li Sun, Lingjuan Lyu, Yang Liu, Sen Su
Abstract:
While large language models (LLMs) can solve PhD-level reasoning problems over long context inputs, they still struggle with a seemingly simpler task: following explicit length instructions-e.g., write a 10,000-word novel. Additionally, models often generate far too short outputs, terminate prematurely, or even refuse the request. Existing benchmarks focus primarily on evaluating generations quality, but often overlook whether the generations meet length constraints. To this end, we introduce Length Instruction Following Evaluation Benchmark (LIFEBench) to comprehensively evaluate LLMs' ability to follow length instructions across diverse tasks and a wide range of specified lengths. LIFEBench consists of 10,800 instances across 4 task categories in both English and Chinese, covering length constraints ranging from 16 to 8192 words. We evaluate 26 widely-used LLMs and find that most models reasonably follow short-length instructions but deteriorate sharply beyond a certain threshold. Surprisingly, almost all models fail to reach the vendor-claimed maximum output lengths in practice, as further confirmed by our evaluations extending up to 32K words. Even long-context LLMs, despite their extended input-output windows, counterintuitively fail to improve length-instructions following. Notably, Reasoning LLMs outperform even specialized long-text generation models, achieving state-of-the-art length following. Overall, LIFEBench uncovers fundamental limitations in current LLMs' length instructions following ability, offering critical insights for future progress.
Authors:Henry X. Liu, Xintao Yan, Haowei Sun, Tinghan Wang, Zhijie Qiao, Haojie Zhu, Shengyin Shen, Shuo Feng, Greg Stevens, Greg McGuire
Abstract:
Autonomous vehicles (AVs) have significantly advanced in real-world deployment in recent years, yet safety continues to be a critical barrier to widespread adoption. Traditional functional safety approaches, which primarily verify the reliability, robustness, and adequacy of AV hardware and software systems from a vehicle-centric perspective, do not sufficiently address the AV's broader interactions and behavioral impact on the surrounding traffic environment. To overcome this limitation, we propose a paradigm shift toward behavioral safety, a comprehensive approach focused on evaluating AV responses and interactions within traffic environment. To systematically assess behavioral safety, we introduce a third-party AV safety assessment framework comprising two complementary evaluation components: Driver Licensing Test and Driving Intelligence Test. The Driver Licensing Test evaluates AV's reactive behaviors under controlled scenarios, ensuring basic behavioral competency. In contrast, the Driving Intelligence Test assesses AV's interactive behaviors within naturalistic traffic conditions, quantifying the frequency of safety-critical events to deliver statistically meaningful safety metrics before large-scale deployment. We validated our proposed framework using \texttt{Autoware.Universe}, an open-source Level 4 AV, tested both in simulated environments and on the physical test track at the University of Michigan's Mcity Testing Facility. The results indicate that \texttt{Autoware.Universe} passed 6 out of 14 scenarios and exhibited a crash rate of 3.01e-3 crashes per mile, approximately 1,000 times higher than average human driver crash rate. During the tests, we also uncovered several unknown unsafe scenarios for \texttt{Autoware.Universe}. These findings underscore the necessity of behavioral safety evaluations for improving AV safety performance prior to widespread public deployment.
Authors:Kai Li, Can Shen, Yile Liu, Jirui Han, Kelong Zheng, Xuechao Zou, Zhe Wang, Xingjian Du, Shun Zhang, Hanjun Luo, Yingbin Jin, Xinxin Xing, Ziyang Ma, Yue Liu, Xiaojun Jia, Yifan Zhang, Junfeng Fang, Kun Wang, Yibo Yan, Haoyang Li, Yiming Li, Xiaobin Zhuang, Yang Liu, Haibo Hu, Zhizheng Wu, Xiaolin Hu, Eng-Siong Chng, XiaoFeng Wang, Wenyuan Xu, Wei Dong, Xinfeng Li
Abstract:
The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
Authors:Zhi Zhong, Akira Takahashi, Shuyang Cui, Keisuke Toyama, Shusuke Takahashi, Yuki Mitsufuji
Abstract:
Foley synthesis aims to synthesize high-quality audio that is both semantically and temporally aligned with video frames. Given its broad application in creative industries, the task has gained increasing attention in the research community. To avoid the non-trivial task of training audio generative models from scratch, adapting pretrained audio generative models for video-synchronized foley synthesis presents an attractive direction. ControlNet, a method for adding fine-grained controls to pretrained generative models, has been applied to foley synthesis, but its use has been limited to handcrafted human-readable temporal conditions. In contrast, from-scratch models achieved success by leveraging high-dimensional deep features extracted using pretrained video encoders. We have observed a performance gap between ControlNet-based and from-scratch foley models. To narrow this gap, we propose SpecMaskFoley, a method that steers the pretrained SpecMaskGIT model toward video-synchronized foley synthesis via ControlNet. To unlock the potential of a single ControlNet branch, we resolve the discrepancy between the temporal video features and the time-frequency nature of the pretrained SpecMaskGIT via a frequency-aware temporal feature aligner, eliminating the need for complicated conditioning mechanisms widely used in prior arts. Evaluations on a common foley synthesis benchmark demonstrate that SpecMaskFoley could even outperform strong from-scratch baselines, substantially advancing the development of ControlNet-based foley synthesis models. Demo page: https://zzaudio.github.io/SpecMaskFoley_Demo/
Authors:Yuqing Yang, Robin Jia
Abstract:
Can large language models (LLMs) admit their mistakes when they should know better? In this work, we define the behavior of acknowledging errors in previously generated answers as "retraction" and aim to understand when and why LLMs choose to retract. We first construct model-specific datasets to evaluate whether a model will retract an incorrect answer that contradicts its own parametric knowledge. While LLMs are capable of retraction, they do so only infrequently. We demonstrate that retraction is closely tied to previously identified indicators of models' internal belief: models fail to retract wrong answers that they "believe" to be factually correct. Steering experiments further demonstrate that internal belief causally influences model retraction. In particular, when the model does not believe its answer, this not only encourages the model to attempt to verify the answer, but also alters attention behavior during self-verification. Finally, we demonstrate that simple supervised fine-tuning significantly improves retraction performance by helping the model learn more accurate internal beliefs. Code and datasets are available on https://github.com/ayyyq/llm-retraction.
Authors:Liyan Wang, Weixiang Zhou, Cong Wang, Kin-Man Lam, Zhixun Su, Jinshan Pan
Abstract:
Ultra-high-definition (UHD) image restoration aims to specifically solve the problem of quality degradation in ultra-high-resolution images. Recent advancements in this field are predominantly driven by deep learning-based innovations, including enhancements in dataset construction, network architecture, sampling strategies, prior knowledge integration, and loss functions. In this paper, we systematically review recent progress in UHD image restoration, covering various aspects ranging from dataset construction to algorithm design. This serves as a valuable resource for understanding state-of-the-art developments in the field. We begin by summarizing degradation models for various image restoration subproblems, such as super-resolution, low-light enhancement, deblurring, dehazing, deraining, and desnowing, and emphasizing the unique challenges of their application to UHD image restoration. We then highlight existing UHD benchmark datasets and organize the literature according to degradation types and dataset construction methods. Following this, we showcase major milestones in deep learning-driven UHD image restoration, reviewing the progression of restoration tasks, technological developments, and evaluations of existing methods. We further propose a classification framework based on network architectures and sampling strategies, helping to clearly organize existing methods. Finally, we share insights into the current research landscape and propose directions for further advancements. A related repository is available at https://github.com/wlydlut/UHD-Image-Restoration-Survey.
Authors:Bin Xu, Yu Bai, Huashan Sun, Yiguan Lin, Siming Liu, Xinyue Liang, Yaolin Li, Yang Gao, Heyan Huang
Abstract:
As large language models continue to advance, their application in educational contexts remains underexplored and under-optimized. In this paper, we address this gap by introducing the first diverse benchmark tailored for educational scenarios, incorporating synthetic data containing 9 major scenarios and over 4,000 distinct educational contexts. To enable comprehensive assessment, we propose a set of multi-dimensional evaluation metrics that cover 12 critical aspects relevant to both teachers and students. We further apply human annotation to ensure the effectiveness of the model-generated evaluation responses. Additionally, we succeed to train a relatively small-scale model on our constructed dataset and demonstrate that it can achieve performance comparable to state-of-the-art large models (e.g., Deepseek V3, Qwen Max) on the test set. Overall, this work provides a practical foundation for the development and evaluation of education-oriented language models. Code and data are released at https://github.com/ybai-nlp/EduBench.
Authors:Zhenglin Hua, Jinghan He, Zijun Yao, Tianxu Han, Haiyun Guo, Yuheng Jia, Junfeng Fang
Abstract:
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
Authors:Yuke Zhang
Abstract:
This study introduces an interpretable machine learning (ML) framework to extract macroeconomic alpha from global news sentiment. We process the Global Database of Events, Language, and Tone (GDELT) Project's worldwide news feed using FinBERT -- a Bidirectional Encoder Representations from Transformers (BERT) based model pretrained on finance-specific language -- to construct daily sentiment indices incorporating mean tone, dispersion, and event impact. These indices drive an XGBoost classifier, benchmarked against logistic regression, to predict next-day returns for EUR/USD, USD/JPY, and 10-year U.S. Treasury futures (ZN). Rigorous out-of-sample (OOS) backtesting (5-fold expanding-window cross-validation, OOS period: c. 2017-April 2025) demonstrates exceptional, cost-adjusted performance for the XGBoost strategy: Sharpe ratios achieve 5.87 (EUR/USD), 4.65 (USD/JPY), and 4.65 (Treasuries), with respective compound annual growth rates (CAGRs) exceeding 50% in Foreign Exchange (FX) and 22% in bonds. Shapley Additive Explanations (SHAP) affirm that sentiment dispersion and article impact are key predictive features. Our findings establish that integrating domain-specific Natural Language Processing (NLP) with interpretable ML offers a potent and explainable source of macro alpha.
Authors:Haohan Wang, Xu Shi, Hengyu Zhang, Yashuai Cao, Jintao Wang
Abstract:
Channel knowledge map (CKM) has emerged as a crucial technology for next-generation communication, enabling the construction of high-fidelity mappings between spatial environments and channel parameters via electromagnetic information analysis. Traditional CKM construction methods like ray tracing are computationally intensive. Recent studies utilizing neural networks (NNs) have achieved efficient CKM generation with reduced computational complexity and real-time processing capabilities. Nevertheless, existing research predominantly focuses on single-antenna systems, failing to address the beamforming requirements inherent to MIMO configurations. Given that appropriate precoding vector selection in MIMO systems can substantially enhance user communication rates, this paper presents a TransUNet-based framework for constructing CKM, which effectively incorporates discrete Fourier transform (DFT) precoding vectors. The proposed architecture combines a UNet backbone for multiscale feature extraction with a Transformer module to capture global dependencies among encoded linear vectors. Experimental results demonstrate that the proposed method outperforms state-of-the-art (SOTA) deep learning (DL) approaches, yielding a 17\% improvement in RMSE compared to RadioWNet. The code is publicly accessible at https://github.com/github-whh/TransUNet.
Authors:Nathan Brady, David Tennyson, Thomas Vandermeulen
Abstract:
In this paper, we apply both supervised and unsupervised machine learning algorithms to the study of the string landscape and swampland in 6-dimensions. Our data are the (almost) anomaly-free 6-dimensional $\mathcal{N} = (1,0)$ supergravity models, characterised by the Gram matrix of anomaly coefficients. Our work demonstrates the ability of machine learning algorithms to efficiently learn highly complex features of the landscape and swampland. Employing an autoencoder for unsupervised learning, we provide an auto-classification of these models by compressing the Gram matrix data to 2-dimensions. Through compression, similar models cluster together, and we identify prominent features of these clusters. The autoencoder also identifies outlier models which are difficult to reconstruct. One of these outliers proves to be incredibly difficult to combine with other models such that the $\text{tr}R^{4}$ anomaly vanishes, making its presence in the landscape extremely rare. Further, we utilise supervised learning to build two classifiers predicting (1) model consistency under probe string insertion (precision: 0.78, predicting consistency for 214,837 models with reasonable certainty) and (2) inconsistency under anomaly inflow (precision: 0.91, predicting inconsistency for 1,909,359 models). Notably, projecting these predictions onto the autoencoder's 2-dimensional latent layer shows consistent models clustering together, further indicating that the autoencoder has learnt interesting and complex features of the set of models and potentially offers a novel approach to mapping the landscape and swampland of 6-dimensional supergravity theories.
Authors:Zehong Wang, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, Yanfang Ye
Abstract:
Graph neural networks (GNNs) has been predominantly driven by message-passing, where node representations are iteratively updated via local neighborhood aggregation. Despite their success, message-passing suffers from fundamental limitations -- including constrained expressiveness, over-smoothing, over-squashing, and limited capacity to model long-range dependencies. These issues hinder scalability: increasing data size or model size often fails to yield improved performance, limiting the viability of GNNs as backbones for graph foundation models. In this work, we explore pathways beyond message-passing and introduce Generative Graph Pattern Machine (G$^2$PM), a generative Transformer pre-training framework for graphs. G$^2$PM represents graph instances (nodes, edges, or entire graphs) as sequences of substructures, and employs generative pre-training over the sequences to learn generalizable, transferable representations. Empirically, G$^2$PM demonstrates strong scalability: on the ogbn-arxiv benchmark, it continues to improve with model sizes up to 60M parameters, outperforming prior generative approaches that plateau at significantly smaller scales (e.g., 3M). In addition, we systematically analyze the model design space, highlighting key architectural choices that contribute to its scalability and generalization. Across diverse tasks -- including node classification, graph classification, and transfer learning -- G$^2$PM consistently outperforms strong baselines, establishing a compelling foundation for scalable graph learning. The code and dataset are available at https://github.com/Zehong-Wang/G2PM.
Authors:Hyang Cui
Abstract:
Recent studies have applied large language models (LLMs) to machine translation quality estimation (MTQE) by prompting models to assign numeric scores. Nonetheless, these direct scoring methods tend to show low segment-level correlation with human judgments. In this paper, we propose a generation-based evaluation paradigm that leverages decoder-only LLMs to produce high-quality references, followed by semantic similarity scoring using sentence embeddings. We conduct the most extensive evaluation to date in MTQE, covering 8 LLMs and 8 language pairs. Empirical results show that our method outperforms both intra-LLM direct scoring baselines and external non-LLM reference-free metrics from MTME. These findings demonstrate the strength of generation-based evaluation and support a shift toward hybrid approaches that combine fluent generation with accurate semantic assessment.
Authors:Junhong Lin, Xinyue Zeng, Jie Zhu, Song Wang, Julian Shun, Jun Wu, Dawei Zhou
Abstract:
Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, but their inference remains computationally inefficient. We observe a common failure mode in many prevalent LLMs, overthinking, where models generate verbose and tangential reasoning traces even for simple queries. Recent works have tried to mitigate this by enforcing fixed token budgets, however, this can lead to underthinking, especially on harder problems. Through empirical analysis, we identify that this inefficiency often stems from unclear problem-solving strategies. To formalize this, we develop a theoretical model, BBAM (Bayesian Budget Allocation Model), which models reasoning as a sequence of sub-questions with varying uncertainty, and introduce the $E^3$ metric to capture the trade-off between correctness and computation efficiency. Building on theoretical results from BBAM, we propose Plan-and-Budget, a model-agnostic, test-time framework that decomposes complex queries into sub-questions and allocates token budgets based on estimated complexity using adaptive scheduling. Plan-and-Budget improves reasoning efficiency across a range of tasks and models, achieving up to +70% accuracy gains, -39% token reduction, and +187.5% improvement in $E^3$. Notably, it elevates a smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-LLaMA-70B)-demonstrating Plan-and-Budget's ability to close performance gaps without retraining. Our code is available at https://github.com/junhongmit/P-and-B.
Authors:Naiqi Li, Peiyuan Liu, Zheng Liu, Tao Dai, Yong Jiang, Shu-Tao Xia
Abstract:
Solving puzzles in natural language poses a long-standing challenge in AI. While large language models (LLMs) have recently shown impressive capabilities in a variety of tasks, they continue to struggle with complex puzzles that demand precise reasoning and exhaustive search. In this paper, we propose Logic-of-Thought (Logot), a novel framework that bridges LLMs with logic programming to address this problem. Our method leverages LLMs to translate puzzle rules and states into answer set programs (ASPs), the solution of which are then accurately and efficiently inferred by an ASP interpreter. This hybrid approach combines the natural language understanding of LLMs with the precise reasoning capabilities of logic programs. We evaluate our method on various grid puzzles and dynamic puzzles involving actions, demonstrating near-perfect accuracy across all tasks. Our code and data are available at: https://github.com/naiqili/Logic-of-Thought.
Authors:Yash Kumar Atri, Thomas H Shin, Thomas Hartvigsen
Abstract:
While bariatric and metabolic surgery (MBS) is considered the gold standard treatment for severe and morbid obesity, its therapeutic efficacy hinges upon active and longitudinal engagement with multidisciplinary providers, including surgeons, dietitians/nutritionists, psychologists, and endocrinologists. This engagement spans the entire patient journey, from preoperative preparation to long-term postoperative management. However, this process is often hindered by numerous healthcare disparities, such as logistical and access barriers, which impair easy patient access to timely, evidence-based, clinician-endorsed information. To address these gaps, we introduce bRAGgen, a novel adaptive retrieval-augmented generation (RAG)-based model that autonomously integrates real-time medical evidence when response confidence dips below dynamic thresholds. This self-updating architecture ensures that responses remain current and accurate, reducing the risk of misinformation. Additionally, we present bRAGq, a curated dataset of 1,302 bariatric surgery--related questions, validated by an expert bariatric surgeon. bRAGq constitutes the first large-scale, domain-specific benchmark for comprehensive MBS care. In a two-phase evaluation, bRAGgen is benchmarked against state-of-the-art models using both large language model (LLM)--based metrics and expert surgeon review. Across all evaluation dimensions, bRAGgen demonstrates substantially superior performance in generating clinically accurate and relevant responses.
Authors:Ziqing Wang, Kexin Zhang, Zihan Zhao, Yibo Wen, Abhishek Pandey, Han Liu, Kaize Ding
Abstract:
Large language models (LLMs) are introducing a paradigm shift in molecular discovery by enabling text-guided interaction with chemical spaces through natural language, symbolic notations, with emerging extensions to incorporate multi-modal inputs. To advance the new field of LLM for molecular discovery, this survey provides an up-to-date and forward-looking review of the emerging use of LLMs for two central tasks: molecule generation and molecule optimization. Based on our proposed taxonomy for both problems, we analyze representative techniques in each category, highlighting how LLM capabilities are leveraged across different learning settings. In addition, we include the commonly used datasets and evaluation protocols. We conclude by discussing key challenges and future directions, positioning this survey as a resource for researchers working at the intersection of LLMs and molecular science. A continuously updated reading list is available at https://github.com/REAL-Lab-NU/Awesome-LLM-Centric-Molecular-Discovery.
Authors:Jinpei Guo, Yifei Ji, Zheng Chen, Kai Liu, Min Liu, Wang Rao, Wenbo Li, Yong Guo, Yulun Zhang
Abstract:
Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.
Authors:Gagan Bhatia, Maxime Peyrard, Wei Zhao
Abstract:
Modern BPE tokenizers often split calendar dates into meaningless fragments, e.g., 20250312 $\rightarrow$ 202, 503, 12, inflating token counts and obscuring the inherent structure needed for robust temporal reasoning. In this work, we (1) introduce a simple yet interpretable metric, termed date fragmentation ratio, that measures how faithfully a tokenizer preserves multi-digit date components; (2) release DateAugBench, a suite of 6500 examples spanning three temporal reasoning tasks: context-based date resolution, format-invariance puzzles, and date arithmetic across historical, contemporary, and future time periods; and (3) through layer-wise probing and causal attention-hop analyses, uncover an emergent date-abstraction mechanism whereby large language models stitch together the fragments of month, day, and year components for temporal reasoning. Our experiments show that excessive fragmentation correlates with accuracy drops of up to 10 points on uncommon dates like historical and futuristic dates. Further, we find that the larger the model, the faster the emergent date abstraction that heals date fragments is accomplished. Lastly, we observe a reasoning path that LLMs follow to assemble date fragments, typically differing from human interpretation (year $\rightarrow$ month $\rightarrow$ day). Our datasets and code are made publicly available \href{https://github.com/gagan3012/date-fragments}{here}.
Authors:Duy-Nam Bui, Manh Duong Phung, Hung Pham Duy
Abstract:
This study proposes an event-based reconfiguration control to navigate a robot swarm through challenging environments with narrow passages such as valleys, tunnels, and corridors. The robot swarm is modeled as an undirected graph, where each node represents a robot capable of collecting real-time data on the environment and the states of other robots in the formation. This data serves as the input for the controller to provide dynamic adjustments between the desired and straight-line configurations. The controller incorporates a set of behaviors, designed using artificial potential fields, to meet the requirements of goal-oriented motion, formation maintenance, tailgating, and collision avoidance. The stability of the formation control is guaranteed via the Lyapunov theorem. Simulation and comparison results show that the proposed controller not only successfully navigates the robot swarm through narrow spaces but also outperforms other established methods in key metrics including the success rate, heading order, speed, travel time, and energy efficiency. Software-in-the-loop tests have also been conducted to validate the controller's applicability in practical scenarios. The source code of the controller is available at https://github.com/duynamrcv/erc.
Authors:Jingcong Liang, Siyuan Wang, Miren Tian, Yitong Li, Duyu Tang, Zhongyu Wei
Abstract:
Mixture-of-Experts (MoE) enables efficient scaling of large language models (LLMs) with sparsely activated experts during inference. To effectively deploy large MoE models on memory-constrained devices, many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand. While some research has exploited the locality of expert activations, where consecutive tokens activate similar experts, the degree of this **local routing consistency** varies across models and remains understudied. In this paper, we propose two metrics to measure local routing consistency of MoE models: (1) **Segment Routing Best Performance (SRP)**, which evaluates how well a fixed group of experts can cover the needs of a segment of tokens, and (2) **Segment Cache Best Hit Rate (SCH)**, which measures the optimal segment-level cache hit rate under a given cache size limit. We analyzed 20 MoE LLMs with diverse sizes and architectures and found that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency. We further showed that domain-specialized experts contribute more to routing consistency than vocabulary-specialized ones, and that most models can balance between cache effectiveness and efficiency with cache sizes approximately 2x the active experts. These findings pave the way for memory-efficient MoE design and deployment without compromising inference speed. We publish the code for replicating experiments at https://github.com/ljcleo/moe-lrc .
Authors:Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, Wenhu Chen
Abstract:
Chain-of-thought reasoning has significantly improved the performance of Large Language Models (LLMs) across various domains. However, this reasoning process has been confined exclusively to textual space, limiting its effectiveness in visually intensive tasks. To address this limitation, we introduce the concept of reasoning in the pixel-space. Within this novel framework, Vision-Language Models (VLMs) are equipped with a suite of visual reasoning operations, such as zoom-in and select-frame. These operations enable VLMs to directly inspect, interrogate, and infer from visual evidences, thereby enhancing reasoning fidelity for visual tasks. Cultivating such pixel-space reasoning capabilities in VLMs presents notable challenges, including the model's initially imbalanced competence and its reluctance to adopt the newly introduced pixel-space operations. We address these challenges through a two-phase training approach. The first phase employs instruction tuning on synthesized reasoning traces to familiarize the model with the novel visual operations. Following this, a reinforcement learning (RL) phase leverages a curiosity-driven reward scheme to balance exploration between pixel-space reasoning and textual reasoning. With these visual operations, VLMs can interact with complex visual inputs, such as information-rich images or videos to proactively gather necessary information. We demonstrate that this approach significantly improves VLM performance across diverse visual reasoning benchmarks. Our 7B model, \model, achieves 84\% on V* bench, 74\% on TallyQA-Complex, and 84\% on InfographicsVQA, marking the highest accuracy achieved by any open-source model to date. These results highlight the importance of pixel-space reasoning and the effectiveness of our framework.
Authors:Linxi Zhao, Sofian Zalouk, Christian K. Belardi, Justin Lovelace, Jin Peng Zhou, Kilian Q. Weinberger, Yoav Artzi, Jennifer J. Sun
Abstract:
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
Authors:Ryo Kamoi, Yusen Zhang, Nan Zhang, Sarkar Snigdha Sarathi Das, Rui Zhang
Abstract:
Process Reward Models (PRMs), which provide step-by-step feedback on the reasoning generated by Large Language Models (LLMs), are receiving increasing attention. However, two key research gaps remain: collecting accurate step-level error labels for training typically requires costly human annotation, and existing PRMs are limited to math reasoning problems. In response to these gaps, this paper aims to address the challenges of automatic dataset creation and the generalization of PRMs to diverse reasoning tasks. To achieve this goal, we propose FoVer, an approach for training PRMs on step-level error labels automatically annotated by formal verification tools, such as Z3 for formal logic and Isabelle for theorem proof, which provide automatic and accurate verification for symbolic tasks. Using this approach, we synthesize a training dataset with error labels on LLM responses for formal logic and theorem proof tasks without human annotation. Although this data synthesis is feasible only for tasks compatible with formal verification, we observe that LLM-based PRMs trained on our dataset exhibit cross-task generalization, improving verification across diverse reasoning tasks. Specifically, PRMs trained with FoVer significantly outperform baseline PRMs based on the original LLMs and achieve competitive or superior results compared to state-of-the-art PRMs trained on labels annotated by humans or stronger models, as measured by step-level verification on ProcessBench and Best-of-K performance across 12 reasoning benchmarks, including MATH, AIME, ANLI, MMLU, and BBH. The datasets, models, and code are provided at https://github.com/psunlpgroup/FoVer.
Authors:Chih-Kai Yang, Neo S. Ho, Hung-yi Lee
Abstract:
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.
Authors:Mohammad Reza Taesiri, Abhijay Ghildyal, Saman Zadtootaghaj, Nabajeet Barman, Cor-Paul Bezemer
Abstract:
With video games now generating the highest revenues in the entertainment industry, optimizing game development workflows has become essential for the sector's sustained growth. Recent advancements in Vision-Language Models (VLMs) offer considerable potential to automate and enhance various aspects of game development, particularly Quality Assurance (QA), which remains one of the industry's most labor-intensive processes with limited automation options. To accurately evaluate the performance of VLMs in video game QA tasks and determine their effectiveness in handling real-world scenarios, there is a clear need for standardized benchmarks, as existing benchmarks are insufficient to address the specific requirements of this domain. To bridge this gap, we introduce VideoGameQA-Bench, a comprehensive benchmark that covers a wide array of game QA activities, including visual unit testing, visual regression testing, needle-in-a-haystack tasks, glitch detection, and bug report generation for both images and videos of various games. Code and data are available at: https://asgaardlab.github.io/videogameqa-bench/
Authors:Yuxiang Wei, Yanteng Zhang, Xi Xiao, Tianyang Wang, Xiao Wang, Vince D. Calhoun
Abstract:
Decoding visual experiences from fMRI offers a powerful avenue to understand human perception and develop advanced brain-computer interfaces. However, current progress often prioritizes maximizing reconstruction fidelity while overlooking interpretability, an essential aspect for deriving neuroscientific insight. To address this gap, we propose MoRE-Brain, a neuro-inspired framework designed for high-fidelity, adaptable, and interpretable visual reconstruction. MoRE-Brain uniquely employs a hierarchical Mixture-of-Experts architecture where distinct experts process fMRI signals from functionally related voxel groups, mimicking specialized brain networks. The experts are first trained to encode fMRI into the frozen CLIP space. A finetuned diffusion model then synthesizes images, guided by expert outputs through a novel dual-stage routing mechanism that dynamically weighs expert contributions across the diffusion process. MoRE-Brain offers three main advancements: First, it introduces a novel Mixture-of-Experts architecture grounded in brain network principles for neuro-decoding. Second, it achieves efficient cross-subject generalization by sharing core expert networks while adapting only subject-specific routers. Third, it provides enhanced mechanistic insight, as the explicit routing reveals precisely how different modeled brain regions shape the semantic and spatial attributes of the reconstructed image. Extensive experiments validate MoRE-Brain's high reconstruction fidelity, with bottleneck analyses further demonstrating its effective utilization of fMRI signals, distinguishing genuine neural decoding from over-reliance on generative priors. Consequently, MoRE-Brain marks a substantial advance towards more generalizable and interpretable fMRI-based visual decoding. Code will be publicly available soon: https://github.com/yuxiangwei0808/MoRE-Brain.
Authors:Hui Shen, Taiqiang Wu, Qi Han, Yunta Hsieh, Jizhou Wang, Yuyue Zhang, Yuxin Cheng, Zijian Hao, Yuansheng Ni, Xin Wang, Zhongwei Wan, Kai Zhang, Wendong Xu, Jing Xiong, Ping Luo, Wenhu Chen, Chaofan Tao, Zhuoqing Mao, Ngai Wong
Abstract:
Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5%, 42.2%, and 45.8% accuracy respectively-performance gaps exceeding 29% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation. More details are available on our project page: https://phyx-bench.github.io/.
Authors:Tony Montes, Fernando Lozano
Abstract:
Recent advancements in Video Question Answering (VideoQA) have introduced LLM-based agents, modular frameworks, and procedural solutions, yielding promising results. These systems use dynamic agents and memory-based mechanisms to break down complex tasks and refine answers. However, significant improvements remain in tracking objects for grounding over time and decision-making based on reasoning to better align object references with language model outputs, as newer models get better at both tasks. This work presents an LLM-brained agent for zero-shot Video Question Answering (VideoQA) that combines a Chain-of-Thought framework with grounding reasoning alongside YOLO-World to enhance object tracking and alignment. This approach establishes a new state-of-the-art in VideoQA and Video Understanding, showing enhanced performance on NExT-QA, iVQA, and ActivityNet-QA benchmarks. Our framework also enables cross-checking of grounding timeframes, improving accuracy and providing valuable support for verification and increased output reliability across multiple video domains. The code is available at https://github.com/t-montes/viqagent.
Authors:Zhiyuan Xu, Bohan Li, Huan-ang Gao, Mingju Gao, Yong Chen, Ming Liu, Chenxu Yan, Hang Zhao, Shuo Feng, Hao Zhao
Abstract:
Generating photorealistic driving videos has seen significant progress recently, but current methods largely focus on ordinary, non-adversarial scenarios. Meanwhile, efforts to generate adversarial driving scenarios often operate on abstract trajectory or BEV representations, falling short of delivering realistic sensor data that can truly stress-test autonomous driving (AD) systems. In this work, we introduce Challenger, a framework that produces physically plausible yet photorealistic adversarial driving videos. Generating such videos poses a fundamental challenge: it requires jointly optimizing over the space of traffic interactions and high-fidelity sensor observations. Challenger makes this affordable through two techniques: (1) a physics-aware multi-round trajectory refinement process that narrows down candidate adversarial maneuvers, and (2) a tailored trajectory scoring function that encourages realistic yet adversarial behavior while maintaining compatibility with downstream video synthesis. As tested on the nuScenes dataset, Challenger generates a diverse range of aggressive driving scenarios-including cut-ins, sudden lane changes, tailgating, and blind spot intrusions-and renders them into multiview photorealistic videos. Extensive evaluations show that these scenarios significantly increase the collision rate of state-of-the-art end-to-end AD models (UniAD, VAD, SparseDrive, and DiffusionDrive), and importantly, adversarial behaviors discovered for one model often transfer to others.
Authors:Can Rong, Xin Zhang, Yanxin Xi, Hongjie Sui, Jingtao Ding, Yong Li
Abstract:
Commuting Origin-destination~(OD) flows, capturing daily population mobility of citizens, are vital for sustainable development across cities around the world. However, it is challenging to obtain the data due to the high cost of travel surveys and privacy concerns. Surprisingly, we find that satellite imagery, publicly available across the globe, contains rich urban semantic signals to support high-quality OD flow generation, with over 98\% expressiveness of traditional multisource hard-to-collect urban sociodemographic, economics, land use, and point of interest data. This inspires us to design a novel data generator, GlODGen, which can generate OD flow data for any cities of interest around the world. Specifically, GlODGen first leverages Vision-Language Geo-Foundation Models to extract urban semantic signals related to human mobility from satellite imagery. These features are then combined with population data to form region-level representations, which are used to generate OD flows via graph diffusion models. Extensive experiments on 4 continents and 6 representative cities show that GlODGen has great generalizability across diverse urban environments on different continents and can generate OD flow data for global cities highly consistent with real-world mobility data. We implement GlODGen as an automated tool, seamlessly integrating data acquisition and curation, urban semantic feature extraction, and OD flow generation together. It has been released at https://github.com/tsinghua-fib-lab/generate-od-pubtools.
Authors:Tianyi Ma, Yiyue Qian, Zheyuan Zhang, Zehong Wang, Xiaoye Qian, Feifan Bai, Yifan Ding, Xuwei Luo, Shinan Zhang, Keerthiram Murugesan, Chuxu Zhang, Yanfang Ye
Abstract:
The exponential growth of data-driven systems and AI technologies has intensified the demand for high-quality web-sourced datasets. While existing datasets have proven valuable, conventional web data collection approaches face significant limitations in terms of human effort and scalability. Current data-collecting solutions fall into two categories: wrapper-based methods that struggle with adaptability and reproducibility, and large language model (LLM)-based approaches that incur substantial computational and financial costs. To address these challenges, we propose AutoData, a novel multi-agent system for Automated web Data collection, that requires minimal human intervention, i.e., only necessitating a natural language instruction specifying the desired dataset. In addition, AutoData is designed with a robust multi-agent architecture, featuring a novel oriented message hypergraph coordinated by a central task manager, to efficiently organize agents across research and development squads. Besides, we introduce a novel hypergraph cache system to advance the multi-agent collaboration process that enables efficient automated data collection and mitigates the token cost issues prevalent in existing LLM-based systems. Moreover, we introduce Instruct2DS, a new benchmark dataset supporting live data collection from web sources across three domains: academic, finance, and sports. Comprehensive evaluations over Instruct2DS and three existing benchmark datasets demonstrate AutoData's superior performance compared to baseline methods. Case studies on challenging tasks such as picture book collection and paper extraction from surveys further validate its applicability. Our source code and dataset are available at https://github.com/GraphResearcher/AutoData.
Authors:Kai Yin, Xiangjue Dong, Chengkai Liu, Lipai Huang, Yiming Xiao, Zhewei Liu, Ali Mostafavi, James Caverlee
Abstract:
Effective disaster management requires timely access to accurate and contextually relevant information. Existing Information Retrieval (IR) benchmarks, however, focus primarily on general or specialized domains, such as medicine or finance, neglecting the unique linguistic complexity and diverse information needs encountered in disaster management scenarios. To bridge this gap, we introduce DisastIR, the first comprehensive IR evaluation benchmark specifically tailored for disaster management. DisastIR comprises 9,600 diverse user queries and more than 1.3 million labeled query-passage pairs, covering 48 distinct retrieval tasks derived from six search intents and eight general disaster categories that include 301 specific event types. Our evaluations of 30 state-of-the-art retrieval models demonstrate significant performance variances across tasks, with no single model excelling universally. Furthermore, comparative analyses reveal significant performance gaps between general-domain and disaster management-specific tasks, highlighting the necessity of disaster management-specific benchmarks for guiding IR model selection to support effective decision-making in disaster management scenarios. All source codes and DisastIR are available at https://github.com/KaiYin97/Disaster_IR.
Authors:Penghao Wu, Lewei Lu, Ziwei Liu
Abstract:
Large multimodal models excel in multimodal tasks but face significant computational challenges due to excessive computation on visual tokens. Unlike token reduction methods that focus on token-level redundancy, we identify and study the computation-level redundancy on vision tokens to ensure no information loss. Our key insight is that vision tokens from the pretrained vision encoder do not necessarily require all the heavy operations (e.g., self-attention, FFNs) in decoder-only LMMs and could be processed more lightly with proper designs. We designed a series of experiments to discover and progressively squeeze out the vision-related computation redundancy. Based on our findings, we propose ProxyV, a novel approach that utilizes proxy vision tokens to alleviate the computational burden on original vision tokens. ProxyV enhances efficiency without compromising performance and can even yield notable performance gains in scenarios with more moderate efficiency improvements. Furthermore, the flexibility of ProxyV is demonstrated through its combination with token reduction methods to boost efficiency further. The code will be made public at this https://github.com/penghao-wu/ProxyV URL.
Authors:Satoshi Kosugi
Abstract:
Exemplar-based image colorization aims to colorize a grayscale image using a reference color image, ensuring that reference colors are applied to corresponding input regions based on their semantic similarity. To achieve accurate semantic matching between regions, we leverage the self-attention module of a pre-trained diffusion model, which is trained on a large dataset and exhibits powerful attention capabilities. To harness this power, we propose a novel, fine-tuning-free approach based on a pre-trained diffusion model, making two key contributions. First, we introduce dual attention-guided color transfer. We utilize the self-attention module to compute an attention map between the input and reference images, effectively capturing semantic correspondences. The color features from the reference image is then transferred to the semantically matching regions of the input image, guided by this attention map, and finally, the grayscale features are replaced with the corresponding color features. Notably, we utilize dual attention to calculate attention maps separately for the grayscale and color images, achieving more precise semantic alignment. Second, we propose classifier-free colorization guidance, which enhances the transferred colors by combining color-transferred and non-color-transferred outputs. This process improves the quality of colorization. Our experimental results demonstrate that our method outperforms existing techniques in terms of image quality and fidelity to the reference. Specifically, we use 335 input-reference pairs from previous research, achieving an FID of 95.27 (image quality) and an SI-FID of 5.51 (fidelity to the reference). Our source code is available at https://github.com/satoshi-kosugi/powerful-attention.
Authors:Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, Jun Xu
Abstract:
Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm, coupling online Reinforcement Learning (RL) with explicit chain-of-thought reasoning prior to object grounding and thereby achieving substantial performance gains. In this paper, we first conduct extensive analysis experiments of three key components of that training pipeline: input design, output evaluation, and policy update-each revealing distinct challenges arising from blindly applying general-purpose RL without adapting to GUI grounding tasks. Input design: Current templates encourage the model to generate chain-of-thought reasoning, but longer chains unexpectedly lead to worse grounding performance. Output evaluation: Reward functions based on hit signals or box area allow models to exploit box size, leading to reward hacking and poor localization quality. Policy update: Online RL tends to overfit easy examples due to biases in length and sample difficulty, leading to under-optimization on harder cases. To address these issues, we propose three targeted solutions. First, we adopt a Fast Thinking Template that encourages direct answer generation, reducing excessive reasoning during training. Second, we incorporate a box size constraint into the reward function to mitigate reward hacking. Third, we revise the RL objective by adjusting length normalization and adding a difficulty-aware scaling factor, enabling better optimization on hard samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro. This surpasses all prior models of similar size and even outperforms the larger UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
Authors:Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, Mengdi Wang
Abstract:
We introduce MMaDA, a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation. The approach is distinguished by three key innovations: (i) MMaDA adopts a unified diffusion architecture with a shared probabilistic formulation and a modality-agnostic design, eliminating the need for modality-specific components. This architecture ensures seamless integration and processing across different data types. (ii) We implement a mixed long chain-of-thought (CoT) fine-tuning strategy that curates a unified CoT format across modalities. By aligning reasoning processes between textual and visual domains, this strategy facilitates cold-start training for the final reinforcement learning (RL) stage, thereby enhancing the model's ability to handle complex tasks from the outset. (iii) We propose UniGRPO, a unified policy-gradient-based RL algorithm specifically tailored for diffusion foundation models. Utilizing diversified reward modeling, UniGRPO unifies post-training across both reasoning and generation tasks, ensuring consistent performance improvements. Experimental results demonstrate that MMaDA-8B exhibits strong generalization capabilities as a unified multimodal foundation model. It surpasses powerful models like LLaMA-3-7B and Qwen2-7B in textual reasoning, outperforms Show-o and SEED-X in multimodal understanding, and excels over SDXL and Janus in text-to-image generation. These achievements highlight MMaDA's effectiveness in bridging the gap between pretraining and post-training within unified diffusion architectures, providing a comprehensive framework for future research and development. We open-source our code and trained models at: https://github.com/Gen-Verse/MMaDA
Authors:Zongzhao Li, Zongyang Ma, Mingze Li, Songyou Li, Yu Rong, Tingyang Xu, Ziqi Zhang, Deli Zhao, Wenbing Huang
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.
Authors:Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li, Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang, Jian Shao, Yongliang Shen, Jun Xiao, Yueting Zhuang
Abstract:
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
Authors:Ruizhi Shao, Yinghao Xu, Yujun Shen, Ceyuan Yang, Yang Zheng, Changan Chen, Yebin Liu, Gordon Wetzstein
Abstract:
Generating photorealistic videos of digital humans in a controllable manner is crucial for a plethora of applications. Existing approaches either build on methods that employ template-based 3D representations or emerging video generation models but suffer from poor quality or limited consistency and identity preservation when generating individual or multiple digital humans. In this paper, we introduce a new interspatial attention (ISA) mechanism as a scalable building block for modern diffusion transformer (DiT)--based video generation models. ISA is a new type of cross attention that uses relative positional encodings tailored for the generation of human videos. Leveraging a custom-developed video variation autoencoder, we train a latent ISA-based diffusion model on a large corpus of video data. Our model achieves state-of-the-art performance for 4D human video synthesis, demonstrating remarkable motion consistency and identity preservation while providing precise control of the camera and body poses. Our code and model are publicly released at https://dsaurus.github.io/isa4d/.
Authors:Danna Zheng, Mirella Lapata, Jeff Z. Pan
Abstract:
Information alignment evaluators are vital for various NLG evaluation tasks and trustworthy LLM deployment, reducing hallucinations and enhancing user trust. Current fine-grained methods, like FactScore, verify facts individually but neglect inter-fact dependencies, enabling subtle vulnerabilities. In this work, we introduce MontageLie, a challenging benchmark that constructs deceptive narratives by "montaging" truthful statements without introducing explicit hallucinations. We demonstrate that both coarse-grained LLM-based evaluators and current fine-grained frameworks are susceptible to this attack, with AUC-ROC scores falling below 65%. To enable more robust fine-grained evaluation, we propose DoveScore, a novel framework that jointly verifies factual accuracy and event-order consistency. By modeling inter-fact relationships, DoveScore outperforms existing fine-grained methods by over 8%, providing a more robust solution for long-form text alignment evaluation. Our code and datasets are available at https://github.com/dannalily/DoveScore.
Authors:Xinyin Ma, Runpeng Yu, Gongfan Fang, Xinchao Wang
Abstract:
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
Authors:Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen, Xin Eric Wang
Abstract:
Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
Authors:Weihao Xia, Cengiz Oztireli
Abstract:
The intrication of brain signals drives research that leverages multimodal AI to align brain modalities with visual and textual data for explainable descriptions. However, most existing studies are limited to coarse interpretations, lacking essential details on object descriptions, locations, attributes, and their relationships. This leads to imprecise and ambiguous reconstructions when using such cues for visual decoding. To address this, we analyze different choices of vision feature spaces from pre-trained visual components within Multimodal Large Language Models (MLLMs) and introduce a zero-shot multimodal brain decoding method that interacts with these models to decode across multiple levels of granularities. % To assess a model's ability to decode fine details from brain signals, we propose the Multi-Granularity Brain Detail Understanding Benchmark (MG-BrainDub). This benchmark includes two key tasks: detailed descriptions and salient question-answering, with metrics highlighting key visual elements like objects, attributes, and relationships. Our approach enhances neural decoding precision and supports more accurate neuro-decoding applications. Code will be available at https://github.com/weihaox/VINDEX.
Authors:Zhuodong Jiang, Haoran Wang, Guoxi Huang, Brett Seymour, Nantheera Anantrasirichai
Abstract:
Reconstructing high-fidelity underwater scenes remains a challenging task due to light absorption, scattering, and limited visibility inherent in aquatic environments. This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and geometric accuracy of deep underwater rendering. We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration. To address sparse-view limitations and improve view consistency, we introduce a frame interpolation strategy with a novel adaptive weighting scheme. Additionally, we introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content. We also release a newly collected dataset, Submerged3D, captured specifically in deep-sea environments. Experimental results demonstrate that our framework consistently outperforms state-of-the-art methods with PSNR gains up to 1.90dB, delivering superior perceptual quality and robustness, and offering promising directions for marine robotics and underwater visual analytics. The code of RUSplatting is available at https://github.com/theflash987/RUSplatting and the dataset Submerged3D can be downloaded at https://zenodo.org/records/15482420.
Authors:Peng Wang, Biyu Zhou, Xuehai Tang, Jizhong Han, Songlin Hu
Abstract:
Large Language Models often contain factually incorrect or outdated knowledge, giving rise to model editing methods for precise knowledge updates. However, current mainstream locate-then-edit approaches exhibit a progressive performance decline during sequential editing, due to inadequate mechanisms for long-term knowledge preservation. To tackle this, we model the sequential editing as a constrained stochastic programming. Given the challenges posed by the cumulative preservation error constraint and the gradually revealed editing tasks, \textbf{LyapLock} is proposed. It integrates queuing theory and Lyapunov optimization to decompose the long-term constrained programming into tractable stepwise subproblems for efficient solving. This is the first model editing framework with rigorous theoretical guarantees, achieving asymptotic optimal editing performance while meeting the constraints of long-term knowledge preservation. Experimental results show that our framework scales sequential editing capacity to over 10,000 edits while stabilizing general capabilities and boosting average editing efficacy by 11.89\% over SOTA baselines. Furthermore, it can be leveraged to enhance the performance of baseline methods. Our code is released on https://github.com/caskcsg/LyapLock.
Authors:Pingqing Zheng, Jiayin Qin, Fuqi Zhang, Shang Wu, Yu Cao, Caiwen Ding, Yang, Zhao
Abstract:
Large Language Models (LLMs) have demonstrated their potential in hardware design tasks, such as Hardware Description Language (HDL) generation and debugging. Yet, their performance in real-world, repository-level HDL projects with thousands or even tens of thousands of code lines is hindered. To this end, we propose HDLxGraph, a novel framework that integrates Graph Retrieval Augmented Generation (Graph RAG) with LLMs, introducing HDL-specific graph representations by incorporating Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) to capture both code graph view and hardware graph view. HDLxGraph utilizes a dual-retrieval mechanism that not only mitigates the limited recall issues inherent in similarity-based semantic retrieval by incorporating structural information, but also enhances its extensibility to various real-world tasks by a task-specific retrieval finetuning. Additionally, to address the lack of comprehensive HDL search benchmarks, we introduce HDLSearch, a multi-granularity evaluation dataset derived from real-world repository-level projects. Experimental results demonstrate that HDLxGraph significantly improves average search accuracy, debugging efficiency and completion quality by 12.04%, 12.22% and 5.04% compared to similarity-based RAG, respectively. The code of HDLxGraph and collected HDLSearch benchmark are available at https://github.com/Nick-Zheng-Q/HDLxGraph.
Authors:Jiaming Zhou, Ke Ye, Jiayi Liu, Teli Ma, Zifan Wang, Ronghe Qiu, Kun-Yu Lin, Zhilin Zhao, Junwei Liang
Abstract:
The generalization capabilities of vision-language-action (VLA) models to unseen tasks are crucial to achieving general-purpose robotic manipulation in open-world settings. However, the cross-task generalization capabilities of existing VLA models remain significantly underexplored. To address this gap, we introduce AGNOSTOS, a novel simulation benchmark designed to rigorously evaluate cross-task zero-shot generalization in manipulation. AGNOSTOS comprises 23 unseen manipulation tasks for testing, distinct from common training task distributions, and incorporates two levels of generalization difficulty to assess robustness. Our systematic evaluation reveals that current VLA models, despite being trained on diverse datasets, struggle to generalize effectively to these unseen tasks. To overcome this limitation, we propose Cross-Task In-Context Manipulation (X-ICM), a method that conditions large language models (LLMs) on in-context demonstrations from seen tasks to predict action sequences for unseen tasks. Additionally, we introduce a dynamics-guided sample selection strategy that identifies relevant demonstrations by capturing cross-task dynamics. On AGNOSTOS, X-ICM significantly improves cross-task zero-shot generalization performance over leading VLAs. We believe AGNOSTOS and X-ICM will serve as valuable tools for advancing general-purpose robotic manipulation.
Authors:Zhexin Zhang, Yuhao Sun, Junxiao Yang, Shiyao Cui, Hongning Wang, Minlie Huang
Abstract:
Fine-tuning on open-source Large Language Models (LLMs) with proprietary data is now a standard practice for downstream developers to obtain task-specific LLMs. Surprisingly, we reveal a new and concerning risk along with the practice: the creator of the open-source LLMs can later extract the private downstream fine-tuning data through simple backdoor training, only requiring black-box access to the fine-tuned downstream model. Our comprehensive experiments, across 4 popularly used open-source models with 3B to 32B parameters and 2 downstream datasets, suggest that the extraction performance can be strikingly high: in practical settings, as much as 76.3% downstream fine-tuning data (queries) out of a total 5,000 samples can be perfectly extracted, and the success rate can increase to 94.9% in more ideal settings. We also explore a detection-based defense strategy but find it can be bypassed with improved attack. Overall, we highlight the emergency of this newly identified data breaching risk in fine-tuning, and we hope that more follow-up research could push the progress of addressing this concerning risk. The code and data used in our experiments are released at https://github.com/thu-coai/Backdoor-Data-Extraction.
Authors:Tianjiao Cao, Jiahao Lyu, Weichao Zeng, Weimin Mu, Yu Zhou
Abstract:
Scene text detection has seen the emergence of high-performing methods that excel on academic benchmarks. However, these detectors often fail to replicate such success in real-world scenarios. We uncover two key factors contributing to this discrepancy through extensive experiments. First, a \textit{Fine-tuning Gap}, where models leverage \textit{Dataset-Specific Optimization} (DSO) paradigm for one domain at the cost of reduced effectiveness in others, leads to inflated performances on academic benchmarks. Second, the suboptimal performance in practical settings is primarily attributed to the long-tailed distribution of texts, where detectors struggle with rare and complex categories as artistic or overlapped text. Given that the DSO paradigm might undermine the generalization ability of models, we advocate for a \textit{Joint-Dataset Learning} (JDL) protocol to alleviate the Fine-tuning Gap. Additionally, an error analysis is conducted to identify three major categories and 13 subcategories of challenges in long-tailed scene text, upon which we propose a Long-Tailed Benchmark (LTB). LTB facilitates a comprehensive evaluation of ability to handle a diverse range of long-tailed challenges. We further introduce MAEDet, a self-supervised learning-based method, as a strong baseline for LTB. The code is available at https://github.com/pd162/LTB.
Authors:Pujun Xue, Junyi Ge, Xiaotong Jiang, Siyang Song, Zijian Wu, Yupeng Huo, Weicheng Xie, Linlin Shen, Xiaoqin Zhou, Xiaofeng Liu, Min Gu
Abstract:
Malocclusion is a major challenge in orthodontics, and its complex presentation and diverse clinical manifestations make accurate localization and diagnosis particularly important. Currently, one of the major shortcomings facing the field of dental image analysis is the lack of large-scale, accurately labeled datasets dedicated to malocclusion issues, which limits the development of automated diagnostics in the field of dentistry and leads to a lack of diagnostic accuracy and efficiency in clinical practice. Therefore, in this study, we propose the Oral and Maxillofacial Natural Images (OMNI) dataset, a novel and comprehensive dental image dataset aimed at advancing the study of analyzing dental images for issues of malocclusion. Specifically, the dataset contains 4166 multi-view images with 384 participants in data collection and annotated by professional dentists. In addition, we performed a comprehensive validation of the created OMNI dataset, including three CNN-based methods, two Transformer-based methods, and one GNN-based method, and conducted automated diagnostic experiments for malocclusion issues. The experimental results show that the OMNI dataset can facilitate the automated diagnosis research of malocclusion issues and provide a new benchmark for the research in this field. Our OMNI dataset and baseline code are publicly available at https://github.com/RoundFaceJ/OMNI.
Authors:Iuliia Kotseruba, John K. Tsotsos
Abstract:
Generalization of deep-learning-based (DL) computer vision algorithms to various image perturbations is hard to establish and remains an active area of research. The majority of past analyses focused on the images already captured, whereas effects of the image formation pipeline and environment are less studied. In this paper, we address this issue by analyzing the impact of capture conditions, such as camera parameters and lighting, on DL model performance on 3 vision tasks -- image classification, object detection, and visual question answering (VQA). To this end, we assess capture bias in common vision datasets and create a new benchmark, SNAP (for $\textbf{S}$hutter speed, ISO se$\textbf{N}$sitivity, and $\textbf{AP}$erture), consisting of images of objects taken under controlled lighting conditions and with densely sampled camera settings. We then evaluate a large number of DL vision models and show the effects of capture conditions on each selected vision task. Lastly, we conduct an experiment to establish a human baseline for the VQA task. Our results show that computer vision datasets are significantly biased, the models trained on this data do not reach human accuracy even on the well-exposed images, and are susceptible to both major exposure changes and minute variations of camera settings. Code and data can be found at https://github.com/ykotseruba/SNAP
Authors:Ruilin Yao, Bo Zhang, Jirui Huang, Xinwei Long, Yifang Zhang, Tianyu Zou, Yufei Wu, Shichao Su, Yifan Xu, Wenxi Zeng, Zhaoyu Yang, Guoyou Li, Shilan Zhang, Zichan Li, Yaxiong Chen, Shengwu Xiong, Peng Xu, Jiajun Zhang, Bowen Zhou, David Clifton, Luc Van Gool
Abstract:
Multimodal Large Language Models (MLLMs) have achieved significant advances in integrating visual and linguistic information, yet their ability to reason about complex and real-world scenarios remains limited. The existing benchmarks are usually constructed in the task-oriented manner without guarantee that different task samples come from the same data distribution, thus they often fall short in evaluating the synergistic effects of lower-level perceptual capabilities on higher-order reasoning. To lift this limitation, we contribute Lens, a multi-level benchmark with 3.4K contemporary images and 60K+ human-authored questions covering eight tasks and 12 daily scenarios, forming three progressive task tiers, i.e., perception, understanding, and reasoning. One feature is that each image is equipped with rich annotations for all tasks. Thus, this dataset intrinsically supports to evaluate MLLMs to handle image-invariable prompts, from basic perception to compositional reasoning. In addition, our images are manully collected from the social media, in which 53% were published later than Jan. 2025. We evaluate 15+ frontier MLLMs such as Qwen2.5-VL-72B, InternVL3-78B, GPT-4o and two reasoning models QVQ-72B-preview and Kimi-VL. These models are released later than Dec. 2024, and none of them achieve an accuracy greater than 60% in the reasoning tasks. Project page: https://github.com/Lens4MLLMs/lens. ICCV 2025 workshop page: https://lens4mllms.github.io/mars2-workshop-iccv2025/
Authors:Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang, Junxian He
Abstract:
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL), particularly by generating long reasoning traces. However, these extended outputs often exhibit substantial redundancy, which limits the efficiency of LRMs. In this paper, we investigate RL-based approaches to promote reasoning efficiency. Specifically, we first present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping. Building on this perspective, we propose a novel Length-bAsed StEp Reward shaping method (LASER), which employs a step function as the reward, controlled by a target length. LASER surpasses previous methods, achieving a superior Pareto-optimal balance between performance and efficiency. Next, we further extend LASER based on two key intuitions: (1) The reasoning behavior of the model evolves during training, necessitating reward specifications that are also adaptive and dynamic; (2) Rather than uniformly encouraging shorter or longer chains of thought (CoT), we posit that length-based reward shaping should be difficulty-aware i.e., it should penalize lengthy CoTs more for easy queries. This approach is expected to facilitate a combination of fast and slow thinking, leading to a better overall tradeoff. The resulting method is termed LASER-D (Dynamic and Difficulty-aware). Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency. For instance, LASER-D and its variant achieve a +6.1 improvement on AIME2024 while reducing token usage by 63%. Further analysis reveals our RL-based compression produces more concise reasoning patterns with less redundant "self-reflections". Resources are at https://github.com/hkust-nlp/Laser.
Authors:David Dinucu-Jianu, Jakub Macina, Nico Daheim, Ido Hakimi, Iryna Gurevych, Mrinmaya Sachan
Abstract:
Large language models (LLMs) can transform education, but their optimization for direct question-answering often undermines effective pedagogy which requires strategically withholding answers. To mitigate this, we propose an online reinforcement learning (RL)-based alignment framework that can quickly adapt LLMs into effective tutors using simulated student-tutor interactions by emphasizing pedagogical quality and guided problem-solving over simply giving away answers. We use our method to train a 7B parameter tutor model without human annotations which reaches similar performance to larger proprietary models like LearnLM. We introduce a controllable reward weighting to balance pedagogical support and student solving accuracy, allowing us to trace the Pareto frontier between these two objectives. Our models better preserve reasoning capabilities than single-turn SFT baselines and can optionally enhance interpretability through thinking tags that expose the model's instructional planning.
Authors:Xinyi Lu, Aditya Mahesh, Zejia Shen, Mitchell Dudley, Larissa Sano, Xu Wang
Abstract:
This project examines the prospect of using AI-generated feedback as suggestions to expedite and enhance human instructors' feedback provision. In particular, we focus on understanding the teaching assistants' perspectives on the quality of AI-generated feedback and how they may or may not utilize AI feedback in their own workflows. We situate our work in a foundational college Economics class, which has frequent short essay assignments. We developed an LLM-powered feedback engine that generates feedback on students' essays based on grading rubrics used by the teaching assistants (TAs). To ensure that TAs can meaningfully critique and engage with the AI feedback, we had them complete their regular grading jobs. For a randomly selected set of essays that they had graded, we used our feedback engine to generate feedback and displayed the feedback as in-text comments in a Word document. We then performed think-aloud studies with 5 TAs over 20 1-hour sessions to have them evaluate the AI feedback, contrast the AI feedback with their handwritten feedback, and share how they envision using the AI feedback if they were offered as suggestions. The study highlights the importance of providing detailed rubrics for AI to generate high-quality feedback for knowledge-intensive essays. TAs considered that using AI feedback as suggestions during their grading could expedite grading, enhance consistency, and improve overall feedback quality. We discuss the importance of decomposing the feedback generation task into steps and presenting intermediate results, in order for TAs to use the AI feedback.
Authors:Haocheng Ju, Bin Dong
Abstract:
Mathematical Information Retrieval (MIR) is the task of retrieving information from mathematical documents and plays a key role in various applications, including theorem search in mathematical libraries, answer retrieval on math forums, and premise selection in automated theorem proving. However, a unified benchmark for evaluating these diverse retrieval tasks has been lacking. In this paper, we introduce MIRB (Mathematical Information Retrieval Benchmark) to assess the MIR capabilities of retrieval models. MIRB includes four tasks: semantic statement retrieval, question-answer retrieval, premise retrieval, and formula retrieval, spanning a total of 12 datasets. We evaluate 13 retrieval models on this benchmark and analyze the challenges inherent to MIR. We hope that MIRB provides a comprehensive framework for evaluating MIR systems and helps advance the development of more effective retrieval models tailored to the mathematical domain.
Authors:Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Chongyi Li, Laurence T. Yang, Weidong Zhang, Sam Kwong
Abstract:
With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.
Authors:Xin Huang, Ruibin Li, Tong Jia, Wei Zheng, Ya Wang
Abstract:
Vision-Language Models (VLMs) are essential for multimodal tasks, especially compositional reasoning (CR) tasks, which require distinguishing fine-grained semantic differences between visual and textual embeddings. However, existing methods primarily fine-tune the model by generating text-based hard negative samples, neglecting the importance of image-based negative samples, which results in insufficient training of the visual encoder and ultimately impacts the overall performance of the model. Moreover, negative samples are typically treated uniformly, without considering their difficulty levels, and the alignment of positive samples is insufficient, which leads to challenges in aligning difficult sample pairs. To address these issues, we propose Adaptive Hard Negative Perturbation Learning (AHNPL). AHNPL translates text-based hard negatives into the visual domain to generate semantically disturbed image-based negatives for training the model, thereby enhancing its overall performance. AHNPL also introduces a contrastive learning approach using a multimodal hard negative loss to improve the model's discrimination of hard negatives within each modality and a dynamic margin loss that adjusts the contrastive margin according to sample difficulty to enhance the distinction of challenging sample pairs. Experiments on three public datasets demonstrate that our method effectively boosts VLMs' performance on complex CR tasks. The source code is available at https://github.com/nynu-BDAI/AHNPL.
Authors:Wendi Zhou, Ameer Saadat-Yazdi, Nadin Kökciyan
Abstract:
Critical questions are essential resources to provoke critical thinking when encountering an argumentative text. We present our system for the Critical Questions Generation (CQs-Gen) Shared Task at ArgMining 2025. Our approach leverages large language models (LLMs) with chain-of-thought prompting to generate critical questions guided by Walton's argumentation schemes. For each input intervention, we conversationally prompt LLMs to instantiate the corresponding argument scheme template to first obtain structured arguments, and then generate relevant critical questions. Following this, we rank all the available critical questions by prompting LLMs to select the top 3 most helpful questions based on the original intervention text. This combination of structured argumentation theory and step-by-step reasoning enables the generation of contextually relevant and diverse critical questions. Our pipeline achieves competitive performance in the final test set, showing its potential to foster critical thinking given argumentative text and detect missing or uninformed claims. Code available at \href{https://git.ecdf.ed.ac.uk/s2236454/DayDreamer-CQs-Gen}{DayDreamer}.
Authors:Andrew Caunes, Thierry Chateau, Vincent Fremont
Abstract:
3D semantic segmentation plays a pivotal role in autonomous driving and road infrastructure analysis, yet state-of-the-art 3D models are prone to severe domain shift when deployed across different datasets. We propose a novel multi-view projection framework that excels in both domain generalization (DG) and unsupervised domain adaptation (UDA). Our approach first aligns Lidar scans into coherent 3D scenes and renders them from multiple virtual camera poses to create a large-scale synthetic 2D dataset (PC2D). We then use it to train a 2D segmentation model in-domain. During inference, the model processes hundreds of views per scene; the resulting logits are back-projected to 3D with an occlusion-aware voting scheme to generate final point-wise labels. Our framework is modular and enables extensive exploration of key design parameters, such as view generation optimization (VGO), visualization modality optimization (MODO), and 2D model choice. We evaluate on the nuScenes and SemanticKITTI datasets under both the DG and UDA settings. We achieve state-of-the-art results in UDA and close to state-of-the-art in DG, with particularly large gains on large, static classes. Our code and dataset generation tools will be publicly available at https://github.com/andrewcaunes/ia4markings
Authors:Yiyun Zhou, Chang Yao, Jingyuan Chen
Abstract:
The scaling law of Large Language Models (LLMs) reveals a power-law relationship, showing diminishing return on performance as model scale increases. While training LLMs from scratch is resource-intensive, fine-tuning a pre-trained model for specific tasks has become a practical alternative. Full fine-tuning (FFT) achieves strong performance; however, it is computationally expensive and inefficient. Parameter-efficient fine-tuning (PEFT) methods, like LoRA, have been proposed to address these challenges by freezing the pre-trained model and adding lightweight task-specific modules. LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks. Recent approaches, such as Mixture-of-Experts (MOE) and asymmetric LoRA, have aimed to mitigate these issues but still struggle with sample scarcity and noise interference due to their fixed structure. In response, we propose CoLA, a more flexible LoRA architecture with an efficient initialization scheme, and introduces three collaborative strategies to enhance performance by better utilizing the quantitative relationships between matrices $A$ and $B$. Our experiments demonstrate the effectiveness and robustness of CoLA, outperforming existing PEFT methods, especially in low-sample scenarios. Our data and code are fully publicly available at https://github.com/zyy-2001/CoLA.
Authors:Zeqing Wang, Shiyuan Zhang, Chengpei Tang, Keze Wang
Abstract:
Reasoning about temporal causality, particularly irreversible transformations of objects governed by real-world knowledge (e.g., fruit decay and human aging), is a fundamental aspect of human visual understanding. Unlike temporal perception based on simple event sequences, this form of reasoning requires a deeper comprehension of how object states change over time. Although the current powerful Vision-Language Models (VLMs) have demonstrated impressive performance on a wide range of downstream tasks, their capacity to reason about temporal causality remains underexplored. To address this gap, we introduce \textbf{TimeCausality}, a novel benchmark specifically designed to evaluate the causal reasoning ability of VLMs in the temporal dimension. Based on our TimeCausality, we find that while the current SOTA open-source VLMs have achieved performance levels comparable to closed-source models like GPT-4o on various standard visual question answering tasks, they fall significantly behind on our benchmark compared with their closed-source competitors. Furthermore, even GPT-4o exhibits a marked drop in performance on TimeCausality compared to its results on other tasks. These findings underscore the critical need to incorporate temporal causality into the evaluation and development of VLMs, and they highlight an important challenge for the open-source VLM community moving forward. Code and Data are available at \href{https://github.com/Zeqing-Wang/TimeCausality }{TimeCausality}.
Authors:Raza Imam, Rufael Marew, Mohammad Yaqub
Abstract:
Medical Vision-Language Models (MVLMs) have achieved par excellence generalization in medical image analysis, yet their performance under noisy, corrupted conditions remains largely untested. Clinical imaging is inherently susceptible to acquisition artifacts and noise; however, existing evaluations predominantly assess generally clean datasets, overlooking robustness -- i.e., the model's ability to perform under real-world distortions. To address this gap, we first introduce MediMeta-C, a corruption benchmark that systematically applies several perturbations across multiple medical imaging datasets. Combined with MedMNIST-C, this establishes a comprehensive robustness evaluation framework for MVLMs. We further propose RobustMedCLIP, a visual encoder adaptation of a pretrained MVLM that incorporates few-shot tuning to enhance resilience against corruptions. Through extensive experiments, we benchmark 5 major MVLMs across 5 medical imaging modalities, revealing that existing models exhibit severe degradation under corruption and struggle with domain-modality tradeoffs. Our findings highlight the necessity of diverse training and robust adaptation strategies, demonstrating that efficient low-rank adaptation when paired with few-shot tuning, improves robustness while preserving generalization across modalities.
Authors:Naiqi Li, Yuqiu Xie, Peiyuan Liu, Tao Dai, Yong Jiang, Shu-Tao Xia
Abstract:
Low-rank regularization (LRR) has been widely applied in various machine learning tasks, but the associated optimization is challenging. Directly optimizing the rank function under constraints is NP-hard in general. To overcome this difficulty, various relaxations of the rank function were studied. However, optimization of these relaxed LRRs typically depends on singular value decomposition, which is a time-consuming and nondifferentiable operator that cannot be optimized with gradient-based techniques. To address these challenges, in this paper we propose an efficient differentiable approximation of the generalized LRR. The considered LRR form subsumes many popular choices like the nuclear norm, the Schatten-$p$ norm, and various nonconvex relaxations. Our method enables LRR terms to be appended to loss functions in a plug-and-play fashion, and the GPU-friendly operations enable efficient and convenient implementation. Furthermore, convergence analysis is presented, which rigorously shows that both the bias and the variance of our rank estimator rapidly reduce with increased sample size and iteration steps. In the experimental study, the proposed method is applied to various tasks, which demonstrates its versatility and efficiency. Code is available at https://github.com/naiqili/EDLRR.
Authors:Zirui Song, Qian Jiang, Mingxuan Cui, Mingzhe Li, Lang Gao, Zeyu Zhang, Zixiang Xu, Yanbo Wang, Chenxi Wang, Guangxian Ouyang, Zhenhao Chen, Xiuying Chen
Abstract:
The rise of Large Audio Language Models (LAMs) brings both potential and risks, as their audio outputs may contain harmful or unethical content. However, current research lacks a systematic, quantitative evaluation of LAM safety especially against jailbreak attacks, which are challenging due to the temporal and semantic nature of speech. To bridge this gap, we introduce AJailBench, the first benchmark specifically designed to evaluate jailbreak vulnerabilities in LAMs. We begin by constructing AJailBench-Base, a dataset of 1,495 adversarial audio prompts spanning 10 policy-violating categories, converted from textual jailbreak attacks using realistic text to speech synthesis. Using this dataset, we evaluate several state-of-the-art LAMs and reveal that none exhibit consistent robustness across attacks. To further strengthen jailbreak testing and simulate more realistic attack conditions, we propose a method to generate dynamic adversarial variants. Our Audio Perturbation Toolkit (APT) applies targeted distortions across time, frequency, and amplitude domains. To preserve the original jailbreak intent, we enforce a semantic consistency constraint and employ Bayesian optimization to efficiently search for perturbations that are both subtle and highly effective. This results in AJailBench-APT, an extended dataset of optimized adversarial audio samples. Our findings demonstrate that even small, semantically preserved perturbations can significantly reduce the safety performance of leading LAMs, underscoring the need for more robust and semantically aware defense mechanisms.
Authors:Zhexin Zhang, Xian Qi Loye, Victor Shea-Jay Huang, Junxiao Yang, Qi Zhu, Shiyao Cui, Fei Mi, Lifeng Shang, Yingkang Wang, Hongning Wang, Minlie Huang
Abstract:
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
Authors:DongGeon Lee, Joonwon Jang, Jihae Jeong, Hwanjo Yu
Abstract:
Rapid deployment of vision-language models (VLMs) magnifies safety risks, yet most evaluations rely on artificial images. This study asks: How safe are current VLMs when confronted with meme images that ordinary users share? To investigate this question, we introduce MemeSafetyBench, a 50,430-instance benchmark pairing real meme images with both harmful and benign instructions. Using a comprehensive safety taxonomy and LLM-based instruction generation, we assess multiple VLMs across single and multi-turn interactions. We investigate how real-world memes influence harmful outputs, the mitigating effects of conversational context, and the relationship between model scale and safety metrics. Our findings demonstrate that VLMs are more vulnerable to meme-based harmful prompts than to synthetic or typographic images. Memes significantly increase harmful responses and decrease refusals compared to text-only inputs. Though multi-turn interactions provide partial mitigation, elevated vulnerability persists. These results highlight the need for ecologically valid evaluations and stronger safety mechanisms. MemeSafetyBench is publicly available at https://github.com/oneonlee/Meme-Safety-Bench.
Authors:Raphael Sulzer, Liuyun Duan, Nicolas Girard, Florent Lafarge
Abstract:
We present the P$^3$ dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 centimeter. While many existing datasets primarily focus on the image modality, P$^3$ offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P$^3$ dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons .
Authors:Lu Li, Cunhang Fan, Hongyu Zhang, Jingjing Zhang, Xiaoke Yang, Jian Zhou, Zhao Lv
Abstract:
Auditory attention detection (AAD) aims to detect the target speaker in a multi-talker environment from brain signals, such as electroencephalography (EEG), which has made great progress. However, most AAD methods solely utilize attention mechanisms sequentially and overlook valuable multi-scale contextual information within EEG signals, limiting their ability to capture long-short range spatiotemporal dependencies simultaneously. To address these issues, this paper proposes a multi-scale hybrid attention network (MHANet) for AAD, which consists of the multi-scale hybrid attention (MHA) module and the spatiotemporal convolution (STC) module. Specifically, MHA combines channel attention and multi-scale temporal and global attention mechanisms. This effectively extracts multi-scale temporal patterns within EEG signals and captures long-short range spatiotemporal dependencies simultaneously. To further improve the performance of AAD, STC utilizes temporal and spatial convolutions to aggregate expressive spatiotemporal representations. Experimental results show that the proposed MHANet achieves state-of-the-art performance with fewer trainable parameters across three datasets, 3 times lower than that of the most advanced model. Code is available at: https://github.com/fchest/MHANet.
Authors:Jacob E. Kooi, Zhao Yang, Vincent François-Lavet
Abstract:
Neural network architectures have a large impact in machine learning. In reinforcement learning, network architectures have remained notably simple, as changes often lead to small gains in performance. This work introduces a novel encoder architecture for pixel-based model-free reinforcement learning. The Hadamax (\textbf{Hada}mard \textbf{max}-pooling) encoder achieves state-of-the-art performance by max-pooling Hadamard products between GELU-activated parallel hidden layers. Based on the recent PQN algorithm, the Hadamax encoder achieves state-of-the-art model-free performance in the Atari-57 benchmark. Specifically, without applying any algorithmic hyperparameter modifications, Hadamax-PQN achieves an 80\% performance gain over vanilla PQN and significantly surpasses Rainbow-DQN. For reproducibility, the full code is available on \href{https://github.com/Jacobkooi/Hadamax}{GitHub}.
Authors:Yuxuan Shu, Vasileios Lampos
Abstract:
Multivariable time series forecasting methods can integrate information from exogenous variables, leading to significant prediction accuracy gains. Transformer architecture has been widely applied in various time series forecasting models due to its ability to capture long-range sequential dependencies. However, a naïve application of transformers often struggles to effectively model complex relationships among variables over time. To mitigate against this, we propose a novel architecture, namely the Spectral Operator Neural Network (Sonnet). Sonnet applies learnable wavelet transformations to the input and incorporates spectral analysis using the Koopman operator. Its predictive skill relies on the Multivariable Coherence Attention (MVCA), an operation that leverages spectral coherence to model variable dependencies. Our empirical analysis shows that Sonnet yields the best performance on $34$ out of $47$ forecasting tasks with an average mean absolute error (MAE) reduction of $1.1\%$ against the most competitive baseline (different per task). We further show that MVCA -- when put in place of the naïve attention used in various deep learning models -- can remedy its deficiencies, reducing MAE by $10.7\%$ on average in the most challenging forecasting tasks.
Authors:Daisuke Niizumi, Daiki Takeuchi, Masahiro Yasuda, Binh Thien Nguyen, Yasunori Ohishi, Noboru Harada
Abstract:
Recent advancements in foundation models have sparked interest in respiratory audio foundation models. However, the effectiveness of applying conventional pre-training schemes to datasets that are small-sized and lack diversity has not been sufficiently verified. This study aims to explore better pre-training practices for respiratory sounds by comparing numerous pre-trained audio models. Our investigation reveals that models pre-trained on AudioSet, a general audio dataset, are more effective than the models specifically pre-trained on respiratory sounds. Moreover, combining AudioSet and respiratory sound datasets for further pre-training enhances performance, and preserving the frequency-wise information when aggregating features is vital. Along with more insights found in the experiments, we establish a new state-of-the-art for the OPERA benchmark, contributing to advancing respiratory audio foundation models. Our code is available online at https://github.com/nttcslab/eval-audio-repr/tree/main/plugin/OPERA.
Authors:Yuchen Li, Chaoran Feng, Zhenyu Tang, Kaiyuan Deng, Wangbo Yu, Yonghong Tian, Li Yuan
Abstract:
We introduce GS2E (Gaussian Splatting to Event), a large-scale synthetic event dataset for high-fidelity event vision tasks, captured from real-world sparse multi-view RGB images. Existing event datasets are often synthesized from dense RGB videos, which typically lack viewpoint diversity and geometric consistency, or depend on expensive, difficult-to-scale hardware setups. GS2E overcomes these limitations by first reconstructing photorealistic static scenes using 3D Gaussian Splatting, and subsequently employing a novel, physically-informed event simulation pipeline. This pipeline generally integrates adaptive trajectory interpolation with physically-consistent event contrast threshold modeling. Such an approach yields temporally dense and geometrically consistent event streams under diverse motion and lighting conditions, while ensuring strong alignment with underlying scene structures. Experimental results on event-based 3D reconstruction demonstrate GS2E's superior generalization capabilities and its practical value as a benchmark for advancing event vision research.
Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Yuhang Guo
Abstract:
In-Image Machine Translation (IIMT) aims to translate texts within images from one language to another. Previous research on IIMT was primarily conducted on simplified scenarios such as images of one-line text with black font in white backgrounds, which is far from reality and impractical for applications in the real world. To make IIMT research practically valuable, it is essential to consider a complex scenario where the text backgrounds are derived from real-world images. To facilitate research of complex scenario IIMT, we design an IIMT dataset that includes subtitle text with real-world background. However previous IIMT models perform inadequately in complex scenarios. To address the issue, we propose the DebackX model, which separates the background and text-image from the source image, performs translation on text-image directly, and fuses the translated text-image with the background, to generate the target image. Experimental results show that our model achieves improvements in both translation quality and visual effect.
Authors:Om Khangaonkar, Hamed Pirsiavash
Abstract:
By pretraining to synthesize coherent images from perturbed inputs, generative models inherently learn to understand object boundaries and scene compositions. How can we repurpose these generative representations for general-purpose perceptual organization? We finetune Stable Diffusion and MAE (encoder+decoder) for category-agnostic instance segmentation using our instance coloring loss exclusively on a narrow set of object types (indoor furnishings and cars). Surprisingly, our models exhibit strong zero-shot generalization, accurately segmenting objects of types and styles unseen in finetuning (and in many cases, MAE's ImageNet-1K pretraining too). Our best-performing models closely approach the heavily supervised SAM when evaluated on unseen object types and styles, and outperform it when segmenting fine structures and ambiguous boundaries. In contrast, existing promptable segmentation architectures or discriminatively pretrained models fail to generalize. This suggests that generative models learn an inherent grouping mechanism that transfers across categories and domains, even without internet-scale pretraining. Code, pretrained models, and demos are available on our website.
Authors:Zihao Jiang, Ben Liu, Miao Peng, Wenjie Xu, Yao Xiao, Zhenyan Shan, Min Peng
Abstract:
While large language models (LLMs) show great potential in temporal reasoning, most existing work focuses heavily on enhancing performance, often neglecting the explainable reasoning processes underlying the results. To address this gap, we introduce a comprehensive benchmark covering a wide range of temporal granularities, designed to systematically evaluate LLMs' capabilities in explainable temporal reasoning. Furthermore, our findings reveal that LLMs struggle to deliver convincing explanations when relying solely on textual information. To address challenge, we propose GETER, a novel structure-aware generative framework that integrates Graph structures with text for Explainable TEmporal Reasoning. Specifically, we first leverage temporal knowledge graphs to develop a temporal encoder that captures structural information for the query. Subsequently, we introduce a structure-text prefix adapter to map graph structure features into the text embedding space. Finally, LLMs generate explanation text by seamlessly integrating the soft graph token with instruction-tuning prompt tokens. Experimental results indicate that GETER achieves state-of-the-art performance while also demonstrating its effectiveness as well as strong generalization capabilities. Our dataset and code are available at https://github.com/carryTatum/GETER.
Authors:Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan
Abstract:
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.
Authors:Ting Huang, Zeyu Zhang, Ruicheng Zhang, Yang Zhao
Abstract:
3D scene understanding plays a fundamental role in vision applications such as robotics, autonomous driving, and augmented reality. However, advancing learning-based 3D scene understanding remains challenging due to two key limitations: (1) the large scale and complexity of 3D scenes lead to higher computational costs and slower training compared to 2D counterparts; and (2) high-quality annotated 3D datasets are significantly scarcer than those available for 2D vision. These challenges underscore the need for more efficient learning paradigms. In this work, we propose DC-Scene, a data-centric framework tailored for 3D scene understanding, which emphasizes enhancing data quality and training efficiency. Specifically, we introduce a CLIP-driven dual-indicator quality (DIQ) filter, combining vision-language alignment scores with caption-loss perplexity, along with a curriculum scheduler that progressively expands the training pool from the top 25% to 75% of scene-caption pairs. This strategy filters out noisy samples and significantly reduces dependence on large-scale labeled 3D data. Extensive experiments on ScanRefer and Nr3D demonstrate that DC-Scene achieves state-of-the-art performance (86.1 CIDEr with the top-75% subset vs. 85.4 with the full dataset) while reducing training cost by approximately two-thirds, confirming that a compact set of high-quality samples can outperform exhaustive training. Code will be available at https://github.com/AIGeeksGroup/DC-Scene.
Authors:Yisi Luo, Xile Zhao, Deyu Meng
Abstract:
Recently, continuous representation methods emerge as novel paradigms that characterize the intrinsic structures of real-world data through function representations that map positional coordinates to their corresponding values in the continuous space. As compared with the traditional discrete framework, the continuous framework demonstrates inherent superiority for data representation and reconstruction (e.g., image restoration, novel view synthesis, and waveform inversion) by offering inherent advantages including resolution flexibility, cross-modal adaptability, inherent smoothness, and parameter efficiency. In this review, we systematically examine recent advancements in continuous representation frameworks, focusing on three aspects: (i) Continuous representation method designs such as basis function representation, statistical modeling, tensor function decomposition, and implicit neural representation; (ii) Theoretical foundations of continuous representations such as approximation error analysis, convergence property, and implicit regularization; (iii) Real-world applications of continuous representations derived from computer vision, graphics, bioinformatics, and remote sensing. Furthermore, we outline future directions and perspectives to inspire exploration and deepen insights to facilitate continuous representation methods, theories, and applications. All referenced works are summarized in our open-source repository: https://github.com/YisiLuo/Continuous-Representation-Zoo
Authors:Haotian Qin, Dongliang Chang, Yueying Gao, Bingyao Yu, Lei Chen, Zhanyu Ma
Abstract:
Although existing CLIP-based methods for detecting AI-generated images have achieved promising results, they are still limited by severe feature redundancy, which hinders their generalization ability. To address this issue, incorporating an information bottleneck network into the task presents a straightforward solution. However, relying solely on image-corresponding prompts results in suboptimal performance due to the inherent diversity of prompts. In this paper, we propose a multimodal conditional bottleneck network to reduce feature redundancy while enhancing the discriminative power of features extracted by CLIP, thereby improving the model's generalization ability. We begin with a semantic analysis experiment, where we observe that arbitrary text features exhibit lower cosine similarity with real image features than with fake image features in the CLIP feature space, a phenomenon we refer to as "bias". Therefore, we introduce InfoFD, a text-guided AI-generated image detection framework. InfoFD consists of two key components: the Text-Guided Conditional Information Bottleneck (TGCIB) and Dynamic Text Orthogonalization (DTO). TGCIB improves the generalizability of learned representations by conditioning on both text and class modalities. DTO dynamically updates weighted text features, preserving semantic information while leveraging the global "bias". Our model achieves exceptional generalization performance on the GenImage dataset and latest generative models. Our code is available at https://github.com/Ant0ny44/InfoFD.
Authors:Sampanna Yashwant Kahu
Abstract:
Efficient task scheduling is paramount in the Linux kernel, where the Completely Fair Scheduler (CFS) meticulously manages CPU resources to balance high utilization with interactive responsiveness. This research pioneers the use of deep learning techniques to predict the sequence of tasks selected by CFS, aiming to evaluate the feasibility of a more generalized and potentially more adaptive task scheduler for diverse workloads. Our core contributions are twofold: first, the systematic generation and curation of a novel scheduling dataset from a running Linux kernel, capturing real-world CFS behavior; and second, the development, training, and evaluation of a Long Short-Term Memory (LSTM) network designed to accurately forecast the next task to be scheduled. This paper further discusses the practical pathways and implications of integrating such a predictive model into the kernel's scheduling framework. The findings and methodologies presented herein open avenues for data-driven advancements in kernel scheduling, with the full source code provided for reproducibility and further exploration.
Authors:Jie Ma, Ning Qu, Zhitao Gao, Rui Xing, Jun Liu, Hongbin Pei, Jiang Xie, Linyun Song, Pinghui Wang, Jing Tao, Zhou Su
Abstract:
Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.
Authors:Wonje Jeung, Sangyeon Yoon, Hyesoo Hong, Soeun Kim, Seungju Han, Youngjae Yu, Albert No
Abstract:
Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about the unauthorized use of copyrighted or sensitive data. Machine unlearning aims to remove such 'forget' data while preserving utility and information from the 'retain' set. However, existing evaluations typically assume that forget and retain sets are fully disjoint, overlooking realistic scenarios where they share overlapping content. For instance, a news article may need to be unlearned, even though the same event, such as an earthquake in Japan, is also described factually on Wikipedia. Effective unlearning should remove the specific phrasing of the news article while preserving publicly supported facts. In this paper, we introduce DUSK, a benchmark designed to evaluate unlearning methods under realistic data overlap. DUSK constructs document sets that describe the same factual content in different styles, with some shared information appearing across all sets and other content remaining unique to each. When one set is designated for unlearning, an ideal method should remove its unique content while preserving shared facts. We define seven evaluation metrics to assess whether unlearning methods can achieve this selective removal. Our evaluation of nine recent unlearning methods reveals a key limitation: while most can remove surface-level text, they often fail to erase deeper, context-specific knowledge without damaging shared content. We release DUSK as a public benchmark to support the development of more precise and reliable unlearning techniques for real-world applications.
Authors:Wenjie Liu, Zhongliang Liu, Junwei Shu, Changbo Wang, Yang Li
Abstract:
Transferring 2D textures to 3D modalities is of great significance for improving the efficiency of multimedia content creation. Existing approaches have rarely focused on transferring image textures onto 3D representations. 3D style transfer methods are capable of transferring abstract artistic styles to 3D scenes. However, these methods often overlook the geometric information of the scene, which makes it challenging to achieve high-quality 3D texture transfer results. In this paper, we present GT^2-GS, a geometry-aware texture transfer framework for gaussian splitting. From the perspective of matching texture features with geometric information in rendered views, we identify the issue of insufficient texture features and propose a geometry-aware texture augmentation module to expand the texture feature set. Moreover, a geometry-consistent texture loss is proposed to optimize texture features into the scene representation. This loss function incorporates both camera pose and 3D geometric information of the scene, enabling controllable texture-oriented appearance editing. Finally, a geometry preservation strategy is introduced. By alternating between the texture transfer and geometry correction stages over multiple iterations, this strategy achieves a balance between learning texture features and preserving geometric integrity. Extensive experiments demonstrate the effectiveness and controllability of our method. Through geometric awareness, our approach achieves texture transfer results that better align with human visual perception. Our homepage is available at https://vpx-ecnu.github.io/GT2-GS-website.
Authors:Pinxin Liu, Haiyang Liu, Luchuan Song, Chenliang Xu
Abstract:
When humans speak, gestures help convey communicative intentions, such as adding emphasis or describing concepts. However, current co-speech gesture generation methods rely solely on superficial linguistic cues (\textit{e.g.} speech audio or text transcripts), neglecting to understand and leverage the communicative intention that underpins human gestures. This results in outputs that are rhythmically synchronized with speech but are semantically shallow. To address this gap, we introduce \textbf{Intentional-Gesture}, a novel framework that casts gesture generation as an intention-reasoning task grounded in high-level communicative functions. % First, we curate the \textbf{InG} dataset by augmenting BEAT-2 with gesture-intention annotations (\textit{i.e.}, text sentences summarizing intentions), which are automatically annotated using large vision-language models. Next, we introduce the \textbf{Intentional Gesture Motion Tokenizer} to leverage these intention annotations. It injects high-level communicative functions (\textit{e.g.}, intentions) into tokenized motion representations to enable intention-aware gesture synthesis that are both temporally aligned and semantically meaningful, achieving new state-of-the-art performance on the BEAT-2 benchmark. Our framework offers a modular foundation for expressive gesture generation in digital humans and embodied AI. Project Page: https://andypinxinliu.github.io/Intentional-Gesture
Authors:Yifan Liu, Keyu Fan, Weihao Yu, Chenxin Li, Hao Lu, Yixuan Yuan
Abstract:
Recent advances in generalizable 3D Gaussian Splatting have demonstrated promising results in real-time high-fidelity rendering without per-scene optimization, yet existing approaches still struggle to handle unfamiliar visual content during inference on novel scenes due to limited generalizability. To address this challenge, we introduce MonoSplat, a novel framework that leverages rich visual priors from pre-trained monocular depth foundation models for robust Gaussian reconstruction. Our approach consists of two key components: a Mono-Multi Feature Adapter that transforms monocular features into multi-view representations, coupled with an Integrated Gaussian Prediction module that effectively fuses both feature types for precise Gaussian generation. Through the Adapter's lightweight attention mechanism, features are seamlessly aligned and aggregated across views while preserving valuable monocular priors, enabling the Prediction module to generate Gaussian primitives with accurate geometry and appearance. Through extensive experiments on diverse real-world datasets, we convincingly demonstrate that MonoSplat achieves superior reconstruction quality and generalization capability compared to existing methods while maintaining computational efficiency with minimal trainable parameters. Codes are available at https://github.com/CUHK-AIM-Group/MonoSplat.
Authors:Yangting Shi, Renjie He, Le Hui, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai
Abstract:
Omni-domain infrared small target detection (IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multi-modal framework that fundamentally reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.
Authors:Qian Zhou, Xianda Guo, Jilong Wang, Chuanfu Shen, Zhongyuan Wang, Hua Zou, Qin Zou, Chao Liang, Long Chen, Gang Wu
Abstract:
Generalized gait recognition, which aims to achieve robust performance across diverse domains, remains a challenging problem due to severe domain shifts in viewpoints, appearances, and environments. While mixed-dataset training is widely used to enhance generalization, it introduces new obstacles including inter-dataset optimization conflicts and redundant or noisy samples, both of which hinder effective representation learning. To address these challenges, we propose a unified framework that systematically improves cross-domain gait recognition. First, we design a disentangled triplet loss that isolates supervision signals across datasets, mitigating gradient conflicts during optimization. Second, we introduce a targeted dataset distillation strategy that filters out the least informative 20\% of training samples based on feature redundancy and prediction uncertainty, enhancing data efficiency. Extensive experiments on CASIA-B, OU-MVLP, Gait3D, and GREW demonstrate that our method significantly improves cross-dataset recognition for both GaitBase and DeepGaitV2 backbones, without sacrificing source-domain accuracy. Code will be released at https://github.com/li1er3/Generalized_Gait.
Authors:Bo-Han Lai, Pin-Han Huang, Bo-Han Kung, Shang-Tse Chen
Abstract:
Lipschitz neural networks are well-known for providing certified robustness in deep learning. In this paper, we present a novel, efficient Block Reflector Orthogonal (BRO) layer that enhances the capability of orthogonal layers on constructing more expressive Lipschitz neural architectures. In addition, by theoretically analyzing the nature of Lipschitz neural networks, we introduce a new loss function that employs an annealing mechanism to increase margin for most data points. This enables Lipschitz models to provide better certified robustness. By employing our BRO layer and loss function, we design BRONet - a simple yet effective Lipschitz neural network that achieves state-of-the-art certified robustness. Extensive experiments and empirical analysis on CIFAR-10/100, Tiny-ImageNet, and ImageNet validate that our method outperforms existing baselines. The implementation is available at https://github.com/ntuaislab/BRONet.
Authors:Yuante Li, Xu Yang, Xiao Yang, Minrui Xu, Xisen Wang, Weiqing Liu, Jiang Bian
Abstract:
Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent.
Authors:Lanxiang Hu, Mingjia Huo, Yuxuan Zhang, Haoyang Yu, Eric P. Xing, Ion Stoica, Tajana Rosing, Haojian Jin, Hao Zhang
Abstract:
Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.
Authors:Xinran Wang, Songyu Xu, Xiangxuan Shan, Yuxuan Zhang, Muxi Diao, Xueyan Duan, Yanhua Huang, Kongming Liang, Zhanyu Ma
Abstract:
Cinematography is a cornerstone of film production and appreciation, shaping mood, emotion, and narrative through visual elements such as camera movement, shot composition, and lighting. Despite recent progress in multimodal large language models (MLLMs) and video generation models, the capacity of current models to grasp and reproduce cinematographic techniques remains largely uncharted, hindered by the scarcity of expert-annotated data. To bridge this gap, we present CineTechBench, a pioneering benchmark founded on precise, manual annotation by seasoned cinematography experts across key cinematography dimensions. Our benchmark covers seven essential aspects-shot scale, shot angle, composition, camera movement, lighting, color, and focal length-and includes over 600 annotated movie images and 120 movie clips with clear cinematographic techniques. For the understanding task, we design question answer pairs and annotated descriptions to assess MLLMs' ability to interpret and explain cinematographic techniques. For the generation task, we assess advanced video generation models on their capacity to reconstruct cinema-quality camera movements given conditions such as textual prompts or keyframes. We conduct a large-scale evaluation on 15+ MLLMs and 5+ video generation models. Our results offer insights into the limitations of current models and future directions for cinematography understanding and generation in automatically film production and appreciation. The code and benchmark can be accessed at https://github.com/PRIS-CV/CineTechBench.
Authors:Tong Cheng, Jie Fu, Xinpeng Ling, Huifa Li, Zhili Chen, Haifeng Qian, Junqing Gong
Abstract:
Graph Neural Networks (GNNs) have been widely used for graph analysis. Federated Graph Learning (FGL) is an emerging learning framework to collaboratively train graph data from various clients. Although FGL allows client data to remain localized, a malicious server can still steal client private data information through uploaded gradient. In this paper, we for the first time propose label distribution attacks (LDAs) on FGL that aim to infer the label distributions of the client-side data. Firstly, we observe that the effectiveness of LDA is closely related to the variance of node embeddings in GNNs. Next, we analyze the relation between them and propose a new attack named EC-LDA, which significantly improves the attack effectiveness by compressing node embeddings. Then, extensive experiments on node classification and link prediction tasks across six widely used graph datasets show that EC-LDA outperforms the SOTA LDAs. Specifically, EC-LDA can achieve the Cos-sim as high as 1.0 under almost all cases. Finally, we explore the robustness of EC-LDA under differential privacy protection and discuss the potential effective defense methods to EC-LDA. Our code is available at https://github.com/cheng-t/EC-LDA.
Authors:Seongmin Hwang, Daeyoung Han, Moongu Jeon
Abstract:
Multispectral object detection aims to leverage complementary information from visible (RGB) and infrared (IR) modalities to enable robust performance under diverse environmental conditions. Our key insight, derived from wavelet analysis and empirical observations, is that IR images contain structurally rich high-frequency information critical for object detection, making an infrared-centric approach highly effective. To capitalize on this finding, we propose Infrared-Centric Fusion (IC-Fusion), a lightweight and modality-aware sensor fusion method that prioritizes infrared features while effectively integrating complementary RGB semantic context. IC-Fusion adopts a compact RGB backbone and designs a novel fusion module comprising a Multi-Scale Feature Distillation (MSFD) block to enhance RGB features and a three-stage fusion block with a Cross-Modal Channel Shuffle Gate (CCSG), a Cross-Modal Large Kernel Gate (CLKG), and a Channel Shuffle Projection (CSP) to facilitate effective cross-modal interaction. Experiments on the FLIR and LLVIP benchmarks demonstrate the superior effectiveness and efficiency of our IR-centric fusion strategy, further validating its benefits. Our code is available at https://github.com/smin-hwang/IC-Fusion.
Authors:Haiduo Huang, Jiangcheng Song, Yadong Zhang, Pengju Ren
Abstract:
Recent advances in knowledge distillation have emphasized the importance of decoupling different knowledge components. While existing methods utilize momentum mechanisms to separate task-oriented and distillation gradients, they overlook the inherent conflict between target-class and non-target-class knowledge flows. Furthermore, low-confidence dark knowledge in non-target classes introduces noisy signals that hinder effective knowledge transfer. To address these limitations, we propose DeepKD, a novel training framework that integrates dual-level decoupling with adaptive denoising. First, through theoretical analysis of gradient signal-to-noise ratio (GSNR) characteristics in task-oriented and non-task-oriented knowledge distillation, we design independent momentum updaters for each component to prevent mutual interference. We observe that the optimal momentum coefficients for task-oriented gradient (TOG), target-class gradient (TCG), and non-target-class gradient (NCG) should be positively related to their GSNR. Second, we introduce a dynamic top-k mask (DTM) mechanism that gradually increases K from a small initial value to incorporate more non-target classes as training progresses, following curriculum learning principles. The DTM jointly filters low-confidence logits from both teacher and student models, effectively purifying dark knowledge during early training. Extensive experiments on CIFAR-100, ImageNet, and MS-COCO demonstrate DeepKD's effectiveness. Our code is available at https://github.com/haiduo/DeepKD.
Authors:Muniba Noreen, Furqan Shaukat
Abstract:
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main
Authors:Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O. Arik, Jiawei Han
Abstract:
Reinforcement learning (RL) has demonstrated strong potential in training large language models (LLMs) capable of complex reasoning for real-world problem solving. More recently, RL has been leveraged to create sophisticated LLM-based search agents that adeptly combine reasoning with search engine use. While the use of RL for training search agents is promising, the optimal design of such agents remains not fully understood. In particular, key factors -- such as (1) reward formulation, (2) the choice and characteristics of the underlying LLM, and (3) the role of the search engine in the RL process -- require further investigation. In this work, we conduct comprehensive empirical studies to systematically investigate these and offer actionable insights. We highlight several key findings: format rewards are effective in improving final performance, whereas intermediate retrieval rewards have limited impact; the scale and initialization of the LLM (general-purpose vs. reasoning-specialized) significantly influence RL outcomes; and the choice of search engine plays a critical role in shaping RL training dynamics and the robustness of the trained agent during inference. These establish important guidelines for successfully building and deploying LLM-based search agents in real-world applications. Code is available at https://github.com/PeterGriffinJin/Search-R1.
Authors:Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li, Zhengqing Yuan, Wei Song, Yijun Ma, Qingkai Zeng, Xiusi Chen, Jianan Zhao, Jundong Li, Meng Jiang, Pietro Lio, Nitesh Chawla, Chuxu Zhang, Yanfang Ye
Abstract:
Graph-structured data pervades domains such as social networks, biological systems, knowledge graphs, and recommender systems. While foundation models have transformed natural language processing, vision, and multimodal learning through large-scale pretraining and generalization, extending these capabilities to graphs -- characterized by non-Euclidean structures and complex relational semantics -- poses unique challenges and opens new opportunities. To this end, Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data, enabling broad transfer across graph-centric tasks and domains. This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework comprising three key components: backbone architectures, pretraining strategies, and adaptation mechanisms. We categorize GFMs by their generalization scope -- universal, task-specific, and domain-specific -- and review representative methods, key innovations, and theoretical insights within each category. Beyond methodology, we examine theoretical foundations including transferability and emergent capabilities, and highlight key challenges such as structural alignment, heterogeneity, scalability, and evaluation. Positioned at the intersection of graph learning and general-purpose AI, GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data. This survey consolidates current progress and outlines future directions to guide research in this rapidly evolving field. Resources are available at https://github.com/Zehong-Wang/Awesome-Foundation-Models-on-Graphs.
Authors:Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, Yichao Wu
Abstract:
Efficient multi-hop reasoning requires Large Language Models (LLMs) based agents to acquire high-value external knowledge iteratively. Previous work has explored reinforcement learning (RL) to train LLMs to perform search-based document retrieval, achieving notable improvements in QA performance, but underperform on complex, multi-hop QA resulting from the sparse rewards from global signal only. To address this gap in existing research, we introduce StepSearch, a framework for search LLMs that trained with step-wise proximal policy optimization method. It consists of richer and more detailed intermediate search rewards and token-level process supervision based on information gain and redundancy penalties to better guide each search step. We constructed a fine-grained question-answering dataset containing sub-question-level search trajectories based on open source datasets through a set of data pipeline method. On standard multi-hop QA benchmarks, it significantly outperforms global-reward baselines, achieving 11.2% and 4.2% absolute improvements for 3B and 7B models over various search with RL baselines using only 19k training data, demonstrating the effectiveness of fine-grained, stepwise supervision in optimizing deep search LLMs. Our code will be released on https://github.com/Zillwang/StepSearch.
Authors:Qihang Yu, Kairui Fu, Shengyu Zhang, Zheqi Lv, Fan Wu, Fei Wu
Abstract:
Recent advances in large language models (LLMs) have enabled more semantic-aware recommendations through natural language generation. Existing LLM for recommendation (LLM4Rec) methods mostly operate in a System 1-like manner, relying on superficial features to match similar items based on click history, rather than reasoning through deeper behavioral logic. This often leads to superficial and erroneous recommendations. Motivated by this, we propose ThinkRec, a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system). Technically, ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces, guiding the model to form interpretable reasoning chains that consist of analyzing interaction histories, identifying user preferences, and making decisions based on target items. On top of this, we propose an instance-wise expert fusion mechanism to reduce the reasoning difficulty. By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization. Extensive experiments on real-world datasets demonstrate that ThinkRec significantly improves the accuracy and interpretability of recommendations. Our implementations are available in anonymous Github: https://github.com/Yu-Qi-hang/ThinkRec.
Authors:Zhiyu Shen, Jiyuan Liu, Yunhe Pang, Yanghui Rao
Abstract:
Multi-Hop Question Answering (MHQA) is crucial for evaluating the model's capability to integrate information from diverse sources. However, creating extensive and high-quality MHQA datasets is challenging: (i) manual annotation is expensive, and (ii) current synthesis methods often produce simplistic questions or require extensive manual guidance. This paper introduces HopWeaver, the first automatic framework synthesizing authentic multi-hop questions from unstructured text corpora without human intervention. HopWeaver synthesizes two types of multi-hop questions (bridge and comparison) using an innovative approach that identifies complementary documents across corpora. Its coherent pipeline constructs authentic reasoning paths that integrate information across multiple documents, ensuring synthesized questions necessitate authentic multi-hop reasoning. We further present a comprehensive system for evaluating synthesized multi-hop questions. Empirical evaluations demonstrate that the synthesized questions achieve comparable or superior quality to human-annotated datasets at a lower cost. Our approach is valuable for developing MHQA datasets in specialized domains with scarce annotated resources. The code for HopWeaver is publicly available.
Authors:Jeremy Qin
Abstract:
Time series forecasting plays a crucial role in various applications, particularly in healthcare, where accurate predictions of future health trajectories can significantly impact clinical decision-making. Ensuring transparency and explainability of the models responsible for these tasks is essential for their adoption in critical settings. Recent work has explored a top-down approach to bi-level transparency, focusing on understanding trends and properties of predicted time series using static features. In this work, we extend this framework by incorporating exogenous time series features alongside static features in a structured manner, while maintaining cohesive interpretation. Our approach leverages the insights of trajectory comprehension to introduce an encoding mechanism for exogenous time series, where they are decomposed into meaningful trends and properties, enabling the extraction of interpretable patterns. Through experiments on several synthetic datasets, we demonstrate that our approach remains predictive while preserving interpretability and robustness. This work represents a step towards developing robust, and generalized time series forecasting models. The code is available at https://github.com/jeremy-qin/TIMEVIEW
Authors:Yuhang Zhou, Jing Zhu, Shengyi Qian, Zhuokai Zhao, Xiyao Wang, Xiaoyu Liu, Ming Li, Paiheng Xu, Wei Ai, Furong Huang
Abstract:
Large Language Models (LLMs) are increasingly aligned with human preferences through Reinforcement Learning from Human Feedback (RLHF). Among RLHF methods, Group Relative Policy Optimization (GRPO) has gained attention for its simplicity and strong performance, notably eliminating the need for a learned value function. However, GRPO implicitly assumes a balanced domain distribution and uniform semantic alignment across groups, assumptions that rarely hold in real-world datasets. When applied to multi-domain, imbalanced data, GRPO disproportionately optimizes for dominant domains, neglecting underrepresented ones and resulting in poor generalization and fairness. We propose Domain-Informed Self-Consistency Policy Optimization (DISCO), a principled extension to GRPO that addresses inter-group imbalance with two key innovations. Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value. Together, these strategies promote more equitable and effective policy learning across domains. Extensive experiments across multiple LLMs and skewed training distributions show that DISCO improves generalization, outperforms existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art results on multi-domain alignment benchmarks. Our code and data are available at https://github.com/Tonyzhou98/disco_grpo.
Authors:Chen Huang, Junkai Luo, Xinzuo Wang, Wenqiang Lei, Jiancheng Lv
Abstract:
The massive user-generated content (UGC) available in Chinese social media is giving rise to the possibility of studying internet buzzwords. In this paper, we study if large language models (LLMs) can generate accurate definitions for these buzzwords based on UGC as examples. Our work serves a threefold contribution. First, we introduce CHEER, the first dataset of Chinese internet buzzwords, each annotated with a definition and relevant UGC. Second, we propose a novel method, called RESS, to effectively steer the comprehending process of LLMs to produce more accurate buzzword definitions, mirroring the skills of human language learning. Third, with CHEER, we benchmark the strengths and weaknesses of various off-the-shelf definition generation methods and our RESS. Our benchmark demonstrates the effectiveness of RESS while revealing crucial shared challenges: over-reliance on prior exposure, underdeveloped inferential abilities, and difficulty identifying high-quality UGC to facilitate comprehension. We believe our work lays the groundwork for future advancements in LLM-based definition generation. Our dataset and code are available at https://github.com/SCUNLP/Buzzword.
Authors:Sarfraz Ahmad, Hasan Iqbal, Momina Ahsan, Numaan Naeem, Muhammad Ahsan Riaz Khan, Arham Riaz, Muhammad Arslan Manzoor, Yuxia Wang, Preslav Nakov
Abstract:
The rapid use of large language models (LLMs) has raised critical concerns regarding the factual reliability of their outputs, especially in low-resource languages such as Urdu. Existing automated fact-checking solutions overwhelmingly focus on English, leaving a significant gap for the 200+ million Urdu speakers worldwide. In this work, we introduce UrduFactCheck, the first comprehensive, modular fact-checking framework specifically tailored for Urdu. Our system features a dynamic, multi-strategy evidence retrieval pipeline that combines monolingual and translation-based approaches to address the scarcity of high-quality Urdu evidence. We curate and release two new hand-annotated benchmarks: UrduFactBench for claim verification and UrduFactQA for evaluating LLM factuality. Extensive experiments demonstrate that UrduFactCheck, particularly its translation-augmented variants, consistently outperforms baselines and open-source alternatives on multiple metrics. We further benchmark twelve state-of-the-art (SOTA) LLMs on factual question answering in Urdu, highlighting persistent gaps between proprietary and open-source models. UrduFactCheck's code and datasets are open-sourced and publicly available at https://github.com/mbzuai-nlp/UrduFactCheck.
Authors:Wen-Chin Huang, Erica Cooper, Tomoki Toda
Abstract:
We introduce SHEET, a multi-purpose open-source toolkit designed to accelerate subjective speech quality assessment (SSQA) research. SHEET stands for the Speech Human Evaluation Estimation Toolkit, which focuses on data-driven deep neural network-based models trained to predict human-labeled quality scores of speech samples. SHEET provides comprehensive training and evaluation scripts, multi-dataset and multi-model support, as well as pre-trained models accessible via Torch Hub and HuggingFace Spaces. To demonstrate its capabilities, we re-evaluated SSL-MOS, a speech self-supervised learning (SSL)-based SSQA model widely used in recent scientific papers, on an extensive list of speech SSL models. Experiments were conducted on two representative SSQA datasets named BVCC and NISQA, and we identified the optimal speech SSL model, whose performance surpassed the original SSL-MOS implementation and was comparable to state-of-the-art methods.
Authors:Yingming Pu, Tao Lin, Hongyu Chen
Abstract:
Large Language Model (LLM)-based multi-agent systems (MAS) demonstrate remarkable potential for scientific discovery. Existing approaches, however, often automate scientific discovery using predefined workflows that lack rationality constraints. This often leads to aimless hypothesizing and a failure to consistently link hypotheses with evidence, thereby hindering systematic uncertainty reduction. Overcoming these limitations fundamentally requires systematic uncertainty reduction. We introduce \texttt{PiFlow}, an information-theoretical framework, treating automated scientific discovery as a structured uncertainty reduction problem guided by principles (e.g., scientific laws). In evaluations across three distinct scientific domains -- discovering nanomaterial structures, bio-molecules, and superconductor candidates with targeted properties -- our method significantly improves discovery efficiency, reflected by a 73.55\% increase in the Area Under the Curve (AUC) of property values versus exploration steps, and enhances solution quality by 94.06\% compared to a vanilla agent system. Overall, \texttt{PiFlow} serves as a Plug-and-Play method, establishing a novel paradigm shift in highly efficient automated scientific discovery, paving the way for more robust and accelerated AI-driven research. Code is publicly available at our \href{https://github.com/amair-lab/PiFlow}{GitHub}.
Authors:Ze Wang, Jingang Qu, Zhenyu Gao, Pascal Morin
Abstract:
This work demonstrates an airflow inertial based odometry system with multi-sensor data fusion, including thermal anemometer, IMU, ESC, and barometer. This goal is challenging because low-cost IMUs and barometers have significant bias, and anemometer measurements are very susceptible to interference from spinning propellers and ground effects. We employ a GRU-based deep neural network to estimate relative air speed from noisy and disturbed anemometer measurements, and an observer with bias model to fuse the sensor data and thus estimate the state of aerial vehicle. A complete flight data, including takeoff and landing on the ground, shows that the approach is able to decouple the downwash induced wind speed caused by propellers and the ground effect, and accurately estimate the flight speed in a wind-free indoor environment. IMU, and barometer bias are effectively estimated, which significantly reduces the position integration drift, which is only 5.7m for 203s manual random flight. The open source is available on https://github.com/SyRoCo-ISIR/Flight-Speed-Estimation-Airflow.
Authors:Ivan Smirnov, Shangding Gu
Abstract:
Reinforcement learning (RL) has seen significant advancements through the application of various neural network architectures. In this study, we systematically investigate the performance of several neural networks in RL tasks, including Long Short-Term Memory (LSTM), Multi-Layer Perceptron (MLP), Mamba/Mamba-2, Transformer-XL, Gated Transformer-XL, and Gated Recurrent Unit (GRU). Through comprehensive evaluation across continuous control, discrete decision-making, and memory-based environments, we identify architecture-specific strengths and limitations. Our results reveal that: (1) MLPs excel in fully observable continuous control tasks, providing an optimal balance of performance and efficiency; (2) recurrent architectures like LSTM and GRU offer robust performance in partially observable environments with moderate memory requirements; (3) Mamba models achieve a 4.5x higher throughput compared to LSTM and a 3.9x increase over GRU, all while maintaining comparable performance; and (4) only Transformer-XL, Gated Transformer-XL, and Mamba-2 successfully solve the most challenging memory-intensive tasks, with Mamba-2 requiring 8x less memory than Transformer-XL. These findings provide insights for researchers and practitioners, enabling more informed architecture selection based on specific task characteristics and computational constraints. Code is available at: https://github.com/SafeRL-Lab/RLBenchNet
Authors:Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S. Boning, Dina Katabi
Abstract:
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
Authors:Qingyu Song, Peiyu Liao, Wenqian Zhao, Yiwen Wang, Shoubo Hu, Hui-Ling Zhen, Ning Jiang, Mingxuan Yuan
Abstract:
The increasing deployment of Large Language Models (LLMs) on edge devices, driven by model advancements and hardware improvements, offers significant privacy benefits. However, these on-device LLMs inherently face performance limitations due to reduced model capacity and necessary compression techniques. To address this, we introduce a systematic methodology -- encompassing model capability, development efficiency, and system resources -- for evaluating on-device LLMs. Our comprehensive evaluation, encompassing models from 0.5B to 14B parameters and seven post-training quantization (PTQ) methods on commodity laptops, yields several critical insights: 1) System-level metrics exhibit near-linear scaling with effective bits-per-weight (BPW). 2) A practical threshold exists around $\sim$3.5 effective BPW, larger models subjected to low-bit quantization consistently outperform smaller models utilizing higher bit-precision. 3) Quantization with low BPW incurs marginal accuracy loss but significant memory savings. 4) Determined by low-level implementation specifics power consumption on CPU, where computation-intensive operations spend more power than memory-intensive ones. These findings offer crucial insights and practical guidelines for the efficient deployment and optimized configuration of LLMs on resource-constrained edge devices. Our codebase is available at https://github.com/simmonssong/LLMOnDevice.
Authors:Alvin Heng, Harold Soh
Abstract:
Selective classification enhances the reliability of predictive models by allowing them to abstain from making uncertain predictions. In this work, we revisit the design of optimal selection functions through the lens of the Neyman--Pearson lemma, a classical result in statistics that characterizes the optimal rejection rule as a likelihood ratio test. We show that this perspective not only unifies the behavior of several post-hoc selection baselines, but also motivates new approaches to selective classification which we propose here. A central focus of our work is the setting of covariate shift, where the input distribution at test time differs from that at training. This realistic and challenging scenario remains relatively underexplored in the context of selective classification. We evaluate our proposed methods across a range of vision and language tasks, including both supervised learning and vision-language models. Our experiments demonstrate that our Neyman--Pearson-informed methods consistently outperform existing baselines, indicating that likelihood ratio-based selection offers a robust mechanism for improving selective classification under covariate shifts. Our code is publicly available at https://github.com/clear-nus/sc-likelihood-ratios.
Authors:Shan Chen, Pedro Moreira, Yuxin Xiao, Sam Schmidgall, Jeremy Warner, Hugo Aerts, Thomas Hartvigsen, Jack Gallifant, Danielle S. Bitterman
Abstract:
Large language models (LLMs) are increasingly envisioned as decision-support tools in clinical practice, yet safe clinical reasoning demands integrating heterogeneous knowledge bases -- trials, primary studies, regulatory documents, and cost data -- under strict accuracy constraints. Existing evaluations often rely on synthetic prompts, reduce the task to single-hop factoid queries, or conflate reasoning with open-ended generation, leaving their real-world utility unclear. To close this gap, we present MedBrowseComp, the first benchmark that systematically tests an agent's ability to reliably retrieve and synthesize multi-hop medical facts from live, domain-specific knowledge bases. MedBrowseComp contains more than 1,000 human-curated questions that mirror clinical scenarios where practitioners must reconcile fragmented or conflicting information to reach an up-to-date conclusion. Applying MedBrowseComp to frontier agentic systems reveals performance shortfalls as low as ten percent, exposing a critical gap between current LLM capabilities and the rigor demanded in clinical settings. MedBrowseComp therefore offers a clear testbed for reliable medical information seeking and sets concrete goals for future model and toolchain upgrades. You can visit our project page at: https://moreirap12.github.io/mbc-browse-app/
Authors:Jose Sosa, Danila Rukhovich, Anis Kacem, Djamila Aouada
Abstract:
Multi-modal data in Earth Observation (EO) presents a huge opportunity for improving transfer learning capabilities when pre-training deep learning models. Unlike prior work that often overlooks multi-modal EO data, recent methods have started to include it, resulting in more effective pre-training strategies. However, existing approaches commonly face challenges in effectively transferring learning to downstream tasks where the structure of available data differs from that used during pre-training. This paper addresses this limitation by exploring a more flexible multi-modal, multi-task pre-training strategy for EO data. Specifically, we adopt a Multi-modal Multi-task Masked Autoencoder (MultiMAE) that we pre-train by reconstructing diverse input modalities, including spectral, elevation, and segmentation data. The pre-trained model demonstrates robust transfer learning capabilities, outperforming state-of-the-art methods on various EO datasets for classification and segmentation tasks. Our approach exhibits significant flexibility, handling diverse input configurations without requiring modality-specific pre-trained models. Code will be available at: https://github.com/josesosajs/multimae-meets-eo.
Authors:Kevin Angers, Kourosh Darvish, Naruki Yoshikawa, Sargol Okhovatian, Dawn Bannerman, Ilya Yakavets, Florian Shkurti, Alán Aspuru-Guzik, Milica Radisic
Abstract:
Automating biological experimentation remains challenging due to the need for millimeter-scale precision, long and multi-step experiments, and the dynamic nature of living systems. Current liquid handlers only partially automate workflows, requiring human intervention for plate loading, tip replacement, and calibration. Industrial solutions offer more automation but are costly and lack the flexibility needed in research settings. Meanwhile, research in autonomous robotics has yet to bridge the gap for long-duration, failure-sensitive biological experiments. We introduce RoboCulture, a cost-effective and flexible platform that uses a general-purpose robotic manipulator to automate key biological tasks. RoboCulture performs liquid handling, interacts with lab equipment, and leverages computer vision for real-time decisions using optical density-based growth monitoring. We demonstrate a fully autonomous 15-hour yeast culture experiment where RoboCulture uses vision and force feedback and a modular behavior tree framework to robustly execute, monitor, and manage experiments. Video demonstrations of RoboCulture can be found at https://ac-rad.github.io/roboculture.
Authors:Zhiwei Liu, Paul Thompson, Jiaqi Rong, Sophia Ananiadou
Abstract:
Despite the many benefits of large language models (LLMs), they can also cause harm, e.g., through automatic generation of misinformation, including conspiracy theories. Moreover, LLMs can also ''disguise'' conspiracy theories by altering characteristic textual features, e.g., by transforming their typically strong negative emotions into a more positive tone. Although several studies have proposed automated conspiracy theory detection methods, they are usually trained using human-authored text, whose features can vary from LLM-generated text. Furthermore, several conspiracy detection models, including the previously proposed ConspEmoLLM, rely heavily on the typical emotional features of human-authored conspiracy content. As such, intentionally disguised content may evade detection. To combat such issues, we firstly developed an augmented version of the ConDID conspiracy detection dataset, ConDID-v2, which supplements human-authored conspiracy tweets with versions rewritten by an LLM to reduce the negativity of their original sentiment. The quality of the rewritten tweets was verified by combining human and LLM-based assessment. We subsequently used ConDID-v2 to train ConspEmoLLM-v2, an enhanced version of ConspEmoLLM. Experimental results demonstrate that ConspEmoLLM-v2 retains or exceeds the performance of ConspEmoLLM on the original human-authored content in ConDID, and considerably outperforms both ConspEmoLLM and several other baselines when applied to sentiment-transformed tweets in ConDID-v2. The project will be available at https://github.com/lzw108/ConspEmoLLM.
Authors:Yu Zhang, Wenxiang Guo, Changhao Pan, Dongyu Yao, Zhiyuan Zhu, Ziyue Jiang, Yuhan Wang, Tao Jin, Zhou Zhao
Abstract:
Customizable multilingual zero-shot singing voice synthesis (SVS) has various potential applications in music composition and short video dubbing. However, existing SVS models overly depend on phoneme and note boundary annotations, limiting their robustness in zero-shot scenarios and producing poor transitions between phonemes and notes. Moreover, they also lack effective multi-level style control via diverse prompts. To overcome these challenges, we introduce TCSinger 2, a multi-task multilingual zero-shot SVS model with style transfer and style control based on various prompts. TCSinger 2 mainly includes three key modules: 1) Blurred Boundary Content (BBC) Encoder, predicts duration, extends content embedding, and applies masking to the boundaries to enable smooth transitions. 2) Custom Audio Encoder, uses contrastive learning to extract aligned representations from singing, speech, and textual prompts. 3) Flow-based Custom Transformer, leverages Cus-MOE, with F0 supervision, enhancing both the synthesis quality and style modeling of the generated singing voice. Experimental results show that TCSinger 2 outperforms baseline models in both subjective and objective metrics across multiple related tasks. Singing voice samples are available at https://aaronz345.github.io/TCSinger2Demo/.
Authors:Xiaoyan Bai, Ike Peng, Aditya Singh, Chenhao Tan
Abstract:
Consider this prompt "Draw a unicorn with two horns". Should large language models (LLMs) recognize that a unicorn has only one horn by definition and ask users for clarifications, or proceed to generate something anyway? We introduce concept incongruence to capture such phenomena where concept boundaries clash with each other, either in user prompts or in model representations, often leading to under-specified or mis-specified behaviors. In this work, we take the first step towards defining and analyzing model behavior under concept incongruence. Focusing on temporal boundaries in the Role-Play setting, we propose three behavioral metrics--abstention rate, conditional accuracy, and answer rate--to quantify model behavior under incongruence due to the role's death. We show that models fail to abstain after death and suffer from an accuracy drop compared to the Non-Role-Play setting. Through probing experiments, we identify two main causes: (i) unreliable encoding of the "death" state across different years, leading to unsatisfactory abstention behavior, and (ii) role playing causes shifts in the model's temporal representations, resulting in accuracy drops. We leverage these insights to improve consistency in the model's abstention and answer behaviors. Our findings suggest that concept incongruence leads to unexpected model behaviors and point to future directions on improving model behavior under concept incongruence.
Authors:Tuan-Nghia Bui, Huy-Son Nguyen, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le
Abstract:
Bundle recommendation aims to recommend a set of items to each user. However, the sparser interactions between users and bundles raise a big challenge, especially in cold-start scenarios. Traditional collaborative filtering methods do not work well for this kind of problem because these models rely on interactions to update the latent embedding, which is hard to work in a cold-start setting. We propose a new approach (DisCo), which relies on a personalized Diffusion backbone, enhanced by disentangled aspects for the user's interest, to generate a bundle in distribution space for each user to tackle the cold-start challenge. During the training phase, DisCo adjusts an additional objective loss term to avoid bias, a prevalent issue while using the generative model for top-$K$ recommendation purposes. Our empirical experiments show that DisCo outperforms five comparative baselines by a large margin on three real-world datasets. Thereby, this study devises a promising framework and essential viewpoints in cold-start recommendation. Our materials for reproducibility are available at: https://github.com/bt-nghia/DisCo.
Authors:Susav Shrestha, Brad Settlemyer, Nikoli Dryden, Narasimha Reddy
Abstract:
Accelerating large language model (LLM) inference is critical for real-world deployments requiring high throughput and low latency. Contextual sparsity, where each token dynamically activates only a small subset of the model parameters, shows promise but does not scale to large batch sizes due to union of active neurons quickly approaching dense computation. We introduce Polar Sparsity, highlighting a key shift in sparsity importance from MLP to Attention layers as we scale batch size and sequence length. While MLP layers become more compute-efficient under batching, their sparsity vanishes. In contrast, attention becomes increasingly more expensive at scale, while their head sparsity remains stable and batch-invariant. We develop hardware-efficient, sparsity-aware GPU kernels for selective MLP and Attention computations, delivering up to \(2.2\times\) end-to-end speedups for models like OPT, LLaMA-2 \& 3, across various batch sizes and sequence lengths without compromising accuracy. To our knowledge, this is the first work to demonstrate that contextual sparsity can scale effectively to large batch sizes, delivering substantial inference acceleration with minimal changes, making Polar Sparsity practical for large-scale, high-throughput LLM deployment systems. Our code is available at: https://github.com/susavlsh10/Polar-Sparsity.
Authors:So Won Jeong, Claire Donnat
Abstract:
Graph Neural Networks (GNNs) are increasingly used in conjunction with unsupervised learning techniques to learn powerful node representations, but their deployment is hindered by their high sensitivity to hyperparameter tuning and the absence of established methodologies for selecting the optimal models. To address these challenges, we propose LOBSTUR-GNN ({\bf Lo}cal {\bf B}oot{\bf s}trap for {\bf T}uning {\bf U}nsupervised {\bf R}epresentations in GNNs) i), a novel framework designed to adapt bootstrapping techniques for unsupervised graph representation learning. LOBSTUR-GNN tackles two main challenges: (a) adapting the bootstrap edge and feature resampling process to account for local graph dependencies in creating alternative versions of the same graph, and (b) establishing robust metrics for evaluating learned representations without ground-truth labels. Using locally bootstrapped resampling and leveraging Canonical Correlation Analysis (CCA) to assess embedding consistency, LOBSTUR provides a principled approach for hyperparameter tuning in unsupervised GNNs. We validate the effectiveness and efficiency of our proposed method through extensive experiments on established academic datasets, showing an 65.9\% improvement in the classification accuracy compared to an uninformed selection of hyperparameters. Finally, we deploy our framework on a real-world application, thereby demonstrating its validity and practical utility in various settings. \footnote{The code is available at \href{https://github.com/sowonjeong/lobstur-graph-bootstrap}{github.com/sowonjeong/lobstur-graph-bootstrap}.}
Authors:Nisarga Nilavadi, Andrey Rudenko, Timm Linder
Abstract:
We introduce a unified approach to forecast the dynamics of human keypoints along with the motion trajectory based on a short sequence of input poses. While many studies address either full-body pose prediction or motion trajectory prediction, only a few attempt to merge them. We propose a motion transformation technique to simultaneously predict full-body pose and trajectory key-points in a global coordinate frame. We utilize an off-the-shelf 3D human pose estimation module, a graph attention network to encode the skeleton structure, and a compact, non-autoregressive transformer suitable for real-time motion prediction for human-robot interaction and human-aware navigation. We introduce a human navigation dataset ``DARKO'' with specific focus on navigational activities that are relevant for human-aware mobile robot navigation. We perform extensive evaluation on Human3.6M, CMU-Mocap, and our DARKO dataset. In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets. Result animations, our dataset, and code will be available at https://nisarganc.github.io/UPTor-page/
Authors:Daniya Najiha A. Kareem, Jean Lahoud, Mustansar Fiaz, Amandeep Kumar, Hisham Cholakkal
Abstract:
Many practical medical imaging scenarios include categories that are under-represented but still crucial. The relevance of image recognition models to real-world applications lies in their ability to generalize to these rare classes as well as unseen classes. Real-world generalization requires taking into account the various complexities that can be encountered in the real-world. First, training data is highly imbalanced, which may lead to model exhibiting bias toward the more frequently represented classes. Moreover, real-world data may contain unseen classes that need to be identified, and model performance is affected by the data scarcity. While medical image recognition has been extensively addressed in the literature, current methods do not take into account all the intricacies in the real-world scenarios. To this end, we propose an open-set learning method for highly imbalanced medical datasets using a semi-supervised approach. Understanding the adverse impact of long-tail distribution at the inherent model characteristics, we implement a regularization strategy at the feature level complemented by a classifier normalization technique.
We conduct extensive experiments on the publicly available datasets, ISIC2018, ISIC2019, and TissueMNIST with various numbers of labelled samples. Our analysis shows that addressing the impact of long-tail data in classification significantly improves the overall performance of the network in terms of closed-set and open-set accuracies on all datasets. Our code and trained models will be made publicly available at https://github.com/Daniyanaj/OpenLTR.
Authors:Juan Nathaniel, Carla Roesch, Jatan Buch, Derek DeSantis, Adam Rupe, Kara Lamb, Pierre Gentine
Abstract:
We use a deep Koopman operator-theoretic formalism to develop a novel causal discovery algorithm, Kausal. Causal discovery aims to identify cause-effect mechanisms for better scientific understanding, explainable decision-making, and more accurate modeling. Standard statistical frameworks, such as Granger causality, lack the ability to quantify causal relationships in nonlinear dynamics due to the presence of complex feedback mechanisms, timescale mixing, and nonstationarity. This presents a challenge in studying many real-world systems, such as the Earth's climate. Meanwhile, Koopman operator methods have emerged as a promising tool for approximating nonlinear dynamics in a linear space of observables. In Kausal, we propose to leverage this powerful idea for causal analysis where optimal observables are inferred using deep learning. Causal estimates are then evaluated in a reproducing kernel Hilbert space, and defined as the distance between the marginal dynamics of the effect and the joint dynamics of the cause-effect observables. Our numerical experiments demonstrate Kausal's superior ability in discovering and characterizing causal signals compared to existing approaches of prescribed observables. Lastly, we extend our analysis to observations of El Niño-Southern Oscillation highlighting our algorithm's applicability to real-world phenomena. Our code is available at https://github.com/juannat7/kausal.
Authors:Yihong Liu, Mingyang Wang, Amir Hossein Kargaran, Felicia Körner, Ercong Nie, Barbara Plank, François Yvon, Hinrich Schütze
Abstract:
Large Language Models (LLMs) are capable of recalling multilingual factual knowledge present in their pretraining data. However, most studies evaluate only the final model, leaving the development of factual recall and crosslingual consistency throughout pretraining largely unexplored. In this work, we trace how factual recall and crosslingual consistency evolve during pretraining, focusing on OLMo-7B as a case study. We find that both accuracy and consistency improve over time for most languages. We show that this improvement is primarily driven by the fact frequency in the pretraining corpus: more frequent facts are more likely to be recalled correctly, regardless of language. Yet, some low-frequency facts in non-English languages can still be correctly recalled. Our analysis reveals that these instances largely benefit from crosslingual transfer of their English counterparts -- an effect that emerges predominantly in the early stages of pretraining. We pinpoint two distinct pathways through which multilingual factual knowledge acquisition occurs: (1) frequency-driven learning, which is dominant and language-agnostic, and (2) crosslingual transfer, which is limited in scale and typically constrained to relation types involving named entities. We release our code and data to facilitate further research at https://github.com/cisnlp/multilingual-fact-tracing.
Authors:Kushagra Gupta, Surya Murthy, Mustafa O. Karabag, Ufuk Topcu, David Fridovich-Keil
Abstract:
Cooperative bargaining games are widely used to model resource allocation and conflict resolution. Traditional solutions assume the mediator can access agents utility function values and gradients. However, there is an increasing number of settings, such as human AI interactions, where utility values may be inaccessible or incomparable due to unknown, nonaffine transformations. To model such settings, we consider that the mediator has access only to agents most preferred directions, i.e., normalized utility gradients in the decision space. To this end, we propose a cooperative bargaining algorithm where a mediator has access to only the direction oracle of each agent. We prove that unlike popular approaches such as the Nash and Kalai Smorodinsky bargaining solutions, our approach is invariant to monotonic nonaffine transformations, and that under strong convexity and smoothness assumptions, this approach enjoys global asymptotic convergence to Pareto stationary solutions. Moreover, we show that the bargaining solutions found by our algorithm also satisfy the axioms of symmetry and (under slightly stronger conditions) independence of irrelevant alternatives, which are popular in the literature. Finally, we conduct experiments in two domains, multi agent formation assignment and mediated stock portfolio allocation, which validate these theoretic results. All code for our experiments can be found at https://github.com/suryakmurthy/dibs_bargaining.
Authors:Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, Yu Cheng
Abstract:
Instruction-following is essential for aligning large language models (LLMs) with user intent. While recent reasoning-oriented models exhibit impressive performance on complex mathematical problems, their ability to adhere to natural language instructions remains underexplored. In this work, we introduce MathIF, a dedicated benchmark for evaluating instruction-following in mathematical reasoning tasks. Our empirical analysis reveals a consistent tension between scaling up reasoning capacity and maintaining controllability, as models that reason more effectively often struggle to comply with user directives. We find that models tuned on distilled long chains-of-thought or trained with reasoning-oriented reinforcement learning often degrade in instruction adherence, especially when generation length increases. Furthermore, we show that even simple interventions can partially recover obedience, though at the cost of reasoning performance. These findings highlight a fundamental tension in current LLM training paradigms and motivate the need for more instruction-aware reasoning models. We release the code and data at https://github.com/TingchenFu/MathIF.
Authors:Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles Masson, Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, Jean Ogier du Terrail, Anna-Monica Toon, Kan Wang, Stephan Xie, Zongzhe Xu, Viktoriya Zhukova, David Asker, Ameet Talwalkar, Othmane Abou-Amal
Abstract:
We introduce Toto, a time series forecasting foundation model with 151 million parameters. Toto uses a modern decoder-only architecture coupled with architectural innovations designed to account for specific challenges found in multivariate observability time series data. Toto's pre-training corpus is a mixture of observability data, open datasets, and synthetic data, and is 4-10$\times$ larger than those of leading time series foundation models. Additionally, we introduce BOOM, a large-scale benchmark consisting of 350 million observations across 2,807 real-world time series. For both Toto and BOOM, we source observability data exclusively from Datadog's own telemetry and internal observability metrics. Extensive evaluations demonstrate that Toto achieves state-of-the-art performance on both BOOM and on established general purpose time series forecasting benchmarks. Toto's model weights, inference code, and evaluation scripts, as well as BOOM's data and evaluation code, are all available as open source under the Apache 2.0 License available at https://huggingface.co/Datadog/Toto-Open-Base-1.0 and https://github.com/DataDog/toto.
Authors:Chih-Yu Chang, Milad Azvar, Chinedum Okwudire, Raed Al Kontar
Abstract:
Bayesian optimization (BO) is a sequential decision-making tool widely used for optimizing expensive black-box functions. Recently, Large Language Models (LLMs) have shown remarkable adaptability in low-data regimes, making them promising tools for black-box optimization by leveraging contextual knowledge to propose high-quality query points. However, relying solely on LLMs as optimization agents introduces risks due to their lack of explicit surrogate modeling and calibrated uncertainty, as well as their inherently opaque internal mechanisms. This structural opacity makes it difficult to characterize or control the exploration-exploitation trade-off, ultimately undermining theoretical tractability and reliability. To address this, we propose LLINBO: LLM-in-the-Loop BO, a hybrid framework for BO that combines LLMs with statistical surrogate experts (e.g., Gaussian Processes (GP)). The core philosophy is to leverage contextual reasoning strengths of LLMs for early exploration, while relying on principled statistical models to guide efficient exploitation. Specifically, we introduce three mechanisms that enable this collaboration and establish their theoretical guarantees. We end the paper with a real-life proof-of-concept in the context of 3D printing. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/LLM-in-the-Loop-BO.
Authors:Hong Huang, Dapeng Wu
Abstract:
Large language models (LLMs) have made exciting achievements across various domains, yet their deployment on resource-constrained personal devices remains hindered by the prohibitive computational and memory demands of task-specific fine-tuning. While quantization offers a pathway to efficiency, existing methods struggle to balance performance and overhead, either incurring high computational/memory costs or failing to address activation outliers, a critical bottleneck in quantized fine-tuning. To address these challenges, we propose the Outlier Spatial Stability Hypothesis (OSSH): During fine-tuning, certain activation outlier channels retain stable spatial positions across training iterations. Building on OSSH, we propose Quaff, a Quantized parameter-efficient fine-tuning framework for LLMs, optimizing low-precision activation representations through targeted momentum scaling. Quaff dynamically suppresses outliers exclusively in invariant channels using lightweight operations, eliminating full-precision weight storage and global rescaling while reducing quantization errors. Extensive experiments across ten benchmarks validate OSSH and demonstrate Quaff's efficacy. Specifically, on the GPQA reasoning benchmark, Quaff achieves a 1.73x latency reduction and 30% memory savings over full-precision fine-tuning while improving accuracy by 0.6% on the Phi-3 model, reconciling the triple trade-off between efficiency, performance, and deployability. By enabling consumer-grade GPU fine-tuning (e.g., RTX 2080 Super) without sacrificing model utility, Quaff democratizes personalized LLM deployment. The code is available at https://github.com/Little0o0/Quaff.git.
Authors:Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan, Xinpeng Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, Jiang Bian
Abstract:
Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. While crowdsourcing platforms alleviate some challenges, high-level data science tasks remain labor-intensive and iterative. To overcome these limitations, we introduce R&D-Agent, a dual-agent framework for iterative exploration. The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback. By enabling multiple parallel exploration traces that merge and enhance one another, R&D-Agent narrows the gap between automated solutions and expert-level performance. Evaluated on MLE-Bench, R&D-Agent emerges as the top-performing machine learning engineering agent, demonstrating its potential to accelerate innovation and improve precision across diverse data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.
Authors:Wei Hua, Chenlin Zhou, Jibin Wu, Yansong Chua, Yangyang Shu
Abstract:
The combination of Spiking Neural Networks (SNNs) with Vision Transformer architectures has garnered significant attention due to their potential for energy-efficient and high-performance computing paradigms. However, a substantial performance gap still exists between SNN-based and ANN-based transformer architectures. While existing methods propose spiking self-attention mechanisms that are successfully combined with SNNs, the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting features from different image scales. In this paper, we address this issue and propose MSVIT. This novel spike-driven Transformer architecture firstly uses multi-scale spiking attention (MSSA) to enhance the capabilities of spiking attention blocks. We validate our approach across various main datasets. The experimental results show that MSVIT outperforms existing SNN-based models, positioning itself as a state-of-the-art solution among SNN-transformer architectures. The codes are available at https://github.com/Nanhu-AI-Lab/MSViT.
Authors:Xigui Li, Yuanye Zhou, Feiyang Xiao, Xin Guo, Chen Jiang, Tan Pan, Xingmeng Zhang, Cenyu Liu, Zeyun Miao, Jianchao Ge, Xiansheng Wang, Qimeng Wang, Yichi Zhang, Wenbo Zhang, Fengping Zhu, Limei Han, Yuan Qi, Chensen Lin, Yuan Cheng
Abstract:
Intracranial aneurysms (IAs) are serious cerebrovascular lesions found in approximately 5\% of the general population. Their rupture may lead to high mortality. Current methods for assessing IA risk focus on morphological and patient-specific factors, but the hemodynamic influences on IA development and rupture remain unclear. While accurate for hemodynamic studies, conventional computational fluid dynamics (CFD) methods are computationally intensive, hindering their deployment in large-scale or real-time clinical applications. To address this challenge, we curated a large-scale, high-fidelity aneurysm CFD dataset to facilitate the development of efficient machine learning algorithms for such applications. Based on 427 real aneurysm geometries, we synthesized 10,660 3D shapes via controlled deformation to simulate aneurysm evolution. The authenticity of these synthetic shapes was confirmed by neurosurgeons. CFD computations were performed on each shape under eight steady-state mass flow conditions, generating a total of 85,280 blood flow dynamics data covering key parameters. Furthermore, the dataset includes segmentation masks, which can support tasks that use images, point clouds or other multimodal data as input. Additionally, we introduced a benchmark for estimating flow parameters to assess current modeling methods. This dataset aims to advance aneurysm research and promote data-driven approaches in biofluids, biomedical engineering, and clinical risk assessment. The code and dataset are available at: https://github.com/Xigui-Li/Aneumo.
Authors:Tuan-Vinh La, Minh-Hieu Nguyen, Minh-Son Dao
Abstract:
Fake news detection remains a challenging problem due to the complex interplay between textual misinformation, manipulated images, and external knowledge reasoning. While existing approaches have achieved notable results in verifying veracity and cross-modal consistency, two key challenges persist: (1) Existing methods often consider only the global image context while neglecting local object-level details, and (2) they fail to incorporate external knowledge and entity relationships for deeper semantic understanding. To address these challenges, we propose a novel multi-modal fake news detection framework that integrates visual, textual, and knowledge-based representations. Our approach leverages bottom-up attention to capture fine-grained object details, CLIP for global image semantics, and RoBERTa for context-aware text encoding. We further enhance knowledge utilization by retrieving and adaptively selecting relevant entities from a knowledge graph. The fused multi-modal features are processed through a Transformer-based classifier to predict news veracity. Experimental results demonstrate that our model outperforms recent approaches, showcasing the effectiveness of neighbor selection mechanism and multi-modal fusion for fake news detection. Our proposal introduces a new paradigm: knowledge-grounded multimodal reasoning. By integrating explicit entity-level selection and NLI-guided filtering, we shift fake news detection from feature fusion to semantically grounded verification. For reproducibility and further research, the source code is publicly at \href{https://github.com/latuanvinh1998/KGAlign}{github.com/latuanvinh1998/KGAlign}.
Authors:Xuan Shen, Weize Ma, Yufa Zhou, Enhao Tang, Yanyue Xie, Zhengang Li, Yifan Gong, Quanyi Wang, Henghui Ding, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jun Lin, Jiuxiang Gu
Abstract:
Auto-regressive (AR) models, initially successful in language generation, have recently shown promise in visual generation tasks due to their superior sampling efficiency. Unlike image generation, video generation requires a substantially larger number of tokens to produce coherent temporal frames, resulting in significant overhead during the decoding phase. Our key observations are: (i) MLP modules in the decode phase dominate the inference latency, and (ii) there exists high temporal redundancy in MLP outputs of adjacent frames. In this paper, we propose the \textbf{FastCar} framework to accelerate the decode phase for the AR video generation by exploring the temporal redundancy. The Temporal Attention Score (TAS) is proposed to determine whether to apply the replay strategy (\textit{i.e.}, reusing cached MLP outputs from the previous frame to reduce redundant computations) with detailed theoretical analysis and justification. Also, we develop a hardware accelerator on FPGA with Dynamic Resource Scheduling (DRS) based on TAS to enable better resource utilization and faster inference. Experimental results demonstrate the effectiveness of our method, which outperforms traditional sparse attention approaches with more than 2.1x decoding speedup and higher energy efficiency on the edge. Furthermore, by combining FastCar and sparse attention, FastCar can boost the performance of sparse attention with alleviated drifting, demonstrating our unique advantages for high-resolution and long-duration video generation. Code: https://github.com/shawnricecake/fast-car
Authors:Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi Wang, Pu Zhao, Jiuxiang Gu
Abstract:
Diffusion transformer-based video generation models (DiTs) have recently attracted widespread attention for their excellent generation quality. However, their computational cost remains a major bottleneck-attention alone accounts for over 80% of total latency, and generating just 8 seconds of 720p video takes tens of minutes-posing serious challenges to practical application and scalability. To address this, we propose the DraftAttention, a training-free framework for the acceleration of video diffusion transformers with dynamic sparse attention on GPUs. We apply down-sampling to each feature map across frames in the compressed latent space, enabling a higher-level receptive field over the latent composed of hundreds of thousands of tokens. The low-resolution draft attention map, derived from draft query and key, exposes redundancy both spatially within each feature map and temporally across frames. We reorder the query, key, and value based on the draft attention map to guide the sparse attention computation in full resolution, and subsequently restore their original order after the attention computation. This reordering enables structured sparsity that aligns with hardware-optimized execution. Our theoretical analysis demonstrates that the low-resolution draft attention closely approximates the full attention, providing reliable guidance for constructing accurate sparse attention. Experimental results show that our method outperforms existing sparse attention approaches in video generation quality and achieves up to 1.75x end-to-end speedup on GPUs. Code: https://github.com/shawnricecake/draft-attention
Authors:Haolei Xu, Yuchen Yan, Yongliang Shen, Wenqi Zhang, Guiyang Hou, Shengpei Jiang, Kaitao Song, Weiming Lu, Jun Xiao, Yueting Zhuang
Abstract:
Large language models (LLMs) have achieved remarkable progress on mathematical tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
Authors:Xiaojie Gu, Guangxu Chen, Jungang Li, Jia-Chen Gu, Xuming Hu, Kai Zhang
Abstract:
Lifelong learning enables large language models (LLMs) to adapt to evolving information by continually updating their internal knowledge. An ideal system should support efficient, wide-ranging updates while preserving existing capabilities and ensuring reliable deployment. Model editing stands out as a promising solution for this goal, offering a focused and efficient way to revise a model's internal knowledge. Although recent paradigms have made notable progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To bridge this gap, we propose ULTRAEDIT-a fundamentally new editing solution that is training-, subject- and memory-free, making it particularly well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT performs editing through a self-contained process that relies solely on lightweight linear algebra operations to compute parameter shifts, enabling fast and consistent parameter modifications with minimal overhead. To improve scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that continuously updates feature statistics across turns, allowing it to adapt to distributional shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds over 7x faster than the previous state-of-the-art method-which was also the fastest known approach-while consuming less than 1/3 the VRAM, making it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade GPU. Furthermore, we construct ULTRAEDITBENCH-the largest dataset in the field to date, with over 2M editing pairs-and demonstrate that our method supports up to 1M edits while maintaining high accuracy. Comprehensive experiments on four datasets and six models show that ULTRAEDIT consistently achieves superior performance across diverse model editing scenarios. Our code is available at: https://github.com/XiaojieGu/UltraEdit.
Authors:Ruichuan An, Sihan Yang, Renrui Zhang, Zijun Shen, Ming Lu, Gaole Dai, Hao Liang, Ziyu Guo, Shilin Yan, Yulin Luo, Bocheng Zou, Chaoqun Yang, Wentao Zhang
Abstract:
Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept $\langle bo\rangle$, generating "$\langle bo\rangle$ wearing its hat" without additional textual descriptions of its hat. We call this kind of generation personalized knowledge-driven generation. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and knowledge-driven generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized knowledge-driven generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: \href{https://github.com/arctanxarc/UniCTokens}{https://github.com/arctanxarc/UniCTokens}.
Authors:Roberto L. Castro, Andrei Panferov, Soroush Tabesh, Oliver Sieberling, Jiale Chen, Mahdi Nikdan, Saleh Ashkboos, Dan Alistarh
Abstract:
Training large language models (LLMs) models directly in low-precision offers a way to address computational costs by improving both throughput and energy efficiency. For those purposes, NVIDIA's recent Blackwell architecture facilitates very low-precision operations using FP4 variants. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we investigate hardware-supported FP4 training and introduce a new approach for accurate, end-to-end FP4 training with all the major computations (i.e., linear layers) in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across bit-widths and training setups. Guided by this investigation, we design an "optimal" technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for Blackwell, demonstrating that fully FP4-based training is a competitive alternative to FP16 half-precision and to FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.
Authors:Wonje Jeung, Sangyeon Yoon, Minsuk Kahng, Albert No
Abstract:
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
Authors:Yilin Ye, Junchao Huang, Xingchen Zeng, Jiazhi Xia, Wei Zeng
Abstract:
Cross-modal embeddings form the foundation for multi-modal models. However, visualization methods for interpreting cross-modal embeddings have been primarily confined to traditional dimensionality reduction (DR) techniques like PCA and t-SNE. These DR methods primarily focus on feature distributions within a single modality, whilst failing to incorporate metrics (e.g., CLIPScore) across multiple modalities. This paper introduces AKRMap, a new DR technique designed to visualize cross-modal embeddings metric with enhanced accuracy by learning kernel regression of the metric landscape in the projection space. Specifically, AKRMap constructs a supervised projection network guided by a post-projection kernel regression loss, and employs adaptive generalized kernels that can be jointly optimized with the projection. This approach enables AKRMap to efficiently generate visualizations that capture complex metric distributions, while also supporting interactive features such as zoom and overlay for deeper exploration. Quantitative experiments demonstrate that AKRMap outperforms existing DR methods in generating more accurate and trustworthy visualizations. We further showcase the effectiveness of AKRMap in visualizing and comparing cross-modal embeddings for text-to-image models. Code and demo are available at https://github.com/yilinye/AKRMap.
Authors:Zikai Liao, Yi Ouyang, Yi-Lun Lee, Chen-Ping Yu, Yi-Hsuan Tsai, Zhaozheng Yin
Abstract:
While large language model (LLM)-based chatbots have demonstrated strong capabilities in generating coherent and contextually relevant responses, they often struggle with understanding when to speak, particularly in delivering brief, timely reactions during ongoing conversations. This limitation arises largely from their reliance on text input, lacking the rich contextual cues in real-world human dialogue. In this work, we focus on real-time prediction of response types, with an emphasis on short, reactive utterances that depend on subtle, multimodal signals across vision, audio, and text. To support this, we introduce a new multimodal dataset constructed from real-world conversational videos, containing temporally aligned visual, auditory, and textual streams. This dataset enables fine-grained modeling of response timing in dyadic interactions. Building on this dataset, we propose MM-When2Speak, a multimodal LLM-based model that adaptively integrates visual, auditory, and textual context to predict when a response should occur, and what type of response is appropriate. Experiments show that MM-When2Speak significantly outperforms state-of-the-art unimodal and LLM-based baselines, achieving up to a 4x improvement in response timing accuracy over leading commercial LLMs. These results underscore the importance of multimodal inputs for producing timely, natural, and engaging conversational AI.
Authors:Tiantian Feng, Jihwan Lee, Anfeng Xu, Yoonjeong Lee, Thanathai Lertpetchpun, Xuan Shi, Helin Wang, Thomas Thebaud, Laureano Moro-Velazquez, Dani Byrd, Najim Dehak, Shrikanth Narayanan
Abstract:
We introduce Vox-Profile, a comprehensive benchmark to characterize rich speaker and speech traits using speech foundation models. Unlike existing works that focus on a single dimension of speaker traits, Vox-Profile provides holistic and multi-dimensional profiles that reflect both static speaker traits (e.g., age, sex, accent) and dynamic speech properties (e.g., emotion, speech flow). This benchmark is grounded in speech science and linguistics, developed with domain experts to accurately index speaker and speech characteristics. We report benchmark experiments using over 15 publicly available speech datasets and several widely used speech foundation models that target various static and dynamic speaker and speech properties. In addition to benchmark experiments, we showcase several downstream applications supported by Vox-Profile. First, we show that Vox-Profile can augment existing speech recognition datasets to analyze ASR performance variability. Vox-Profile is also used as a tool to evaluate the performance of speech generation systems. Finally, we assess the quality of our automated profiles through comparison with human evaluation and show convergent validity. Vox-Profile is publicly available at: https://github.com/tiantiaf0627/vox-profile-release.
Authors:Anna C. Doris, Md Ferdous Alam, Amin Heyrani Nobari, Faez Ahmed
Abstract:
Efficient creation of accurate and editable 3D CAD models is critical in engineering design, significantly impacting cost and time-to-market in product innovation. Current manual workflows remain highly time-consuming and demand extensive user expertise. While recent developments in AI-driven CAD generation show promise, existing models are limited by incomplete representations of CAD operations, inability to generalize to real-world images, and low output accuracy. This paper introduces CAD-Coder, an open-source Vision-Language Model (VLM) explicitly fine-tuned to generate editable CAD code (CadQuery Python) directly from visual input. Leveraging a novel dataset that we created--GenCAD-Code, consisting of over 163k CAD-model image and code pairs--CAD-Coder outperforms state-of-the-art VLM baselines such as GPT-4.5 and Qwen2.5-VL-72B, achieving a 100% valid syntax rate and the highest accuracy in 3D solid similarity. Notably, our VLM demonstrates some signs of generalizability, successfully generating CAD code from real-world images and executing CAD operations unseen during fine-tuning. The performance and adaptability of CAD-Coder highlights the potential of VLMs fine-tuned on code to streamline CAD workflows for engineers and designers. CAD-Coder is publicly available at: https://github.com/anniedoris/CAD-Coder.
Authors:Wentao Ma, Weiming Ren, Yiming Jia, Zhuofeng Li, Ping Nie, Ge Zhang, Wenhu Chen
Abstract:
Large multimodal models (LMMs) have recently emerged as a powerful tool for long video understanding (LVU), prompting the development of standardized LVU benchmarks to evaluate their performance. However, our investigation reveals a rather sober lesson for existing LVU benchmarks. First, most existing benchmarks rely heavily on multiple-choice questions (MCQs), whose evaluation results are inflated due to the possibility of guessing the correct answer; Second, a significant portion of questions in these benchmarks have strong priors to allow models to answer directly without even reading the input video. For example, Gemini-1.5-Pro can achieve over 50\% accuracy given a random frame from a long video on Video-MME. We also observe that increasing the number of frames does not necessarily lead to improvement on existing benchmarks, which is counterintuitive. As a result, the validity and robustness of current LVU benchmarks are undermined, impeding a faithful assessment of LMMs' long-video understanding capability. To tackle this problem, we propose VideoEval-Pro, a realistic LVU benchmark containing questions with open-ended short-answer, which truly require understanding the entire video. VideoEval-Pro assesses both segment-level and full-video understanding through perception and reasoning tasks. By evaluating 21 proprietary and open-source video LMMs, we conclude the following findings: (1) video LMMs show drastic performance ($>$25\%) drops on open-ended questions compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher open-ended scores on VideoEval-Pro; (3) compared to other MCQ benchmarks, VideoEval-Pro benefits more from increasing the number of input frames. Our results show that VideoEval-Pro offers a more realistic and reliable measure of long video understanding, providing a clearer view of progress in this domain.
Authors:Yu Ying Chiu, Zhilin Wang, Sharan Maiya, Yejin Choi, Kyle Fish, Sydney Levine, Evan Hubinger
Abstract:
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
Authors:Fnu Mohbat, Mohammed J Zaki
Abstract:
Recent advances in large language models (LLMs) and the abundance of food data have resulted in studies to improve food understanding using LLMs. Despite several recommendation systems utilizing LLMs and Knowledge Graphs (KGs), there has been limited research on integrating food related KGs with LLMs. We introduce KERL, a unified system that leverages food KGs and LLMs to provide personalized food recommendations and generates recipes with associated micro-nutritional information. Given a natural language question, KERL extracts entities, retrieves subgraphs from the KG, which are then fed into the LLM as context to select the recipes that satisfy the constraints. Next, our system generates the cooking steps and nutritional information for each recipe. To evaluate our approach, we also develop a benchmark dataset by curating recipe related questions, combined with constraints and personal preferences. Through extensive experiments, we show that our proposed KG-augmented LLM significantly outperforms existing approaches, offering a complete and coherent solution for food recommendation, recipe generation, and nutritional analysis. Our code and benchmark datasets are publicly available at https://github.com/mohbattharani/KERL.
Authors:Zhangchen Xu, Yuetai Li, Fengqing Jiang, Bhaskar Ramasubramanian, Luyao Niu, Bill Yuchen Lin, Radha Poovendran
Abstract:
Reinforcement Learning (RL) has become a powerful tool for enhancing the reasoning abilities of large language models (LLMs) by optimizing their policies with reward signals. Yet, RL's success relies on the reliability of rewards, which are provided by verifiers. In this paper, we expose and analyze a widespread problem--false negatives--where verifiers wrongly reject correct model outputs. Our in-depth study of the Big-Math-RL-Verified dataset reveals that over 38% of model-generated responses suffer from false negatives, where the verifier fails to recognize correct answers. We show, both empirically and theoretically, that these false negatives severely impair RL training by depriving the model of informative gradient signals and slowing convergence. To mitigate this, we propose tinyV, a lightweight LLM-based verifier that augments existing rule-based methods, which dynamically identifies potential false negatives and recovers valid responses to produce more accurate reward estimates. Across multiple math-reasoning benchmarks, integrating TinyV boosts pass rates by up to 10% and accelerates convergence relative to the baseline. Our findings highlight the critical importance of addressing verifier false negatives and offer a practical approach to improve RL-based fine-tuning of LLMs. Our code is available at https://github.com/uw-nsl/TinyV.
Authors:Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo, Ke Wang, Alex Aiken
Abstract:
We introduce SATBench, a benchmark for evaluating the logical reasoning capabilities of large language models (LLMs) through logical puzzles derived from Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference rule-based reasoning, which often involves deducing conclusions from a set of premises, our approach leverages the search-based nature of SAT problems, where the objective is to find a solution that fulfills a specified set of logical constraints. Each instance in SATBench is generated from a SAT formula, then translated into a puzzle using LLMs. The generation process is fully automated and allows for adjustable difficulty by varying the number of clauses. All 2100 puzzles are validated through both LLM-based and solver-based consistency checks, with human validation on a subset. Experimental results show that even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to the random baseline of 50%. Our error analysis reveals systematic failures such as satisfiability bias, context inconsistency, and condition omission, highlighting limitations of current LLMs in search-based logical reasoning. Our code and data are publicly available at https://github.com/Anjiang-Wei/SATBench
Authors:Maksim Zhdanov, Vladislav Kurenkov
Abstract:
Recent advances in neural network interatomic potentials have emerged as a promising research direction. However, popular deep learning models often lack auxiliary constraints grounded in physical laws, which could accelerate training and improve fidelity through physics-based regularization. In this work, we introduce $Φ$-Module, a universal plugin module that enforces Poisson's equation within the message-passing framework to learn electrostatic interactions in a self-supervised manner. Specifically, each atom-wise representation is encouraged to satisfy a discretized Poisson's equation, making it possible to acquire a potential $\boldsymbolÏ$ and a corresponding charge density $\boldsymbolÏ$ linked to the learnable Laplacian eigenbasis coefficients of a given molecular graph. We then derive an electrostatic energy term, crucial for improved total energy predictions. This approach integrates seamlessly into any existing neural potential with insignificant computational overhead. Experiments on the OE62 and MD22 benchmarks confirm that models combined with $Φ$-Module achieve robust improvements over baseline counterparts. For OE62 error reduction ranges from 4.5\% to 17.8\%, and for MD22, baseline equipped with $Φ$-Module achieves best results on 5 out of 14 cases. Our results underscore how embedding a first-principles constraint in neural interatomic potentials can significantly improve performance while remaining hyperparameter-friendly, memory-efficient and lightweight in training. Code will be available at \href{https://github.com/dunnolab/phi-module}{dunnolab/phi-module}.
Authors:Haoran Zhao, Yuchen Yan, Yongliang Shen, Haolei Xu, Wenqi Zhang, Kaitao Song, Jian Shao, Weiming Lu, Jun Xiao, Yueting Zhuang
Abstract:
Large reasoning models (LRMs), such as OpenAI o1 and DeepSeek-R1, have significantly enhanced their reasoning capabilities by generating longer chains of thought, demonstrating outstanding performance across a variety of tasks. However, this performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process, leading to high computational overhead and exacerbating the issue of overthinking. Although numerous existing approaches aim to address the problem of overthinking, they often rely on external interventions. In this paper, we propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process, thus eliminating the reliance on external control mechanisms. We construct a set of overthinking identification metrics based on standard answers and design a systematic method to detect redundant reasoning. This method accurately identifies unnecessary steps within the reasoning trajectory and generates training signals for learning self-regulation behaviors. Building on this foundation, we develop a complete strategy for constructing data with adaptive reasoning lengths and introduce an innovative braking prompt mechanism that enables the model to naturally learn when to terminate reasoning at an appropriate point. Experiments across mathematical benchmarks (AIME, AMC, MATH500, GSM8K) demonstrate that our method reduces token consumption by up to 60% while maintaining comparable accuracy to unconstrained models.
Authors:Guangzhi Xiong, Eric Xie, Corey Williams, Myles Kim, Amir Hassan Shariatmadari, Sikun Guo, Stefan Bekiranov, Aidong Zhang
Abstract:
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful scientific hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
Authors:Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Mingzheng Xu, Tianhao Cheng, Yixuan Wang, Zheng Chu, Shijie Xuyang, Zhiyuan Ma, YuanTao Fan, Wanxiang Che
Abstract:
Code Sensitivity refers to the ability of Code LLMs to recognize and respond to details changes in problem descriptions. While current code benchmarks and instruction data focus on difficulty and diversity, sensitivity is overlooked. We first introduce the CTF-Code benchmark, constructed using counterfactual perturbations, minimizing input changes while maximizing output changes. The evaluation shows that many LLMs have a more than 10\% performance drop compared to the original problems. To fully utilize sensitivity, CTF-Instruct, an incremental instruction fine-tuning framework, extends on existing data and uses a selection mechanism to meet the three dimensions of difficulty, diversity, and sensitivity. Experiments show that LLMs fine-tuned with CTF-Instruct data achieve over a 2\% improvement on CTF-Code, and more than a 10\% performance boost on LiveCodeBench, validating the feasibility of enhancing LLMs' sensitivity to improve performance.
Authors:Isabella Degen, Zahraa S Abdallah, Henry W J Reeve, Kate Robson Brown
Abstract:
Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.
Authors:Lei Li, Xiao Zhou, Zheng Liu
Abstract:
Current medical retrieval benchmarks primarily emphasize lexical or shallow semantic similarity, overlooking the reasoning-intensive demands that are central to clinical decision-making. In practice, physicians often retrieve authoritative medical evidence to support diagnostic hypotheses. Such evidence typically aligns with an inferred diagnosis rather than the surface form of a patient's symptoms, leading to low lexical or semantic overlap between queries and relevant documents. To address this gap, we introduce R2MED, the first benchmark explicitly designed for reasoning-driven medical retrieval. It comprises 876 queries spanning three tasks: Q&A reference retrieval, clinical evidence retrieval, and clinical case retrieval. These tasks are drawn from five representative medical scenarios and twelve body systems, capturing the complexity and diversity of real-world medical information needs. We evaluate 15 widely-used retrieval systems on R2MED and find that even the best model achieves only 31.4 nDCG@10, demonstrating the benchmark's difficulty. Classical re-ranking and generation-augmented retrieval methods offer only modest improvements. Although large reasoning models improve performance via intermediate inference generation, the best results still peak at 41.4 nDCG@10. These findings underscore a substantial gap between current retrieval techniques and the reasoning demands of real clinical tasks. We release R2MED as a challenging benchmark to foster the development of next-generation medical retrieval systems with enhanced reasoning capabilities. Data and code are available at https://github.com/R2MED/R2MED
Authors:Chuanbo Tang, Zhuoyuan Li, Yifan Bian, Li Li, Dong Liu
Abstract:
Efficient video coding is highly dependent on exploiting the temporal redundancy, which is usually achieved by extracting and leveraging the temporal context in the emerging conditional coding-based neural video codec (NVC). Although the latest NVC has achieved remarkable progress in improving the compression performance, the inherent temporal context propagation mechanism lacks the ability to sufficiently leverage the reference information, limiting further improvement. In this paper, we address the limitation by modulating the temporal context with the reference frame in two steps. Specifically, we first propose the flow orientation to mine the inter-correlation between the reference frame and prediction frame for generating the additional oriented temporal context. Moreover, we introduce the context compensation to leverage the oriented context to modulate the propagated temporal context generated from the propagated reference feature. Through the synergy mechanism and decoupling loss supervision, the irrelevant propagated information can be effectively eliminated to ensure better context modeling. Experimental results demonstrate that our codec achieves on average 22.7% bitrate reduction over the advanced traditional video codec H.266/VVC, and offers an average 10.1% bitrate saving over the previous state-of-the-art NVC DCVC-FM. The code is available at https://github.com/Austin4USTC/DCMVC.
Authors:Yuxuan Wang, Xuanyu Yi, Qingshan Xu, Yuan Zhou, Long Chen, Hanwang Zhang
Abstract:
Personalizing 3D scenes from a single reference image enables intuitive user-guided editing, which requires achieving both multi-view consistency across perspectives and referential consistency with the input image. However, these goals are particularly challenging due to the viewpoint bias caused by the limited perspective provided in a single image. Lacking the mechanisms to effectively expand reference information beyond the original view, existing methods of image-conditioned 3DGS personalization often suffer from this viewpoint bias and struggle to produce consistent results. Therefore, in this paper, we present Consistent Personalization for 3D Gaussian Splatting (CP-GS), a framework that progressively propagates the single-view reference appearance to novel perspectives. In particular, CP-GS integrates pre-trained image-to-3D generation and iterative LoRA fine-tuning to extract and extend the reference appearance, and finally produces faithful multi-view guidance images and the personalized 3DGS outputs through a view-consistent generation process guided by geometric cues. Extensive experiments on real-world scenes show that our CP-GS effectively mitigates the viewpoint bias, achieving high-quality personalization that significantly outperforms existing methods. The code will be released at https://github.com/Yuxuan-W/CP-GS.
Authors:Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, Bihan Wen
Abstract:
High-fidelity 3D object synthesis remains significantly more challenging than 2D image generation due to the unstructured nature of mesh data and the cubic complexity of dense volumetric grids. Existing two-stage pipelines-compressing meshes with a VAE (using either 2D or 3D supervision), followed by latent diffusion sampling-often suffer from severe detail loss caused by inefficient representations and modality mismatches introduced in VAE. We introduce Sparc3D, a unified framework that combines a sparse deformable marching cubes representation Sparcubes with a novel encoder Sparconv-VAE. Sparcubes converts raw meshes into high-resolution ($1024^3$) surfaces with arbitrary topology by scattering signed distance and deformation fields onto a sparse cube, allowing differentiable optimization. Sparconv-VAE is the first modality-consistent variational autoencoder built entirely upon sparse convolutional networks, enabling efficient and near-lossless 3D reconstruction suitable for high-resolution generative modeling through latent diffusion. Sparc3D achieves state-of-the-art reconstruction fidelity on challenging inputs, including open surfaces, disconnected components, and intricate geometry. It preserves fine-grained shape details, reduces training and inference cost, and integrates naturally with latent diffusion models for scalable, high-resolution 3D generation.
Authors:Chun-Yi Kuan, Hung-yi Lee
Abstract:
Recent advancements in audio-aware large language models (ALLMs) enable them to process and understand audio inputs. However, these models often hallucinate non-existent sound events, reducing their reliability in real-world applications. To address this, we propose LISTEN (Learning to Identify Sounds Through Extended Negative Samples), a contrastive-like training method that enhances ALLMs' ability to distinguish between present and absent sounds using synthesized data from the backbone LLM. Unlike prior approaches, our method requires no modification to LLM parameters and efficiently integrates audio representations via a lightweight adapter. Experiments show that LISTEN effectively mitigates hallucinations while maintaining impressive performance on existing audio question and reasoning benchmarks. At the same time, it is more efficient in both data and computation.
Authors:Guillaume Vray, Devavrat Tomar, Xufeng Gao, Jean-Philippe Thiran, Evan Shelhamer, Behzad Bozorgtabar
Abstract:
This paper introduces ReservoirTTA, a novel plug-in framework designed for prolonged test-time adaptation (TTA) in scenarios where the test domain continuously shifts over time, including cases where domains recur or evolve gradually. At its core, ReservoirTTA maintains a reservoir of domain-specialized models -- an adaptive test-time model ensemble -- that both detects new domains via online clustering over style features of incoming samples and routes each sample to the appropriate specialized model, and thereby enables domain-specific adaptation. This multi-model strategy overcomes key limitations of single model adaptation, such as catastrophic forgetting, inter-domain interference, and error accumulation, ensuring robust and stable performance on sustained non-stationary test distributions. Our theoretical analysis reveals key components that bound parameter variance and prevent model collapse, while our plug-in TTA module mitigates catastrophic forgetting of previously encountered domains. Extensive experiments on scene-level corruption benchmarks (ImageNet-C, CIFAR-10/100-C), object-level style shifts (DomainNet-126, PACS), and semantic segmentation (Cityscapes->ACDC) covering recurring and continuously evolving domain shifts -- show that ReservoirTTA substantially improves adaptation accuracy and maintains stable performance across prolonged, recurring shifts, outperforming state-of-the-art methods. Our code is publicly available at https://github.com/LTS5/ReservoirTTA.
Authors:Xiaoyu Tian, Yunjie Ji, Haotian Wang, Shuaiting Chen, Sitong Zhao, Yiping Peng, Han Zhao, Xiangang Li
Abstract:
Distillation has emerged as a practical and effective approach to enhance the reasoning capabilities of open-source language models. In this work, we conduct a large-scale empirical study on reasoning data distillation by collecting verified outputs from three state-of-the-art teacher models-AM-Thinking-v1, Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We construct three parallel datasets and analyze their distributions, revealing that AM-Thinking-v1-distilled data exhibits greater token length diversity and lower perplexity. Student models trained on each dataset are evaluated on reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench. The model distilled from AM-Thinking-v1 consistently achieves the best performance (e.g., 84.3 on AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and demonstrates adaptive output behavior-producing longer responses for harder tasks and shorter ones for simpler tasks. These findings highlight the value of high-quality, verified reasoning traces. We release the AM-Thinking-v1 and Qwen3-235B-A22B distilled datasets to support future research on open and high-performing reasoning-oriented language models. The datasets are publicly available on Hugging Face\footnote{Datasets are available on Hugging Face: \href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled}{AM-Thinking-v1-Distilled}, \href{https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled}{AM-Qwen3-Distilled}.}.
Authors:Xuyang Liu, Yiyu Wang, Junpeng Ma, Linfeng Zhang
Abstract:
Video large language models (VideoLLM) excel at video understanding, but face efficiency challenges due to the quadratic complexity of abundant visual tokens. Our systematic analysis of token compression methods for VideoLLMs reveals two critical issues: (i) overlooking distinctive visual signals across frames, leading to information loss; (ii) suffering from implementation constraints, causing incompatibility with modern architectures or efficient operators. To address these challenges, we distill three design principles for VideoLLM token compression and propose a plug-and-play inference acceleration framework "Video Compression Commander" (VidCom2). By quantifying each frame's uniqueness, VidCom2 adaptively adjusts compression intensity across frames, effectively preserving essential information while reducing redundancy in video sequences. Extensive experiments across various VideoLLMs and benchmarks demonstrate the superior performance and efficiency of our VidCom2. With only 25% visual tokens, VidCom2 achieves 99.6% of the original performance on LLaVA-OV while reducing 70.8% of the LLM generation latency. Notably, our Frame Compression Adjustment strategy is compatible with other token compression methods to further improve their performance. Our code is available at https://github.com/xuyang-liu16/VidCom2.
Authors:Yuanbo Fang, Haoze Sun, Jun Liu, Tao Zhang, Zenan Zhou, Weipeng Chen, Xiaofen Xing, Xiangmin Xu
Abstract:
End-to-end speech large language models ((LLMs)) extend the capabilities of text-based models to directly process and generate audio tokens. However, this often leads to a decline in reasoning and generation performance compared to text input, a phenomenon referred to as intelligence degradation. To systematically evaluate this gap, we propose S2SBench, a benchmark designed to quantify performance degradation in Speech LLMs. It includes diagnostic datasets targeting sentence continuation and commonsense reasoning under audio input. We further introduce a pairwise evaluation protocol based on perplexity differences between plausible and implausible samples to measure degradation relative to text input. We apply S2SBench to analyze the training process of Baichuan-Audio, which further demonstrates the benchmark's effectiveness. All datasets and evaluation code are available at https://github.com/undobug/S2SBench.
Authors:Yuqiao Tan, Shizhu He, Kang Liu, Jun Zhao
Abstract:
Large Language Models (LLMs) offer a transparent brain with accessible parameters that encode extensive knowledge, which can be analyzed, located and transferred. Consequently, a key research challenge is to transcend traditional knowledge transfer paradigms rooted in symbolic language and achieve genuine Parametric Knowledge Transfer (PKT). Significantly, exploring effective methods for transferring knowledge across LLMs of different scales through parameters presents an intriguing and valuable research direction. In this paper, we first demonstrate $\textbf{Alignment}$ in parametric space is the fundamental prerequisite to achieve successful cross-scale PKT. We redefine the previously explored knowledge transfer as Post-Align PKT (PostPKT), which utilizes extracted parameters for LoRA initialization and requires subsequent fine-tune for alignment. Hence, to reduce cost for further fine-tuning, we introduce a novel Pre-Align PKT (PrePKT) paradigm and propose a solution called $\textbf{LaTen}$ ($\textbf{L}$oc$\textbf{a}$te-$\textbf{T}$h$\textbf{e}$n-Alig$\textbf{n}$) that aligns the parametric spaces of LLMs across scales only using several training steps without following training. Comprehensive experiments on four benchmarks demonstrate that both PostPKT and PrePKT face challenges in achieving consistently stable transfer. Through in-depth analysis, we identify $\textbf{Neural Incompatibility}$ as the ethological and parametric structural differences between LLMs of varying scales, presenting fundamental challenges to achieving effective PKT. These findings provide fresh insights into the parametric architectures of LLMs and highlight promising directions for future research on efficient PKT. Our code is available at https://github.com/Trae1ounG/Neural_Incompatibility.
Authors:Runwu Shi, Zirui Lin, Benjamin Yen, Jiang Wang, Ragib Amin Nihal, Kazuhiro Nakadai
Abstract:
This paper aims to achieve single-channel target speech extraction (TSE) in enclosures utilizing distance clues and room information. Recent works have verified the feasibility of distance clues for the TSE task, which can imply the sound source's direct-to-reverberation ratio (DRR) and thus can be utilized for speech separation and TSE systems. However, such distance clue is significantly influenced by the room's acoustic characteristics, such as dimension and reverberation time, making it challenging for TSE systems that rely solely on distance clues to generalize across a variety of different rooms. To solve this, we suggest providing room environmental information (room dimensions and reverberation time) for distance-based TSE for better generalization capabilities. Especially, we propose a distance and environment-based TSE model in the time-frequency (TF) domain with learnable distance and room embedding. Results on both simulated and real collected datasets demonstrate its feasibility. Demonstration materials are available at https://runwushi.github.io/distance-room-demo-page/.
Authors:Menglin Yang, Yifei Zhang, Jialin Chen, Melanie Weber, Rex Ying
Abstract:
In the era of foundation models and Large Language Models (LLMs), Euclidean space is the de facto geometric setting of our machine learning architectures. However, recent literature has demonstrated that this choice comes with fundamental limitations. To that end, non-Euclidean learning is quickly gaining traction, particularly in web-related applications where complex relationships and structures are prevalent. Non-Euclidean spaces, such as hyperbolic, spherical, and mixed-curvature spaces, have been shown to provide more efficient and effective representations for data with intrinsic geometric properties, including web-related data like social network topology, query-document relationships, and user-item interactions. Integrating foundation models with non-Euclidean geometries has great potential to enhance their ability to capture and model the underlying structures, leading to better performance in search, recommendations, and content understanding. This workshop focuses on the intersection of Non-Euclidean Foundation Models and Geometric Learning (NEGEL), exploring its potential benefits, including the potential benefits for advancing web-related technologies, challenges, and future directions. Workshop page: [https://hyperboliclearning.github.io/events/www2025workshop](https://hyperboliclearning.github.io/events/www2025workshop)
Authors:Chengtang Yao, Lidong Yu, Zhidan Liu, Jiaxi Zeng, Yuwei Wu, Yunde Jia
Abstract:
The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We significantly improve the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency.
Authors:PaweÅ Batorski, Adrian Kosmala, Paul Swoboda
Abstract:
Effective prompt engineering remains a central challenge in fully harnessing the capabilities of LLMs. While well-designed prompts can dramatically enhance performance, crafting them typically demands expert intuition and a nuanced understanding of the task. Moreover, the most impactful prompts often hinge on subtle semantic cues, ones that may elude human perception but are crucial for guiding LLM behavior. In this paper, we introduce PRL (Prompts from Reinforcement Learning), a novel RL-based approach for automatic prompt generation. Unlike previous methods, PRL can produce novel few-shot examples that were not seen during training. Our approach achieves state-of-the-art performance across a range of benchmarks, including text classification, simplification, and summarization. On the classification task, it surpasses prior methods by 2.58% over APE and 1.00% over EvoPrompt. Additionally, it improves the average ROUGE scores on the summarization task by 4.32 over APE and by 2.12 over EvoPrompt and the SARI score on simplification by 6.93 over APE and by 6.01 over EvoPrompt. Our code is available at https://github.com/Batorskq/prl .
Authors:Peter Baile Chen, Yi Zhang, Dan Roth, Samuel Madden, Jacob Andreas, Michael Cafarella
Abstract:
While humans naturally learn and adapt from past experiences, large language models (LLMs) and their agentic counterparts struggle to retain reasoning from previous tasks and apply them in future contexts. To address this limitation, we propose a novel framework, log-augmented generation (LAG) that directly reuses prior computation and reasoning from past logs at test time to enhance model's ability to learn from previous tasks and perform better on new, unseen challenges, all while keeping the system efficient and scalable. Specifically, our system represents task logs using key-value (KV) caches, encoding the full reasoning context of prior tasks while storing KV caches for only a selected subset of tokens. When a new task arises, LAG retrieves the KV values from relevant logs to augment generation. Our approach differs from reflection-based memory mechanisms by directly reusing prior reasoning and computations without requiring additional steps for knowledge extraction or distillation. Our method also goes beyond existing KV caching techniques, which primarily target efficiency gains rather than improving accuracy. Experiments on knowledge- and reasoning-intensive datasets demonstrate that our method significantly outperforms standard agentic systems that do not utilize logs, as well as existing solutions based on reflection and KV cache techniques.
Authors:Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, Xing Yu
Abstract:
Large Vision-Language Models (VLMs) have shown strong capabilities in multimodal understanding and reasoning, yet they are primarily constrained by text-based reasoning processes. However, achieving seamless integration of visual and textual reasoning which mirrors human cognitive processes remains a significant challenge. In particular, effectively incorporating advanced visual input processing into reasoning mechanisms is still an open question. Thus, in this paper, we explore the interleaved multimodal reasoning paradigm and introduce DeepEyes, a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning without the need for cold-start SFT. Notably, this ability emerges natively within the model itself, leveraging its inherent grounding ability as a tool instead of depending on separate specialized models. Specifically, we propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories. DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks and also demonstrates improvement in grounding, hallucination, and mathematical reasoning tasks. Interestingly, we observe the distinct evolution of tool-calling behavior from initial exploration to efficient and accurate exploitation, and diverse thinking patterns that closely mirror human visual reasoning processes. Code is available at https://github.com/Visual-Agent/DeepEyes.
Authors:Ruoxin Chen, Junwei Xi, Zhiyuan Yan, Ke-Yue Zhang, Shuang Wu, Jingyi Xie, Xu Chen, Lei Xu, Isabel Guan, Taiping Yao, Shouhong Ding
Abstract:
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors. Our code is available at: https://github.com/roy-ch/Dual-Data-Alignment.
Authors:Siqiao Huang, Jialong Wu, Qixing Zhou, Shangchen Miao, Mingsheng Long
Abstract:
World models, which predict transitions based on history observation and action sequences, have shown great promise in improving data efficiency for sequential decision making. However, existing world models often require extensive domain-specific training and still produce low-fidelity, coarse predictions, limiting their applicability in complex environments. In contrast, video diffusion models trained on large, internet-scale datasets have demonstrated impressive capabilities in generating high-quality videos that capture diverse real-world dynamics. In this work, we present Vid2World, a general approach for leveraging and transferring pre-trained video diffusion models into interactive world models. To bridge the gap, Vid2World performs casualization of a pre-trained video diffusion model by crafting its architecture and training objective to enable autoregressive generation. Furthermore, it introduces a causal action guidance mechanism to enhance action controllability in the resulting interactive world model. Extensive experiments in robot manipulation and game simulation domains show that our method offers a scalable and effective approach for repurposing highly capable video diffusion models to interactive world models.
Authors:Sho Inoue, Shai Wang, Haizhou Li
Abstract:
Despite significant progress in neural spoken dialog systems, personality-aware conversation agents -- capable of adapting behavior based on personalities -- remain underexplored due to the absence of personality annotations in speech datasets. We propose a pipeline that preprocesses raw audio recordings to create a dialogue dataset annotated with timestamps, response types, and emotion/sentiment labels. We employ an automatic speech recognition (ASR) system to extract transcripts and timestamps, then generate conversation-level annotations. Leveraging these annotations, we design a system that employs large language models to predict conversational personality. Human evaluators were engaged to identify conversational characteristics and assign personality labels. Our analysis demonstrates that the proposed system achieves stronger alignment with human judgments compared to existing approaches.
Authors:Xiang Li, Xianfu Cheng, Dezhuang Miao, Xiaoming Zhang, Zhoujun Li
Abstract:
Multimodal Sentiment Analysis (MSA) with missing modalities has attracted increasing attention recently. While current Transformer-based methods leverage dense text information to maintain model robustness, their quadratic complexity hinders efficient long-range modeling and multimodal fusion. To this end, we propose a novel and efficient Text-enhanced Fusion Mamba (TF-Mamba) framework for robust MSA with missing modalities. Specifically, a Text-aware Modality Enhancement (TME) module aligns and enriches non-text modalities, while reconstructing the missing text semantics. Moreover, we develop Text-based Context Mamba (TC-Mamba) to capture intra-modal contextual dependencies under text collaboration. Finally, Text-guided Query Mamba (TQ-Mamba) queries text-guided multimodal information and learns joint representations for sentiment prediction. Extensive experiments on three MSA datasets demonstrate the effectiveness and efficiency of the proposed method under missing modality scenarios. Our code is available at https://github.com/codemous/TF-Mamba.
Authors:Jinwang Song, Hongying Zan, Kunli Zhang, Lingling Mu, Yingjie Han, Haobo Hua, Min Peng
Abstract:
Text-to-SQL, which maps natural language to SQL queries, has benefited greatly from recent advances in Large Language Models (LLMs). While LLMs offer various paradigms for this task, including prompting and supervised fine-tuning (SFT), SFT approaches still face challenges such as complex multi-stage pipelines and poor robustness to noisy schema information. To address these limitations, we present JOLT-SQL, a streamlined single-stage SFT framework that jointly optimizes schema linking and SQL generation via a unified loss. JOLT-SQL employs discriminative schema linking, enhanced by local bidirectional attention, alongside a confusion-aware noisy schema sampling strategy with selective attention to improve robustness under noisy schema conditions. Experiments on the Spider and BIRD benchmarks demonstrate that JOLT-SQL achieves state-of-the-art execution accuracy among comparable-size open-source models, while significantly improving both training and inference efficiency. Our code is available at https://github.com/Songjw133/JOLT-SQL.
Authors:Hiroki Shiraishi, Hisao Ishibuchi, Masaya Nakata
Abstract:
Function approximation is a critical task in various fields. However, existing neural network approaches struggle with locally complex or discontinuous functions due to their reliance on a single global model covering the entire problem space. We propose X-KAN, a novel method that optimizes multiple local Kolmogorov-Arnold Networks (KANs) through an evolutionary rule-based machine learning framework called XCSF. X-KAN combines KAN's high expressiveness with XCSF's adaptive partitioning capability by implementing local KAN models as rule consequents and defining local regions via rule antecedents. Our experimental results on artificial test functions and real-world datasets demonstrate that X-KAN significantly outperforms conventional methods, including XCSF, Multi-Layer Perceptron, and KAN, in terms of approximation accuracy. Notably, X-KAN effectively handles functions with locally complex or discontinuous structures that are challenging for conventional KAN, using a compact set of rules (average 7.2 $\pm$ 2.3 rules). These results validate the effectiveness of using KAN as a local model in XCSF, which evaluates the rule fitness based on both accuracy and generality. Our X-KAN implementation is available at https://github.com/YNU-NakataLab/X-KAN.
Authors:Yoorhim Cho, Hongyeob Kim, Semin Kim, Youjia Zhang, Yunseok Choi, Sungeun Hong
Abstract:
Visuo-tactile perception aims to understand an object's tactile properties, such as texture, softness, and rigidity. However, the field remains underexplored because collecting tactile data is costly and labor-intensive. We observe that visually distinct objects can exhibit similar surface textures or material properties. For example, a leather sofa and a leather jacket have different appearances but share similar tactile properties. This implies that tactile understanding can be guided by material cues in visual data, even without direct tactile supervision. In this paper, we introduce RA-Touch, a retrieval-augmented framework that improves visuo-tactile perception by leveraging visual data enriched with tactile semantics. We carefully recaption a large-scale visual dataset with tactile-focused descriptions, enabling the model to access tactile semantics typically absent from conventional visual datasets. A key challenge remains in effectively utilizing these tactile-aware external descriptions. RA-Touch addresses this by retrieving visual-textual representations aligned with tactile inputs and integrating them to focus on relevant textural and material properties. By outperforming prior methods on the TVL benchmark, our method demonstrates the potential of retrieval-based visual reuse for tactile understanding. Code is available at https://aim-skku.github.io/RA-Touch
Authors:Luxi Lin, Zhihang Lin, Zhanpeng Zeng, Rongrong Ji
Abstract:
This paper introduces Multimodal Speculative Decoding (MSD) to accelerate Multimodal Large Language Models (MLLMs) inference. Speculative decoding has been shown to accelerate Large Language Models (LLMs) without sacrificing accuracy. However, current speculative decoding methods for MLLMs fail to achieve the same speedup as they do for LLMs. To address this, we reimagine speculative decoding specifically for MLLMs. Our analysis of MLLM characteristics reveals two key design principles for MSD: (1) Text and visual tokens have fundamentally different characteristics and need to be processed separately during drafting. (2) Both language modeling ability and visual perception capability are crucial for the draft model. For the first principle, MSD decouples text and visual tokens in the draft model, allowing each to be handled based on its own characteristics. For the second principle, MSD uses a two-stage training strategy: In stage one, the draft model is trained on text-only instruction-tuning datasets to improve its language modeling ability. In stage two, MSD gradually introduces multimodal data to enhance the visual perception capability of the draft model. Experiments show that MSD boosts inference speed by up to $2.29\times$ for LLaVA-1.5-7B and up to $2.46\times$ for LLaVA-1.5-13B on multimodal benchmarks, demonstrating its effectiveness. Our code is available at https://github.com/Lyn-Lucy/MSD.
Authors:Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Abstract:
A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.
Authors:Bin-Bin Gao, Xiaochen Chen, Zhongyi Huang, Congchong Nie, Jun Liu, Jinxiang Lai, Guannan Jiang, Xi Wang, Chengjie Wang
Abstract:
This paper focus on few-shot object detection~(FSOD) and instance segmentation~(FSIS), which requires a model to quickly adapt to novel classes with a few labeled instances. The existing methods severely suffer from bias classification because of the missing label issue which naturally exists in an instance-level few-shot scenario and is first formally proposed by us. Our analysis suggests that the standard classification head of most FSOD or FSIS models needs to be decoupled to mitigate the bias classification. Therefore, we propose an embarrassingly simple but effective method that decouples the standard classifier into two heads. Then, these two individual heads are capable of independently addressing clear positive samples and noisy negative samples which are caused by the missing label. In this way, the model can effectively learn novel classes while mitigating the effects of noisy negative samples. Without bells and whistles, our model without any additional computation cost and parameters consistently outperforms its baseline and state-of-the-art by a large margin on PASCAL VOC and MS-COCO benchmarks for FSOD and FSIS tasks. The Code is available at https://csgaobb.github.io/Projects/DCFS.
Authors:Raghav Singhal, Kaustubh Ponkshe, Rohit Vartak, Praneeth Vepakomma
Abstract:
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget. We formally analyze ABBA's expressive capacity and validate its advantages through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
Authors:Sule Bai, Mingxing Li, Yong Liu, Jing Tang, Haoji Zhang, Lei Sun, Xiangxiang Chu, Yansong Tang
Abstract:
Traditional visual grounding methods primarily focus on single-image scenarios with simple textual references. However, extending these methods to real-world scenarios that involve implicit and complex instructions, particularly in conjunction with multiple images, poses significant challenges, which is mainly due to the lack of advanced reasoning ability across diverse multi-modal contexts. In this work, we aim to address the more practical universal grounding task, and propose UniVG-R1, a reasoning guided multimodal large language model (MLLM) for universal visual grounding, which enhances reasoning capabilities through reinforcement learning (RL) combined with cold-start data. Specifically, we first construct a high-quality Chain-of-Thought (CoT) grounding dataset, annotated with detailed reasoning chains, to guide the model towards correct reasoning paths via supervised fine-tuning. Subsequently, we perform rule-based reinforcement learning to encourage the model to identify correct reasoning chains, thereby incentivizing its reasoning capabilities. In addition, we identify a difficulty bias arising from the prevalence of easy samples as RL training progresses, and we propose a difficulty-aware weight adjustment strategy to further strengthen the performance. Experimental results demonstrate the effectiveness of UniVG-R1, which achieves state-of-the-art performance on MIG-Bench with a 9.1% improvement over the previous method. Furthermore, our model exhibits strong generalizability, achieving an average improvement of 23.4% in zero-shot performance across four image and video reasoning grounding benchmarks. The project page can be accessed at https://amap-ml.github.io/UniVG-R1-page/.
Authors:Kaustubh Ponkshe, Shaan Shah, Raghav Singhal, Praneeth Vepakomma
Abstract:
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
Authors:Tong Bao, Heng Zhang, Chengzhi Zhang
Abstract:
Abstractive summarization of scientific papers has always been a research focus, yet existing methods face two main challenges. First, most summarization models rely on Encoder-Decoder architectures that treat papers as sequences of words, thus fail to fully capture the structured information inherent in scientific papers. Second, existing research often use keyword mapping or feature engineering to identify the structural information, but these methods struggle with the structural flexibility of scientific papers and lack robustness across different disciplines. To address these challenges, we propose a two-stage abstractive summarization framework that leverages automatic recognition of structural functions within scientific papers. In the first stage, we standardize chapter titles from numerous scientific papers and construct a large-scale dataset for structural function recognition. A classifier is then trained to automatically identify the key structural components (e.g., Background, Methods, Results, Discussion), which provides a foundation for generating more balanced summaries. In the second stage, we employ Longformer to capture rich contextual relationships across sections and generating context-aware summaries. Experiments conducted on two domain-specific scientific paper summarization datasets demonstrate that our method outperforms advanced baselines, and generates more comprehensive summaries. The code and dataset can be accessed at https://github.com/tongbao96/code-for-SFR-AS.
Authors:Changgu Chen, Xiaoyan Yang, Junwei Shu, Changbo Wang, Yang Li
Abstract:
In recent years, large-scale pre-trained diffusion transformer models have made significant progress in video generation. While current DiT models can produce high-definition, high-frame-rate, and highly diverse videos, there is a lack of fine-grained control over the video content. Controlling the motion of subjects in videos using only prompts is challenging, especially when it comes to describing complex movements. Further, existing methods fail to control the motion in image-to-video generation, as the subject in the reference image often differs from the subject in the reference video in terms of initial position, size, and shape. To address this, we propose the Leveraging Motion Prior (LMP) framework for zero-shot video generation. Our framework harnesses the powerful generative capabilities of pre-trained diffusion transformers to enable motion in the generated videos to reference user-provided motion videos in both text-to-video and image-to-video generation. To this end, we first introduce a foreground-background disentangle module to distinguish between moving subjects and backgrounds in the reference video, preventing interference in the target video generation. A reweighted motion transfer module is designed to allow the target video to reference the motion from the reference video. To avoid interference from the subject in the reference video, we propose an appearance separation module to suppress the appearance of the reference subject in the target video. We annotate the DAVIS dataset with detailed prompts for our experiments and design evaluation metrics to validate the effectiveness of our method. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in generation quality, prompt-video consistency, and control capability. Our homepage is available at https://vpx-ecnu.github.io/LMP-Website/
Authors:Jiaming Li, Sheng Wang, Xin Wang, Yitao Zhu, Honglin Xiong, Zixu Zhuang, Qian Wang
Abstract:
Given the audio-visual clip of the speaker, facial reaction generation aims to predict the listener's facial reactions. The challenge lies in capturing the relevance between video and audio while balancing appropriateness, realism, and diversity. While prior works have mostly focused on uni-modal inputs or simplified reaction mappings, recent approaches such as PerFRDiff have explored multi-modal inputs and the one-to-many nature of appropriate reaction mappings. In this work, we propose the Facial Reaction Diffusion (ReactDiff) framework that uniquely integrates a Multi-Modality Transformer with conditional diffusion in the latent space for enhanced reaction generation. Unlike existing methods, ReactDiff leverages intra- and inter-class attention for fine-grained multi-modal interaction, while the latent diffusion process between the encoder and decoder enables diverse yet contextually appropriate outputs. Experimental results demonstrate that ReactDiff significantly outperforms existing approaches, achieving a facial reaction correlation of 0.26 and diversity score of 0.094 while maintaining competitive realism. The code is open-sourced at \href{https://github.com/Hunan-Tiger/ReactDiff}{github}.
Authors:Chengzhi Zhang, Xinyi Yan, Lei Zhao, Yingyi Zhang
Abstract:
The exponential increase in academic papers has significantly increased the time required for researchers to access relevant literature. Keyphrase Extraction (KPE) offers a solution to this situation by enabling researchers to efficiently retrieve relevant literature. The current study on KPE from academic articles aims to improve the performance of extraction models through innovative approaches using Title and Abstract as input corpora. However, the semantic richness of keywords is significantly constrained by the length of the abstract. While full-text-based KPE can address this issue, it simultaneously introduces noise, which significantly diminishes KPE performance. To address this issue, this paper utilized the structural features and section texts obtained from the section structure information of academic articles to extract keyphrase from academic papers. The approach consists of two main parts: (1) exploring the effect of seven structural features on KPE models, and (2) integrating the extraction results from all section texts used as input corpora for KPE models via a keyphrase integration algorithm to obtain the keyphrase integration result. Furthermore, this paper also examined the effect of the classification quality of section structure on the KPE performance. The results show that incorporating structural features improves KPE performance, though different features have varying effects on model efficacy. The keyphrase integration approach yields the best performance, and the classification quality of section structure can affect KPE performance. These findings indicate that using the section structure information of academic articles contributes to effective KPE from academic articles. The code and dataset supporting this study are available at https://github.com/yan-xinyi/SSB_KPE.
Authors:Fan Liu, Zherui Yang, Cancheng Liu, Tianrui Song, Xiaofeng Gao, Hao Liu
Abstract:
Mathematical modeling is a cornerstone of scientific discovery and engineering practice, enabling the translation of real-world problems into formal systems across domains such as physics, biology, and economics. Unlike mathematical reasoning, which assumes a predefined formulation, modeling requires open-ended problem analysis, abstraction, and principled formalization. While Large Language Models (LLMs) have shown strong reasoning capabilities, they fall short in rigorous model construction, limiting their utility in real-world problem-solving. To this end, we formalize the task of LLM-powered real-world mathematical modeling, where agents must analyze problems, construct domain-appropriate formulations, and generate complete end-to-end solutions. We introduce MM-Bench, a curated benchmark of 111 problems from the Mathematical Contest in Modeling (MCM/ICM), spanning the years 2000 to 2025 and across ten diverse domains such as physics, biology, and economics. To tackle this task, we propose MM-Agent, an expert-inspired framework that decomposes mathematical modeling into four stages: open-ended problem analysis, structured model formulation, computational problem solving, and report generation. Experiments on MM-Bench show that MM-Agent significantly outperforms baseline agents, achieving an 11.88\% improvement over human expert solutions while requiring only 15 minutes and \$0.88 per task using GPT-4o. Furthermore, under official MCM/ICM protocols, MM-Agent assisted two undergraduate teams in winning the Finalist Award (\textbf{top 2.0\% among 27,456 teams}) in MCM/ICM 2025, demonstrating its practical effectiveness as a modeling copilot. Our code is available at https://github.com/usail-hkust/LLM-MM-Agent
Authors:Yihang Du, Jiaying Hu, Suyang Hou, Yueyang Ding, Xiaobo Sun
Abstract:
Spatial labeling assigns labels to specific spatial locations to characterize their spatial properties and relationships, with broad applications in scientific research and practice. Measuring the similarity between two spatial labelings is essential for understanding their differences and the contributing factors, such as changes in location properties or labeling methods. An adequate and unbiased measurement of spatial labeling similarity should consider the number of matched labels (label agreement), the topology of spatial label distribution, and the heterogeneous impacts of mismatched labels. However, existing methods often fail to account for all these aspects. To address this gap, we propose a methodological framework to guide the development of methods that meet these requirements. Given two spatial labelings, the framework transforms them into graphs based on location organization, labels, and attributes (e.g., location significance). The distributions of their graph attributes are then extracted, enabling an efficient computation of distributional discrepancy to reflect the dissimilarity level between the two labelings. We further provide a concrete implementation of this framework, termed Spatial Labeling Analogy Metric (SLAM), along with an analysis of its theoretical foundation, for evaluating spatial labeling results in spatial transcriptomics (ST) \textit{as per} their similarity with ground truth labeling. Through a series of carefully designed experimental cases involving both simulated and real ST data, we demonstrate that SLAM provides a comprehensive and accurate reflection of labeling quality compared to other well-established evaluation metrics. Our code is available at https://github.com/YihDu/SLAM.
Authors:Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga
Abstract:
Knowledge distillation (KD) is a valuable technique for compressing large deep learning models into smaller, edge-suitable networks. However, conventional KD frameworks rely on pre-trained high-capacity teacher networks, which introduce significant challenges such as increased memory/storage requirements, additional training costs, and ambiguity in selecting an appropriate teacher for a given student model. Although a teacher-free distillation (self-distillation) has emerged as a promising alternative, many existing approaches still rely on architectural modifications or complex training procedures, which limit their generality and efficiency.
To address these limitations, we propose a novel framework based on teacher-free distillation that operates using a single student network without any auxiliary components, architectural modifications, or additional learnable parameters. Our approach is built on a simple yet highly effective augmentation, called intra-class patch swap augmentation. This augmentation simulates a teacher-student dynamic within a single model by generating pairs of intra-class samples with varying confidence levels, and then applying instance-to-instance distillation to align their predictive distributions. Our method is conceptually simple, model-agnostic, and easy to implement, requiring only a single augmentation function. Extensive experiments across image classification, semantic segmentation, and object detection show that our method consistently outperforms both existing self-distillation baselines and conventional teacher-based KD approaches. These results suggest that the success of self-distillation could hinge on the design of the augmentation itself. Our codes are available at https://github.com/hchoi71/Intra-class-Patch-Swap.
Authors:Tianle Gu, Zongqi Wang, Kexin Huang, Yuanqi Yao, Xiangliang Zhang, Yujiu Yang, Xiuying Chen
Abstract:
Logit-based LLM watermarking traces and verifies AI-generated content by maintaining green and red token lists and increasing the likelihood of green tokens during generation. However, it fails in low-entropy scenarios, where predictable outputs make green token selection difficult without disrupting natural text flow. Existing approaches address this by assuming access to the original LLM to calculate entropy and selectively watermark high-entropy tokens. However, these methods face two major challenges: (1) high computational costs and detection delays due to reliance on the original LLM, and (2) potential risks of model leakage. To address these limitations, we propose Invisible Entropy (IE), a watermarking paradigm designed to enhance both safety and efficiency. Instead of relying on the original LLM, IE introduces a lightweight feature extractor and an entropy tagger to predict whether the entropy of the next token is high or low. Furthermore, based on theoretical analysis, we develop a threshold navigator that adaptively sets entropy thresholds. It identifies a threshold where the watermark ratio decreases as the green token count increases, enhancing the naturalness of the watermarked text and improving detection robustness. Experiments on HumanEval and MBPP datasets demonstrate that IE reduces parameter size by 99\% while achieving performance on par with state-of-the-art methods. Our work introduces a safe and efficient paradigm for low-entropy watermarking. https://github.com/Carol-gutianle/IE https://huggingface.co/datasets/Carol0110/IE-Tagger
Authors:Yakun Zhu, Zhongzhen Huang, Linjie Mu, Yutong Huang, Wei Nie, Jiaji Liu, Shaoting Zhang, Pengfei Liu, Xiaofan Zhang
Abstract:
The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AI's diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.
Authors:Guangke Chen, Fu Song, Zhe Zhao, Xiaojun Jia, Yang Liu, Yanchen Qiao, Weizhe Zhang
Abstract:
Jailbreak attacks to Large audio-language models (LALMs) are studied recently, but they achieve suboptimal effectiveness, applicability, and practicability, particularly, assuming that the adversary can fully manipulate user prompts. In this work, we first conduct an extensive experiment showing that advanced text jailbreak attacks cannot be easily ported to end-to-end LALMs via text-to speech (TTS) techniques. We then propose AudioJailbreak, a novel audio jailbreak attack, featuring (1) asynchrony: the jailbreak audio does not need to align with user prompts in the time axis by crafting suffixal jailbreak audios; (2) universality: a single jailbreak perturbation is effective for different prompts by incorporating multiple prompts into perturbation generation; (3) stealthiness: the malicious intent of jailbreak audios will not raise the awareness of victims by proposing various intent concealment strategies; and (4) over-the-air robustness: the jailbreak audios remain effective when being played over the air by incorporating the reverberation distortion effect with room impulse response into the generation of the perturbations. In contrast, all prior audio jailbreak attacks cannot offer asynchrony, universality, stealthiness, or over-the-air robustness. Moreover, AudioJailbreak is also applicable to the adversary who cannot fully manipulate user prompts, thus has a much broader attack scenario. Extensive experiments with thus far the most LALMs demonstrate the high effectiveness of AudioJailbreak. We highlight that our work peeks into the security implications of audio jailbreak attacks against LALMs, and realistically fosters improving their security robustness. The implementation and audio samples are available at our website https://audiojailbreak.github.io/AudioJailbreak.
Authors:Zhenyu Li, Tianyi Shang, Pengjie Xu, Zhaojun Deng
Abstract:
Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.
Authors:Hao Feng, Shu Wei, Xiang Fei, Wei Shi, Yingdong Han, Lei Liao, Jinghui Lu, Binghong Wu, Qi Liu, Chunhui Lin, Jingqun Tang, Hao Liu, Can Huang
Abstract:
Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present \textit{Dolphin} (\textit{\textbf{Do}cument Image \textbf{P}arsing via \textbf{H}eterogeneous Anchor Prompt\textbf{in}g}), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin
Authors:Yibo Gao, Hangqi Zhou, Zheyao Gao, Bomin Wang, Shangqi Gao, Sihan Wang, Xiahai Zhuang
Abstract:
The pursuit of decision safety in clinical applications highlights the potential of concept-based methods in medical imaging. While these models offer active interpretability, they often suffer from concept leakages, where unintended information within soft concept representations undermines both interpretability and generalizability. Moreover, most concept-based models focus solely on local explanations (instance-level), neglecting the global decision logic (dataset-level). To address these limitations, we propose Concept Rule Learner (CRL), a novel framework to learn Boolean logical rules from binarized visual concepts. CRL employs logical layers to capture concept correlations and extract clinically meaningful rules, thereby providing both local and global interpretability. Experiments on two medical image classification tasks show that CRL achieves competitive performance with existing methods while significantly improving generalizability to out-of-distribution data. The code of our work is available at https://github.com/obiyoag/crl.
Authors:Soichiro Kumano, Hiroshi Kera, Toshihiko Yamasaki
Abstract:
Adversarial training is one of the most effective adversarial defenses, but it incurs a high computational cost. In this study, we show that transformers adversarially pretrained on diverse tasks can serve as robust foundation models and eliminate the need for adversarial training in downstream tasks. Specifically, we theoretically demonstrate that through in-context learning, a single adversarially pretrained transformer can robustly generalize to multiple unseen tasks without any additional training, i.e., without any parameter updates. This robustness stems from the model's focus on robust features and its resistance to attacks that exploit non-predictive features. Besides these positive findings, we also identify several limitations. Under certain conditions (though unrealistic), no universally robust single-layer transformers exist. Moreover, robust transformers exhibit an accuracy--robustness trade-off and require a large number of in-context demonstrations. The code is available at https://github.com/s-kumano/universally-robust-in-context-learner.
Authors:Jesper Duemose Nielsen, Karthik Gopinath, Andrew Hoopes, Adrian Dalca, Colin Magdamo, Steven Arnold, Sudeshna Das, Axel Thielscher, Juan Eugenio Iglesias, Oula Puonti
Abstract:
Surface-based cortical analysis is valuable for a variety of neuroimaging tasks, such as spatial normalization, parcellation, and gray matter (GM) thickness estimation. However, most tools for estimating cortical surfaces work exclusively on scans with at least 1 mm isotropic resolution and are tuned to a specific magnetic resonance (MR) contrast, often T1-weighted (T1w). This precludes application using most clinical MR scans, which are very heterogeneous in terms of contrast and resolution. Here, we use synthetic domain-randomized data to train the first neural network for explicit estimation of cortical surfaces from scans of any contrast and resolution, without retraining. Our method deforms a template mesh to the white matter (WM) surface, which guarantees topological correctness. This mesh is further deformed to estimate the GM surface. We compare our method to recon-all-clinical (RAC), an implicit surface reconstruction method which is currently the only other tool capable of processing heterogeneous clinical MR scans, on ADNI and a large clinical dataset (n=1,332). We show a approximately 50 % reduction in cortical thickness error (from 0.50 to 0.24 mm) with respect to RAC and better recovery of the aging-related cortical thinning patterns detected by FreeSurfer on high-resolution T1w scans. Our method enables fast and accurate surface reconstruction of clinical scans, allowing studies (1) with sample sizes far beyond what is feasible in a research setting, and (2) of clinical populations that are difficult to enroll in research studies. The code is publicly available at https://github.com/simnibs/brainnet.
Authors:Zhidan Liu, Chengtang Yao, Jiaxi Zeng, Yuwei Wu, Yunde Jia
Abstract:
In this paper, we present a multi-label stereo matching method to simultaneously estimate the depth of the transparent objects and the occluded background in transparent scenes.Unlike previous methods that assume a unimodal distribution along the disparity dimension and formulate the matching as a single-label regression problem, we propose a multi-label regression formulation to estimate multiple depth values at the same pixel in transparent scenes. To resolve the multi-label regression problem, we introduce a pixel-wise multivariate Gaussian representation, where the mean vector encodes multiple depth values at the same pixel, and the covariance matrix determines whether a multi-label representation is necessary for a given pixel. The representation is iteratively predicted within a GRU framework. In each iteration, we first predict the update step for the mean parameters and then use both the update step and the updated mean parameters to estimate the covariance matrix. We also synthesize a dataset containing 10 scenes and 89 objects to validate the performance of transparent scene depth estimation. The experiments show that our method greatly improves the performance on transparent surfaces while preserving the background information for scene reconstruction. Code is available at https://github.com/BFZD233/TranScene.
Authors:Jinzhou Li, Tianhao Wu, Jiyao Zhang, Zeyuan Chen, Haotian Jin, Mingdong Wu, Yujun Shen, Yaodong Yang, Hao Dong
Abstract:
Effectively utilizing multi-sensory data is important for robots to generalize across diverse tasks. However, the heterogeneous nature of these modalities makes fusion challenging. Existing methods propose strategies to obtain comprehensively fused features but often ignore the fact that each modality requires different levels of attention at different manipulation stages. To address this, we propose a force-guided attention fusion module that adaptively adjusts the weights of visual and tactile features without human labeling. We also introduce a self-supervised future force prediction auxiliary task to reinforce the tactile modality, improve data imbalance, and encourage proper adjustment. Our method achieves an average success rate of 93% across three fine-grained, contactrich tasks in real-world experiments. Further analysis shows that our policy appropriately adjusts attention to each modality at different manipulation stages. The videos can be viewed at https://adaptac-dex.github.io/.
Authors:Marc Kaufeld, Korbinian Moller, Alessio Gambi, Paolo Arcaini, Johannes Betz
Abstract:
Scenario-based testing using simulations is a cornerstone of Autonomous Vehicles (AVs) software validation. So far, developers needed to choose between low-fidelity 2D simulators to explore the scenario space efficiently, and high-fidelity 3D simulators to study relevant scenarios in more detail, thus reducing testing costs while mitigating the sim-to-real gap. This paper presents a novel framework that leverages multi-agent co-simulation and procedural scenario generation to support scenario-based testing across low- and high-fidelity simulators for the development of motion planning algorithms. Our framework limits the effort required to transition scenarios between simulators and automates experiment execution, trajectory analysis, and visualization. Experiments with a reference motion planner show that our framework uncovers discrepancies between the planner's intended and actual behavior, thus exposing weaknesses in planning assumptions under more realistic conditions. Our framework is available at: https://github.com/TUM-AVS/MultiDrive
Authors:Ziyang Zeng, Dun Zhang, Jiacheng Li, Panxiang Zou, Yudong Zhou, Yuqing Yang
Abstract:
This study investigates the position bias in information retrieval, where models tend to overemphasize content at the beginning of passages while neglecting semantically relevant information that appears later. To analyze the extent and impact of position bias, we introduce a new evaluation framework consisting of two position-aware retrieval benchmarks (SQuAD-PosQ, FineWeb-PosQ) and an intuitive diagnostic metric, the Position Sensitivity Index (PSI), for quantifying position bias from a worst-case perspective. We conduct a comprehensive evaluation across the full retrieval pipeline, including BM25, dense embedding models, ColBERT-style late-interaction models, and full-interaction reranker models. Our experiments show that when relevant information appears later in the passage, dense embedding models and ColBERT-style models suffer significant performance degradation (an average drop of 15.6%). In contrast, BM25 and reranker models demonstrate greater robustness to such positional variation. These findings provide practical insights into model sensitivity to the position of relevant information and offer guidance for building more position-robust retrieval systems. Code and data are publicly available at: https://github.com/NovaSearch-Team/position-bias-in-IR.
Authors:Bao-Ngoc Dao, Quang Nguyen, Luyen Ngo Dinh, Minh Le, Nam Le, Linh Ngo Van
Abstract:
Memory-based approaches have shown strong performance in Continual Relation Extraction (CRE). However, storing examples from previous tasks increases memory usage and raises privacy concerns. Recently, prompt-based methods have emerged as a promising alternative, as they do not rely on storing past samples. Despite this progress, current prompt-based techniques face several core challenges in CRE, particularly in accurately identifying task identities and mitigating catastrophic forgetting. Existing prompt selection strategies often suffer from inaccuracies, lack robust mechanisms to prevent forgetting in shared parameters, and struggle to handle both cross-task and within-task variations. In this paper, we propose WAVE++, a novel approach inspired by the connection between prefix-tuning and mixture of experts. Specifically, we introduce task-specific prompt pools that enhance flexibility and adaptability across diverse tasks while avoiding boundary-spanning risks; this design more effectively captures variations within each task and across tasks. To further refine relation classification, we incorporate label descriptions that provide richer, more global context, enabling the model to better distinguish among different relations. We also propose a training-free mechanism to improve task prediction during inference. Moreover, we integrate a generative model to consolidate prior knowledge within the shared parameters, thereby removing the need for explicit data storage. Extensive experiments demonstrate that WAVE++ outperforms state-of-the-art prompt-based and rehearsal-based methods, offering a more robust solution for continual relation extraction. Our code is publicly available at https://github.com/PiDinosauR2804/WAVE-CRE-PLUS-PLUS.
Authors:Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche, Greg Durrett, Yisong Yue, Swarat Chaudhuri
Abstract:
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
Authors:Saydul Akbar Murad, Ashim Dahal, Nick Rahimi
Abstract:
With the rapid advancement of large language models like Gemini, GPT, and others, bridging the gap between the human brain and language processing has become an important area of focus. To address this challenge, researchers have developed various models to decode EEG signals into text. However, these models still face significant performance limitations. To overcome these shortcomings, we propose a new model, R1 Translator, which aims to improve the performance of EEG-to-text decoding. The R1 Translator model combines a bidirectional LSTM encoder with a pretrained transformer-based decoder, utilizing EEG features to produce high-quality text outputs. The model processes EEG embeddings through the LSTM to capture sequential dependencies, which are then fed into the transformer decoder for effective text generation. The R1 Translator excels in ROUGE metrics, outperforming both T5 (previous research) and Brain Translator. Specifically, R1 achieves a ROUGE-1 score of 38.00% (P), which is up to 9% higher than T5 (34.89%) and 3% better than Brain (35.69%). It also leads in ROUGE-L, with a F1 score of 32.51%, outperforming T5 by 3% (29.67%) and Brain by 2% (30.38%). In terms of CER, R1 achieves a CER of 0.5795, which is 2% lower than T5 (0.5917) and 4% lower than Brain (0.6001). Additionally, R1 performs better in WER with a score of 0.7280, outperforming T5 by 4.3% (0.7610) and Brain by 3.6% (0.7553). Code is available at https://github.com/Mmurrad/EEG-To-text.
Authors:Jialong Wu, Shaofeng Yin, Ningya Feng, Mingsheng Long
Abstract:
World models predict state transitions in response to actions and are increasingly developed across diverse modalities. However, standard training objectives such as maximum likelihood estimation (MLE) often misalign with task-specific goals of world models, i.e., transition prediction metrics like accuracy or perceptual quality. In this paper, we present RLVR-World, a unified framework that leverages reinforcement learning with verifiable rewards (RLVR) to directly optimize world models for such metrics. Despite formulating world modeling as autoregressive prediction of tokenized sequences, RLVR-World evaluates metrics of decoded predictions as verifiable rewards. We demonstrate substantial performance gains on both language- and video-based world models across domains, including text games, web navigation, and robot manipulation. Our work indicates that, beyond recent advances in reasoning language models, RLVR offers a promising post-training paradigm for enhancing the utility of generative models more broadly.
Authors:Yuka Iwanaga, Masayoshi Tsuchinaga, Kosei Tanada, Yuji Nakamura, Takemitsu Mori, Takashi Yamamoto
Abstract:
Recent advancements in robotics have underscored the need for effective collaboration between humans and robots. Traditional interfaces often struggle to balance robot autonomy with human oversight, limiting their practical application in complex tasks like mobile manipulation. This study aims to develop an intuitive interface that enables a mobile manipulator to autonomously interpret user-provided sketches, enhancing user experience while minimizing burden. We implemented a web-based application utilizing machine learning algorithms to process sketches, making the interface accessible on mobile devices for use anytime, anywhere, by anyone. In the first validation, we examined natural sketches drawn by users for 27 selected manipulation and navigation tasks, gaining insights into trends related to sketch instructions. The second validation involved comparative experiments with five grasping tasks, showing that the sketch interface reduces workload and enhances intuitiveness compared to conventional axis control interfaces. These findings suggest that the proposed sketch interface improves the efficiency of mobile manipulators and opens new avenues for integrating intuitive human-robot collaboration in various applications.
Authors:Qifeng Cai, Hao Liang, Hejun Dong, Meiyi Qiang, Ruichuan An, Zhaoyang Han, Zhengzhou Zhu, Bin Cui, Wentao Zhang
Abstract:
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
Authors:Wanjing Huang, Weixiang Yan, Zhen Zhang, Ambuj Singh
Abstract:
Large Language Models (LLMs) demonstrate strong reasoning and task planning capabilities but remain fundamentally limited in physical interaction modeling. Existing approaches integrate perception via Vision-Language Models (VLMs) or adaptive decision-making through Reinforcement Learning (RL), but they fail to capture dynamic object interactions or require task-specific training, limiting their real-world applicability. We introduce APEX (Anticipatory Physics-Enhanced Execution), a framework that equips LLMs with physics-driven foresight for real-time task planning. APEX constructs structured graphs to identify and model the most relevant dynamic interactions in the environment, providing LLMs with explicit physical state updates. Simultaneously, APEX provides low-latency forward simulations of physically feasible actions, allowing LLMs to select optimal strategies based on predictive outcomes rather than static observations. We evaluate APEX on three benchmarks designed to assess perception, prediction, and decision-making: (1) Physics Reasoning Benchmark, testing causal inference and object motion prediction; (2) Tetris, evaluating whether physics-informed prediction enhances decision-making performance in long-horizon planning tasks; (3) Dynamic Obstacle Avoidance, assessing the immediate integration of perception and action feasibility analysis. APEX significantly outperforms standard LLMs and VLM-based models, demonstrating the necessity of explicit physics reasoning for bridging the gap between language-based intelligence and real-world task execution. The source code and experiment setup are publicly available at https://github.com/hwj20/APEX_EXP .
Authors:Yanheng He, Jiahe Jin, Pengfei Liu
Abstract:
Scaling up high-quality trajectory data has long been a critical bottleneck for developing human-like computer use agents. We introduce PC Agent-E, an efficient agent training framework that significantly reduces reliance on large-scale human demonstrations. Starting with just 312 human-annotated computer use trajectories, we further improved data quality by synthesizing diverse action decisions with Claude 3.7 Sonnet. Trained on these enriched trajectories, our PC Agent-E model achieved a remarkable 141% relative improvement, surpassing the strong Claude 3.7 Sonnet with extended thinking on WindowsAgentArena-V2, an improved benchmark we also released. Furthermore, PC Agent-E demonstrates strong generalizability to different operating systems on OSWorld. Our findings suggest that strong computer use capabilities can be stimulated from a small amount of high-quality trajectory data.
Authors:Ruihan Liu, Xiaoyi Wu, Xijun Chen, Liang Hu, Yunjiang Lou
Abstract:
A comprehensive understanding of 3D scenes is essential for autonomous vehicles (AVs), and among various perception tasks, occupancy estimation plays a central role by providing a general representation of drivable and occupied space. However, most existing occupancy estimation methods rely on LiDAR or cameras, which perform poorly in degraded environments such as smoke, rain, snow, and fog. In this paper, we propose 4D-ROLLS, the first weakly supervised occupancy estimation method for 4D radar using the LiDAR point cloud as the supervisory signal. Specifically, we introduce a method for generating pseudo-LiDAR labels, including occupancy queries and LiDAR height maps, as multi-stage supervision to train the 4D radar occupancy estimation model. Then the model is aligned with the occupancy map produced by LiDAR, fine-tuning its accuracy in occupancy estimation. Extensive comparative experiments validate the exceptional performance of 4D-ROLLS. Its robustness in degraded environments and effectiveness in cross-dataset training are qualitatively demonstrated. The model is also seamlessly transferred to downstream tasks BEV segmentation and point cloud occupancy prediction, highlighting its potential for broader applications. The lightweight network enables 4D-ROLLS model to achieve fast inference speeds at about 30 Hz on a 4060 GPU. The code of 4D-ROLLS will be made available at https://github.com/CLASS-Lab/4D-ROLLS.
Authors:Chengyu Shen, Zhen Hao Wong, Runming He, Hao Liang, Meiyi Qiang, Zimo Meng, Zhengyang Zhao, Bohan Zeng, Zhengzhou Zhu, Bin Cui, Wentao Zhang
Abstract:
Large Language Models (LLMs) have recently achieved remarkable progress in mathematical reasoning. To enable such capabilities, many existing works distill strong reasoning models into long chains of thought or design algorithms to construct high-quality math QA data for training. However, these efforts primarily focus on generating correct reasoning paths and answers, while largely overlooking the validity of the questions themselves. In this work, we propose Math Question Verification (MathQ-Verify), a novel five-stage pipeline designed to rigorously filter ill-posed or under-specified math problems. MathQ-Verify first performs format-level validation to remove redundant instructions and ensure that each question is syntactically well-formed. It then formalizes each question, decomposes it into atomic conditions, and verifies them against mathematical definitions. Next, it detects logical contradictions among these conditions, followed by a goal-oriented completeness check to ensure the question provides sufficient information for solving. To evaluate this task, we use existing benchmarks along with an additional dataset we construct, containing 2,147 math questions with diverse error types, each manually double-validated. Experiments show that MathQ-Verify achieves state-of-the-art performance across multiple benchmarks, improving the F1 score by up to 25 percentage points over the direct verification baseline. It further attains approximately 90% precision and 63% recall through a lightweight model voting scheme. MathQ-Verify offers a scalable and accurate solution for curating reliable mathematical datasets, reducing label noise and avoiding unnecessary computation on invalid questions. Our code and data are available at https://github.com/scuuy/MathQ-Verify.
Authors:Yingwei Zhang, Ke Bu, Zhuoran Zhuang, Tao Xie, Yao Yu, Dong Li, Yang Guo, Detao Lv
Abstract:
The past decades witness the significant advancements in time series forecasting (TSF) across various real-world domains, including e-commerce and disease spread prediction. However, TSF is usually constrained by the uncertainty dilemma of predicting future data with limited past observations. To settle this question, we explore the use of Cross-Future Behavior (CFB) in TSF, which occurs before the current time but takes effect in the future. We leverage CFB features and propose the CRoss-Future Behavior Awareness based Time Series Forecasting method (CRAFT). The core idea of CRAFT is to utilize the trend of cross-future behavior to mine the trend of time series data to be predicted. Specifically, to settle the sparse and partial flaws of cross-future behavior, CRAFT employs the Koopman Predictor Module to extract the key trend and the Internal Trend Mining Module to supplement the unknown area of the cross-future behavior matrix. Then, we introduce the External Trend Guide Module with a hierarchical structure to acquire more representative trends from higher levels. Finally, we apply the demand-constrained loss to calibrate the distribution deviation of prediction results. We conduct experiments on real-world dataset. Experiments on both offline large-scale dataset and online A/B test demonstrate the effectiveness of CRAFT. Our dataset and code is available at https://github.com/CRAFTinTSF/CRAFT.
Authors:Ji Zhang, Shihan Wu, Xu Luo, Hao Wu, Lianli Gao, Heng Tao Shen, Jingkuan Song
Abstract:
Leveraging pretrained Vision-Language Models (VLMs) to map language instruction and visual observations to raw low-level actions, Vision-Language-Action models (VLAs) hold great promise for achieving general-purpose robotic systems. Despite their advancements, existing VLAs tend to spuriously correlate task-irrelevant visual features with actions, limiting their generalization capacity beyond the training data. To tackle this challenge, we propose Intrinsic Spatial Reasoning (InSpire), a simple yet effective approach that mitigates the adverse effects of spurious correlations by boosting the spatial reasoning ability of VLAs. Specifically, InSpire redirects the VLA's attention to task-relevant factors by prepending the question "In which direction is the [object] relative to the robot?" to the language instruction and aligning the answer "right/left/up/down/front/back/grasped" and predicted actions with the ground-truth. Notably, InSpire can be used as a plugin to enhance existing autoregressive VLAs, requiring no extra training data or interaction with other large models. Extensive experimental results in both simulation and real-world environments demonstrate the effectiveness and flexibility of our approach. Our code, pretrained models and demos are publicly available at: https://Koorye.github.io/proj/Inspire.
Authors:Ziqian Wang, Xianjun Xia, Xinfa Zhu, Lei Xie
Abstract:
The text generation paradigm for audio tasks has opened new possibilities for unified audio understanding. However, existing models face significant challenges in achieving a comprehensive understanding across diverse audio types, such as speech, general audio events, and music. Furthermore, their exclusive reliance on cross-entropy loss for alignment often falls short, as it treats all tokens equally and fails to account for redundant audio features, leading to weaker cross-modal alignment. To deal with the above challenges, this paper introduces U-SAM, an advanced audio language model that integrates specialized encoders for speech, audio, and music with a pre-trained large language model (LLM). U-SAM employs a Mixture of Experts (MoE) projector for task-aware feature fusion, dynamically routing and integrating the domain-specific encoder outputs. Additionally, U-SAM incorporates a Semantic-Aware Contrastive Loss Module, which explicitly identifies redundant audio features under language supervision and rectifies their semantic and spectral representations to enhance cross-modal alignment. Extensive experiments demonstrate that U-SAM consistently outperforms both specialized models and existing audio language models across multiple benchmarks. Moreover, it exhibits emergent capabilities on unseen tasks, showcasing its generalization potential. Code is available (https://github.com/Honee-W/U-SAM/).
Authors:Jiwon Song, Dongwon Jo, Yulhwa Kim, Jae-Joon Kim
Abstract:
Recent reasoning-focused language models achieve high accuracy by generating lengthy intermediate reasoning paths before producing final answers. While this approach is effective in solving problems that require logical thinking, long reasoning paths significantly increase memory usage and throughput of token generation, limiting the practical deployment of such models. We propose Reasoning Path Compression (RPC), a training-free method that accelerates inference by leveraging the semantic sparsity of reasoning paths. RPC periodically compresses the KV cache by retaining KV cache that receive high importance score, which are computed using a selector window composed of recently generated queries. Experiments show that RPC improves generation throughput of QwQ-32B by up to 1.60$\times$ compared to the inference with full KV cache, with an accuracy drop of 1.2% on the AIME 2024 benchmark. Our findings demonstrate that semantic sparsity in reasoning traces can be effectively exploited for compression, offering a practical path toward efficient deployment of reasoning LLMs. Our code is available at https://github.com/jiwonsong-dev/ReasoningPathCompression.
Authors:Tian Sun, Yuqi Chen, Baihua Zheng, Weiwei Sun
Abstract:
In real-world applications, GPS trajectories often suffer from low sampling rates, with large and irregular intervals between consecutive GPS points. This sparse characteristic presents challenges for their direct use in GPS-based systems. This paper addresses the task of map-constrained trajectory recovery, aiming to enhance trajectory sampling rates of GPS trajectories. Previous studies commonly adopt a sequence-to-sequence framework, where an encoder captures the trajectory patterns and a decoder reconstructs the target trajectory. Within this framework, effectively representing the road network and extracting relevant trajectory features are crucial for overall performance. Despite advancements in these models, they fail to fully leverage the complex spatio-temporal dynamics present in both the trajectory and the road network.
To overcome these limitations, we categorize the spatio-temporal dynamics of trajectory data into two distinct aspects: spatial-temporal traffic dynamics and trajectory dynamics. Furthermore, We propose TedTrajRec, a novel method for trajectory recovery. To capture spatio-temporal traffic dynamics, we introduce PD-GNN, which models periodic patterns and learns topologically aware dynamics concurrently for each road segment. For spatio-temporal trajectory dynamics, we present TedFormer, a time-aware Transformer that incorporates temporal dynamics for each GPS location by integrating closed-form neural ordinary differential equations into the attention mechanism. This allows TedFormer to effectively handle irregularly sampled data. Extensive experiments on three real-world datasets demonstrate the superior performance of TedTrajRec. The code is publicly available at https://github.com/ysygMhdxw/TEDTrajRec/.
Authors:Zhenyu Bao, Qing Li, Guibiao Liao, Zhongyuan Zhao, Kanglin Liu
Abstract:
3D Gaussian Splatting (3DGS) has gained significant attention in streamable dynamic novel view synthesis (DNVS) for its photorealistic rendering capability and computational efficiency. Despite much progress in improving rendering quality and optimization strategies, 3DGS-based streamable dynamic scene reconstruction still suffers from flickering artifacts and storage inefficiency, and struggles to model the emerging objects. To tackle this, we introduce MGStream which employs the motion-related 3D Gaussians (3DGs) to reconstruct the dynamic and the vanilla 3DGs for the static. The motion-related 3DGs are implemented according to the motion mask and the clustering-based convex hull algorithm. The rigid deformation is applied to the motion-related 3DGs for modeling the dynamic, and the attention-based optimization on the motion-related 3DGs enables the reconstruction of the emerging objects. As the deformation and optimization are only conducted on the motion-related 3DGs, MGStream avoids flickering artifacts and improves the storage efficiency. Extensive experiments on real-world datasets N3DV and MeetRoom demonstrate that MGStream surpasses existing streaming 3DGS-based approaches in terms of rendering quality, training/storage efficiency and temporal consistency. Our code is available at: https://github.com/pcl3dv/MGStream.
Authors:Matthew Raffel, Lizhong Chen
Abstract:
The Kolmogorov-Arnold Network (KAN) has been gaining popularity as an alternative to the multi-layer perceptron (MLP) with its increased expressiveness and interpretability. However, the KAN can be orders of magnitude slower due to its increased computational cost and training instability, limiting its applicability to larger-scale tasks. Recently, the Kolmogorov-Arnold Transformer (KAT) has been proposed, which can achieve FLOPs similar to the traditional Transformer with MLPs by leveraging Group-Rational KAN (GR-KAN). Unfortunately, despite the comparable FLOPs, our characterizations reveal that the KAT is still 123x slower in training speeds, indicating that there are other performance bottlenecks beyond FLOPs. In this paper, we conduct a series of experiments to understand the root cause of the slowdown in KAT. We uncover that the slowdown can be isolated to memory stalls and, more specifically, in the backward pass of GR-KAN caused by inefficient gradient accumulation. To address this memory bottleneck, we propose FlashKAT, which builds on our restructured kernel that minimizes gradient accumulation with atomic adds and accesses to slow memory. Evaluations demonstrate that FlashKAT can achieve a training speedup of 86.5x compared with the state-of-the-art KAT, while reducing rounding errors in the coefficient gradients. Our code is available at https://github.com/OSU-STARLAB/FlashKAT.
Authors:Guoheng Sun, Ziyao Wang, Bowei Tian, Meng Liu, Zheyu Shen, Shwai He, Yexiao He, Wanghao Ye, Yiting Wang, Ang Li
Abstract:
As post-training techniques evolve, large language models (LLMs) are increasingly augmented with structured multi-step reasoning abilities, often optimized through reinforcement learning. These reasoning-enhanced models outperform standard LLMs on complex tasks and now underpin many commercial LLM APIs. However, to protect proprietary behavior and reduce verbosity, providers typically conceal the reasoning traces while returning only the final answer. This opacity introduces a critical transparency gap: users are billed for invisible reasoning tokens, which often account for the majority of the cost, yet have no means to verify their authenticity. This opens the door to token count inflation, where providers may overreport token usage or inject synthetic, low-effort tokens to inflate charges. To address this issue, we propose CoIn, a verification framework that audits both the quantity and semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token embedding fingerprints to check token counts, and uses embedding-based relevance matching to detect fabricated reasoning content. Experiments demonstrate that CoIn, when deployed as a trusted third-party auditor, can effectively detect token count inflation with a success rate reaching up to 94.7%, showing the strong ability to restore billing transparency in opaque LLM services. The dataset and code are available at https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn.
Authors:Chenning Yu, Sicun Gao
Abstract:
We introduce a novel resampling criterion using lift scores, for improving compositional generation in diffusion models. By leveraging the lift scores, we evaluate whether generated samples align with each single condition and then compose the results to determine whether the composed prompt is satisfied. Our key insight is that lift scores can be efficiently approximated using only the original diffusion model, requiring no additional training or external modules. We develop an optimized variant that achieves relatively lower computational overhead during inference while maintaining effectiveness. Through extensive experiments, we demonstrate that lift scores significantly improved the condition alignment for compositional generation across 2D synthetic data, CLEVR position tasks, and text-to-image synthesis. Our code is available at http://rainorangelemon.github.io/complift.
Authors:Etienne Gauthier, Francis Bach, Michael I. Jordan
Abstract:
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ up to a first-order Taylor approximation for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
Authors:Zihan Chen, Jiakang Li, Minghao Guo, Henry Chen, Zirui Li, Joel Bierman, Yipeng Huang, Huiyang Zhou, Yuan Liu, Eddy Z. Zhang
Abstract:
This paper introduces Genesis, the first compiler designed to support Hamiltonian Simulation on hybrid continuous-variable (CV) and discrete-variable (DV) quantum computing systems. Genesis is a two-level compilation system. At the first level, it decomposes an input Hamiltonian into basis gates using the native instruction set of the target hybrid CV-DV quantum computer. At the second level, it tackles the mapping and routing of qumodes/qubits to implement long-range interactions for the gates decomposed from the first level. Rather than a typical implementation that relies on SWAP primitives similar to qubit-based (or DV-only) systems, we propose an integrated design of connectivity-aware gate synthesis and beamsplitter SWAP insertion tailored for hybrid CV-DV systems. We also introduce an OpenQASM-like domain-specific language (DSL) named CVDV-QASM to represent Hamiltonian in terms of Pauli-exponentials and basic gate sequences from the hybrid CV-DV gate set. Genesis has successfully compiled several important Hamiltonians, including the Bose-Hubbard model, $\mathbb{Z}_2-$Higgs model, Hubbard-Holstein model, Heisenberg model and Electron-vibration coupling Hamiltonians, which are critical in domains like quantum field theory, condensed matter physics, and quantum chemistry. Our implementation is available at Genesis-CVDV-Compiler(https://github.com/ruadapt/Genesis-CVDV-Compiler).
Authors:Barkin Dagda, Muhammad Awais, Saber Fallah
Abstract:
Cross-view geo-localisation identifies coarse geographical position of an automated vehicle by matching a ground-level image to a geo-tagged satellite image from a database. Despite the advancements in Cross-view geo-localisation, significant challenges still persist such as similar looking scenes which makes it challenging to find the correct match as the top match. Existing approaches reach high recall rates but they still fail to rank the correct image as the top match. To address this challenge, this paper proposes GeoVLM, a novel approach which uses the zero-shot capabilities of vision language models to enable cross-view geo-localisation using interpretable cross-view language descriptions. GeoVLM is a trainable reranking approach which improves the best match accuracy of cross-view geo-localisation. GeoVLM is evaluated on standard benchmark VIGOR and University-1652 and also through real-life driving environments using Cross-View United Kingdom, a new benchmark dataset introduced in this paper. The results of the paper show that GeoVLM improves retrieval performance of cross-view geo-localisation compared to the state-of-the-art methods with the help of explainable natural language descriptions. The code is available at https://github.com/CAV-Research-Lab/GeoVLM
Authors:Fynn Fromme, Hans Harder, Christine Allen-Blanchette, Sebastian Peitz
Abstract:
The use of machine learning for modeling, understanding, and controlling large-scale physics systems is quickly gaining in popularity, with examples ranging from electromagnetism over nuclear fusion reactors and magneto-hydrodynamics to fluid mechanics and climate modeling. These systems - governed by partial differential equations - present unique challenges regarding the large number of degrees of freedom and the complex dynamics over many scales both in space and time, and additional measures to improve accuracy and sample efficiency are highly desirable. We present an end-to-end equivariant surrogate model consisting of an equivariant convolutional autoencoder and an equivariant convolutional LSTM using $G$-steerable kernels. As a case study, we consider the three-dimensional Rayleigh-Bénard convection, which describes the buoyancy-driven fluid flow between a heated bottom and a cooled top plate. While the system is E(2)-equivariant in the horizontal plane, the boundary conditions break the translational equivariance in the vertical direction. Our architecture leverages vertically stacked layers of $D_4$-steerable kernels, with additional partial kernel sharing in the vertical direction for further efficiency improvement. We demonstrate significant gains in sample and parameter efficiency, as well as a better scaling to more complex dynamics. The accompanying code is available under https://github.com/FynnFromme/equivariant-rb-forecasting.
Authors:Yiru Jiao, Simeon C. Calvert, Sander van Cranenburgh, Hans van Lint
Abstract:
Accurately and proactively alerting drivers or automated systems to emerging collisions is crucial for road safety, particularly in highly interactive and complex urban environments. However, existing approaches to identifying potential collisions either require labour-intensive annotation of sparse risk, struggle to consider varying contextual factors, or are only useful in specific scenarios. To address these limits, this study introduces the Generalised Surrogate Safety Measure (GSSM), a new data-driven approach that learns collision risk exclusively from naturalistic driving without the need for crash or risk labels. GSSM captures the patterns of normal driving and estimates the extent to which a traffic interaction deviates from the norm towards an unsafe state. Diverse data from naturalistic driving, including motion kinematics, weather, lighting, etc., are used to train multiple GSSMs, which are tested with 2,591 reconstructed real-world crashes and near-crashes. These test events are also released here as the largest dataset of its kind to date. A basic GSSM using only instantaneous motion kinematics achieves an area under the precision-recall curve of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions. Additional interaction patterns and contextual factors provide further performance gains. Across various types of collision risk scenarios (such as rear-end, merging, and turning interactions), the accuracy and timeliness of GSSM consistently outperforms existing baselines. GSSM therefore establishes a scalable, context-aware, and generalisable foundation for proactively quantifying collision risk in traffic interactions. This can support and facilitate autonomous driving systems, traffic safety assessment, and road emergency management. Code and experiment data are openly accessible at https://github.com/Yiru-Jiao/GSSM.
Authors:Pengxin Guo, Yinong Wang, Wei Li, Mengting Liu, Ming Li, Jinkai Zheng, Liangqiong Qu
Abstract:
LLM pruning has emerged as a promising technology for compressing LLMs, enabling their deployment on resource-limited devices. However, current methodologies typically require access to public calibration samples, which can be challenging to obtain in privacy-sensitive domains. To address this issue, we introduce FedPrLLM, a comprehensive federated pruning framework designed for the privacy-preserving compression of LLMs. In FedPrLLM, each client only needs to calculate a pruning mask matrix based on its local calibration data and share it with the server to prune the global model. This approach allows for collaborative pruning of the global model with the knowledge of each client while maintaining local data privacy. Additionally, we conduct extensive experiments to explore various possibilities within the FedPrLLM framework, including different comparison groups, pruning strategies, and the decision to scale weights. Our extensive evaluation reveals that one-shot pruning with layer comparison and no weight scaling is the optimal choice within the FedPrLLM framework. We hope our work will help guide future efforts in pruning LLMs in privacy-sensitive fields. Our code is available at https://github.com/Pengxin-Guo/FedPrLLM.
Authors:Jessica Foo, Pradyumna Shyama Prasad, Shaun Khoo
Abstract:
While the capabilities of large language models (LLMs) have progressed significantly, their use in high-stakes applications have been limited due to risks of hallucination. One key approach in reducing hallucination is retrieval-augmented generation (RAG), but even in such setups, LLMs may still hallucinate when presented with questions outside of the knowledge base. Such behavior is unacceptable in high-stake applications where LLMs are expected to abstain from answering queries it does not have sufficient context on. In this work, we present a novel methodology for systematically evaluating out-of-knowledge base (OOKB) robustness of LLMs (whether LLMs know or do not know) in the RAG setting, without the need for manual annotation of gold standard answers. We implement our methodology in knowornot, an open-source library that enables users to develop their own customized evaluation data and pipelines for OOKB robustness. knowornot comprises four main features. Firstly, it provides a unified, high-level API that streamlines the process of setting up and running robustness benchmarks. Secondly, its modular architecture emphasizes extensibility and flexibility, allowing users to easily integrate their own LLM clients and RAG settings. Thirdly, its rigorous data modeling design ensures experiment reproducibility, reliability and traceability. Lastly, it implements a comprehensive suite of tools for users to customize their pipelines. We demonstrate the utility of knowornot by developing a challenging benchmark, PolicyBench, which spans four Question-Answer (QA) chatbots on government policies, and analyze its OOKB robustness. The source code of knowornot is available https://github.com/govtech-responsibleai/KnowOrNot.
Authors:Rodrigo Fritz, Pablo Suárez-Serrato, Victor Mijangos, Anayanzi D. Martinez-Hernandez, Eduardo Ivan Velazquez Richards
Abstract:
We present EuLearn, the first surface datasets equitably representing a diversity of topological types. We designed our embedded surfaces of uniformly varying genera relying on random knots, thus allowing our surfaces to knot with themselves. EuLearn contributes new topological datasets of meshes, point clouds, and scalar fields in 3D. We aim to facilitate the training of machine learning systems that can discern topological features. We experimented with specific emblematic 3D neural network architectures, finding that their vanilla implementations perform poorly on genus classification. To enhance performance, we developed a novel, non-Euclidean, statistical sampling method adapted to graph and manifold data. We also introduce adjacency-informed adaptations of PointNet and Transformer architectures that rely on our non-Euclidean sampling strategy. Our results demonstrate that incorporating topological information into deep learning workflows significantly improves performance on these otherwise challenging EuLearn datasets.
Authors:Dan Ofer, Michal Linial, Dafna Shahaf
Abstract:
Finding interesting phenomena is the core of scientific discovery, but it is a manual, ill-defined concept. We present an integrative pipeline for automating the discovery of interesting simple hypotheses (feature-target relations with effect direction and a potential underlying mechanism) in structured biomedical data. The pipeline combines machine learning, knowledge graphs, literature search and Large Language Models. We formalize "interestingness" as a combination of novelty, utility and plausibility. On 8 major diseases from the UK Biobank, our pipeline consistently recovers risk factors years before their appearance in the literature. 40--53% of our top candidates were validated as interesting, compared to 0--7% for a SHAP-based baseline. Overall, 28% of 109 candidates were interesting to medical experts. The pipeline addresses the challenge of operationalizing "interestingness" scalably and for any target. We release data and code: https://github.com/LinialLab/InterFeat
Authors:Zhipeng Hou, Junyi Tang, Yipeng Wang
Abstract:
Recent advancements in Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) have demonstrated tremendous potential in diverse task scenarios. Nonetheless, existing agentic systems typically rely on predefined agent-role design spaces and static communication structures, limiting their adaptability as well as flexibility in complex interaction environments and leading to subpar performance on highly specialized and expert-level tasks. To address these issues, we introduce HALO, a multi-agent collaboration framework based on a hierarchical reasoning architecture. Specifically, we incorporate a high-level planning agent for task decomposition, mid-level role-design agents for subtask-specific agent instantiation, and low-level inference agents for subtask execution. Particularly, subtask execution is reformulated as a structured workflow search problem, where Monte Carlo Tree Search (MCTS) systematically explores the agentic action space to construct optimal reasoning trajectories. Additionally, as the majority of users lack expertise in prompt engineering, we leverage an Adaptive Prompt Refinement module to transform raw queries into task-specific prompts. Empirical evaluations on Code Generation (HumanEval), General Reasoning (MMLU), and Arithmetic Reasoning (MATH) benchmark datasets highlight the effectiveness of HALO, yielding a 14.4% average improvement over state-of-the-art baselines. Notably, HALO achieves up to 13.3% performance gain on the Moral Scenarios subject in the MMLU benchmark and up to 19.6% performance gain on the Algebra subarea in the MATH benchmark, indicating its advanced proficiency in tackling highly specialized and expert-level tasks. The code repository is available at https://github.com/23japhone/HALO.
Authors:Khanh-Tung Tran, Barry O'Sullivan, Hoang D. Nguyen
Abstract:
Recent advances in Large Language Models (LLMs) have demonstrated promising knowledge and reasoning abilities, yet their performance in multilingual and low-resource settings remains underexplored. Existing benchmarks often exhibit cultural bias, restrict evaluation to text-only, rely on multiple-choice formats, and, more importantly, are limited for extremely low-resource languages. To address these gaps, we introduce IRLBench, presented in parallel English and Irish, which is considered definitely endangered by UNESCO. Our benchmark consists of 12 representative subjects developed from the 2024 Irish Leaving Certificate exams, enabling fine-grained analysis of model capabilities across domains. By framing the task as long-form generation and leveraging the official marking scheme, it does not only support a comprehensive evaluation of correctness but also language fidelity. Our extensive experiments of leading closed-source and open-source LLMs reveal a persistent performance gap between English and Irish, in which models produce valid Irish responses less than 80\% of the time, and answer correctly 55.8\% of the time compared to 76.2\% in English for the best-performing model. We release IRLBench (https://huggingface.co/datasets/ReliableAI/IRLBench) and an accompanying evaluation codebase (https://github.com/ReML-AI/IRLBench) to enable future research on robust, culturally aware multilingual AI development.
Authors:Claudius Kienle, Benjamin Alt, Oleg Arenz, Jan Peters
Abstract:
Large Language Models (LLMs) enable planning from natural language instructions using implicit world knowledge, but often produce flawed plans that require refinement. Instead of directly predicting plans, recent methods aim to learn a problem domain that can be solved for different goal states using classical planners. However, these approaches require significant human feedback to obtain useful models. We address this shortcoming by learning hierarchical domains, where low-level predicates and actions are composed into higher-level counterparts, and by leveraging simulation to validate their preconditions and effects. This hierarchical approach is particularly powerful for long-horizon planning, where LLM-based planning approaches typically struggle. Furthermore, we introduce a central error reasoner to ensure consistency among the different planning levels. Evaluation on two challenging International Planning Competition (IPC) domains and a long-horizon robot manipulation task demonstrates higher planning success rates than state-of-the-art domain synthesis and LLM-modulo planning methods, while constructing high-quality models of the domain. Resources, videos and detailed experiment results are available at https://claudius-kienle.github.io/lodge/.
Authors:Xingyuan Lu, Yuxi Liu, Dongyu Zhang, Zhiyao Wu, Jing Ren, Feng Xia
Abstract:
Metaphors play a pivotal role in expressing emotions, making them crucial for emotional intelligence. The advent of multimodal data and widespread communication has led to a proliferation of multimodal metaphors, amplifying the complexity of emotion classification compared to single-mode scenarios. However, the scarcity of research on constructing multimodal metaphorical fine-grained emotion datasets hampers progress in this domain. Moreover, existing studies predominantly focus on English, overlooking potential variations in emotional nuances across languages. To address these gaps, we introduce a multimodal dataset in Chinese comprising 5,000 text-image pairs of metaphorical advertisements. Each entry is meticulously annotated for metaphor occurrence, domain relations and fine-grained emotion classification encompassing joy, love, trust, fear, sadness, disgust, anger, surprise, anticipation, and neutral. Our dataset is publicly accessible (https://github.com/DUTIR-YSQ/EmoMeta), facilitating further advancements in this burgeoning field.
Authors:Avinash Patil, Siru Tao, Amardeep Gedhu
Abstract:
Suicide prevention remains a critical public health challenge. While online platforms such as Reddit's r/SuicideWatch have historically provided spaces for individuals to express suicidal thoughts and seek community support, the advent of large language models (LLMs) introduces a new paradigm-where individuals may begin disclosing ideation to AI systems instead of humans. This study evaluates the capability of LLMs to perform automated suicide risk assessment using the Columbia-Suicide Severity Rating Scale (C-SSRS). We assess the zero-shot performance of six models-including Claude, GPT, Mistral, and LLaMA-in classifying posts across a 7-point severity scale (Levels 0-6). Results indicate that Claude and GPT closely align with human annotations, while Mistral achieves the lowest ordinal prediction error. Most models exhibit ordinal sensitivity, with misclassifications typically occurring between adjacent severity levels. We further analyze confusion patterns, misclassification sources, and ethical considerations, underscoring the importance of human oversight, transparency, and cautious deployment. Full code and supplementary materials are available at https://github.com/av9ash/llm_cssrs_code.
Authors:Xiaoyuan Liu, Tian Liang, Zhiwei He, Jiahao Xu, Wenxuan Wang, Pinjia He, Zhaopeng Tu, Haitao Mi, Dong Yu
Abstract:
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.
Authors:Abhay Deshpande, Yuquan Deng, Arijit Ray, Jordi Salvador, Winson Han, Jiafei Duan, Kuo-Hao Zeng, Yuke Zhu, Ranjay Krishna, Rose Hendrix
Abstract:
We present GrasMolmo, a generalizable open-vocabulary task-oriented grasping (TOG) model. GraspMolmo predicts semantically appropriate, stable grasps conditioned on a natural language instruction and a single RGB-D frame. For instance, given "pour me some tea", GraspMolmo selects a grasp on a teapot handle rather than its body. Unlike prior TOG methods, which are limited by small datasets, simplistic language, and uncluttered scenes, GraspMolmo learns from PRISM, a novel large-scale synthetic dataset of 379k samples featuring cluttered environments and diverse, realistic task descriptions. We fine-tune the Molmo visual-language model on this data, enabling GraspMolmo to generalize to novel open-vocabulary instructions and objects. In challenging real-world evaluations, GraspMolmo achieves state-of-the-art results, with a 70% prediction success on complex tasks, compared to the 35% achieved by the next best alternative. GraspMolmo also successfully demonstrates the ability to predict semantically correct bimanual grasps zero-shot. We release our synthetic dataset, code, model, and benchmarks to accelerate research in task-semantic robotic manipulation, which, along with videos, are available at https://abhaybd.github.io/GraspMolmo/.
Authors:Ruoyu Wang, Yi Ma, Shenghua Gao
Abstract:
Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.
Authors:Lingxiao Du, Fanqing Meng, Zongkai Liu, Zhixiang Zhou, Ping Luo, Qiaosheng Zhang, Wenqi Shao
Abstract:
While Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language understanding, they still struggle with complex multi-step reasoning, often producing logically inconsistent or partially correct solutions. A key limitation lies in the lack of fine-grained supervision over intermediate reasoning steps. To address this, we propose MM-PRM, a process reward model trained within a fully automated, scalable framework. We first build MM-Policy, a strong multimodal model trained on diverse mathematical reasoning data. Then, we construct MM-K12, a curated dataset of 10,000 multimodal math problems with verifiable answers, which serves as seed data. Leveraging a Monte Carlo Tree Search (MCTS)-based pipeline, we generate over 700k step-level annotations without human labeling. The resulting PRM is used to score candidate reasoning paths in the Best-of-N inference setup and achieves significant improvements across both in-domain (MM-K12 test set) and out-of-domain (OlympiadBench, MathVista, etc.) benchmarks. Further analysis confirms the effectiveness of soft labels, smaller learning rates, and path diversity in optimizing PRM performance. MM-PRM demonstrates that process supervision is a powerful tool for enhancing the logical robustness of multimodal reasoning systems. We release all our codes and data at https://github.com/ModalMinds/MM-PRM.
Authors:Liang Chen, Hongcheng Gao, Tianyu Liu, Zhiqi Huang, Flood Sung, Xinyu Zhou, Yuxin Wu, Baobao Chang
Abstract:
Vision-Language Models (VLMs) excel in many direct multimodal tasks but struggle to translate this prowess into effective decision-making within interactive, visually rich environments like games. This ``knowing-doing'' gap significantly limits their potential as autonomous agents, as leading VLMs often performing badly in simple games. To address this, we introduce VLM-Gym, a curated reinforcement learning (RL) environment featuring diverse visual games with unified interfaces and adjustable, compositional difficulty, specifically designed for scalable multi-game parallel training. Leveraging VLM-Gym, we train G0 models using pure RL-driven self-evolution, which demonstrate emergent perception and reasoning patterns. To further mitigate challenges arising from game diversity, we develop G1 models. G1 incorporates a perception-enhanced cold start prior to RL fine-tuning. Our resulting G1 models consistently surpass their teacher across all games and outperform leading proprietary models like Claude-3.7-Sonnet-Thinking. Systematic analysis reveals an intriguing finding: perception and reasoning abilities mutually bootstrap each other throughout the RL training process. Source code including VLM-Gym and RL training are released at https://github.com/chenllliang/G1 to foster future research in advancing VLMs as capable interactive agents.
Authors:Zhuozhao Hu, Kaishen Yuan, Xin Liu, Zitong Yu, Yuan Zong, Jingang Shi, Huanjing Yue, Jingyu Yang
Abstract:
Facial Emotion Analysis (FEA) plays a crucial role in visual affective computing, aiming to infer a person's emotional state based on facial data. Scientifically, facial expressions (FEs) result from the coordinated movement of facial muscles, which can be decomposed into specific action units (AUs) that provide detailed emotional insights. However, traditional methods often struggle with limited interpretability, constrained generalization and reasoning abilities. Recently, Multimodal Large Language Models (MLLMs) have shown exceptional performance in various visual tasks, while they still face significant challenges in FEA due to the lack of specialized datasets and their inability to capture the intricate relationships between FEs and AUs. To address these issues, we introduce a novel FEA Instruction Dataset that provides accurate and aligned FE and AU descriptions and establishes causal reasoning relationships between them, followed by constructing a new benchmark, FEABench. Moreover, we propose FEALLM, a novel MLLM architecture designed to capture more detailed facial information, enhancing its capability in FEA tasks. Our model demonstrates strong performance on FEABench and impressive generalization capability through zero-shot evaluation on various datasets, including RAF-DB, AffectNet, BP4D, and DISFA, showcasing its robustness and effectiveness in FEA tasks. The dataset and code will be available at https://github.com/953206211/FEALLM.
Authors:Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, Juanzi Li
Abstract:
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.
Authors:Peiyuan Zhang, Yongqi Chen, Haofeng Huang, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing, Hao Zhang
Abstract:
Scaling video diffusion transformers (DiTs) is limited by their quadratic 3D attention, even though most of the attention mass concentrates on a small subset of positions. We turn this observation into VSA, a trainable, hardware-efficient sparse attention that replaces full attention at \emph{both} training and inference. In VSA, a lightweight coarse stage pools tokens into tiles and identifies high-weight \emph{critical tokens}; a fine stage computes token-level attention only inside those tiles subjecting to block computing layout to ensure hard efficiency. This leads to a single differentiable kernel that trains end-to-end, requires no post-hoc profiling, and sustains 85\% of FlashAttention3 MFU. We perform a large sweep of ablation studies and scaling-law experiments by pretraining DiTs from 60M to 1.4B parameters. VSA reaches a Pareto point that cuts training FLOPS by 2.53$\times$ with no drop in diffusion loss. Retrofitting the open-source Wan-2.1 model speeds up attention time by 6$\times$ and lowers end-to-end generation time from 31s to 18s with comparable quality. These results establish trainable sparse attention as a practical alternative to full attention and a key enabler for further scaling of video diffusion models. Code will be available at https://github.com/hao-ai-lab/FastVideo.
Authors:David Anugraha, Zilu Tang, Lester James V. Miranda, Hanyang Zhao, Mohammad Rifqi Farhansyah, Garry Kuwanto, Derry Wijaya, Genta Indra Winata
Abstract:
Reward models are essential for aligning language model outputs with human preferences, yet existing approaches often lack both controllability and interpretability. These models are typically optimized for narrow objectives, limiting their generalizability to broader downstream tasks. Moreover, their scalar outputs are difficult to interpret without contextual reasoning. To address these limitations, we introduce $\shortmethodname$, a novel reward modeling framework that is rubric-agnostic, generalizable across evaluation dimensions, and provides interpretable, reasoned score assignments. $\shortmethodname$ enables more transparent and flexible evaluation of language models, supporting robust alignment with diverse human values and use cases. Our models, data, and code are available as open source at https://github.com/rubricreward/r3.
Authors:Nam V. Nguyen, Huy Nguyen, Quang Pham, Van Nguyen, Savitha Ramasamy, Nhat Ho
Abstract:
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, we argue that effective SMoE training remains challenging because of the suboptimal routing process where experts that perform computation do not directly contribute to the routing process. In this work, we propose competition, a novel mechanism to route tokens to experts with the highest neural response. Theoretically, we show that the competition mechanism enjoys a better sample efficiency than the traditional softmax routing. Furthermore, we develop CompeteSMoE, a simple yet effective algorithm to train large language models by deploying a router to learn the competition policy, thus enjoying strong performances at a low training overhead. Our extensive empirical evaluations on both the visual instruction tuning and language pre-training tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies. We have made the implementation available at: https://github.com/Fsoft-AIC/CompeteSMoE. This work is an improved version of the previous study at arXiv:2402.02526
Authors:Gongfan Fang, Xinyin Ma, Xinchao Wang
Abstract:
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference. However, applying elaborate reasoning for all queries often results in substantial computational inefficiencies, particularly when many problems admit straightforward solutions. This motivates an open question: Can LLMs learn when to think? To answer this, we propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning, based on both task complexity and the model's ability. Thinkless is trained under a reinforcement learning paradigm and employs two control tokens, for concise responses and for detailed reasoning. At the core of our method is a Decoupled Group Relative Policy Optimization (DeGRPO) algorithm, which decomposes the learning objective of hybrid reasoning into two components: (1) a control token loss that governs the selection of the reasoning mode, and (2) a response loss that improves the accuracy of the generated answers. This decoupled formulation enables fine-grained control over the contributions of each objective, stabilizing training and effectively preventing collapse observed in vanilla GRPO. Empirically, on several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%, significantly improving the efficiency of Reasoning Language Models. The code is available at https://github.com/VainF/Thinkless
Authors:Nimrod Berman, Ilan Naiman, Moshe Eliasof, Hedi Zisling, Omri Azencot
Abstract:
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model KDM, a novel offline distillation approach grounded in Koopman theory-a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. Empirically, KDM achieves state-of-the-art performance across standard offline distillation benchmarks, improving FID scores by up to 40% in a single generation step. All implementation details and code for the experimental setups are provided in our GitHub - https://github.com/azencot-group/KDM, or in our project page - https://sites.google.com/view/koopman-distillation-model.
Authors:Shuqing Luo, Pingzhi Li, Jie Peng, Hanrui Wang, Yang, Zhao, Yu, Cao, Yu Cheng, Tianlong Chen
Abstract:
Mixture-of-experts (MoE) architectures could achieve impressive computational efficiency with expert parallelism, which relies heavily on all-to-all communication across devices. Unfortunately, such communication overhead typically constitutes a significant portion of the total runtime, hampering the scalability of distributed training and inference for modern MoE models (consuming over $40\%$ runtime in large-scale training). In this paper, we first define collaborative communication to illustrate this intrinsic limitation, and then propose system- and algorithm-level innovations to reduce communication costs. Specifically, given a pair of experts co-activated by one token, we call them "collaborated", which comprises $2$ cases as intra- and inter-collaboration, depending on whether they are kept on the same device. Our pilot investigations reveal that augmenting the proportion of intra-collaboration can accelerate expert parallelism at scale. It motivates us to strategically optimize collaborative communication for accelerated MoE training and inference, dubbed Occult. Our designs are capable of either delivering exact results with reduced communication cost or controllably minimizing the cost with collaboration pruning, materialized by modified fine-tuning. Comprehensive experiments on various MoE-LLMs demonstrate that Occult can be faster than popular state-of-the-art inference or training frameworks (more than $1.5\times$ speed up across multiple tasks and models) with comparable or superior quality compared to the standard fine-tuning. Code is available at $\href{https://github.com/UNITES-Lab/Occult}{https://github.com/UNITES-Lab/Occult}$.
Authors:Ahmet Berke Gokmen, Yigit Ekin, Bahri Batuhan Bilecen, Aysegul Dundar
Abstract:
We propose RoPECraft, a training-free video motion transfer method for diffusion transformers that operates solely by modifying their rotary positional embeddings (RoPE). We first extract dense optical flow from a reference video, and utilize the resulting motion offsets to warp the complex-exponential tensors of RoPE, effectively encoding motion into the generation process. These embeddings are then further optimized during denoising time steps via trajectory alignment between the predicted and target velocities using a flow-matching objective. To keep the output faithful to the text prompt and prevent duplicate generations, we incorporate a regularization term based on the phase components of the reference video's Fourier transform, projecting the phase angles onto a smooth manifold to suppress high-frequency artifacts. Experiments on benchmarks reveal that RoPECraft outperforms all recently published methods, both qualitatively and quantitatively.
Authors:Paula Feldman, Martin Sinnona, Claudio Delrieux, Viviana Siless, Emmanuel Iarussi
Abstract:
Anatomical trees are critical for clinical diagnosis and treatment planning, yet their complex and diverse geometry make accurate representation a significant challenge. Motivated by the latest advances in large language models, we introduce an autoregressive method for synthesizing anatomical trees. Our approach first embeds vessel structures into a learned discrete vocabulary using a VQ-VAE architecture, then models their generation autoregressively with a GPT-2 model. This method effectively captures intricate geometries and branching patterns, enabling realistic vascular tree synthesis. Comprehensive qualitative and quantitative evaluations reveal that our technique achieves high-fidelity tree reconstruction with compact discrete representations. Moreover, our B-spline representation of vessel cross-sections preserves critical morphological details that are often overlooked in previous' methods parameterizations. To the best of our knowledge, this work is the first to generate blood vessels in an autoregressive manner. Code is available at https://github.com/LIA-DiTella/VesselGPT-MICCAI.
Authors:Song-Lin Lv, Rui Zhu, Yu-Feng Li, Lan-Zhe Guo
Abstract:
Semi-supervised learning (SSL) alleviates the cost of data labeling process by exploiting unlabeled data, and has achieved promising results on various tasks such as image classification. Meanwhile, the Pretrain-Finetuning paradigm has garnered significant attention in recent years, and exploiting pre-trained models could also reduce the requirement of labeled data in downstream tasks. Therefore, a question naturally occurs: \emph{When the labeled data is scarce in the target tasks, should we exploit unlabeled data or pre-trained models?} To answer this question, we select pre-trained Vision-Language Models (VLMs) as representative pretrain-finetuning instances and propose \textit{Few-shot SSL} -- a framework that enables fair comparison between these two paradigms by controlling the amount of labeled data used. Extensive experiments across various settings demonstrate that pre-trained VLMs generally outperform SSL methods in nearly all cases, except when the data has low resolution or lacks clear semantic structure. Therefore, we encourage future SSL research to compare with pre-trained models and explore deeper integration, such as using pre-trained knowledge to enhance pseudo-labeling. To support future research, we release our unified reproduction and evaluation framework. Codes are available \href{https://anonymous.4open.science/r/Rethinking-SSL-and-Pretrain-Finetuning-5566 }{here}.
Authors:Gabriele Spadaro, Alberto Presta, Jhony H. Giraldo, Marco Grangetto, Wei Hu, Giuseppe Valenzise, Attilio Fiandrotti, Enzo Tartaglione
Abstract:
Efficient compression of low-bit-rate point clouds is critical for bandwidth-constrained applications. However, existing techniques mainly focus on high-fidelity reconstruction, requiring many bits for compression. This paper proposes a "Denoising Diffusion Probabilistic Model" (DDPM) architecture for point cloud compression (DDPM-PCC) at low bit-rates. A PointNet encoder produces the condition vector for the generation, which is then quantized via a learnable vector quantizer. This configuration allows to achieve a low bitrates while preserving quality. Experiments on ShapeNet and ModelNet40 show improved rate-distortion at low rates compared to standardized and state-of-the-art approaches. We publicly released the code at https://github.com/EIDOSLAB/DDPM-PCC.
Authors:Qiguang Chen, Libo Qin, Jinhao Liu, Yue Liao, Jiaqi Wang, Jingxuan Zhou, Wanxiang Che
Abstract:
Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models (LLMs) on complex tasks, spurring research into its underlying mechanisms. However, two primary challenges remain for real-world applications: (1) the lack of quantitative metrics and actionable guidelines for evaluating and optimizing measurable boundaries of CoT capability, and (2) the absence of methods to assess boundaries of unmeasurable CoT capability, such as multimodal perception. To address these gaps, we introduce the Reasoning Boundary Framework++ (RBF++). To tackle the first challenge, we define the reasoning boundary (RB) as the maximum limit of CoT performance. We also propose a combination law for RBs, enabling quantitative analysis and offering actionable guidance across various CoT tasks. For the second challenge, particularly in multimodal scenarios, we introduce a constant assumption, which replaces unmeasurable RBs with scenario-specific constants. Additionally, we propose the reasoning boundary division mechanism, which divides unmeasurable RBs into two sub-boundaries, facilitating the quantification and optimization of both unmeasurable domain knowledge and multimodal perception capabilities. Extensive experiments involving 38 models across 13 tasks validate the feasibility of our framework in cross-modal settings. Additionally, we evaluate 10 CoT strategies, offer insights into optimization and decay from two complementary perspectives, and expand evaluation benchmarks for measuring RBs in LLM reasoning. We hope this work advances the understanding of RBs and optimization strategies in LLMs. Code and data are available at https://github.com/LightChen233/reasoning-boundary.
Authors:Alice Plebe, Timothy Douglas, Diana Riazi, R. Maria del Rio-Chanona
Abstract:
Large language models are increasingly integrated into news recommendation systems, raising concerns about their role in spreading misinformation. In humans, visual content is known to boost credibility and shareability of information, yet its effect on vision-language models (VLMs) remains unclear. We present the first study examining how images influence VLMs' propensity to reshare news content, whether this effect varies across model families, and how persona conditioning and content attributes modulate this behavior. To support this analysis, we introduce two methodological contributions: a jailbreaking-inspired prompting strategy that elicits resharing decisions from VLMs while simulating users with antisocial traits and political alignments; and a multimodal dataset of fact-checked political news from PolitiFact, paired with corresponding images and ground-truth veracity labels. Experiments across model families reveal that image presence increases resharing rates by 4.8% for true news and 15.0% for false news. Persona conditioning further modulates this effect: Dark Triad traits amplify resharing of false news, whereas Republican-aligned profiles exhibit reduced veracity sensitivity. Of all the tested models, only Claude-3-Haiku demonstrates robustness to visual misinformation. These findings highlight emerging risks in multimodal model behavior and motivate the development of tailored evaluation frameworks and mitigation strategies for personalized AI systems. Code and dataset are available at: https://github.com/3lis/misinfo_vlm
Authors:Gabriel de Albuquerque Gleizer
Abstract:
We address the problem of identifying a system subject to additive faults, while simultaneously reconstructing the fault signal via subspace methods. We do not require nominal data for the identification, neither do we impose any assumption on the class of faults, e.g., sensor or actuator faults. We show that, under mild assumptions on the fault signal, standard PI-MOESP can recover the system matrices associated to the input-output subsystem. Then we introduce the concept of output behavior equivalence, which characterizes systems with the same output behavior set, and present a method to establish this equivalence from system matrices. Finally, we show how to estimate from data the complete set of fault matrices for which there exist a fault signal with minimal dimension that explains the data.
Authors:Yifu Cai, Xinyu Li, Mononito Goswami, MichaÅ WiliÅski, Gus Welter, Artur Dubrawski
Abstract:
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
Authors:Anthony Zhou, Amir Barati Farimani
Abstract:
Many architectures for neural PDE surrogates have been proposed in recent years, largely based on neural networks or operator learning. In this work, we derive and propose a new architecture, the Neural Functional, which learns function to scalar mappings. Its implementation leverages insights from operator learning and neural fields, and we show the ability of neural functionals to implicitly learn functional derivatives. For the first time, this allows for an extension of Hamiltonian mechanics to neural PDE surrogates by learning the Hamiltonian functional and optimizing its functional derivatives. We demonstrate that the Hamiltonian Neural Functional can be an effective surrogate model through improved stability and conserving energy-like quantities on 1D and 2D PDEs. Beyond PDEs, functionals are prevalent in physics; functional approximation and learning with its gradients may find other uses, such as in molecular dynamics or design optimization.
Authors:Lei Sheng, Shuai-Shuai Xu
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD private test set, our 7B model achieves 71.72\% execution accuracy, while the 32B model achieves 73.67\%. The code has been open sourced at https://github.com/CycloneBoy/csc_sql.
Authors:Tianshi Zheng, Zheye Deng, Hong Ting Tsang, Weiqi Wang, Jiaxin Bai, Zihao Wang, Yangqiu Song
Abstract:
Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery, evolving from task-specific automation tools into increasingly autonomous agents and fundamentally redefining research processes and human-AI collaboration. This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science. Through the lens of the scientific method, we introduce a foundational three-level taxonomy-Tool, Analyst, and Scientist-to delineate their escalating autonomy and evolving responsibilities within the research lifecycle. We further identify pivotal challenges and future research trajectories such as robotic automation, self-improvement, and ethical governance. Overall, this survey provides a conceptual architecture and strategic foresight to navigate and shape the future of AI-driven scientific discovery, fostering both rapid innovation and responsible advancement. Github Repository: https://github.com/HKUST-KnowComp/Awesome-LLM-Scientific-Discovery.
Authors:Shihan Wu, Ji Zhang, Xu Luo, Junlin Xie, Jingkuan Song, Heng Tao Shen, Lianli Gao
Abstract:
Robotic foundation models, or generalist robot policies, hold immense potential to enable flexible, general-purpose and dexterous robotic systems. Despite their advancements, our empirical experiments reveal that existing robot policies are prone to learning spurious correlations from pre-training trajectories, adversely affecting their generalization capabilities beyond the training data. To tackle this, we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects the robot policy's focus toward object-relevant visual clues by contrasting action probability distributions derived from original and object-masked visual inputs. As a training-free method, our PCD can be used as a plugin to improve different types of robot policies without needing to finetune or access model weights. We conduct extensive experiments on top of three open-source robot policies, including the autoregressive policy OpenVLA and the diffusion-based policies Octo and $Ï_0$. The obtained results in both simulation and real-world environments prove PCD's flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy $Ï_0$ by 8% in the simulation environment and by 108% in the real-world environment. Code and demos are publicly available at: https://Koorye.github.io/proj/PCD.
Authors:Jieying Xue, Phuong Minh Nguyen, Minh Le Nguyen, Xin Liu
Abstract:
With the rapid advancement of global digitalization, users from different countries increasingly rely on social media for information exchange. In this context, multilingual multi-label emotion detection has emerged as a critical research area. This study addresses SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. Our paper focuses on two sub-tracks of this task: (1) Track A: Multi-label emotion detection, and (2) Track B: Emotion intensity. To tackle multilingual challenges, we leverage pre-trained multilingual models and focus on two architectures: (1) a fine-tuned BERT-based classification model and (2) an instruction-tuned generative LLM. Additionally, we propose two methods for handling multi-label classification: the base method, which maps an input directly to all its corresponding emotion labels, and the pairwise method, which models the relationship between the input text and each emotion category individually. Experimental results demonstrate the strong generalization ability of our approach in multilingual emotion recognition. In Track A, our method achieved Top 4 performance across 10 languages, ranking 1st in Hindi. In Track B, our approach also secured Top 5 performance in 7 languages, highlighting its simplicity and effectiveness\footnote{Our code is available at https://github.com/yingjie7/mlingual_multilabel_emo_detection.
Authors:Chih-Kai Yang, Neo Ho, Yen-Ting Piao, Hung-yi Lee
Abstract:
Large audio-language models (LALMs) extend the large language models with multimodal understanding in speech, audio, etc. While their performances on speech and audio-processing tasks are extensively studied, their reasoning abilities remain underexplored. Particularly, their multi-hop reasoning, the ability to recall and integrate multiple facts, lacks systematic evaluation. Existing benchmarks focus on general speech and audio-processing tasks, conversational abilities, and fairness but overlook this aspect. To bridge this gap, we introduce SAKURA, a benchmark assessing LALMs' multi-hop reasoning based on speech and audio information. Results show that LALMs struggle to integrate speech/audio representations for multi-hop reasoning, even when they extract the relevant information correctly, highlighting a fundamental challenge in multimodal reasoning. Our findings expose a critical limitation in LALMs, offering insights and resources for future research.
Authors:Lincan Cai, Jingxuan Kang, Shuang Li, Wenxuan Ma, Binhui Xie, Zhida Qin, Jian Liang
Abstract:
Pretrained vision-language models (VLMs), e.g., CLIP, demonstrate impressive zero-shot capabilities on downstream tasks. Prior research highlights the crucial role of visual augmentation techniques, like random cropping, in alignment with fine-grained class descriptions generated by large language models (LLMs), significantly enhancing zero-shot performance by incorporating multi-view information. However, the inherent randomness of these augmentations can inevitably introduce background artifacts and cause models to overly focus on local details, compromising global semantic understanding. To address these issues, we propose an \textbf{A}ttention-\textbf{B}ased \textbf{S}election (\textbf{ABS}) method from local details to global context, which applies attention-guided cropping in both raw images and feature space, supplement global semantic information through strategic feature selection. Additionally, we introduce a soft matching technique to effectively filter LLM descriptions for better alignment. \textbf{ABS} achieves state-of-the-art performance on out-of-distribution generalization and zero-shot classification tasks. Notably, \textbf{ABS} is training-free and even rivals few-shot and test-time adaptation methods. Our code is available at \href{https://github.com/BIT-DA/ABS}{\textcolor{darkgreen}{https://github.com/BIT-DA/ABS}}.
Authors:Younghyun Kim, Jongheon Jeong, Sangkyung Kwak, Kyungmin Lee, Juho Lee, Jinwoo Shin
Abstract:
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
Authors:Seungjun Oh, Younggeun Lee, Hyejin Jeon, Eunbyung Park
Abstract:
Recent advancements in dynamic 3D scene reconstruction have shown promising results, enabling high-fidelity 3D novel view synthesis with improved temporal consistency. Among these, 4D Gaussian Splatting (4DGS) has emerged as an appealing approach due to its ability to model high-fidelity spatial and temporal variations. However, existing methods suffer from substantial computational and memory overhead due to the redundant allocation of 4D Gaussians to static regions, which can also degrade image quality. In this work, we introduce hybrid 3D-4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively represents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic elements. Our method begins with a fully 4D Gaussian representation and iteratively converts temporally invariant Gaussians into 3D, significantly reducing the number of parameters and improving computational efficiency. Meanwhile, dynamic Gaussians retain their full 4D representation, capturing complex motions with high fidelity. Our approach achieves significantly faster training times compared to baseline 4D Gaussian Splatting methods while maintaining or improving the visual quality.
Authors:Qingling Shu, Sibao Chen, Xiao Wang, Zhihui You, Wei Lu, Jin Tang, Bin Luo
Abstract:
Accurate detection of road and bridge changes is crucial for urban planning and transportation management, yet presents unique challenges for general change detection (CD). Key difficulties arise from maintaining the continuity of roads and bridges as linear structures and disambiguating visually similar land covers (e.g., road construction vs. bare land). Existing spatial-domain models struggle with these issues, further hindered by the lack of specialized, semantically rich datasets. To fill these gaps, we introduce the Road and Bridge Semantic Change Detection (RB-SCD) dataset. As the first benchmark to systematically target semantic change detection of roads and bridges, RB-SCD offers comprehensive fine-grained annotations for 11 semantic change categories. This enables a detailed analysis of traffic infrastructure evolution. Building on this, we propose a novel framework, the Multimodal Frequency-Driven Change Detector (MFDCD). MFDCD integrates multimodal features in the frequency domain through two key components: (1) the Dynamic Frequency Coupler (DFC), which leverages wavelet transform to decompose visual features, enabling it to robustly model the continuity of linear transitions; and (2) the Textual Frequency Filter (TFF), which encodes semantic priors into frequency-domain graphs and applies filter banks to align them with visual features, resolving semantic ambiguities. Experiments demonstrate the state-of-the-art performance of MFDCD on RB-SCD and three public CD datasets. The code will be available at https://github.com/DaGuangDaGuang/RB-SCD.
Authors:Sand. ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang, Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli Su, Hanwen Sun, Hong Pan, Jie Wang, Jiexin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, Yuqiao Li
Abstract:
We present MAGI-1, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 facilitates controllable generation via chunk-wise prompting and supports real-time, memory-efficient deployment by maintaining constant peak inference cost, regardless of video length. The largest variant of MAGI-1 comprises 24 billion parameters and supports context lengths of up to 4 million tokens, demonstrating the scalability and robustness of our approach. The code and models are available at https://github.com/SandAI-org/MAGI-1 and https://github.com/SandAI-org/MagiAttention. The product can be accessed at https://sand.ai.
Authors:Yuzhen Chen, Hojun Son, Arpan Kusari
Abstract:
Determining material properties from camera images can expand the ability to identify complex objects in indoor environments, which is valuable for consumer robotics applications. To support this, we introduce MatPredict, a dataset that combines the high-quality synthetic objects from Replica dataset with MatSynth dataset's material properties classes - to create objects with diverse material properties. We select 3D meshes of specific foreground objects and render them with different material properties. In total, we generate \textbf{18} commonly occurring objects with \textbf{14} different materials. We showcase how we provide variability in terms of lighting and camera placement for these objects. Next, we provide a benchmark for inferring material properties from visual images using these perturbed models in the scene, discussing the specific neural network models involved and their performance based on different image comparison metrics. By accurately simulating light interactions with different materials, we can enhance realism, which is crucial for training models effectively through large-scale simulations. This research aims to revolutionize perception in consumer robotics. The dataset is provided \href{https://huggingface.co/datasets/UMTRI/MatPredict}{here} and the code is provided \href{https://github.com/arpan-kusari/MatPredict}{here}.
Authors:Zhengrui Ma, Yang Feng, Chenze Shao, Fandong Meng, Jie Zhou, Min Zhang
Abstract:
We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations and modeling them autoregressively using an energy distance objective. The energy distance offers an analytical measure of the distributional gap by contrasting simulated and target samples, enabling efficient training to capture the underlying continuous autoregressive distribution. By bypassing reliance on residual vector quantization, SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models. It simplifies the overall modeling pipeline while preserving the richness of speech information and maintaining inference efficiency. Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis, showing its potential for broader applications in general-purpose speech language models.
Authors:Zihao Cheng, Hongru Wang, Zeming Liu, Yuhang Guo, Yuanfang Guo, Yunhong Wang, Haifeng Wang
Abstract:
While integrating external tools into large language models (LLMs) enhances their ability to access real-time information and domain-specific services, existing approaches focus narrowly on functional tool selection following user instructions, overlooking the context-aware personalization in tool selection. This oversight leads to suboptimal user satisfaction and inefficient tool utilization, particularly when overlapping toolsets require nuanced selection based on contextual factors. To bridge this gap, we introduce ToolSpectrum, a benchmark designed to evaluate LLMs' capabilities in personalized tool utilization. Specifically, we formalize two key dimensions of personalization, user profile and environmental factors, and analyze their individual and synergistic impacts on tool utilization. Through extensive experiments on ToolSpectrum, we demonstrate that personalized tool utilization significantly improves user experience across diverse scenarios. However, even state-of-the-art LLMs exhibit the limited ability to reason jointly about user profiles and environmental factors, often prioritizing one dimension at the expense of the other. Our findings underscore the necessity of context-aware personalization in tool-augmented LLMs and reveal critical limitations for current models. Our data and code are available at https://github.com/Chengziha0/ToolSpectrum.
Authors:Yassine El Boudouri, Walter Nuninger, Julian Alvarez, Yvan Peter
Abstract:
Large Language Models (LLMs) demonstrate a notable capacity for adopting personas and engaging in role-playing. However, evaluating this ability presents significant challenges, as human assessments are resource-intensive and automated evaluations can be biased. To address this, we introduce Role-Playing Eval (RPEval), a novel benchmark designed to assess LLM role-playing capabilities across four key dimensions: emotional understanding, decision-making, moral alignment, and in-character consistency. This article details the construction of RPEval and presents baseline evaluations. Our code and dataset are available at https://github.com/yelboudouri/RPEval
Authors:Francesco Innocenti, El Mehdi Achour, Christopher L. Buckley
Abstract:
The biological implausibility of backpropagation (BP) has motivated many alternative, brain-inspired algorithms that attempt to rely only on local information, such as predictive coding (PC) and equilibrium propagation. However, these algorithms have notoriously struggled to train very deep networks, preventing them from competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs) has recently been posed as a challenge for the community (Pinchetti et al., 2024). Here, we show that 100+ layer PCNs can be trained reliably using a Depth-$μ$P parameterisation (Yang et al., 2023; Bordelon et al., 2023) which we call "$μ$PC". Through an extensive analysis of the scaling behaviour of PCNs, we reveal several pathologies that make standard PCNs difficult to train at large depths. We then show that, despite addressing only some of these instabilities, $μ$PC allows stable training of very deep (up to 128-layer) residual networks on simple classification tasks with competitive performance and little tuning compared to current benchmarks. Moreover, $μ$PC enables zero-shot transfer of both weight and activity learning rates across widths and depths. Our results have implications for other local algorithms and could be extended to convolutional and transformer architectures. Code for $μ$PC is made available as part of a JAX library for PCNs at https://github.com/thebuckleylab/jpc (Innocenti et al., 2024).
Authors:Ji Qi, Tam Thuc Do, Mingxiao Liu, Zhuoshi Pan, Yuzhe Li, Gene Cheung, H. Vicky Zhao
Abstract:
To forecast traffic with both spatial and temporal dimensions, we unroll a mixed-graph-based optimization algorithm into a lightweight and interpretable transformer-like neural net. Specifically, we construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We formulate a prediction problem for the future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We construct an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$, which are akin to the self-attention mechanism in classical transformers. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically. Our code is available in https://github.com/SingularityUndefined/Unrolling-GSP-STForecast.
Authors:Chengtang Yao, Zhidan Liu, Jiaxi Zeng, Lidong Yu, Yuwei Wu, Yunde Jia
Abstract:
3D visual illusion is a perceptual phenomenon where a two-dimensional plane is manipulated to simulate three-dimensional spatial relationships, making a flat artwork or object look three-dimensional in the human visual system. In this paper, we reveal that the machine visual system is also seriously fooled by 3D visual illusions, including monocular and binocular depth estimation. In order to explore and analyze the impact of 3D visual illusion on depth estimation, we collect a large dataset containing almost 3k scenes and 200k images to train and evaluate SOTA monocular and binocular depth estimation methods. We also propose a robust depth estimation framework that uses common sense from a vision-language model to adaptively select reliable depth from binocular disparity and monocular depth. Experiments show that SOTA monocular, binocular, and multi-view depth estimation approaches are all fooled by various 3D visual illusions, while our method achieves SOTA performance.
Authors:Hongrui Kou, Jingkai Li, Ziyu Wang, Zhouhang Lv, Yuxin Zhang, Cheng Wang
Abstract:
Accurate prediction of traffic flow parameters and real time identification of congestion states are essential for the efficient operation of intelligent transportation systems. This paper proposes a Periodic Pattern Transformer Network (PPTNet) for traffic flow prediction, integrating periodic pattern extraction with the Transformer architecture, coupled with a fuzzy inference method for real-time congestion identification. Firstly, a high-precision traffic flow dataset (Traffic Flow Dataset for China's Congested Highways and Expressways, TF4CHE) suitable for congested highway scenarios in China is constructed based on drone aerial imagery data. Subsequently, the proposed PPTNet employs Fast Fourier Transform to capture multi-scale periodic patterns and utilizes two-dimensional Inception convolutions to efficiently extract intra and inter periodic features. A Transformer decoder dynamically models temporal dependencies, enabling accurate predictions of traffic density and speed. Finally, congestion probabilities are calculated in real-time using the predicted outcomes via a Mamdani fuzzy inference-based congestion identification module. Experimental results demonstrate that the proposed PPTNet significantly outperforms mainstream traffic prediction methods in prediction accuracy, and the congestion identification module effectively identifies real-time road congestion states, verifying the superiority and practicality of the proposed method in real-world traffic scenarios. Project page: https://github.com/ADSafetyJointLab/PPTNet.
Authors:Xiao Wu, Xiaoqing Zhang, Zunjie Xiao, Lingxi Hu, Risa Higashita, Jiang Liu
Abstract:
Efficient convolutional neural network (CNN) architecture design has attracted growing research interests. However, they typically apply single receptive field (RF), small asymmetric RFs, or pyramid RFs to learn different feature representations, still encountering two significant challenges in medical image classification tasks: 1) They have limitations in capturing diverse lesion characteristics efficiently, e.g., tiny, coordination, small and salient, which have unique roles on the classification results, especially imbalanced medical image classification. 2) The predictions generated by those CNNs are often unfair/biased, bringing a high risk when employing them to real-world medical diagnosis conditions. To tackle these issues, we develop a new concept, Expert-Like Reparameterization of Heterogeneous Pyramid Receptive Fields (ERoHPRF), to simultaneously boost medical image classification performance and fairness. This concept aims to mimic the multi-expert consultation mode by applying the well-designed heterogeneous pyramid RF bag to capture lesion characteristics with varying significances effectively via convolution operations with multiple heterogeneous kernel sizes. Additionally, ERoHPRF introduces an expert-like structural reparameterization technique to merge its parameters with the two-stage strategy, ensuring competitive computation cost and inference speed through comparisons to a single RF. To manifest the effectiveness and generalization ability of ERoHPRF, we incorporate it into mainstream efficient CNN architectures. The extensive experiments show that our proposed ERoHPRF maintains a better trade-off than state-of-the-art methods in terms of medical image classification, fairness, and computation overhead. The code of this paper is available at https://github.com/XiaoLing12138/Expert-Like-Reparameterization-of-Heterogeneous-Pyramid-Receptive-Fields.
Authors:Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen, Yuanzhe Chen, Zhuo Chen, Jian Cong, Kai Li, Keliang Li, Siyou Li, Xinfeng Li, Xiquan Li, Zheng Lian, Yuzhe Liang, Minghao Liu, Zhikang Niu, Tianrui Wang, Yuping Wang, Yuxuan Wang, Yihao Wu, Guanrou Yang, Jianwei Yu, Ruibin Yuan, Zhisheng Zheng, Ziya Zhou, Haina Zhu, Wei Xue, Emmanouil Benetos, Kai Yu, Eng-Siong Chng, Xie Chen
Abstract:
We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.
Authors:Yicheng Xiao, Lin Song, Yukang Chen, Yingmin Luo, Yuxin Chen, Yukang Gan, Wei Huang, Xiu Li, Xiaojuan Qi, Ying Shan
Abstract:
Recent text-to-image systems face limitations in handling multimodal inputs and complex reasoning tasks. We introduce MindOmni, a unified multimodal large language model that addresses these challenges by incorporating reasoning generation through reinforcement learning. MindOmni leverages a three-phase training strategy: i) design of a unified vision language model with a decoder-only diffusion module, ii) supervised fine-tuning with Chain-of-Thought (CoT) instruction data, and iii) our proposed Reasoning Generation Policy Optimization (RGPO) algorithm, utilizing multimodal feedback to effectively guide policy updates. Experimental results demonstrate that MindOmni outperforms existing models, achieving impressive performance on both understanding and generation benchmarks, meanwhile showcasing advanced fine-grained reasoning generation capabilities, especially with mathematical reasoning instruction. All codes will be made public at https://github.com/TencentARC/MindOmni
Authors:Federico Del Pup, Andrea Zanola, Louis Fabrice Tshimanga, Alessandra Bertoldo, Livio Finos, Manfredo Atzori
Abstract:
Deep learning is significantly advancing the analysis of electroencephalography (EEG) data by effectively discovering highly nonlinear patterns within the signals. Data partitioning and cross-validation are crucial for assessing model performance and ensuring study comparability, as they can produce varied results and data leakage due to specific signal properties (e.g., biometric). Such variability leads to incomparable studies and, increasingly, overestimated performance claims, which are detrimental to the field. Nevertheless, no comprehensive guidelines for proper data partitioning and cross-validation exist in the domain, nor is there a quantitative evaluation of their impact on model accuracy, reliability, and generalizability. To assist researchers in identifying optimal experimental strategies, this paper thoroughly investigates the role of data partitioning and cross-validation in evaluating EEG deep learning models. Five cross-validation settings are compared across three supervised cross-subject classification tasks (BCI, Parkinson's, and Alzheimer's disease detection) and four established architectures of increasing complexity (ShallowConvNet, EEGNet, DeepConvNet, and Temporal-based ResNet). The comparison of over 100,000 trained models underscores, first, the importance of using subject-based cross-validation strategies for evaluating EEG deep learning models, except when within-subject analyses are acceptable (e.g., BCI). Second, it highlights the greater reliability of nested approaches (N-LNSO) compared to non-nested counterparts, which are prone to data leakage and favor larger models overfitting to validation data. In conclusion, this work provides EEG deep learning researchers with an analysis of data partitioning and cross-validation and offers guidelines to avoid data leakage, currently undermining the domain with potentially overestimated performance claims.
Authors:Yuhao Qing, Boyu Zhu, Mingzhe Du, Zhijiang Guo, Terry Yue Zhuo, Qianru Zhang, Jie M. Zhang, Heming Cui, Siu-Ming Yiu, Dong Huang, See-Kiong Ng, Luu Anh Tuan
Abstract:
Existing code generation benchmarks primarily evaluate functional correctness, with limited focus on code efficiency and often restricted to a single language like Python. To address this gap, we introduce EffiBench-X, the first multi-language benchmark designed to measure the efficiency of LLM-generated code. EffiBench-X supports Python, C++, Java, JavaScript, Ruby, and Golang. It comprises competitive programming tasks with human-expert solutions as efficiency baselines. Evaluating state-of-the-art LLMs on EffiBench-X reveals that while models generate functionally correct code, they consistently underperform human experts in efficiency. Even the most efficient LLM-generated solutions (Qwen3-32B) achieve only around \textbf{62\%} of human efficiency on average, with significant language-specific variations. LLMs show better efficiency in Python, Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1's Python code is significantly more efficient than its Java code. These results highlight the critical need for research into LLM optimization techniques to improve code efficiency across diverse languages. The dataset and evaluation infrastructure are submitted and available at https://github.com/EffiBench/EffiBench-X.git and https://huggingface.co/datasets/EffiBench/effibench-x.
Authors:Jiaqi Li, Xiaolong Lin, Zhekai Li, Shixi Huang, Yuancheng Wang, Chaoren Wang, Zhenpeng Zhan, Zhizheng Wu
Abstract:
Neural audio codecs form the foundational building blocks for language model (LM)-based speech generation. Typically, there is a trade-off between frame rate and audio quality. This study introduces a low-frame-rate, semantically enhanced codec model. Existing approaches distill semantically rich self-supervised (SSL) representations into the first-layer codec tokens. This work proposes DualCodec, a dual-stream encoding approach that integrates SSL and waveform representations within an end-to-end codec framework. In this setting, DualCodec enhances the semantic information in the first-layer codec and enables the codec system to maintain high audio quality while operating at a low frame rate. Note that a low-frame-rate codec improves the efficiency of speech generation. Experimental results on audio codec and speech generation tasks confirm the effectiveness of the proposed DualCodec compared to state-of-the-art codec systems, such as Mimi Codec, SpeechTokenizer, DAC, and Encodec. Demos and codes are available at: https://dualcodec.github.io
Authors:Lorena Garcia-Foncillas Macias, Aaron Kujawa, Aya Elshalakany, Jonathan Shapey, Tom Vercauteren
Abstract:
Reliable MRI defacing techniques to safeguard patient privacy while preserving brain anatomy are critical for research collaboration. Existing methods often struggle with incomplete defacing or degradation of brain tissue regions. We present a robust, generalisable defacing pipeline for high-resolution MRI that integrates atlas-based registration with brain masking. Our method was evaluated on 2,566 heterogeneous clinical scans for meningioma and achieved a 99.92 per cent success rate (2,564/2,566) upon visual inspection. Excellent anatomical preservation is demonstrated with a Dice similarity coefficient of 0.9975 plus or minus 0.0023 between brain masks automatically extracted from the original and defaced volumes. Source code is available at https://github.com/cai4cai/defacing_pipeline.
Authors:Vinkle Srivastav, Juliette Puel, Jonathan Vappou, Elijah Van Houten, Paolo Cabras, Nicolas Padoy
Abstract:
Transcranial focused ultrasound (tFUS) is an emerging modality for non-invasive brain stimulation and therapeutic intervention, offering millimeter-scale spatial precision and the ability to target deep brain structures. However, the heterogeneous and anisotropic nature of the human skull introduces significant distortions to the propagating ultrasound wavefront, which require time-consuming patient-specific planning and corrections using numerical solvers for accurate targeting. To enable data-driven approaches in this domain, we introduce TFUScapes, the first large-scale, high-resolution dataset of tFUS simulations through anatomically realistic human skulls derived from T1-weighted MRI images. We have developed a scalable simulation engine pipeline using the k-Wave pseudo-spectral solver, where each simulation returns a steady-state pressure field generated by a focused ultrasound transducer placed at realistic scalp locations. In addition to the dataset, we present DeepTFUS, a deep learning model that estimates normalized pressure fields directly from input 3D CT volumes and transducer position. The model extends a U-Net backbone with transducer-aware conditioning, incorporating Fourier-encoded position embeddings and MLP layers to create global transducer embeddings. These embeddings are fused with U-Net encoder features via feature-wise modulation, dynamic convolutions, and cross-attention mechanisms. The model is trained using a combination of spatially weighted and gradient-sensitive loss functions, enabling it to approximate high-fidelity wavefields. The TFUScapes dataset is publicly released to accelerate research at the intersection of computational acoustics, neurotechnology, and deep learning. The project page is available at https://github.com/CAMMA-public/TFUScapes.
Authors:Baohao Liao, Hanze Dong, Yuhui Xu, Doyen Sahoo, Christof Monz, Junnan Li, Caiming Xiong
Abstract:
Inference-time scaling techniques have significantly bolstered the reasoning capabilities of large language models (LLMs) by harnessing additional computational effort at inference without retraining. Similarly, Chain-of-Thought (CoT) prompting and its extension, Long CoT, improve accuracy by generating rich intermediate reasoning trajectories, but these approaches incur substantial token costs that impede their deployment in latency-sensitive settings. In this work, we first show that truncated CoT, which stops reasoning before completion and directly generates the final answer, often matches full CoT sampling while using dramatically fewer tokens. Building on this insight, we introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling along three orthogonal axes: (1) the number of reasoning trajectories, (2) the number of final solutions per trajectory, and (3) the depth at which reasoning traces are truncated. Through extensive experiments on five diverse reasoning benchmarks and several model scales, we demonstrate that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget. Our analysis reveals how to allocate computation across these dimensions to maximize performance, paving the way for more efficient and scalable LLM reasoning. Code is available at https://github.com/BaohaoLiao/frac-cot.
Authors:Shanshan Liu, Noriki Nishida, Rumana Ferdous Munne, Narumi Tokunaga, Yuki Yamagata, Kouji Kozaki, Yuji Matsumoto
Abstract:
Recognizing biomedical concepts in the text is vital for ontology refinement, knowledge graph construction, and concept relationship discovery. However, traditional concept recognition methods, relying on explicit mention identification, often fail to capture complex concepts not explicitly stated in the text. To overcome this limitation, we introduce MA-COIR, a framework that reformulates concept recognition as an indexing-recognition task. By assigning semantic search indexes (ssIDs) to concepts, MA-COIR resolves ambiguities in ontology entries and enhances recognition efficiency. Using a pretrained BART-based model fine-tuned on small datasets, our approach reduces computational requirements to facilitate adoption by domain experts. Furthermore, we incorporate large language models (LLMs)-generated queries and synthetic data to improve recognition in low-resource settings. Experimental results on three scenarios (CDR, HPO, and HOIP) highlight the effectiveness of MA-COIR in recognizing both explicit and implicit concepts without the need for mention-level annotations during inference, advancing ontology-driven concept recognition in biomedical domain applications. Our code and constructed data are available at https://github.com/sl-633/macoir-master.
Authors:Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, Yunjian Xu
Abstract:
Reinforcement learning (RL) has become a cornerstone for enhancing the reasoning capabilities of large language models (LLMs), with recent innovations such as Group Relative Policy Optimization (GRPO) demonstrating exceptional effectiveness. In this study, we identify a critical yet underexplored issue in RL training: low-probability tokens disproportionately influence model updates due to their large gradient magnitudes. This dominance hinders the effective learning of high-probability tokens, whose gradients are essential for LLMs' performance but are substantially suppressed. To mitigate this interference, we propose two novel methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti), both of which effectively attenuate gradients from low-probability tokens while emphasizing parameter updates driven by high-probability tokens. Our approaches promote balanced updates across tokens with varying probabilities, thereby enhancing the efficiency of RL training. Experimental results demonstrate that they substantially improve the performance of GRPO-trained LLMs, achieving up to a 46.2% improvement in K&K Logic Puzzle reasoning tasks. Our implementation is available at https://github.com/zhyang2226/AR-Lopti.
Authors:Han Deng, Yuan Meng, Shixiang Tang, Wanli Ouyang, Xinzhu Ma
Abstract:
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem -- similar question retrieval -- to address this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code and Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate and Simplified-to-Full), built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. In addition, we develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks.
Code and data are available at: https://github.com/coldchair/CPRet
Authors:Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, Weiwei Lin
Abstract:
Sufficiently modeling the correlations among variables (aka channels) is crucial for achieving accurate multivariate time series forecasting (MTSF). In this paper, we propose a novel technique called Temporal Query (TQ) to more effectively capture multivariate correlations, thereby improving model performance in MTSF tasks. Technically, the TQ technique employs periodically shifted learnable vectors as queries in the attention mechanism to capture global inter-variable patterns, while the keys and values are derived from the raw input data to encode local, sample-level correlations. Building upon the TQ technique, we develop a simple yet efficient model named Temporal Query Network (TQNet), which employs only a single-layer attention mechanism and a lightweight multi-layer perceptron (MLP). Extensive experiments demonstrate that TQNet learns more robust multivariate correlations, achieving state-of-the-art forecasting accuracy across 12 challenging real-world datasets. Furthermore, TQNet achieves high efficiency comparable to linear-based methods even on high-dimensional datasets, balancing performance and computational cost. The code is available at: https://github.com/ACAT-SCUT/TQNet.
Authors:Kazuki Adachi, Shin'ya Yamaguchi, Tomoki Hamagami
Abstract:
Pre-trained vision-language models such as contrastive language-image pre-training (CLIP) have demonstrated a remarkable generalizability, which has enabled a wide range of applications represented by zero-shot classification. However, vision-language models still suffer when they face datasets with large gaps from training ones, i.e., distribution shifts. We found that CLIP is especially vulnerable to sensor degradation, a type of realistic distribution shift caused by sensor conditions such as weather, light, or noise. Collecting a new dataset from a test distribution for fine-tuning highly costs since sensor degradation occurs unexpectedly and has a range of variety. Thus, we investigate test-time adaptation (TTA) of zero-shot classification, which enables on-the-fly adaptation to the test distribution with unlabeled test data. Existing TTA methods for CLIP mainly focus on modifying image and text embeddings or predictions to address distribution shifts. Although these methods can adapt to domain shifts, such as fine-grained labels spaces or different renditions in input images, they fail to adapt to distribution shifts caused by sensor degradation. We found that this is because image embeddings are "corrupted" in terms of uniformity, a measure related to the amount of information. To make models robust to sensor degradation, we propose a novel method called uniformity-aware information-balanced TTA (UnInfo). To address the corruption of image embeddings, we introduce uniformity-aware confidence maximization, information-aware loss balancing, and knowledge distillation from the exponential moving average (EMA) teacher. Through experiments, we demonstrate that our UnInfo improves accuracy under sensor degradation by retaining information in terms of uniformity.
Authors:Simone Alberto Peirone, Francesca Pistilli, Giuseppe Averta
Abstract:
Human activities are particularly complex and variable, and this makes challenging for deep learning models to reason about them. However, we note that such variability does have an underlying structure, composed of a hierarchy of patterns of related actions. We argue that such structure can emerge naturally from unscripted videos of human activities, and can be leveraged to better reason about their content. We present HiERO, a weakly-supervised method to enrich video segments features with the corresponding hierarchical activity threads. By aligning video clips with their narrated descriptions, HiERO infers contextual, semantic and temporal reasoning with an hierarchical architecture. We prove the potential of our enriched features with multiple video-text alignment benchmarks (EgoMCQ, EgoNLQ) with minimal additional training, and in zero-shot for procedure learning tasks (EgoProceL and Ego4D Goal-Step). Notably, HiERO achieves state-of-the-art performance in all the benchmarks, and for procedure learning tasks it outperforms fully-supervised methods by a large margin (+12.5% F1 on EgoProceL) in zero shot. Our results prove the relevance of using knowledge of the hierarchy of human activities for multiple reasoning tasks in egocentric vision.
Authors:Xiao Wang, Yu Jin, Lan Chen, Bo Jiang, Lin Zhu, Yonghong Tian, Jin Tang, Bin Luo
Abstract:
Event-based Vision Sensors (EVS) have demonstrated significant advantages over traditional RGB frame-based cameras in low-light conditions, high-speed motion capture, and low latency. Consequently, object detection based on EVS has attracted increasing attention from researchers. Current event stream object detection algorithms are typically built upon Convolutional Neural Networks (CNNs) or Transformers, which either capture limited local features using convolutional filters or incur high computational costs due to the utilization of self-attention. Recently proposed vision heat conduction backbone networks have shown a good balance between efficiency and accuracy; however, these models are not specifically designed for event stream data. They exhibit weak capability in modeling object contour information and fail to exploit the benefits of multi-scale features. To address these issues, this paper proposes a novel dynamic graph induced contour-aware heat conduction network for event stream based object detection, termed CvHeat-DET. The proposed model effectively leverages the clear contour information inherent in event streams to predict the thermal diffusivity coefficients within the heat conduction model, and integrates hierarchical structural graph features to enhance feature learning across multiple scales. Extensive experiments on three benchmark datasets for event stream-based object detection fully validated the effectiveness of the proposed model. The source code of this paper will be released on https://github.com/Event-AHU/OpenEvDET.
Authors:Shiao Wang, Xiao Wang, Liye Jin, Bo Jiang, Lin Zhu, Lan Chen, Yonghong Tian, Bin Luo
Abstract:
Existing tracking algorithms typically rely on low-frame-rate RGB cameras coupled with computationally intensive deep neural network architectures to achieve effective tracking. However, such frame-based methods inherently face challenges in achieving low-latency performance and often fail in resource-constrained environments. Visual object tracking using bio-inspired event cameras has emerged as a promising research direction in recent years, offering distinct advantages for low-latency applications. In this paper, we propose a novel Slow-Fast Tracking paradigm that flexibly adapts to different operational requirements, termed SFTrack. The proposed framework supports two complementary modes, i.e., a high-precision slow tracker for scenarios with sufficient computational resources, and an efficient fast tracker tailored for latency-aware, resource-constrained environments. Specifically, our framework first performs graph-based representation learning from high-temporal-resolution event streams, and then integrates the learned graph-structured information into two FlashAttention-based vision backbones, yielding the slow and fast trackers, respectively. The fast tracker achieves low latency through a lightweight network design and by producing multiple bounding box outputs in a single forward pass. Finally, we seamlessly combine both trackers via supervised fine-tuning and further enhance the fast tracker's performance through a knowledge distillation strategy. Extensive experiments on public benchmarks, including FE240, COESOT, and EventVOT, demonstrate the effectiveness and efficiency of our proposed method across different real-world scenarios. The source code has been released on https://github.com/Event-AHU/SlowFast_Event_Track.
Authors:Chenxi Liu, Yongqiang Chen, Tongliang Liu, James Cheng, Bo Han, Kun Zhang
Abstract:
System 2 reasoning is one of the defining characteristics of intelligence, which requires slow and logical thinking. Human conducts System 2 reasoning via the language of thoughts that organizes the reasoning process as a causal sequence of mental language, or thoughts. Recently, it has been observed that System 2 reasoning can be elicited from Large Language Models (LLMs) pre-trained on large-scale natural languages. However, in this work, we show that there is a significant gap between the modeling of languages and thoughts. As language is primarily a tool for humans to share knowledge and thinking, modeling human language can easily absorb language biases into LLMs deviated from the chain of thoughts in minds. Furthermore, we show that the biases will mislead the eliciting of "thoughts" in LLMs to focus only on a biased part of the premise. To this end, we propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap. Instead of directly eliciting the chain of thoughts from partial information, LoT instructs LLMs to adjust the order and token used for the expressions of all the relevant information. We show that the simple strategy significantly reduces the language modeling biases in LLMs and improves the performance of LLMs across a variety of reasoning tasks.
Authors:Shaohang Wei, Wei Li, Feifan Song, Wen Luo, Tianyi Zhuang, Haochen Tan, Zhijiang Guo, Houfeng Wang
Abstract:
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , and the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME .
Authors:Junzhi Ning, Cheng Tang, Kaijing Zhou, Diping Song, Lihao Liu, Ming Hu, Wei Li, Huihui Xu, Yanzhou Su, Tianbin Li, Jiyao Liu, Jin Ye, Sheng Zhang, Yuanfeng Ji, Junjun He
Abstract:
The scarcity of high-quality, labelled retinal imaging data, which presents a significant challenge in the development of machine learning models for ophthalmology, hinders progress in the field. Existing methods for synthesising Colour Fundus Photographs (CFPs) largely rely on predefined disease labels, which restricts their ability to generate images that reflect fine-grained anatomical variations, subtle disease stages, and diverse pathological features beyond coarse class categories. To overcome these challenges, we first introduce an innovative pipeline that creates a large-scale, captioned retinal dataset comprising 1.4 million entries, called RetinaLogos-1400k. Specifically, RetinaLogos-1400k uses the visual language model(VLM) to describe retinal conditions and key structures, such as optic disc configuration, vascular distribution, nerve fibre layers, and pathological features. Building on this dataset, we employ a novel three-step training framework, RetinaLogos, which enables fine-grained semantic control over retinal images and accurately captures different stages of disease progression, subtle anatomical variations, and specific lesion types. Through extensive experiments, our method demonstrates superior performance across multiple datasets, with 62.07% of text-driven synthetic CFPs indistinguishable from real ones by ophthalmologists. Moreover, the synthetic data improves accuracy by 5%-10% in diabetic retinopathy grading and glaucoma detection. Codes are available at https://github.com/uni-medical/retina-text2cfp.
Authors:Ben Liu, Zhen Qin
Abstract:
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow
Authors:Zheng Wu, Pengzhou Cheng, Zongru Wu, Lingzhong Dong, Zhuosheng Zhang
Abstract:
Graphical user interface (GUI) agents have recently emerged as an intriguing paradigm for human-computer interaction, capable of automatically executing user instructions to operate intelligent terminal devices. However, when encountering out-of-distribution (OOD) instructions that violate environmental constraints or exceed the current capabilities of agents, GUI agents may suffer task breakdowns or even pose security threats. Therefore, effective OOD detection for GUI agents is essential. Traditional OOD detection methods perform suboptimally in this domain due to the complex embedding space and evolving GUI environments. In this work, we observe that the in-distribution input semantic space of GUI agents exhibits a clustering pattern with respect to the distance from the centroid. Based on the finding, we propose GEM, a novel method based on fitting a Gaussian mixture model over input embedding distances extracted from the GUI agent that reflect its capability boundary. Evaluated on eight datasets spanning smartphones, computers, and web browsers, our method achieves an average accuracy improvement of 23.70\% over the best-performing baseline while only increasing training time by 4.9\% and testing time by 6.5\%. We also experimentally demonstrate that GEM can improve the step-wise success rate by 9.40\% by requesting assistance from the cloud model when encountering OOD samples. Analysis verifies the generalization ability of our method through experiments on nine different backbones. The codes are available at https://github.com/Wuzheng02/GEM-OODforGUIagents.
Authors:Zifeng Cheng, Zhonghui Wang, Yuchen Fu, Zhiwei Jiang, Yafeng Yin, Cong Wang, Qing Gu
Abstract:
Extracting sentence embeddings from large language models (LLMs) is a practical direction, as it requires neither additional data nor fine-tuning. Previous studies usually focus on prompt engineering to guide LLMs to encode the core semantic information of the sentence into the embedding of the last token. However, the last token in these methods still encodes an excess of non-essential information, such as stop words, limiting its encoding capacity. To this end, we propose a Contrastive Prompting (CP) method that introduces an extra auxiliary prompt to elicit better sentence embedding. By contrasting with the auxiliary prompt, CP can steer existing prompts to encode the core semantics of the sentence, rather than non-essential information. CP is a plug-and-play inference-time intervention method that can be combined with various prompt-based methods. Extensive experiments on Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our method can improve the performance of existing prompt-based methods across different LLMs. Our code will be released at https://github.com/zifengcheng/CP.
Authors:Hulin Li
Abstract:
Multi-head detectors typically employ a features-fused-pyramid-neck for multi-scale detection and are widely adopted in the industry. However, this approach faces feature misalignment when representations from different hierarchical levels of the feature pyramid are forcibly fused point-to-point. To address this issue, we designed an independent hierarchy pyramid (IHP) architecture to evaluate the effectiveness of the features-unfused-pyramid-neck for multi-head detectors. Subsequently, we introduced soft nearest neighbor interpolation (SNI) with a weight downscaling factor to mitigate the impact of feature fusion at different hierarchies while preserving key textures. Furthermore, we present a features adaptive selection method for down sampling in extended spatial windows (ESD) to retain spatial features and enhance lightweight convolutional techniques (GSConvE). These advancements culminate in our secondary features alignment solution (SA) for real-time detection, achieving state-of-the-art results on Pascal VOC and MS COCO. Code will be released at https://github.com/AlanLi1997/rethinking-fpn. This paper has been accepted by ECCV2024 and published on Springer Nature.
Authors:Yanbin Yin, Kun Zhou, Zhen Wang, Xiangdong Zhang, Yifei Shao, Shibo Hao, Yi Gu, Jieyuan Liu, Somanshu Singla, Tianyang Liu, Eric P. Xing, Zhengzhong Liu, Haojian Jin, Zhiting Hu
Abstract:
The recent explosion of large language models (LLMs), each with its own general or specialized strengths, makes scalable, reliable benchmarking more urgent than ever. Standard practices nowadays face fundamental trade-offs: closed-ended question-based benchmarks (eg MMLU) struggle with saturation as newer models emerge, while crowd-sourced leaderboards (eg Chatbot Arena) rely on costly and slow human judges. Recently, automated methods (eg LLM-as-a-judge) shed light on the scalability, but risk bias by relying on one or a few "authority" models. To tackle these issues, we propose Decentralized Arena (dearena), a fully automated framework leveraging collective intelligence from all LLMs to evaluate each other. It mitigates single-model judge bias by democratic, pairwise evaluation, and remains efficient at scale through two key components: (1) a coarse-to-fine ranking algorithm for fast incremental insertion of new models with sub-quadratic complexity, and (2) an automatic question selection strategy for the construction of new evaluation dimensions. Across extensive experiments across 66 LLMs, dearena attains up to 97% correlation with human judgements, while significantly reducing the cost. Our code and data will be publicly released on https://github.com/maitrix-org/de-arena.
Authors:Hieu-Nghia Huynh-Nguyen, Ngoc Son Nguyen, Huynh Nguyen Dang, Thieu Vo, Truong-Son Hy, Van Nguyen
Abstract:
Text-to-speech (TTS) systems have seen significant advancements in recent years, driven by improvements in deep learning and neural network architectures. Viewing the output speech as a data distribution, previous approaches often employ traditional speech representations, such as waveforms or spectrograms, within the Flow Matching framework. However, these methods have limitations, including overlooking various speech attributes and incurring high computational costs due to additional constraints introduced during training. To address these challenges, we introduce OZSpeech, the first TTS method to explore optimal transport conditional flow matching with one-step sampling and a learned prior as the condition, effectively disregarding preceding states and reducing the number of sampling steps. Our approach operates on disentangled, factorized components of speech in token format, enabling accurate modeling of each speech attribute, which enhances the TTS system's ability to precisely clone the prompt speech. Experimental results show that our method achieves promising performance over existing methods in content accuracy, naturalness, prosody generation, and speaker style preservation. Audio samples are available at our demo page https://ozspeech.github.io/OZSpeech_Web/.
Authors:Yiling Tao, Shuyi Wang, Jiaxi Yang, Guido Zuccon
Abstract:
This paper reports on findings from a comparative study on the effectiveness and efficiency of federated unlearning strategies within Federated Online Learning to Rank (FOLTR), with specific attention to systematically analysing the unlearning capabilities of methods in a verifiable manner.
Federated approaches to ranking of search results have recently garnered attention to address users privacy concerns. In FOLTR, privacy is safeguarded by collaboratively training ranking models across decentralized data sources, preserving individual user data while optimizing search results based on implicit feedback, such as clicks.
Recent legislation introduced across numerous countries is establishing the so called "the right to be forgotten", according to which services based on machine learning models like those in FOLTR should provide capabilities that allow users to remove their own data from those used to train models. This has sparked the development of unlearning methods, along with evaluation practices to measure whether unlearning of a user data successfully occurred. Current evaluation practices are however often controversial, necessitating the use of multiple metrics for a more comprehensive assessment -- but previous proposals of unlearning methods only used single evaluation metrics.
This paper addresses this limitation: our study rigorously assesses the effectiveness of unlearning strategies in managing both under-unlearning and over-unlearning scenarios using adapted, and newly proposed evaluation metrics. Thanks to our detailed analysis, we uncover the strengths and limitations of five unlearning strategies, offering valuable insights into optimizing federated unlearning to balance data privacy and system performance within FOLTR. We publicly release our code and complete results at https://github.com/Iris1026/Unlearning-for-FOLTR.git.
Authors:Jitai Hao, Qiang Huang, Hao Liu, Xinyan Xiao, Zhaochun Ren, Jun Yu
Abstract:
Training high-performing Small Language Models (SLMs) remains costly, even with knowledge distillation and pruning from larger teacher models. Existing work often faces three key challenges: (1) information loss from hard pruning, (2) inefficient alignment of representations, and (3) underutilization of informative activations, particularly from Feed-Forward Networks (FFNs). To address these challenges, we introduce Low-Rank Clone (LRC), an efficient pre-training method that constructs SLMs aspiring to behavioral equivalence with strong teacher models. LRC trains a set of low-rank projection matrices that jointly enable soft pruning by compressing teacher weights, and activation clone by aligning student activations, including FFN signals, with those of the teacher. This unified design maximizes knowledge transfer while removing the need for explicit alignment modules. Extensive experiments with open-source teachers (e.g., Llama-3.2-3B-Instruct, Qwen2.5-3B/7B-Instruct) show that LRC matches or surpasses state-of-the-art models trained on trillions of tokens--while using only 20B tokens, achieving over 1,000x training efficiency. Our codes and model checkpoints are available at https://github.com/CURRENTF/LowRankClone and https://huggingface.co/collections/JitaiHao/low-rank-clone-lrc-6828389e96a93f1d4219dfaf.
Authors:Haibin He, Maoyuan Ye, Jing Zhang, Xiantao Cai, Juhua Liu, Bo Du, Dacheng Tao
Abstract:
Large Multimodal Models (LMMs) have become increasingly versatile, accompanied by impressive Optical Character Recognition (OCR) related capabilities. Existing OCR-related benchmarks emphasize evaluating LMMs' abilities of relatively simple visual question answering, visual-text parsing, etc. However, the extent to which LMMs can deal with complex logical reasoning problems based on OCR cues is relatively unexplored. To this end, we introduce the Reasoning-OCR benchmark, which challenges LMMs to solve complex reasoning problems based on the cues that can be extracted from rich visual-text. Reasoning-OCR covers six visual scenarios and encompasses 150 meticulously designed questions categorized into six reasoning challenges. Additionally, Reasoning-OCR minimizes the impact of field-specialized knowledge. Our evaluation offers some insights for proprietary and open-source LMMs in different reasoning challenges, underscoring the urgent to improve the reasoning performance. We hope Reasoning-OCR can inspire and facilitate future research on enhancing complex reasoning ability based on OCR cues. Reasoning-OCR is publicly available at https://github.com/Hxyz-123/ReasoningOCR.
Authors:Hangyu Li, Qin Zhao, Haoran Xu, Xinyu Jiang, Qingwei Ben, Feiyu Jia, Haoyu Zhao, Liang Xu, Jia Zeng, Hanqing Wang, Bo Dai, Junting Dong, Jiangmiao Pang
Abstract:
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation. Codes is now available at https://github.com/cyjdlhy/TeleOpBench .
Authors:Zihua Wang, Ruibo Li, Haozhe Du, Joey Tianyi Zhou, Yu Zhang, Xu Yang
Abstract:
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose \textbf{FLASH} (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to \textbf{2.68$\times$} speed-up on video captioning and \textbf{2.55$\times$} on visual instruction tuning tasks compared to the original LMM. Our code is available \href{https://github.com/ZihuaEvan/FlashSD/}{[here]}.
Authors:Han Meng, Yancan Chen, Yunan Li, Yitian Yang, Jungup Lee, Renwen Zhang, Yi-Chieh Lee
Abstract:
Mental-health stigma remains a pervasive social problem that hampers treatment-seeking and recovery. Existing resources for training neural models to finely classify such stigma are limited, relying primarily on social-media or synthetic data without theoretical underpinnings. To remedy this gap, we present an expert-annotated, theory-informed corpus of human-chatbot interviews, comprising 4,141 snippets from 684 participants with documented socio-cultural backgrounds. Our experiments benchmark state-of-the-art neural models and empirically unpack the challenges of stigma detection. This dataset can facilitate research on computationally detecting, neutralizing, and counteracting mental-health stigma. Our corpus is openly available at https://github.com/HanMeng2004/Mental-Health-Stigma-Interview-Corpus.
Authors:Taiqiang Wu, Runming Yang, Jiayi Li, Pengfei Hu, Ngai Wong, Yujiu Yang
Abstract:
Large language models (LLMs) consistently benefit from further fine-tuning on various tasks. However, we observe that directly tuning the INSTRUCT (i.e., instruction tuned) models often leads to marginal improvements and even performance degeneration. Notably, paired BASE models, the foundation for these INSTRUCT variants, contain highly similar weight values (i.e., less than 2% on average for Llama 3.1 8B). Therefore, we propose a novel Shadow-FT framework to tune the INSTRUCT models by leveraging the corresponding BASE models. The key insight is to fine-tune the BASE model, and then directly graft the learned weight updates to the INSTRUCT model. Our proposed Shadow-FT introduces no additional parameters, is easy to implement, and significantly improves performance. We conduct extensive experiments on tuning mainstream LLMs, such as Qwen 3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding, reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-FT consistently outperforms conventional full-parameter and parameter-efficient tuning approaches. Further analyses indicate that Shadow-FT can be applied to multimodal large language models (MLLMs) and combined with direct preference optimization (DPO). Codes and weights are available at \href{https://github.com/wutaiqiang/Shadow-FT}{Github}.
Authors:Yinzhe Wang, Yiwen Xiao, Hu Wang, Yiping Xu, Yan Tian
Abstract:
Multi-view stereo (MVS) models based on progressive depth hypothesis narrowing have made remarkable advancements. However, existing methods haven't fully utilized the potential that the depth coverage of individual instances is smaller than that of the entire scene, which restricts further improvements in depth estimation precision. Moreover, inevitable deviations in the initial stage accumulate as the process advances. In this paper, we propose Instance-Adaptive MVS (IA-MVS). It enhances the precision of depth estimation by narrowing the depth hypothesis range and conducting refinement on each instance. Additionally, a filtering mechanism based on intra-instance depth continuity priors is incorporated to boost robustness. Furthermore, recognizing that existing confidence estimation can degrade IA-MVS performance on point clouds. We have developed a detailed mathematical model for confidence estimation based on conditional probability. The proposed method can be widely applied in models based on MVSNet without imposing extra training burdens. Our method achieves state-of-the-art performance on the DTU benchmark. The source code is available at https://github.com/KevinWang73106/IA-MVS.
Authors:Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu, Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan, You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzhen Xu, Xiaohui Zeng, Kaiyuan Zheng, Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, Linxi Fan
Abstract:
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
Authors:Jiabin Chen, Haiping Wang, Jinpeng Li, Yuan Liu, Zhen Dong, Bisheng Yang
Abstract:
We propose SpatialLLM, a novel approach advancing spatial intelligence tasks in complex urban scenes. Unlike previous methods requiring geographic analysis tools or domain expertise, SpatialLLM is a unified language model directly addressing various spatial intelligence tasks without any training, fine-tuning, or expert intervention. The core of SpatialLLM lies in constructing detailed and structured scene descriptions from raw spatial data to prompt pre-trained LLMs for scene-based analysis. Extensive experiments show that, with our designs, pretrained LLMs can accurately perceive spatial distribution information and enable zero-shot execution of advanced spatial intelligence tasks, including urban planning, ecological analysis, traffic management, etc. We argue that multi-field knowledge, context length, and reasoning ability are key factors influencing LLM performances in urban analysis. We hope that SpatialLLM will provide a novel viable perspective for urban intelligent analysis and management. The code and dataset are available at https://github.com/WHU-USI3DV/SpatialLLM.
Authors:Tianming Liang, Haichao Jiang, Yuting Yang, Chaolei Tan, Shuai Li, Wei-Shi Zheng, Jian-Fang Hu
Abstract:
Referring video object segmentation (RVOS) aims to identify, track and segment the objects in a video based on language descriptions, which has received great attention in recent years. However, existing datasets remain focus on short video clips within several seconds, with salient objects visible in most frames. To advance the task towards more practical scenarios, we introduce \textbf{Long-RVOS}, a large-scale benchmark for long-term referring video object segmentation. Long-RVOS contains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety of objects that undergo occlusion, disappearance-reappearance and shot changing. The objects are manually annotated with three different types of descriptions to individually evaluate the understanding of static attributes, motion patterns and spatiotemporal relationships. Moreover, unlike previous benchmarks that rely solely on the per-frame spatial evaluation, we introduce two new metrics to assess the temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods on Long-RVOS. The results show that current approaches struggle severely with the long-video challenges. To address this, we further propose ReferMo, a promising baseline method that integrates motion information to expand the temporal receptive field, and employs a local-to-global architecture to capture both short-term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves significant improvements over current methods in long-term scenarios. We hope that Long-RVOS and our baseline can drive future RVOS research towards tackling more realistic and long-form videos.
Authors:Chaofan Li, Jianlyu Chen, Yingxia Shao, Defu Lian, Zheng Liu
Abstract:
Code embedding models attract increasing attention due to the widespread popularity of retrieval-augmented generation (RAG) in software development. These models are expected to capture the rich semantic relationships inherent to code, which differ significantly from those found in text. However, existing models remain severely limited due to the scarcity of high-quality training data. In this work, we introduce \textbf{CodeR} (\underline{Code} \underline{R}etrieval), a state-of-the-art embedding model for general-purpose code retrieval. The superior performance of CodeR is built upon CodeR-Pile, a large-scale synthetic dataset constructed under the DRU (Diversity, Reliability, Usability) principle via a novel data synthesis pipeline. To optimize training effectiveness, we propose Annealing, a curriculum learning strategy that enables effective knowledge transfer across heterogeneous sources of data. We evaluate CodeR based on 16 diverse code retrieval tasks, where it significantly outperforms existing baselines and exhibits strong out-of-domain generalization performance. We have publicly released our code and the well-trained model to facilitate further research in this critical area. https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Coder.
Authors:Kian Kai Ang, Guy Farrelly, Cheryl Pope, Damith C. Ranasinghe
Abstract:
We develop QUICtester, an automated approach for uncovering non-compliant behaviors in the ratified QUIC protocol implementations (RFC 9000/9001). QUICtester leverages active automata learning to abstract the behavior of a QUIC implementation into a finite state machine (FSM) representation. Unlike prior noncompliance checking methods, to help uncover state dependencies on event timing, QUICtester introduces the idea of state learning with event timing variations, adopting both valid and invalid input configurations, and combinations of security and transport layer parameters during learning. We use pairwise differential analysis of learned behaviour models of tested QUIC implementations to identify non-compliance instances as behaviour deviations in a property-agnostic way. This exploits the existence of the many different QUIC implementations, removing the need for validated, formal models. The diverse implementations act as cross-checking test oracles to discover non-compliance. We used QUICtester to analyze analyze 186 learned models from 19 QUIC implementations under the five security settings and discovered 55 implementation errors. Significantly, the tool uncovered a QUIC specification ambiguity resulting in an easily exploitable DoS vulnerability, led to 5 CVE assignments from developers, and two bug bounties thus far.
Authors:Zhuoheng Wang, Jinyin Zhou, Qi Wu
Abstract:
Humanoid soccer dribbling is a highly challenging task that demands dexterous ball manipulation while maintaining dynamic balance. Traditional rule-based methods often struggle to achieve accurate ball control due to their reliance on fixed walking patterns and limited adaptability to real-time ball dynamics. To address these challenges, we propose a two-stage curriculum learning framework that enables a humanoid robot to acquire dribbling skills without explicit dynamics or predefined trajectories. In the first stage, the robot learns basic locomotion skills; in the second stage, we fine-tune the policy for agile dribbling maneuvers. We further introduce a virtual camera model in simulation and design heuristic rewards to encourage active sensing, promoting a broader visual range for continuous ball perception. The policy is trained in simulation and successfully transferred to a physical humanoid robot. Experimental results demonstrate that our method enables effective ball manipulation, achieving flexible and visually appealing dribbling behaviors across multiple environments. This work highlights the potential of reinforcement learning in developing agile humanoid soccer robots. Additional details, video demonstrations, and code are available at https://zhuoheng0910.github.io/dribble-master/.
Authors:Mingyuan Zhou, Yi Gu, Zhendong Wang
Abstract:
Diffusion distillation has emerged as a promising strategy for accelerating text-to-image (T2I) diffusion models by distilling a pretrained score network into a one- or few-step generator. While existing methods have made notable progress, they often rely on real or teacher-synthesized images to perform well when distilling high-resolution T2I diffusion models such as Stable Diffusion XL (SDXL), and their use of classifier-free guidance (CFG) introduces a persistent trade-off between text-image alignment and generation diversity. We address these challenges by optimizing Score identity Distillation (SiD) -- a data-free, one-step distillation framework -- for few-step generation. Backed by theoretical analysis that justifies matching a uniform mixture of outputs from all generation steps to the data distribution, our few-step distillation algorithm avoids step-specific networks and integrates seamlessly into existing pipelines, achieving state-of-the-art performance on SDXL at 1024x1024 resolution. To mitigate the alignment-diversity trade-off when real text-image pairs are available, we introduce a Diffusion GAN-based adversarial loss applied to the uniform mixture and propose two new guidance strategies: Zero-CFG, which disables CFG in the teacher and removes text conditioning in the fake score network, and Anti-CFG, which applies negative CFG in the fake score network. This flexible setup improves diversity without sacrificing alignment. Comprehensive experiments on SD1.5 and SDXL demonstrate state-of-the-art performance in both one-step and few-step generation settings, along with robustness to the absence of real images. Our efficient PyTorch implementation, along with the resulting one- and few-step distilled generators, will be released publicly as a separate branch at https://github.com/mingyuanzhou/SiD-LSG.
Authors:Hanzhuo Tan, Xiaolong Tian, Hanrui Qi, Jiaming Liu, Zuchen Gao, Siyi Wang, Qi Luo, Jing Li, Yuqun Zhang
Abstract:
Recent advances in LLM-based decompilers have been shown effective to convert low-level binaries into human-readable source code. However, there still lacks a comprehensive benchmark that provides large-scale binary-source function pairs, which is critical for advancing the LLM decompilation technology. Creating accurate binary-source mappings incurs severe issues caused by complex compilation settings and widespread function inlining that obscure the correspondence between binaries and their original source code. Previous efforts have either relied on used contest-style benchmarks, synthetic binary-source mappings that diverge significantly from the mappings in real world, or partially matched binaries with only code lines or variable names, compromising the effectiveness of analyzing the binary functionality. To alleviate these issues, we introduce Decompile-Bench, the first open-source dataset comprising two million binary-source function pairs condensed from 100 million collected function pairs, i.e., 450GB of binaries compiled from permissively licensed GitHub projects. For the evaluation purposes, we also developed a benchmark Decompile-Bench-Eval including manually crafted binaries from the well-established HumanEval and MBPP, alongside the compiled GitHub repositories released after 2025 to mitigate data leakage issues. We further explore commonly-used evaluation metrics to provide a thorough assessment of the studied LLM decompilers and find that fine-tuning with Decompile-Bench causes a 20% improvement over previous benchmarks in terms of the re-executability rate. Our code and data has been released in HuggingFace and Github. https://github.com/albertan017/LLM4Decompile
Authors:Zihan Su, Xuerui Qiu, Hongbin Xu, Tangyu Jiang, Junhao Zhuang, Chun Yuan, Ming Li, Shengfeng He, Fei Richard Yu
Abstract:
The explosive growth of generative video models has amplified the demand for reliable copyright preservation of AI-generated content. Despite its popularity in image synthesis, invisible generative watermarking remains largely underexplored in video generation. To address this gap, we propose Safe-Sora, the first framework to embed graphical watermarks directly into the video generation process. Motivated by the observation that watermarking performance is closely tied to the visual similarity between the watermark and cover content, we introduce a hierarchical coarse-to-fine adaptive matching mechanism. Specifically, the watermark image is divided into patches, each assigned to the most visually similar video frame, and further localized to the optimal spatial region for seamless embedding. To enable spatiotemporal fusion of watermark patches across video frames, we develop a 3D wavelet transform-enhanced Mamba architecture with a novel spatiotemporal local scanning strategy, effectively modeling long-range dependencies during watermark embedding and retrieval. To the best of our knowledge, this is the first attempt to apply state space models to watermarking, opening new avenues for efficient and robust watermark protection. Extensive experiments demonstrate that Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness, which is largely attributed to our proposals. Code is publicly available at https://github.com/Sugewud/Safe-Sora
Authors:Yaotian Yang, Yiwen Tang, Yizhe Chen, Xiao Chen, Jiangjie Qiu, Hao Xiong, Haoyu Yin, Zhiyao Luo, Yifei Zhang, Sijia Tao, Wentao Li, Qinghua Zhang, Yuqiang Li, Wanli Ouyang, Bin Zhao, Xiaonan Wang, Fei Wei
Abstract:
Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.
Authors:Mingqi Shao, Feng Xiong, Zhaoxu Sun, Mu Xu
Abstract:
Recently, significant advances have been made in 3D object generation. Building upon the generated geometry, current pipelines typically employ image diffusion models to generate multi-view RGB images, followed by UV texture reconstruction through texture baking. While 3D geometry generation has improved significantly, supported by multiple open-source frameworks, 3D texture generation remains underexplored. In this work, we systematically investigate 3D texture generation through the lens of three core dimensions: reference-texture alignment, geometry-texture consistency, and local texture quality. To tackle these issues, we propose MVPainter, which employs data filtering and augmentation strategies to enhance texture fidelity and detail, and introduces ControlNet-based geometric conditioning to improve texture-geometry alignment. Furthermore, we extract physically-based rendering (PBR) attributes from the generated views to produce PBR meshes suitable for real-world rendering applications. MVPainter achieves state-of-the-art results across all three dimensions, as demonstrated by human-aligned evaluations. To facilitate further research and reproducibility, we also release our full pipeline as an open-source system, including data construction, model architecture, and evaluation tools.
Authors:Xiangpeng Tian, Xiangyu Liao, Xiao Liu, Meng Li, Chao Ren
Abstract:
All-in-one image restoration aims to recover clear images from various degradation types and levels with a unified model. Nonetheless, the significant variations among degradation types present challenges for training a universal model, often resulting in task interference, where the gradient update directions of different tasks may diverge due to shared parameters. To address this issue, motivated by the routing strategy, we propose DFPIR, a novel all-in-one image restorer that introduces Degradation-aware Feature Perturbations(DFP) to adjust the feature space to align with the unified parameter space. In this paper, the feature perturbations primarily include channel-wise perturbations and attention-wise perturbations. Specifically, channel-wise perturbations are implemented by shuffling the channels in high-dimensional space guided by degradation types, while attention-wise perturbations are achieved through selective masking in the attention space. To achieve these goals, we propose a Degradation-Guided Perturbation Block (DGPB) to implement these two functions, positioned between the encoding and decoding stages of the encoder-decoder architecture. Extensive experimental results demonstrate that DFPIR achieves state-of-the-art performance on several all-in-one image restoration tasks including image denoising, image dehazing, image deraining, motion deblurring, and low-light image enhancement. Our codes are available at https://github.com/TxpHome/DFPIR.
Authors:Wanfu Gao, Zengyao Man, Hanlin Pan, Kunpeng Liu
Abstract:
Feature generation involves creating new features from raw data to capture complex relationships among the original features, improving model robustness and machine learning performance. Current methods using reinforcement learning for feature generation have made feature exploration more flexible and efficient. However, several challenges remain: first, during feature expansion, a large number of redundant features are generated. When removing them, current methods only retain the best features each round, neglecting those that perform poorly initially but could improve later. Second, the state representation used by current methods fails to fully capture complex feature relationships. Third, there are significant differences between discrete and continuous features in tabular data, requiring different operations for each type. To address these challenges, we propose a novel dual-agent reinforcement learning method for feature generation. Two agents are designed: the first generates new features, and the second determines whether they should be preserved. A self-attention mechanism enhances state representation, and diverse operations distinguish interactions between discrete and continuous features. The experimental results on multiple datasets demonstrate that the proposed method is effective. The code is available at https://github.com/extess0/DARL.
Authors:Yifan Hu, Rui Liu, Yi Ren, Xiang Yin, Haizhou Li
Abstract:
Conversational Speech Synthesis (CSS) aims to align synthesized speech with the emotional and stylistic context of user-agent interactions to achieve empathy. Current generative CSS models face interpretability limitations due to insufficient emotional perception and redundant discrete speech coding. To address the above issues, we present Chain-Talker, a three-stage framework mimicking human cognition: Emotion Understanding derives context-aware emotion descriptors from dialogue history; Semantic Understanding generates compact semantic codes via serialized prediction; and Empathetic Rendering synthesizes expressive speech by integrating both components. To support emotion modeling, we develop CSS-EmCap, an LLM-driven automated pipeline for generating precise conversational speech emotion captions. Experiments on three benchmark datasets demonstrate that Chain-Talker produces more expressive and empathetic speech than existing methods, with CSS-EmCap contributing to reliable emotion modeling. The code and demos are available at: https://github.com/AI-S2-Lab/Chain-Talker.
Authors:Sanggeon Yun, Ryozo Masukawa, Hyunwoo Oh, Nathaniel D. Bastian, Mohsen Imani
Abstract:
Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, heavy augmentations, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations typically induce large representation shifts in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead and no compromise to clean accuracy. The code is available here: https://github.com/c0510gy/AFLS-AED.
Authors:Florent Chiaroni, Ali Ayub, Ola Ahmad
Abstract:
In robotics applications, few-shot segmentation is crucial because it allows robots to perform complex tasks with minimal training data, facilitating their adaptation to diverse, real-world environments. However, pixel-level annotations of even small amount of images is highly time-consuming and costly. In this paper, we present a novel few-shot binary segmentation method based on bounding-box annotations instead of pixel-level labels. We introduce, ProMi, an efficient prototype-mixture-based method that treats the background class as a mixture of distributions. Our approach is simple, training-free, and effective, accommodating coarse annotations with ease. Compared to existing baselines, ProMi achieves the best results across different datasets with significant gains, demonstrating its effectiveness. Furthermore, we present qualitative experiments tailored to real-world mobile robot tasks, demonstrating the applicability of our approach in such scenarios. Our code: https://github.com/ThalesGroup/promi.
Authors:Botao Amber Hu, Rem Rungu Lin, Yilan Elan Tao, Samuli Laato, Yue Li
Abstract:
As see-through Mixed Reality Head-Mounted Displays (MRHMDs) proliferate, their usage is gradually shifting from controlled, private settings to spontaneous, public contexts. While location-based augmented reality mobile games such as Pokemon GO have been successful, the embodied interaction afforded by MRHMDs moves play beyond phone-based screen-tapping toward co-located, bodily, movement-based play. In anticipation of widespread MRHMD adoption, major technology companies have teased concept videos envisioning urban streets as vast mixed reality playgrounds-imagine Harry Potter-style wizard duels in city streets-which we term Immersive Mixed Reality Street Play (IMRSP). However, few real-world studies examine such scenarios. Through empirical, in-the-wild studies of our research-through-design game probe, Multiplayer Omnipresent Fighting Arena (MOFA), deployed across diverse public venues, we offer initial insights into the social implications, challenges, opportunities, and design recommendations of IMRSP. The MOFA framework, which includes three gameplay modes-"The Training," "The Duel," and "The Dragon"-is open-sourced at https://github.com/realitydeslab/mofa.
Authors:Zongkai Liu, Fanqing Meng, Lingxiao Du, Zhixiang Zhou, Chao Yu, Wenqi Shao, Qiaosheng Zhang
Abstract:
Recent advances in rule-based reinforcement learning (RL) have significantly improved the reasoning capability of language models (LMs) with rule-based rewards. However, existing RL methods -- such as GRPO, REINFORCE++, and RLOO -- often suffer from training instability, where large policy updates and improper clipping can lead to training collapse. To address this issue, we propose Clipped Policy Gradient Optimization with Policy Drift (CPGD), a novel algorithm designed to stabilize policy learning in LMs. CPGD introduces a policy drift constraint based on KL divergence to dynamically regularize policy updates, and leverages a clip mechanism on the logarithm of the ratio to prevent excessive policy updates. We provide theoretical justification for CPGD and demonstrate through empirical analysis that it mitigates the instability observed in prior approaches. Furthermore, we show that CPGD significantly improves performance while maintaining training stability. Our implementation balances theoretical rigor with practical usability, offering a robust alternative for RL in the post-training of LMs. We release our code at https://github.com/ModalMinds/MM-EUREKA.
Authors:Jingyue Gao, Runji Lin, Keming Lu, Bowen Yu, Junyang Lin, Jianyu Chen
Abstract:
Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries. This limitation necessitates scaling up computational responses through self-generated data, yet current methods struggle due to spurious correlated data caused by ineffective exploration across all reasoning stages. To address such challenge, we introduce \textbf{MARGE}: Improving \textbf{Ma}th \textbf{R}easoning with \textbf{G}uided \textbf{E}xploration, a novel method to address this issue and enhance mathematical reasoning through hit-guided exploration. MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment throughout the reasoning process. Through extensive experiments across multiple backbone models and benchmarks, we demonstrate that MARGE significantly improves reasoning capabilities without requiring external annotations or training additional value models. Notably, MARGE improves both single-shot accuracy and exploration diversity, mitigating a common trade-off in alignment methods. These results demonstrate MARGE's effectiveness in enhancing mathematical reasoning capabilities and unlocking the potential of scaling self-generated training data. Our code and models are available at \href{https://github.com/georgao35/MARGE}{this link}.
Authors:Longxi Gao, Li Zhang, Mengwei Xu
Abstract:
Training effective Vision Language Models (VLMs) for GUI agents typically relies on supervised fine-tuning (SFT) over large-scale annotated datasets, where the collection process is labor-intensive and error-prone. In this work, we propose a self-supervised inverse dynamics task to enable VLMs to learn from GUI transition pairs by inferring the action that caused that transition. This training task offers two advantages: (1) It enables VLMs to ignore variations unrelated to user actions (e.g., background refreshes, ads) and to focus on true affordances such as buttons and input fields within complex GUIs. (2) The training data can be easily obtained from existing GUI trajectories without requiring human annotation, and it can be easily scaled through automatic offline exploration. Using this training task, we propose UI-shift, a framework for enhancing VLM-based GUI agents through self-supervised reinforcement learning (RL). With only 2K training samples sourced from existing datasets, two VLMs -- Qwen2.5-VL-3B and Qwen2.5-VL-7B -- trained with UI-Shift achieve competitive or superior performance on grounding tasks (ScreenSpot-series benchmarks) and GUI automation tasks (AndroidControl), compared to SFT baselines and GUI-specific models that explicitly elicit reasoning abilities during RL. Our findings suggest a potential direction for enhancing VLMs for GUI agents by leveraging more self-supervised training data in the future. Code, model, and data are available at: https://github.com/UbiquitousLearning/UIShift
Authors:Shaobin Zhuang, Zhipeng Huang, Ying Zhang, Fangyikang Wang, Canmiao Fu, Binxin Yang, Chong Sun, Chen Li, Yali Wang
Abstract:
GPT has shown its remarkable success in natural language processing. However, the language sequence is not sufficient to describe spatial-temporal details in the visual world. Alternatively, the video sequence is good at capturing such details. Motivated by this fact, we propose a concise Video-GPT in this paper by treating video as new language for visual world modeling. By analogy to next token prediction in GPT, we introduce a novel next clip diffusion paradigm for pretraining Video-GPT. Different from the previous works, this distinct paradigm allows Video-GPT to tackle both short-term generation and long-term prediction, by autoregressively denoising the noisy clip according to the clean clips in the history. Extensive experiments show our Video-GPT achieves the state-of-the-art performance on video prediction, which is the key factor towards world modeling (Physics-IQ Benchmark: Video-GPT 34.97 vs. Kling 23.64 vs. Wan 20.89). Moreover, it can be well adapted on 6 mainstream video tasks in both video generation and understanding, showing its great generalization capacity in downstream. The project page is at https://zhuangshaobin.github.io/Video-GPT.github.io/.
Authors:Wenchen Chen, Yanmei Zhang, Zhongwei Xiao, Jianping Chu, Xingbo Wang
Abstract:
Few-shot classification of hyperspectral images (HSI) faces the challenge of scarce labeled samples. Self-Supervised learning (SSL) and Few-Shot Learning (FSL) offer promising avenues to address this issue. However, existing methods often struggle to adapt to the spatial geometric diversity of HSIs and lack sufficient spectral prior knowledge. To tackle these challenges, we propose a method, Spectral-Spatial Self-Supervised Learning for Few-Shot Hyperspectral Image Classification (S4L-FSC), aimed at improving the performance of few-shot HSI classification. Specifically, we first leverage heterogeneous datasets to pretrain a spatial feature extractor using a designed Rotation-Mirror Self-Supervised Learning (RM-SSL) method, combined with FSL. This approach enables the model to learn the spatial geometric diversity of HSIs using rotation and mirroring labels as supervisory signals, while acquiring transferable spatial meta-knowledge through few-shot learning. Subsequently, homogeneous datasets are utilized to pretrain a spectral feature extractor via a combination of FSL and Masked Reconstruction Self-Supervised Learning (MR-SSL). The model learns to reconstruct original spectral information from randomly masked spectral vectors, inferring spectral dependencies. In parallel, FSL guides the model to extract pixel-level discriminative features, thereby embedding rich spectral priors into the model. This spectral-spatial pretraining method, along with the integration of knowledge from heterogeneous and homogeneous sources, significantly enhances model performance. Extensive experiments on four HSI datasets demonstrate the effectiveness and superiority of the proposed S4L-FSC approach for few-shot HSI classification.
Authors:Yang Liu, Ming Ma, Xiaomin Yu, Pengxiang Ding, Han Zhao, Mingyang Sun, Siteng Huang, Donglin Wang
Abstract:
Despite impressive advancements in Visual-Language Models (VLMs) for multi-modal tasks, their reliance on RGB inputs limits precise spatial understanding. Existing methods for integrating spatial cues, such as point clouds or depth, either require specialized sensors or fail to effectively exploit depth information for higher-order reasoning. To this end, we propose a novel Spatial Sense and Reasoning method, dubbed SSR, a novel framework that transforms raw depth data into structured, interpretable textual rationales. These textual rationales serve as meaningful intermediate representations to significantly enhance spatial reasoning capabilities. Additionally, we leverage knowledge distillation to compress the generated rationales into compact latent embeddings, which facilitate resource-efficient and plug-and-play integration into existing VLMs without retraining. To enable comprehensive evaluation, we introduce a new dataset named SSR-CoT, a million-scale visual-language reasoning dataset enriched with intermediate spatial reasoning annotations, and present SSRBench, a comprehensive multi-task benchmark. Extensive experiments on multiple benchmarks demonstrate SSR substantially improves depth utilization and enhances spatial reasoning, thereby advancing VLMs toward more human-like multi-modal understanding. Our project page is at https://yliu-cs.github.io/SSR.
Authors:Qi Wang, Yanrui Yu, Ye Yuan, Rui Mao, Tianfei Zhou
Abstract:
Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VIDEORFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VIDEORFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a multi-expert, cognition-inspired CoT curation pipeline. First, we devise a cognition-inspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a MLLM conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets, i.e.VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VIDEORFT achieves state-of-the-art performance on six video reasoning benchmarks.
Authors:Zirun Guo, Minjie Hong, Tao Jin
Abstract:
Reinforcement Learning (RL) has shown promise in improving the reasoning abilities of Large Language Models (LLMs). However, the specific challenges of adapting RL to multimodal data and formats remain relatively unexplored. In this work, we present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs). We draw inspirations from human learning progression--from simple to complex and easy to difficult, and propose a gradual learning paradigm for MLLMs. To this end, we construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training. To tackle multimodal tasks, we introduce a multimodal format constraint that encourages careful observation of images, resulting in enhanced visual abilities and clearer and more structured responses. Additionally, we implement a bonus reward system that favors concise, correct answers within a length constraint, alongside a dynamic weighting mechanism that prioritizes uncertain and medium-difficulty problems, ensuring that more informative samples have a greater impact on training. Our experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks, achieving superior clarity and conciseness in reasoning chains. Ablation studies validate the effectiveness of our strategies, highlighting the robustness and generalization of our approach. The dataset and code will be released at https://github.com/zrguo/Observe-R1.
Authors:Siwei Xia, Li Sun, Tiantian Sun, Qingli Li
Abstract:
Drag-based editing within pretrained diffusion model provides a precise and flexible way to manipulate foreground objects. Traditional methods optimize the input feature obtained from DDIM inversion directly, adjusting them iteratively to guide handle points towards target locations. However, these approaches often suffer from limited accuracy due to the low representation ability of the feature in motion supervision, as well as inefficiencies caused by the large search space required for point tracking. To address these limitations, we present DragLoRA, a novel framework that integrates LoRA (Low-Rank Adaptation) adapters into the drag-based editing pipeline. To enhance the training of LoRA adapters, we introduce an additional denoising score distillation loss which regularizes the online model by aligning its output with that of the original model. Additionally, we improve the consistency of motion supervision by adapting the input features using the updated LoRA, giving a more stable and accurate input feature for subsequent operations. Building on this, we design an adaptive optimization scheme that dynamically toggles between two modes, prioritizing efficiency without compromising precision. Extensive experiments demonstrate that DragLoRA significantly enhances the control precision and computational efficiency for drag-based image editing. The Codes of DragLoRA are available at: https://github.com/Sylvie-X/DragLoRA.
Authors:Wenqiao Zhu, Chao Xu, Lulu Wang, Jun Wu
Abstract:
Rotary Position Embedding (RoPE) is an efficient position encoding approach and is widely utilized in numerous large language models (LLMs). Recently, a lot of methods have been put forward to further expand the context window based on RoPE. The core concept of those methods is to predefine or search for a set of factors to rescale the base frequencies of RoPE. Nevertheless, it is quite a challenge for existing methods to predefine an optimal factor due to the exponential search space. In view of this, we introduce PSC (Phase Shift Calibration), a small module for calibrating the frequencies predefined by existing methods. With the employment of PSC, we demonstrate that many existing methods can be further enhanced, like PI, YaRN, and LongRoPE. We conducted extensive experiments across multiple models and tasks. The results demonstrate that (1) when PSC is enabled, the comparative reductions in perplexity increase as the context window size is varied from 16k, to 32k, and up to 64k. (2) Our approach is broadly applicable and exhibits robustness across a variety of models and tasks. The code can be found at https://github.com/WNQzhu/PSC.
Authors:Emanuele La Malfa, Jon Vadillo, Marco Molinari, Michael Wooldridge
Abstract:
This paper introduces a formal notion of fixed point explanations, inspired by the "why regress" principle, to assess, through recursive applications, the stability of the interplay between a model and its explainer. Fixed point explanations satisfy properties like minimality, stability, and faithfulness, revealing hidden model behaviours and explanatory weaknesses. We define convergence conditions for several classes of explainers, from feature-based to mechanistic tools like Sparse AutoEncoders, and we report quantitative and qualitative results.
Authors:Yang Hu, Xingyu Zhang, Xueji Fang, Zhiyang Chen, Xiao Wang, Huatian Zhang, Guojun Qi
Abstract:
We propose SLOT (Sample-specific Language Model Optimization at Test-time), a novel and parameter-efficient test-time inference approach that enhances a language model's ability to more accurately respond to individual prompts. Existing Large Language Models (LLMs) often struggle with complex instructions, leading to poor performances on those not well represented among general samples. To address this, SLOT conducts few optimization steps at test-time to update a light-weight sample-specific parameter vector. It is added to the final hidden layer before the output head, and enables efficient adaptation by caching the last layer features during per-sample optimization. By minimizing the cross-entropy loss on the input prompt only, SLOT helps the model better aligned with and follow each given instruction. In experiments, we demonstrate that our method outperforms the compared models across multiple benchmarks and LLMs. For example, Qwen2.5-7B with SLOT achieves an accuracy gain of 8.6% on GSM8K from 57.54% to 66.19%, while DeepSeek-R1-Distill-Llama-70B with SLOT achieves a SOTA accuracy of 68.69% on GPQA among 70B-level models. Our code is available at https://github.com/maple-research-lab/SLOT.
Authors:Elizaveta Pestova, Ilya Osokin, Danil Belov, Pavel Osinenko
Abstract:
Recent advancements in adaptive control for reference trajectory tracking enable quadrupedal robots to perform locomotion tasks under challenging conditions. There are methods enabling the estimation of the external disturbances in terms of forces and torques. However, a specific case of disturbances that are periodic was not explicitly tackled in application to quadrupeds. This work is devoted to the estimation of the periodic disturbances with a lightweight regressor using simplified robot dynamics and extracting the disturbance properties in terms of the magnitude and frequency. Experimental evidence suggests performance improvement over the baseline static disturbance compensation. All source files, including simulation setups, code, and calculation scripts, are available on GitHub at https://github.com/aidagroup/quad-periodic-mpc.
Authors:Ya Shen, Gang Chen, Hui Ma, Mengjie Zhang
Abstract:
Cost-aware Dynamic Workflow Scheduling (CADWS) is a key challenge in cloud computing, focusing on devising an effective scheduling policy to efficiently schedule dynamically arriving workflow tasks, represented as Directed Acyclic Graphs (DAG), to suitable virtual machines (VMs). Deep reinforcement learning (DRL) has been widely employed for automated scheduling policy design. However, the performance of DRL is heavily influenced by the design of the problem-tailored policy network and is highly sensitive to hyperparameters and the design of reward feedback. Considering the above-mentioned issues, this study proposes a novel DRL method combining Graph Attention Networks-based policy network and Evolution Strategy, referred to as GATES. The contributions of GATES are summarized as follows: (1) GATES can capture the impact of current task scheduling on subsequent tasks by learning the topological relationships between tasks in a DAG. (2) GATES can assess the importance of each VM to the ready task, enabling it to adapt to dynamically changing VM resources. (3) Utilizing Evolution Strategy's robustness, exploratory nature, and tolerance for delayed rewards, GATES achieves stable policy learning in CADWS. Extensive experimental results demonstrate the superiority of the proposed GATES in CADWS, outperforming several state-of-the-art algorithms. The source code is available at: https://github.com/YaShen998/GATES.
Authors:Qizhou Chen, Dakan Wang, Taolin Zhang, Zaoming Yan, Chengsong You, Chengyu Wang, Xiaofeng He
Abstract:
Model editing aims to enhance the accuracy and reliability of large language models (LLMs) by efficiently adjusting their internal parameters. Currently, most LLM editing datasets are confined to narrow knowledge domains and cover a limited range of editing evaluation. They often overlook the broad scope of editing demands and the diversity of ripple effects resulting from edits. In this context, we introduce UniEdit, a unified benchmark for LLM editing grounded in open-domain knowledge. First, we construct editing samples by selecting entities from 25 common domains across five major categories, utilizing the extensive triple knowledge available in open-domain knowledge graphs to ensure comprehensive coverage of the knowledge domains. To address the issues of generality and locality in editing, we design an Neighborhood Multi-hop Chain Sampling (NMCS) algorithm to sample subgraphs based on a given knowledge piece to entail comprehensive ripple effects to evaluate. Finally, we employ proprietary LLMs to convert the sampled knowledge subgraphs into natural language text, guaranteeing grammatical accuracy and syntactical diversity. Extensive statistical analysis confirms the scale, comprehensiveness, and diversity of our UniEdit benchmark. We conduct comprehensive experiments across multiple LLMs and editors, analyzing their performance to highlight strengths and weaknesses in editing across open knowledge domains and various evaluation criteria, thereby offering valuable insights for future research endeavors.
Authors:Qianyue Hu, Junyan Wu, Wei Lu, Xiangyang Luo
Abstract:
Diffusion Models (DMs) have achieved remarkable success in realistic voice cloning (VC), while they also increase the risk of malicious misuse. Existing proactive defenses designed for traditional VC models aim to disrupt the forgery process, but they have been proven incompatible with DMs due to the intricate generative mechanisms of diffusion. To bridge this gap, we introduce VoiceCloak, a multi-dimensional proactive defense framework with the goal of obfuscating speaker identity and degrading perceptual quality in potential unauthorized VC. To achieve these goals, we conduct a focused analysis to identify specific vulnerabilities within DMs, allowing VoiceCloak to disrupt the cloning process by introducing adversarial perturbations into the reference audio. Specifically, to obfuscate speaker identity, VoiceCloak first targets speaker identity by distorting representation learning embeddings to maximize identity variation, which is guided by auditory perception principles. Additionally, VoiceCloak disrupts crucial conditional guidance processes, particularly attention context, thereby preventing the alignment of vocal characteristics that are essential for achieving convincing cloning. Then, to address the second objective, VoiceCloak introduces score magnitude amplification to actively steer the reverse trajectory away from the generation of high-quality speech. Noise-guided semantic corruption is further employed to disrupt structural speech semantics captured by DMs, degrading output quality. Extensive experiments highlight VoiceCloak's outstanding defense success rate against unauthorized diffusion-based voice cloning. Audio samples of VoiceCloak are available at https://voice-cloak.github.io/VoiceCloak/.
Authors:Xinye Li, Mingqi Wan, Dianbo Sui
Abstract:
We present Team asdfo123's submission to the LLMSR@XLLM25 shared task, which evaluates large language models on producing fine-grained, controllable, and interpretable reasoning processes. Systems must extract all problem conditions, decompose a chain of thought into statement-evidence pairs, and verify the logical validity of each pair. Leveraging only the off-the-shelf Meta-Llama-3-8B-Instruct, we craft a concise few-shot, multi-turn prompt that first enumerates all conditions and then guides the model to label, cite, and adjudicate every reasoning step. A lightweight post-processor based on regular expressions normalises spans and enforces the official JSON schema. Without fine-tuning, external retrieval, or ensembling, our method ranks 5th overall, achieving macro F1 scores on par with substantially more complex and resource-consuming pipelines. We conclude by analysing the strengths and limitations of our approach and outlining directions for future research in structural reasoning with LLMs. Our code is available at https://github.com/asdfo123/LLMSR-asdfo123.
Authors:Maoyuan Ye, Jing Zhang, Juhua Liu, Bo Du, Dacheng Tao
Abstract:
Recent advances in Large Multimodal Models (LMMs) have significantly improved their reasoning and Optical Character Recognition (OCR) capabilities. However, their performance on complex logical reasoning tasks involving text-rich images remains underexplored. To bridge this gap, we introduce LogicOCR, a benchmark comprising 1,100 multiple-choice questions designed to evaluate LMMs' logical reasoning abilities on text-rich images, while minimizing reliance on domain-specific knowledge (e.g., mathematics). We construct LogicOCR by curating a text corpus from the Chinese National Civil Servant Examination and develop a scalable, automated pipeline to convert it into multimodal samples. First, we design prompt templates to steer GPT-Image-1 to generate images with diverse backgrounds, interleaved text-illustration layouts, and varied fonts, ensuring contextual relevance and visual realism. Then, the generated images are manually verified, with low-quality examples discarded. We evaluate a range of representative open-source and proprietary LMMs under both Chain-of-Thought (CoT) and direct-answer settings. Our multi-dimensional analysis reveals key insights, such as the impact of test-time scaling, input modality differences, and sensitivity to visual-text orientation. Notably, LMMs still lag in multimodal reasoning compared to text-only inputs, indicating that they have not fully bridged visual reading with reasoning. We hope LogicOCR will serve as a valuable resource for advancing multimodal reasoning research. The dataset is available at https://github.com/MiliLab/LogicOCR.
Authors:Sijie Zhao, Feng Liu, Enzhuo Zhang, Yiqing Guo, Pengfeng Xiao, Lei Bai, Xueliang Zhang, Hao Chen
Abstract:
The proliferation of multi-source remote sensing data has propelled the development of deep learning for dense prediction, yet significant challenges in data and task unification persist. Current deep learning architectures for remote sensing are fundamentally rigid. They are engineered for fixed input-output configurations, restricting their adaptability to the heterogeneous spatial, temporal, and spectral dimensions inherent in real-world data. Furthermore, these models neglect the intrinsic correlations among semantic segmentation, binary change detection, and semantic change detection, necessitating the development of distinct models or task-specific decoders. This paradigm is also constrained to a predefined set of output semantic classes, where any change to the classes requires costly retraining. To overcome these limitations, we introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling. STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands by leveraging their metadata for a unified representation. Moreover, STSUN unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings. Similarly, STSUN facilitates flexible prediction across multiple set of semantic categories by integrating trainable category embeddings as metadata. Extensive experiments on multiple datasets with diverse Spatial-Temporal-Spectral configurations in multiple scenarios demonstrate that a single STSUN model effectively adapts to heterogeneous inputs and outputs, unifying various dense prediction tasks and diverse semantic class predictions. The proposed approach consistently achieves state-of-the-art performance, highlighting its robustness and generalizability for complex remote sensing applications.
Authors:Zhengyi Luo, Chen Tessler, Toru Lin, Ye Yuan, Tairan He, Wenli Xiao, Yunrong Guo, Gal Chechik, Kris Kitani, Linxi Fan, Yuke Zhu
Abstract:
Human behavior is fundamentally shaped by visual perception -- our ability to interact with the world depends on actively gathering relevant information and adapting our movements accordingly. Behaviors like searching for objects, reaching, and hand-eye coordination naturally emerge from the structure of our sensory system. Inspired by these principles, we introduce Perceptive Dexterous Control (PDC), a framework for vision-driven dexterous whole-body control with simulated humanoids. PDC operates solely on egocentric vision for task specification, enabling object search, target placement, and skill selection through visual cues, without relying on privileged state information (e.g., 3D object positions and geometries). This perception-as-interface paradigm enables learning a single policy to perform multiple household tasks, including reaching, grasping, placing, and articulated object manipulation. We also show that training from scratch with reinforcement learning can produce emergent behaviors such as active search. These results demonstrate how vision-driven control and complex tasks induce human-like behaviors and can serve as the key ingredients in closing the perception-action loop for animation, robotics, and embodied AI.
Authors:Yixiao Chen, Zhiyuan Ma, Guoli Jia, Che Jiang, Jianjun Li, Bowen Zhou
Abstract:
Autoregressive transformers have recently shown impressive image generation quality and efficiency on par with state-of-the-art diffusion models. Unlike diffusion architectures, autoregressive models can naturally incorporate arbitrary modalities into a single, unified token sequence--offering a concise solution for multi-conditional image generation tasks. In this work, we propose $\textbf{ContextAR}$, a flexible and effective framework for multi-conditional image generation. ContextAR embeds diverse conditions (e.g., canny edges, depth maps, poses) directly into the token sequence, preserving modality-specific semantics. To maintain spatial alignment while enhancing discrimination among different condition types, we introduce hybrid positional encodings that fuse Rotary Position Embedding with Learnable Positional Embedding. We design Conditional Context-aware Attention to reduces computational complexity while preserving effective intra-condition perception. Without any fine-tuning, ContextAR supports arbitrary combinations of conditions during inference time. Experimental results demonstrate the powerful controllability and versatility of our approach, and show that the competitive perpormance than diffusion-based multi-conditional control approaches the existing autoregressive baseline across diverse multi-condition driven scenarios. Project page: $\href{https://context-ar.github.io/}{https://context-ar.github.io/.}$
Authors:Md. Atiqur Rahman, Sabrina Islam, Mushfiqul Haque Omi
Abstract:
Evaluating machine translation (MT) for low-resource languages poses a persistent challenge, primarily due to the limited availability of high quality reference translations. This issue is further exacerbated in languages with multiple dialects, where linguistic diversity and data scarcity hinder robust evaluation. Large Language Models (LLMs) present a promising solution through reference-free evaluation techniques; however, their effectiveness diminishes in the absence of dialect-specific context and tailored guidance. In this work, we propose a comprehensive framework that enhances LLM-based MT evaluation using a dialect guided approach. We extend the ONUBAD dataset by incorporating Sylheti-English sentence pairs, corresponding machine translations, and Direct Assessment (DA) scores annotated by native speakers. To address the vocabulary gap, we augment the tokenizer vocabulary with dialect-specific terms. We further introduce a regression head to enable scalar score prediction and design a dialect-guided (DG) prompting strategy. Our evaluation across multiple LLMs shows that the proposed pipeline consistently outperforms existing methods, achieving the highest gain of +0.1083 in Spearman correlation, along with improvements across other evaluation settings. The dataset and the code are available at https://github.com/180041123-Atiq/MTEonLowResourceLanguage.
Authors:ZhanFeng Feng, Long Peng, Xin Di, Yong Guo, Wenbo Li, Yulun Zhang, Renjing Pei, Yang Wang, Yang Cao, Zheng-Jun Zha
Abstract:
Multi-frame video enhancement tasks aim to improve the spatial and temporal resolution and quality of video sequences by leveraging temporal information from multiple frames, which are widely used in streaming video processing, surveillance, and generation. Although numerous Transformer-based enhancement methods have achieved impressive performance, their computational and memory demands hinder deployment on edge devices. Quantization offers a practical solution by reducing the bit-width of weights and activations to improve efficiency. However, directly applying existing quantization methods to video enhancement tasks often leads to significant performance degradation and loss of fine details. This stems from two limitations: (a) inability to allocate varying representational capacity across frames, which results in suboptimal dynamic range adaptation; (b) over-reliance on full-precision teachers, which limits the learning of low-bit student models. To tackle these challenges, we propose a novel quantization method for video enhancement: Progressive Multi-Frame Quantization for Video Enhancement (PMQ-VE). This framework features a coarse-to-fine two-stage process: Backtracking-based Multi-Frame Quantization (BMFQ) and Progressive Multi-Teacher Distillation (PMTD). BMFQ utilizes a percentile-based initialization and iterative search with pruning and backtracking for robust clipping bounds. PMTD employs a progressive distillation strategy with both full-precision and multiple high-bit (INT) teachers to enhance low-bit models' capacity and quality. Extensive experiments demonstrate that our method outperforms existing approaches, achieving state-of-the-art performance across multiple tasks and benchmarks.The code will be made publicly available at: https://github.com/xiaoBIGfeng/PMQ-VE.
Authors:Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin
Abstract:
Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.
Authors:Quanjiang Guo, Jinchuan Zhang, Sijie Wang, Ling Tian, Zhao Kang, Bin Yan, Weidong Xiao
Abstract:
Few-Shot Relation Extraction (FSRE) remains a challenging task due to the scarcity of annotated data and the limited generalization capabilities of existing models. Although large language models (LLMs) have demonstrated potential in FSRE through in-context learning (ICL), their general-purpose training objectives often result in suboptimal performance for task-specific relation extraction. To overcome these challenges, we propose TKRE (Two-Stage Knowledge-Guided Pre-training for Relation Extraction), a novel framework that synergistically integrates LLMs with traditional relation extraction models, bridging generative and discriminative learning paradigms. TKRE introduces two key innovations: (1) leveraging LLMs to generate explanation-driven knowledge and schema-constrained synthetic data, addressing the issue of data scarcity; and (2) a two-stage pre-training strategy combining Masked Span Language Modeling (MSLM) and Span-Level Contrastive Learning (SCL) to enhance relational reasoning and generalization. Together, these components enable TKRE to effectively tackle FSRE tasks. Comprehensive experiments on benchmark datasets demonstrate the efficacy of TKRE, achieving new state-of-the-art performance in FSRE and underscoring its potential for broader application in low-resource scenarios. \footnote{The code and data are released on https://github.com/UESTC-GQJ/TKRE.
Authors:Yeonkyung Lee, Woojung Han, Youngjun Jun, Hyeonmin Kim, Jungkyung Cho, Seong Jae Hwang
Abstract:
Retinal foundation models have significantly advanced retinal image analysis by leveraging self-supervised learning to reduce dependence on labeled data while achieving strong generalization. Many recent approaches enhance retinal image understanding using report supervision, but obtaining clinical reports is often costly and challenging. In contrast, metadata (e.g., age, gender) is widely available and serves as a valuable resource for analyzing disease progression. To effectively incorporate patient-specific information, we propose PRETI, a retinal foundation model that integrates metadata-aware learning with robust self-supervised representation learning. We introduce Learnable Metadata Embedding (LME), which dynamically refines metadata representations. Additionally, we construct patient-level data pairs, associating images from the same individual to improve robustness against non-clinical variations. To further optimize retinal image representation, we propose Retina-Aware Adaptive Masking (RAAM), a strategy that selectively applies masking within the retinal region and dynamically adjusts the masking ratio during training. PRETI captures both global structures and fine-grained pathological details, resulting in superior diagnostic performance. Extensive experiments demonstrate that PRETI achieves state-of-the-art results across diverse diseases and biomarker predictions using in-house and public data, indicating the importance of metadata-guided foundation models in retinal disease analysis. Our code and pretrained model are available at https://github.com/MICV-yonsei/PRETI
Authors:Dong Yang, Yiyi Cai, Yuki Saito, Lixu Wang, Hiroshi Saruwatari
Abstract:
We propose a shallow flow matching (SFM) mechanism to enhance flow matching (FM)-based text-to-speech (TTS) models within a coarse-to-fine generation paradigm. SFM constructs intermediate states along the FM paths using coarse output representations. During training, we introduce an orthogonal projection method to adaptively determine the temporal position of these states, and apply a principled construction strategy based on a single-segment piecewise flow. The SFM inference starts from the intermediate state rather than pure noise and focuses computation on the latter stages of the FM paths. We integrate SFM into multiple TTS models with a lightweight SFM head. Experiments show that SFM consistently improves the naturalness of synthesized speech in both objective and subjective evaluations, while significantly reducing inference when using adaptive-step ODE solvers. Demo and codes are available at https://ydqmkkx.github.io/SFMDemo/.
Authors:Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong Li, Conghui He, Xuming Hu, Linfeng Zhang
Abstract:
Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup. The code is available at https://github.com/gszfwsb/Data-Whisperer.
Authors:Qingmei Li, Yang Zhang, Zurong Mai, Yuhang Chen, Shuohong Lou, Henglian Huang, Jiarui Zhang, Zhiwei Zhang, Yibin Wen, Weijia Li, Haohuan Fu, Jianxi Huang, Juepeng Zheng
Abstract:
Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 27,247 QA pairs and 19,615 images. The pipeline begins with multi-source data pre-processing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 20 open-source LMMs and 4 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.
Authors:Bohan Jia, Wenxuan Huang, Yuntian Tang, Junbo Qiao, Jincheng Liao, Shaosheng Cao, Fei Zhao, Zhaopeng Feng, Zhouhong Gu, Zhenfei Yin, Lei Bai, Wanli Ouyang, Lin Chen, Fei Zhao, Zihan Wang, Yuan Xie, Shaohui Lin
Abstract:
While real-world applications increasingly demand intricate scene manipulation, existing instruction-guided image editing benchmarks often oversimplify task complexity and lack comprehensive, fine-grained instructions. To bridge this gap, we introduce, a large-scale benchmark specifically designed for complex instruction-guided image editing. CompBench features challenging editing scenarios that incorporate fine-grained instruction following, spatial and contextual reasoning, thereby enabling comprehensive evaluation of image editing models' precise manipulation capabilities. To construct CompBench, We propose an MLLM-human collaborative framework with tailored task pipelines. Furthermore, we propose an instruction decoupling strategy that disentangles editing intents into four key dimensions: location, appearance, dynamics, and objects, ensuring closer alignment between instructions and complex editing requirements. Extensive evaluations reveal that CompBench exposes fundamental limitations of current image editing models and provides critical insights for the development of next-generation instruction-guided image editing systems. The dataset, code, and models are available in https://comp-bench.github.io/.
Authors:Riad Hossain, Muhammad Ashad Kabir, Arat Ibne Golam Mowla, Animesh Chandra Roy, Ranjit Kumar Ghosh
Abstract:
Parkinson's disease (PD) poses a growing global health challenge, with Bangladesh experiencing a notable rise in PD-related mortality. Early detection of PD remains particularly challenging in resource-constrained settings, where voice-based analysis has emerged as a promising non-invasive and cost-effective alternative. However, existing studies predominantly focus on English or other major languages; notably, no voice dataset for PD exists for Bengali - posing a significant barrier to culturally inclusive and accessible healthcare solutions. Moreover, most prior studies employed only a narrow set of acoustic features, with limited or no hyperparameter tuning and feature selection strategies, and little attention to model explainability. This restricts the development of a robust and generalizable machine learning model. To address this gap, we present BenSparX, the first Bengali conversational speech dataset for PD detection, along with a robust and explainable machine learning framework tailored for early diagnosis. The proposed framework incorporates diverse acoustic feature categories, systematic feature selection methods, and state-of-the-art machine learning algorithms with extensive hyperparameter optimization. Furthermore, to enhance interpretability and trust in model predictions, the framework incorporates SHAP (SHapley Additive exPlanations) analysis to quantify the contribution of individual acoustic features toward PD detection. Our framework achieves state-of-the-art performance, yielding an accuracy of 95.77%, F1 score of 95.57%, and AUC-ROC of 0.982. We further externally validated our approach by applying the framework to existing PD datasets in other languages, where it consistently outperforms state-of-the-art approaches. To facilitate further research and reproducibility, the dataset has been made publicly available at https://github.com/Riad071/BenSParX.
Authors:Wenquan Lu, Jiaqi Zhang, Hugues Van Assel, Randall Balestriero
Abstract:
Self-Supervised Learning (SSL) has become a powerful solution to extract rich representations from unlabeled data. Yet, SSL research is mostly focused on clean, curated and high-quality datasets. As a result, applying SSL on noisy data remains a challenge, despite being crucial to applications such as astrophysics, medical imaging, geophysics or finance. In this work, we present a fully self-supervised framework that enables noise-robust representation learning without requiring a denoiser at inference or downstream fine-tuning. Our method first trains an SSL denoiser on noisy data, then uses it to construct a denoised-to-noisy data curriculum (i.e., training first on denoised, then noisy samples) for pretraining a SSL backbone (e.g., DINOv2), combined with a teacher-guided regularization that anchors noisy embeddings to their denoised counterparts. This process encourages the model to internalize noise robustness. Notably, the denoiser can be discarded after pretraining, simplifying deployment. On ImageNet-1k with ViT-B under extreme Gaussian noise ($Ï=255$, SNR = 0.72 dB), our method improves linear probing accuracy by 4.8% over DINOv2, demonstrating that denoiser-free robustness can emerge from noise-aware pretraining. The code is available at https://github.com/wenquanlu/noisy_dinov2.
Authors:Hanyu Wang, Xinrui Wu, Zijian Ding, Su Zheng, Chengyue Wang, Tony Nowatzki, Yizhou Sun, Jason Cong
Abstract:
Even though high-level synthesis (HLS) tools mitigate the challenges of programming domain-specific accelerators (DSAs) by raising the abstraction level, optimizing hardware directive parameters remains a significant hurdle. Existing heuristic and learning-based methods struggle with adaptability and sample efficiency. We present LLM-DSE, a multi-agent framework designed specifically for optimizing HLS directives. Combining LLM with design space exploration (DSE), our explorer coordinates four agents: Router, Specialists, Arbitrator, and Critic. These multi-agent components interact with various tools to accelerate the optimization process. LLM-DSE leverages essential domain knowledge to identify efficient parameter combinations while maintaining adaptability through verbal learning from online interactions. Evaluations on the HLSyn dataset demonstrate that LLM-DSE achieves substantial $2.55\times$ performance gains over state-of-the-art methods, uncovering novel designs while reducing runtime. Ablation studies validate the effectiveness and necessity of the proposed agent interactions. Our code is open-sourced here: https://github.com/Nozidoali/LLM-DSE.
Authors:Chao Huang, Ruohan Gao, J. M. F. Tsang, Jan Kurcius, Cagdas Bilen, Chenliang Xu, Anurag Kumar, Sanjeel Parekh
Abstract:
Recent years have seen a significant increase in video content creation and consumption. Crafting engaging content requires the careful curation of both visual and audio elements. While visual cue curation, through techniques like optimal viewpoint selection or post-editing, has been central to media production, its natural counterpart, audio, has not undergone equivalent advancements. This often results in a disconnect between visual and acoustic saliency. To bridge this gap, we introduce a novel task: visually-guided acoustic highlighting, which aims to transform audio to deliver appropriate highlighting effects guided by the accompanying video, ultimately creating a more harmonious audio-visual experience. We propose a flexible, transformer-based multimodal framework to solve this task. To train our model, we also introduce a new dataset -- the muddy mix dataset, leveraging the meticulous audio and video crafting found in movies, which provides a form of free supervision. We develop a pseudo-data generation process to simulate poorly mixed audio, mimicking real-world scenarios through a three-step process -- separation, adjustment, and remixing. Our approach consistently outperforms several baselines in both quantitative and subjective evaluation. We also systematically study the impact of different types of contextual guidance and difficulty levels of the dataset. Our project page is here: https://wikichao.github.io/VisAH/.
Authors:Omar Choukrani, Idriss Malek, Daniil Orel, Zhuohan Xie, Zangir Iklassov, Martin TakáÄ, Salem Lahlou
Abstract:
Assessing the capacity of Large Language Models (LLMs) to plan and reason within the constraints of interactive environments is crucial for developing capable AI agents. We introduce $\textbf{LLM-BabyBench}$, a new benchmark suite designed specifically for this purpose. Built upon a textual adaptation of the procedurally generated BabyAI grid world, this suite evaluates LLMs on three fundamental aspects of grounded intelligence: (1) predicting the consequences of actions on the environment state ($\textbf{Predict}$ task), (2) generating sequences of low-level actions to achieve specified objectives ($\textbf{Plan}$ task), and (3) decomposing high-level instructions into coherent subgoal sequences ($\textbf{Decompose}$ task). We detail the methodology for generating the three corresponding datasets ($\texttt{LLM-BabyBench-Predict}$, $\texttt{-Plan}$, $\texttt{-Decompose}$) by extracting structured information from an expert agent operating within the text-based environment. Furthermore, we provide a standardized evaluation harness and metrics, including environment interaction for validating generated plans, to facilitate reproducible assessment of diverse LLMs. Initial baseline results highlight the challenges posed by these grounded reasoning tasks. The benchmark suite, datasets, data generation code, and evaluation code are made publicly available ($\href{https://github.com/choukrani/llm-babybench}{\text{GitHub}}$, $\href{https://huggingface.co/datasets/salem-mbzuai/LLM-BabyBench}{\text{HuggingFace}}$).
Authors:Dmitry Nechaev, Alexey Pchelnikov, Ekaterina Ivanova
Abstract:
Recent advancements in Digital Pathology (DP), particularly through artificial intelligence and Foundation Models, have underscored the importance of large-scale, diverse, and richly annotated datasets. Despite their critical role, publicly available Whole Slide Image (WSI) datasets often lack sufficient scale, tissue diversity, and comprehensive clinical metadata, limiting the robustness and generalizability of AI models. In response, we introduce the HISTAI dataset, a large, multimodal, open-access WSI collection comprising over 60,000 slides from various tissue types. Each case in the HISTAI dataset is accompanied by extensive clinical metadata, including diagnosis, demographic information, detailed pathological annotations, and standardized diagnostic coding. The dataset aims to fill gaps identified in existing resources, promoting innovation, reproducibility, and the development of clinically relevant computational pathology solutions. The dataset can be accessed at https://github.com/HistAI/HISTAI.
Authors:Jiarui Wang, Huiyu Duan, Ziheng Jia, Yu Zhao, Woo Yi Yang, Zicheng Zhang, Zijian Chen, Juntong Wang, Yuke Xing, Guangtao Zhai, Xiongkuo Min
Abstract:
Recent advancements in large multimodal models (LMMs) have driven substantial progress in both text-to-video (T2V) generation and video-to-text (V2T) interpretation tasks. However, current AI-generated videos (AIGVs) still exhibit limitations in terms of perceptual quality and text-video alignment. Therefore, a reliable and scalable automatic model for AIGV evaluation is desirable, which heavily relies on the scale and quality of human annotations. To this end, we present AIGVE-60K, a comprehensive dataset and benchmark for AI-Generated Video Evaluation, which features (i) comprehensive tasks, encompassing 3,050 extensive prompts across 20 fine-grained task dimensions, (ii) the largest human annotations, including 120K mean-opinion scores (MOSs) and 60K question-answering (QA) pairs annotated on 58,500 videos generated from 30 T2V models, and (iii) bidirectional benchmarking and evaluating for both T2V generation and V2T interpretation capabilities. Based on AIGVE-60K, we propose LOVE, a LMM-based metric for AIGV Evaluation from multiple dimensions including perceptual preference, text-video correspondence, and task-specific accuracy in terms of both instance level and model level. Comprehensive experiments demonstrate that LOVE not only achieves state-of-the-art performance on the AIGVE-60K dataset, but also generalizes effectively to a wide range of other AIGV evaluation benchmarks. These findings highlight the significance of the AIGVE-60K dataset. Database and codes are anonymously available at https://github.com/IntMeGroup/LOVE.
Authors:Ninghan Zhong, Steven Caro, Avraiem Iskandar, Megnath Ramesh, Stephen L. Smith
Abstract:
Mobile robots are increasingly deployed in unstructured environments where obstacles and objects are movable. Navigation in such environments is known as interactive navigation, where task completion requires not only avoiding obstacles but also strategic interactions with movable objects. Non-prehensile interactive navigation focuses on non-grasping interaction strategies, such as pushing, rather than relying on prehensile manipulation. Despite a growing body of research in this field, most solutions are evaluated using case-specific setups, limiting reproducibility and cross-comparison. In this paper, we present Bench-NPIN, the first comprehensive benchmark for non-prehensile interactive navigation. Bench-NPIN includes multiple components: 1) a comprehensive range of simulated environments for non-prehensile interactive navigation tasks, including navigating a maze with movable obstacles, autonomous ship navigation in icy waters, box delivery, and area clearing, each with varying levels of complexity; 2) a set of evaluation metrics that capture unique aspects of interactive navigation, such as efficiency, interaction effort, and partial task completion; and 3) demonstrations using Bench-NPIN to evaluate example implementations of established baselines across environments. Bench-NPIN is an open-source Python library with a modular design. The code, documentation, and trained models can be found at https://github.com/IvanIZ/BenchNPIN.
Authors:Yuqi Li, Kai Li, Xin Yin, Zhifei Yang, Junhao Dong, Zeyu Dong, Chuanguang Yang, Yingli Tian, Yao Lu
Abstract:
Although deep learning has substantially advanced speech separation in recent years, most existing studies continue to prioritize separation quality while overlooking computational efficiency, an essential factor for low-latency speech processing in real-time applications. In this paper, we propose SepPrune, the first structured pruning framework specifically designed to compress deep speech separation models and reduce their computational cost. SepPrune begins by analyzing the computational structure of a given model to identify layers with the highest computational burden. It then introduces a differentiable masking strategy to enable gradient-driven channel selection. Based on the learned masks, SepPrune prunes redundant channels and fine-tunes the remaining parameters to recover performance. Extensive experiments demonstrate that this learnable pruning paradigm yields substantial advantages for channel pruning in speech separation models, outperforming existing methods. Notably, a model pruned with SepPrune can recover 85% of the performance of a pre-trained model (trained over hundreds of epochs) with only one epoch of fine-tuning, and achieves convergence 36$\times$ faster than training from scratch. Code is available at https://github.com/itsnotacie/SepPrune.
Authors:Yijie Zheng, Jinxuan Yang, Yu Chen, Yaxuan Wang, Yihang Lu, Guoqing Li
Abstract:
Very high-resolution (VHR) satellite imagery has emerged as a powerful tool for monitoring marine animals on a large scale. However, existing deep learning-based whale detection methods usually require manually created, high-quality bounding box annotations, which are labor-intensive to produce. Moreover, existing studies often exclude ``uncertain whales'', individuals that have ambiguous appearances in satellite imagery, limiting the applicability of these models in real-world scenarios. To address these limitations, this study introduces an automated pipeline for detecting beluga whales and harp seals in VHR satellite imagery. The pipeline leverages point annotations and the Segment Anything Model (SAM) to generate precise bounding box annotations, which are used to train YOLOv8 for multiclass detection of certain whales, uncertain whales, and harp seals. Experimental results demonstrated that SAM-generated annotations significantly improved detection performance, achieving higher $\text{F}_\text{1}$-scores compared to traditional buffer-based annotations. YOLOv8 trained on SAM-labeled boxes achieved an overall $\text{F}_\text{1}$-score of 72.2% for whales overall and 70.3% for harp seals, with superior performance in dense scenes. The proposed approach not only reduces the manual effort required for annotation but also enhances the detection of uncertain whales, offering a more comprehensive solution for marine animal monitoring. This method holds great potential for extending to other species, habitats, and remote sensing platforms, as well as for estimating whale biometrics, thereby advancing ecological monitoring and conservation efforts. The codes for our label and detection pipeline are publicly available at http://github.com/voyagerxvoyagerx/beluga-seeker .
Authors:Tiannuo Yang, Zebin Yao, Bowen Jin, Lixiao Cui, Yusen Li, Gang Wang, Xiaoguang Liu
Abstract:
Large Language Model (LLM)-based search agents have shown remarkable capabilities in solving complex tasks by dynamically decomposing problems and addressing them through interleaved reasoning and retrieval. However, this interleaved paradigm introduces substantial efficiency bottlenecks. First, we observe that both highly accurate and overly approximate retrieval methods degrade system efficiency: exact search incurs significant retrieval overhead, while coarse retrieval requires additional reasoning steps during generation. Second, we identify inefficiencies in system design, including improper scheduling and frequent retrieval stalls, which lead to cascading latency -- where even minor delays in retrieval amplify end-to-end inference time. To address these challenges, we introduce SearchAgent-X, a high-efficiency inference framework for LLM-based search agents. SearchAgent-X leverages high-recall approximate retrieval and incorporates two key techniques: priority-aware scheduling and non-stall retrieval. Extensive experiments demonstrate that SearchAgent-X consistently outperforms state-of-the-art systems such as vLLM and HNSW-based retrieval across diverse tasks, achieving up to 3.4$\times$ higher throughput and 5$\times$ lower latency, without compromising generation quality. SearchAgent-X is available at https://github.com/tiannuo-yang/SearchAgent-X.
Authors:Peng Ding, Jun Kuang, Zongyu Wang, Xuezhi Cao, Xunliang Cai, Jiajun Chen, Shujian Huang
Abstract:
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks. In this paper, we identify a critical safety gap: while LLMs are adept at detecting jailbreak prompts, they often produce unsafe responses when directly processing these inputs. Inspired by this insight, we propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability. SAGE consists of two core components: a Discriminative Analysis Module and a Discriminative Response Module, enhancing resilience against sophisticated jailbreak attempts through flexible safety discrimination instructions. Extensive experiments demonstrate SAGE's effectiveness and robustness across various open-source and closed-source LLMs of different sizes and architectures, achieving an average 99% defense success rate against numerous complex and covert jailbreak methods while maintaining helpfulness on general benchmarks. We further conduct mechanistic interpretability analysis through hidden states and attention distributions, revealing the underlying mechanisms of this detection-generation discrepancy. Our work thus contributes to developing future LLMs with coherent safety awareness and generation behavior. Our code and datasets are publicly available at https://github.com/NJUNLP/SAGE.
Authors:Yinghui Zhang, Tailin Chen, Yuchen Zhang, Zeyu Fu
Abstract:
The rapid rise of video content on platforms such as TikTok and YouTube has transformed information dissemination, but it has also facilitated the spread of harmful content, particularly hate videos. Despite significant efforts to combat hate speech, detecting these videos remains challenging due to their often implicit nature. Current detection methods primarily rely on unimodal approaches, which inadequately capture the complementary features across different modalities. While multimodal techniques offer a broader perspective, many fail to effectively integrate temporal dynamics and modality-wise interactions essential for identifying nuanced hate content. In this paper, we present CMFusion, an enhanced multimodal hate video detection model utilizing a novel Channel-wise and Modality-wise Fusion Mechanism. CMFusion first extracts features from text, audio, and video modalities using pre-trained models and then incorporates a temporal cross-attention mechanism to capture dependencies between video and audio streams. The learned features are then processed by channel-wise and modality-wise fusion modules to obtain informative representations of videos. Our extensive experiments on a real-world dataset demonstrate that CMFusion significantly outperforms five widely used baselines in terms of accuracy, precision, recall, and F1 score. Comprehensive ablation studies and parameter analyses further validate our design choices, highlighting the model's effectiveness in detecting hate videos. The source codes will be made publicly available at https://github.com/EvelynZ10/cmfusion.
Authors:Kazuhiko Kawamoto, Atsuhiro Endo, Hiroshi Kera
Abstract:
Task arithmetic enables efficient model editing by representing task-specific changes as vectors in parameter space. Task arithmetic typically assumes that the source and target models are initialized from the same pre-trained parameters. This assumption limits its applicability in cross-model transfer settings, where models are independently pre-trained on different datasets. To address this challenge, we propose a method based on few-shot orthogonal alignment, which aligns task vectors to the parameter space of a differently pre-trained target model. These transformations preserve key properties of task vectors, such as norm and rank, and are learned using only a small number of labeled examples. We evaluate the method using two Vision Transformers pre-trained on YFCC100M and LAION400M, and test on eight classification datasets. Experimental results show that our method improves transfer accuracy over direct task vector application and achieves performance comparable to few-shot fine-tuning, while maintaining the modularity and reusability of task vectors. Our code is available at https://github.com/kawakera-lab/CrossModelTransfer.
Authors:Mingcheng Qu, Guang Yang, Donglin Di, Tonghua Su, Yue Gao, Yang Song, Lei Fan
Abstract:
Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
Authors:Puning Yang, Qizhou Wang, Zhuo Huang, Tongliang Liu, Chengqi Zhang, Bo Han
Abstract:
Loss reweighting has shown significant benefits for machine unlearning with large language models (LLMs). However, their exact functionalities are left unclear and the optimal strategy remains an open question, thus impeding the understanding and improvement of existing methodologies. In this paper, we identify two distinct goals of loss reweighting, namely, Saturation and Importance -- the former indicates that those insufficiently optimized data should be emphasized, while the latter stresses some critical data that are most influential for loss minimization. To study their usefulness, we design specific reweighting strategies for each goal and evaluate their respective effects on unlearning. We conduct extensive empirical analyses on well-established benchmarks, and summarize some important observations as follows: (i) Saturation enhances efficacy more than importance-based reweighting, and their combination can yield additional improvements. (ii) Saturation typically allocates lower weights to data with lower likelihoods, whereas importance-based reweighting does the opposite. (iii) The efficacy of unlearning is also largely influenced by the smoothness and granularity of the weight distributions. Based on these findings, we propose SatImp, a simple reweighting method that combines the advantages of both saturation and importance. Empirical results on extensive datasets validate the efficacy of our method, potentially bridging existing research gaps and indicating directions for future research. Our code is available at https://github.com/tmlr-group/SatImp.
Authors:Junhao Zheng, Xidi Cai, Qiuke Li, Duzhen Zhang, ZhongZhi Li, Yingying Zhang, Le Song, Qianli Ma
Abstract:
Lifelong learning is essential for intelligent agents operating in dynamic environments. Current large language model (LLM)-based agents, however, remain stateless and unable to accumulate or transfer knowledge over time. Existing benchmarks treat agents as static systems and fail to evaluate lifelong learning capabilities. We present LifelongAgentBench, the first unified benchmark designed to systematically assess the lifelong learning ability of LLM agents. It provides skill-grounded, interdependent tasks across three interactive environments, Database, Operating System, and Knowledge Graph, with automatic label verification, reproducibility, and modular extensibility. Extensive experiments reveal that conventional experience replay has limited effectiveness for LLM agents due to irrelevant information and context length constraints. We further introduce a group self-consistency mechanism that significantly improves lifelong learning performance. We hope LifelongAgentBench will advance the development of adaptive, memory-capable LLM agents.
Authors:Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, Chi Chen
Abstract:
Although multimodal large language models (MLLMs) show promise in generating chart rendering code, editing charts via code presents a greater challenge. This task demands MLLMs to integrate chart understanding and reasoning capacities, which are labor-intensive. While many MLLMs claim such editing capabilities, current evaluations rely on limited case studies, highlighting the urgent need for a comprehensive evaluation framework. In this work, we propose \textsc{ChartEdit}, a novel benchmark designed for chart editing tasks, featuring $1405$ diverse editing instructions applied to $233$ real-world charts, each manually annotated and validated for accuracy. Utilizing \textsc{ChartEdit}, we evaluate the performance of 10 mainstream MLLMs across two types of experiments at both the code and chart levels. The results suggest that large-scale models can generate code to produce images that partially match the reference images. However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only $59.96$, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.
Authors:Yian Zhao, Wanshi Xu, Ruochong Zheng, Pengchong Qiao, Chang Liu, Jie Chen
Abstract:
The efficient rendering and explicit nature of 3DGS promote the advancement of 3D scene manipulation. However, existing methods typically encounter challenges in controlling the manipulation region and are unable to furnish the user with interactive feedback, which inevitably leads to unexpected results. Intuitively, incorporating interactive 3D segmentation tools can compensate for this deficiency. Nevertheless, existing segmentation frameworks impose a pre-processing step of scene-specific parameter training, which limits the efficiency and flexibility of scene manipulation. To deliver a 3D region control module that is well-suited for scene manipulation with reliable efficiency, we propose interactive Segment-and-Manipulate 3D Gaussians (iSegMan), an interactive segmentation and manipulation framework that only requires simple 2D user interactions in any view. To propagate user interactions to other views, we propose Epipolar-guided Interaction Propagation (EIP), which innovatively exploits epipolar constraint for efficient and robust interaction matching. To avoid scene-specific training to maintain efficiency, we further propose the novel Visibility-based Gaussian Voting (VGV), which obtains 2D segmentations from SAM and models the region extraction as a voting game between 2D Pixels and 3D Gaussians based on Gaussian visibility. Taking advantage of the efficient and precise region control of EIP and VGV, we put forth a Manipulation Toolbox to implement various functions on selected regions, enhancing the controllability, flexibility and practicality of scene manipulation. Extensive results on 3D scene manipulation and segmentation tasks fully demonstrate the significant advantages of iSegMan. Project page is available at https://zhao-yian.github.io/iSegMan.
Authors:Yuyao Zhang, Zhicheng Dou, Xiaoxi Li, Jiajie Jin, Yongkang Wu, Zhonghua Li, Qi Ye, Ji-Rong Wen
Abstract:
Precise recognition of search intent in Retrieval-Augmented Generation (RAG) systems remains a challenging goal, especially under resource constraints and for complex queries with nested structures and dependencies. This paper presents QCompiler, a neuro-symbolic framework inspired by linguistic grammar rules and compiler design, to bridge this gap. It theoretically designs a minimal yet sufficient Backus-Naur Form (BNF) grammar $G[q]$ to formalize complex queries. Unlike previous methods, this grammar maintains completeness while minimizing redundancy. Based on this, QCompiler includes a Query Expression Translator, a Lexical Syntax Parser, and a Recursive Descent Processor to compile queries into Abstract Syntax Trees (ASTs) for execution. The atomicity of the sub-queries in the leaf nodes ensures more precise document retrieval and response generation, significantly improving the RAG system's ability to address complex queries.
Authors:Faruk Alpay
Abstract:
We introduce XiSort, a deterministic and reproducible sorting algorithm for floating-point sequences based on IEEE-754 total ordering and entropy minimization. XiSort guarantees bit-for-bit stability across runs and platforms by resolving tie-breaking via information-theoretic and symbolic methods. The algorithm supports both in-memory and external (out-of-core) operation, offering consistent performance on large datasets. We formalize a curved variant of the sorting metric that integrates into the Alpay Algebra framework, treating XiSort as a recursive operator with provable convergence and symbolic idempotence. This model preserves state-space closure while minimizing local disorder, interpretable as symbolic entropy. Empirical benchmarks demonstrate that XiSort achieves competitive throughput (e.g., sorting 10^8 doubles in approximately 12 seconds in-memory, and 100 GB at around 100 MB/s on SSDs), with applications in scientific computing, high-frequency finance, and reproducible numerical workflows. The results position XiSort as a principled tool for stable data alignment, symbolic preprocessing, and cross-platform float ordering.
Keywords: deterministic sorting, IEEE-754, entropy minimization, symbolic algebra, reproducibility, external memory, Alpay Algebra, data pipelines
Authors:Haitao Li, Ziyu Li, Yiheng Mao, Zhengyao Ding, Zhengxing Huang
Abstract:
Accurate segmentation of brain images typically requires the integration of complementary information from multiple image modalities. However, clinical data for all modalities may not be available for every patient, creating a significant challenge. To address this, previous studies encode multiple modalities into a shared latent space. While somewhat effective, it remains suboptimal, as each modality contains distinct and valuable information. In this study, we propose DC-Seg (Disentangled Contrastive Learning for Segmentation), a new method that explicitly disentangles images into modality-invariant anatomical representation and modality-specific representation, by using anatomical contrastive learning and modality contrastive learning respectively. This solution improves the separation of anatomical and modality-specific features by considering the modality gaps, leading to more robust representations. Furthermore, we introduce a segmentation-based regularizer that enhances the model's robustness to missing modalities. Extensive experiments on the BraTS 2020 and a private white matter hyperintensity(WMH) segmentation dataset demonstrate that DC-Seg outperforms state-of-the-art methods in handling incomplete multimodal brain tumor segmentation tasks with varying missing modalities, while also demonstrate strong generalizability in WMH segmentation. The code is available at https://github.com/CuCl-2/DC-Seg.
Authors:Zhiheng Chen, Ruofan Wu, Guanhua Fang
Abstract:
The transformer architecture has demonstrated remarkable capabilities in modern artificial intelligence, among which the capability of implicitly learning an internal model during inference time is widely believed to play a key role in the under standing of pre-trained large language models. However, most recent works have been focusing on studying supervised learning topics such as in-context learning, leaving the field of unsupervised learning largely unexplored. This paper investigates the capabilities of transformers in solving Gaussian Mixture Models (GMMs), a fundamental unsupervised learning problem through the lens of statistical estimation. We propose a transformer-based learning framework called TGMM that simultaneously learns to solve multiple GMM tasks using a shared transformer backbone. The learned models are empirically demonstrated to effectively mitigate the limitations of classical methods such as Expectation-Maximization (EM) or spectral algorithms, at the same time exhibit reasonable robustness to distribution shifts. Theoretically, we prove that transformers can approximate both the EM algorithm and a core component of spectral methods (cubic tensor power iterations). These results bridge the gap between practical success and theoretical understanding, positioning transformers as versatile tools for unsupervised learning.
Authors:Pengfei Lyu, Pak-Hei Yeung, Xiaosheng Yu, Jing Xia, Jianning Chi, Chengdong Wu, Jagath C. Rajapakse
Abstract:
This paper addresses the task of cross-modal medical image segmentation by exploring unsupervised domain adaptation (UDA) approaches. We propose a model-agnostic UDA framework, LowBridge, which builds on a simple observation that cross-modal images share some similar low-level features (e.g., edges) as they are depicting the same structures. Specifically, we first train a generative model to recover the source images from their edge features, followed by training a segmentation model on the generated source images, separately. At test time, edge features from the target images are input to the pretrained generative model to generate source-style target domain images, which are then segmented using the pretrained segmentation network. Despite its simplicity, extensive experiments on various publicly available datasets demonstrate that \proposed achieves state-of-the-art performance, outperforming eleven existing UDA approaches under different settings. Notably, further ablation studies show that \proposed is agnostic to different types of generative and segmentation models, suggesting its potential to be seamlessly plugged with the most advanced models to achieve even more outstanding results in the future. The code is available at https://github.com/JoshuaLPF/LowBridge.
Authors:Shiming Chen, Dingjie Fu, Salman Khan, Fahad Shahbaz Khan
Abstract:
Remarkable progress in zero-shot learning (ZSL) has been achieved using generative models. However, existing generative ZSL methods merely generate (imagine) the visual features from scratch guided by the strong class semantic vectors annotated by experts, resulting in suboptimal generative performance and limited scene generalization. To address these and advance ZSL, we propose an inductive variational autoencoder for generative zero-shot learning, dubbed GenZSL. Mimicking human-level concept learning, GenZSL operates by inducting new class samples from similar seen classes using weak class semantic vectors derived from target class names (i.e., CLIP text embedding). To ensure the generation of informative samples for training an effective ZSL classifier, our GenZSL incorporates two key strategies. Firstly, it employs class diversity promotion to enhance the diversity of class semantic vectors. Secondly, it utilizes target class-guided information boosting criteria to optimize the model. Extensive experiments conducted on three popular benchmark datasets showcase the superiority and potential of our GenZSL with significant efficacy and efficiency over f-VAEGAN, e.g., 24.7% performance gains and more than $60\times$ faster training speed on AWA2. Codes are available at https://github.com/shiming-chen/GenZSL.
Authors:Yanbo Dai, Zhenlan Ji, Zongjie Li, Shuai Wang
Abstract:
Model editing techniques are essential for efficiently updating knowledge in large language models (LLMs). However, the effectiveness of existing approaches degrades in massive editing scenarios, particularly when evaluated with practical metrics. Their robustness is also limited in context-rich settings or when editing multiple facts of the same subject simultaneously. We attribute these failures to the embedding misalignment among knowledge items, which undermines editing reliability at scale. To address this, we propose EAMET (Embedding Alignment Model Editing in Transformers), which addresses this issue by aligning the space of key and residual embeddings. Extensive experiments across six LLMs and three datasets demonstrate that EAMET consistently outperforms existing methods, achieving about 90\% editing efficacy when editing 10k facts. Codes and datasets are publicly available at https://ybdai7.github.io/eamet-page/.
Authors:Chicago Y. Park, Shirin Shoushtari, Hongyu An, Ulugbek S. Kamilov
Abstract:
Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.
Authors:Yiting Wang, Guoheng Sun, Wanghao Ye, Gang Qu, Ang Li
Abstract:
Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason
Authors:Xuannan Liu, Zekun Li, Zheqi He, Peipei Li, Shuhan Xia, Xing Cui, Huaibo Huang, Xi Yang, Ran He
Abstract:
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
Authors:Ziyao Cui, Minxing Zhang, Jian Pei
Abstract:
Nowadays, Large Language Models (LLMs) are trained on huge datasets, some including sensitive information. This poses a serious privacy concern because privacy attacks such as Membership Inference Attacks (MIAs) may detect this sensitive information. While knowledge distillation compresses LLMs into efficient, smaller student models, its impact on privacy remains underexplored. In this paper, we investigate how knowledge distillation affects model robustness against MIA. We focus on two questions. First, how is private data protected in teacher and student models? Second, how can we strengthen privacy preservation against MIAs in knowledge distillation? Through comprehensive experiments, we show that while teacher and student models achieve similar overall MIA accuracy, teacher models better protect member data, the primary target of MIA, whereas student models better protect non-member data. To address this vulnerability in student models, we propose 5 privacy-preserving distillation methods and demonstrate that they successfully reduce student models' vulnerability to MIA, with ensembling further stabilizing the robustness, offering a reliable approach for distilling more secure and efficient student models. Our implementation source code is available at https://github.com/richardcui18/MIA_in_KD.
Authors:Jeremy Budd, Javier Ideami, Benjamin Macdowall Rynne, Keith Duggar, Randall Balestriero
Abstract:
Sparse autoencoders (SAEs) have received considerable recent attention as tools for mechanistic interpretability, showing success at extracting interpretable features even from very large LLMs. However, this research has been largely empirical, and there have been recent doubts about the true utility of SAEs. In this work, we seek to enhance the theoretical understanding of SAEs, using the spline theory of deep learning. By situating SAEs in this framework: we discover that SAEs generalise ``$k$-means autoencoders'' to be piecewise affine, but sacrifice accuracy for interpretability vs. the optimal ``$k$-means-esque plus local principal component analysis (PCA)'' piecewise affine autoencoder. We characterise the underlying geometry of (TopK) SAEs using power diagrams. And we develop a novel proximal alternating method SGD (PAM-SGD) algorithm for training SAEs, with both solid theoretical foundations and promising empirical results in MNIST and LLM experiments, particularly in sample efficiency and (in the LLM setting) improved sparsity of codes. All code is available at: https://github.com/splInterp2025/splInterp
Authors:Hongliang Li, Jinan Xu, Gengping Cui, Changhao Guan, Fengran Mo, Kaiyu Huang
Abstract:
The robustness and security of large language models (LLMs) has become a prominent research area. One notable vulnerability is the ability to bypass LLM safeguards by translating harmful queries into rare or underrepresented languages, a simple yet effective method of "jailbreaking" these models. Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios, highlighting an urgent need to enhance multilingual safety. In this work, we investigate the correlation between various attack features across different languages and propose Multilingual Collaborative Defense (MCD), a novel learning method that optimizes a continuous, soft safety prompt automatically to facilitate multilingual safeguarding of LLMs. The MCD approach offers three advantages: First, it effectively improves safeguarding performance across multiple languages. Second, MCD maintains strong generalization capabilities while minimizing false refusal rates. Third, MCD mitigates the language safety misalignment caused by imbalances in LLM training corpora. To evaluate the effectiveness of MCD, we manually construct multilingual versions of commonly used jailbreak benchmarks, such as MaliciousInstruct and AdvBench, to assess various safeguarding methods. Additionally, we introduce these datasets in underrepresented (zero-shot) languages to verify the language transferability of MCD. The results demonstrate that MCD outperforms existing approaches in safeguarding against multilingual jailbreak attempts while also exhibiting strong language transfer capabilities. Our code is available at https://github.com/HLiang-Lee/MCD.
Authors:Yansong Ning, Wei Li, Jun Fang, Naiqiang Tan, Hao Liu
Abstract:
Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose Long$\otimes$Short, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/usail-hkust/LongShort.
Authors:Kaitao Song, Xiaohua Wang, Xu Tan, Huiqiang Jiang, Chengruidong Zhang, Yongliang Shen, Cen LU, Zihao Li, Zifan Song, Caihua Shan, Yansen Wang, Kan Ren, Xiaoqing Zheng, Tao Qin, Yuqing Yang, Dongsheng Li, Lili Qiu
Abstract:
In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.
Authors:Jiajun Qin, Yuan Pu, Zhuolun He, Seunggeun Kim, David Z. Pan, Bei Yu
Abstract:
Current research has explored vision-language models for multi-modal embedding tasks, such as information retrieval, visual grounding, and classification. However, real-world scenarios often involve diverse modality combinations between queries and targets, such as text and image to text, text and image to text and image, and text to text and image. These diverse combinations pose significant challenges for existing models, as they struggle to align all modality combinations within a unified embedding space during training, which degrades performance at inference. To address this limitation, we propose UniMoCo, a novel vision-language model architecture designed for multi-modal embedding tasks. UniMoCo introduces a modality-completion module that generates visual features from textual inputs, ensuring modality completeness for both queries and targets. Additionally, we develop a specialized training strategy to align embeddings from both original and modality-completed inputs, ensuring consistency within the embedding space. This enables the model to robustly handle a wide range of modality combinations across embedding tasks. Experiments show that UniMoCo outperforms previous methods while demonstrating consistent robustness across diverse settings. More importantly, we identify and quantify the inherent bias in conventional approaches caused by imbalance of modality combinations in training data, which can be mitigated through our modality-completion paradigm. The code is available at https://github.com/HobbitQia/UniMoCo.
Authors:Yang Tan, Wenrui Gou, Bozitao Zhong, Liang Hong, Huiqun Yu, Bingxin Zhou
Abstract:
Deep learning models have driven significant progress in predicting protein function and interactions at the protein level. While these advancements have been invaluable for many biological applications such as enzyme engineering and function annotation, a more detailed perspective is essential for understanding protein functional mechanisms and evaluating the biological knowledge captured by models. To address this demand, we introduce VenusX, the first large-scale benchmark for fine-grained functional annotation and function-based protein pairing at the residue, fragment, and domain levels. VenusX comprises three major task categories across six types of annotations, including residue-level binary classification, fragment-level multi-class classification, and pairwise functional similarity scoring for identifying critical active sites, binding sites, conserved sites, motifs, domains, and epitopes. The benchmark features over 878,000 samples curated from major open-source databases such as InterPro, BioLiP, and SAbDab. By providing mixed-family and cross-family splits at three sequence identity thresholds, our benchmark enables a comprehensive assessment of model performance on both in-distribution and out-of-distribution scenarios. For baseline evaluation, we assess a diverse set of popular and open-source models, including pre-trained protein language models, sequence-structure hybrids, structure-based methods, and alignment-based techniques. Their performance is reported across all benchmark datasets and evaluation settings using multiple metrics, offering a thorough comparison and a strong foundation for future research. Code and data are publicly available at https://github.com/ai4protein/VenusX.
Authors:Jian Zhu, He Wang, Yang Xu, Zebin Wu, Zhihui Wei
Abstract:
Hyperspectral and multispectral image (HSI-MSI) fusion involves combining a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Most deep learning-based methods for HSI-MSI fusion rely on large amounts of hyperspectral data for supervised training, which is often scarce in practical applications. In this paper, we propose a self-learning Adaptive Residual Guided Subspace Diffusion Model (ARGS-Diff), which only utilizes the observed images without any extra training data. Specifically, as the LR-HSI contains spectral information and the HR-MSI contains spatial information, we design two lightweight spectral and spatial diffusion models to separately learn the spectral and spatial distributions from them. Then, we use these two models to reconstruct HR-HSI from two low-dimensional components, i.e, the spectral basis and the reduced coefficient, during the reverse diffusion process. Furthermore, we introduce an Adaptive Residual Guided Module (ARGM), which refines the two components through a residual guided function at each sampling step, thereby stabilizing the sampling process. Extensive experimental results demonstrate that ARGS-Diff outperforms existing state-of-the-art methods in terms of both performance and computational efficiency in the field of HSI-MSI fusion. Code is available at https://github.com/Zhu1116/ARGS-Diff.
Authors:Hancan Zhu, Jinhao Chen, Guanghua He
Abstract:
Medical image segmentation relies heavily on convolutional neural networks (CNNs) and Transformer-based models. However, CNNs are constrained by limited receptive fields, while Transformers suffer from scalability challenges due to their quadratic computational complexity. To address these limitations, recent advances have explored alternative architectures. The state-space model Mamba offers near-linear complexity while capturing long-range dependencies, and the Kolmogorov-Arnold Network (KAN) enhances nonlinear expressiveness by replacing fixed activation functions with learnable ones. Building on these strengths, we propose MedVKAN, an efficient feature extraction model integrating Mamba and KAN. Specifically, we introduce the EFC-KAN module, which enhances KAN with convolutional operations to improve local pixel interaction. We further design the VKAN module, integrating Mamba with EFC-KAN as a replacement for Transformer modules, significantly improving feature extraction. Extensive experiments on five public medical image segmentation datasets show that MedVKAN achieves state-of-the-art performance on four datasets and ranks second on the remaining one. These results validate the potential of Mamba and KAN for medical image segmentation while introducing an innovative and computationally efficient feature extraction framework. The code is available at: https://github.com/beginner-cjh/MedVKAN.
Authors:Yitian Chen, Jingfan Xia, Siyu Shao, Dongdong Ge, Yinyu Ye
Abstract:
Optimization modeling is fundamental to decision-making across diverse domains. Despite progress in automating optimization formulation from natural language descriptions, Large Language Models (LLMs) often struggle to generate formally correct and usable models against hallucinations, posing a challenge for reliable automation. Inspired by the success of Reinforcement Learning (RL) in enhancing Large Reasoning Models, we present Solver-Informed Reinforcement Learning (SIRL), a novel framework that significantly improves the authenticity of LLMs for optimization modeling using Reinforcement Learning with Verifiable Reward by leveraging external optimization solvers as verifiers. These verifiers automatically assess the executable code and the instance-level mathematical model represented by the associated LP file, yielding precise and comprehensive feedback signals -- including syntax, feasibility, and solution quality, serving as direct rewards for the RL process. This automated verification process, particularly from classic optimization solvers, also underpins our instance-enhanced self-consistency method to synthesize high-quality training data. Extensive experiments on diverse public benchmarks demonstrate that SIRL achieves state-of-the-art performance, substantially outperforming existing methods in generating accurate and executable optimization models. Our code is publicly available at https://github.com/Cardinal-Operations/SIRL.
Authors:Raymond Baartmans, Matthew Raffel, Rahul Vikram, Aiden Deringer, Lizhong Chen
Abstract:
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond. Our code is available at https://github.com/OSU-STARLAB/DeepNSM.
Authors:Wenyu Huang, Pavlos Vougiouklis, Mirella Lapata, Jeff Z. Pan
Abstract:
Multi-hop Question Answering (MHQA) adds layers of complexity to question answering, making it more challenging. When Language Models (LMs) are prompted with multiple search results, they are tasked not only with retrieving relevant information but also employing multi-hop reasoning across the information sources. Although LMs perform well on traditional question-answering tasks, the causal mask can hinder their capacity to reason across complex contexts. In this paper, we explore how LMs respond to multi-hop questions by permuting search results (retrieved documents) under various configurations. Our study reveals interesting findings as follows: 1) Encoder-decoder models, such as the ones in the Flan-T5 family, generally outperform causal decoder-only LMs in MHQA tasks, despite being significantly smaller in size; 2) altering the order of gold documents reveals distinct trends in both Flan T5 models and fine-tuned decoder-only models, with optimal performance observed when the document order aligns with the reasoning chain order; 3) enhancing causal decoder-only models with bi-directional attention by modifying the causal mask can effectively boost their end performance. In addition to the above, we conduct a thorough investigation of the distribution of LM attention weights in the context of MHQA. Our experiments reveal that attention weights tend to peak at higher values when the resulting answer is correct. We leverage this finding to heuristically improve LMs' performance on this task. Our code is publicly available at https://github.com/hwy9855/MultiHopQA-Reasoning.
Authors:Kevin Wu, Eric Wu, Rahul Thapa, Kevin Wei, Angela Zhang, Arvind Suresh, Jacqueline J. Tao, Min Woo Sun, Alejandro Lozano, James Zou
Abstract:
Doctors and patients alike increasingly use Large Language Models (LLMs) to diagnose clinical cases. However, unlike domains such as math or coding, where correctness can be objectively defined by the final answer, medical diagnosis requires both the outcome and the reasoning process to be accurate. Currently, widely used medical benchmarks like MedQA and MMLU assess only accuracy in the final answer, overlooking the quality and faithfulness of the clinical reasoning process. To address this limitation, we introduce MedCaseReasoning, the first open-access dataset for evaluating LLMs on their ability to align with clinician-authored diagnostic reasoning. The dataset includes 14,489 diagnostic question-and-answer cases, each paired with detailed reasoning statements derived from open-access medical case reports. We evaluate state-of-the-art reasoning LLMs on MedCaseReasoning and find significant shortcomings in their diagnoses and reasoning: for instance, the top-performing open-source model, DeepSeek-R1, achieves only 48% 10-shot diagnostic accuracy and mentions only 64% of the clinician reasoning statements (recall). However, we demonstrate that fine-tuning LLMs on the reasoning traces derived from MedCaseReasoning significantly improves diagnostic accuracy and clinical reasoning recall by an average relative gain of 29% and 41%, respectively. The open-source dataset, code, and models are available at https://github.com/kevinwu23/Stanford-MedCaseReasoning.
Authors:Shun Inadumi, Nobuhiro Ueda, Koichiro Yoshino
Abstract:
Multimodal reference resolution, including phrase grounding, aims to understand the semantic relations between mentions and real-world objects. Phrase grounding between images and their captions is a well-established task. In contrast, for real-world applications, it is essential to integrate textual and multimodal reference resolution to unravel the reference relations within dialogue, especially in handling ambiguities caused by pronouns and ellipses. This paper presents a framework that unifies textual and multimodal reference resolution by mapping mention embeddings to object embeddings and selecting mentions or objects based on their similarity. Our experiments show that learning textual reference resolution, such as coreference resolution and predicate-argument structure analysis, positively affects performance in multimodal reference resolution. In particular, our model with coreference resolution performs better in pronoun phrase grounding than representative models for this task, MDETR and GLIP. Our qualitative analysis demonstrates that incorporating textual reference relations strengthens the confidence scores between mentions, including pronouns and predicates, and objects, which can reduce the ambiguities that arise in visually grounded dialogues.
Authors:Ryan Hoque, Peide Huang, David J. Yoon, Mouli Sivapurapu, Jian Zhang
Abstract:
Imitation learning for manipulation has a well-known data scarcity problem. Unlike natural language and 2D computer vision, there is no Internet-scale corpus of data for dexterous manipulation. One appealing option is egocentric human video, a passively scalable data source. However, existing large-scale datasets such as Ego4D do not have native hand pose annotations and do not focus on object manipulation. To this end, we use Apple Vision Pro to collect EgoDex: the largest and most diverse dataset of dexterous human manipulation to date. EgoDex has 829 hours of egocentric video with paired 3D hand and finger tracking data collected at the time of recording, where multiple calibrated cameras and on-device SLAM can be used to precisely track the pose of every joint of each hand. The dataset covers a wide range of diverse manipulation behaviors with everyday household objects in 194 different tabletop tasks ranging from tying shoelaces to folding laundry. Furthermore, we train and systematically evaluate imitation learning policies for hand trajectory prediction on the dataset, introducing metrics and benchmarks for measuring progress in this increasingly important area. By releasing this large-scale dataset, we hope to push the frontier of robotics, computer vision, and foundation models. EgoDex is publicly available for download at https://github.com/apple/ml-egodex.
Authors:Haipeng Fang, Sheng Tang, Juan Cao, Enshuo Zhang, Fan Tang, Tong-Yee Lee
Abstract:
Diffusion transformers have shown exceptional performance in visual generation but incur high computational costs. Token reduction techniques that compress models by sharing the denoising process among similar tokens have been introduced. However, existing approaches neglect the denoising priors of the diffusion models, leading to suboptimal acceleration and diminished image quality. This study proposes a novel concept: attend to prune feature redundancies in areas not attended by the diffusion process. We analyze the location and degree of feature redundancies based on the structure-then-detail denoising priors. Subsequently, we introduce SDTM, a structure-then-detail token merging approach that dynamically compresses feature redundancies. Specifically, we design dynamic visual token merging, compression ratio adjusting, and prompt reweighting for different stages. Served in a post-training way, the proposed method can be integrated seamlessly into any DiT architecture. Extensive experiments across various backbones, schedulers, and datasets showcase the superiority of our method, for example, it achieves 1.55 times acceleration with negligible impact on image quality. Project page: https://github.com/ICTMCG/SDTM.
Authors:Jae Myung Kim, Stephan Alaniz, Cordelia Schmid, Zeynep Akata
Abstract:
Despite recent advances in text-to-image generation, using synthetically generated data seldom brings a significant boost in performance for supervised learning. Oftentimes, synthetic datasets do not faithfully recreate the data distribution of real data, i.e., they lack the fidelity or diversity needed for effective downstream model training. While previous work has employed few-shot guidance to address this issue, existing methods still fail to capture and generate features unique to specific real images. In this paper, we introduce a novel dataset generation framework named LoFT, LoRA-Fused Training-data Generation with Few-shot Guidance. Our method fine-tunes LoRA weights on individual real images and fuses them at inference time, producing synthetic images that combine the features of real images for improved diversity and fidelity of generated data. We evaluate the synthetic data produced by LoFT on 10 datasets, using 8 to 64 real images per class as guidance and scaling up to 1000 images per class. Our experiments show that training on LoFT-generated data consistently outperforms other synthetic dataset methods, significantly increasing accuracy as the dataset size increases. Additionally, our analysis demonstrates that LoFT generates datasets with high fidelity and sufficient diversity, which contribute to the performance improvement. The code is available at https://github.com/ExplainableML/LoFT.
Authors:Keenan Eikenberry, Lizuo Liu, Yoonsang Lee
Abstract:
This work investigates the use of Wasserstein correlation -- a normalized measure of statistical dependence based on the Wasserstein distance between a joint distribution and the product of its marginals -- for unsupervised representation learning. Unlike, for example, contrastive methods, which naturally cluster classes in the latent space, we find that an (auto)encoder trained to maximize Wasserstein correlation between the input and encoded distributions instead acts as a compressor, reducing dimensionality while approximately preserving the topological and geometric properties of the input distribution. More strikingly, we show that Wasserstein correlation maximization can be used to arrive at an (auto)encoder -- either trained from scratch, or else one that extends a frozen, pretrained model -- that is approximately invariant to a chosen augmentation, or collection of augmentations, and that still approximately preserves the structural properties of the non-augmented input distribution. To do this, we first define the notion of an augmented encoder using the machinery of Markov-Wasserstein kernels. When the maximization objective is then applied to the augmented encoder, as opposed to the underlying, deterministic encoder, the resulting model exhibits the desired invariance properties. Finally, besides our experimental results, which show that even simple feedforward networks can be imbued with invariants or can, alternatively, be used to impart invariants to pretrained models under this training process, we additionally establish various theoretical results for optimal transport-based dependence measures. Code is available at https://github.com/keenan-eikenberry/wasserstein_correlation_maximization .
Authors:Hung Nguyen, Alireza Rahimi, Veronica Whitford, Hélène Fournier, Irina Kondratova, René Richard, Hung Cao
Abstract:
Psychiatric disorders affect millions globally, yet their diagnosis faces significant challenges in clinical practice due to subjective assessments and accessibility concerns, leading to potential delays in treatment. To help address this issue, we present Heart2Mind, a human-centered contestable psychiatric disorder diagnosis system using wearable electrocardiogram (ECG) monitors. Our approach leverages cardiac biomarkers, particularly heart rate variability (HRV) and R-R intervals (RRI) time series, as objective indicators of autonomic dysfunction in psychiatric conditions. The system comprises three key components: (1) a Cardiac Monitoring Interface (CMI) for real-time data acquisition from Polar H9/H10 devices; (2) a Multi-Scale Temporal-Frequency Transformer (MSTFT) that processes RRI time series through integrated time-frequency domain analysis; (3) a Contestable Diagnosis Interface (CDI) combining Self-Adversarial Explanations (SAEs) with contestable Large Language Models (LLMs). Our MSTFT achieves 91.7% accuracy on the HRV-ACC dataset using leave-one-out cross-validation, outperforming state-of-the-art methods. SAEs successfully detect inconsistencies in model predictions by comparing attention-based and gradient-based explanations, while LLMs enable clinicians to validate correct predictions and contest erroneous ones. This work demonstrates the feasibility of combining wearable technology with Explainable Artificial Intelligence (XAI) and contestable LLMs to create a transparent, contestable system for psychiatric diagnosis that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/Analytics-Everywhere-Lab/heart2mind.
Authors:Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang, Jun Zhu, Jianfei Chen
Abstract:
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code will be available at https://github.com/thu-ml/SageAttention.
Authors:Rui Zhang, Yun Shen, Hongwei Li, Wenbo Jiang, Hanxiao Chen, Yuan Zhang, Guowen Xu, Yang Zhang
Abstract:
Recent research highlights concerns about the trustworthiness of third-party Pre-Trained Language Models (PTLMs) due to potential backdoor attacks. These backdoored PTLMs, however, are effective only for specific pre-defined downstream tasks. In reality, these PTLMs can be adapted to many other unrelated downstream tasks. Such adaptation may lead to unforeseen consequences in downstream model outputs, consequently raising user suspicion and compromising attack stealthiness. We refer to this phenomenon as backdoor complications. In this paper, we undertake the first comprehensive quantification of backdoor complications. Through extensive experiments using 4 prominent PTLMs and 16 text classification benchmark datasets, we demonstrate the widespread presence of backdoor complications in downstream models fine-tuned from backdoored PTLMs. The output distribution of triggered samples significantly deviates from that of clean samples. Consequently, we propose a backdoor complication reduction method leveraging multi-task learning to mitigate complications without prior knowledge of downstream tasks. The experimental results demonstrate that our proposed method can effectively reduce complications while maintaining the efficacy and consistency of backdoor attacks. Our code is available at https://github.com/zhangrui4041/Backdoor_Complications.
Authors:Andrew Liu, Axel Elaldi, Nicholas T Franklin, Nathan Russell, Gurinder S Atwal, Yih-En A Ban, Olivia Viessmann
Abstract:
Invariant Point Attention (IPA) is a key algorithm for geometry-aware modeling in structural biology, central to many protein and RNA models. However, its quadratic complexity limits the input sequence length. We introduce FlashIPA, a factorized reformulation of IPA that leverages hardware-efficient FlashAttention to achieve linear scaling in GPU memory and wall-clock time with sequence length. FlashIPA matches or exceeds standard IPA performance while substantially reducing computational costs. FlashIPA extends training to previously unattainable lengths, and we demonstrate this by re-training generative models without length restrictions and generating structures of thousands of residues. FlashIPA is available at https://github.com/flagshippioneering/flash_ipa.
Authors:Stylianos Stasinos, Martino Mensio, Elena Lazovik, Athanasios Trantas
Abstract:
Biodiversity research requires complete and detailed information to study ecosystem dynamics at different scales. Employing data-driven methods like Machine Learning is getting traction in ecology and more specific biodiversity, offering alternative modelling pathways. For these methods to deliver accurate results there is the need for large, curated and multimodal datasets that offer granular spatial and temporal resolutions. In this work, we introduce BioCube, a multimodal, fine-grained global dataset for ecology and biodiversity research. BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables. All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020. The dataset will become available at https://huggingface.co/datasets/BioDT/BioCube while the acquisition and processing code base at https://github.com/BioDT/bfm-data.
Authors:Tianyi Shi, Zhu Meng, Yue Chen, Siyang Zheng, Fei Su, Jin Huang, Changrui Ren, Zhicheng Zhao
Abstract:
Time series forecasting faces two important but often overlooked challenges. Firstly, the inherent random noise in the time series labels sets a theoretical lower bound for the forecasting error, which is positively correlated with the entropy of the labels. Secondly, neural networks exhibit a frequency bias when modeling the state-space of time series, that is, the model performs well in learning certain frequency bands but poorly in others, thus restricting the overall forecasting performance. To address the first challenge, we prove a theorem that there exists a unitary transformation that can reduce the marginal entropy of multiple correlated Gaussian processes, thereby providing guidance for reducing the lower bound of forecasting error. Furthermore, experiments confirm that Discrete Fourier Transform (DFT) can reduce the entropy in the majority of scenarios. Correspondingly, to alleviate the frequency bias, we jointly introduce supervision in the frequency domain along the temporal dimension through DFT and Discrete Wavelet Transform (DWT). This supervision-side strategy is highly general and can be seamlessly integrated into any supervised learning method. Moreover, we propose a novel loss function named OLMA, which utilizes the frequency domain transformation across both channel and temporal dimensions to enhance forecasting. Finally, the experimental results on multiple datasets demonstrate the effectiveness of OLMA in addressing the above two challenges and the resulting improvement in forecasting accuracy. The results also indicate that the perspectives of entropy and frequency bias provide a new and feasible research direction for time series forecasting. The code is available at: https://github.com/Yuyun1011/OLMA-One-Loss-for-More-Accurate-Time-Series-Forecasting.
Authors:Kyla Guru, Robert J. Moss, Mykel J. Kochenderfer
Abstract:
Attribution of cyber-attacks remains a complex but critical challenge for cyber defenders. Currently, manual extraction of behavioral indicators from dense forensic documentation causes significant attribution delays, especially following major incidents at the international scale. This research evaluates large language models (LLMs) for cyber-attack attribution based on behavioral indicators extracted from forensic documentation. We test OpenAI's GPT-4 and text-embedding-3-large for identifying threat actors' tactics, techniques, and procedures (TTPs) by comparing LLM-generated TTPs against human-generated data from MITRE ATT&CK Groups. Our framework then identifies TTPs from text using vector embedding search and builds profiles to attribute new attacks for a machine learning model to learn. Key contributions include: (1) assessing off-the-shelf LLMs for TTP extraction and attribution, and (2) developing an end-to-end pipeline from raw CTI documents to threat-actor prediction. This research finds that standard LLMs generate TTP datasets with noise, resulting in a low similarity to human-generated datasets. However, the TTPs generated are similar in frequency to those within the existing MITRE datasets. Additionally, although these TTPs are different than human-generated datasets, our work demonstrates that they still prove useful for training a model that performs above baseline on attribution. Project code and files are contained here: https://github.com/kylag/ttp_attribution.
Authors:Jiacheng Hou, Zhenjie Song, Ercan Engin Kuruoglu
Abstract:
Recent studies have made great progress in functional brain network classification by modeling the brain as a network of Regions of Interest (ROIs) and leveraging their connections to understand brain functionality and diagnose mental disorders. Various deep learning architectures, including Convolutional Neural Networks, Graph Neural Networks, and the recent Transformer, have been developed. However, despite the increasing complexity of these models, the performance gain has not been as salient. This raises a question: Does increasing model complexity necessarily lead to higher classification accuracy? In this paper, we revisit the simplest deep learning architecture, the Multi-Layer Perceptron (MLP), and propose a pure MLP-based method, named BrainNetMLP, for functional brain network classification, which capitalizes on the advantages of MLP, including efficient computation and fewer parameters. Moreover, BrainNetMLP incorporates a dual-branch structure to jointly capture both spatial connectivity and spectral information, enabling precise spatiotemporal feature fusion. We evaluate our proposed BrainNetMLP on two public and popular brain network classification datasets, the Human Connectome Project (HCP) and the Autism Brain Imaging Data Exchange (ABIDE). Experimental results demonstrate pure MLP-based methods can achieve state-of-the-art performance, revealing the potential of MLP-based models as more efficient yet effective alternatives in functional brain network classification. The code will be available at https://github.com/JayceonHo/BrainNetMLP.
Authors:Yusu Qian, Jiasen Lu, Tsu-Jui Fu, Xinze Wang, Chen Chen, Yinfei Yang, Wenze Hu, Zhe Gan
Abstract:
Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.
Authors:Yige Xu, Xu Guo, Zhiwei Zeng, Chunyan Miao
Abstract:
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.
Authors:Dingbang Huang, Wenbo Li, Yifei Zhao, Xinyu Pan, Yanhong Zeng, Bo Dai
Abstract:
Diffusion models have made remarkable advancements in generating high-quality images from textual descriptions. Recent works like LayerDiffuse have extended the previous single-layer, unified image generation paradigm to transparent image layer generation. However, existing multi-layer generation methods fail to handle the interactions among multiple layers such as rational global layout, physics-plausible contacts and visual effects like shadows and reflections while maintaining high alpha quality. To solve this problem, we propose PSDiffusion, a unified diffusion framework for simultaneous multi-layer text-to-image generation. Our model can automatically generate multi-layer images with one RGB background and multiple RGBA foregrounds through a single feed-forward process. Unlike existing methods that combine multiple tools for post-decomposition or generate layers sequentially and separately, our method introduces a global-layer interactive mechanism that generates layered-images concurrently and collaboratively, ensuring not only high quality and completeness for each layer, but also spatial and visual interactions among layers for global coherence.
Authors:Yiming Lei, Chenkai Zhang, Zeming Liu, Haitao Leng, Shaoguo Liu, Tingting Gao, Qingjie Liu, Yunhong Wang
Abstract:
Video Comment Art enhances user engagement by providing creative content that conveys humor, satire, or emotional resonance, requiring a nuanced and comprehensive grasp of cultural and contextual subtleties. Although Multimodal Large Language Models (MLLMs) and Chain-of-Thought (CoT) have demonstrated strong reasoning abilities in STEM tasks (e.g. mathematics and coding), they still struggle to generate creative expressions such as resonant jokes and insightful satire. Moreover, existing benchmarks are constrained by their limited modalities and insufficient categories, hindering the exploration of comprehensive creativity in video-based Comment Art creation. To address these limitations, we introduce GODBench, a novel benchmark that integrates video and text modalities to systematically evaluate MLLMs' abilities to compose Comment Art. Furthermore, inspired by the propagation patterns of waves in physics, we propose Ripple of Thought (RoT), a multi-step reasoning framework designed to enhance the creativity of MLLMs. Extensive experiments reveal that existing MLLMs and CoT methods still face significant challenges in understanding and generating creative video comments. In contrast, RoT provides an effective approach to improve creative composing, highlighting its potential to drive meaningful advancements in MLLM-based creativity. GODBench is publicly available at https://github.com/stan-lei/GODBench-ACL2025.
Authors:Adrian Robert Minut, Tommaso Mencattini, Andrea Santilli, Donato Crisostomi, Emanuele RodolÃ
Abstract:
Model merging allows combining the capabilities of existing models into a new one - post hoc, without additional training. This has made it increasingly popular thanks to its low cost and the availability of libraries that support merging on consumer GPUs. Recent work shows that pairing merging with evolutionary algorithms can boost performance, but no framework currently supports flexible experimentation with such strategies in language models. We introduce Mergenetic, an open-source library for evolutionary model merging. Mergenetic enables easy composition of merging methods and evolutionary algorithms while incorporating lightweight fitness estimators to reduce evaluation costs. We describe its design and demonstrate that Mergenetic produces competitive results across tasks and languages using modest hardware.
Authors:Bohao Xing, Xin Liu, Guoying Zhao, Chengyu Liu, Xiaolan Fu, Heikki Kälviäinen
Abstract:
Emotion understanding is a critical yet challenging task. Recent advances in Multimodal Large Language Models (MLLMs) have significantly enhanced their capabilities in this area. However, MLLMs often suffer from hallucinations, generating irrelevant or nonsensical content. To the best of our knowledge, despite the importance of this issue, there has been no dedicated effort to evaluate emotion-related hallucinations in MLLMs. In this work, we introduce EmotionHallucer, the first benchmark for detecting and analyzing emotion hallucinations in MLLMs. Unlike humans, whose emotion understanding stems from the interplay of biology and social learning, MLLMs rely solely on data-driven learning and lack innate emotional instincts. Fortunately, emotion psychology provides a solid foundation of knowledge about human emotions. Building on this, we assess emotion hallucinations from two dimensions: emotion psychology knowledge and real-world multimodal perception. To support robust evaluation, we utilize an adversarial binary question-answer (QA) framework, which employs carefully crafted basic and hallucinated pairs to assess the emotion hallucination tendencies of MLLMs. By evaluating 38 LLMs and MLLMs on EmotionHallucer, we reveal that: i) most current models exhibit substantial issues with emotion hallucinations; ii) closed-source models outperform open-source ones in detecting emotion hallucinations, and reasoning capability provides additional advantages; iii) existing models perform better in emotion psychology knowledge than in multimodal emotion perception. As a byproduct, these findings inspire us to propose the PEP-MEK framework, which yields an average improvement of 9.90% in emotion hallucination detection across selected models. Resources will be available at https://github.com/xxtars/EmotionHallucer.
Authors:Wenchuan Zhang, Penghao Zhang, Jingru Guo, Tao Cheng, Jie Chen, Shuwan Zhang, Zhang Zhang, Yuhao Yi, Hong Bu
Abstract:
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose Patho-CLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both Patho-CLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
Authors:Petr Kasalický, Martin Spišák, VojtÄch VanÄura, Daniel BohunÄk, Rodrigo Alves, Pavel KordÃk
Abstract:
Industry-scale recommender systems face a core challenge: representing entities with high cardinality, such as users or items, using dense embeddings that must be accessible during both training and inference. However, as embedding sizes grow, memory constraints make storage and access increasingly difficult. We describe a lightweight, learnable embedding compression technique that projects dense embeddings into a high-dimensional, sparsely activated space. Designed for retrieval tasks, our method reduces memory requirements while preserving retrieval performance, enabling scalable deployment under strict resource constraints. Our results demonstrate that leveraging sparsity is a promising approach for improving the efficiency of large-scale recommenders. We release our code at https://github.com/recombee/CompresSAE.
Authors:Zeyu Gao, Yuxin Cui, Hao Wang, Siliang Qin, Yuanda Wang, Bolun Zhang, Chao Zhang
Abstract:
Decompilers are fundamental tools for critical security tasks, from vulnerability discovery to malware analysis, yet their evaluation remains fragmented. Existing approaches primarily focus on syntactic correctness through synthetic micro-benchmarks or subjective human ratings, failing to address real-world requirements for semantic fidelity and analyst usability. We present DecompileBench, the first comprehensive framework that enables effective evaluation of decompilers in reverse engineering workflows through three key components: \textit{real-world function extraction} (comprising 23,400 functions from 130 real-world programs), \textit{runtime-aware validation}, and \textit{automated human-centric assessment} using LLM-as-Judge to quantify the effectiveness of decompilers in reverse engineering workflows. Through a systematic comparison between six industrial-strength decompilers and six recent LLM-powered approaches, we demonstrate that LLM-based methods surpass commercial tools in code understandability despite 52.2% lower functionality correctness. These findings highlight the potential of LLM-based approaches to transform human-centric reverse engineering. We open source \href{https://github.com/Jennieett/DecompileBench}{DecompileBench} to provide a framework to advance research on decompilers and assist security experts in making informed tool selections based on their specific requirements.
Authors:Raja Gond, Nipun Kwatra, Ramachandran Ramjee
Abstract:
Distributed inference of large language models (LLMs) can introduce overheads of up to 20% even over GPUs connected via high-speed interconnects such as NVLink. Multiple techniques have been proposed to mitigate these overheads by decomposing computations into finer-grained tasks and overlapping communication with sub-tasks as they complete. However, fine-grained decomposition of a large computation into many smaller computations on GPUs results in overheads. Furthermore, the communication itself uses many streaming multiprocessors (SMs), adding to the overhead.
We present TokenWeave to address these challenges. TokenWeave proposes a Token-Splitting technique that divides the tokens in the inference batch into two approximately equal subsets in a wave-aware manner. The communication of one subset is then overlapped with the computation of the other. In addition, TokenWeave optimizes the order of the layer normalization computation with respect to communication operations and implements a novel fused AllReduce--RMSNorm kernel that carefully leverages Multimem instruction support available on NVIDIA Hopper GPUs. These optimizations allow TokenWeave to perform communication and RMSNorm using only 2-8 SMs. Moreover, our kernel enables the memory-bound RMSNorm to be overlapped with the other batch's computation, providing additional gains.
Our evaluations demonstrate up to 1.29x speedup in latency and 1.26x higher throughput across multiple models and workloads. In several settings, TokenWeave results in better performance compared to an equivalent model with all communication removed.
Authors:Keunwoo Peter Yu, Joyce Chai
Abstract:
Vision-language models (VLMs) have shown remarkable progress in offline tasks such as image captioning and video question answering. However, real-time interactive environments impose new demands on VLMs, requiring them to generate utterances that are not only semantically accurate but also precisely timed. We identify two core capabilities necessary for such settings -- $\textit{perceptual updating}$ and $\textit{contingency awareness}$ -- and propose a new benchmark task, $\textbf{Temporally-Grounded Language Generation (TGLG)}$, to evaluate them. TGLG requires models to generate utterances in response to streaming video such that both content and timing align with dynamic visual input. To support this benchmark, we curate evaluation datasets from sports broadcasting and egocentric human interaction domains, and introduce a new metric, $\textbf{TRACE}$, to evaluate TGLG by jointly measuring semantic similarity and temporal alignment. Finally, we present $\textbf{Vision-Language Model with Time-Synchronized Interleaving (VLM-TSI)}$, a model that interleaves visual and linguistic tokens in a time-synchronized manner, enabling real-time language generation without relying on turn-based assumptions. Experimental results show that VLM-TSI significantly outperforms a strong baseline, yet overall performance remains modest -- highlighting the difficulty of TGLG and motivating further research in real-time VLMs. Code and data available $\href{https://github.com/yukw777/tglg}{here}$.
Authors:Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Tianhe Yu, Zhanpeng He, K. R. Zentner, Ryan Julian, J K Terry, Isaac Woungang, Nariman Farsad, Pablo Samuel Castro
Abstract:
Meta-World is widely used for evaluating multi-task and meta-reinforcement learning agents, which are challenged to master diverse skills simultaneously. Since its introduction however, there have been numerous undocumented changes which inhibit a fair comparison of algorithms. This work strives to disambiguate these results from the literature, while also leveraging the past versions of Meta-World to provide insights into multi-task and meta-reinforcement learning benchmark design. Through this process we release a new open-source version of Meta-World (https://github.com/Farama-Foundation/Metaworld/) that has full reproducibility of past results, is more technically ergonomic, and gives users more control over the tasks that are included in a task set.
Authors:Pengju Xu, Yan Wang, Shuyuan Zhang, Xuan Zhou, Xin Li, Yue Yuan, Fengzhao Li, Shunyuan Zhou, Xingyu Wang, Yi Zhang, Haiying Zhao
Abstract:
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the Traditional Chinese Culture understanding Benchmark (TCC-Bench), a bilingual (i.e., Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://tcc-bench.github.io/.
Authors:Wilson Wongso, Hao Xue, Flora D. Salim
Abstract:
Understanding human mobility through Point-of-Interest (POI) recommendation is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 12 geographically and culturally diverse cities and features more recent (2017-2018) and longer-duration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI recommendation models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI recommendation. The dataset and benchmarking code are available at: https://github.com/cruiseresearchgroup/Massive-STEPS
Authors:Wenhao Qian, Zhenzhen Hu, Zijie Song, Jia Li
Abstract:
Metaphorical imagination, the ability to connect seemingly unrelated concepts, is fundamental to human cognition and communication. While understanding linguistic metaphors has advanced significantly, grasping multimodal metaphors, such as those found in internet memes, presents unique challenges due to their unconventional expressions and implied meanings. Existing methods for multimodal metaphor identification often struggle to bridge the gap between literal and figurative interpretations. Additionally, generative approaches that utilize large language models or text-to-image models, while promising, suffer from high computational costs. This paper introduces \textbf{C}oncept \textbf{D}rift \textbf{G}uided \textbf{L}ayerNorm \textbf{T}uning (\textbf{CDGLT}), a novel and training-efficient framework for multimodal metaphor identification. CDGLT incorporates two key innovations: (1) Concept Drift, a mechanism that leverages Spherical Linear Interpolation (SLERP) of cross-modal embeddings from a CLIP encoder to generate a new, divergent concept embedding. This drifted concept helps to alleviate the gap between literal features and the figurative task. (2) A prompt construction strategy, that adapts the method of feature extraction and fusion using pre-trained language models for the multimodal metaphor identification task. CDGLT achieves state-of-the-art performance on the MET-Meme benchmark while significantly reducing training costs compared to existing generative methods. Ablation studies demonstrate the effectiveness of both Concept Drift and our adapted LN Tuning approach. Our method represents a significant step towards efficient and accurate multimodal metaphor understanding. The code is available: \href{https://github.com/Qianvenh/CDGLT}{https://github.com/Qianvenh/CDGLT}.
Authors:Hangyu Zhou, Aaron Gokaslan, Volodymyr Kuleshov, Bharath Hariharan
Abstract:
From a multi-model compression perspective, model merging enables memory-efficient serving of multiple models fine-tuned from the same base, but suffers from degraded performance due to interference among their task-specific parameter adjustments (i.e., deltas). In this paper, we reformulate model merging as a compress-and-retrieve scheme, revealing that the task interference arises from the summation of irrelevant deltas during model retrieval. To address this issue, we use random orthogonal transformations to decorrelate these vectors into self-cancellation. We show that this approach drastically reduces interference, improving performance across both vision and language tasks. Since these transformations are fully defined by random seeds, adding new models requires no extra memory. Further, their data- and model-agnostic nature enables easy addition or removal of models with minimal compute overhead, supporting efficient and flexible multi-model serving.
Authors:Yuang Ai, Qihang Fan, Xuefeng Hu, Zhenheng Yang, Ran He, Huaibo Huang
Abstract:
Diffusion Transformer (DiT), a promising diffusion model for visual generation, demonstrates impressive performance but incurs significant computational overhead. Intriguingly, analysis of pre-trained DiT models reveals that global self-attention is often redundant, predominantly capturing local patterns-highlighting the potential for more efficient alternatives. In this paper, we revisit convolution as an alternative building block for constructing efficient and expressive diffusion models. However, naively replacing self-attention with convolution typically results in degraded performance. Our investigations attribute this performance gap to the higher channel redundancy in ConvNets compared to Transformers. To resolve this, we introduce a compact channel attention mechanism that promotes the activation of more diverse channels, thereby enhancing feature diversity. This leads to Diffusion ConvNet (DiCo), a family of diffusion models built entirely from standard ConvNet modules, offering strong generative performance with significant efficiency gains. On class-conditional ImageNet generation benchmarks, DiCo-XL achieves an FID of 2.05 at 256x256 resolution and 2.53 at 512x512, with a 2.7x and 3.1x speedup over DiT-XL/2, respectively. Furthermore, experimental results on MS-COCO demonstrate that the purely convolutional DiCo exhibits strong potential for text-to-image generation. Code: https://github.com/shallowdream204/DiCo.
Authors:Sicheng Shen, Dongcheng Zhao, Linghao Feng, Zeyang Yue, Jindong Li, Tenglong Li, Guobin Shen, Yi Zeng
Abstract:
Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce \textbf{STEP}, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP
Authors:Peizhen Li, Longbing Cao, Xiao-Ming Wu, Runze Yang, Xiaohan Yu
Abstract:
The ability to imitate realistic facial expressions is essential for humanoid robots engaged in affective human-robot communication. However, the lack of datasets containing diverse humanoid facial expressions with proper annotations hinders progress in realistic humanoid facial expression imitation. To address these challenges, we introduce X2C (Anything to Control), a dataset featuring nuanced facial expressions for realistic humanoid imitation. With X2C, we contribute: 1) a high-quality, high-diversity, large-scale dataset comprising 100,000 (image, control value) pairs. Each image depicts a humanoid robot displaying a diverse range of facial expressions, annotated with 30 control values representing the ground-truth expression configuration; 2) X2CNet, a novel human-to-humanoid facial expression imitation framework that learns the correspondence between nuanced humanoid expressions and their underlying control values from X2C. It enables facial expression imitation in the wild for different human performers, providing a baseline for the imitation task, showcasing the potential value of our dataset; 3) real-world demonstrations on a physical humanoid robot, highlighting its capability to advance realistic humanoid facial expression imitation. Code and Data: https://lipzh5.github.io/X2CNet/
Authors:Feiran Li, Qianqian Xu, Shilong Bao, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Abstract:
Concept erasing has recently emerged as an effective paradigm to prevent text-to-image diffusion models from generating visually undesirable or even harmful content. However, current removal methods heavily rely on manually crafted text prompts, making it challenging to achieve a high erasure (efficacy) while minimizing the impact on other benign concepts (usability). In this paper, we attribute the limitations to the inherent gap between the text and image modalities, which makes it hard to transfer the intricately entangled concept knowledge from text prompts to the image generation process. To address this, we propose a novel solution by directly integrating visual supervision into the erasure process, introducing the first text-image Collaborative Concept Erasing (Co-Erasing) framework. Specifically, Co-Erasing describes the concept jointly by text prompts and the corresponding undesirable images induced by the prompts, and then reduces the generating probability of the target concept through negative guidance. This approach effectively bypasses the knowledge gap between text and image, significantly enhancing erasure efficacy. Additionally, we design a text-guided image concept refinement strategy that directs the model to focus on visual features most relevant to the specified text concept, minimizing disruption to other benign concepts. Finally, comprehensive experiments suggest that Co-Erasing outperforms state-of-the-art erasure approaches significantly with a better trade-off between efficacy and usability. Codes are available at https://github.com/Ferry-Li/Co-Erasing.
Authors:Chenhong Zhou, Jie Chen, Zaifeng Yang, Ching Eng Png
Abstract:
Physics-informed neural networks (PINNs) have emerged as a new learning paradigm for solving partial differential equations (PDEs) by enforcing the constraints of physical equations, boundary conditions (BCs), and initial conditions (ICs) into the loss function. Despite their successes, vanilla PINNs still suffer from poor accuracy and slow convergence due to the intractable multi-objective optimization issue. In this paper, we propose a novel Dual-Balanced PINN (DB-PINN), which dynamically adjusts loss weights by integrating inter-balancing and intra-balancing to alleviate two imbalance issues in PINNs. Inter-balancing aims to mitigate the gradient imbalance between PDE residual loss and condition-fitting losses by determining an aggregated weight that offsets their gradient distribution discrepancies. Intra-balancing acts on condition-fitting losses to tackle the imbalance in fitting difficulty across diverse conditions. By evaluating the fitting difficulty based on the loss records, intra-balancing can allocate the aggregated weight proportionally to each condition loss according to its fitting difficulty level. We further introduce a robust weight update strategy to prevent abrupt spikes and arithmetic overflow in instantaneous weight values caused by large loss variances, enabling smooth weight updating and stable training. Extensive experiments demonstrate that DB-PINN achieves significantly superior performance than those popular gradient-based weighting methods in terms of convergence speed and prediction accuracy. Our code and supplementary material are available at https://github.com/chenhong-zhou/DualBalanced-PINNs.
Authors:Lin Zhu, Yijun Bian, Lei You
Abstract:
Ensuring fairness in machine learning models is critical, particularly in high-stakes domains where biased decisions can lead to serious societal consequences. Existing preprocessing approaches generally lack transparent mechanisms for identifying which features or instances are responsible for unfairness. This obscures the rationale behind data modifications. We introduce FairSHAP, a novel pre-processing framework that leverages Shapley value attribution to improve both individual and group fairness. FairSHAP identifies fairness-critical instances in the training data using an interpretable measure of feature importance, and systematically modifies them through instance-level matching across sensitive groups. This process reduces discriminative risk - an individual fairness metric - while preserving data integrity and model accuracy. We demonstrate that FairSHAP significantly improves demographic parity and equality of opportunity across diverse tabular datasets, achieving fairness gains with minimal data perturbation and, in some cases, improved predictive performance. As a model-agnostic and transparent method, FairSHAP integrates seamlessly into existing machine learning pipelines and provides actionable insights into the sources of bias.Our code is on https://github.com/youlei202/FairSHAP.
Authors:Bin Liu, Chunyang Wang, Xuelian Liu, Bo Xiao, Guan Xi
Abstract:
Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba
Authors:Guangqiang Li, M. Amine Atoui, Xiangshun Li
Abstract:
Deep learning methods have shown promising performance in fault diagnosis for multimode process. Most existing studies assume that the collected health state categories from different operating modes are identical. However, in real industrial scenarios, these categories typically exhibit only partial overlap. The incompleteness of the available data and the large distributional differences between the operating modes pose a significant challenge to existing fault diagnosis methods. To address this problem, a novel fault diagnosis model named self-adaptive temporal-spatial attention network (TSA-SAN) is proposed. First, inter-mode mappings are constructed using healthy category data to generate multimode samples. To enrich the diversity of the fault data, interpolation is performed between healthy and fault samples. Subsequently, the fault diagnosis model is trained using real and generated data. The self-adaptive instance normalization is established to suppress irrelevant information while retaining essential statistical features for diagnosis. In addition, a temporal-spatial attention mechanism is constructed to focus on the key features, thus enhancing the generalization ability of the model. The extensive experiments demonstrate that the proposed model significantly outperforms the state-of-the-art methods. The code will be available on Github at https://github.com/GuangqiangLi/TSA-SAN.
Authors:Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, Mohit Iyyer
Abstract:
Reward models are central to aligning LLMs with human preferences, but they are costly to train, requiring large-scale human-labeled preference data and powerful pretrained LLM backbones. Meanwhile, the increasing availability of high-quality synthetic instruction-following datasets raises the question: can simpler, reference-based metrics serve as viable alternatives to reward models during RL-based alignment? In this paper, we show first that BLEU, a basic string-matching metric, surprisingly matches strong reward models in agreement with human preferences on general instruction-following datasets. Based on this insight, we develop BLEUBERI, a method that first identifies challenging instructions and then applies Group Relative Policy Optimization (GRPO) using BLEU directly as the reward function. We demonstrate that BLEUBERI-trained models are competitive with models trained via reward model-guided RL across four challenging instruction-following benchmarks and three different base language models. A human evaluation further supports that the quality of BLEUBERI model outputs is on par with those from reward model-aligned models. Moreover, BLEUBERI models generate outputs that are more factually grounded than competing methods. Overall, we show that given access to high-quality reference outputs (easily obtained via existing instruction-following datasets or synthetic data generation), string matching-based metrics are cheap yet effective proxies for reward models during alignment. We release our code and data at https://github.com/lilakk/BLEUBERI.
Authors:Hao Gu, Jiangyan Yi, Chenglong Wang, Jianhua Tao, Zheng Lian, Jiayi He, Yong Ren, Yujie Chen, Zhengqi Wen
Abstract:
Audio deepfake detection (ADD) has grown increasingly important due to the rise of high-fidelity audio generative models and their potential for misuse. Given that audio large language models (ALLMs) have made significant progress in various audio processing tasks, a heuristic question arises: \textit{Can ALLMs be leveraged to solve ADD?}. In this paper, we first conduct a comprehensive zero-shot evaluation of ALLMs on ADD, revealing their ineffectiveness. To this end, we propose ALLM4ADD, an ALLM-driven framework for ADD. Specifically, we reformulate ADD task as an audio question answering problem, prompting the model with the question: ``Is this audio fake or real?''. We then perform supervised fine-tuning to enable the ALLM to assess the authenticity of query audio. Extensive experiments are conducted to demonstrate that our ALLM-based method can achieve superior performance in fake audio detection, particularly in data-scarce scenarios. As a pioneering study, we anticipate that this work will inspire the research community to leverage ALLMs to develop more effective ADD systems. Code is available at https://github.com/ucas-hao/qwen_audio_for_add.git
Authors:VladimÃr Boža, VladimÃr Macko
Abstract:
Binary quantization approaches, which replace weight matrices with binary matrices and substitute costly multiplications with cheaper additions, offer a computationally efficient approach to address the increasing computational and storage requirements of Large Language Models (LLMs). However, the severe quantization constraint ($\pm1$) can lead to significant accuracy degradation. In this paper, we propose Double Binary Factorization (DBF), a novel method that factorizes dense weight matrices into products of two binary (sign) matrices, each accompanied by scaling vectors. DBF preserves the efficiency advantages of binary representations while achieving compression rates that are competitive with or superior to state-of-the-art methods. Specifically, in a 1-bit per weight range, DBF is better than existing binarization approaches. In a 2-bit per weight range, DBF is competitive with the best quantization methods like QuIP\# and QTIP. Unlike most existing compression techniques, which offer limited compression level choices, DBF allows fine-grained control over compression ratios by adjusting the factorization's intermediate dimension. Based on this advantage, we further introduce an algorithm for estimating non-uniform layer-wise compression ratios for DBF, based on previously developed channel pruning criteria.
Code available at: https://github.com/usamec/double_binary
Authors:Rui Wang, Shichun Yang, Yuyi Chen, Zhuoyang Li, Zexiang Tong, Jianyi Xu, Jiayi Lu, Xinjie Feng, Yaoguang Cao
Abstract:
Road terrains play a crucial role in ensuring the driving safety of autonomous vehicles (AVs). However, existing sensors of AVs, including cameras and Lidars, are susceptible to variations in lighting and weather conditions, making it challenging to achieve real-time perception of road conditions. In this paper, we propose an illumination-aware multi-modal fusion network (IMF), which leverages both exteroceptive and proprioceptive perception and optimizes the fusion process based on illumination features. We introduce an illumination-perception sub-network to accurately estimate illumination features. Moreover, we design a multi-modal fusion network which is able to dynamically adjust weights of different modalities according to illumination features. We enhance the optimization process by pre-training of the illumination-perception sub-network and incorporating illumination loss as one of the training constraints. Extensive experiments demonstrate that the IMF shows a superior performance compared to state-of-the-art methods. The comparison results with single modality perception methods highlight the comprehensive advantages of multi-modal fusion in accurately perceiving road terrains under varying lighting conditions. Our dataset is available at: https://github.com/lindawang2016/IMF.
Authors:Changlun Li, Yao Shi, Chen Wang, Qiqi Duan, Runke Ruan, Weijie Huang, Haonan Long, Lijun Huang, Yuyu Luo, Nan Tang
Abstract:
Large Language Models (LLMs) have demonstrated notable capabilities across financial tasks, including financial report summarization, earnings call transcript analysis, and asset classification. However, their real-world effectiveness in managing complex fund investment remains inadequately assessed. A fundamental limitation of existing benchmarks for evaluating LLM-driven trading strategies is their reliance on historical back-testing, inadvertently enabling LLMs to "time travel"-leveraging future information embedded in their training corpora, thus resulting in possible information leakage and overly optimistic performance estimates. To address this issue, we introduce DeepFund, a live fund benchmark tool designed to rigorously evaluate LLM in real-time market conditions. Utilizing a multi-agent architecture, DeepFund connects directly with real-time stock market data-specifically data published after each model pretraining cutoff-to ensure fair and leakage-free evaluations. Empirical tests on nine flagship LLMs from leading global institutions across multiple investment dimensions-including ticker-level analysis, investment decision-making, portfolio management, and risk control-reveal significant practical challenges. Notably, even cutting-edge models such as DeepSeek-V3 and Claude-3.7-Sonnet incur net trading losses within DeepFund real-time evaluation environment, underscoring the present limitations of LLMs for active fund management. Our code is available at https://github.com/HKUSTDial/DeepFund.
Authors:Yue Liu, Shengfang Zhai, Mingzhe Du, Yulin Chen, Tri Cao, Hongcheng Gao, Cheng Wang, Xinfeng Li, Kun Wang, Junfeng Fang, Jiaheng Zhang, Bryan Hooi
Abstract:
To enhance the safety of VLMs, this paper introduces a novel reasoning-based VLM guard model dubbed GuardReasoner-VL. The core idea is to incentivize the guard model to deliberatively reason before making moderation decisions via online RL. First, we construct GuardReasoner-VLTrain, a reasoning corpus with 123K samples and 631K reasoning steps, spanning text, image, and text-image inputs. Then, based on it, we cold-start our model's reasoning ability via SFT. In addition, we further enhance reasoning regarding moderation through online RL. Concretely, to enhance diversity and difficulty of samples, we conduct rejection sampling followed by data augmentation via the proposed safety-aware data concatenation. Besides, we use a dynamic clipping parameter to encourage exploration in early stages and exploitation in later stages. To balance performance and token efficiency, we design a length-aware safety reward that integrates accuracy, format, and token cost. Extensive experiments demonstrate the superiority of our model. Remarkably, it surpasses the runner-up by 19.27% F1 score on average. We release data, code, and models (3B/7B) of GuardReasoner-VL at https://github.com/yueliu1999/GuardReasoner-VL/
Authors:Yuran Wang, Ruihai Wu, Yue Chen, Jiarui Wang, Jiaqi Liang, Ziyu Zhu, Haoran Geng, Jitendra Malik, Pieter Abbeel, Hao Dong
Abstract:
Garment manipulation is a critical challenge due to the diversity in garment categories, geometries, and deformations. Despite this, humans can effortlessly handle garments, thanks to the dexterity of our hands. However, existing research in the field has struggled to replicate this level of dexterity, primarily hindered by the lack of realistic simulations of dexterous garment manipulation. Therefore, we propose DexGarmentLab, the first environment specifically designed for dexterous (especially bimanual) garment manipulation, which features large-scale high-quality 3D assets for 15 task scenarios, and refines simulation techniques tailored for garment modeling to reduce the sim-to-real gap. Previous data collection typically relies on teleoperation or training expert reinforcement learning (RL) policies, which are labor-intensive and inefficient. In this paper, we leverage garment structural correspondence to automatically generate a dataset with diverse trajectories using only a single expert demonstration, significantly reducing manual intervention. However, even extensive demonstrations cannot cover the infinite states of garments, which necessitates the exploration of new algorithms. To improve generalization across diverse garment shapes and deformations, we propose a Hierarchical gArment-manipuLation pOlicy (HALO). It first identifies transferable affordance points to accurately locate the manipulation area, then generates generalizable trajectories to complete the task. Through extensive experiments and detailed analysis of our method and baseline, we demonstrate that HALO consistently outperforms existing methods, successfully generalizing to previously unseen instances even with significant variations in shape and deformation where others fail. Our project page is available at: https://wayrise.github.io/DexGarmentLab/.
Authors:An-Lan Wang, Jingqun Tang, Liao Lei, Hao Feng, Qi Liu, Xiang Fei, Jinghui Lu, Han Wang, Weiwei Liu, Hao Liu, Yuliang Liu, Xiang Bai, Can Huang
Abstract:
The rapid advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced capabilities in Document Understanding. However, prevailing benchmarks like DocVQA and ChartQA predominantly comprise \textit{scanned or digital} documents, inadequately reflecting the intricate challenges posed by diverse real-world scenarios, such as variable illumination and physical distortions. This paper introduces WildDoc, the inaugural benchmark designed specifically for assessing document understanding in natural environments. WildDoc incorporates a diverse set of manually captured document images reflecting real-world conditions and leverages document sources from established benchmarks to facilitate comprehensive comparisons with digital or scanned documents. Further, to rigorously evaluate model robustness, each document is captured four times under different conditions. Evaluations of state-of-the-art MLLMs on WildDoc expose substantial performance declines and underscore the models' inadequate robustness compared to traditional benchmarks, highlighting the unique challenges posed by real-world document understanding. Our project homepage is available at https://bytedance.github.io/WildDoc.
Authors:Zongye Zhang, Bohan Kong, Qingjie Liu, Yunhong Wang
Abstract:
Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence. The code is available at: https://github.com/zzysteve/MoMADiff
Authors:Bo Du, Xuekang Zhu, Xiaochen Ma, Chenfan Qu, Kaiwen Feng, Zhe Yang, Chi-Man Pun, Jian Liu, Jizhe Zhou
Abstract:
The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark & codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models, 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs.
Authors:Yunkang Cao, Yuqi Cheng, Xiaohao Xu, Yiheng Zhang, Yihan Sun, Yuxiang Tan, Yuxin Zhang, Xiaonan Huang, Weiming Shen
Abstract:
The practical deployment of Visual Anomaly Detection (VAD) systems is hindered by their sensitivity to real-world imaging variations, particularly the complex interplay between viewpoint and illumination which drastically alters defect visibility. Current benchmarks largely overlook this critical challenge. We introduce Multi-View Multi-Illumination Anomaly Detection (M2AD), a new large-scale benchmark comprising 119,880 high-resolution images designed explicitly to probe VAD robustness under such interacting conditions. By systematically capturing 999 specimens across 10 categories using 12 synchronized views and 10 illumination settings (120 configurations total), M2AD enables rigorous evaluation. We establish two evaluation protocols: M2AD-Synergy tests the ability to fuse information across diverse configurations, and M2AD-Invariant measures single-image robustness against realistic view-illumination effects. Our extensive benchmarking shows that state-of-the-art VAD methods struggle significantly on M2AD, demonstrating the profound challenge posed by view-illumination interplay. This benchmark serves as an essential tool for developing and validating VAD methods capable of overcoming real-world complexities. Our full dataset and test suite will be released at https://hustcyq.github.io/M2AD to facilitate the field.
Authors:Rees Chang, Angela Pak, Alex Guerra, Ni Zhan, Nick Richardson, Elif Ertekin, Ryan P. Adams
Abstract:
Accelerating inverse design of crystalline materials with generative models has significant implications for a range of technologies. Unlike other atomic systems, 3D crystals are invariant to discrete groups of isometries called the space groups. Crucially, these space group symmetries are known to heavily influence materials properties. We propose SGEquiDiff, a crystal generative model which naturally handles space group constraints with space group invariant likelihoods. SGEquiD-iff consists of an SE(3)-invariant, telescoping discrete sampler of crystal lattices; permutation-invariant, transformer-based autoregressive sampling of Wyckoff positions, elements, and numbers of symmetrically unique atoms; and space group equivariant diffusion of atomic coordinates. We show that space group equivariant vector fields automatically live in the tangent spaces of the Wyckoff positions. SGEquiDiff achieves state-of-the-art performance on standard benchmark datasets as assessed by quantitative proxy metrics and quantum mechanical calculations. Our code is available at https://github.com/rees-c/sgequidiff.
Authors:Haiyang Shen, Hang Yan, Zhongshi Xing, Mugeng Liu, Yue Li, Zhiyang Chen, Yuxiang Wang, Jiuzheng Wang, Yun Ma
Abstract:
RAG can enhance the performance of LLMs on knowledge-intensive tasks. Various RAG paradigms, including vanilla, planning-based, and iterative RAG, are built upon 2 cores: the retriever, which should robustly select relevant documents across complex queries, and the generator, which should faithfully synthesize responses. However, existing retrievers rely heavily on public knowledge and struggle with queries of varying logical complexity and clue completeness, while generators frequently face fidelity problems. In this work, we introduce RAGSynth, a framework that includes a data construction modeling and a corresponding synthetic data generation implementation, designed to optimize retriever robustness and generator fidelity. Additionally, we present SynthBench, a benchmark encompassing 8 domain-specific documents across 4 domains, featuring diverse query complexities, clue completeness, and fine-grained citation granularity. Leveraging RAGSynth, we generate a large-scale synthetic dataset, including single and multi-hop. Extensive experiments demonstrate that the synthetic data significantly improves the robustness of the retrievers and the fidelity of the generators. Additional evaluations confirm that RAGSynth can also generalize well across different domains. By integrating the optimized retrievers into various RAG paradigms, we consistently observe enhanced RAG system performance. We have open-sourced the implementation on https://github.com/EachSheep/RAGSynth.
Authors:Yexiang Liu, Zekun Li, Zhi Fang, Nan Xu, Ran He, Tieniu Tan
Abstract:
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a probabilistic method to efficiently predict scaling performance and identify the best prompting strategy under large sampling times, eliminating the need for resource-intensive inference processes in practical applications. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance. Code is available at https://github.com/MraDonkey/rethinking_prompting.
Authors:Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I. Kanatsoulis, Rishi Puri, Matthias Fey, Jure Leskovec
Abstract:
Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RelGT), the first graph transformer architecture designed specifically for relational tables. RelGT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RelGT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.
Authors:Mohammadtaha Bagherifard, Sahar Rajabi, Ali Edalat, Yadollah Yaghoobzadeh
Abstract:
Large language models often struggle with zero-shot generalization, and several modular approaches have been proposed to address this challenge. Yet, we hypothesize that a key limitation remains: the entanglement of general knowledge and task-specific adaptations. To overcome this, we propose a modular framework that disentangles these components by constructing a library of task-specific LoRA modules alongside a general-domain LoRA. By subtracting this general knowledge component from each task-specific module, we obtain residual modules that focus more exclusively on task-relevant information, a method we call general knowledge subtraction (GenKnowSub). Leveraging the refined task-specific modules and the Arrow routing algorithm \citep{ostapenko2024towards}, we dynamically select and combine modules for new inputs without additional training. Our studies on the Phi-3 model and standard Arrow as baselines reveal that using general knowledge LoRAs derived from diverse languages, including English, French, and German, yields consistent performance gains in both monolingual and cross-lingual settings across a wide set of benchmarks. Further experiments on Phi-2 demonstrate how GenKnowSub generalizes to weaker LLMs. The complete code and data are available at https://github.com/saharsamr/Modular-LLM.
Authors:Chao Wang, Wei Lu, Xiang Li, Jian Yang, Lei Luo
Abstract:
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve $mAP$ by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
Authors:Congcong Zhu, Xiaoyan Xu, Jiayue Han, Jingrun Chen
Abstract:
Auto-regressive partial differential equation (PDE) foundation models have shown great potential in handling time-dependent data. However, these models suffer from the shortcut problem deeply rooted in auto-regressive prediction, causing error accumulation. The challenge becomes particularly evident for out-of-distribution data, as the pretraining performance may approach random model initialization for downstream tasks with long-term dynamics. To deal with this problem, we propose physics-informed temporal alignment (PITA), a self-supervised learning framework inspired by inverse problem solving. Specifically, PITA aligns the physical dynamics discovered at different time steps on each given PDE trajectory by integrating physics-informed constraints into the self-supervision signal. The alignment is derived from observation data without relying on known physics priors, indicating strong generalization ability to the out-of-distribution data. Extensive experiments show that PITA significantly enhances the accuracy and robustness of existing foundation models on diverse time-dependent PDE data. The code is available at https://github.com/SCAILab-USTC/PITA.
Authors:Simeon Adebola, Shuangyu Xie, Chung Min Kim, Justin Kerr, Bart M. van Marrewijk, Mieke van Vlaardingen, Tim van Daalen, E. N. van Loo, Jose Luis Susa Rincon, Eugen Solowjow, Rick van de Zedde, Ken Goldberg
Abstract:
Accurate temporal reconstructions of plant growth are essential for plant phenotyping and breeding, yet remain challenging due to complex geometries, occlusions, and non-rigid deformations of plants. We present a novel framework for building temporal digital twins of plants by combining 3D Gaussian Splatting with a robust sample alignment pipeline. Our method begins by reconstructing Gaussian Splats from multi-view camera data, then leverages a two-stage registration approach: coarse alignment through feature-based matching and Fast Global Registration, followed by fine alignment with Iterative Closest Point. This pipeline yields a consistent 4D model of plant development in discrete time steps. We evaluate the approach on data from the Netherlands Plant Eco-phenotyping Center, demonstrating detailed temporal reconstructions of Sequoia and Quinoa species. Videos and Images can be seen at https://berkeleyautomation.github.io/GrowSplat/
Authors:Jiahui Zhang, Yusen Luo, Abrar Anwar, Sumedh Anand Sontakke, Joseph J Lim, Jesse Thomason, Erdem Biyik, Jesse Zhang
Abstract:
We introduce ReWiND, a framework for learning robot manipulation tasks solely from language instructions without per-task demonstrations. Standard reinforcement learning (RL) and imitation learning methods require expert supervision through human-designed reward functions or demonstrations for every new task. In contrast, ReWiND starts from a small demonstration dataset to learn: (1) a data-efficient, language-conditioned reward function that labels the dataset with rewards, and (2) a language-conditioned policy pre-trained with offline RL using these rewards. Given an unseen task variation, ReWiND fine-tunes the pre-trained policy using the learned reward function, requiring minimal online interaction. We show that ReWiND's reward model generalizes effectively to unseen tasks, outperforming baselines by up to 2.4x in reward generalization and policy alignment metrics. Finally, we demonstrate that ReWiND enables sample-efficient adaptation to new tasks, beating baselines by 2x in simulation and improving real-world pretrained bimanual policies by 5x, taking a step towards scalable, real-world robot learning. See website at https://rewind-reward.github.io/.
Authors:Saad Manzur, Bryan Vela, Brandon Vela, Aditya Agrawal, Lan-Anh Dang-Vu, David Li, Wayne Hayes
Abstract:
Reliable three-dimensional human pose estimation (3D HPE) remains challenging due to the differences in viewpoints, environments, and camera conventions among datasets. As a result, methods that achieve near-optimal in-dataset accuracy often degrade on unseen datasets. In practice, however, systems must adapt to diverse viewpoints, environments, and camera setups--conditions that differ significantly from those encountered during training, which is often the case in real-world scenarios. Measuring cross-dataset performance is a vital process, but extremely labor-intensive when done manually for human pose estimation. To address these challenges, we automate this evaluation using PoseBench3D, a standardized testing framework that enables consistent and fair cross-dataset comparisons on previously unseen data. PoseBench3D streamlines testing across four widely used 3D HPE datasets via a single, configurable interface. Using this framework, we re-evaluate 18 methods and report over 100 cross-dataset results under Protocol 1: MPJPE and Protocol 2: PA-MPJPE, revealing systematic generalization gaps and the impact of common preprocessing and dataset setup choices. The PoseBench3D code is found at: https://github.com/bryanjvela/PoseBench3D
Authors:Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen, Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi Hong, Yan Yan, Caiwen Ding
Abstract:
This paper introduces \textsc{InfantAgent-Next}, a generalist agent capable of interacting with computers in a multimodal manner, encompassing text, images, audio, and video. Unlike existing approaches that either build intricate workflows around a single large model or only provide workflow modularity, our agent integrates tool-based and pure vision agents within a highly modular architecture, enabling different models to collaboratively solve decoupled tasks in a step-by-step manner. Our generality is demonstrated by our ability to evaluate not only pure vision-based real-world benchmarks (i.e., OSWorld), but also more general or tool-intensive benchmarks (e.g., GAIA and SWE-Bench). Specifically, we achieve $\mathbf{7.27\%}$ accuracy on OSWorld, higher than Claude-Computer-Use. Codes and evaluation scripts are open-sourced at https://github.com/bin123apple/InfantAgent.
Authors:Mark Van der Merwe, Miquel Oller, Dmitry Berenson, Nima Fazeli
Abstract:
Dexterous manipulation requires careful reasoning over extrinsic contacts. The prevalence of deforming tools in human environments, the use of deformable sensors, and the increasing number of soft robots yields a need for approaches that enable dexterous manipulation through contact reasoning where not all contacts are well characterized by classical rigid body contact models. Here, we consider the case of a deforming tool dexterously manipulating a rigid object. We propose a hybrid learning and first-principles approach to the modeling of simultaneous motion and force transfer of tools and objects. The learned module is responsible for jointly estimating the rigid object's motion and the deformable tool's imparted contact forces. We then propose a Contact Quadratic Program to recover forces between the environment and object subject to quasi-static equilibrium and Coulomb friction. The results is a system capable of modeling both intrinsic and extrinsic motions, contacts, and forces during dexterous deformable manipulation. We train our method in simulation and show that our method outperforms baselines under varying block geometries and physical properties, during pushing and pivoting manipulations, and demonstrate transfer to real world interactions. Video results can be found at https://deform-rigid-contact.github.io/.
Authors:Alexey Magay, Dhurba Tripathi, Yu Hao, Yi Fang
Abstract:
People with blindness and low vision (pBLV) face significant challenges, struggling to navigate environments and locate objects due to limited visual cues. Spatial reasoning is crucial for these individuals, as it enables them to understand and interpret the spatial relationships in their surroundings, enhancing their ability to navigate and interact more safely and independently. Current multi-modal large language (MLLM) models for low vision people lack the spatial reasoning capabilities needed to effectively assist in these tasks. Moreover, there is a notable absence of lightweight, easy-to-use systems that allow pBLV to effectively perceive and interact with their surrounding environment. In this paper, we propose a novel spatial enhanced multi-modal large language model based approach for visually impaired individuals. By fine-tuning the MLLM to incorporate spatial reasoning capabilities, our method significantly improves the understanding of environmental context, which is critical for navigation and object recognition. The innovation extends to a hardware component, designed as an attachment for glasses, ensuring increased accessibility and ease of use. This integration leverages advanced VLMs to interpret visual data and provide real-time, spatially aware feedback to the user. Our approach aims to bridge the gap between advanced machine learning models and practical, user-friendly assistive devices, offering a robust solution for visually impaired users to navigate their surroundings more effectively and independently. The paper includes an in-depth evaluation using the VizWiz dataset, demonstrating substantial improvements in accuracy and user experience. Additionally, we design a comprehensive dataset to evaluate our method's effectiveness in realworld situations, demonstrating substantial improvements in accuracy and user experience.
Authors:Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi
Abstract:
We focus on the problem of identifying samples in a set that do not conform to structured patterns represented by low-dimensional manifolds. An effective way to solve this problem is to embed data in a high dimensional space, called Preference Space, where anomalies can be identified as the most isolated points. In this work, we employ Locality Sensitive Hashing to avoid explicit computation of distances in high dimensions and thus improve Anomaly Detection efficiency. Specifically, we present an isolation-based anomaly detection technique designed to work in the Preference Space which achieves state-of-the-art performance at a lower computational cost. Code is publicly available at https://github.com/ineveLoppiliF/Hashing-for-Structure-based-Anomaly-Detection.
Authors:Jiacheng Liang, Tanqiu Jiang, Yuhui Wang, Rongyi Zhu, Fenglong Ma, Ting Wang
Abstract:
This paper presents AutoRAN, the first automated, weak-to-strong jailbreak attack framework targeting large reasoning models (LRMs). At its core, AutoRAN leverages a weak, less-aligned reasoning model to simulate the target model's high-level reasoning structures, generates narrative prompts, and iteratively refines candidate prompts by incorporating the target model's intermediate reasoning steps. We evaluate AutoRAN against state-of-the-art LRMs including GPT-o3/o4-mini and Gemini-2.5-Flash across multiple benchmark datasets (AdvBench, HarmBench, and StrongReject). Results demonstrate that AutoRAN achieves remarkable success rates (approaching 100%) within one or a few turns across different LRMs, even when judged by a robustly aligned external model. This work reveals that leveraging weak reasoning models can effectively exploit the critical vulnerabilities of much more capable reasoning models, highlighting the need for improved safety measures specifically designed for reasoning-based models. The code for replicating AutoRAN and running records are available at: (https://github.com/JACKPURCELL/AutoRAN-public). (warning: this paper contains potentially harmful content generated by LRMs.)
Authors:Yifei He, Siqi Zeng, Yuzheng Hu, Rui Yang, Tong Zhang, Han Zhao
Abstract:
Model merging provides a scalable alternative to multi-task training by combining specialized finetuned models through parameter arithmetic, enabling efficient deployment without the need for joint training or access to all task data. While recent methods have shown promise, existing evaluations are limited in both model scale and task diversity, leaving open questions about their applicability to large, domain-specialized LLMs. To tackle the challenges, we introduce MergeBench, a comprehensive evaluation suite designed to assess model merging at scale. MergeBench builds on state-of-the-art open-source language models, including Llama and Gemma families at 2B to 9B scales, and covers five key domains: instruction following, mathematics, multilingual understanding, coding and safety. We standardize finetuning and evaluation protocols, and assess eight representative merging methods across multi-task performance, forgetting and runtime efficiency. Based on extensive experiments, we provide practical guidelines for algorithm selection and share insights showing that model merging tends to perform better on stronger base models, with techniques such as merging coefficient tuning and sparsification improving knowledge retention. However, several challenges remain, including the computational cost on large models, the gap for in-domain performance compared to multi-task models, and the underexplored role of model merging in standard LLM training pipelines. We hope MergeBench provides a foundation for future research to advance the understanding and practical application of model merging. Our project page is at \href{https://yifei-he.github.io/mergebench/}{https://yifei-he.github.io/mergebench/}.
Authors:Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, Dongbin Zhao
Abstract:
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers. However, such detailed reasoning can introduce substantial computational overhead and latency, particularly for simple problems. To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities: enabling them to dynamically decide whether or not to engage in explicit reasoning based on problem complexity. Building on R1-style distilled models, we observe that inserting a simple ellipsis ("...") into the prompt can stochastically trigger either a thinking or no-thinking mode, revealing a latent controllability in the reasoning behavior. Leveraging this property, we propose AutoThink, a multi-stage reinforcement learning (RL) framework that progressively optimizes reasoning policies via stage-wise reward shaping. AutoThink learns to invoke explicit reasoning only when necessary, while defaulting to succinct responses for simpler tasks. Experiments on five mainstream mathematical benchmarks demonstrate that AutoThink achieves favorable accuracy-efficiency trade-offs compared to recent prompting and RL-based pruning methods. It can be seamlessly integrated into any R1-style model, including both distilled and further fine-tuned variants. Notably, AutoThink improves relative accuracy by 6.4 percent while reducing token usage by 52 percent on DeepSeek-R1-Distill-Qwen-1.5B, establishing a scalable and adaptive reasoning paradigm for LRMs. Project Page: https://github.com/ScienceOne-AI/AutoThink.
Authors:Kaifa Yang, Qi Yang, Zhu Li, Yiling Xu
Abstract:
Textured mesh quality assessment (TMQA) is critical for various 3D mesh applications. However, existing TMQA methods often struggle to provide accurate and robust evaluations. Motivated by the effectiveness of fields in representing both 3D geometry and color information, we propose a novel point-based TMQA method called field mesh quality metric (FMQM). FMQM utilizes signed distance fields and a newly proposed color field named nearest surface point color field to realize effective mesh feature description. Four features related to visual perception are extracted from the geometry and color fields: geometry similarity, geometry gradient similarity, space color distribution similarity, and space color gradient similarity. Experimental results on three benchmark datasets demonstrate that FMQM outperforms state-of-the-art (SOTA) TMQA metrics. Furthermore, FMQM exhibits low computational complexity, making it a practical and efficient solution for real-world applications in 3D graphics and visualization. Our code is publicly available at: https://github.com/yyyykf/FMQM.
Authors:Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, Kevin Ellis
Abstract:
Learning how the world works is central to building AI agents that can adapt to complex environments. Traditional world models based on deep learning demand vast amounts of training data, and do not flexibly update their knowledge from sparse observations. Recent advances in program synthesis using Large Language Models (LLMs) give an alternate approach which learns world models represented as source code, supporting strong generalization from little data. To date, application of program-structured world models remains limited to natural language and grid-world domains. We introduce a novel program synthesis method for effectively modeling complex, non-gridworld domains by representing a world model as an exponentially-weighted product of programmatic experts (PoE-World) synthesized by LLMs. We show that this approach can learn complex, stochastic world models from just a few observations. We evaluate the learned world models by embedding them in a model-based planning agent, demonstrating efficient performance and generalization to unseen levels on Atari's Pong and Montezuma's Revenge. We release our code and display the learned world models and videos of the agent's gameplay at https://topwasu.github.io/poe-world.
Authors:Ian Holmes, Min Chi
Abstract:
Sparse and delayed reward functions pose a significant obstacle for real-world Reinforcement Learning (RL) applications. In this work, we propose Attention-based REward Shaping (ARES), a general and robust algorithm which uses a transformer's attention mechanism to generate shaped rewards and create a dense reward function for any environment. ARES requires a set of episodes and their final returns as input. It can be trained entirely offline and is able to generate meaningful shaped rewards even when using small datasets or episodes produced by agents taking random actions. ARES is compatible with any RL algorithm and can handle any level of reward sparsity. In our experiments, we focus on the most challenging case where rewards are fully delayed until the end of each episode. We evaluate ARES across a diverse range of environments, widely used RL algorithms, and baseline methods to assess the effectiveness of the shaped rewards it produces. Our results show that ARES can significantly improve learning in delayed reward settings, enabling RL agents to train in scenarios that would otherwise require impractical amounts of data or even be unlearnable. To our knowledge, ARES is the first approach that works fully offline, remains robust to extreme reward delays and low-quality data, and is not limited to goal-based tasks.
Authors:Weiqin Wang, Yile Wang, Hui Huang
Abstract:
Majority voting is considered an effective method to enhance chain-of-thought reasoning, as it selects the answer with the highest "self-consistency" among different reasoning paths (Wang et al., 2023). However, previous chain-of-thought reasoning methods typically generate only a single answer in each trial, thereby ignoring the possibility of other potential answers. As a result, these alternative answers are often overlooked in subsequent voting processes. In this work, we propose to generate ranked answers in each reasoning process and conduct ranked voting among multiple ranked answers from different responses, thereby making the overall self-consistency more reliable. Specifically, we use three ranked voting methods: Instant-runoff voting, Borda count voting, and mean reciprocal rank voting. We validate our methods on six datasets, including three multiple-choice and three open-ended question-answering tasks, using both advanced open-source and closed-source large language models. Extensive experimental results indicate that our proposed method outperforms the baselines, showcasing the potential of leveraging the information of ranked answers and using ranked voting to improve reasoning performance. The code is available at https://github.com/szu-tera/RankedVotingSC.
Authors:Manyu Li, Ruian He, Zixian Zhang, Weimin Tan, Bo Yan
Abstract:
Accurate segmentation of regions of interest in biomedical images holds substantial value in image analysis. Although several foundation models for biomedical segmentation have currently achieved excellent performance on certain datasets, they typically demonstrate sub-optimal performance on unseen domain data. We owe the deficiency to lack of vision-language knowledge before segmentation. Multimodal Large Language Models (MLLMs) bring outstanding understanding and reasoning capabilities to multimodal tasks, which inspires us to leverage MLLMs to inject Vision-Language Knowledge (VLK), thereby enabling vision models to demonstrate superior generalization capabilities on cross-domain datasets. In this paper, we propose using MLLMs to guide SAM in learning microscopy crose-domain data, unifying Segment Anything in Microscopy, named uLLSAM. Specifically, we propose the Vision-Language Semantic Alignment (VLSA) module, which injects VLK into Segment Anything Model (SAM). We find that after SAM receives global VLK prompts, its performance improves significantly, but there are deficiencies in boundary contour perception. Therefore, we further propose Semantic Boundary Regularization (SBR) to prompt SAM. Our method achieves performance improvements of 7.71% in Dice and 12.10% in SA across 9 in-domain microscopy datasets, achieving state-of-the-art performance. Our method also demonstrates improvements of 6.79% in Dice and 10.08% in SA across 10 out-ofdomain datasets, exhibiting strong generalization capabilities. Code is available at https://github.com/ieellee/uLLSAM.
Authors:NingFeng Que, Xiaofei Wang, Jingjing Chen, Yixuan Jiang, Chao Li
Abstract:
Spatial transcriptomics (ST) is a promising technique that characterizes the spatial gene profiling patterns within the tissue context. Comprehensive ST analysis depends on consecutive slices for 3D spatial insights, whereas the missing intermediate tissue sections and high costs limit the practical feasibility of generating multi-slice ST. In this paper, we propose C2-STi, the first attempt for interpolating missing ST slices at arbitrary intermediate positions between adjacent ST slices. Despite intuitive, effective ST interpolation presents significant challenges, including 1) limited continuity across heterogeneous tissue sections, 2) complex intrinsic correlation across genes, and 3) intricate cellular structures and biological semantics within each tissue section. To mitigate these challenges, in C2-STi, we design 1) a distance-aware local structural modulation module to adaptively capture cross-slice deformations and enhance positional correlations between ST slices, 2) a pyramid gene co-expression correlation module to capture multi-scale biological associations among genes, and 3) a cross-modal alignment module that integrates the ST-paired hematoxylin and eosin (H&E)-stained images to filter and align the essential cellular features across ST and H\&E images. Extensive experiments on the public dataset demonstrate our superiority over state-of-the-art approaches on both single-slice and multi-slice ST interpolation. Codes are available at https://github.com/XiaofeiWang2018/C2-STi.
Authors:Sayed Mehedi Azim, Brian Corbett, Iman Dehzangi
Abstract:
The hippocampus, a critical brain structure involved in memory processing and various neurodegenerative and psychiatric disorders, comprises three key subregions: the dentate gyrus (DG), Cornu Ammonis 1 (CA1), and Cornu Ammonis 3 (CA3). Accurate segmentation of these subregions from histological tissue images is essential for advancing our understanding of disease mechanisms, developmental dynamics, and therapeutic interventions. However, no existing methods address the automated segmentation of hippocampal subregions from tissue images, particularly from immunohistochemistry (IHC) images. To bridge this gap, we introduce a novel set of four comprehensive murine hippocampal IHC datasets featuring distinct staining modalities: cFos, NeuN, and multiplexed stains combining cFos, NeuN, and either ÎFosB or GAD67, capturing structural, neuronal activity, and plasticity associated information. Additionally, we propose ROIsGAN, a region-guided U-Net-based generative adversarial network tailored for hippocampal subregion segmentation. By leveraging adversarial learning, ROIsGAN enhances boundary delineation and structural detail refinement through a novel region-guided discriminator loss combining Dice and binary cross-entropy loss. Evaluated across DG, CA1, and CA3 subregions, ROIsGAN consistently outperforms conventional segmentation models, achieving performance gains ranging from 1-10% in Dice score and up to 11% in Intersection over Union (IoU), particularly under challenging staining conditions. Our work establishes foundational datasets and methods for automated hippocampal segmentation, enabling scalable, high-precision analysis of tissue images in neuroscience research. Our generated datasets, proposed model as a standalone tool, and its corresponding source code are publicly available at: https://github.com/MehediAzim/ROIsGAN
Authors:Jianyang Xie, Yitian Zhao, Yanda Meng, He Zhao, Anh Nguyen, Yalin Zheng
Abstract:
Spatial-temporal graph convolutional networks (ST-GCNs) showcase impressive performance in skeleton-based human action recognition (HAR). However, despite the development of numerous models, their recognition performance does not differ significantly after aligning the input settings. With this observation, we hypothesize that ST-GCNs are over-parameterized for HAR, a conjecture subsequently confirmed through experiments employing the lottery ticket hypothesis. Additionally, a novel sparse ST-GCNs generator is proposed, which trains a sparse architecture from a randomly initialized dense network while maintaining comparable performance levels to the dense components. Moreover, we generate multi-level sparsity ST-GCNs by integrating sparse structures at various sparsity levels and demonstrate that the assembled model yields a significant enhancement in HAR performance. Thorough experiments on four datasets, including NTU-RGB+D 60(120), Kinetics-400, and FineGYM, demonstrate that the proposed sparse ST-GCNs can achieve comparable performance to their dense components. Even with 95% fewer parameters, the sparse ST-GCNs exhibit a degradation of <1% in top-1 accuracy. Meanwhile, the multi-level sparsity ST-GCNs, which require only 66% of the parameters of the dense ST-GCNs, demonstrate an improvement of >1% in top-1 accuracy. The code is available at https://github.com/davelailai/Sparse-ST-GCN.
Authors:Yuki Kawana, Shintaro Shiba, Quan Kong, Norimasa Kobori
Abstract:
We propose a novel 3D gaze estimation approach that learns spatial relationships between the subject and objects in the scene, and outputs 3D gaze direction. Our method targets unconstrained settings, including cases where close-up views of the subject's eyes are unavailable, such as when the subject is distant or facing away. Previous approaches typically rely on either 2D appearance alone or incorporate limited spatial cues using depth maps in the non-learnable post-processing step. Estimating 3D gaze direction from 2D observations in these scenarios is challenging; variations in subject pose, scene layout, and gaze direction, combined with differing camera poses, yield diverse 2D appearances and 3D gaze directions even when targeting the same 3D scene. To address this issue, we propose GA3CE: Gaze-Aware 3D Context Encoding. Our method represents subject and scene using 3D poses and object positions, treating them as 3D context to learn spatial relationships in 3D space. Inspired by human vision, we align this context in an egocentric space, significantly reducing spatial complexity. Furthermore, we propose D$^3$ (direction-distance-decomposed) positional encoding to better capture the spatial relationship between 3D context and gaze direction in direction and distance space. Experiments demonstrate substantial improvements, reducing mean angle error by 13%-37% compared to leading baselines on benchmark datasets in single-frame settings.
Authors:Patara Trirat, Jae-Gil Lee
Abstract:
The growing use of smartphones and IoT devices necessitates efficient time-series analysis on resource-constrained hardware, which is critical for sensing applications such as human activity recognition and air quality prediction. Recent efforts in hardware-aware neural architecture search (NAS) automate architecture discovery for specific platforms; however, none focus on general time-series analysis with edge deployment. Leveraging the problem-solving and reasoning capabilities of large language models (LLM), we propose MONAQ, a novel framework that reformulates NAS into Multi-Objective Neural Architecture Querying tasks. MONAQ is equipped with multimodal query generation for processing multimodal time-series inputs and hardware constraints, alongside an LLM agent-based multi-objective search to achieve deployment-ready models via code generation. By integrating numerical data, time-series images, and textual descriptions, MONAQ improves an LLM's understanding of time-series data. Experiments on fifteen datasets demonstrate that MONAQ-discovered models outperform both handcrafted models and NAS baselines while being more efficient.
Authors:Xingye Cui, Junhai Luo, Jiakun Deng, Kexuan Li, Xiangyu Qiu, Zhenming Peng
Abstract:
Infrared small target detection (ISTD) is critical in both civilian and military applications. However, the limited texture and structural information in infrared images makes accurate detection particularly challenging. Although recent deep learning-based methods have improved performance, their use of conventional convolution kernels limits adaptability to complex scenes and diverse targets. Moreover, pooling operations often cause feature loss and insufficient exploitation of image information. To address these issues, we propose an adaptive receptive field convolution and wavelet-attentive hierarchical network for infrared small target detection (ARFC-WAHNet). This network incorporates a multi-receptive field feature interaction convolution (MRFFIConv) module to adaptively extract discriminative features by integrating multiple convolutional branches with a gated unit. A wavelet frequency enhancement downsampling (WFED) module leverages Haar wavelet transform and frequency-domain reconstruction to enhance target features and suppress background noise. Additionally, we introduce a high-low feature fusion (HLFF) module for integrating low-level details with high-level semantics, and a global median enhancement attention (GMEA) module to improve feature diversity and expressiveness via global attention. Experiments on public datasets SIRST, NUDT-SIRST, and IRSTD-1k demonstrate that ARFC-WAHNet outperforms recent state-of-the-art methods in both detection accuracy and robustness, particularly under complex backgrounds. The code is available at https://github.com/Leaf2001/ARFC-WAHNet.
Authors:Qifan Fu, Xu Chen, Muhammad Asad, Shanxin Yuan, Changjae Oh, Gregory Slabaugh
Abstract:
High-fidelity hand gesture generation represents a significant challenge in human-centric generation tasks. Existing methods typically employ a single-view mesh-rendered image prior to enhancing gesture generation quality. However, the spatial complexity of hand gestures and the inherent limitations of single-view rendering make it difficult to capture complete gesture information, particularly when fingers are occluded. The fundamental contradiction lies in the loss of 3D topological relationships through 2D projection and the incomplete spatial coverage inherent to single-view representations. Diverging from single-view prior approaches, we propose a multi-view prior framework, named Multi-Modal UNet-based Feature Encoder (MUFEN), to guide diffusion models in learning comprehensive 3D hand information. Specifically, we extend conventional front-view rendering to include rear, left, right, top, and bottom perspectives, selecting the most information-rich view combination as training priors to address occlusion. This multi-view prior with a dedicated dual stream encoder significantly improves the model's understanding of complete hand features. Furthermore, we design a bounding box feature fusion module, which can fuse the gesture localization features and multi-modal features to enhance the location-awareness of the MUFEN features to the gesture-related features. Experiments demonstrate that our method achieves state-of-the-art performance in both quantitative metrics and qualitative evaluations. The source code is available at https://github.com/fuqifan/MUFEN.
Authors:Jen-tse Huang, Kaiser Sun, Wenxuan Wang, Mark Dredze
Abstract:
While Large Language Models (LLMs) exhibit remarkable reasoning abilities, we demonstrate that they lack a fundamental aspect of human cognition: working memory. Human working memory is an active cognitive system that enables not only the temporary storage of information but also its processing and utilization, enabling coherent reasoning and decision-making. Without working memory, individuals may produce unrealistic responses, exhibit self-contradictions, and struggle with tasks that require mental reasoning. Existing evaluations using N-back or context-dependent tasks fall short as they allow LLMs to exploit external context rather than retaining the reasoning process in the latent space. We introduce three novel tasks: (1) Number Guessing, (2) Yes-No Deduction, and (3) Math Magic, designed to isolate internal representation from external context. Across seventeen frontier models spanning four major model families, we consistently observe irrational or contradictory behaviors, indicating LLMs' inability to retain and manipulate latent information. Our work establishes a new benchmark for evaluating working memory in LLMs and highlights this limitation as a key bottleneck for advancing reliable reasoning systems. Code and prompts for the experiments are available at https://github.com/penguinnnnn/LLM-Working-Memory.
Authors:Zeying Zhu, Jonathan Chamberlain, Kenny Wu, David Starobinski, Zaoxing Liu
Abstract:
Timeseries monitoring systems such as Prometheus play a crucial role in gaining observability of the underlying system components. These systems collect timeseries metrics from various system components and perform monitoring queries over periodic window-based aggregations (i.e., rule queries). However, despite wide adoption, the operational costs and query latency of rule queries remain high. In this paper, we identify major bottlenecks associated with repeated data scans and query computations concerning window overlaps in rule queries, and present PromSketch, an approximation-first query framework as intermediate caches for monitoring systems. It enables low operational costs and query latency, by combining approximate window-based query frameworks and sketch-based precomputation. PromSketch is implemented as a standalone module that can be integrated into Prometheus and VictoriaMetrics, covering 70% of Prometheus' aggregation over time queries. Our evaluation shows that PromSketch achieves up to a two orders of magnitude reduction in query latency over Prometheus and VictoriaMetrics, while lowering operational dollar costs of query processing by two orders of magnitude compared to Prometheus and by at least 4x compared to VictoriaMetrics with at most 5% average errors across statistics. The source code has been made available at https://github.com/Froot-NetSys/promsketch.
Authors:Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang, Houxing Ren, Mingjie Zhan, Hongsheng Li
Abstract:
Natural language image-caption datasets, widely used for training Large Multimodal Models, mainly focus on natural scenarios and overlook the intricate details of mathematical figures that are critical for problem-solving, hindering the advancement of current LMMs in multimodal mathematical reasoning. To this end, we propose leveraging code as supervision for cross-modal alignment, since code inherently encodes all information needed to generate corresponding figures, establishing a precise connection between the two modalities. Specifically, we co-develop our image-to-code model and dataset with model-in-the-loop approach, resulting in an image-to-code model, FigCodifier and ImgCode-8.6M dataset, the largest image-code dataset to date. Furthermore, we utilize FigCodifier to synthesize novel mathematical figures and then construct MM-MathInstruct-3M, a high-quality multimodal math instruction fine-tuning dataset. Finally, we present MathCoder-VL, trained with ImgCode-8.6M for cross-modal alignment and subsequently fine-tuned on MM-MathInstruct-3M for multimodal math problem solving. Our model achieves a new open-source SOTA across all six metrics. Notably, it surpasses GPT-4o and Claude 3.5 Sonnet in the geometry problem-solving subset of MathVista, achieving improvements of 8.9% and 9.2%. The dataset and models will be released at https://github.com/mathllm/MathCoder.
Authors:Zhiyuan Hu, Yibo Wang, Hanze Dong, Yuhui Xu, Amrita Saha, Caiming Xiong, Bryan Hooi, Junnan Li
Abstract:
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning. Prior work has shown that outcome-based reinforcement learning (RL) can incidentally elicit advanced reasoning behaviors such as self-correction, backtracking, and verification phenomena often referred to as the model's "aha moment". However, the timing and consistency of these emergent behaviors remain unpredictable and uncontrollable, limiting the scalability and reliability of LRMs' reasoning capabilities. To address these limitations, we move beyond reliance on prompts and coincidental "aha moments". Instead, we explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks. Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosting performance by over 10\% relative to instruction-tuned baselines. Furthermore, domain-specific RL from the aligned checkpoint yields an additional gain in performance ceiling for both 7B and 32B models across math, coding, and science benchmarks, demonstrating that explicit meta-ability alignment offers a scalable and dependable foundation for reasoning. Code is available at: https://github.com/zhiyuanhubj/Meta-Ability-Alignment
Authors:Milan Ganai, Rohan Sinha, Christopher Agia, Daniel Morton, Luigi Di Lillo, Marco Pavone
Abstract:
While foundation models offer promise toward improving robot safety in out-of-distribution (OOD) scenarios, how to effectively harness their generalist knowledge for real-time, dynamically feasible response remains a crucial problem. We present FORTRESS, a joint reasoning and planning framework that generates semantically safe fallback strategies to prevent safety-critical, OOD failures. At a low frequency under nominal operation, FORTRESS uses multi-modal foundation models to anticipate possible failure modes and identify safe fallback sets. When a runtime monitor triggers a fallback response, FORTRESS rapidly synthesizes plans to fallback goals while inferring and avoiding semantically unsafe regions in real time. By bridging open-world, multi-modal reasoning with dynamics-aware planning, we eliminate the need for hard-coded fallbacks and human safety interventions. FORTRESS outperforms on-the-fly prompting of slow reasoning models in safety classification accuracy on synthetic benchmarks and real-world ANYmal robot data, and further improves system safety and planning success in simulation and on quadrotor hardware for urban navigation. Website can be found at https://milanganai.github.io/fortress.
Authors:Anastasios Gerontopoulos, Spyros Gidaris, Nikos Komodakis
Abstract:
Multi-token prediction has emerged as a promising objective for improving language model pretraining, but its benefits have not consistently generalized to other settings such as fine-tuning. In this paper, we propose MuToR, a simple and effective approach to multi-token prediction that interleaves learnable register tokens into the input sequence, each tasked with predicting future targets. Compared to existing methods, MuToR offers several key advantages: it introduces only a negligible number of additional parameters, requires no architectural changes--ensuring compatibility with off-the-shelf pretrained language models--and remains aligned with the next-token pretraining objective, making it especially well-suited for supervised fine-tuning. Moreover, it naturally supports scalable prediction horizons. We demonstrate the effectiveness and versatility of MuToR across a range of use cases, including supervised fine-tuning, parameter-efficient fine-tuning (PEFT), and pretraining, on challenging generative tasks in both language and vision domains. Our code will be available at: https://github.com/nasosger/MuToR.
Authors:Raman Dutt, Pedro Sanchez, Yongchen Yao, Steven McDonagh, Sotirios A. Tsaftaris, Timothy Hospedales
Abstract:
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/
Authors:Fengdi Zhang, Hongkun Cao, Ruqi Huang
Abstract:
To reduce storage and computational costs, 3D Gaussian splatting (3DGS) seeks to minimize the number of Gaussians used while preserving high rendering quality, introducing an inherent trade-off between Gaussian quantity and rendering quality. Existing methods strive for better quantity-quality performance, but lack the ability for users to intuitively adjust this trade-off to suit practical needs such as model deployment under diverse hardware and communication constraints. Here, we present ControlGS, a 3DGS optimization method that achieves semantically meaningful and cross-scene consistent quantity-quality control. Through a single training run using a fixed setup and a user-specified hyperparameter reflecting quantity-quality preference, ControlGS can automatically find desirable quantity-quality trade-off points across diverse scenes, from compact objects to large outdoor scenes. It also outperforms baselines by achieving higher rendering quality with fewer Gaussians, and supports a broad adjustment range with stepless control over the trade-off. Project page: https://zhang-fengdi.github.io/ControlGS/
Authors:Jiaming Liang, Lihuan Dai, Xiaoqi Sheng, Xiangguang Chen, Chun Yao, Guihua Tao, Qibin Leng, Hongmin Cai, Xi Zhong
Abstract:
Multimodal medical image segmentation faces significant challenges in the context of gastric cancer lesion analysis. This clinical context is defined by the scarcity of independent multimodal datasets and the imperative to amalgamate inherently misaligned modalities. As a result, algorithms are constrained to train on approximate data and depend on application migration, leading to substantial resource expenditure and a potential decline in analysis accuracy. To address those challenges, we have made two major contributions: First, we publicly disseminate the GCM 2025 dataset, which serves as the first large-scale, open-source collection of gastric cancer multimodal MRI scans, featuring professionally annotated FS-T2W, CE-T1W, and ADC images from 500 patients. Second, we introduce HWA-UNETR, a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers to establish dynamic feature correspondences between different modalities' anatomical structures, and leverages the innovative tri-orientated fusion mamba mechanism for context modeling and capturing long-range spatial dependencies. Extensive experiments on our GCM 2025 dataset and the publicly BraTS 2021 dataset validate the performance of our framework, demonstrating that the new approach surpasses existing methods by up to 1.68\% in the Dice score while maintaining solid robustness. The dataset and code are public via https://github.com/JeMing-creater/HWA-UNETR.
Authors:Dechen Gao, Hang Wang, Hanchu Zhou, Nejib Ammar, Shatadal Mishra, Ahmadreza Moradipari, Iman Soltani, Junshan Zhang
Abstract:
Imitation learning (IL) and reinforcement learning (RL) each offer distinct advantages for robotics policy learning: IL provides stable learning from demonstrations, and RL promotes generalization through exploration. While existing robot learning approaches using IL-based pre-training followed by RL-based fine-tuning are promising, this two-step learning paradigm often suffers from instability and poor sample efficiency during the RL fine-tuning phase. In this work, we introduce IN-RIL, INterleaved Reinforcement learning and Imitation Learning, for policy fine-tuning, which periodically injects IL updates after multiple RL updates and hence can benefit from the stability of IL and the guidance of expert data for more efficient exploration throughout the entire fine-tuning process. Since IL and RL involve different optimization objectives, we develop gradient separation mechanisms to prevent destructive interference during \ABBR fine-tuning, by separating possibly conflicting gradient updates in orthogonal subspaces. Furthermore, we conduct rigorous analysis, and our findings shed light on why interleaving IL with RL stabilizes learning and improves sample-efficiency. Extensive experiments on 14 robot manipulation and locomotion tasks across 3 benchmarks, including FurnitureBench, OpenAI Gym, and Robomimic, demonstrate that \ABBR can significantly improve sample efficiency and mitigate performance collapse during online finetuning in both long- and short-horizon tasks with either sparse or dense rewards. IN-RIL, as a general plug-in compatible with various state-of-the-art RL algorithms, can significantly improve RL fine-tuning, e.g., from 12\% to 88\% with 6.3x improvement in the success rate on Robomimic Transport. Project page: https://github.com/ucd-dare/IN-RIL.
Authors:Andrei Arhire, Radu Timofte
Abstract:
The Image Signal Processor (ISP) is a fundamental component in modern smartphone cameras responsible for conversion of RAW sensor image data to RGB images with a strong focus on perceptual quality. Recent work highlights the potential of deep learning approaches and their ability to capture details with a quality increasingly close to that of professional cameras. A difficult and costly step when developing a learned ISP is the acquisition of pixel-wise aligned paired data that maps the raw captured by a smartphone camera sensor to high-quality reference images. In this work, we address this challenge by proposing a novel training method for a learnable ISP that eliminates the need for direct correspondences between raw images and ground-truth data with matching content. Our unpaired approach employs a multi-term loss function guided by adversarial training with multiple discriminators processing feature maps from pre-trained networks to maintain content structure while learning color and texture characteristics from the target RGB dataset. Using lightweight neural network architectures suitable for mobile devices as backbones, we evaluated our method on the Zurich RAW to RGB and Fujifilm UltraISP datasets. Compared to paired training methods, our unpaired learning strategy shows strong potential and achieves high fidelity across multiple evaluation metrics. The code and pre-trained models are available at https://github.com/AndreiiArhire/Learned-Lightweight-Smartphone-ISP-with-Unpaired-Data .
Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yongkang Wu, Zhonghua Li, Qi Ye, Zhicheng Dou
Abstract:
Real-world RAG applications often encounter long-context input scenarios, where redundant information and noise results in higher inference costs and reduced performance. To address these challenges, we propose LongRefiner, an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents. LongRefiner employs dual-level query analysis, hierarchical document structuring, and adaptive refinement through multi-task learning on a single foundation model. Experiments on seven QA datasets demonstrate that LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline. Further analysis validates that LongRefiner is scalable, efficient, and effective, providing practical insights for real-world long-text RAG applications. Our code is available at https://github.com/ignorejjj/LongRefiner.
Authors:Wenhao Ding, Choon Hwai Yap, Kangjun Ji, Simão Castro
Abstract:
A generative model for the mesh geometry of intracranial aneurysms (IA) is crucial for training networks to predict blood flow forces in real time, which is a key factor affecting disease progression. This need is necessitated by the absence of a large IA image datasets. Existing shape generation methods struggle to capture realistic IA features and ignore the relationship between IA pouches and parent vessels, limiting physiological realism and their generation cannot be controlled to have specific morphological measurements. We propose AneuG, a two-stage Variational Autoencoder (VAE)-based IA mesh generator. In the first stage, AneuG generates low-dimensional Graph Harmonic Deformation (GHD) tokens to encode and reconstruct aneurysm pouch shapes, constrained to morphing energy statistics truths. GHD enables more accurate shape encoding than alternatives. In the second stage, AneuG generates parent vessels conditioned on GHD tokens, by generating vascular centreline and propagating the cross-section. AneuG's IA shape generation can further be conditioned to have specific clinically relevant morphological measurements. This is useful for studies to understand shape variations represented by clinical measurements, and for flow simulation studies to understand effects of specific clinical shape parameters on fluid dynamics. Source code and implementation details are available at https://github.com/anonymousaneug/AneuG.
Authors:Kaivalya Rawal, Zihao Fu, Eoin Delaney, Chris Russell
Abstract:
There can be many competing and contradictory explanations for a single model prediction, making it difficult to select which one to use. Current explanation evaluation frameworks measure quality by comparing against ideal "ground-truth" explanations, or by verifying model sensitivity to important inputs. We outline the limitations of these approaches, and propose three desirable principles to ground the future development of explanation evaluation strategies for local feature importance explanations. We propose a ground-truth Agnostic eXplanation Evaluation framework (AXE) for evaluating and comparing model explanations that satisfies these principles. Unlike prior approaches, AXE does not require access to ideal ground-truth explanations for comparison, or rely on model sensitivity - providing an independent measure of explanation quality. We verify AXE by comparing with baselines, and show how it can be used to detect explanation fairwashing. Our code is available at https://github.com/KaiRawal/Evaluating-Model-Explanations-without-Ground-Truth.
Authors:Rui Melo, Claudia Mamede, Andre Catarino, Rui Abreu, Henrique Lopes Cardoso
Abstract:
Software vulnerabilities such as buffer overflows and SQL injections are a major source of security breaches. Traditional methods for vulnerability detection remain essential but are limited by high false positive rates, scalability issues, and reliance on manual effort. These constraints have driven interest in AI-based approaches to automated vulnerability detection and secure code generation. While Large Language Models (LLMs) have opened new avenues for classification tasks, their complexity and opacity pose challenges for interpretability and deployment. Sparse Autoencoder offer a promising solution to this problem. We explore whether SAEs can serve as a lightweight, interpretable alternative for bug detection in Java functions. We evaluate the effectiveness of SAEs when applied to representations from GPT-2 Small and Gemma 2B, examining their capacity to highlight buggy behaviour without fine-tuning the underlying LLMs. We found that SAE-derived features enable bug detection with an F1 score of up to 89%, consistently outperforming fine-tuned transformer encoder baselines. Our work provides the first empirical evidence that SAEs can be used to detect software bugs directly from the internal representations of pretrained LLMs, without any fine-tuning or task-specific supervision. Code available at https://github.com/rufimelo99/SAE-Java-Bug-Detection
Authors:Yile Wang, Zhanyu Shen, Hui Huang
Abstract:
Semantic text representation is a fundamental task in the field of natural language processing. Existing text embedding (e.g., SimCSE and LLM2Vec) have demonstrated excellent performance, but the values of each dimension are difficult to trace and interpret. Bag-of-words, as classic sparse interpretable embeddings, suffers from poor performance. Recently, Benara et al. (2024) propose interpretable text embeddings using large language models, which forms "0/1" embeddings based on responses to a series of questions. These interpretable text embeddings are typically high-dimensional (larger than 10,000). In this work, we propose Low-dimensional (lower than 500) Dense and Interpretable text embeddings with Relative representations (LDIR). The numerical values of its dimensions indicate semantic relatedness to different anchor texts through farthest point sampling, offering both semantic representation as well as a certain level of traceability and interpretability. We validate LDIR on multiple semantic textual similarity, retrieval, and clustering tasks. Extensive experimental results show that LDIR performs close to the black-box baseline models and outperforms the interpretable embeddings baselines with much fewer dimensions. Code is available at https://github.com/szu-tera/LDIR.
Authors:Shihao Zou, Qingfeng Li, Wei Ji, Jingjing Li, Yongkui Yang, Guoqi Li, Chao Dong
Abstract:
Spiking Neural Networks (SNNs) have shown competitive performance to Artificial Neural Networks (ANNs) in various vision tasks, while offering superior energy efficiency. However, existing SNN-based Transformers primarily focus on single-image tasks, emphasizing spatial features while not effectively leveraging SNNs' efficiency in video-based vision tasks. In this paper, we introduce SpikeVideoFormer, an efficient spike-driven video Transformer, featuring linear temporal complexity $\mathcal{O}(T)$. Specifically, we design a spike-driven Hamming attention (SDHA) which provides a theoretically guided adaptation from traditional real-valued attention to spike-driven attention. Building on SDHA, we further analyze various spike-driven space-time attention designs and identify an optimal scheme that delivers appealing performance for video tasks, while maintaining only linear temporal complexity. The generalization ability and efficiency of our model are demonstrated across diverse downstream video tasks, including classification, human pose tracking, and semantic segmentation. Empirical results show our method achieves state-of-the-art (SOTA) performance compared to existing SNN approaches, with over 15\% improvement on the latter two tasks. Additionally, it matches the performance of recent ANN-based methods while offering significant efficiency gains, achieving $\times 16$, $\times 10$ and $\times 5$ improvements on the three tasks. https://github.com/JimmyZou/SpikeVideoFormer
Authors:Jie Zhu, Jirong Zha, Ding Li, Leye Wang
Abstract:
Self-supervised learning shows promise in harnessing extensive unlabeled data, but it also confronts significant privacy concerns, especially in vision. In this paper, we perform membership inference on visual self-supervised models in a more realistic setting: self-supervised training method and details are unknown for an adversary when attacking as he usually faces a black-box system in practice. In this setting, considering that self-supervised model could be trained by completely different self-supervised paradigms, e.g., masked image modeling and contrastive learning, with complex training details, we propose a unified membership inference method called PartCrop. It is motivated by the shared part-aware capability among models and stronger part response on the training data. Specifically, PartCrop crops parts of objects in an image to query responses within the image in representation space. We conduct extensive attacks on self-supervised models with different training protocols and structures using three widely used image datasets. The results verify the effectiveness and generalization of PartCrop. Moreover, to defend against PartCrop, we evaluate two common approaches, i.e., early stop and differential privacy, and propose a tailored method called shrinking crop scale range. The defense experiments indicate that all of them are effective. Finally, besides prototype testing on toy visual encoders and small-scale image datasets, we quantitatively study the impacts of scaling from both data and model aspects in a realistic scenario and propose a scalable PartCrop-v2 by introducing two structural improvements to PartCrop. Our code is at https://github.com/JiePKU/PartCrop.
Authors:Cunhang Fan, Xiaoke Yang, Hongyu Zhang, Ying Chen, Lu Li, Jian Zhou, Zhao Lv
Abstract:
Auditory attention detection (AAD) aims to identify the direction of the attended speaker in multi-speaker environments from brain signals, such as Electroencephalography (EEG) signals. However, existing EEG-based AAD methods overlook the spatio-temporal dependencies of EEG signals, limiting their decoding and generalization abilities. To address these issues, this paper proposes a Lightweight Spatio-Temporal Enhancement Nested Network (ListenNet) for AAD. The ListenNet has three key components: Spatio-temporal Dependency Encoder (STDE), Multi-scale Temporal Enhancement (MSTE), and Cross-Nested Attention (CNA). The STDE reconstructs dependencies between consecutive time windows across channels, improving the robustness of dynamic pattern extraction. The MSTE captures temporal features at multiple scales to represent both fine-grained and long-range temporal patterns. In addition, the CNA integrates hierarchical features more effectively through novel dynamic attention mechanisms to capture deep spatio-temporal correlations. Experimental results on three public datasets demonstrate the superiority of ListenNet over state-of-the-art methods in both subject-dependent and challenging subject-independent settings, while reducing the trainable parameter count by approximately 7 times. Code is available at:https://github.com/fchest/ListenNet.
Authors:Gabriel S. Gama, Valdir Grassi
Abstract:
Specialized Multi-Task Optimizers (SMTOs) balance task learning in Multi-Task Learning by addressing issues like conflicting gradients and differing gradient norms, which hinder equal-weighted task training. However, recent critiques suggest that equally weighted tasks can achieve competitive results compared to SMTOs, arguing that previous SMTO results were influenced by poor hyperparameter optimization and lack of regularization. In this work, we evaluate these claims through an extensive empirical evaluation of SMTOs, including some of the latest methods, on more complex multi-task problems to clarify this behavior. Our findings indicate that SMTOs perform well compared to uniform loss and that fixed weights can achieve competitive performance compared to SMTOs. Furthermore, we demonstrate why uniform loss perform similarly to SMTOs in some instances. The source code is available at https://github.com/Gabriel-SGama/UnitScal_vs_SMTOs.
Authors:Alan Jeffares, Liyuan Liu
Abstract:
Variational Autoencoders (VAEs) are well-established as a principled approach to probabilistic unsupervised learning with neural networks. Typically, an encoder network defines the parameters of a Gaussian distributed latent space from which we can sample and pass realizations to a decoder network. This model is trained to reconstruct its inputs and is optimized through the evidence lower bound. In recent years, discrete latent spaces have grown in popularity, suggesting that they may be a natural choice for many data modalities (e.g. text). In this tutorial, we provide a rigorous, yet practical, introduction to discrete variational autoencoders -- specifically, VAEs in which the latent space is made up of latent variables that follow a categorical distribution. We assume only a basic mathematical background with which we carefully derive each step from first principles. From there, we develop a concrete training recipe and provide an example implementation, hosted at https://github.com/alanjeffares/discreteVAE.
Authors:Julius Henke
Abstract:
A recent area of increasing research is the use of Large Language Models (LLMs) in penetration testing, which promises to reduce costs and thus allow for higher frequency. We conduct a review of related work, identifying best practices and common evaluation issues. We then present AutoPentest, an application for performing black-box penetration tests with a high degree of autonomy. AutoPentest is based on the LLM GPT-4o from OpenAI and the LLM agent framework LangChain. It can perform complex multi-step tasks, augmented by external tools and knowledge bases. We conduct a study on three capture-the-flag style Hack The Box (HTB) machines, comparing our implementation AutoPentest with the baseline approach of manually using the ChatGPT-4o user interface. Both approaches are able to complete 15-25 % of the subtasks on the HTB machines, with AutoPentest slightly outperforming ChatGPT. We measure a total cost of \$96.20 US when using AutoPentest across all experiments, while a one-month subscription to ChatGPT Plus costs \$20. The results show that further implementation efforts and the use of more powerful LLMs released in the future are likely to make this a viable part of vulnerability management.
Authors:Yue Wang, Shuai Xu, Xuelin Zhu, Yicong Li
Abstract:
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen state-object combinations by leveraging known combinations. Existing studies basically rely on the cross-modal alignment capabilities of CLIP but tend to overlook its limitations in capturing fine-grained local features, which arise from its architectural and training paradigm. To address this issue, we propose a Multi-Stage Cross-modal Interaction (MSCI) model that effectively explores and utilizes intermediate-layer information from CLIP's visual encoder. Specifically, we design two self-adaptive aggregators to extract local information from low-level visual features and integrate global information from high-level visual features, respectively. These key information are progressively incorporated into textual representations through a stage-by-stage interaction mechanism, significantly enhancing the model's perception capability for fine-grained local visual information. Additionally, MSCI dynamically adjusts the attention weights between global and local visual information based on different combinations, as well as different elements within the same combination, allowing it to flexibly adapt to diverse scenarios. Experiments on three widely used datasets fully validate the effectiveness and superiority of the proposed model. Data and code are available at https://github.com/ltpwy/MSCI.
Authors:Mengqiu Xu, Kaixin Chen, Heng Guo, Yixiang Huang, Ming Wu, Zhenwei Shi, Chuang Zhang, Jun Guo
Abstract:
Deep learning approaches for marine fog detection and forecasting have outperformed traditional methods, demonstrating significant scientific and practical importance. However, the limited availability of open-source datasets remains a major challenge. Existing datasets, often focused on a single region or satellite, restrict the ability to evaluate model performance across diverse conditions and hinder the exploration of intrinsic marine fog characteristics. To address these limitations, we introduce \textbf{MFogHub}, the first multi-regional and multi-satellite dataset to integrate annotated marine fog observations from 15 coastal fog-prone regions and six geostationary satellites, comprising over 68,000 high-resolution samples. By encompassing diverse regions and satellite perspectives, MFogHub facilitates rigorous evaluation of both detection and forecasting methods under varying conditions. Extensive experiments with 16 baseline models demonstrate that MFogHub can reveal generalization fluctuations due to regional and satellite discrepancy, while also serving as a valuable resource for the development of targeted and scalable fog prediction techniques. Through MFogHub, we aim to advance both the practical monitoring and scientific understanding of marine fog dynamics on a global scale. The dataset and code are at \href{https://github.com/kaka0910/MFogHub}{https://github.com/kaka0910/MFogHub}.
Authors:Taian Guo, Haiyang Shen, JinSheng Huang, Zhengyang Mao, Junyu Luo, Binqi Chen, Zhuoru Chen, Luchen Liu, Bingyu Xia, Xuhui Liu, Yun Ma, Ming Zhang
Abstract:
The application of LLM-based agents in financial investment has shown significant promise, yet existing approaches often require intermediate steps like predicting individual stock movements or rely on predefined, static workflows. These limitations restrict their adaptability and effectiveness in constructing optimal portfolios. In this paper, we introduce the Multi-Agent Scaling Simulation (MASS), a novel framework that leverages multi-agent simulation for direct, end-to-end portfolio construction. At its core, MASS employs a backward optimization process to dynamically learn the optimal distribution of heterogeneous agents, enabling the system to adapt to evolving market regimes. A key finding enabled by our framework is the exploration of the scaling effect for portfolio construction: we demonstrate that as the number of agents increases exponentially (up to 512), the aggregated decisions yield progressively higher excess returns. Extensive experiments on a challenging, self-collected dataset from the 2023 Chinese A-share market show that MASS consistently outperforms seven state-of-the-art baselines. Further backtesting, stability analyses and the experiment on data leakage concerns validate its enhanced profitability and robustness. We have open-sourced our code, dataset, and training snapshots at https://github.com/gta0804/MASS/ to foster further research.
Authors:Pavel Korotaev, Petr Surovtsev, Alexander Kapitanov, Karina Kvanchiani, Aleksandr Nagaev
Abstract:
Fingerspelling is a significant component of Sign Language (SL), allowing the interpretation of proper names, characterized by fast hand movements during signing. Although previous works on fingerspelling recognition have focused on processing the temporal dimension of videos, there remains room for improving the accuracy of these approaches. This paper introduces HandReader, a group of three architectures designed to address the fingerspelling recognition task. HandReader$_{RGB}$ employs the novel Temporal Shift-Adaptive Module (TSAM) to process RGB features from videos of varying lengths while preserving important sequential information. HandReader$_{KP}$ is built on the proposed Temporal Pose Encoder (TPE) operated on keypoints as tensors. Such keypoints composition in a batch allows the encoder to pass them through 2D and 3D convolution layers, utilizing temporal and spatial information and accumulating keypoints coordinates. We also introduce HandReader_RGB+KP - architecture with a joint encoder to benefit from RGB and keypoint modalities. Each HandReader model possesses distinct advantages and achieves state-of-the-art results on the ChicagoFSWild and ChicagoFSWild+ datasets. Moreover, the models demonstrate high performance on the first open dataset for Russian fingerspelling, Znaki, presented in this paper. The Znaki dataset and HandReader pre-trained models are publicly available.
Authors:Xiangwen Zhuge, Xu Shen, Zeyu Wang, Fan Dang, Xuan Ding, Danyang Li, Yahui Han, Tianxiang Hao, Zheng Yang
Abstract:
Efficient LLM inference on resource-constrained devices presents significant challenges in compute and memory utilization. Due to limited GPU memory, existing systems offload model weights to CPU memory, incurring substantial I/O overhead between the CPU and GPU. This leads to two major inefficiencies: (1) GPU cores are underutilized, often remaining idle while waiting for data to be loaded; and (2) GPU memory has low impact on performance, as reducing its capacity has minimal effect on overall throughput.In this paper, we propose SpecOffload, a high-throughput inference engine that embeds speculative decoding into offloading. Our key idea is to unlock latent GPU resources for storing and executing a draft model used for speculative decoding, thus accelerating inference at near-zero additional cost. To support this, we carefully orchestrate the interleaved execution of target and draft models in speculative decoding within the offloading pipeline, and propose a planner to manage tensor placement and select optimal parameters. Compared to the best baseline, SpecOffload improves GPU core utilization by 4.49x and boosts inference throughput by 2.54x. Our code is available at https://github.com/MobiSense/SpecOffload-public .
Authors:Wenhao Shen, Wanqi Yin, Xiaofeng Yang, Cheng Chen, Chaoyue Song, Zhongang Cai, Lei Yang, Hao Wang, Guosheng Lin
Abstract:
Human mesh recovery (HMR) from a single image is inherently ill-posed due to depth ambiguity and occlusions. Probabilistic methods have tried to solve this by generating numerous plausible 3D human mesh predictions, but they often exhibit misalignment with 2D image observations and weak robustness to in-the-wild images. To address these issues, we propose ADHMR, a framework that Aligns a Diffusion-based HMR model in a preference optimization manner. First, we train a human mesh prediction assessment model, HMR-Scorer, capable of evaluating predictions even for in-the-wild images without 3D annotations. We then use HMR-Scorer to create a preference dataset, where each input image has a pair of winner and loser mesh predictions. This dataset is used to finetune the base model using direct preference optimization. Moreover, HMR-Scorer also helps improve existing HMR models by data cleaning, even with fewer training samples. Extensive experiments show that ADHMR outperforms current state-of-the-art methods. Code is available at: https://github.com/shenwenhao01/ADHMR.
Authors:Yanbo Ding, Xirui Hu, Zhizhi Guo, Chi Zhang, Yali Wang
Abstract:
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information for open-world animation. To tackle this problem, we propose MTVCrafter (Motion Tokenization Video Crafter), the first framework that directly models raw 3D motion sequences (i.e., 4D motion) for human image animation. Specifically, we introduce 4DMoT (4D motion tokenizer) to quantize 3D motion sequences into 4D motion tokens. Compared to 2D-rendered pose images, 4D motion tokens offer more robust spatio-temporal cues and avoid strict pixel-level alignment between pose image and character, enabling more flexible and disentangled control. Then, we introduce MV-DiT (Motion-aware Video DiT). By designing unique motion attention with 4D positional encodings, MV-DiT can effectively leverage motion tokens as 4D compact yet expressive context for human image animation in the complex 3D world. Hence, it marks a significant step forward in this field and opens a new direction for pose-guided human video generation. Experiments show that our MTVCrafter achieves state-of-the-art results with an FID-VID of 6.98, surpassing the second-best by 65%. Powered by robust motion tokens, MTVCrafter also generalizes well to diverse open-world characters (single/multiple, full/half-body) across various styles and scenarios. Our video demos and code are on: https://github.com/DINGYANB/MTVCrafter.
Authors:Haozhe Luo, Ziyu Zhou, Zixin Shu, Aurélie Pahud de Mortanges, Robert Berke, Mauricio Reyes
Abstract:
Deep neural networks excel in medical imaging but remain prone to biases, leading to fairness gaps across demographic groups. We provide the first systematic exploration of Human-AI alignment and fairness in this domain. Our results show that incorporating human insights consistently reduces fairness gaps and enhances out-of-domain generalization, though excessive alignment can introduce performance trade-offs, emphasizing the need for calibrated strategies. These findings highlight Human-AI alignment as a promising approach for developing fair, robust, and generalizable medical AI systems, striking a balance between expert guidance and automated efficiency. Our code is available at https://github.com/Roypic/Aligner.
Authors:Dario Di Palma, Felice Antonio Merra, Maurizio Sfilio, Vito Walter Anelli, Fedelucio Narducci, Tommaso Di Noia
Abstract:
Large Language Models (LLMs) have become increasingly central to recommendation scenarios due to their remarkable natural language understanding and generation capabilities. Although significant research has explored the use of LLMs for various recommendation tasks, little effort has been dedicated to verifying whether they have memorized public recommendation dataset as part of their training data. This is undesirable because memorization reduces the generalizability of research findings, as benchmarking on memorized datasets does not guarantee generalization to unseen datasets. Furthermore, memorization can amplify biases, for example, some popular items may be recommended more frequently than others.
In this work, we investigate whether LLMs have memorized public recommendation datasets. Specifically, we examine two model families (GPT and Llama) across multiple sizes, focusing on one of the most widely used dataset in recommender systems: MovieLens-1M. First, we define dataset memorization as the extent to which item attributes, user profiles, and user-item interactions can be retrieved by prompting the LLMs. Second, we analyze the impact of memorization on recommendation performance. Lastly, we examine whether memorization varies across model families and model sizes. Our results reveal that all models exhibit some degree of memorization of MovieLens-1M, and that recommendation performance is related to the extent of memorization. We have made all the code publicly available at: https://github.com/sisinflab/LLM-MemoryInspector
Authors:Xiang He, Dongcheng Zhao, Yang Li, Qingqun Kong, Xin Yang, Yi Zeng
Abstract:
Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.
Authors:Saikat Barua, Mostafizur Rahman, Shehenaz Khaled, Md Jafor Sadek, Rafiul Islam, Shahnewaz Siddique
Abstract:
The emergence of hybrid quantum-classical machine learning (HQML) models opens new horizons of computational intelligence but their fundamental complexity frequently leads to black box behavior that undermines transparency and reliability in their application. Although XAI for quantum systems still in its infancy, a major research gap is evident in robust global and local explainability approaches that are designed for HQML architectures that employ quantized feature encoding followed by classical learning. The gap is the focus of this work, which introduces QuXAI, an framework based upon Q-MEDLEY, an explainer for explaining feature importance in these hybrid systems. Our model entails the creation of HQML models incorporating quantum feature maps, the use of Q-MEDLEY, which combines feature based inferences, preserving the quantum transformation stage and visualizing the resulting attributions. Our result shows that Q-MEDLEY delineates influential classical aspects in HQML models, as well as separates their noise, and competes well against established XAI techniques in classical validation settings. Ablation studies more significantly expose the virtues of the composite structure used in Q-MEDLEY. The implications of this work are critically important, as it provides a route to improve the interpretability and reliability of HQML models, thus promoting greater confidence and being able to engage in safer and more responsible use of quantum-enhanced AI technology.
Our code and experiments are open-sourced at: https://github.com/GitsSaikat/QuXAI
Authors:Ziad Kheil, Lucas Robinet, Laurent Risser, Soleakhena Ken
Abstract:
In this paper, we formulate a novel image registration formalism dedicated to the estimation of unknown condition-related images, based on two or more known images and their associated conditions. We show how to practically model this formalism by using a new conditional U-Net architecture, which fully takes into account the conditional information and does not need any fixed image. Our formalism is then applied to image moving tumors for radiotherapy treatment at different breathing amplitude using 4D-CT (3D+t) scans in thoracoabdominal regions. This driving application is particularly complex as it requires to stitch a collection of sequential 2D slices into several 3D volumes at different organ positions. Movement interpolation with standard methods then generates well known reconstruction artefacts in the assembled volumes due to irregular patient breathing, hysteresis and poor correlation of breathing signal to internal motion. Results obtained on 4D-CT clinical data showcase artefact-free volumes achieved through real-time latencies. The code is publicly available at https://github.com/Kheil-Z/IMITATE .
Authors:Jeonghyun Woo, Joyce Qu, Gururaj Saileshwar, Prashant J. Nair
Abstract:
Per Row Activation Counting (PRAC) has emerged as a robust framework for mitigating RowHammer (RH) vulnerabilities in modern DRAM systems. However, we uncover a critical vulnerability: a timing channel introduced by the Alert Back-Off (ABO) protocol and Refresh Management (RFM) commands. We present PRACLeak, a novel attack that exploits these timing differences to leak sensitive information, such as secret keys from vulnerable AES implementations, by monitoring memory access latencies.
To counter this, we propose Timing-Safe PRAC (TPRAC), a defense that eliminates PRAC-induced timing channels without compromising RH mitigation efficacy. TPRAC uses Timing-Based RFMs, issued periodically and independent of memory activity. It requires only a single-entry in-DRAM mitigation queue per DRAM bank and is compatible with existing DRAM standards. Our evaluations demonstrate that TPRAC closes timing channels while incurring only 3.4% performance overhead at the RH threshold of 1024.
Authors:Jun Guo, Xiaojian Ma, Yikai Wang, Min Yang, Huaping Liu, Qing Li
Abstract:
This paper investigates training better visual world models for robot manipulation, i.e., models that can predict future visual observations by conditioning on past frames and robot actions. Specifically, we consider world models that operate on RGB-D frames (RGB-D world models). As opposed to canonical approaches that handle dynamics prediction mostly implicitly and reconcile it with visual rendering in a single model, we introduce FlowDreamer, which adopts 3D scene flow as explicit motion representations. FlowDreamer first predicts 3D scene flow from past frame and action conditions with a U-Net, and then a diffusion model will predict the future frame utilizing the scene flow. FlowDreamer is trained end-to-end despite its modularized nature. We conduct experiments on 4 different benchmarks, covering both video prediction and visual planning tasks. The results demonstrate that FlowDreamer achieves better performance compared to other baseline RGB-D world models by 7% on semantic similarity, 11% on pixel quality, and 6% on success rate in various robot manipulation domains.
Authors:Ijazul Haq, Yingjie Zhang, Irfan Ali Khan
Abstract:
This paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.
Authors:Changzeng Fu, Zelin Fu, Qi Zhang, Xinhe Kuang, Jiacheng Dong, Kaifeng Su, Yikai Su, Wenbo Shi, Junfeng Yao, Yuliang Zhao, Shiqi Zhao, Jiadong Wang, Siyang Song, Chaoran Liu, Yuichiro Yoshikawa, Björn Schuller, Hiroshi Ishiguro
Abstract:
Depression is a widespread mental health issue affecting diverse age groups, with notable prevalence among college students and the elderly. However, existing datasets and detection methods primarily focus on young adults, neglecting the broader age spectrum and individual differences that influence depression manifestation. Current approaches often establish a direct mapping between multimodal data and depression indicators, failing to capture the complexity and diversity of depression across individuals. This challenge includes two tracks based on age-specific subsets: Track 1 uses the MPDD-Elderly dataset for detecting depression in older adults, and Track 2 uses the MPDD-Young dataset for detecting depression in younger participants. The Multimodal Personality-aware Depression Detection (MPDD) Challenge aims to address this gap by incorporating multimodal data alongside individual difference factors. We provide a baseline model that fuses audio and video modalities with individual difference information to detect depression manifestations in diverse populations. This challenge aims to promote the development of more personalized and accurate de pression detection methods, advancing mental health research and fostering inclusive detection systems. More details are available on the official challenge website: https://hacilab.github.io/MPDDChallenge.github.io.
Authors:Shivam Sood, Laukik B Nakhwa, Yuhong Cao, Sun Ge, Guillaume Sartoretti
Abstract:
Learning by imitation provides an effective way for robots to develop well-regulated complex behaviors and directly benefit from natural demonstrations. State-of-the-art imitation learning (IL) approaches typically leverage Adversarial Motion Priors (AMP), which, despite their impressive results, suffer from two key limitations. They are prone to mode collapse, which often leads to overfitting to the simulation environment and thus increased sim-to-real gap, and they struggle to learn diverse behaviors effectively. To overcome these limitations, we introduce APEX (Action Priors enable Efficient eXploration): a simple yet versatile IL framework that integrates demonstrations directly into reinforcement learning (RL), maintaining high exploration while grounding behavior with expert-informed priors. We achieve this through a combination of decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is complemented by a multi-critic RL framework that effectively balances stylistic consistency with task performance. Our approach achieves sample-efficient IL and enables the acquisition of diverse skills within a single policy. APEX generalizes to varying velocities and preserves reference-like styles across complex tasks such as navigating rough terrain and climbing stairs, utilizing only flat-terrain kinematic motion data as a prior. We validate our framework through extensive hardware experiments on the Unitree Go2 quadruped. There, APEX yields diverse and agile locomotion gaits, inherent gait transitions, and the highest reported speed for the platform to the best of our knowledge (peak velocity of ~3.3 m/s on hardware). Our results establish APEX as a compelling alternative to existing IL methods, offering better efficiency, adaptability, and real-world performance. https://marmotlab.github.io/APEX/
Authors:Jing-Cheng Pang, Kaiyuan Li, Yidi Wang, Si-Hang Yang, Shengyi Jiang, Yang Yu
Abstract:
A central challenge in reinforcement learning (RL) is its dependence on extensive real-world interaction data to learn task-specific policies. While recent work demonstrates that large language models (LLMs) can mitigate this limitation by generating synthetic experience (noted as imaginary rollouts) for mastering novel tasks, progress in this emerging field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ImagineBench, the first comprehensive benchmark for evaluating offline RL algorithms that leverage both real rollouts and LLM-imaginary rollouts. The key features of ImagineBench include: (1) datasets comprising environment-collected and LLM-imaginary rollouts; (2) diverse domains of environments covering locomotion, robotic manipulation, and navigation tasks; and (3) natural language task instructions with varying complexity levels to facilitate language-conditioned policy learning. Through systematic evaluation of state-of-the-art offline RL algorithms, we observe that simply applying existing offline RL algorithms leads to suboptimal performance on unseen tasks, achieving 35.44% success rate in hard tasks in contrast to 64.37% of method training on real rollouts for hard tasks. This result highlights the need for algorithm advancements to better leverage LLM-imaginary rollouts. Additionally, we identify key opportunities for future research: including better utilization of imaginary rollouts, fast online adaptation and continual learning, and extension to multi-modal tasks. Our code is publicly available at https://github.com/LAMDA-RL/ImagineBench.
Authors:Yuxing Xiang, Xue Li, Kun Qian, Wenyuan Yu, Ennan Zhai, Xin Jin
Abstract:
With the widespread adoption of Large Language Models (LLMs), serving LLM inference requests has become an increasingly important task, attracting active research advancements. Practical workloads play an essential role in this process: they are critical for motivating and benchmarking serving techniques and systems. However, the existing understanding of real-world LLM serving workloads is limited due to the lack of a comprehensive workload characterization. Prior analyses remain insufficient in scale and scope, thus failing to fully capture intricate workload characteristics.
In this paper, we fill the gap with an in-depth characterization of LLM serving workloads collected from our worldwide cloud inference serving service, covering not only language models but also emerging multimodal and reasoning models, and unveiling important new findings in each case. Moreover, based on our findings, we propose ServeGen, a principled framework for generating realistic LLM serving workloads by composing them on a per-client basis. A practical use case in production validates that ServeGen avoids 50% under-provisioning compared to naive workload generation, demonstrating ServeGen's advantage in performance benchmarking. ServeGen is available at https://github.com/alibaba/ServeGen.
Authors:Jianpeng Qi, Chao Liu, Xiao Zhang, Lei Wang, Rui Wang, Junyu Dong, Yanwei Yu
Abstract:
Edge computing, with its low latency, dynamic scalability, and location awareness, along with the convergence of computing and communication paradigms, has been successfully applied in critical domains such as industrial IoT, smart healthcare, smart homes, and public safety. This paper provides a comprehensive survey of open-source edge computing simulators and emulators, presented in our GitHub repository (https://github.com/qijianpeng/awesome-edge-computing), emphasizing the convergence of computing and networking paradigms. By examining more than 40 tools, including CloudSim, NS-3, and others, we identify the strengths and limitations in simulating and emulating edge environments. This survey classifies these tools into three categories: packet-level, application-level, and emulators. Furthermore, we evaluate them across five dimensions, ranging from resource representation to resource utilization. The survey highlights the integration of different computing paradigms, packet processing capabilities, support for edge environments, user-defined metric interfaces, and scenario visualization. The findings aim to guide researchers in selecting appropriate tools for developing and validating advanced computing and networking technologies.
Authors:Yuan Gao, Shaobo Xia, Sheng Nie, Cheng Wang, Xiaohuan Xi, Bisheng Yang
Abstract:
Airborne laser scanning (ALS) point cloud segmentation is a fundamental task for large-scale 3D scene understanding. In real-world applications, models are typically fixed after training. However, domain shifts caused by changes in the environment, sensor types, or sensor degradation often lead to a decline in model performance. Continuous Test-Time Adaptation (CTTA) offers a solution by adapting a source-pretrained model to evolving, unlabeled target domains. Despite its potential, research on ALS point clouds remains limited, facing challenges such as the absence of standardized datasets and the risk of catastrophic forgetting and error accumulation during prolonged adaptation. To tackle these challenges, we propose APCoTTA, the first CTTA method tailored for ALS point cloud semantic segmentation. We propose a dynamic trainable layer selection module. This module utilizes gradient information to select low-confidence layers for training, and the remaining layers are kept frozen, mitigating catastrophic forgetting. To further reduce error accumulation, we propose an entropy-based consistency loss. By losing such samples based on entropy, we apply consistency loss only to the reliable samples, enhancing model stability. In addition, we propose a random parameter interpolation mechanism, which randomly blends parameters from the selected trainable layers with those of the source model. This approach helps balance target adaptation and source knowledge retention, further alleviating forgetting. Finally, we construct two benchmarks, ISPRSC and H3DC, to address the lack of CTTA benchmarks for ALS point cloud segmentation. Experimental results demonstrate that APCoTTA achieves the best performance on two benchmarks, with mIoU improvements of approximately 9% and 14% over direct inference. The new benchmarks and code are available at https://github.com/Gaoyuan2/APCoTTA.
Authors:Jiakun Deng, Kexuan Li, Xingye Cui, Jiaxuan Li, Chang Long, Tian Pu, Zhenming Peng
Abstract:
Infrared small target detection (ISTD) plays a critical role in a wide range of civilian and military applications. Existing methods suffer from deficiencies in the localization of dim targets and the perception of contour information under dense clutter environments, severely limiting their detection performance. To tackle these issues, we propose a contour-aware and saliency priors embedding network (CSPENet) for ISTD. We first design a surround-convergent prior extraction module (SCPEM) that effectively captures the intrinsic characteristic of target contour pixel gradients converging toward their center. This module concurrently extracts two collaborative priors: a boosted saliency prior for accurate target localization and multi-scale structural priors for comprehensively enriching contour detail representation. Building upon this, we propose a dual-branch priors embedding architecture (DBPEA) that establishes differentiated feature fusion pathways, embedding these two priors at optimal network positions to achieve performance enhancement. Finally, we develop an attention-guided feature enhancement module (AGFEM) to refine feature representations and improve saliency estimation accuracy. Experimental results on public datasets NUDT-SIRST, IRSTD-1k, and NUAA-SIRST demonstrate that our CSPENet outperforms other state-of-the-art methods in detection performance. The code is available at https://github.com/IDIP2025/CSPENet.
Authors:Zhe Shan, Lei Zhou, Liu Mao, Shaofan Chen, Chuanqiu Ren, Xia Xie
Abstract:
In this study, we propose a novel remote sensing change detection task, non-registration change detection, to address the increasing number of emergencies such as natural disasters, anthropogenic accidents, and military strikes. First, in light of the limited discourse on the issue of non-registration change detection, we systematically propose eight scenarios that could arise in the real world and potentially contribute to the occurrence of non-registration problems. Second, we develop distinct image transformation schemes tailored to various scenarios to convert the available registration change detection dataset into a non-registration version. Finally, we demonstrate that non-registration change detection can cause catastrophic damage to the state-of-the-art methods. Our code and dataset are available at https://github.com/ShanZard/NRCD.
Authors:Ziyi Xuan, Yiwen Wu, Xuhai Xu, Vinod Namboodiri, Mooi Choo Chuah, Yu Yang
Abstract:
Designing and evaluating personalized and proactive assistant agents remains challenging due to the time, cost, and ethical concerns associated with human-in-the-loop experimentation. Existing Human-Computer Interaction (HCI) methods often require extensive physical setup and human participation, which introduces privacy concerns and limits scalability. Simulated environments offer a partial solution but are typically constrained by rule-based scenarios and still depend heavily on human input to guide interactions and interpret results. Recent advances in large language models (LLMs) have introduced the possibility of generative agents that can simulate realistic human behavior, reasoning, and social dynamics. However, their effectiveness in modeling human-assistant interactions remains largely unexplored. To address this gap, we present a generative agent-based simulation platform designed to simulate human-assistant interactions. We identify ten prior studies on assistant agents that span different aspects of interaction design and replicate these studies using our simulation platform. Our results show that fully simulated experiments using generative agents can approximate key aspects of human-assistant interactions. Based on these simulations, we are able to replicate the core conclusions of the original studies. Our work provides a scalable and cost-effective approach for studying assistant agent design without requiring live human subjects. We will open source both the platform and collected results from the experiments on our website: https://dash-gidea.github.io/.
Authors:Zixiao Zhu, Hanzhang Zhou, Zijian Feng, Tianjiao Li, Chua Jia Jim Deryl, Mak Lee Onn, Gee Wah Ng, Kezhi Mao
Abstract:
Prompt optimization (PO) provides a practical way to improve response quality when users lack the time or expertise to manually craft effective prompts. Existing methods typically rely on LLMs' self-generation ability to optimize prompts. However, due to limited downward compatibility, the instruction-heavy prompts generated by advanced LLMs can overwhelm lightweight inference models and degrade response quality, while also lacking interpretability due to implicit optimization. In this work, we rethink prompt optimization through the lens of explicit and interpretable design. We first identify a set of model-agnostic prompt quality merits and empirically validate their effectiveness in enhancing prompt and response quality. We then introduce MePO, a merit-guided, locally deployable prompt optimizer trained on our merit-guided prompt preference dataset generated by a lightweight LLM. MePO avoids online optimization, reduces privacy concerns, and, by learning clear, interpretable merits, generalizes effectively to both large-scale and lightweight inference models. Experiments demonstrate that MePO achieves better results across diverse tasks and model types, offering a scalable and robust solution for real-world deployment.The code, model and dataset can be found in https://github.com/MidiyaZhu/MePO
Authors:Bin-Bin Gao, Yue Zhou, Jiangtao Yan, Yuezhi Cai, Weixi Zhang, Meng Wang, Jun Liu, Yong Liu, Lei Wang, Chengjie Wang
Abstract:
Universal visual anomaly detection aims to identify anomalies from novel or unseen vision domains without additional fine-tuning, which is critical in open scenarios. Recent studies have demonstrated that pre-trained vision-language models like CLIP exhibit strong generalization with just zero or a few normal images. However, existing methods struggle with designing prompt templates, complex token interactions, or requiring additional fine-tuning, resulting in limited flexibility. In this work, we present a simple yet effective method called AdaptCLIP based on two key insights. First, adaptive visual and textual representations should be learned alternately rather than jointly. Second, comparative learning between query and normal image prompt should incorporate both contextual and aligned residual features, rather than relying solely on residual features. AdaptCLIP treats CLIP models as a foundational service, adding only three simple adapters, visual adapter, textual adapter, and prompt-query adapter, at its input or output ends. AdaptCLIP supports zero-/few-shot generalization across domains and possesses a training-free manner on target domains once trained on a base dataset. AdaptCLIP achieves state-of-the-art performance on 12 anomaly detection benchmarks from industrial and medical domains, significantly outperforming existing competitive methods. We will make the code and model of AdaptCLIP available at https://github.com/gaobb/AdaptCLIP.
Authors:Yidan Wang, Yubing Ren, Yanan Cao, Binxing Fang
Abstract:
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark.
Authors:Yidan Wang, Yanan Cao, Yubing Ren, Fang Fang, Zheng Lin, Binxing Fang
Abstract:
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards. Our code is availble at https://github.com/redwyd/PrivacyJailbreak.
Authors:Yanlong Yang, Jianan Liu, Guanxiong Luo, Hao Li, Euijoon Ahn, Mostafa Rahimi Azghadi, Tao Huang
Abstract:
In industrial automation, radar is a critical sensor in machine perception. However, the angular resolution of radar is inherently limited by the Rayleigh criterion, which depends on both the radar's operating wavelength and the effective aperture of its antenna array.To overcome these hardware-imposed limitations, recent neural network-based methods have leveraged high-resolution LiDAR data, paired with radar measurements, during training to enhance radar point cloud resolution. While effective, these approaches require extensive paired datasets, which are costly to acquire and prone to calibration error. These challenges motivate the need for methods that can improve radar resolution without relying on paired high-resolution ground-truth data. Here, we introduce an unsupervised radar points enhancement algorithm that employs an arbitrary LiDAR-guided diffusion model as a prior without the need for paired training data. Specifically, our approach formulates radar angle estimation recovery as an inverse problem and incorporates prior knowledge through a diffusion model with arbitrary LiDAR domain knowledge. Experimental results demonstrate that our method attains high fidelity and low noise performance compared to traditional regularization techniques. Additionally, compared to paired training methods, it not only achieves comparable performance but also offers improved generalization capability. To our knowledge, this is the first approach that enhances radar points output by integrating prior knowledge via a diffusion model rather than relying on paired training data. Our code is available at https://github.com/yyxr75/RadarINV.
Authors:Spencer Lee, Daniel Appelo
Abstract:
This work introduces the High-Order Hermite Optimization (HOHO) method, an open-loop discrete adjoint method for quantum optimal control. Our method is the first of its kind to efficiently compute exact (discrete) gradients when using continuous, parameterized control pulses while solving the forward equations (e.g. Schrodinger's equation or the Linblad master equation) with an arbitrarily high-order Hermite Runge-Kutta method. The HOHO method is implemented in QuantumGateDesign$.$jl (https://github.com/leespen1/QuantumGateDesign.jl), an open-source software package for the Julia programming language, which we use to perform numerical experiments comparing the method to Juqbox$.$jl (https://github.com/LLNL/Juqbox.jl). For realistic model problems we observe speedups up to 775x.
Authors:Sajib Biswas, Mao Nishino, Samuel Jacob Chacko, Xiuwen Liu
Abstract:
As Large Language Models (LLMs) are widely used, understanding them systematically is key to improving their safety and realizing their full potential. Although many models are aligned using techniques such as reinforcement learning from human feedback (RLHF), they are still vulnerable to jailbreaking attacks. Some of the existing adversarial attack methods search for discrete tokens that may jailbreak a target model while others try to optimize the continuous space represented by the tokens of the model's vocabulary. While techniques based on the discrete space may prove to be inefficient, optimization of continuous token embeddings requires projections to produce discrete tokens, which might render them ineffective. To fully utilize the constraints and the structures of the space, we develop an intrinsic optimization technique using exponentiated gradient descent with the Bregman projection method to ensure that the optimized one-hot encoding always stays within the probability simplex. We prove the convergence of the technique and implement an efficient algorithm that is effective in jailbreaking several widely used LLMs. We demonstrate the efficacy of the proposed technique using five open-source LLMs on four openly available datasets. The results show that the technique achieves a higher success rate with great efficiency compared to three other state-of-the-art jailbreaking techniques. The source code for our implementation is available at: https://github.com/sbamit/Exponentiated-Gradient-Descent-LLM-Attack
Authors:William Xie, Max Conway, Yutong Zhang, Nikolaus Correll
Abstract:
Vision language models (VLMs) exhibit vast knowledge of the physical world, including intuition of physical and spatial properties, affordances, and motion. With fine-tuning, VLMs can also natively produce robot trajectories. We demonstrate that eliciting wrenches, not trajectories, allows VLMs to explicitly reason about forces and leads to zero-shot generalization in a series of manipulation tasks without pretraining. We achieve this by overlaying a consistent visual representation of relevant coordinate frames on robot-attached camera images to augment our query. First, we show how this addition enables a versatile motion control framework evaluated across four tasks (opening and closing a lid, pushing a cup or chair) spanning prismatic and rotational motion, an order of force and position magnitude, different camera perspectives, annotation schemes, and two robot platforms over 220 experiments, resulting in 51% success across the four tasks. Then, we demonstrate that the proposed framework enables VLMs to continually reason about interaction feedback to recover from task failure or incompletion, with and without human supervision. Finally, we observe that prompting schemes with visual annotation and embodied reasoning can bypass VLM safeguards. We characterize prompt component contribution to harmful behavior elicitation and discuss its implications for developing embodied reasoning. Our code, videos, and data are available at: https://scalingforce.github.io/.
Authors:Yuxin Jiang, Shengcong Chen, Siyuan Huang, Liliang Chen, Pengfei Zhou, Yue Liao, Xindong He, Chiming Liu, Hongsheng Li, Maoqing Yao, Guanghui Ren
Abstract:
Robotic imitation learning has advanced from solving static tasks to addressing dynamic interaction scenarios, but testing and evaluation remain costly and challenging due to the need for real-time interaction with dynamic environments. We propose EnerVerse-AC (EVAC), an action-conditional world model that generates future visual observations based on an agent's predicted actions, enabling realistic and controllable robotic inference. Building on prior architectures, EVAC introduces a multi-level action-conditioning mechanism and ray map encoding for dynamic multi-view image generation while expanding training data with diverse failure trajectories to improve generalization. As both a data engine and evaluator, EVAC augments human-collected trajectories into diverse datasets and generates realistic, action-conditioned video observations for policy testing, eliminating the need for physical robots or complex simulations. This approach significantly reduces costs while maintaining high fidelity in robotic manipulation evaluation. Extensive experiments validate the effectiveness of our method. Code, checkpoints, and datasets can be found at .
Authors:Hu Yue, Siyuan Huang, Yue Liao, Shengcong Chen, Pengfei Zhou, Liliang Chen, Maoqing Yao, Guanghui Ren
Abstract:
Recent advances in creative AI have enabled the synthesis of high-fidelity images and videos conditioned on language instructions. Building on these developments, text-to-video diffusion models have evolved into embodied world models (EWMs) capable of generating physically plausible scenes from language commands, effectively bridging vision and action in embodied AI applications. This work addresses the critical challenge of evaluating EWMs beyond general perceptual metrics to ensure the generation of physically grounded and action-consistent behaviors. We propose the Embodied World Model Benchmark (EWMBench), a dedicated framework designed to evaluate EWMs based on three key aspects: visual scene consistency, motion correctness, and semantic alignment. Our approach leverages a meticulously curated dataset encompassing diverse scenes and motion patterns, alongside a comprehensive multi-dimensional evaluation toolkit, to assess and compare candidate models. The proposed benchmark not only identifies the limitations of existing video generation models in meeting the unique requirements of embodied tasks but also provides valuable insights to guide future advancements in the field. The dataset and evaluation tools are publicly available at https://github.com/AgibotTech/EWMBench.
Authors:Julian Büchel, Iason Chalas, Giovanni Acampa, An Chen, Omobayode Fagbohungbe, Sidney Tsai, Kaoutar El Maghraoui, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian
Abstract:
Analog in-memory computing (AIMC) is a promising compute paradigm to improve speed and power efficiency of neural network inference beyond the limits of conventional von Neumann-based architectures. However, AIMC introduces fundamental challenges such as noisy computations and strict constraints on input and output quantization. Because of these constraints and imprecisions, off-the-shelf LLMs are not able to achieve 4-bit-level performance when deployed on AIMC-based hardware. While researchers previously investigated recovering this accuracy gap on small, mostly vision-based models, a generic method applicable to LLMs pre-trained on trillions of tokens does not yet exist. In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models $\unicode{x2013}$ including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct $\unicode{x2013}$ to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models. Code is available at https://github.com/IBM/analog-foundation-models.
Authors:Jinghao He, Zhengyan Sheng, Liping Chen, Kong Aik Lee, Zhen-Hua Ling
Abstract:
This paper focuses on explaining the timbre conveyed by speech signals and introduces a task termed voice timbre attribute detection (vTAD). In this task, voice timbre is explained with a set of sensory attributes describing its human perception. A pair of speech utterances is processed, and their intensity is compared in a designated timbre descriptor. Moreover, a framework is proposed, which is built upon the speaker embeddings extracted from the speech utterances. The investigation is conducted on the VCTK-RVA dataset. Experimental examinations on the ECAPA-TDNN and FACodec speaker encoders demonstrated that: 1) the ECAPA-TDNN speaker encoder was more capable in the seen scenario, where the testing speakers were included in the training set; 2) the FACodec speaker encoder was superior in the unseen scenario, where the testing speakers were not part of the training, indicating enhanced generalization capability. The VCTK-RVA dataset and open-source code are available on the website https://github.com/vTAD2025-Challenge/vTAD.
Authors:Long Chen, Xiaotian Song, Yanan Sun
Abstract:
Spiking Large Language Models (LLMs) have emerged as an energy-efficient alternative to conventional LLMs through their event-driven computation. To effectively obtain spiking LLMs, researchers develop different ANN-to-SNN conversion methods by leveraging pre-trained ANN parameters while inheriting the energy efficiency of SNN. However, existing conversion methods struggle with extreme activation outliers and incompatible nonlinear operations of ANN-based LLMs. To address this, we propose a loss-less ANN-SNN conversion for fully spike-driven LLMs, termed LAS. Specifically, LAS introduces two novel neurons to convert the activation outlier and nonlinear operation of ANN-based LLMs. Moreover, LAS tailors the spike-equivalent Transformer components for spiking LLMs, which can ensure full spiking conversion without any loss of performance. Experimental results on six language models and two vision-language models demonstrate that LAS achieves loss-less conversion. Notably, on OPT-66B, LAS even improves the accuracy of 2\% on the WSC task. In addition, the parameter and ablation studies further verify the effectiveness of LAS. The source code is available at https://github.com/lc783/LAS
Authors:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Xuanzhao Dong, Hao Wang, Haiyu Wu, Huayu Li, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi
Abstract:
Recent advances in reinforcement learning for language model post-training, such as Group Relative Policy Optimization (GRPO), have shown promise in low-resource settings. However, GRPO typically relies on solution-level and scalar reward signals that fail to capture the semantic diversity among sampled completions. This leads to what we identify as a diversity-quality inconsistency, where distinct reasoning paths may receive indistinguishable rewards. To address this limitation, we propose $\textit{Diversity-aware Reward Adjustment}$ (DRA), a method that explicitly incorporates semantic diversity into the reward computation. DRA uses Submodular Mutual Information (SMI) to downweight redundant completions and amplify rewards for diverse ones. This encourages better exploration during learning, while maintaining stable exploitation of high-quality samples. Our method integrates seamlessly with both GRPO and its variant DR.~GRPO, resulting in $\textit{DRA-GRPO}$ and $\textit{DGA-DR.~GRPO}$. We evaluate our method on five mathematical reasoning benchmarks and find that it outperforms recent strong baselines. It achieves state-of-the-art performance with an average accuracy of 58.2%, using only 7,000 fine-tuning samples and a total training cost of approximately $55. The code is available at https://github.com/xiwenc1/DRA-GRPO.
Authors:Xixuan Hao, Yutian Jiang, Xingchen Zou, Jiabo Liu, Yifang Yin, Yuxuan Liang
Abstract:
Location Intelligence (LI), the science of transforming location-centric geospatial data into actionable knowledge, has become a cornerstone of modern spatial decision-making. The rapid evolution of Geospatial Representation Learning is fundamentally reshaping LI development through two successive technological revolutions: the deep learning breakthrough and the emerging large language model (LLM) paradigm. While deep neural networks (DNNs) have demonstrated remarkable success in automated feature extraction from structured geospatial data (e.g., satellite imagery, GPS trajectories), the recent integration of LLMs introduces transformative capabilities for cross-modal geospatial reasoning and unstructured geo-textual data processing. This survey presents a comprehensive review of geospatial representation learning across both technological eras, organizing them into a structured taxonomy based on the complete pipeline comprising: (1) data perspective, (2) methodological perspective and (3) application perspective. We also highlight current advancements, discuss existing limitations, and propose potential future research directions in the LLM era. This work offers a thorough exploration of the field and providing a roadmap for further innovation in LI. The summary of the up-to-date paper list can be found in https://github.com/CityMind-Lab/Awesome-Location-Intelligence and will undergo continuous updates.
Authors:Nick Sunday
Abstract:
The proliferation of Text-to-Music (TTM) platforms has democratized music creation, enabling users to effortlessly generate high-quality compositions. However, this innovation also presents new challenges to musicians and the broader music industry. This study investigates the detection of AI-generated songs using the FakeMusicCaps dataset by classifying audio as either deepfake or human. To simulate real-world adversarial conditions, tempo stretching and pitch shifting were applied to the dataset. Mel spectrograms were generated from the modified audio, then used to train and evaluate a convolutional neural network. In addition to presenting technical results, this work explores the ethical and societal implications of TTM platforms, arguing that carefully designed detection systems are essential to both protecting artists and unlocking the positive potential of generative AI in music.
Authors:Dhruv Ajmera
Abstract:
A superpermutation is a sequence that contains every permutation of $n$ distinct symbols as a contiguous substring. For instance, a valid example for three symbols is a sequence that contains all six permutations. This paper introduces a new algorithm that constructs such sequences more efficiently than existing recursive and graph-theoretic methods. Unlike traditional techniques that suffer from scalability and factorial memory demands, the proposed approach builds superpermutations directly and compactly. This improves memory usage, enabling the construction of larger sequences previously considered impractical.
Authors:Nadav Magar, Amir Hertz, Eric Tabellion, Yael Pritch, Alex Rav-Acha, Ariel Shamir, Yedid Hoshen
Abstract:
We present a simple, yet effective diffusion-based method for fine-grained, parametric control over light sources in an image. Existing relighting methods either rely on multiple input views to perform inverse rendering at inference time, or fail to provide explicit control over light changes. Our method fine-tunes a diffusion model on a small set of real raw photograph pairs, supplemented by synthetically rendered images at scale, to elicit its photorealistic prior for relighting. We leverage the linearity of light to synthesize image pairs depicting controlled light changes of either a target light source or ambient illumination. Using this data and an appropriate fine-tuning scheme, we train a model for precise illumination changes with explicit control over light intensity and color. Lastly, we show how our method can achieve compelling light editing results, and outperforms existing methods based on user preference.
Authors:Guillermo Gomez-Trenado, Pablo Mesejo, Oscar Cordón, Stéphane Lathuilière
Abstract:
The field of text-to-image generation has undergone significant advancements with the introduction of diffusion models. Nevertheless, the challenge of editing real images persists, as most methods are either computationally intensive or produce poor reconstructions. This paper introduces SAGE (Self-Attention Guidance for image Editing) - a novel technique leveraging pre-trained diffusion models for image editing. SAGE builds upon the DDIM algorithm and incorporates a novel guidance mechanism utilizing the self-attention layers of the diffusion U-Net. This mechanism computes a reconstruction objective based on attention maps generated during the inverse DDIM process, enabling efficient reconstruction of unedited regions without the need to precisely reconstruct the entire input image. Thus, SAGE directly addresses the key challenges in image editing. The superiority of SAGE over other methods is demonstrated through quantitative and qualitative evaluations and confirmed by a statistically validated comprehensive user study, in which all 47 surveyed users preferred SAGE over competing methods. Additionally, SAGE ranks as the top-performing method in seven out of 10 quantitative analyses and secures second and third places in the remaining three.
Authors:Linbo Liu, Xinle Liu, Qiang Zhou, Lin Chen, Yihan Liu, Hoan Nguyen, Behrooz Omidvar-Tehrani, Xi Shen, Jun Huan, Omer Tripp, Anoop Deoras
Abstract:
With the rapid advancement of powerful large language models (LLMs) in recent years, a wide range of software engineering tasks can now be addressed using LLMs, significantly enhancing productivity and scalability. Numerous benchmark datasets have been developed to evaluate the coding capabilities of these models, while they primarily focus on code generation and issue-resolution tasks. In contrast, we introduce a new coding benchmark MigrationBench with a distinct focus: code migration. MigrationBench aims to serve as a comprehensive benchmark for migration from Java $8$ to the latest long-term support (LTS) versions (Java $17$, $21$), including a full dataset and its subset selected with $5,102$ and $300$ repositories respectively. Selected is a representative subset curated for complexity and difficulty, offering a versatile resource to support research in the field of code migration. Additionally, we provide a comprehensive evaluation framework to facilitate rigorous and standardized assessment of LLMs on this challenging task. We further propose SD-Feedback and demonstrate that LLMs can effectively tackle repository-level code migration to Java $17$. For the selected subset with Claude-3.5-Sonnet-v2, SD-Feedback achieves $62.33\%$ and $27.33\%$ success rate (pass@1) for minimal and maximal migration respectively. The benchmark dataset and source code are available at: https://huggingface.co/collections/AmazonScience/migrationbench-68125452fc21a4564b92b6c3 and https://github.com/amazon-science/MigrationBench respectively.
Authors:Nicola Marinello, Simen Cassiman, Jonas Heylen, Marc Proesmans, Luc Van Gool
Abstract:
Autonomous vehicles need a complete map of their surroundings to plan and act. This has sparked research into the tasks of 3D occupancy prediction, 3D scene completion, and 3D panoptic scene completion, which predict a dense map of the ego vehicle's surroundings as a voxel grid. Scene completion extends occupancy prediction by predicting occluded regions of the voxel grid, and panoptic scene completion further extends this task by also distinguishing object instances within the same class; both aspects are crucial for path planning and decision-making. However, 3D panoptic scene completion is currently underexplored. This work introduces a novel framework for 3D panoptic scene completion that extends existing 3D semantic scene completion models. We propose an Object Module and Panoptic Module that can easily be integrated with 3D occupancy and scene completion methods presented in the literature. Our approach leverages the available annotations in occupancy benchmarks, allowing individual object shapes to be learned as a differentiable problem. The code is available at https://github.com/nicolamarinello/OffsetOcc .
Authors:Shengpeng Ji, Tianle Liang, Yangzhuo Li, Jialong Zuo, Minghui Fang, Jinzheng He, Yifu Chen, Zhengqing Liu, Ziyue Jiang, Xize Cheng, Siqi Zheng, Jin Xu, Junyang Lin, Zhou Zhao
Abstract:
End-to-end spoken dialogue models such as GPT-4o-audio have recently garnered significant attention in the speech domain. However, the evaluation of spoken dialogue models' conversational performance has largely been overlooked. This is primarily due to the intelligent chatbots convey a wealth of non-textual information which cannot be easily measured using text-based language models like ChatGPT. To address this gap, we propose WavReward, a reward feedback model based on audio language models that can evaluate both the IQ and EQ of spoken dialogue systems with speech input. Specifically, 1) based on audio language models, WavReward incorporates the deep reasoning process and the nonlinear reward mechanism for post-training. By utilizing multi-sample feedback via the reinforcement learning algorithm, we construct a specialized evaluator tailored to spoken dialogue models. 2) We introduce ChatReward-30K, a preference dataset used to train WavReward. ChatReward-30K includes both comprehension and generation aspects of spoken dialogue models. These scenarios span various tasks, such as text-based chats, nine acoustic attributes of instruction chats, and implicit chats. WavReward outperforms previous state-of-the-art evaluation models across multiple spoken dialogue scenarios, achieving a substantial improvement about Qwen2.5-Omni in objective accuracy from 53.4$\%$ to 91.5$\%$. In subjective A/B testing, WavReward also leads by a margin of 83$\%$. Comprehensive ablation studies confirm the necessity of each component of WavReward. All data and code will be publicly at https://github.com/jishengpeng/WavReward after the paper is accepted.
Authors:Yujin Kim, Nathaniel Chin, Arnav Vasudev, Sanjiban Choudhury
Abstract:
We study policy distillation under privileged information, where a student policy with only partial observations must learn from a teacher with full-state access. A key challenge is information asymmetry: the student cannot directly access the teacher's state space, leading to distributional shifts and policy degradation. Existing approaches either modify the teacher to produce realizable but sub-optimal demonstrations or rely on the student to explore missing information independently, both of which are inefficient. Our key insight is that the student should strategically interact with the teacher --querying only when necessary and resetting from recovery states --to stay on a recoverable path within its own observation space. We introduce two methods: (i) an imitation learning approach that adaptively determines when the student should query the teacher for corrections, and (ii) a reinforcement learning approach that selects where to initialize training for efficient exploration. We validate our methods in both simulated and real-world robotic tasks, demonstrating significant improvements over standard teacher-student baselines in training efficiency and final performance. The project website is available at : https://portal-cornell.github.io/CritiQ_ReTRy/
Authors:Jeffrey Wen, Rizwan Ahmad, Philip Schniter
Abstract:
In imaging inverse problems, we would like to know how close the recovered image is to the true image in terms of full-reference image quality (FRIQ) metrics like PSNR, SSIM, LPIPS, etc. This is especially important in safety-critical applications like medical imaging, where knowing that, say, the SSIM was poor could potentially avoid a costly misdiagnosis. But since we don't know the true image, computing FRIQ is non-trivial. In this work, we combine conformal prediction with approximate posterior sampling to construct bounds on FRIQ that are guaranteed to hold up to a user-specified error probability. We demonstrate our approach on image denoising and accelerated magnetic resonance imaging (MRI) problems. Code is available at https://github.com/jwen307/quality_uq.
Authors:Dongyi He, Shiyang Li, Bin Jiang, He Yan
Abstract:
High-resolution functional magnetic resonance imaging (fMRI) is essential for mapping human brain activity; however, it remains costly and logistically challenging. If comparable volumes could be generated directly from widely available scalp electroencephalography (EEG), advanced neuroimaging would become significantly more accessible. Existing EEG-to-fMRI generators rely on plain Convolutional Neural Networks (CNNs) that fail to capture cross-channel time-frequency cues or on heavy transformer/Generative Adversarial Network (GAN) decoders that strain memory and stability. To address these limitations, we propose Spec2VolCAMU-Net, a lightweight architecture featuring a Multi-directional Time-Frequency Convolutional Attention Encoder for rich feature extraction and a Vision-Mamba U-Net decoder that uses linear-time state-space blocks for efficient long-range spatial modelling. We frame the goal of this work as establishing a new state of the art in the spatial fidelity of single-volume reconstruction, a foundational prerequisite for the ultimate aim of generating temporally coherent fMRI time series. Trained end-to-end with a hybrid SSI-MSE loss, Spec2VolCAMU-Net achieves state-of-the-art fidelity on three public benchmarks, recording Structural Similarity Index (SSIM) of 0.693 on NODDI, 0.725 on Oddball and 0.788 on CN-EPFL, representing improvements of 14.5%, 14.9%, and 16.9% respectively over previous best SSIM scores. Furthermore, it achieves competitive Signal-to-Noise Ratio (PSNR) scores, particularly excelling on the CN-EPFL dataset with a 4.6% improvement over the previous best PSNR, thus striking a better balance in reconstruction quality. The proposed model is lightweight and efficient, making it suitable for real-time applications in clinical and research settings. The code is available at https://github.com/hdy6438/Spec2VolCAMU-Net.
Authors:Patrik Kenfack, Samira Ebrahimi Kahou, Ulrich Aïvodji
Abstract:
Transformer-based tabular foundation models have recently demonstrated promising in-context learning (ICL) performance on structured data, emerging as competitive alternatives to gradient-boosted trees. However, the fairness implications of this new paradigm remain largely unexplored. We present the first investigation of fairness in tabular ICL, evaluating three recently proposed foundation models -- TabPFNv2, TabICL, and TabDPT -- on multiple benchmark datasets. To mitigate biases, we explore three pre-processing fairness-enhancing methods: correlation removal (decorrelating input features from the sensitive attribute), group-balanced sample selection (ensuring equal representation of protected groups in context examples), and uncertainty-based sample selection (prioritizing context examples with high sensitive-attribute prediction uncertainty). Our experiments show that the uncertainty-based strategy consistently improves group fairness metrics (e.g., demographic parity, equalized odds, and equal opportunity) with minimal impact on predictive accuracy. We release our code to facilitate reproducibility (https://github.com/patrikken/Fair-TabICL)
Authors:Yuelin Zhang, Qingpeng Ding, Long Lei, Yongxuan Feng, Raymond Shing-Yan Tang, Shing Shin Cheng
Abstract:
Ultrasound-guided fine needle aspiration (FNA) biopsy is a common minimally invasive diagnostic procedure. However, an aspiration needle tracker addressing rapid reciprocating motion is still missing. MrTrack, an aspiration needle tracker with a mamba-based register mechanism, is proposed. MrTrack leverages a Mamba-based register extractor to sequentially distill global context from each historical search map, storing these temporal cues in a register bank. The Mamba-based register retriever then retrieves temporal prompts from the register bank to provide external cues when current vision features are temporarily unusable due to rapid reciprocating motion and imaging degradation. A self-supervised register diversify loss is proposed to encourage feature diversity and dimension independence within the learned register, mitigating feature collapse. Comprehensive experiments conducted on both robotic and manual aspiration biopsy datasets demonstrate that MrTrack not only outperforms state-of-the-art trackers in accuracy and robustness but also achieves superior inference efficiency. Project page: https://github.com/PieceZhang/MrTrack
Authors:Han Sun, Yizhao Wang, Zhenning Zhou, Shuai Wang, Haibo Yang, Jingyuan Sun, Qixin Cao
Abstract:
Recent studies have proved that imitation learning shows strong potential in the field of robotic manipulation. However, existing methods still struggle with precision manipulation task and rely on inefficient image/point cloud observations. In this paper, we explore to introduce SE(3) object pose into imitation learning and propose the pose-guided efficient imitation learning methods for robotic precise insertion task. First, we propose a precise insertion diffusion policy which utilizes the relative SE(3) pose as the observation-action pair. The policy models the source object SE(3) pose trajectory relative to the target object. Second, we explore to introduce the RGBD data to the pose-guided diffusion policy. Specifically, we design a goal-conditioned RGBD encoder to capture the discrepancy between the current state and the goal state. In addition, a pose-guided residual gated fusion method is proposed, which takes pose features as the backbone, and the RGBD features selectively compensate for pose feature deficiencies through an adaptive gating mechanism. Our methods are evaluated on 6 robotic precise insertion tasks, demonstrating competitive performance with only 7-10 demonstrations. Experiments demonstrate that the proposed methods can successfully complete precision insertion tasks with a clearance of about 0.01 mm. Experimental results highlight its superior efficiency and generalization capability compared to existing baselines. Code will be available at https://github.com/sunhan1997/PoseInsert.
Authors:Ma Changfeng, Bi Ran, Guo Jie, Wang Chongjun, Guo Yanwen
Abstract:
Current learning-based methods predict NeRF or 3D Gaussians from point clouds to achieve photo-realistic rendering but still depend on categorical priors, dense point clouds, or additional refinements. Hence, we introduce a novel point cloud rendering method by predicting 2D Gaussians from point clouds. Our method incorporates two identical modules with an entire-patch architecture enabling the network to be generalized to multiple datasets. The module normalizes and initializes the Gaussians utilizing the point cloud information including normals, colors and distances. Then, splitting decoders are employed to refine the initial Gaussians by duplicating them and predicting more accurate results, making our methodology effectively accommodate sparse point clouds as well. Once trained, our approach exhibits direct generalization to point clouds across different categories. The predicted Gaussians are employed directly for rendering without additional refinement on the rendered images, retaining the benefits of 2D Gaussians. We conduct extensive experiments on various datasets, and the results demonstrate the superiority and generalization of our method, which achieves SOTA performance. The code is available at https://github.com/murcherful/GauPCRender}{https://github.com/murcherful/GauPCRender.
Authors:Srinivas Ravuri, Yuan Xu, Martin Ludwig Zehetner, Ketan Motlag, Sahin Albayrak
Abstract:
Precise initialization plays a critical role in the performance of localization algorithms, especially in the context of robotics, autonomous driving, and computer vision. Poor localization accuracy is often a consequence of inaccurate initial poses, particularly noticeable in GNSS-denied environments where GPS signals are primarily relied upon for initialization. Recent advances in leveraging deep neural networks for pose regression have led to significant improvements in both accuracy and robustness, especially in estimating complex spatial relationships and orientations. In this paper, we introduce APR-Transformer, a model architecture inspired by state-of-the-art methods, which predicts absolute pose (3D position and 3D orientation) using either image or LiDAR data. We demonstrate that our proposed method achieves state-of-the-art performance on established benchmark datasets such as the Radar Oxford Robot-Car and DeepLoc datasets. Furthermore, we extend our experiments to include our custom complex APR-BeIntelli dataset. Additionally, we validate the reliability of our approach in GNSS-denied environments by deploying the model in real-time on an autonomous test vehicle. This showcases the practical feasibility and effectiveness of our approach. The source code is available at:https://github.com/GT-ARC/APR-Transformer.
Authors:Yicheng Gu, Chaoren Wang, Junan Zhang, Xueyao Zhang, Zihao Fang, Haorui He, Zhizheng Wu
Abstract:
The lack of a publicly-available large-scale and diverse dataset has long been a significant bottleneck for singing voice applications like Singing Voice Synthesis (SVS) and Singing Voice Conversion (SVC). To tackle this problem, we present SingNet, an extensive, diverse, and in-the-wild singing voice dataset. Specifically, we propose a data processing pipeline to extract ready-to-use training data from sample packs and songs on the internet, forming 3000 hours of singing voices in various languages and styles. Furthermore, to facilitate the use and demonstrate the effectiveness of SingNet, we pre-train and open-source various state-of-the-art (SOTA) models on Wav2vec2, BigVGAN, and NSF-HiFiGAN based on our collected singing voice data. We also conduct benchmark experiments on Automatic Lyric Transcription (ALT), Neural Vocoder, and Singing Voice Conversion (SVC). Audio demos are available at: https://singnet-dataset.github.io/.
Authors:Pengli Zhu, Yingji Fu, Nanguang Chen, Anqi Qiu
Abstract:
This study, we propose a novel Q-space Guided Collaborative Attention Translation Networks (Q-CATN) for multi-shell, high-angular resolution DWI (MS-HARDI) synthesis from flexible q-space sampling, leveraging the commonly acquired structural MRI data. Q-CATN employs a collaborative attention mechanism to effectively extract complementary information from multiple modalities and dynamically adjust its internal representations based on flexible q-space information, eliminating the need for fixed sampling schemes. Additionally, we introduce a range of task-specific constraints to preserve anatomical fidelity in DWI, enabling Q-CATN to accurately learn the intrinsic relationships between directional DWI signal distributions and q-space. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that Q-CATN outperforms existing methods, including 1D-qDL, 2D-qDL, MESC-SD, and QGAN, in estimating parameter maps and fiber tracts both quantitatively and qualitatively, while preserving fine-grained details. Notably, its ability to accommodate flexible q-space sampling highlights its potential as a promising toolkit for clinical and research applications. Our code is available at https://github.com/Idea89560041/Q-CATN.
Authors:Chaoran Zhang, Chenhao Zhang, Zhaobo Xu, Qinghongbing Xie, Jinliang Hou, Pingfa Feng, Long Zeng
Abstract:
In order to work more efficiently, accurately, reliably, and safely in industrial scenarios, robots should have at least general knowledge, working-environment knowledge, and operating-object knowledge. These pose significant challenges to existing embodied intelligent robotics (EIR) techniques. Thus, this paper first briefly reviews the history of industrial robotics and analyzes the limitations of mainstream EIR frameworks. Then, a knowledge-driven technical framework of embodied intelligent industrial robotics (EIIR) is proposed for various industrial environments. It has five modules: a world model, a high-level task planner, a low-level skill controller, a simulator, and a physical system. The development of techniques related to each module are also thoroughly reviewed, and recent progress regarding their adaption to industrial applications are discussed. A case study is given to demonstrate the newly proposed EIIR framework's applicability to real-world assembly system. Finally, the key challenges that EIIR encounters in industrial scenarios are summarized and future research directions are suggested. The authors believe that EIIR technology is shaping the next generation of industrial robotics and EIIR-based industrial systems supply a new technological paradigm for intelligent manufacturing. It is expected that this review could serve as a valuable reference for scholars and engineers that are interested in industrial embodied intelligence. Together, scholars can use this research to drive their rapid advancement and application of EIIR techniques. The interested authors would continue to track and contribute new studies in the project page https://github.com/jackyzengl/EIIR.
Authors:Fan Xu, Wuyang Chen, Wei Gao
Abstract:
Decision trees and forests have achieved successes in various real applications, most working with all testing classes known in training data. In this work, we focus on learning with augmented class via forests, where an augmented class may appear in testing data yet not in training data. We incorporate information of augmented class into trees' splitting, that is, augmented Gini impurity, a new splitting criterion is introduced to exploit some unlabeled data from testing distribution. We then develop the Learning with Augmented Class via Forests (short for LACForest) approach, which constructs shallow forests according to the augmented Gini impurity and then splits forests with pseudo-labeled augmented instances for better performance. We also develop deep neural forests via an optimization objective based on our augmented Gini impurity, which essentially utilizes the representation power of neural networks for forests. Theoretically, we present the convergence analysis for our augmented Gini impurity, and we finally conduct experiments to evaluate our approaches. The code is available at https://github.com/nju-xuf/LACForest.
Authors:Fares Bougourzi, Abdenour Hadid
Abstract:
Medical imaging is a cornerstone of modern healthcare, driving advancements in diagnosis, treatment planning, and patient care. Among its various tasks, segmentation remains one of the most challenging problem due to factors such as data accessibility, annotation complexity, structural variability, variation in medical imaging modalities, and privacy constraints. Despite recent progress, achieving robust generalization and domain adaptation remains a significant hurdle, particularly given the resource-intensive nature of some proposed models and their reliance on domain expertise. This survey explores cutting-edge advancements in medical image segmentation, focusing on methodologies such as Generative AI, Few-Shot Learning, Foundation Models, and Universal Models. These approaches offer promising solutions to longstanding challenges. We provide a comprehensive overview of the theoretical foundations, state-of-the-art techniques, and recent applications of these methods. Finally, we discuss inherent limitations, unresolved issues, and future research directions aimed at enhancing the practicality and accessibility of segmentation models in medical imaging. We are maintaining a \href{https://github.com/faresbougourzi/Awesome-DL-for-Medical-Imaging-Segmentation}{GitHub Repository} to continue tracking and updating innovations in this field.
Authors:Bin-Bin Gao
Abstract:
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation. We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our MetaUAS significantly outperforms previous zero-shot, few-shot, and even full-shot anomaly segmentation methods. The code and pre-trained models are available at https://github.com/gaobb/MetaUAS.
Authors:Bin-Bin Gao
Abstract:
Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.
Authors:Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, Yunsheng Wu
Abstract:
Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.
Authors:Derian Boer, Stephen Roth, Stefan Kramer
Abstract:
In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. However, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data, thereby enabling new strategies for knowledge access and use. In this work, we present FocusedRetriever, a modular SKB-based framework for multi-hop question answering. It integrates components (VSS-based entity search, LLM-based generation of Cypher queries and pairwise re-ranking) in a way that enables it to outperform state-of-the-art methods across all three STaRK benchmark test sets, covering diverse domains and multiple performance metrics. The average first-hit rate exceeds that of the second-best method by 25.7%. FocusedRetriever leverages (1) the capacity of Large Language Models (LLMs) to extract relational facts and entity attributes from unstructured text, (2) node set joins to filter answer candidates based on these extracted triplets and constraints, (3) vector similarity search to retrieve and rank relevant unstructured content, and (4) the contextual capabilities of LLMs to finally rank the top-k answers. For generality, we only incorporate base LLMs in FocusedRetriever in our evaluation. However, our analysis of intermediate results highlights several opportunities for further upgrades including finetuning. The source code is publicly available at https://github.com/kramerlab/FocusedRetriever .
Authors:Faruk Alpay
Abstract:
The Information Bottleneck (IB) method frequently suffers from unstable optimization, characterized by abrupt representation shifts near critical points of the IB trade-off parameter, beta. In this paper, I introduce a novel approach to achieve stable and convex IB optimization through symbolic continuation and entropy-regularized trajectories. I analytically prove convexity and uniqueness of the IB solution path when an entropy regularization term is included, and demonstrate how this stabilizes representation learning across a wide range of \b{eta} values. Additionally, I provide extensive sensitivity analyses around critical points (beta) with statistically robust uncertainty quantification (95% confidence intervals). The open-source implementation, experimental results, and reproducibility framework included in this work offer a clear path for practical deployment and future extension of my proposed method.
Authors:Yitao Zhu, Yuan Yin, Zhenrong Shen, Zihao Zhao, Haiyu Song, Sheng Wang, Dinggang Shen, Qian Wang
Abstract:
The growing complexity and scale of visual model pre-training have made developing and deploying multi-task computer-aided diagnosis (CAD) systems increasingly challenging and resource-intensive. Furthermore, the medical imaging community lacks an open-source CAD platform to enable the rapid creation of efficient and extendable diagnostic models. To address these issues, we propose UniCAD, a unified architecture that leverages the robust capabilities of pre-trained vision foundation models to seamlessly handle both 2D and 3D medical images while requiring only minimal task-specific parameters. UniCAD introduces two key innovations: (1) Efficiency: A low-rank adaptation strategy is employed to adapt a pre-trained visual model to the medical image domain, achieving performance on par with fully fine-tuned counterparts while introducing only 0.17% trainable parameters. (2) Plug-and-Play: A modular architecture that combines a frozen foundation model with multiple plug-and-play experts, enabling diverse tasks and seamless functionality expansion. Building on this unified CAD architecture, we establish an open-source platform where researchers can share and access lightweight CAD experts, fostering a more equitable and efficient research ecosystem. Comprehensive experiments across 12 diverse medical datasets demonstrate that UniCAD consistently outperforms existing methods in both accuracy and deployment efficiency. The source code and project page are available at https://mii-laboratory.github.io/UniCAD/.
Authors:Jianlin Sun, Xiaolin Fang, Juwei Guan, Dongdong Gui, Teqi Wang, Tongxin Zhu
Abstract:
The core challenge in Camouflage Object Detection (COD) lies in the indistinguishable similarity between targets and backgrounds in terms of color, texture, and shape. This causes existing methods to either lose edge details (such as hair-like fine structures) due to over-reliance on global semantic information or be disturbed by similar backgrounds (such as vegetation patterns) when relying solely on local features. We propose DRRNet, a four-stage architecture characterized by a "context-detail-fusion-refinement" pipeline to address these issues. Specifically, we introduce an Omni-Context Feature Extraction Module to capture global camouflage patterns and a Local Detail Extraction Module to supplement microstructural information for the full-scene context module. We then design a module for forming dual representations of scene understanding and structural awareness, which fuses panoramic features and local features across various scales. In the decoder, we also introduce a reverse refinement module that leverages spatial edge priors and frequency-domain noise suppression to perform a two-stage inverse refinement of the output. By applying two successive rounds of inverse refinement, the model effectively suppresses background interference and enhances the continuity of object boundaries. Experimental results demonstrate that DRRNet significantly outperforms state-of-the-art methods on benchmark datasets. Our code is available at https://github.com/jerrySunning/DRRNet.
Authors:Chengyang He, Gadiel Sznaier Camps, Xu Liu, Mac Schwager, Guillaume Sartoretti
Abstract:
We present Latent Theory of Mind (LatentToM), a decentralized diffusion policy architecture for collaborative robot manipulation. Our policy allows multiple manipulators with their own perception and computation to collaborate with each other towards a common task goal with or without explicit communication. Our key innovation lies in allowing each agent to maintain two latent representations: an ego embedding specific to the robot, and a consensus embedding trained to be common to both robots, despite their different sensor streams and poses. We further let each robot train a decoder to infer the other robot's ego embedding from their consensus embedding, akin to theory of mind in latent space. Training occurs centrally, with all the policies' consensus encoders supervised by a loss inspired by sheaf theory, a mathematical theory for clustering data on a topological manifold. Specifically, we introduce a first-order cohomology loss to enforce sheaf-consistent alignment of the consensus embeddings. To preserve the expressiveness of the consensus embedding, we further propose structural constraints based on theory of mind and a directional consensus mechanism. Execution can be fully distributed, requiring no explicit communication between policies. In which case, the information is exchanged implicitly through each robot's sensor stream by observing the actions of the other robots and their effects on the scene. Alternatively, execution can leverage direct communication to share the robots' consensus embeddings, where the embeddings are shared once during each inference step and are aligned using the sheaf Laplacian. In our hardware experiments, LatentToM outperforms a naive decentralized diffusion baseline, and shows comparable performance with a state-of-the-art centralized diffusion policy for bi-manual manipulation. Project website: https://stanfordmsl.github.io/LatentToM/.
Authors:Zechao Guan, Feng Yan, Shuai Du, Lin Ma, Qingshan Liu
Abstract:
Recent advancements in Diffusion Transformer (DiT) models have significantly improved 3D point cloud generation. However, existing methods primarily focus on local feature extraction while overlooking global topological information, such as voids, which are crucial for maintaining shape consistency and capturing complex geometries. To address this limitation, we propose TopoDiT-3D, a Topology-Aware Diffusion Transformer with a bottleneck structure for 3D point cloud generation. Specifically, we design the bottleneck structure utilizing Perceiver Resampler, which not only offers a mode to integrate topological information extracted through persistent homology into feature learning, but also adaptively filters out redundant local features to improve training efficiency. Experimental results demonstrate that TopoDiT-3D outperforms state-of-the-art models in visual quality, diversity, and training efficiency. Furthermore, TopoDiT-3D demonstrates the importance of rich topological information for 3D point cloud generation and its synergy with conventional local feature learning. Videos and code are available at https://github.com/Zechao-Guan/TopoDiT-3D.
Authors:Dayong Liang, Changmeng Zheng, Zhiyuan Wen, Yi Cai, Xiao-Yong Wei, Qing Li
Abstract:
Traditional scene graphs primarily focus on spatial relationships, limiting vision-language models' (VLMs) ability to reason about complex interactions in visual scenes. This paper addresses two key challenges: (1) conventional detection-to-construction methods produce unfocused, contextually irrelevant relationship sets, and (2) existing approaches fail to form persistent memories for generalizing interaction reasoning to new scenes. We propose Interaction-augmented Scene Graph Reasoning (ISGR), a framework that enhances VLMs' interactional reasoning through three complementary components. First, our dual-stream graph constructor combines SAM-powered spatial relation extraction with interaction-aware captioning to generate functionally salient scene graphs with spatial grounding. Second, we employ targeted interaction queries to activate VLMs' latent knowledge of object functionalities, converting passive recognition into active reasoning about how objects work together. Finally, we introduce a lone-term memory reinforcement learning strategy with a specialized interaction-focused reward function that transforms transient patterns into long-term reasoning heuristics. Extensive experiments demonstrate that our approach significantly outperforms baseline methods on interaction-heavy reasoning benchmarks, with particularly strong improvements on complex scene understanding tasks. The source code can be accessed at https://github.com/open_upon_acceptance.
Authors:Yicheng Rui, Yifan Xuan, Shuyue Zheng, Kexin Li, Kaiming Cui, Kai Xiao, Jie Zheng, Jun Kai Ng, Hongxuan Jiang, Fabo Feng, Qinghui Sun
Abstract:
Tianyu telescope, an one-meter robotic optical survey instrument to be constructed in Lenghu, Qinghai, China, is designed for detecting transiting exoplanets, variable stars and transients. It requires a highly automated, optimally distributed, easily extendable, and highly flexible software to enable the data processing for the raw data at rates exceeding 500MB/s. In this work, we introduce the architecture of the Tianyu pipeline and use relative photometry as a case to demonstrate its high scalability and efficiency. This pipeline is tested on the data collected from Muguang observatory and Xinglong observatory. The pipeline demonstrates high scalability, with most processing stages increasing in throughput as the number of consumers grows. Compared to a single consumer, the median throughput of image calibration, alignment, and flux extraction increases by 41%, 257%, and 107% respectively when using 5 consumers, while image stacking exhibits limited scalability due to I/O constraints. In our tests, the pipeline was able to detect two transiting sources. Besides, the pipeline captures variability in the light curves of nine known and two previously unknown variable sources in the testing data. Meanwhile, the differential photometric precision of the light curves is near the theoretical limitation. These results indicate that this pipeline is suitable for detecting transiting exoplanets and variable stars. This work builds the fundation for further development of Tianyu software. Code of this work is available at https://github.com/ruiyicheng/Tianyu_pipeline.
Authors:Yuhang Wang, Abdulaziz Alhuraish, Shengming Yuan, Hao Zhou
Abstract:
Lane Keeping Assist (LKA) is widely adopted in modern vehicles, yet its real-world performance remains underexplored due to proprietary systems and limited data access. This paper presents OpenLKA, the first open, large-scale dataset for LKA evaluation and improvement. It includes 400 hours of driving data from 62 production vehicle models, collected through extensive road testing in Tampa, Florida and global contributions from the Comma.ai driving community. The dataset spans a wide range of challenging scenarios, including complex road geometries, degraded lane markings, adverse weather, lighting conditions and surrounding traffic. The dataset is multimodal, comprising: i) full CAN bus streams, decoded using custom reverse-engineered DBC files to extract key LKA events (e.g., system disengagements, lane detection failures); ii) synchronized high-resolution dash-cam video; iii) real-time outputs from Openpilot, providing accurate estimates of road curvature and lane positioning; iv) enhanced scene annotations generated by Vision Language Models, describing lane visibility, pavement quality, weather, lighting, and traffic conditions. By integrating vehicle-internal signals with high-fidelity perception and rich semantic context, OpenLKA provides a comprehensive platform for benchmarking the real-world performance of production LKA systems, identifying safety-critical operational scenarios, and assessing the readiness of current road infrastructure for autonomous driving. The dataset is publicly available at: https://github.com/OpenLKA/OpenLKA.
Authors:Letian Wang, Marc-Antoine Lavoie, Sandro Papais, Barza Nisar, Yuxiao Chen, Wenhao Ding, Boris Ivanovic, Hao Shao, Abulikemu Abuduweili, Evan Cook, Yang Zhou, Peter Karkus, Jiachen Li, Changliu Liu, Marco Pavone, Steven Waslander
Abstract:
Motion prediction, the anticipation of future agent states or scene evolution, is rooted in human cognition, bridging perception and decision-making. It enables intelligent systems, such as robots and self-driving cars, to act safely in dynamic, human-involved environments, and informs broader time-series reasoning challenges. With advances in methods, representations, and datasets, the field has seen rapid progress, reflected in quickly evolving benchmark results. Yet, when state-of-the-art methods are deployed in the real world, they often struggle to generalize to open-world conditions and fall short of deployment standards. This reveals a gap between research benchmarks, which are often idealized or ill-posed, and real-world complexity.
To address this gap, this survey revisits the generalization and deployability of motion prediction models, with an emphasis on the applications of robotics, autonomous driving, and human motion. We first offer a comprehensive taxonomy of motion prediction methods, covering representations, modeling strategies, application domains, and evaluation protocols. We then study two key challenges: (1) how to push motion prediction models to be deployable to realistic deployment standards, where motion prediction does not act in a vacuum, but functions as one module of closed-loop autonomy stacks - it takes input from the localization and perception, and informs downstream planning and control. 2) how to generalize motion prediction models from limited seen scenarios/datasets to the open-world settings. Throughout the paper, we highlight critical open challenges to guide future work, aiming to recalibrate the community's efforts, fostering progress that is not only measurable but also meaningful for real-world applications. The project webpage corresponding to this paper can be found here https://trends-in-motion-prediction-2025.github.io/.
Authors:Owen Kwon, Abraham George, Alison Bartsch, Amir Barati Farimani
Abstract:
Real robots are expected to repeat the same behavior in new environments with very little new data, yet modern controllers either incur heavy per-step inference or require deployment-time fine-tuning. We propose RT-Cache, a training-free retrieval-as-control pipeline that caches diverse image action trajectories in a unified vector memory and, at test time, embeds the current frame to retrieve and replay multi-step snippets, replacing per-step model calls. A hierarchical search keeps lookups sub-second at million scale, shifting cost from compute to storage and enabling real-time control on modest GPUs. Across real-robot tasks and large open logs, RT-Cache achieves higher success and lower completion time than strong retrieval baselines (approximately x2 higher success and ~30% faster in our settings), and a single-episode anchoring study shows immediate adaptation to a more complex, contact-rich task without fine-tuning. RT-Cache turns experience into an append-only memory, offering a simple, scalable path to few-shot deployment today and a foundation for multimodal keys and optional integration with high-level policies. Project page: https://rt-cache.github.io/.
Authors:Wei-Long Tian, Peng Gao, Xiao Liu, Long Xu, Hamido Fujita, Hanan Aljuai, Mao-Li Wang
Abstract:
In recent years, visual tracking methods based on convolutional neural networks and Transformers have achieved remarkable performance and have been successfully applied in fields such as autonomous driving. However, the numerous security issues exposed by deep learning models have gradually affected the reliable application of visual tracking methods in real-world scenarios. Therefore, how to reveal the security vulnerabilities of existing visual trackers through effective adversarial attacks has become a critical problem that needs to be addressed. To this end, we propose an adaptive meta-gradient adversarial attack (AMGA) method for visual tracking. This method integrates multi-model ensembles and meta-learning strategies, combining momentum mechanisms and Gaussian smoothing, which can significantly enhance the transferability and attack effectiveness of adversarial examples. AMGA randomly selects models from a large model repository, constructs diverse tracking scenarios, and iteratively performs both white- and black-box adversarial attacks in each scenario, optimizing the gradient directions of each model. This paradigm minimizes the gap between white- and black-box adversarial attacks, thus achieving excellent attack performance in black-box scenarios. Extensive experimental results on large-scale datasets such as OTB2015, LaSOT, and GOT-10k demonstrate that AMGA significantly improves the attack performance, transferability, and deception of adversarial examples. Codes and data are available at https://github.com/pgao-lab/AMGA.
Authors:Yangyi Chen, Hao Peng, Tong Zhang, Heng Ji
Abstract:
In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.
Authors:Yancheng Wang, Nebojsa Jojic, Yingzhen Yang
Abstract:
In this paper, we propose a novel attention module termed the Differentiable Channel Selection Attention module, or the DCS-Attention module. In contrast with conventional self-attention, the DCS-Attention module features selection of informative channels in the computation of the attention weights. The selection of the feature channels is performed in a differentiable manner, enabling seamless integration with DNN training. Our DCS-Attention is compatible with either fixed neural network backbones or learnable backbones with Differentiable Neural Architecture Search (DNAS), leading to DCS with Fixed Backbone (DCS-FB) and DCS-DNAS, respectively. Importantly, our DCS-Attention is motivated by the principle of Information Bottleneck (IB), and a novel variational upper bound for the IB loss, which can be optimized by SGD, is derived and incorporated into the training loss of the networks with the DCS-Attention modules. In this manner, a neural network with DCS-Attention modules is capable of selecting the most informative channels for feature extraction so that it enjoys state-of-the-art performance for the Re-ID task. Extensive experiments on multiple person Re-ID benchmarks using both DCS-FB and DCS-DNAS show that DCS-Attention significantly enhances the prediction accuracy of DNNs for person Re-ID, which demonstrates the effectiveness of DCS-Attention in learning discriminative features critical to identifying person identities. The code of our work is available at https://github.com/Statistical-Deep-Learning/DCS-Attention.
Authors:Kangxian Xie, Yufei Zhu, Kaiming Kuang, Li Zhang, Hongwei Bran Li, Mingchen Gao, Jiancheng Yang
Abstract:
High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical treatment planning for lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to assess the reconstruction comprehensively. Further, due to the absence of publicly available shape datasets to benchmark reconstruction algorithms, we developed a shape dataset named Lung3D, including the 3D models of 800 labeled pulmonary segments and the corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/M3DV/ImPulSe.
Authors:Marina Popova, Iaroslav Chelombitko, Aleksey Komissarov
Abstract:
The emergence of telomere-to-telomere (T2T) genome assemblies has opened new avenues for comparative genomics, yet effective tokenization strategies for genomic sequences remain underexplored. In this pilot study, we apply Byte Pair Encoding (BPE) to nine T2T primate genomes including three human assemblies by training independent BPE tokenizers with a fixed vocabulary of 512,000 tokens using our custom tool, dnaBPE. Our analysis reveals that only 11,569 tokens are shared across all assemblies, while nearly 991,854 tokens are unique to a single genome, indicating a rapid decline in shared vocabulary with increasing assembly comparisons. Moreover, phylogenetic trees derived from token overlap failed to recapitulate established primate relationships, a discrepancy attributed to the disproportionate influence of species-specific high-copy repetitive elements. These findings underscore the dual nature of BPE tokenization: while it effectively compresses repetitive sequences, its sensitivity to high-copy elements limits its utility as a universal tool for comparative genomics. We discuss potential hybrid strategies and repeat-masking approaches to refine genomic tokenization, emphasizing the need for domain-specific adaptations in the development of large-scale genomic language models. The dnaBPE tool used in this study is open-source and available at https://github.com/aglabx/dnaBPE.
Authors:Nahid Alam, Karthik Reddy Kanjula, Surya Guthikonda, Timothy Chung, Bala Krishna S Vegesna, Abhipsha Das, Anthony Susevski, Ryan Sze-Yin Chan, S M Iftekhar Uddin, Shayekh Bin Islam, Roshan Santhosh, Snegha A, Drishti Sharma, Chen Liu, Isha Chaturvedi, Genta Indra Winata, Ashvanth. S, Snehanshu Mukherjee, Alham Fikri Aji
Abstract:
In recent times, we have seen a rapid development of large Vision-Language Models (VLMs). They have shown impressive results on academic benchmarks, primarily in widely spoken languages but lack performance on low-resource languages and varied cultural contexts. To address these limitations, we introduce Maya, an open-source Multilingual VLM. Our contributions are: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; and 2) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
Authors:Michael Majurski, Cynthia Matuszek
Abstract:
Language Models (LMs) continue to advance, improving response quality and coherence. Given Internet-scale training datasets, LMs have likely encountered much of what users may ask them to generate in some form during their training. A plethora of evaluation benchmarks have been constructed to assess model quality, response appropriateness, and reasoning capabilities. However, the human effort required for benchmark construction is rapidly being outpaced by the size and scope of the models under evaluation. Having humans build a benchmark for every possible domain of interest is impractical. Therefore, we propose a methodology for automating the construction of fact-based synthetic data model evaluations grounded in document populations. This work leverages the same LMs to evaluate domain-specific knowledge automatically, using only grounding documents (e.g., a textbook) as input. This synthetic data benchmarking approach corresponds well with human curated questions producing a Spearman ranking correlation of 0.97 and a benchmark evaluation Pearson accuracy correlation of 0.75. This novel approach supports generating both multiple choice and open-ended synthetic data questions to gain diagnostic insight of LM capability. We apply this methodology to evaluate model performance on two recent arXiv preprints, discovering a surprisingly strong performance from Gemma-3 models on open-ended questions. Code is available at https://github.com/mmajurski/grounded-synth-lm-benchmark
Authors:Dor Tsur, Carol Xuan Long, Claudio Mayrink Verdun, Hsiang Hsu, Haim Permuter, Flavio P. Calmon
Abstract:
Large-language models (LLMs) are now able to produce text that is, in many cases, seemingly indistinguishable from human-generated content. This has fueled the development of watermarks that imprint a ``signal'' in LLM-generated text with minimal perturbation of an LLM's output. This paper provides an analysis of text watermarking in a one-shot setting. Through the lens of hypothesis testing with side information, we formulate and analyze the fundamental trade-off between watermark detection power and distortion in generated textual quality. We argue that a key component in watermark design is generating a coupling between the side information shared with the watermark detector and a random partition of the LLM vocabulary. Our analysis identifies the optimal coupling and randomization strategy under the worst-case LLM next-token distribution that satisfies a min-entropy constraint. We provide a closed-form expression of the resulting detection rate under the proposed scheme and quantify the cost in a max-min sense. Finally, we provide an array of numerical results, comparing the proposed scheme with the theoretical optimum and existing schemes, in both synthetic data and LLM watermarking. Our code is available at https://github.com/Carol-Long/CC_Watermark
Authors:Yuping Wang, Shuo Xing, Cui Can, Renjie Li, Hongyuan Hua, Kexin Tian, Zhaobin Mo, Xiangbo Gao, Keshu Wu, Sulong Zhou, Hengxu You, Juntong Peng, Junge Zhang, Zehao Wang, Rui Song, Mingxuan Yan, Walter Zimmer, Xingcheng Zhou, Peiran Li, Zhaohan Lu, Chia-Ju Chen, Yue Huang, Ryan A. Rossi, Lichao Sun, Hongkai Yu, Zhiwen Fan, Frank Hao Yang, Yuhao Kang, Ross Greer, Chenxi Liu, Eun Hak Lee, Xuan Di, Xinyue Ye, Liu Ren, Alois Knoll, Xiaopeng Li, Shuiwang Ji, Masayoshi Tomizuka, Marco Pavone, Tianbao Yang, Jing Du, Ming-Hsuan Yang, Hua Wei, Ziran Wang, Yang Zhou, Jiachen Li, Zhengzhong Tu
Abstract:
Generative Artificial Intelligence (GenAI) constitutes a transformative technological wave that reconfigures industries through its unparalleled capabilities for content creation, reasoning, planning, and multimodal understanding. This revolutionary force offers the most promising path yet toward solving one of engineering's grandest challenges: achieving reliable, fully autonomous driving, particularly the pursuit of Level 5 autonomy. This survey delivers a comprehensive and critical synthesis of the emerging role of GenAI across the autonomous driving stack. We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models (LLMs). We then map their frontier applications in image, LiDAR, trajectory, occupancy, video generation as well as LLM-guided reasoning and decision making. We categorize practical applications, such as synthetic data workflows, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI. We identify key obstacles and possibilities such as comprehensive generalization across rare cases, evaluation and safety checks, budget-limited implementation, regulatory compliance, ethical concerns, and environmental effects, while proposing research plans across theoretical assurances, trust metrics, transport integration, and socio-technical influence. By unifying these threads, the survey provides a forward-looking reference for researchers, engineers, and policymakers navigating the convergence of generative AI and advanced autonomous mobility. An actively maintained repository of cited works is available at https://github.com/taco-group/GenAI4AD.
Authors:Ippokratis Koukoulis, Ilias Syrigos, Thanasis Korakis
Abstract:
As the digital landscape becomes more interconnected, the frequency and severity of zero-day attacks, have significantly increased, leading to an urgent need for innovative Intrusion Detection Systems (IDS). Machine Learning-based IDS that learn from the network traffic characteristics and can discern attack patterns from benign traffic offer an advanced solution to traditional signature-based IDS. However, they heavily rely on labeled datasets, and their ability to generalize when encountering unseen traffic patterns remains a challenge. This paper proposes a novel self-supervised contrastive learning approach based on transformer encoders, specifically tailored for generalizable intrusion detection on raw packet sequences. Our proposed learning scheme employs a packet-level data augmentation strategy combined with a transformer-based architecture to extract and generate meaningful representations of traffic flows. Unlike traditional methods reliant on handcrafted statistical features (NetFlow), our approach automatically learns comprehensive packet sequence representations, significantly enhancing performance in anomaly identification tasks and supervised learning for intrusion detection. Our transformer-based framework exhibits better performance in comparison to existing NetFlow self-supervised methods. Specifically, we achieve up to a 3% higher AUC in anomaly detection for intra-dataset evaluation and up to 20% higher AUC scores in inter-dataset evaluation. Moreover, our model provides a strong baseline for supervised intrusion detection with limited labeled data, exhibiting an improvement over self-supervised NetFlow models of up to 1.5% AUC when pretrained and evaluated on the same dataset. Additionally, we show the adaptability of our pretrained model when fine-tuned across different datasets, demonstrating strong performance even when lacking benign data from the target domain.
Authors:Hanjung Kim, Jaehyun Kang, Hyolim Kang, Meedeum Cho, Seon Joo Kim, Youngwoon Lee
Abstract:
Mimicry is a fundamental learning mechanism in humans, enabling individuals to learn new tasks by observing and imitating experts. However, applying this ability to robots presents significant challenges due to the inherent differences between human and robot embodiments in both their visual appearance and physical capabilities. While previous methods bridge this gap using cross-embodiment datasets with shared scenes and tasks, collecting such aligned data between humans and robots at scale is not trivial. In this paper, we propose UniSkill, a novel framework that learns embodiment-agnostic skill representations from large-scale cross-embodiment video data without any labels, enabling skills extracted from human video prompts to effectively transfer to robot policies trained only on robot data. Our experiments in both simulation and real-world environments show that our cross-embodiment skills successfully guide robots in selecting appropriate actions, even with unseen video prompts. The project website can be found at: https://kimhanjung.github.io/UniSkill.
Authors:Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, Ameet Talwalkar
Abstract:
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.
Authors:Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela, Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes Heidecke, Karan Singhal
Abstract:
We present HealthBench, an open-source benchmark measuring the performance and safety of large language models in healthcare. HealthBench consists of 5,000 multi-turn conversations between a model and an individual user or healthcare professional. Responses are evaluated using conversation-specific rubrics created by 262 physicians. Unlike previous multiple-choice or short-answer benchmarks, HealthBench enables realistic, open-ended evaluation through 48,562 unique rubric criteria spanning several health contexts (e.g., emergencies, transforming clinical data, global health) and behavioral dimensions (e.g., accuracy, instruction following, communication). HealthBench performance over the last two years reflects steady initial progress (compare GPT-3.5 Turbo's 16% to GPT-4o's 32%) and more rapid recent improvements (o3 scores 60%). Smaller models have especially improved: GPT-4.1 nano outperforms GPT-4o and is 25 times cheaper. We additionally release two HealthBench variations: HealthBench Consensus, which includes 34 particularly important dimensions of model behavior validated via physician consensus, and HealthBench Hard, where the current top score is 32%. We hope that HealthBench grounds progress towards model development and applications that benefit human health.
Authors:Fanyu Meng, Ziwen Kan, Shahbaz Rezaei, Zhaodan Kong, Xin Chen, Xin Liu
Abstract:
Explainability in time series models is crucial for fostering trust, facilitating debugging, and ensuring interpretability in real-world applications. In this work, we introduce Implet, a novel post-hoc explainer that generates accurate and concise subsequence-level explanations for time series models. Our approach identifies critical temporal segments that significantly contribute to the model's predictions, providing enhanced interpretability beyond traditional feature-attribution methods. Based on it, we propose a cohort-based (group-level) explanation framework designed to further improve the conciseness and interpretability of our explanations. We evaluate Implet on several standard time-series classification benchmarks, demonstrating its effectiveness in improving interpretability. The code is available at https://github.com/LbzSteven/implet
Authors:Huiyan Qi, Bin Zhu, Chong-Wah Ngo, Jingjing Chen, Ee-Peng Lim
Abstract:
Nutrition estimation is an important component of promoting healthy eating and mitigating diet-related health risks. Despite advances in tasks such as food classification and ingredient recognition, progress in nutrition estimation is limited due to the lack of datasets with nutritional annotations. To address this issue, we introduce FastFood, a dataset with 84,446 images across 908 fast food categories, featuring ingredient and nutritional annotations. In addition, we propose a new model-agnostic Visual-Ingredient Feature Fusion (VIF$^2$) method to enhance nutrition estimation by integrating visual and ingredient features. Ingredient robustness is improved through synonym replacement and resampling strategies during training. The ingredient-aware visual feature fusion module combines ingredient features and visual representation to achieve accurate nutritional prediction. During testing, ingredient predictions are refined using large multimodal models by data augmentation and majority voting. Our experiments on both FastFood and Nutrition5k datasets validate the effectiveness of our proposed method built in different backbones (e.g., Resnet, InceptionV3 and ViT), which demonstrates the importance of ingredient information in nutrition estimation. https://huiyanqi.github.io/fastfood-nutrition-estimation/.
Authors:Abdolmehdi Behroozi, Chaopeng Shen and, Daniel Kifer
Abstract:
Parametric differential equations of the form du/dt = f(u, x, t, p) are fundamental in science and engineering. While deep learning frameworks such as the Fourier Neural Operator (FNO) can efficiently approximate solutions, they struggle with inverse problems, sensitivity estimation (du/dp), and concept drift. We address these limitations by introducing a sensitivity-based regularization strategy, called Sensitivity-Constrained Fourier Neural Operators (SC-FNO). SC-FNO achieves high accuracy in predicting solution paths and consistently outperforms standard FNO and FNO with physics-informed regularization. It improves performance in parameter inversion tasks, scales to high-dimensional parameter spaces (tested with up to 82 parameters), and reduces both data and training requirements. These gains are achieved with a modest increase in training time (30% to 130% per epoch) and generalize across various types of differential equations and neural operators. Code and selected experiments are available at: https://github.com/AMBehroozi/SC_Neural_Operators
Authors:Zongchuang Zhao, Haoyu Fu, Dingkang Liang, Xin Zhou, Dingyuan Zhang, Hongwei Xie, Bing Wang, Xiang Bai
Abstract:
The Large Visual-Language Models (LVLMs) have significantly advanced image understanding. Their comprehension and reasoning capabilities enable promising applications in autonomous driving scenarios. However, existing research typically focuses on front-view perspectives and partial objects within scenes, struggling to achieve comprehensive scene understanding. Meanwhile, existing LVLMs suffer from the lack of mapping relationship between 2D and 3D and insufficient integration of 3D object localization and instruction understanding. To tackle these limitations, we first introduce NuInteract, a large-scale dataset with over 1.5M multi-view image language pairs spanning dense scene captions and diverse interactive tasks. Furthermore, we propose DriveMonkey, a simple yet effective framework that seamlessly integrates LVLMs with a spatial processor using a series of learnable queries. The spatial processor, designed as a plug-and-play component, can be initialized with pre-trained 3D detectors to improve 3D perception. Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task. The dataset and code will be released at https://github.com/zc-zhao/DriveMonkey.
Authors:Xiaolei Qin, Di Wang, Jing Zhang, Fengxiang Wang, Xin Su, Bo Du, Liangpei Zhang
Abstract:
Satellite image time series (SITS) provide continuous observations of the Earth's surface, making them essential for applications such as environmental management and disaster assessment. However, existing spatiotemporal foundation models rely on plain vision transformers, which encode entire temporal sequences without explicitly capturing multiscale spatiotemporal relationships between land objects. This limitation hinders their effectiveness in downstream tasks. To overcome this challenge, we propose TiMo, a novel hierarchical vision transformer foundation model tailored for SITS analysis. At its core, we introduce a spatiotemporal gyroscope attention mechanism that dynamically captures evolving multiscale patterns across both time and space. For pre-training, we curate MillionST, a large-scale dataset of one million images from 100,000 geographic locations, each captured across 10 temporal phases over five years, encompassing diverse geospatial changes and seasonal variations. Leveraging this dataset, we adapt masked image modeling to pre-train TiMo, enabling it to effectively learn and encode generalizable spatiotemporal representations.Extensive experiments across multiple spatiotemporal tasks-including deforestation monitoring, land cover segmentation, crop type classification, and flood detection-demonstrate TiMo's superiority over state-of-the-art methods. Code, model, and dataset will be released at https://github.com/MiliLab/TiMo.
Authors:Wenzhe Cai, Jiaqi Peng, Yuqiang Yang, Yujian Zhang, Meng Wei, Hanqing Wang, Yilun Chen, Tai Wang, Jiangmiao Pang
Abstract:
Learning navigation in dynamic open-world environments is an important yet challenging skill for robots. Most previous methods rely on precise localization and mapping or learn from expensive real-world demonstrations. In this paper, we propose the Navigation Diffusion Policy (NavDP), an end-to-end framework trained solely in simulation and can zero-shot transfer to different embodiments in diverse real-world environments. The key ingredient of NavDP's network is the combination of diffusion-based trajectory generation and a critic function for trajectory selection, which are conditioned on only local observation tokens encoded from a shared policy transformer. Given the privileged information of the global environment in simulation, we scale up the demonstrations of good quality to train the diffusion policy and formulate the critic value function targets with contrastive negative samples. Our demonstration generation approach achieves about 2,500 trajectories/GPU per day, 20$\times$ more efficient than real-world data collection, and results in a large-scale navigation dataset with 363.2km trajectories across 1244 scenes. Trained with this simulation dataset, NavDP achieves state-of-the-art performance and consistently outstanding generalization capability on quadruped, wheeled, and humanoid robots in diverse indoor and outdoor environments. In addition, we present a preliminary attempt at using Gaussian Splatting to make in-domain real-to-sim fine-tuning to further bridge the sim-to-real gap. Experiments show that adding such real-to-sim data can improve the success rate by 30\% without hurting its generalization capability.
Authors:Edoardo Bianchi, Antonio Liotta
Abstract:
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment. Project page at https://edowhite.github.io/SkillFormer
Authors:Holly Dinkel, Marcel Büsching, Alberta Longhini, Brian Coltin, Trey Smith, Danica Kragic, Mårten Björkman, Timothy Bretl
Abstract:
This work presents DLO-Splatting, an algorithm for estimating the 3D shape of Deformable Linear Objects (DLOs) from multi-view RGB images and gripper state information through prediction-update filtering. The DLO-Splatting algorithm uses a position-based dynamics model with shape smoothness and rigidity dampening corrections to predict the object shape. Optimization with a 3D Gaussian Splatting-based rendering loss iteratively renders and refines the prediction to align it with the visual observations in the update step. Initial experiments demonstrate promising results in a knot tying scenario, which is challenging for existing vision-only methods.
Authors:Donghoon Kim, Minji Bae, Kyuhong Shim, Byonghyo Shim
Abstract:
Text-to-image generative models like DALL-E and Stable Diffusion have revolutionized visual content creation across various applications, including advertising, personalized media, and design prototyping. However, crafting effective textual prompts to guide these models remains challenging, often requiring extensive trial and error. Existing prompt inversion approaches, such as soft and hard prompt techniques, are not so effective due to the limited interpretability and incoherent prompt generation. To address these issues, we propose Visually Guided Decoding (VGD), a gradient-free approach that leverages large language models (LLMs) and CLIP-based guidance to generate coherent and semantically aligned prompts. In essence, VGD utilizes the robust text generation capabilities of LLMs to produce human-readable prompts. Further, by employing CLIP scores to ensure alignment with user-specified visual concepts, VGD enhances the interpretability, generalization, and flexibility of prompt generation without the need for additional training. Our experiments demonstrate that VGD outperforms existing prompt inversion techniques in generating understandable and contextually relevant prompts, facilitating more intuitive and controllable interactions with text-to-image models.
Authors:Ziyuan He, Zhiqing Guo, Liejun Wang, Gaobo Yang, Yunfeng Diao, Dan Ma
Abstract:
Deepfake technology poses increasing risks such as privacy invasion and identity theft. To address these threats, we propose WaveGuard, a proactive watermarking framework that enhances robustness and imperceptibility via frequency-domain embedding and graph-based structural consistency. Specifically, we embed watermarks into high-frequency sub-bands using Dual-Tree Complex Wavelet Transform (DT-CWT) and employ a Structural Consistency Graph Neural Network (SC-GNN) to preserve visual quality. We also design an attention module to refine embedding precision. Experimental results on face swap and reenactment tasks demonstrate that WaveGuard outperforms state-of-the-art methods in both robustness and visual quality. Code is available at https://github.com/vpsg-research/WaveGuard.
Authors:Libo Huang, Zhulin An, Chuanguang Yang, Boyu Diao, Fei Wang, Yan Zeng, Zhifeng Hao, Yongjun Xu
Abstract:
Class Incremental Learning (CIL) based on pre-trained models offers a promising direction for open-world continual learning. Existing methods typically rely on correlation-based strategies, where an image's classification feature is used as a query to retrieve the most related key prompts and select the corresponding value prompts for training. However, these approaches face an inherent limitation: fitting the entire feature space of all tasks with only a few trainable prompts is fundamentally challenging. We propose Predictive Prompting (PrePrompt), a novel CIL framework that circumvents correlation-based limitations by leveraging pre-trained models' natural classification ability to predict task-specific prompts. Specifically, PrePrompt decomposes CIL into a two-stage prediction framework: task-specific prompt prediction followed by label prediction. While theoretically appealing, this framework risks bias toward recent classes due to missing historical data for older classifier calibration. PrePrompt then mitigates this by incorporating feature translation, dynamically balancing stability and plasticity. Experiments across multiple benchmarks demonstrate PrePrompt's superiority over state-of-the-art prompt-based CIL methods. Code available at \href{github.com/libo-huang/preprompt}{github.com/libo-huang/preprompt}.
Authors:Haofeng Liu, Mingqi Gao, Xuxiao Luo, Ziyue Wang, Guanyi Qin, Junde Wu, Yueming Jin
Abstract:
Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.
Authors:Xiao Ni, Carsten Kuehnel, Xiaoyi Jiang
Abstract:
Rapid advances in deep learning for computer vision have driven the adoption of RGB camera-based adaptive traffic light systems to improve traffic safety and pedestrian comfort. However, these systems often overlook the needs of people with mobility restrictions. Moreover, the use of RGB cameras presents significant challenges, including limited detection performance under adverse weather or low-visibility conditions, as well as heightened privacy concerns. To address these issues, we propose a fully automated, thermal detector-based traffic light system that dynamically adjusts signal durations for individuals with walking impairments or mobility burden and triggers the auditory signal for visually impaired individuals, thereby advancing towards barrier-free intersection for all users. To this end, we build the thermal dataset for people with mobility restrictions (TD4PWMR), designed to capture diverse pedestrian scenarios, particularly focusing on individuals with mobility aids or mobility burden under varying environmental conditions, such as different lighting, weather, and crowded urban settings. While thermal imaging offers advantages in terms of privacy and robustness to adverse conditions, it also introduces inherent hurdles for object detection due to its lack of color and fine texture details and generally lower resolution of thermal images. To overcome these limitations, we develop YOLO-Thermal, a novel variant of the YOLO architecture that integrates advanced feature extraction and attention mechanisms for enhanced detection accuracy and robustness in thermal imaging. Experiments demonstrate that the proposed thermal detector outperforms existing detectors, while the proposed traffic light system effectively enhances barrier-free intersection. The source codes and dataset are available at https://github.com/leon2014dresden/YOLO-THERMAL.
Authors:Shan Zhao, Zhitong Xiong, Jie Zhao, Xiao Xiang Zhu
Abstract:
Our planet is facing increasingly frequent extreme events, which pose major risks to human lives and ecosystems. Recent advances in machine learning (ML), especially with foundation models (FMs) trained on extensive datasets, excel in extracting features and show promise in disaster management. Nevertheless, these models often inherit biases from training data, challenging their performance over extreme values. To explore the reliability of FM in the context of extreme events, we introduce \textbf{ExE}Bench (\textbf{Ex}treme \textbf{E}arth Benchmark), a collection of seven extreme event categories across floods, wildfires, storms, tropical cyclones, extreme precipitation, heatwaves, and cold waves. The dataset features global coverage, varying data volumes, and diverse data sources with different spatial, temporal, and spectral characteristics. To broaden the real-world impact of FMs, we include multiple challenging ML tasks that are closely aligned with operational needs in extreme events detection, monitoring, and forecasting. ExEBench aims to (1) assess FM generalizability across diverse, high-impact tasks and domains, (2) promote the development of novel ML methods that benefit disaster management, and (3) offer a platform for analyzing the interactions and cascading effects of extreme events to advance our understanding of Earth system, especially under the climate change expected in the decades to come. The dataset and code are public https://github.com/zhaoshan2/EarthExtreme-Bench.
Authors:Zheang Huai, Hui Tang, Yi Li, Zhuangzhuang Chen, Xiaomeng Li
Abstract:
Source-free domain adaptation (SFDA) for segmentation aims at adapting a model trained in the source domain to perform well in the target domain with only the source model and unlabeled target data. Inspired by the recent success of Segment Anything Model (SAM) which exhibits the generality of segmenting images of various modalities and in different domains given human-annotated prompts like bounding boxes or points, we for the first time explore the potentials of Segment Anything Model for SFDA via automatedly finding an accurate bounding box prompt. We find that the bounding boxes directly generated with existing SFDA approaches are defective due to the domain gap. To tackle this issue, we propose a novel Dual Feature Guided (DFG) auto-prompting approach to search for the box prompt. Specifically, the source model is first trained in a feature aggregation phase, which not only preliminarily adapts the source model to the target domain but also builds a feature distribution well-prepared for box prompt search. In the second phase, based on two feature distribution observations, we gradually expand the box prompt with the guidance of the target model feature and the SAM feature to handle the class-wise clustered target features and the class-wise dispersed target features, respectively. To remove the potentially enlarged false positive regions caused by the over-confident prediction of the target model, the refined pseudo-labels produced by SAM are further postprocessed based on connectivity analysis. Experiments on 3D and 2D datasets indicate that our approach yields superior performance compared to conventional methods. Code is available at https://github.com/xmed-lab/DFG.
Authors:Alexandra Khirianova, Ekaterina Solodneva, Andrey Pudovikov, Sergey Osokin, Egor Samosvat, Yuriy Dorn, Alexander Ledovsky, Yana Zenkova
Abstract:
The optimization of bidding strategies for online advertising slot auctions presents a critical challenge across numerous digital marketplaces. A significant obstacle to the development, evaluation, and refinement of real-time autobidding algorithms is the scarcity of comprehensive datasets and standardized benchmarks.
To address this deficiency, we present an auction benchmark encompassing the two most prevalent auction formats. We implement a series of robust baselines on a novel dataset, addressing the most salient Real-Time Bidding (RTB) problem domains: budget pacing uniformity and Cost Per Click (CPC) constraint optimization. This benchmark provides a user-friendly and intuitive framework for researchers and practitioners to develop and refine innovative autobidding algorithms, thereby facilitating advancements in the field of programmatic advertising. The implementation and additional resources can be accessed at the following repository (https://github.com/avito-tech/bat-autobidding-benchmark, https://doi.org/10.5281/zenodo.14794182).
Authors:Shuai Xu, Sijia Cui, Yanna Wang, Bo Xu, Qi Wang
Abstract:
Efficiently modeling and exploiting opponents is a long-standing challenge in adversarial domains. Large Language Models (LLMs) trained on extensive textual data have recently demonstrated outstanding performance in general tasks, introducing new research directions for opponent modeling. Some studies primarily focus on directly using LLMs to generate decisions based on the elaborate prompt context that incorporates opponent descriptions, while these approaches are limited to scenarios where LLMs possess adequate domain expertise. To address that, we introduce a two-stage Strategy-Augmented Planning (SAP) framework that significantly enhances the opponent exploitation capabilities of LLM-based agents by utilizing a critical component, the Strategy Evaluation Network (SEN). Specifically, in the offline stage, we construct an explicit strategy space and subsequently collect strategy-outcome pair data for training the SEN network. During the online phase, SAP dynamically recognizes the opponent's strategies and greedily exploits them by searching best response strategy on the well-trained SEN, finally translating strategy to a course of actions by carefully designed prompts. Experimental results show that SAP exhibits robust generalization capabilities, allowing it to perform effectively not only against previously encountered opponent strategies but also against novel, unseen strategies. In the MicroRTS environment, SAP achieves a $85.35\%$ performance improvement over baseline methods and matches the competitiveness of reinforcement learning approaches against state-of-the-art (SOTA) rule-based AI. Our code is available at https://github.com/hsushuai/SAP.
Authors:Wenkui Yang, Zhida Zhang, Xiaoqiang Zhou, Junxian Duan, Jie Cao
Abstract:
The emergence and popularity of facial deepfake methods spur the vigorous development of deepfake datasets and facial forgery detection, which to some extent alleviates the security concerns about facial-related artificial intelligence technologies. However, when it comes to human body forgery, there has been a persistent lack of datasets and detection methods, due to the later inception and complexity of human body generation methods. To mitigate this issue, we introduce TikTok-DeepFake (TT-DF), a novel large-scale diffusion-based dataset containing 6,120 forged videos with 1,378,857 synthetic frames, specifically tailored for body forgery detection. TT-DF offers a wide variety of forgery methods, involving multiple advanced human image animation models utilized for manipulation, two generative configurations based on the disentanglement of identity and pose information, as well as different compressed versions. The aim is to simulate any potential unseen forged data in the wild as comprehensively as possible, and we also furnish a benchmark on TT-DF. Additionally, we propose an adapted body forgery detection model, Temporal Optical Flow Network (TOF-Net), which exploits the spatiotemporal inconsistencies and optical flow distribution differences between natural data and forged data. Our experiments demonstrate that TOF-Net achieves favorable performance on TT-DF, outperforming current state-of-the-art extendable facial forgery detection models. For our TT-DF dataset, please refer to https://github.com/HashTAG00002/TT-DF.
Authors:Huiyun Jiang, Zhuang Yang
Abstract:
Recent studies have shown the great potential of diffusion models in improving reinforcement learning (RL) by modeling complex policies, expressing a high degree of multi-modality, and efficiently handling high-dimensional continuous control tasks. However, there is currently limited research on how to optimize diffusion-based polices (e.g., Diffusion Policy) fast and stably. In this paper, we propose an Adam-based Diffusion Policy Optimization (ADPO), a fast algorithmic framework containing best practices for fine-tuning diffusion-based polices in robotic control tasks using the adaptive gradient descent method in RL. Adaptive gradient method is less studied in training RL, let alone diffusion-based policies. We confirm that ADPO outperforms other diffusion-based RL methods in terms of overall effectiveness for fine-tuning on standard robotic tasks. Concretely, we conduct extensive experiments on standard robotic control tasks to test ADPO, where, particularly, six popular diffusion-based RL methods are provided as benchmark methods. Experimental results show that ADPO acquires better or comparable performance than the baseline methods. Finally, we systematically analyze the sensitivity of multiple hyperparameters in standard robotics tasks, providing guidance for subsequent practical applications. Our video demonstrations are released in https://github.com/Timeless-lab/ADPO.git.
Authors:Erpai Luo, Jinmeng Jia, Yifan Xiong, Xiangyu Li, Xiaobo Guo, Baoqi Yu, Lei Wei, Xuegong Zhang
Abstract:
The rise of large language models and multi-agent systems has sparked growing interest in AI scientists capable of autonomous biological research. However, existing benchmarks either focus on reasoning without data or on data analysis with predefined statistical answers, lacking realistic, data-driven evaluation settings. Here, we introduce the Biological AI Scientist Benchmark (BaisBench), a benchmark designed to assess AI scientists' ability to generate biological discoveries through data analysis and reasoning with external knowledge. BaisBench comprises two tasks: cell type annotation on 31 expert-labeled single-cell datasets, and scientific discovery through answering 198 multiple-choice questions derived from the biological insights of 41 recent single-cell studies. Systematic experiments on state-of-the-art AI scientists and LLM agents showed that while promising, current models still substantially underperform human experts on both tasks. We hope BaisBench will fill this gap and serve as a foundation for advancing and evaluating AI models for scientific discovery. The benchmark can be found at: https://github.com/EperLuo/BaisBench.
Authors:Haodong Zhao, Peng Peng, Chiyu Chen, Linqing Huang, Gongshen Liu
Abstract:
Remote sensing (RS) images are usually produced at an unprecedented scale, yet they are geographically and institutionally distributed, making centralized model training challenging due to data-sharing restrictions and privacy concerns. Federated learning (FL) offers a solution by enabling collaborative model training across decentralized RS data sources without exposing raw data. However, there lacks a realistic federated dataset and benchmark in RS. Prior works typically rely on manually partitioned single dataset, which fail to capture the heterogeneity and scale of real-world RS data, and often use inconsistent experimental setups, hindering fair comparison. To address this gap, we propose a realistic federated RS dataset, termed FedRS. FedRS consists of eight datasets that cover various sensors and resolutions and builds 135 clients, which is representative of realistic operational scenarios. Data for each client come from the same source, exhibiting authentic federated properties such as skewed label distributions, imbalanced client data volumes, and domain heterogeneity across clients. These characteristics reflect practical challenges in federated RS and support evaluation of FL methods at scale. Based on FedRS, we implement 10 baseline FL algorithms and evaluation metrics to construct the comprehensive FedRS-Bench. The experimental results demonstrate that FL can consistently improve model performance over training on isolated data silos, while revealing performance trade-offs of different methods under varying client heterogeneity and availability conditions. We hope FedRS-Bench will accelerate research on large-scale, realistic FL in RS by providing a standardized, rich testbed and facilitating fair comparisons across future works. The source codes and dataset are available at https://fedrs-bench.github.io/.
Authors:Yunjie Ji, Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao, Xiangang Li
Abstract:
We present AM-Thinking-v1, a 32B dense language model that advances the frontier of reasoning, embodying the collaborative spirit of open-source innovation. Outperforming DeepSeek-R1 and rivaling leading Mixture-of-Experts (MoE) models like Qwen3-235B-A22B and Seed1.5-Thinking, AM-Thinking-v1 achieves impressive scores of 85.3 on AIME 2024, 74.4 on AIME 2025, and 70.3 on LiveCodeBench, showcasing state-of-the-art mathematical and coding capabilities among open-source models of similar scale.
Built entirely from the open-source Qwen2.5-32B base model and publicly available queries, AM-Thinking-v1 leverages a meticulously crafted post-training pipeline - combining supervised fine-tuning and reinforcement learning - to deliver exceptional reasoning capabilities. This work demonstrates that the open-source community can achieve high performance at the 32B scale, a practical sweet spot for deployment and fine-tuning. By striking a balance between top-tier performance and real-world usability, we hope AM-Thinking-v1 inspires further collaborative efforts to harness mid-scale models, pushing reasoning boundaries while keeping accessibility at the core of innovation. We have open-sourced our model on \href{https://huggingface.co/a-m-team/AM-Thinking-v1}{Hugging Face}.
Authors:Nibir Chandra Mandal, Oishee Bintey Hoque, Abhijin Adiga, Samarth Swarup, Mandy Wilson, Lu Feng, Yangfeng Ji, Miaomiao Zhang, Geoffrey Fox, Madhav Marathe
Abstract:
We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.
Authors:Midi Wan, Pengfei Li, Yizhuo Liang, Di Wu, Yushan Pan, Guangzhen Zhu, Hao Wang
Abstract:
Medical image synthesis plays a crucial role in providing anatomically accurate images for diagnosis and treatment. Hallux valgus, which affects approximately 19% of the global population, requires frequent weight-bearing X-rays for assessment, placing additional strain on both patients and healthcare providers. Existing X-ray models often struggle to balance image fidelity, skeletal consistency, and physical constraints, particularly in diffusion-based methods that lack skeletal guidance. We propose the Skeletal-Constrained Conditional Diffusion Model (SCCDM) and introduce KCC, a foot evaluation method utilizing skeletal landmarks. SCCDM incorporates multi-scale feature extraction and attention mechanisms, improving the Structural Similarity Index (SSIM) by 5.72% (0.794) and Peak Signal-to-Noise Ratio (PSNR) by 18.34% (21.40 dB). When combined with KCC, the model achieves an average score of 0.85, demonstrating strong clinical applicability. The code is available at https://github.com/midisec/SCCDM.
Authors:Haoran Ye, Jing Jin, Yuhang Xie, Xin Zhang, Guojie Song
Abstract:
The advancement of large language models (LLMs) has outpaced traditional evaluation methodologies. This progress presents novel challenges, such as measuring human-like psychological constructs, moving beyond static and task-specific benchmarks, and establishing human-centered evaluation. These challenges intersect with psychometrics, the science of quantifying the intangible aspects of human psychology, such as personality, values, and intelligence. This review paper introduces and synthesizes the emerging interdisciplinary field of LLM Psychometrics, which leverages psychometric instruments, theories, and principles to evaluate, understand, and enhance LLMs. The reviewed literature systematically shapes benchmarking principles, broadens evaluation scopes, refines methodologies, validates results, and advances LLM capabilities. Diverse perspectives are integrated to provide a structured framework for researchers across disciplines, enabling a more comprehensive understanding of this nascent field. Ultimately, the review provides actionable insights for developing future evaluation paradigms that align with human-level AI and promote the advancement of human-centered AI systems for societal benefit. A curated repository of LLM psychometric resources is available at https://github.com/valuebyte-ai/Awesome-LLM-Psychometrics.
Authors:Hogyun Kim, Jiwon Choi, Juwon Kim, Geonmo Yang, Dongjin Cho, Hyungtae Lim, Younggun Cho
Abstract:
Distributed LiDAR SLAM is crucial for achieving efficient robot autonomy and improving the scalability of mapping. However, two issues need to be considered when applying it in field environments: one is resource limitation, and the other is inter/intra-robot association. The resource limitation issue arises when the data size exceeds the processing capacity of the network or memory, especially when utilizing communication systems or onboard computers in the field. The inter/intra-robot association issue occurs due to the narrow convergence region of ICP under large viewpoint differences, triggering many false positive loops and ultimately resulting in an inconsistent global map for multi-robot systems. To tackle these problems, we propose a distributed LiDAR SLAM framework designed for versatile field applications, called SKiD-SLAM. Extending our previous work that solely focused on lightweight place recognition and fast and robust global registration, we present a multi-robot mapping framework that focuses on robust and lightweight inter-robot loop closure in distributed LiDAR SLAM. Through various environmental experiments, we demonstrate that our method is more robust and lightweight compared to other state-of-the-art distributed SLAM approaches, overcoming resource limitation and inter/intra-robot association issues. Also, we validated the field applicability of our approach through mapping experiments in real-world planetary emulation terrain and cave environments, which are in-house datasets. Our code will be available at https://sparolab.github.io/research/skid_slam/.
Authors:Wangxuan Fan, Siqi Li, Doudou Zhou, Yohei Okada, Chuan Hong, Molei Liu, Nan Liu
Abstract:
Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.
Authors:He Huang, Qi Yang, Mufan Liu, Yiling Xu, Zhu Li
Abstract:
Existing 4D Gaussian Splatting methods rely on per-Gaussian deformation from a canonical space to target frames, which overlooks redundancy among adjacent Gaussian primitives and results in suboptimal performance. To address this limitation, we propose Anchor-Driven Deformable and Compressed Gaussian Splatting (ADC-GS), a compact and efficient representation for dynamic scene reconstruction. Specifically, ADC-GS organizes Gaussian primitives into an anchor-based structure within the canonical space, enhanced by a temporal significance-based anchor refinement strategy. To reduce deformation redundancy, ADC-GS introduces a hierarchical coarse-to-fine pipeline that captures motions at varying granularities. Moreover, a rate-distortion optimization is adopted to achieve an optimal balance between bitrate consumption and representation fidelity. Experimental results demonstrate that ADC-GS outperforms the per-Gaussian deformation approaches in rendering speed by 300%-800% while achieving state-of-the-art storage efficiency without compromising rendering quality. The code is released at https://github.com/H-Huang774/ADC-GS.git.
Authors:Xiannan Huang, Shuhan Qiu
Abstract:
Time series forecasting is critical for many applications, where deep learning-based point prediction models have demonstrated strong performance. However, in practical scenarios, there is also a need to quantify predictive uncertainty through online confidence intervals. Existing confidence interval modeling approaches building upon these deep point prediction models suffer from key limitations: they either require costly retraining, fail to fully leverage the representational strengths of deep models, or lack theoretical guarantees. To address these gaps, we propose a lightweight conformal prediction method that provides valid coverage and shorter interval lengths without retraining. Our approach leverages features extracted from pre-trained point prediction models to fit a residual predictor and construct confidence intervals, further enhanced by an adaptive coverage control mechanism. Theoretically, we prove that our method achieves asymptotic coverage convergence, with error bounds dependent on the feature quality of the underlying point prediction model. Experiments on 12 datasets demonstrate that our method delivers tighter confidence intervals while maintaining desired coverage rates. Code, model and dataset in \href{https://github.com/xiannanhuang/FFDCI}{Github}
Authors:Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam, Tuan Ngo
Abstract:
Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
Authors:Laszlo Szilagyi, Francis Engelmann, Jeannette Bohg
Abstract:
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
Authors:Jiashen, Du, Jesse Yao, Allen Liu, Zhekai Zhang
Abstract:
One open question in the study of Large Language Models (LLMs) is whether they can emulate human ethical reasoning and act as believable proxies for human judgment. To investigate this, we introduce a benchmark dataset comprising 196 real-world ethical dilemmas and expert opinions, each segmented into five structured components: Introduction, Key Factors, Historical Theoretical Perspectives, Resolution Strategies, and Key Takeaways. We also collect non-expert human responses for comparison, limited to the Key Factors section due to their brevity. We evaluate multiple frontier LLMs (GPT-4o-mini, Claude-3.5-Sonnet, Deepseek-V3, Gemini-1.5-Flash) using a composite metric framework based on BLEU, Damerau-Levenshtein distance, TF-IDF cosine similarity, and Universal Sentence Encoder similarity. Metric weights are computed through an inversion-based ranking alignment and pairwise AHP analysis, enabling fine-grained comparison of model outputs to expert responses. Our results show that LLMs generally outperform non-expert humans in lexical and structural alignment, with GPT-4o-mini performing most consistently across all sections. However, all models struggle with historical grounding and proposing nuanced resolution strategies, which require contextual abstraction. Human responses, while less structured, occasionally achieve comparable semantic similarity, suggesting intuitive moral reasoning. These findings highlight both the strengths and current limitations of LLMs in ethical decision-making.
Authors:Luu Tung Hai, Thinh D. Le, Zhicheng Ding, Qing Tian, Truong-Son Hy
Abstract:
Point cloud processing has gained significant attention due to its critical role in applications such as autonomous driving and 3D object recognition. However, deploying high-performance models like Point Transformer V3 in resource-constrained environments remains challenging due to their high computational and memory demands. This work introduces a novel distillation framework that leverages topology-aware representations and gradient-guided knowledge distillation to effectively transfer knowledge from a high-capacity teacher to a lightweight student model. Our approach captures the underlying geometric structures of point clouds while selectively guiding the student model's learning process through gradient-based feature alignment. Experimental results in the Nuscenes, SemanticKITTI, and Waymo datasets demonstrate that the proposed method achieves competitive performance, with an approximately 16x reduction in model size and a nearly 1.9x decrease in inference time compared to its teacher model. Notably, on NuScenes, our method achieves state-of-the-art performance among knowledge distillation techniques trained solely on LiDAR data, surpassing prior knowledge distillation baselines in segmentation performance. Our implementation is available publicly at:
https://github.com/HySonLab/PointDistill
Authors:Alexandre Cotorobai, Jorge Miguel Silva, Jose Luis Oliveira
Abstract:
Privacy and regulatory barriers often hinder centralized machine learning solutions, particularly in sectors like healthcare where data cannot be freely shared. Federated learning has emerged as a powerful paradigm to address these concerns; however, existing frameworks primarily support gradient-based models, leaving a gap for more interpretable, tree-based approaches. This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings. By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data without exposing sensitive information. The framework supports weighted model averaging to account for varying data distributions, incremental learning to progressively refine models, and local evaluation to assess performance across heterogeneous datasets. Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive predictive accuracy - within a maximum 9\% margin of centralized methods - while satisfying stringent privacy requirements. These findings underscore the viability of tree-based federated learning for scenarios where data cannot be centralized due to regulatory, competitive, or technical constraints. The proposed solution addresses a notable gap in existing federated learning libraries, offering an adaptable tool for secure distributed machine learning tasks that demand both transparency and reliable performance. The tool is available at https://github.com/ieeta-pt/fed_rf.
Authors:Yu Cheng, Arushi Goel, Hakan Bilen
Abstract:
Answering complex visual questions like `Which red furniture can be used for sitting?' requires multi-step reasoning, including object recognition, attribute filtering, and relational understanding. Recent work improves interpretability in multimodal large language models (MLLMs) by decomposing tasks into sub-task programs, but these methods are computationally expensive and less accurate due to poor adaptation to target data. To address this, we introduce VISTAR (Visually Interpretable Subtask-Aware Reasoning Model), a subtask-driven training framework that enhances both interpretability and reasoning by generating textual and visual explanations within MLLMs. Instead of relying on external models, VISTAR fine-tunes MLLMs to produce structured Subtask-of-Thought rationales (step-by-step reasoning sequences). Experiments on two benchmarks show that VISTAR consistently improves reasoning accuracy while maintaining interpretability. Our code and dataset will be available at https://github.com/ChengJade/VISTAR.
Authors:Héber H. Arcolezi, Mina Alishahi, Adda-Akram Bendoukha, Nesrine Kaaniche
Abstract:
Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as $k$-anonymity, $\ell$-diversity, and $t$-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to four orders of magnitude. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.
Authors:Joseph Tooby-Smith
Abstract:
Wick's theorem is a cornerstone of perturbative quantum field theory. In this paper we announce and discuss the digitalization of Wick's theorem and its proof into the interactive theorem prover Lean 4 as part of the project PhysLean. We do the same for the static and normal-ordered versions of Wick's theorem.
Authors:Bowen Zhang, Congchao Guo, Geng Yang, Hang Yu, Haozhe Zhang, Heidi Lei, Jialong Mai, Junjie Yan, Kaiyue Yang, Mingqi Yang, Peikai Huang, Ruiyang Jin, Sitan Jiang, Weihua Cheng, Yawei Li, Yichen Xiao, Yiying Zhou, Yongmao Zhang, Yuan Lu, Yucen He
Abstract:
We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples.
Authors:Yuyang Liu, Liuzhenghao Lv, Xiancheng Zhang, Li Yuan, Yonghong Tian
Abstract:
Biological protocols are fundamental to reproducibility and safety in life science research. While large language models (LLMs) perform well on general tasks, their systematic evaluation on these highly specialized, accuracy-critical, and inherently procedural texts remains limited. In this work, we present BioProBench, the first large-scale, multi-task benchmark for biological protocol understanding and reasoning. While there are several benchmark tasks involving protocol question answering, BioProBench provides a comprehensive suite of five core tasks: Protocol Question Answering, Step Ordering, Error Correction, Protocol Generation, and Protocol Reasoning, enabling a holistic evaluation of LLMs on procedural biological texts. Built upon 27K original protocols, it yields nearly 556K high-quality structured instances. We evaluate 12 mainstream open/closed-source LLMs. Experimental results reveal that some models perform well on basic understanding tasks (e.g., \sim70% PQA-Acc., >64% ERR F1), but struggle significantly with deep reasoning and structured generation tasks like ordering and generation. Furthermore, model comparisons show diverse performance: certain open-source models approach closed-source levels on some tasks, yet bio-specific small models lag behind general LLMs, indicating limitations on complex procedural content. Overall, BioProBench, through its task design and experimental findings, systematically reveals the fundamental challenges for current LLMs in procedural knowledge understanding, deep adaptability to specific domains, reliability of structured reasoning, and handling of sophisticated precision and safety constraints, providing key directions for future AI in the field of scientific experiment automation. The code and data are available at: https://github.com/YuyangSunshine/bioprotocolbench and https://huggingface.co/datasets/BioProBench/BioProBench.
Authors:Songyin Wu, Zhaoyang Lv, Yufeng Zhu, Duncan Frost, Zhengqin Li, Ling-Qi Yan, Carl Ren, Richard Newcombe, Zhao Dong
Abstract:
We propose an online 3D Gaussian-based dense mapping framework for photorealistic details reconstruction from a monocular image stream. Our approach addresses two key challenges in monocular online reconstruction: distributing Gaussians without relying on depth maps and ensuring both local and global consistency in the reconstructed maps. To achieve this, we introduce two key modules: the Hierarchical Gaussian Management Module for effective Gaussian distribution and the Global Consistency Optimization Module for maintaining alignment and coherence at all scales. In addition, we present the Multi-level Occupancy Hash Voxels (MOHV), a structure that regularizes Gaussians for capturing details across multiple levels of granularity. MOHV ensures accurate reconstruction of both fine and coarse geometries and textures, preserving intricate details while maintaining overall structural integrity. Compared to state-of-the-art RGB-only and even RGB-D methods, our framework achieves superior reconstruction quality with high computational efficiency. Moreover, it integrates seamlessly with various tracking systems, ensuring generality and scalability.
Authors:Qian Xu, Lei Zhang, Yixiao Liu
Abstract:
Connected Autonomous Vehicles (CAVs) operate in dynamic, open, and multi-domain networks, rendering them vulnerable to various threats. Trust Management Systems (TMS) systematically organize essential steps in the trust mechanism, identifying malicious nodes against internal threats and external threats, as well as ensuring reliable decision-making for more cooperative tasks. Recent advances in machine learning (ML) offer significant potential to enhance TMS, especially for the strict requirements of CAVs, such as CAV nodes moving at varying speeds, and opportunistic and intermittent network behavior. Those features distinguish ML-based TMS from social networks, static IoT, and Social IoT. This survey proposes a novel three-layer ML-based TMS framework for CAVs in the vehicle-road-cloud integration system, i.e., trust data layer, trust calculation layer and trust incentive layer. A six-dimensional taxonomy of objectives is proposed. Furthermore, the principles of ML methods for each module in each layer are analyzed. Then, recent studies are categorized based on traffic scenarios that are against the proposed objectives. Finally, future directions are suggested, addressing the open issues and meeting the research trend. We maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/octoberzzzzz/ML-based-TMS-CAV-Survey.
Authors:HsiaoYuan Hsu, Yuxin Peng
Abstract:
In poster design, content-aware layout generation is crucial for automatically arranging visual-textual elements on the given image. With limited training data, existing work focused on image-centric enhancement. However, this neglects the diversity of layouts and fails to cope with shape-variant elements or diverse design intents in generalized settings. To this end, we proposed a layout-centric approach that leverages layout knowledge implicit in large language models (LLMs) to create posters for omnifarious purposes, hence the name PosterO. Specifically, it structures layouts from datasets as trees in SVG language by universal shape, design intent vectorization, and hierarchical node representation. Then, it applies LLMs during inference to predict new layout trees by in-context learning with intent-aligned example selection. After layout trees are generated, we can seamlessly realize them into poster designs by editing the chat with LLMs. Extensive experimental results have demonstrated that PosterO can generate visually appealing layouts for given images, achieving new state-of-the-art performance across various benchmarks. To further explore PosterO's abilities under the generalized settings, we built PStylish7, the first dataset with multi-purpose posters and various-shaped elements, further offering a challenging test for advanced research.
Authors:Yiyang Lu, Yufeng Tian, Zhecheng Yuan, Xianbang Wang, Pu Hua, Zhengrong Xue, Huazhe Xu
Abstract:
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce $\textbf{Triply-Hierarchical Diffusion Policy}~(\textbf{H$^{\mathbf{3}}$DP})$, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H$^{3}$DP contains $\mathbf{3}$ levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H$^{3}$DP yields a $\mathbf{+27.5\%}$ average relative improvement over baselines across $\mathbf{44}$ simulation tasks and achieves superior performance in $\mathbf{4}$ challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
Authors:Kanchana Ranasinghe, Xiang Li, E-Ro Nguyen, Cristina Mata, Jongwoo Park, Michael S Ryoo
Abstract:
We present LangToMo, a vision-language-action framework structured as a dual-system architecture that uses pixel motion forecasts as intermediate representations. Our high-level System 2, an image diffusion model, generates text-conditioned pixel motion sequences from a single frame to guide robot control. Pixel motion-a universal, interpretable, and motion-centric representation-can be extracted from videos in a weakly-supervised manner, enabling diffusion model training on any video-caption data. Treating generated pixel motion as learned universal representations, our low level System 1 module translates these into robot actions via motion-to-action mapping functions, which can be either hand-crafted or learned with minimal supervision. System 2 operates as a high-level policy applied at sparse temporal intervals, while System 1 acts as a low-level policy at dense temporal intervals. This hierarchical decoupling enables flexible, scalable, and generalizable robot control under both unsupervised and supervised settings, bridging the gap between language, motion, and action. Checkout https://kahnchana.github.io/LangToMo
Authors:Chenze Shao, Fandong Meng, Jie Zhou
Abstract:
Conventional wisdom suggests that autoregressive models are used to process discrete data. When applied to continuous modalities such as visual data, Visual AutoRegressive modeling (VAR) typically resorts to quantization-based approaches to cast the data into a discrete space, which can introduce significant information loss. To tackle this issue, we introduce a Continuous VAR framework that enables direct visual autoregressive generation without vector quantization. The underlying theoretical foundation is strictly proper scoring rules, which provide powerful statistical tools capable of evaluating how well a generative model approximates the true distribution. Within this framework, all we need is to select a strictly proper score and set it as the training objective to optimize. We primarily explore a class of training objectives based on the energy score, which is likelihood-free and thus overcomes the difficulty of making probabilistic predictions in the continuous space. Previous efforts on continuous autoregressive generation, such as GIVT and diffusion loss, can also be derived from our framework using other strictly proper scores. Source code: https://github.com/shaochenze/EAR.
Authors:Assaf Ben-Kish, Itamar Zimerman, M. Jehanzeb Mirza, Lior Wolf, James Glass, Leonid Karlinsky, Raja Giryes
Abstract:
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
Authors:Xinji Mai, Haotian Xu, Zhong-Zhi Li, Xing W, Weinong Wang, Jian Hu, Yingying Zhang, Wenqiang Zhang
Abstract:
Large Language Models (LLMs) often struggle with mathematical reasoning tasks requiring precise, verifiable computation. While Reinforcement Learning (RL) from outcome-based rewards enhances text-based reasoning, understanding how agents autonomously learn to leverage external tools like code execution remains crucial. We investigate RL from outcome-based rewards for Tool-Integrated Reasoning, ZeroTIR, training base LLMs to spontaneously generate and execute Python code for mathematical problems without supervised tool-use examples. Our central contribution is we demonstrate that as RL training progresses, key metrics scale predictably. Specifically, we observe strong positive correlations where increased training steps lead to increases in the spontaneous code execution frequency, the average response length, and, critically, the final task accuracy. This suggests a quantifiable relationship between computational effort invested in training and the emergence of effective, tool-augmented reasoning strategies. We implement a robust framework featuring a decoupled code execution environment and validate our findings across standard RL algorithms and frameworks. Experiments show ZeroTIR significantly surpasses non-tool ZeroRL baselines on challenging math benchmarks. Our findings provide a foundational understanding of how autonomous tool use is acquired and scales within Agent RL, offering a reproducible benchmark for future studies. Code is released at \href{https://github.com/yyht/openrlhf_async_pipline}{https://github.com/yyht/openrlhf\_async\_pipline}.
Authors:Quang Vinh Nguyen, Minh Duc Nguyen, Thanh Hoang Son Vo, Hyung-Jeong Yang, Soo-Hyung Kim
Abstract:
Automated Radiology report generation (RRG) aims at producing detailed descriptions of medical images, reducing radiologists' workload and improving access to high-quality diagnostic services. Existing encoder-decoder models only rely on visual features extracted from raw input images, which can limit the understanding of spatial structures and semantic relationships, often resulting in suboptimal text generation. To address this, we propose Anatomical Attention Alignment Network (A3Net), a framework that enhance visual-textual understanding by constructing hyper-visual representations. Our approach integrates a knowledge dictionary of anatomical structures with patch-level visual features, enabling the model to effectively associate image regions with their corresponding anatomical entities. This structured representation improves semantic reasoning, interpretability, and cross-modal alignment, ultimately enhancing the accuracy and clinical relevance of generated reports. Experimental results on IU X-Ray and MIMIC-CXR datasets demonstrate that A3Net significantly improves both visual perception and text generation quality. Our code is available at \href{https://github.com/Vinh-AI/A3Net}{GitHub}.
Authors:Feng Yuan, Yifan Gao, Wenbin Wu, Keqing Wu, Xiaotong Guo, Jie Jiang, Xin Gao
Abstract:
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba
Authors:Dieu-Donne Fangnon, Armandine Sorel Kouyim Meli, Verlon Roel Mbingui, Phanie Dianelle Negho, Regis Konan Marcel Djaha
Abstract:
Artificial intelligence (AI) has demonstrated remarkable success across various applications. In light of this trend, the field of automated trading has developed a keen interest in leveraging AI techniques to forecast the future prices of financial assets. This interest stems from the need to address trading challenges posed by the inherent volatility and dynamic nature of asset prices. However, crafting a flawless strategy becomes a formidable task when dealing with assets characterized by intricate and ever-changing price dynamics. To surmount these formidable challenges, this research employs an innovative rule-based strategy approach to train Deep Reinforcement Learning (DRL). This application is carried out specifically in the context of trading Bitcoin (BTC) and Ripple (XRP). Our proposed approach hinges on the integration of Deep Q-Network, Double Deep Q-Network, Dueling Deep Q-learning networks, alongside the Advantage Actor-Critic algorithms. Each of them aims to yield an optimal policy for our application. To evaluate the effectiveness of our Deep Reinforcement Learning (DRL) approach, we rely on portfolio wealth and the trade signal as performance metrics. The experimental outcomes highlight that Duelling and Double Deep Q-Network outperformed when using XRP with the increasing of the portfolio wealth. All codes are available in this \href{https://github.com/VerlonRoelMBINGUI/RL_Final_Projects_AMMI2023}{\color{blue}Github link}.
Authors:Paul Primus, Florian Schmid, Gerhard Widmer
Abstract:
Learning to associate audio with textual descriptions is valuable for a range of tasks, including pretraining, zero-shot classification, audio retrieval, audio captioning, and text-conditioned audio generation. Existing contrastive language-audio pretrained models are typically trained using global, clip-level descriptions, which provide only weak temporal supervision. We hypothesize that CLAP-like language-audio models - particularly, if they are expected to produce frame-level embeddings - can benefit from a stronger temporal supervision. To confirm our hypothesis, we curate a novel dataset of approximately 12,000 audio recordings from Freesound, each annotated with single-sentence free-text descriptions linked to a specific temporal segment in an audio recording. We use large language models to clean these annotations by removing references to non-audible events, transcribed speech, typos, and annotator language bias. We further propose a frame-wise contrastive training strategy that learns to align text descriptions with temporal regions in an audio recording and demonstrate that our model has better temporal text-audio alignment abilities compared to models trained only on global captions when evaluated on the AudioSet Strong benchmark. The dataset and our source code are available on Zenodo and GitHub, respectively.
Authors:LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin Zhang, Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian, Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin Zhang, Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, Zihao Yue
Abstract:
We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
Authors:Oriol Barbany, Adrià Colomé, Carme Torras
Abstract:
Manipulating clothes is challenging due to their complex dynamics, high deformability, and frequent self-occlusions. Garments exhibit a nearly infinite number of configurations, making explicit state representations difficult to define. In this paper, we analyze BiFold, a model that predicts language-conditioned pick-and-place actions from visual observations, while implicitly encoding garment state through end-to-end learning. To address scenarios such as crumpled garments or recovery from failed manipulations, BiFold leverages temporal context to improve state estimation. We examine the internal representations of the model and present evidence that its fine-tuning and temporal context enable effective alignment between text and image regions, as well as temporal consistency.
Authors:Junjie Ye, Caishuang Huang, Zhuohan Chen, Wenjie Fu, Chenyuan Yang, Leyi Yang, Yilong Wu, Peng Wang, Meng Zhou, Xiaolong Yang, Tao Gui, Qi Zhang, Zhongchao Shi, Jianping Fan, Xuanjing Huang
Abstract:
Instruction following evaluates large language models (LLMs) on their ability to generate outputs that adhere to user-defined constraints. However, existing benchmarks often rely on templated constraint prompts, which lack the diversity of real-world usage and limit fine-grained performance assessment. To fill this gap, we propose a multi-dimensional constraint framework encompassing three constraint patterns, four constraint categories, and four difficulty levels. Building on this framework, we develop an automated instruction generation pipeline that performs constraint expansion, conflict detection, and instruction rewriting, yielding 1,200 code-verifiable instruction-following test samples. We evaluate 19 LLMs across seven model families and uncover substantial variation in performance across constraint forms. For instance, average performance drops from 77.67% at Level I to 32.96% at Level IV. Furthermore, we demonstrate the utility of our approach by using it to generate data for reinforcement learning, achieving substantial gains in instruction following without degrading general performance. In-depth analysis indicates that these gains stem primarily from modifications in the model's attention modules parameters, which enhance constraint recognition and adherence. Code and data are available in https://github.com/Junjie-Ye/MulDimIF.
Authors:Sarah de Boer, Hartmut Häntze, Kiran Vaidhya Venkadesh, Myrthe A. D. Buser, Gabriel E. Humpire Mamani, Lina Xu, Lisa C. Adams, Jawed Nawabi, Keno K. Bressem, Bram van Ginneken, Mathias Prokop, Alessa Hering
Abstract:
Kidney abnormality segmentation has important potential to enhance the clinical workflow, especially in settings requiring quantitative assessments. Kidney volume could serve as an important biomarker for renal diseases, with changes in volume correlating directly with kidney function. Currently, clinical practice often relies on subjective visual assessment for evaluating kidney size and abnormalities, including tumors and cysts, which are typically staged based on diameter, volume, and anatomical location. To support a more objective and reproducible approach, this research aims to develop a robust, thoroughly validated kidney abnormality segmentation algorithm, made publicly available for clinical and research use. We employ publicly available training datasets and leverage the state-of-the-art medical image segmentation framework nnU-Net. Validation is conducted using both proprietary and public test datasets, with segmentation performance quantified by Dice coefficient and the 95th percentile Hausdorff distance. Furthermore, we analyze robustness across subgroups based on patient sex, age, CT contrast phases, and tumor histologic subtypes. Our findings demonstrate that our segmentation algorithm, trained exclusively on publicly available data, generalizes effectively to external test sets and outperforms existing state-of-the-art models across all tested datasets. Subgroup analyses reveal consistent high performance, indicating strong robustness and reliability. The developed algorithm and associated code are publicly accessible at https://github.com/DIAGNijmegen/oncology-kidney-abnormality-segmentation.
Authors:Kamil Jeziorek, Tomasz Kryjak
Abstract:
Event cameras offer significant advantages over traditional frame-based sensors. These include microsecond temporal resolution, robustness under varying lighting conditions and low power consumption. Nevertheless, the effective processing of their sparse, asynchronous event streams remains challenging. Existing approaches to this problem can be categorised into two distinct groups. The first group involves the direct processing of event data with neural models, such as Spiking Neural Networks or Graph Convolutional Neural Networks. However, this approach is often accompanied by a compromise in terms of qualitative performance. The second group involves the conversion of events into dense representations with handcrafted aggregation functions, which can boost accuracy at the cost of temporal fidelity. This paper introduces a novel Self-Supervised Event Representation (SSER) method leveraging Gated Recurrent Unit (GRU) networks to achieve precise per-pixel encoding of event timestamps and polarities without temporal discretisation. The recurrent layers are trained in a self-supervised manner to maximise the fidelity of event-time encoding. The inference is performed with event representations generated asynchronously, thus ensuring compatibility with high-throughput sensors. The experimental validation demonstrates that SSER outperforms aggregation-based baselines, achieving improvements of 2.4% mAP and 0.6% on the Gen1 and 1 Mpx object detection datasets. Furthermore, the paper presents the first hardware implementation of recurrent representation for event data on a System-on-Chip FPGA, achieving sub-microsecond latency and power consumption between 1-2 W, suitable for real-time, power-efficient applications. Code is available at https://github.com/vision-agh/RecRepEvent.
Authors:Hao Li, Sicheng Li, Xiang Gao, Abudouaihati Batuer, Lu Yu, Yiyi Liao
Abstract:
Immersive video offers a 6-Dof-free viewing experience, potentially playing a key role in future video technology. Recently, 4D Gaussian Splatting has gained attention as an effective approach for immersive video due to its high rendering efficiency and quality, though maintaining quality with manageable storage remains challenging. To address this, we introduce GIFStream, a novel 4D Gaussian representation using a canonical space and a deformation field enhanced with time-dependent feature streams. These feature streams enable complex motion modeling and allow efficient compression by leveraging temporal correspondence and motion-aware pruning. Additionally, we incorporate both temporal and spatial compression networks for end-to-end compression. Experimental results show that GIFStream delivers high-quality immersive video at 30 Mbps, with real-time rendering and fast decoding on an RTX 4090. Project page: https://xdimlab.github.io/GIFStream
Authors:Bohan Wang, Zhongqi Yue, Fengda Zhang, Shuo Chen, Li'an Bi, Junzhe Zhang, Xue Song, Kennard Yanting Chan, Jiachun Pan, Weijia Wu, Mingze Zhou, Wang Lin, Kaihang Pan, Saining Zhang, Liyu Jia, Wentao Hu, Wei Zhao, Hanwang Zhang
Abstract:
We completely discard the conventional spatial prior in image representation and introduce a novel discrete visual tokenizer: Self-consistency Tokenizer (Selftok). At its design core, we compose an autoregressive (AR) prior -- mirroring the causal structure of language -- into visual tokens by using the reverse diffusion process of image generation. The AR property makes Selftok fundamentally distinct from traditional spatial tokens in the following two key ways: - Selftok offers an elegant and minimalist approach to unify diffusion and AR for vision-language models (VLMs): By representing images with Selftok tokens, we can train a VLM using a purely discrete autoregressive architecture -- like that in LLMs -- without requiring additional modules or training objectives. - We theoretically show that the AR prior satisfies the Bellman equation, whereas the spatial prior does not. Therefore, Selftok supports reinforcement learning (RL) for visual generation with effectiveness comparable to that achieved in LLMs. Besides the AR property, Selftok is also a SoTA tokenizer that achieves a favorable trade-off between high-quality reconstruction and compression rate. We use Selftok to build a pure AR VLM for both visual comprehension and generation tasks. Impressively, without using any text-image training pairs, a simple policy gradient RL working in the visual tokens can significantly boost the visual generation benchmark, surpassing all the existing models by a large margin. Therefore, we believe that Selftok effectively addresses the long-standing challenge that visual tokens cannot support effective RL. When combined with the well-established strengths of RL in LLMs, this brings us one step closer to realizing a truly multimodal LLM. Project Page: https://selftok-team.github.io/report/.
Authors:Hu Wang, Congbo Ma, Ian Reid, Mohammad Yaqub
Abstract:
The advantage function is a central concept in RL that helps reduce variance in policy gradient estimates. Recently, for language modeling, Group Relative Policy Optimization (GRPO) was proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group. However, it can lead to high variance when the reward advantage is inaccurately predicted. In this work, we propose Kalman Filter Enhanced Group Relative Policy Optimization (KRPO) model, by using lightweight Kalman filtering to dynamically estimate the latent reward baseline and uncertainty. This filtering technique replaces the naive group mean, enabling more adaptive advantage normalization. Our method does not require additional learned parameters over GRPO. This approach offers a simple yet effective way to incorporate multiple outputs of GRPO into advantage estimation, improving policy optimization in settings where highly dynamic reward signals are difficult to model for language models. Through the accuracies and rewards obtained from math question answering and reasoning, we show that using a more adaptive advantage estimation model, KRPO can improve the stability and performance of GRPO. The code is available at https://github.com/billhhh/KRPO_LLMs_RL.
Authors:Feng Ding, Tingting Wang, Yupeng Gao, Shuo Yu, Jing Ren, Feng Xia
Abstract:
Outdated facts in temporal knowledge graphs (TKGs) result from exceeding the expiration date of facts, which negatively impact reasoning performance on TKGs. However, existing reasoning methods primarily focus on positive importance of historical facts, neglecting adverse effects of outdated facts. Besides, training on these outdated facts yields extra computational cost. To address these challenges, we propose an outdated fact filtering framework named HALO, which quantifies the temporal validity of historical facts by exploring the half-life theory to filter outdated facts in TKGs. HALO consists of three modules: the temporal fact attention module, the dynamic relation-aware encoder module, and the outdated fact filtering module. Firstly, the temporal fact attention module captures the evolution of historical facts over time to identify relevant facts. Secondly, the dynamic relation-aware encoder module is designed for efficiently predicting the half life of each fact. Finally, we construct a time decay function based on the half-life theory to quantify the temporal validity of facts and filter outdated facts. Experimental results show that HALO outperforms the state-of-the-art TKG reasoning methods on three public datasets, demonstrating its effectiveness in detecting and filtering outdated facts (Codes are available at https://github.com/yushuowiki/K-Half/tree/main ).
Authors:Mohamed Ali Souibgui, Changkyu Choi, Andrey Barsky, Kangsoo Jung, Ernest Valveny, Dimosthenis Karatzas
Abstract:
We propose DocVXQA, a novel framework for visually self-explainable document question answering. The framework is designed not only to produce accurate answers to questions but also to learn visual heatmaps that highlight contextually critical regions, thereby offering interpretable justifications for the model's decisions. To integrate explanations into the learning process, we quantitatively formulate explainability principles as explicit learning objectives. Unlike conventional methods that emphasize only the regions pertinent to the answer, our framework delivers explanations that are \textit{contextually sufficient} while remaining \textit{representation-efficient}. This fosters user trust while achieving a balance between predictive performance and interpretability in DocVQA applications. Extensive experiments, including human evaluation, provide strong evidence supporting the effectiveness of our method. The code is available at https://github.com/dali92002/DocVXQA.
Authors:Hongkun Dou, Zeyu Li, Xingyu Jiang, Hongjue Li, Lijun Yang, Wen Yao, Yue Deng
Abstract:
Diffusion models (DMs) have recently demonstrated remarkable success in modeling large-scale data distributions. However, many downstream tasks require guiding the generated content based on specific differentiable metrics, typically necessitating backpropagation during the generation process. This approach is computationally expensive, as generating with DMs often demands tens to hundreds of recursive network calls, resulting in high memory usage and significant time consumption. In this paper, we propose a more efficient alternative that approaches the problem from the perspective of parallel denoising. We show that full backpropagation throughout the entire generation process is unnecessary. The downstream metrics can be optimized by retaining the computational graph of only one step during generation, thus providing a shortcut for gradient propagation. The resulting method, which we call Shortcut Diffusion Optimization (SDO), is generic, high-performance, and computationally lightweight, capable of optimizing all parameter types in diffusion sampling. We demonstrate the effectiveness of SDO on several real-world tasks, including controlling generation by optimizing latent and aligning the DMs by fine-tuning network parameters. Compared to full backpropagation, our approach reduces computational costs by $\sim 90\%$ while maintaining superior performance. Code is available at https://github.com/deng-ai-lab/SDO.
Authors:Wei Li, Ming Hu, Guoan Wang, Lihao Liu, Kaijing Zhou, Junzhi Ning, Xin Guo, Zongyuan Ge, Lixu Gu, Junjun He
Abstract:
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/uni-medical/Ophora.
Authors:Peng Sun, Yi Jiang, Tao Lin
Abstract:
Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
Authors:Hanjing Ye, Yu Zhan, Weixi Situ, Guangcheng Chen, Jingwen Yu, Ziqi Zhao, Kuanqi Cai, Arash Ajoudani, Hong Zhang
Abstract:
Tracking a target person from robot-egocentric views is crucial for developing autonomous robots that provide continuous personalized assistance or collaboration in Human-Robot Interaction (HRI) and Embodied AI. However, most existing target person tracking (TPT) benchmarks are limited to controlled laboratory environments with few distractions, clean backgrounds, and short-term occlusions. In this paper, we introduce a large-scale dataset designed for TPT in crowded and unstructured environments, demonstrated through a robot-person following task. The dataset is collected by a human pushing a sensor-equipped cart while following a target person, capturing human-like following behavior and emphasizing long-term tracking challenges, including frequent occlusions and the need for re-identification from numerous pedestrians. It includes multi-modal data streams, including odometry, 3D LiDAR, IMU, panoramic images, and RGB-D images, along with exhaustively annotated 2D bounding boxes of the target person across 48 sequences, both indoors and outdoors. Using this dataset and visual annotations, we perform extensive experiments with existing SOTA TPT methods, offering a thorough analysis of their limitations and suggesting future research directions.
Authors:Truc Mai-Thanh Nguyen, Dat Minh Nguyen, Son T. Luu, Kiet Van Nguyen
Abstract:
Multimodal Review Helpfulness Prediction (MRHP) is an essential task in recommender systems, particularly in E-commerce platforms. Determining the helpfulness of user-generated reviews enhances user experience and improves consumer decision-making. However, existing datasets focus predominantly on English and Indonesian, resulting in a lack of linguistic diversity, especially for low-resource languages such as Vietnamese. In this paper, we introduce ViMRHP (Vietnamese Multimodal Review Helpfulness Prediction), a large-scale benchmark dataset for MRHP task in Vietnamese. This dataset covers four domains, including 2K products with 46K reviews. Meanwhile, a large-scale dataset requires considerable time and cost. To optimize the annotation process, we leverage AI to assist annotators in constructing the ViMRHP dataset. With AI assistance, annotation time is reduced (90 to 120 seconds per task down to 20 to 40 seconds per task) while maintaining data quality and lowering overall costs by approximately 65%. However, AI-generated annotations still have limitations in complex annotation tasks, which we further examine through a detailed performance analysis. In our experiment on ViMRHP, we evaluate baseline models on human-verified and AI-generated annotations to assess their quality differences. The ViMRHP dataset is publicly available at https://github.com/trng28/ViMRHP
Authors:Wenhao Hu, Paul Henderson, José Cano
Abstract:
Pruning is a widely used method for compressing Deep Neural Networks (DNNs), where less relevant parameters are removed from a DNN model to reduce its size. However, removing parameters reduces model accuracy, so pruning is typically combined with fine-tuning, and sometimes other operations such as rewinding weights, to recover accuracy. A common approach is to repeatedly prune and then fine-tune, with increasing amounts of model parameters being removed in each step. While straightforward to implement, pruning pipelines that follow this approach are computationally expensive due to the need for repeated fine-tuning.
In this paper we propose ICE-Pruning, an iterative pruning pipeline for DNNs that significantly decreases the time required for pruning by reducing the overall cost of fine-tuning, while maintaining a similar accuracy to existing pruning pipelines. ICE-Pruning is based on three main components: i) an automatic mechanism to determine after which pruning steps fine-tuning should be performed; ii) a freezing strategy for faster fine-tuning in each pruning step; and iii) a custom pruning-aware learning rate scheduler to further improve the accuracy of each pruning step and reduce the overall time consumption. We also propose an efficient auto-tuning stage for the hyperparameters (e.g., freezing percentage) introduced by the three components. We evaluate ICE-Pruning on several DNN models and datasets, showing that it can accelerate pruning by up to 9.61x. Code is available at https://github.com/gicLAB/ICE-Pruning
Authors:Chunpeng Li, Ya-tang Li
Abstract:
Understanding the computations of convolutional neural networks requires effective visualization of their kernels. While maximal activation methods have proven successful in highlighting the preferred features of 2D convolutional kernels, directly applying these techniques to 3D convolutions often leads to uninterpretable results due to the higher dimensionality and complexity of 3D features. To address this challenge, we propose a novel visualization approach for 3D convolutional kernels that disentangles their texture and motion preferences. Our method begins with a data-driven decomposition of the optimal input that maximally activates a given kernel. We then introduce a two-stage optimization strategy to extract distinct texture and motion components from this input. Applying our approach to visualize kernels at various depths of several pre-trained models, we find that the resulting visualizations--particularly those capturing motion--clearly reveal the preferred dynamic patterns encoded by 3D kernels. These results demonstrate the effectiveness of our method in providing interpretable insights into 3D convolutional operations. Code is available at https://github.com/YatangLiLab/3DKernelVisualizer.
Authors:Yuqi Cheng, Yunkang Cao, Dongfang Wang, Weiming Shen, Wenlong Li
Abstract:
Point cloud anomaly detection is essential for various industrial applications. The huge computation and storage costs caused by the increasing product classes limit the application of single-class unsupervised methods, necessitating the development of multi-class unsupervised methods. However, the feature similarity between normal and anomalous points from different class data leads to the feature confusion problem, which greatly hinders the performance of multi-class methods. Therefore, we introduce a multi-class point cloud anomaly detection method, named GLFM, leveraging global-local feature matching to progressively separate data that are prone to confusion across multiple classes. Specifically, GLFM is structured into three stages: Stage-I proposes an anomaly synthesis pipeline that stretches point clouds to create abundant anomaly data that are utilized to adapt the point cloud feature extractor for better feature representation. Stage-II establishes the global and local memory banks according to the global and local feature distributions of all the training data, weakening the impact of feature confusion on the establishment of the memory bank. Stage-III implements anomaly detection of test data leveraging its feature distance from global and local memory banks. Extensive experiments on the MVTec 3D-AD, Real3D-AD and actual industry parts dataset showcase our proposed GLFM's superior point cloud anomaly detection performance. The code is available at https://github.com/hustCYQ/GLFM-Multi-class-3DAD.
Authors:Zhiye Xie, Enmei Tu, Xianping Fu, Guoliang Yuan, Yi Han
Abstract:
With the increasing demands for safety, efficiency, and sustainability in global shipping, Automatic Identification System (AIS) data plays an increasingly important role in maritime monitoring. AIS data contains spatial-temporal variation patterns of vessels that hold significant research value in the marine domain. However, due to its massive scale, the full potential of AIS data has long remained untapped. With its powerful sequence modeling capabilities, particularly its ability to capture long-range dependencies and complex temporal dynamics, the Transformer model has emerged as an effective tool for processing AIS data. Therefore, this paper reviews the research on Transformer-based AIS data-driven maritime monitoring, providing a comprehensive overview of the current applications of Transformer models in the marine field. The focus is on Transformer-based trajectory prediction methods, behavior detection, and prediction techniques. Additionally, this paper collects and organizes publicly available AIS datasets from the reviewed papers, performing data filtering, cleaning, and statistical analysis. The statistical results reveal the operational characteristics of different vessel types, providing data support for further research on maritime monitoring tasks. Finally, we offer valuable suggestions for future research, identifying two promising research directions. Datasets are available at https://github.com/eyesofworld/Maritime-Monitoring.
Authors:Prateek Garg, Lokesh Nagalapatti, Sunita Sarawagi
Abstract:
Algorithmic Recourse provides recommendations to individuals who are adversely impacted by automated model decisions, on how to alter their profiles to achieve a favorable outcome. Effective recourse methods must balance three conflicting goals: proximity to the original profile to minimize cost, plausibility for realistic recourse, and validity to ensure the desired outcome. We show that existing methods train for these objectives separately and then search for recourse through a joint optimization over the recourse goals during inference, leading to poor recourse recommendations. We introduce GenRe, a generative recourse model designed to train the three recourse objectives jointly. Training such generative models is non-trivial due to lack of direct recourse supervision. We propose efficient ways to synthesize such supervision and further show that GenRe's training leads to a consistent estimator. Unlike most prior methods, that employ non-robust gradient descent based search during inference, GenRe simply performs a forward sampling over the generative model to produce minimum cost recourse, leading to superior performance across multiple metrics. We also demonstrate GenRe provides the best trade-off between cost, plausibility and validity, compared to state-of-art baselines. Our code is available at: https://github.com/prateekgargx/genre.
Authors:Keyue Qiu, Yuxuan Song, Zhehuan Fan, Peidong Liu, Zhe Zhang, Mingyue Zheng, Hao Zhou, Wei-Ying Ma
Abstract:
Structure-Based Drug Design (SBDD) is crucial for identifying bioactive molecules. Recent deep generative models are faced with challenges in geometric structure modeling. A major bottleneck lies in the twisted probability path of multi-modalities -- continuous 3D positions and discrete 2D topologies -- which jointly determine molecular geometries. By establishing the fact that noise schedules decide the Variational Lower Bound (VLB) for the twisted probability path, we propose VLB-Optimal Scheduling (VOS) strategy in this under-explored area, which optimizes VLB as a path integral for SBDD. Our model effectively enhances molecular geometries and interaction modeling, achieving state-of-the-art PoseBusters passing rate of 95.9% on CrossDock, more than 10% improvement upon strong baselines, while maintaining high affinities and robust intramolecular validity evaluated on held-out test set. Code is available at https://github.com/AlgoMole/MolCRAFT.
Authors:Javier Salazar Cavazos, Jeffrey A. Fessler, Laura Balzano
Abstract:
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction. However, some applications involve heterogeneous data that vary in quality due to noise characteristics associated with each data sample. Heteroscedastic methods aim to deal with such mixed data quality. This paper develops a subspace learning method, named ALPCAH, that can estimate the sample-wise noise variances and use this information to improve the estimate of the subspace basis associated with the low-rank structure of the data. Our method makes no distributional assumptions of the low-rank component and does not assume that the noise variances are known. Further, this method uses a soft rank constraint that does not require subspace dimension to be known. Additionally, this paper develops a matrix factorized version of ALPCAH, named LR-ALPCAH, that is much faster and more memory efficient at the cost of requiring subspace dimension to be known or estimated. Simulations and real data experiments show the effectiveness of accounting for data heteroscedasticity compared to existing algorithms. Code available at https://github.com/javiersc1/ALPCAH.
Authors:Jiwoo Hong, Noah Lee, Eunki Kim, Guijin Son, Woojin Chung, Aman Gupta, Shao Tang, James Thorne
Abstract:
The Bradley-Terry (BT) model is widely practiced in reward modeling for reinforcement learning with human feedback (RLHF). Despite its effectiveness, reward models (RMs) trained with BT model loss are prone to over-optimization, losing generalizability to unseen input distributions. In this paper, we study the cause of over-optimization in RM training and its downstream effects on the RLHF procedure, accentuating the importance of distributional robustness of RMs in unseen data. First, we show that the excessive dispersion of hidden state norms is the main source of over-optimization. Then, we propose batch-wise sum-to-zero regularization (BSR) to enforce zero-centered reward sum per batch, constraining the rewards with extreme magnitudes. We assess the impact of BSR in improving robustness in RMs through four scenarios of over-optimization, where BSR consistently manifests better robustness. Subsequently, we compare the plain BT model and BSR on RLHF training and empirically show that robust RMs better align the policy to the gold preference model. Finally, we apply BSR to high-quality data and models, which surpasses state-of-the-art RMs in the 8B scale by adding more than 5% in complex preference prediction tasks. By conducting RLOO training with 8B RMs, AlpacaEval 2.0 reduces generation length by 40% while adding a 7% increase in win rate, further highlighting that robustness in RMs induces robustness in RLHF training. We release the code, data, and models: https://github.com/LinkedIn-XFACT/RM-Robustness.
Authors:Micah Nye, Ayoub Raji, Andrew Saba, Eidan Erlich, Robert Exley, Aragya Goyal, Alexander Matros, Ritesh Misra, Matthew Sivaprakasam, Marko Bertogna, Deva Ramanan, Sebastian Scherer
Abstract:
We present the BETTY dataset, a large-scale, multi-modal dataset collected on several autonomous racing vehicles, targeting supervised and self-supervised state estimation, dynamics modeling, motion forecasting, perception, and more. Existing large-scale datasets, especially autonomous vehicle datasets, focus primarily on supervised perception, planning, and motion forecasting tasks. Our work enables multi-modal, data-driven methods by including all sensor inputs and the outputs from the software stack, along with semantic metadata and ground truth information. The dataset encompasses 4 years of data, currently comprising over 13 hours and 32TB, collected on autonomous racing vehicle platforms. This data spans 6 diverse racing environments, including high-speed oval courses, for single and multi-agent algorithm evaluation in feature-sparse scenarios, as well as high-speed road courses with high longitudinal and lateral accelerations and tight, GPS-denied environments. It captures highly dynamic states, such as 63 m/s crashes, loss of tire traction, and operation at the limit of stability. By offering a large breadth of cross-modal and dynamic data, the BETTY dataset enables the training and testing of full autonomy stack pipelines, pushing the performance of all algorithms to the limits. The current dataset is available at https://pitt-mit-iac.github.io/betty-dataset/.
Authors:Yi Zhang, Ruihong Qiu, Xuwei Xu, Jiajun Liu, Sen Wang
Abstract:
Model-based offline reinforcement learning (RL) has emerged as a promising approach for recommender systems, enabling effective policy learning by interacting with frozen world models. However, the reward functions in these world models, trained on sparse offline logs, often suffer from inaccuracies. Specifically, existing methods face two major limitations in addressing this challenge: (1) deterministic use of reward functions as static look-up tables, which propagates inaccuracies during policy learning, and (2) static uncertainty designs that fail to effectively capture decision risks and mitigate the impact of these inaccuracies. In this work, a dual-agent framework, DARLR, is proposed to dynamically update world models to enhance recommendation policies. To achieve this, a \textbf{\textit{selector}} is introduced to identify reference users by balancing similarity and diversity so that the \textbf{\textit{recommender}} can aggregate information from these users and iteratively refine reward estimations for dynamic reward shaping. Further, the statistical features of the selected users guide the dynamic adaptation of an uncertainty penalty to better align with evolving recommendation requirements. Extensive experiments on four benchmark datasets demonstrate the superior performance of DARLR, validating its effectiveness. The code is available at https://github.com/ArronDZhang/DARLR.
Authors:Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, Jiawei Han
Abstract:
Retrieval-augmented generation (RAG) systems combine large language models (LLMs) with external knowledge retrieval, making them highly effective for knowledge-intensive tasks. A crucial but often under-explored component of these systems is the reranker. Since irrelevant documents in RAG systems can mislead the generator, the reranker plays a vital role in refining retrieved documents to enhance generation quality and explainability. However, it is challenging to determine the appropriate number of documents ($k$) that the reranker should select: too few may result in missing critical information, while too many introduce noise and inefficiencies. Although recent studies have explored LLM-based rerankers, they primarily leverage internal model knowledge and overlook the rich supervisory signals that LLMs can provide, such as using response quality as feedback for optimizing reranking decisions. In this paper, we propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents based on the query. We model the reranker as an agent optimized through reinforcement learning (RL), using rewards derived from LLM output quality. Across seven knowledge-intensive datasets, DynamicRAG demonstrates superior performance, achieving state-of-the-art results among models of same parameter sizes. The model, data and code are available at https://github.com/GasolSun36/DynamicRAG.
Authors:Hongda Qin, Xiao Lu, Zhiyong Wei, Yihong Cao, Kailun Yang, Ningjiang Chen
Abstract:
Generalizing an object detector trained on a single domain to multiple unseen domains is a challenging task. Existing methods typically introduce image or feature augmentation to diversify the source domain to raise the robustness of the detector. Vision-Language Model (VLM)-based augmentation techniques have been proven to be effective, but they require that the detector's backbone has the same structure as the image encoder of VLM, limiting the detector framework selection. To address this problem, we propose Language-Driven Dual Style Mixing (LDDS) for single-domain generalization, which diversifies the source domain by fully utilizing the semantic information of the VLM. Specifically, we first construct prompts to transfer style semantics embedded in the VLM to an image translation network. This facilitates the generation of style diversified images with explicit semantic information. Then, we propose image-level style mixing between the diversified images and source domain images. This effectively mines the semantic information for image augmentation without relying on specific augmentation selections. Finally, we propose feature-level style mixing in a double-pipeline manner, allowing feature augmentation to be model-agnostic and can work seamlessly with the mainstream detector frameworks, including the one-stage, two-stage, and transformer-based detectors. Extensive experiments demonstrate the effectiveness of our approach across various benchmark datasets, including real to cartoon and normal to adverse weather tasks. The source code and pre-trained models will be publicly available at https://github.com/qinhongda8/LDDS.
Authors:Yifan Wei, Xiaoyan Yu, Tengfei Pan, Angsheng Li, Li Du
Abstract:
Large language models (LLMs) have achieved unprecedented performance by leveraging vast pretraining corpora, yet their performance remains suboptimal in knowledge-intensive domains such as medicine and scientific research, where high factual precision is required. While synthetic data provides a promising avenue for augmenting domain knowledge, existing methods frequently generate redundant samples that do not align with the model's true knowledge gaps. To overcome this limitation, we propose a novel Structural Entropy-guided Knowledge Navigator (SENATOR) framework that addresses the intrinsic knowledge deficiencies of LLMs. Our approach employs the Structure Entropy (SE) metric to quantify uncertainty along knowledge graph paths and leverages Monte Carlo Tree Search (MCTS) to selectively explore regions where the model lacks domain-specific knowledge. Guided by these insights, the framework generates targeted synthetic data for supervised fine-tuning, enabling continuous self-improvement. Experimental results on LLaMA-3 and Qwen2 across multiple domain-specific benchmarks show that SENATOR effectively detects and repairs knowledge deficiencies, achieving notable performance improvements. The code and data for our methods and experiments are available at https://github.com/weiyifan1023/senator.
Authors:Jeongho Kim, Chanyeong Heo, Jaehee Jung
Abstract:
Knowledge Graphs (KGs), composed of triples in the form of (head, relation, tail) and consisting of entities and relations, play a key role in information retrieval systems such as question answering, entity search, and recommendation. In real-world KGs, although many entities exist, the relations exhibit a long-tail distribution, which can hinder information retrieval performance. Previous few-shot knowledge graph completion studies focused exclusively on the positive triple information that exists in the graph or, when negative triples were incorporated, used them merely as a signal to indicate incorrect triples. To overcome this limitation, we propose Relation-Based Conditional Diffusion with Attention Pooling (ReCDAP). First, negative triples are generated by randomly replacing the tail entity in the support set. By conditionally incorporating positive information in the KG and non-existent negative information into the diffusion process, the model separately estimates the latent distributions for positive and negative relations. Moreover, including an attention pooler enables the model to leverage the differences between positive and negative cases explicitly. Experiments on two widely used datasets demonstrate that our method outperforms existing approaches, achieving state-of-the-art performance. The code is available at https://github.com/hou27/ReCDAP-FKGC.
Authors:Zheng Yao, Shuai Wang, Guido Zuccon
Abstract:
Dense retrievers utilize pre-trained backbone language models (e.g., BERT, LLaMA) that are fine-tuned via contrastive learning to perform the task of encoding text into sense representations that can be then compared via a shallow similarity operation, e.g. inner product. Recent research has questioned the role of fine-tuning vs. that of pre-training within dense retrievers, specifically arguing that retrieval knowledge is primarily gained during pre-training, meaning knowledge not acquired during pre-training cannot be sub-sequentially acquired via fine-tuning. We revisit this idea here as the claim was only studied in the context of a BERT-based encoder using DPR as representative dense retriever. We extend the previous analysis by testing other representation approaches (comparing the use of CLS tokens with that of mean pooling), backbone architectures (encoder-only BERT vs. decoder-only LLaMA), and additional datasets (MSMARCO in addition to Natural Questions). Our study confirms that in DPR tuning, pre-trained knowledge underpins retrieval performance, with fine-tuning primarily adjusting neuron activation rather than reorganizing knowledge. However, this pattern does not hold universally, such as in mean-pooled (Contriever) and decoder-based (LLaMA) models. We ensure full reproducibility and make our implementation publicly available at https://github.com/ielab/DenseRetriever-Knowledge-Acquisition.
Authors:SangEun Lee, Yubeen Lee, Eunil Park
Abstract:
Visual emotion analysis, which has gained considerable attention in the field of affective computing, aims to predict the dominant emotions conveyed by an image. Despite advancements in visual emotion analysis with the emergence of vision-language models, we observed that instruction-tuned vision-language models and conventional vision models exhibit complementary strengths in visual emotion analysis, as vision-language models excel in certain cases, whereas vision models perform better in others. This finding highlights the need to integrate these capabilities to enhance the performance of visual emotion analysis. To bridge this gap, we propose EmoVLM-KD, an instruction-tuned vision-language model augmented with a lightweight module distilled from conventional vision models. Instead of deploying both models simultaneously, which incurs high computational costs, we transfer the predictive patterns of a conventional vision model into the vision-language model using a knowledge distillation framework. Our approach first fine-tunes a vision-language model on emotion-specific instruction data and then attaches a distilled module to its visual encoder while keeping the vision-language model frozen. Predictions from the vision language model and the distillation module are effectively balanced by a gate module, which subsequently generates the final outcome. Extensive experiments show that EmoVLM-KD achieves state-of-the-art performance on multiple visual emotion analysis benchmark datasets, outperforming the existing methods while maintaining computational efficiency. The code is available in https://github.com/sange1104/EmoVLM-KD.
Authors:Prithwish Dan, Kushal Kedia, Angela Chao, Edward Weiyi Duan, Maximus Adrian Pace, Wei-Chiu Ma, Sanjiban Choudhury
Abstract:
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
Authors:Zihang Liu, Zhenyu Zhang, Hao Tang
Abstract:
Diffusion-based image super-resolution (SR) methods have demonstrated remarkable performance. Recent advancements have introduced deterministic sampling processes that reduce inference from 15 iterative steps to a single step, thereby significantly improving the inference speed of existing diffusion models. However, their efficiency remains limited when handling complex semantic regions due to the single-step inference. To address this limitation, we propose SAMSR, a semantic-guided diffusion framework that incorporates semantic segmentation masks into the sampling process. Specifically, we introduce the SAM-Noise Module, which refines Gaussian noise using segmentation masks to preserve spatial and semantic features. Furthermore, we develop a pixel-wise sampling strategy that dynamically adjusts the residual transfer rate and noise strength based on pixel-level semantic weights, prioritizing semantically rich regions during the diffusion process. To enhance model training, we also propose a semantic consistency loss, which aligns pixel-wise semantic weights between predictions and ground truth. Extensive experiments on both real-world and synthetic datasets demonstrate that SAMSR significantly improves perceptual quality and detail recovery, particularly in semantically complex images. Our code is released at https://github.com/Liu-Zihang/SAMSR.
Authors:Jitesh Joshi, Youngjun Cho
Abstract:
Remote physiological sensing using camera-based technologies offers transformative potential for non-invasive vital sign monitoring across healthcare and human-computer interaction domains. Although deep learning approaches have advanced the extraction of physiological signals from video data, existing methods have not been sufficiently assessed for their robustness to domain shifts. These shifts in remote physiological sensing include variations in ambient conditions, camera specifications, head movements, facial poses, and physiological states which often impact real-world performance significantly. Cross-dataset evaluation provides an objective measure to assess generalization capabilities across these domain shifts. We introduce Target Signal Constrained Factorization module (TSFM), a novel multidimensional attention mechanism that explicitly incorporates physiological signal characteristics as factorization constraints, allowing more precise feature extraction. Building on this innovation, we present MMRPhys, an efficient dual-branch 3D-CNN architecture designed for simultaneous multitask estimation of photoplethysmography (rPPG) and respiratory (rRSP) signals from multimodal RGB and thermal video inputs. Through comprehensive cross-dataset evaluation on five benchmark datasets, we demonstrate that MMRPhys with TSFM significantly outperforms state-of-the-art methods in generalization across domain shifts for rPPG and rRSP estimation, while maintaining a minimal inference latency suitable for real-time applications. Our approach establishes new benchmarks for robust multitask and multimodal physiological sensing and offers a computationally efficient framework for practical deployment in unconstrained environments. The web browser-based application featuring on-device real-time inference of MMRPhys model is available at https://physiologicailab.github.io/mmrphys-live
Authors:Zhengye Zhang, Sirui Zhao, Shifeng Liu, Shukang Yin, Xinglong Mao, Tong Xu, Enhong Chen
Abstract:
Micro-expressions (MEs) are crucial psychological responses with significant potential for affective computing. However, current automatic micro-expression recognition (MER) research primarily focuses on discrete emotion classification, neglecting a convincing analysis of the subtle dynamic movements and inherent emotional cues. The rapid progress in multimodal large language models (MLLMs), known for their strong multimodal comprehension and language generation abilities, offers new possibilities. MLLMs have shown success in various vision-language tasks, indicating their potential to understand MEs comprehensively, including both fine-grained motion patterns and underlying emotional semantics. Nevertheless, challenges remain due to the subtle intensity and short duration of MEs, as existing MLLMs are not designed to capture such delicate frame-level facial dynamics. In this paper, we propose a novel Micro-Expression Large Language Model (MELLM), which incorporates a subtle facial motion perception strategy with the strong inference capabilities of MLLMs, representing the first exploration of MLLMs in the domain of ME analysis. Specifically, to explicitly guide the MLLM toward motion-sensitive regions, we construct an interpretable motion-enhanced color map by fusing onset-apex optical flow dynamics with the corresponding grayscale onset frame as the model input. Additionally, specialized fine-tuning strategies are incorporated to further enhance the model's visual perception of MEs. Furthermore, we construct an instruction-description dataset based on Facial Action Coding System (FACS) annotations and emotion labels to train our MELLM. Comprehensive evaluations across multiple benchmark datasets demonstrate that our model exhibits superior robustness and generalization capabilities in ME understanding (MEU). Code is available at https://github.com/zyzhangUstc/MELLM.
Authors:Jinuk Kim, Marwa El Halabi, Wonpyo Park, Clemens JS Schaefer, Deokjae Lee, Yeonhong Park, Jae W. Lee, Hyun Oh Song
Abstract:
Post-training quantization is a key technique for reducing the memory and inference latency of large language models by quantizing weights and activations without requiring retraining. However, existing methods either (1) fail to account for the varying importance of hidden features to the end loss or, when incorporating end loss, (2) neglect the critical interactions between model weights. To address these limitations, we propose GuidedQuant, a novel quantization approach that integrates gradient information from the end loss into the quantization objective while preserving cross-weight dependencies within output channels. GuidedQuant consistently boosts the performance of state-of-the-art quantization methods across weight-only scalar, weight-only vector, and weight-and-activation quantization. Additionally, we introduce a novel non-uniform scalar quantization algorithm, which is guaranteed to monotonically decrease the quantization objective value, and outperforms existing methods in this category. We release the code at https://github.com/snu-mllab/GuidedQuant.
Authors:Peng Li, Suizhi Ma, Jialiang Chen, Yuan Liu, Congyi Zhang, Wei Xue, Wenhan Luo, Alla Sheffer, Wenping Wang, Yike Guo
Abstract:
Recently, 3D generation methods have shown their powerful ability to automate 3D model creation. However, most 3D generation methods only rely on an input image or a text prompt to generate a 3D model, which lacks the control of each component of the generated 3D model. Any modifications of the input image lead to an entire regeneration of the 3D models. In this paper, we introduce a new method called CMD that generates a 3D model from an input image while enabling flexible local editing of each component of the 3D model. In CMD, we formulate the 3D generation as a conditional multiview diffusion model, which takes the existing or known parts as conditions and generates the edited or added components. This conditional multiview diffusion model not only allows the generation of 3D models part by part but also enables local editing of 3D models according to the local revision of the input image without changing other 3D parts. Extensive experiments are conducted to demonstrate that CMD decomposes a complex 3D generation task into multiple components, improving the generation quality. Meanwhile, CMD enables efficient and flexible local editing of a 3D model by just editing one rendered image.
Authors:Bidur Khanal, Sandesh Pokhrel, Sanjay Bhandari, Ramesh Rana, Nikesh Shrestha, Ram Bahadur Gurung, Cristian Linte, Angus Watson, Yash Raj Shrestha, Binod Bhattarai
Abstract:
Vision-Language Models (VLMs) are becoming increasingly popular in the medical domain, bridging the gap between medical images and clinical language. Existing VLMs demonstrate an impressive ability to comprehend medical images and text queries to generate detailed, descriptive diagnostic medical reports. However, hallucination--the tendency to generate descriptions that are inconsistent with the visual content--remains a significant issue in VLMs, with particularly severe implications in the medical field. To facilitate VLM research on gastrointestinal (GI) image analysis and study hallucination, we curate a multimodal image-text GI dataset: Gut-VLM. This dataset is created using a two-stage pipeline: first, descriptive medical reports of Kvasir-v2 images are generated using ChatGPT, which introduces some hallucinated or incorrect texts. In the second stage, medical experts systematically review these reports, and identify and correct potential inaccuracies to ensure high-quality, clinically reliable annotations. Unlike traditional datasets that contain only descriptive texts, our dataset also features tags identifying hallucinated sentences and their corresponding corrections. A common approach to reducing hallucination in VLM is to finetune the model on a small-scale, problem-specific dataset. However, we take a different strategy using our dataset. Instead of finetuning the VLM solely for generating textual reports, we finetune it to detect and correct hallucinations, an approach we call hallucination-aware finetuning. Our results show that this approach is better than simply finetuning for descriptive report generation. Additionally, we conduct an extensive evaluation of state-of-the-art VLMs across several metrics, establishing a benchmark. GitHub Repo: https://github.com/bhattarailab/Hallucination-Aware-VLM.
Authors:Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo
Abstract:
The primary challenge in accelerating image super-resolution lies in reducing computation while maintaining performance and adaptability. Motivated by the observation that high-frequency regions (e.g., edges and textures) are most critical for reconstruction, we propose a training-free adaptive masking module for acceleration that dynamically focuses computation on these challenging areas. Specifically, our method first extracts high-frequency components via Gaussian blur subtraction and adaptively generates binary masks using K-means clustering to identify regions requiring intensive processing. Our method can be easily integrated with both CNNs and Transformers. For CNN-based architectures, we replace standard $3 \times 3$ convolutions with an unfold operation followed by $1 \times 1$ convolutions, enabling pixel-wise sparse computation guided by the mask. For Transformer-based models, we partition the mask into non-overlapping windows and selectively process tokens based on their average values. During inference, unnecessary pixels or windows are pruned, significantly reducing computation. Moreover, our method supports dilation-based mask adjustment to control the processing scope without retraining, and is robust to unseen degradations (e.g., noise, compression). Extensive experiments on benchmarks demonstrate that our method reduces FLOPs by 24--43% for state-of-the-art models (e.g., CARN, SwinIR) while achieving comparable or better quantitative metrics. The source code is available at https://github.com/shangwei5/AMSR
Authors:Fei Zhou, Yi Li, Mingqing Zhu
Abstract:
In this paper, the dual-optical attention fusion crowd head point counting model (TAPNet) is proposed to address the problem of the difficulty of accurate counting in complex scenes such as crowd dense occlusion and low light in crowd counting tasks under UAV view. The model designs a dual-optical attention fusion module (DAFP) by introducing complementary information from infrared images to improve the accuracy and robustness of all-day crowd counting. In order to fully utilize different modal information and solve the problem of inaccurate localization caused by systematic misalignment between image pairs, this paper also proposes an adaptive two-optical feature decomposition fusion module (AFDF). In addition, we optimize the training strategy to improve the model robustness through spatial random offset data augmentation. Experiments on two challenging public datasets, DroneRGBT and GAIIC2, show that the proposed method outperforms existing techniques in terms of performance, especially in challenging dense low-light scenes. Code is available at https://github.com/zz-zik/TAPNet
Authors:Lishan Yang, Wei Emma Zhang, Quan Z. Sheng, Lina Yao, Weitong Chen, Ali Shakeri
Abstract:
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution. Our code is available at https://github.com/gotobcn8/MMiC.
Authors:Lhuqita Fazry
Abstract:
$\texttt{BIGBIRD-PEGASUS}$ model achieves $\textit{state-of-the-art}$ on abstractive text summarization for long documents. However it's capacity still limited to maximum of $4,096$ tokens, thus caused performance degradation on summarization for very long documents. Common method to deal with the issue is to truncate the documents. In this reasearch, we'll use different approach. We'll use the pretrained $\texttt{BIGBIRD-PEGASUS}$ model by fine tuned the model on other domain dataset. First, we filter out all documents which length less than $20,000$ tokens to focus on very long documents. To prevent domain shifting problem and overfitting on transfer learning due to small dataset, we augment the dataset by splitting document-summary training pair into parts, to fit the document into $4,096$ tokens. Source code available on $\href{https://github.com/lhfazry/SPIN-summ}{https://github.com/lhfazry/SPIN-summ}$.
Authors:Zihan Guan, Mengxuan Hu, Ronghang Zhu, Sheng Li, Anil Vullikanti
Abstract:
Recent studies have uncovered a troubling vulnerability in the fine-tuning stage of large language models (LLMs): even fine-tuning on entirely benign datasets can lead to a significant increase in the harmfulness of LLM outputs. Building on this finding, our red teaming study takes this threat one step further by developing a more effective attack. Specifically, we analyze and identify samples within benign datasets that contribute most to safety degradation, then fine-tune LLMs exclusively on these samples. We approach this problem from an outlier detection perspective and propose Self-Inf-N, to detect and extract outliers for fine-tuning. Our findings reveal that fine-tuning LLMs on 100 outlier samples selected by Self-Inf-N in the benign datasets severely compromises LLM safety alignment. Extensive experiments across seven mainstream LLMs demonstrate that our attack exhibits high transferability across different architectures and remains effective in practical scenarios. Alarmingly, our results indicate that most existing mitigation strategies fail to defend against this attack, underscoring the urgent need for more robust alignment safeguards. Codes are available at https://github.com/GuanZihan/Benign-Samples-Matter.
Authors:Ye Zhu, Yunan Wang, Zitong Yu
Abstract:
Multimodal news contains a wealth of information and is easily affected by deepfake modeling attacks. To combat the latest image and text generation methods, we present a new Multimodal Fake News Detection dataset (MFND) containing 11 manipulated types, designed to detect and localize highly authentic fake news. Furthermore, we propose a Shallow-Deep Multitask Learning (SDML) model for fake news, which fully uses unimodal and mutual modal features to mine the intrinsic semantics of news. Under shallow inference, we propose the momentum distillation-based light punishment contrastive learning for fine-grained uniform spatial image and text semantic alignment, and an adaptive cross-modal fusion module to enhance mutual modal features. Under deep inference, we design a two-branch framework to augment the image and text unimodal features, respectively merging with mutual modalities features, for four predictions via dedicated detection and localization projections. Experiments on both mainstream and our proposed datasets demonstrate the superiority of the model. Codes and dataset are released at https://github.com/yunan-wang33/sdml.
Authors:Ammar Daskin
Abstract:
In this paper, we discuss how quantum recurrent neural networks (RNNs) and their enhanced version, long short-term memory (LSTM) networks, can be modeled using the core ideas presented in Ref.[1], where the entangling and disentangling power of unitary transformations is investigated. In particular, we interpret entangling and disentangling power as information retention and forgetting mechanisms in LSTMs. Therefore, entanglement becomes a key component of the optimization (training) process. We believe that, by leveraging prior knowledge of the entangling power of unitaries, the proposed quantum-classical framework can guide and help to design better-parameterized quantum circuits for various real-world applications.
Authors:Shalin Anand Jain, Jiazhen Liu, Siva Kailas, Harish Ravichandar
Abstract:
Multi-agent reinforcement learning (MARL) has emerged as a promising solution for learning complex and scalable coordination behaviors in multi-robot systems. However, established MARL platforms (e.g., SMAC and MPE) lack robotics relevance and hardware deployment, leaving multi-robot learning researchers to develop bespoke environments and hardware testbeds dedicated to the development and evaluation of their individual contributions. The Multi-Agent RL Benchmark and Learning Environment for the Robotarium (MARBLER) is an exciting recent step in providing a standardized robotics-relevant platform for MARL, by bridging the Robotarium testbed with existing MARL software infrastructure. However, MARBLER lacks support for parallelization and GPU/TPU execution, making the platform prohibitively slow compared to modern MARL environments and hindering adoption. We contribute JaxRobotarium, a Jax-powered end-to-end simulation, learning, deployment, and benchmarking platform for the Robotarium. JaxRobotarium enables rapid training and deployment of multi-robot RL (MRRL) policies with realistic robot dynamics and safety constraints, supporting parallelization and hardware acceleration. Our generalizable learning interface integrates easily with SOTA MARL libraries (e.g., JaxMARL). In addition, JaxRobotarium includes eight standardized coordination scenarios, including four novel scenarios that bring established MARL benchmark tasks (e.g., RWARE and Level-Based Foraging) to a robotics setting. We demonstrate that JaxRobotarium retains high simulation fidelity while achieving dramatic speedups over baseline (20x in training and 150x in simulation), and provides an open-access sim-to-real evaluation pipeline through the Robotarium testbed, accelerating and democratizing access to multi-robot learning research and evaluation. Our code is available at https://github.com/GT-STAR-Lab/JaxRobotarium.
Authors:Youcef Djenouri, Nassim Belmecheri, Tomasz Michalak, Jan DubiÅski, Ahmed Nabil Belbachir, Anis Yazidi
Abstract:
Diffusion-based generative models have significantly advanced text-to-image synthesis, demonstrating impressive text comprehension and zero-shot generalization. These models refine images from random noise based on textual prompts, with initial reliance on text input shifting towards enhanced visual fidelity over time. This transition suggests that static model parameters might not optimally address the distinct phases of generation. We introduce LGR-AD (Learning Graph Representation of Agent Diffusers), a novel multi-agent system designed to improve adaptability in dynamic computer vision tasks. LGR-AD models the generation process as a distributed system of interacting agents, each representing an expert sub-model. These agents dynamically adapt to varying conditions and collaborate through a graph neural network that encodes their relationships and performance metrics. Our approach employs a coordination mechanism based on top-$k$ maximum spanning trees, optimizing the generation process. Each agent's decision-making is guided by a meta-model that minimizes a novel loss function, balancing accuracy and diversity. Theoretical analysis and extensive empirical evaluations show that LGR-AD outperforms traditional diffusion models across various benchmarks, highlighting its potential for scalable and flexible solutions in complex image generation tasks. Code is available at: https://github.com/YousIA/LGR_AD
Authors:Morui Zhu, Yongqi Zhu, Yihao Zhu, Qi Chen, Deyuan Qu, Song Fu, Qing Yang
Abstract:
We introduce M$^3$CAD, a novel benchmark designed to advance research in generic cooperative autonomous driving. M$^3$CAD comprises 204 sequences with 30k frames, spanning a diverse range of cooperative driving scenarios. Each sequence includes multiple vehicles and sensing modalities, e.g., LiDAR point clouds, RGB images, and GPS/IMU, supporting a variety of autonomous driving tasks, including object detection and tracking, mapping, motion forecasting, occupancy prediction, and path planning. This rich multimodal setup enables M$^3$CAD to support both single-vehicle and multi-vehicle autonomous driving research, significantly broadening the scope of research in the field. To our knowledge, M$^3$CAD is the most comprehensive benchmark specifically tailored for cooperative multi-task autonomous driving research. We evaluate the state-of-the-art end-to-end solution on M$^3$CAD to establish baseline performance. To foster cooperative autonomous driving research, we also propose E2EC, a simple yet effective framework for cooperative driving solution that leverages inter-vehicle shared information for improved path planning. We release M$^3$CAD, along with our baseline models and evaluation results, to support the development of robust cooperative autonomous driving systems. All resources will be made publicly available on https://github.com/zhumorui/M3CAD
Authors:Haokun Zhu, Zongtai Li, Zhixuan Liu, Wenshan Wang, Ji Zhang, Jonathan Francis, Jean Oh
Abstract:
Vision-Language Models (VLMs) have been increasingly integrated into object navigation tasks for their rich prior knowledge and strong reasoning abilities. However, applying VLMs to navigation poses two key challenges: effectively representing complex environment information and determining \textit{when and how} to query VLMs. Insufficient environment understanding and over-reliance on VLMs (e.g. querying at every step) can lead to unnecessary backtracking and reduced navigation efficiency, especially in continuous environments. To address these challenges, we propose a novel framework that constructs a multi-layer representation of the environment during navigation. This representation consists of viewpoint, object nodes, and room nodes. Viewpoints and object nodes facilitate intra-room exploration and accurate target localization, while room nodes support efficient inter-room planning. Building on this representation, we propose a novel two-stage navigation policy, integrating high-level planning guided by VLM reasoning with low-level VLM-assisted exploration to efficiently locate a goal object. We evaluated our approach on three simulated benchmarks (HM3D, RoboTHOR, and MP3D), and achieved state-of-the-art performance on both the success rate ($\mathord{\uparrow}\, 7.1\%$) and navigation efficiency ($\mathord{\uparrow}\, 12.5\%$). We further validate our method on a real robot platform, demonstrating strong robustness across 15 object navigation tasks in 10 different indoor environments. Project page is available at https://zwandering.github.io/STRIVE.github.io/ .
Authors:Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, Junyang Lin
Abstract:
Gating mechanisms have been widely utilized, from early models like LSTMs and Highway Networks to recent state space models, linear attention, and also softmax attention. Yet, existing literature rarely examines the specific effects of gating. In this work, we conduct comprehensive experiments to systematically investigate gating-augmented softmax attention variants. Specifically, we perform a comprehensive comparison over 30 variants of 15B Mixture-of-Experts (MoE) models and 1.7B dense models trained on a 3.5 trillion token dataset. Our central finding is that a simple modification-applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)-consistently improves performance. This modification also enhances training stability, tolerates larger learning rates, and improves scaling properties. By comparing various gating positions and computational variants, we attribute this effectiveness to two key factors: (1) introducing non-linearity upon the low-rank mapping in the softmax attention, and (2) applying query-dependent sparse gating scores to modulate the SDPA output. Notably, we find this sparse gating mechanism mitigates 'attention sink' and enhances long-context extrapolation performance, and we also release related $\href{https://github.com/qiuzh20/gated_attention}{codes}$ and $\href{https://huggingface.co/QwQZh/gated_attention}{models}$ to facilitate future research.
Authors:Zongqi Wang, Tianle Gu, Chen Gong, Xin Tian, Siqi Bao, Yujiu Yang
Abstract:
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce \textbf{Feedbacker}, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC$^{2}$ (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our project homepage and dataset are available at https://liudan193.github.io/Feedbacker.
Authors:Dominik Koterwa, Maciej ÅwitaÅa
Abstract:
BERTopic is a topic modeling algorithm that leverages transformer-based embeddings to create dense clusters, enabling the estimation of topic structures and the extraction of valuable insights from a corpus of documents. This approach allows users to efficiently process large-scale text data and gain meaningful insights into its structure. While BERTopic is a powerful tool, embedding preparation can vary, including extracting representations from intermediate model layers and applying transformations to these embeddings. In this study, we evaluate 18 different embedding representations and present findings based on experiments conducted on three diverse datasets. To assess the algorithm's performance, we report topic coherence and topic diversity metrics across all experiments. Our results demonstrate that, for each dataset, it is possible to find an embedding configuration that performs better than the default setting of BERTopic. Additionally, we investigate the influence of stop words on different embedding configurations.
Authors:Xuefeng Jiang, Jia Li, Nannan Wu, Zhiyuan Wu, Xujing Li, Sheng Sun, Gang Xu, Yuwei Wang, Qi Li, Min Liu
Abstract:
Robustness to label noise within data is a significant challenge in federated learning (FL). From the data-centric perspective, the data quality of distributed datasets can not be guaranteed since annotations of different clients contain complicated label noise of varying degrees, which causes the performance degradation. There have been some early attempts to tackle noisy labels in FL. However, there exists a lack of benchmark studies on comprehensively evaluating their practical performance under unified settings. To this end, we propose the first benchmark study FNBench to provide an experimental investigation which considers three diverse label noise patterns covering synthetic label noise, imperfect human-annotation errors and systematic errors. Our evaluation incorporates eighteen state-of-the-art methods over five image recognition datasets and one text classification dataset. Meanwhile, we provide observations to understand why noisy labels impair FL, and additionally exploit a representation-aware regularization method to enhance the robustness of existing methods against noisy labels based on our observations. Finally, we discuss the limitations of this work and propose three-fold future directions. To facilitate related communities, our source code is open-sourced at https://github.com/Sprinter1999/FNBench.
Authors:Zijun Zhan, Yaxian Dong, Daniel Mawunyo Doe, Yuqing Hu, Shuai Li, Shaohua Cao, Lei Fan, Zhu Han
Abstract:
Advanced AI-Generated Content (AIGC) technologies have injected new impetus into teleoperation, further enhancing its security and efficiency. Edge AIGC networks have been introduced to meet the stringent low-latency requirements of teleoperation. However, the inherent uncertainty of AIGC service quality and the need to incentivize AIGC service providers (ASPs) make the design of a robust incentive mechanism essential. This design is particularly challenging due to both uncertainty and information asymmetry, as teleoperators have limited knowledge of the remaining resource capacities of ASPs. To this end, we propose a distributionally robust optimization (DRO)-based contract theory to design robust reward schemes for AIGC task offloading. Notably, our work extends the contract theory by integrating DRO, addressing the fundamental challenge of contract design under uncertainty. In this paper, contract theory is employed to model the information asymmetry, while DRO is utilized to capture the uncertainty in AIGC service quality. Given the inherent complexity of the original DRO-based contract theory problem, we reformulate it into an equivalent, tractable bi-level optimization problem. To efficiently solve this problem, we develop a Block Coordinate Descent (BCD)-based algorithm to derive robust reward schemes. Simulation results on our unity-based teleoperation platform demonstrate that the proposed method improves teleoperator utility by 2.7\% to 10.74\% under varying degrees of AIGC service quality shifts and increases ASP utility by 60.02\% compared to the SOTA method, i.e., Deep Reinforcement Learning (DRL)-based contract theory. The code and data are publicly available at https://github.com/Zijun0819/DRO-Contract-Theory.
Authors:Lei Hu, Zhiyong Gan, Ling Deng, Jinglin Liang, Lingyu Liang, Shuangping Huang, Tianshui Chen
Abstract:
Continual Anomaly Detection (CAD) enables anomaly detection models in learning new classes while preserving knowledge of historical classes. CAD faces two key challenges: catastrophic forgetting and segmentation of small anomalous regions. Existing CAD methods store image distributions or patch features to mitigate catastrophic forgetting, but they fail to preserve pixel-level detailed features for accurate segmentation. To overcome this limitation, we propose ReplayCAD, a novel diffusion-driven generative replay framework that replay high-quality historical data, thus effectively preserving pixel-level detailed features. Specifically, we compress historical data by searching for a class semantic embedding in the conditional space of the pre-trained diffusion model, which can guide the model to replay data with fine-grained pixel details, thus improving the segmentation performance. However, relying solely on semantic features results in limited spatial diversity. Hence, we further use spatial features to guide data compression, achieving precise control of sample space, thereby generating more diverse data. Our method achieves state-of-the-art performance in both classification and segmentation, with notable improvements in segmentation: 11.5% on VisA and 8.1% on MVTec. Our source code is available at https://github.com/HULEI7/ReplayCAD.
Authors:Suyeon Choi, Brian Chao, Jacqueline Yang, Manu Gopakumar, Gordon Wetzstein
Abstract:
State-of-the-art neural rendering methods optimize Gaussian scene representations from a few photographs for novel-view synthesis. Building on these representations, we develop an efficient algorithm, dubbed Gaussian Wave Splatting, to turn these Gaussians into holograms. Unlike existing computer-generated holography (CGH) algorithms, Gaussian Wave Splatting supports accurate occlusions and view-dependent effects for photorealistic scenes by leveraging recent advances in neural rendering. Specifically, we derive a closed-form solution for a 2D Gaussian-to-hologram transform that supports occlusions and alpha blending. Inspired by classic computer graphics techniques, we also derive an efficient approximation of the aforementioned process in the Fourier domain that is easily parallelizable and implement it using custom CUDA kernels. By integrating emerging neural rendering pipelines with holographic display technology, our Gaussian-based CGH framework paves the way for next-generation holographic displays.
Authors:Yangguang Shao, Xinjie Lin, Haozheng Luo, Chengshang Hou, Gang Xiong, Jiahao Yu, Junzheng Shi
Abstract:
Large language models (LLMs) have achieved remarkable success in various domains, primarily due to their strong capabilities in reasoning and generating human-like text. Despite their impressive performance, LLMs are susceptible to hallucinations, which can lead to incorrect or misleading outputs. This is primarily due to the lack of up-to-date knowledge or domain-specific information. Retrieval-augmented generation (RAG) is a promising approach to mitigate hallucinations by leveraging external knowledge sources. However, the security of RAG systems has not been thoroughly studied. In this paper, we study a poisoning attack on RAG systems named POISONCRAFT, which can mislead the model to refer to fraudulent websites. Compared to existing poisoning attacks on RAG systems, our attack is more practical as it does not require access to the target user query's info or edit the user query. It not only ensures that injected texts can be retrieved by the model, but also ensures that the LLM will be misled to refer to the injected texts in its response. We demonstrate the effectiveness of POISONCRAFTacross different datasets, retrievers, and language models in RAG pipelines, and show that it remains effective when transferred across retrievers, including black-box systems. Moreover, we present a case study revealing how the attack influences both the retrieval behavior and the step-by-step reasoning trace within the generation model, and further evaluate the robustness of POISONCRAFTunder multiple defense mechanisms. These results validate the practicality of our threat model and highlight a critical security risk for RAG systems deployed in real-world applications. We release our code\footnote{https://github.com/AndyShaw01/PoisonCraft} to support future research on the security and robustness of RAG systems in real-world settings.
Authors:Maxim Vashkevich, Egor Krivalcevich
Abstract:
The paper presents a learned two-dimensional separable transform (LST) that can be considered as a new type of computational layer for constructing neural network (NN) architecture for image recognition tasks. The LST based on the idea of sharing the weights of one fullyconnected (FC) layer to process all rows of an image. After that, a second shared FC layer is used to process all columns of image representation obtained from the first layer. The use of LST layers in a NN architecture significantly reduces the number of model parameters compared to models that use stacked FC layers. We show that a NN-classifier based on a single LST layer followed by an FC layer achieves 98.02\% accuracy on the MNIST dataset, while having only 9.5k parameters. We also implemented a LST-based classifier for handwritten digit recognition on the FPGA platform to demonstrate the efficiency of the suggested approach for designing a compact and high-performance implementation of NN models. Git repository with supplementary materials: https://github.com/Mak-Sim/LST-2d
Authors:Woosang Lim, Zekun Li, Gyuwan Kim, Sungyoung Ji, HyeonJung Kim, Kyuri Choi, Jin Hyuk Lim, Kyungpyo Park, William Yang Wang
Abstract:
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.
Authors:Danil Belov, Artem Erkhov, Elizaveta Pestova, Ilya Osokin, Dzmitry Tsetserukou, Pavel Osinenko
Abstract:
The aim of this work is to enable quadrupedal robots to mount skateboards using Reverse Curriculum Reinforcement Learning. Although prior work has demonstrated skateboarding for quadrupeds that are already positioned on the board, the initial mounting phase still poses a significant challenge. A goal-oriented methodology was adopted, beginning with the terminal phases of the task and progressively increasing the complexity of the problem definition to approximate the desired objective. The learning process was initiated with the skateboard rigidly fixed within the global coordinate frame and the robot positioned directly above it. Through gradual relaxation of these initial conditions, the learned policy demonstrated robustness to variations in skateboard position and orientation, ultimately exhibiting a successful transfer to scenarios involving a mobile skateboard. The code, trained models, and reproducible examples are available at the following link: https://github.com/dancher00/quadruped-skateboard-mounting
Authors:Xinyue Lou, You Li, Jinan Xu, Xiangyu Shi, Chi Chen, Kaiyu Huang
Abstract:
The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.
Authors:Feng Liu, Ziwang Fu, Yunlong Wang, Qijian Zheng
Abstract:
The fusion technique is the key to the multimodal emotion recognition task. Recently, cross-modal attention-based fusion methods have demonstrated high performance and strong robustness. However, cross-modal attention suffers from redundant features and does not capture complementary features well. We find that it is not necessary to use the entire information of one modality to reinforce the other during cross-modal interaction, and the features that can reinforce a modality may contain only a part of it. To this end, we design an innovative Transformer-based Adaptive Cross-modal Fusion Network (TACFN). Specifically, for the redundant features, we make one modality perform intra-modal feature selection through a self-attention mechanism, so that the selected features can adaptively and efficiently interact with another modality. To better capture the complementary information between the modalities, we obtain the fused weight vector by splicing and use the weight vector to achieve feature reinforcement of the modalities. We apply TCAFN to the RAVDESS and IEMOCAP datasets. For fair comparison, we use the same unimodal representations to validate the effectiveness of the proposed fusion method. The experimental results show that TACFN brings a significant performance improvement compared to other methods and reaches the state-of-the-art. All code and models could be accessed from https://github.com/shuzihuaiyu/TACFN.
Authors:Ummay Maria Muna, Fahim Hafiz, Shanta Biswas, Riasat Azim
Abstract:
Small nucleolar RNAs (snoRNAs) are increasingly recognized for their critical role in the pathogenesis and characterization of various human diseases. Consequently, the precise identification of snoRNA-disease associations (SDAs) is essential for the progression of diseases and the advancement of treatment strategies. However, conventional biological experimental approaches are costly, time-consuming, and resource-intensive; therefore, machine learning-based computational methods offer a promising solution to mitigate these limitations. This paper proposes a model called 'GBDTSVM', representing a novel and efficient machine learning approach for predicting snoRNA-disease associations by leveraging a Gradient Boosting Decision Tree (GBDT) and Support Vector Machine (SVM). 'GBDTSVM' effectively extracts integrated snoRNA-disease feature representations utilizing GBDT and SVM is subsequently utilized to classify and identify potential associations. Furthermore, the method enhances the accuracy of these predictions by incorporating Gaussian kernel profile similarity for both snoRNAs and diseases. Experimental evaluation of the GBDTSVM model demonstrated superior performance compared to state-of-the-art methods in the field, achieving an area under the receiver operating characteristic (AUROC) of 0.96 and an area under the precision-recall curve (AUPRC) of 0.95 on MDRF dataset. Moreover, our model shows superior performance on two more datasets named LSGT and PsnoD. Additionally, a case study on the predicted snoRNA-disease associations verified the top 10 predicted snoRNAs across nine prevalent diseases, further validating the efficacy of the GBDTSVM approach. These results underscore the model's potential as a robust tool for advancing snoRNA-related disease research. Source codes and datasets our proposed framework can be obtained from: https://github.com/mariamuna04/gbdtsvm
Authors:Jing Hu, Kaiwei Yu, Hongjiang Xian, Shu Hu, Xin Wang
Abstract:
Deformable registration is a fundamental task in medical image processing, aiming to achieve precise alignment by establishing nonlinear correspondences between images. Traditional methods offer good adaptability and interpretability but are limited by computational efficiency. Although deep learning approaches have significantly improved registration speed and accuracy, they often lack flexibility and generalizability across different datasets and tasks. In recent years, foundation models have emerged as a promising direction, leveraging large and diverse datasets to learn universal features and transformation patterns for image registration, thus demonstrating strong cross-task transferability. However, these models still face challenges in generalization and robustness when encountering novel anatomical structures, varying imaging conditions, or unseen modalities. To address these limitations, this paper incorporates Sharpness-Aware Minimization (SAM) into foundation models to enhance their generalization and robustness in medical image registration. By optimizing the flatness of the loss landscape, SAM improves model stability across diverse data distributions and strengthens its ability to handle complex clinical scenarios. Experimental results show that foundation models integrated with SAM achieve significant improvements in cross-dataset registration performance, offering new insights for the advancement of medical image registration technology. Our code is available at https://github.com/Promise13/fm_sam}{https://github.com/Promise13/fm\_sam.
Authors:Xijie Yang, Linning Xu, Lihan Jiang, Dahua Lin, Bo Dai
Abstract:
3D Gaussian Splatting (3DGS) enables the reconstruction of intricate digital 3D assets from multi-view images by leveraging a set of 3D Gaussian primitives for rendering. Its explicit and discrete representation facilitates the seamless composition of complex digital worlds, offering significant advantages over previous neural implicit methods. However, when applied to large-scale compositions, such as crowd-level scenes, it can encompass numerous 3D Gaussians, posing substantial challenges for real-time rendering. To address this, inspired by Unreal Engine 5's Nanite system, we propose Virtualized 3D Gaussians (V3DG), a cluster-based LOD solution that constructs hierarchical 3D Gaussian clusters and dynamically selects only the necessary ones to accelerate rendering speed. Our approach consists of two stages: (1) Offline Build, where hierarchical clusters are generated using a local splatting method to minimize visual differences across granularities, and (2) Online Selection, where footprint evaluation determines perceptible clusters for efficient rasterization during rendering. We curate a dataset of synthetic and real-world scenes, including objects, trees, people, and buildings, each requiring 0.1 billion 3D Gaussians to capture fine details. Experiments show that our solution balances rendering efficiency and visual quality across user-defined tolerances, facilitating downstream interactive applications that compose extensive 3DGS assets for consistent rendering performance.
Authors:Larry Preuett, Qiuyi Zhang, Muhammad Aurangzeb Ahmad
Abstract:
In many real-world planning tasks, agents must tackle uncertainty about the environment's state and variability in the outcomes of any chosen policy. We address both forms of uncertainty as a first step toward safer algorithms in partially observable settings. Specifically, we extend Distributional Reinforcement Learning (DistRL)-which models the entire return distribution for fully observable domains-to Partially Observable Markov Decision Processes (POMDPs), allowing an agent to learn the distribution of returns for each conditional plan. Concretely, we introduce new distributional Bellman operators for partial observability and prove their convergence under the supremum p-Wasserstein metric. We also propose a finite representation of these return distributions via psi-vectors, generalizing the classical alpha-vectors in POMDP solvers. Building on this, we develop Distributional Point-Based Value Iteration (DPBVI), which integrates psi-vectors into a standard point-based backup procedure-bridging DistRL and POMDP planning. By tracking return distributions, DPBVI naturally enables risk-sensitive control in domains where rare, high-impact events must be carefully managed. We provide source code to foster further research in robust decision-making under partial observability.
Authors:Hang Wang, Zhi-Qi Cheng, Chenhao Lin, Chao Shen, Lei Zhang
Abstract:
Text-to-image synthesis has progressed to the point where models can generate visually compelling images from natural language prompts. Yet, existing methods often fail to reconcile high-level semantic fidelity with explicit spatial control, particularly in scenes involving multiple objects, nuanced relations, or complex layouts. To bridge this gap, we propose a Hierarchical Cross-Modal Alignment (HCMA) framework for grounded text-to-image generation. HCMA integrates two alignment modules into each diffusion sampling step: a global module that continuously aligns latent representations with textual descriptions to ensure scene-level coherence, and a local module that employs bounding-box layouts to anchor objects at specified locations, enabling fine-grained spatial control. Extensive experiments on the MS-COCO 2014 validation set show that HCMA surpasses state-of-the-art baselines, achieving a 0.69 improvement in Frechet Inception Distance (FID) and a 0.0295 gain in CLIP Score. These results demonstrate HCMA's effectiveness in faithfully capturing intricate textual semantics while adhering to user-defined spatial constraints, offering a robust solution for semantically grounded image generation. Our code is available at https://github.com/hwang-cs-ime/HCMA.
Authors:Haoyang Xie, Feng Ju
Abstract:
Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.
Authors:Md Rakibul Hasan, Pouria Behnoudfar, Dan MacKinlay, Thomas Poulet
Abstract:
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN.
Authors:Yanjun Lin, Kai Zhang, Zhenying He, Yinan Jing, X. Sean Wang
Abstract:
Filtered approximate nearest neighbor search (FANNS), an extension of approximate nearest neighbor search (ANNS) that incorporates scalar filters, has been widely applied to constrained retrieval of vector data. Despite its growing importance, no dedicated survey on FANNS over the vector-scalar hybrid data currently exists, and the field has several problems, including inconsistent definitions of the search problem, insufficient framework for algorithm classification, and incomplete analysis of query difficulty. This survey paper formally defines the concepts of hybrid dataset and hybrid query, as well as the corresponding evaluation metrics. Based on these, a pruning-focused framework is proposed to classify and summarize existing algorithms, providing a broader and finer-grained classification framework compared to the existing ones. In addition, a review is conducted on representative hybrid datasets, followed by an analysis on the difficulty of hybrid queries from the perspective of distribution relationships between data and queries. This paper aims to establish a structured foundation for FANNS over the vector-scalar hybrid data, facilitate more meaningful comparisons between FANNS algorithms, and offer practical recommendations for practitioners. The code used for downloading hybrid datasets and analyzing query difficulty is available at https://github.com/lyj-fdu/FANNS
Authors:Chathurangi Shyalika, Renjith Prasad, Alaa Al Ghazo, Darssan Eswaramoorthi, Harleen Kaur, Sara Shree Muthuselvam, Amit Sheth
Abstract:
In the dynamic landscape of Industry 4.0, achieving efficiency, precision, and adaptability is essential to optimize manufacturing operations. Industries suffer due to supply chain disruptions caused by anomalies, which are being detected by current AI models but leaving domain experts uncertain without deeper insights into these anomalies. Additionally, operational inefficiencies persist due to inaccurate production forecasts and the limited effectiveness of traditional AI models for processing complex sensor data. Despite these advancements, existing systems lack the seamless integration of these capabilities needed to create a truly unified solution for enhancing production and decision-making. We propose SmartPilot, a neurosymbolic, multiagent CoPilot designed for advanced reasoning and contextual decision-making to address these challenges. SmartPilot processes multimodal sensor data and is compact to deploy on edge devices. It focuses on three key tasks: anomaly prediction, production forecasting, and domain-specific question answering. By bridging the gap between AI capabilities and real-world industrial needs, SmartPilot empowers industries with intelligent decision-making and drives transformative innovation in manufacturing. The demonstration video, datasets, and supplementary materials are available at https://github.com/ChathurangiShyalika/SmartPilot.
Authors:Shehryar Khattak, Timon Homberger, Lukas Bernreiter, Julian Nubert, Olov Andersson, Roland Siegwart, Kostas Alexis, Marco Hutter
Abstract:
Robot autonomy in unknown, GPS-denied, and complex underground environments requires real-time, robust, and accurate onboard pose estimation and mapping for reliable operations. This becomes particularly challenging in perception-degraded subterranean conditions under harsh environmental factors, including darkness, dust, and geometrically self-similar structures. This paper details CompSLAM, a highly resilient and hierarchical multi-modal localization and mapping framework designed to address these challenges. Its flexible architecture achieves resilience through redundancy by leveraging the complementary nature of pose estimates derived from diverse sensor modalities. Developed during the DARPA Subterranean Challenge, CompSLAM was successfully deployed on all aerial, legged, and wheeled robots of Team Cerberus during their competition-winning final run. Furthermore, it has proven to be a reliable odometry and mapping solution in various subsequent projects, with extensions enabling multi-robot map sharing for marsupial robotic deployments and collaborative mapping. This paper also introduces a comprehensive dataset acquired by a manually teleoperated quadrupedal robot, covering a significant portion of the DARPA Subterranean Challenge finals course. This dataset evaluates CompSLAM's robustness to sensor degradations as the robot traverses 740 meters in an environment characterized by highly variable geometries and demanding lighting conditions. The CompSLAM code and the DARPA SubT Finals dataset are made publicly available for the benefit of the robotics community
Authors:Ruijian Zha, Bojun Liu
Abstract:
Recent advances in reinforcement learning, such as Dynamic Sampling Policy Optimization (DAPO), show strong performance when paired with large language models (LLMs). Motivated by this success, we ask whether similar gains can be realized in financial trading. We design a trading agent that combines an improved Group Relative Policy Optimization (GRPO) algorithm, augmented with ideas from DAPO, with LLM-based risk and sentiment signals extracted from financial news. On the NASDAQ-100 index (FNSPID dataset), our agent attains a cumulative return of 230.49 percent and an information ratio of 0.37, outperforming the CPPO-DeepSeek baseline. It also cuts training time from about 8 hours to 2.5 hours over 100 epochs while markedly reducing RAM usage. The proposed RL-LLM framework offers a scalable path toward data-efficient trading agents. Code: https://github.com/Ruijian-Zha/FinRL-DAPO-SR/
Authors:Valfride Nascimento, Gabriel E. Lima, Rafael O. Ribeiro, William Robson Schwartz, Rayson Laroca, David Menotti
Abstract:
Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic applications. However, existing studies have relied on private datasets and simplistic degradation models. To address this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple sequential LR and high-resolution (HR) images per vehicle -- five of each -- and two state-of-the-art models for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP) strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world, adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at: https://valfride.github.io/nascimento2024toward/
Authors:Donghao Ren, Fred Hohman, Halden Lin, Dominik Moritz
Abstract:
Embedding projections are popular for visualizing large datasets and models. However, people often encounter "friction" when using embedding visualization tools: (1) barriers to adoption, e.g., tedious data wrangling and loading, scalability limits, no integration of results into existing workflows, and (2) limitations in possible analyses, without integration with external tools to additionally show coordinated views of metadata. In this paper, we present Embedding Atlas, a scalable, interactive visualization tool designed to make interacting with large embeddings as easy as possible. Embedding Atlas uses modern web technologies and advanced algorithms -- including density-based clustering, and automated labeling -- to provide a fast and rich data analysis experience at scale. We evaluate Embedding Atlas with a competitive analysis against other popular embedding tools, showing that Embedding Atlas's feature set specifically helps reduce friction, and report a benchmark on its real-time rendering performance with millions of points. Embedding Atlas is available as open source to support future work in embedding-based analysis.
Authors:Everest Yang, Ria Vasishtha, Luqman K. Dad, Lisa A. Kachnic, Andrew Hope, Eric Wang, Xiao Wu, Yading Yuan, David J. Brenner, Igor Shuryak
Abstract:
Causal machine learning (CML) enables individualized estimation of treatment effects, offering critical advantages over traditional correlation-based methods. However, existing approaches for medical survival data with censoring such as causal survival forests estimate effects at fixed time points, limiting their ability to capture dynamic changes over time. We introduce Causal Analysis for Survival Trajectories (CAST), a novel framework that models treatment effects as continuous functions of time following treatment. By combining parametric and non-parametric methods, CAST overcomes the limitations of discrete time-point analysis to estimate continuous effect trajectories. Using the RADCURE dataset [1] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a clinically relevant example, CAST models how chemotherapy and radiotherapy effects evolve over time at the population and individual levels. By capturing the temporal dynamics of treatment response, CAST reveals how treatment effects rise, peak, and decline over the follow-up period, helping clinicians determine when and for whom treatment benefits are maximized. This framework advances the application of CML to personalized care in HNSCC and other life-threatening medical conditions. Source code/data available at: https://github.com/CAST-FW/HNSCC
Authors:Chathurangi Shyalika, Renjith Prasad, Fadi El Kalach, Revathy Venkataramanan, Ramtin Zand, Ramy Harik, Amit Sheth
Abstract:
In modern assembly pipelines, identifying anomalies is crucial in ensuring product quality and operational efficiency. Conventional single-modality methods fail to capture the intricate relationships required for precise anomaly prediction in complex predictive environments with abundant data and multiple modalities. This paper proposes a neurosymbolic AI and fusion-based approach for multimodal anomaly prediction in assembly pipelines. We introduce a time series and image-based fusion model that leverages decision-level fusion techniques. Our research builds upon three primary novel approaches in multimodal learning: time series and image-based decision-level fusion modeling, transfer learning for fusion, and knowledge-infused learning. We evaluate the novel method using our derived and publicly available multimodal dataset and conduct comprehensive ablation studies to assess the impact of our preprocessing techniques and fusion model compared to traditional baselines. The results demonstrate that a neurosymbolic AI-based fusion approach that uses transfer learning can effectively harness the complementary strengths of time series and image data, offering a robust and interpretable approach for anomaly prediction in assembly pipelines with enhanced performance. \noindent The datasets, codes to reproduce the results, supplementary materials, and demo are available at https://github.com/ChathurangiShyalika/NSF-MAP.
Authors:Hang Gao, Chenhao Zhang, Tie Wang, Junsuo Zhao, Fengge Wu, Changwen Zheng, Huaping Liu
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, they still face significant challenges, including high computational costs for training and limitations in solving complex reasoning problems. Although existing methods have extended the reasoning capabilities of LLMs through structured paradigms, these approaches often rely on task-specific prompts and predefined reasoning processes, which constrain their flexibility and generalizability. To address these limitations, we propose a novel framework that leverages graph learning to enable more flexible and adaptive reasoning capabilities for LLMs. Specifically, this approach models the reasoning process of a problem as a graph and employs LLM-based graph learning to guide the adaptive generation of each reasoning step. To further enhance the adaptability of the model, we introduce a Graph Neural Network (GNN) module to perform representation learning on the generated reasoning process, enabling real-time adjustments to both the model and the prompt. Experimental results demonstrate that this method significantly improves reasoning performance across multiple tasks without requiring additional training or task-specific prompt design. Code can be found in https://github.com/zch65458525/L2T.
Authors:Tongyu Wen, Chenglong Wang, Xiyuan Yang, Haoyu Tang, Yueqi Xie, Lingjuan Lyu, Zhicheng Dou, Fangzhao Wu
Abstract:
The integration of Large Language Models (LLMs) with external sources is becoming increasingly common, with Retrieval-Augmented Generation (RAG) being a prominent example. However, this integration introduces vulnerabilities of Indirect Prompt Injection (IPI) attacks, where hidden instructions embedded in external data can manipulate LLMs into executing unintended or harmful actions. We recognize that IPI attacks fundamentally rely on the presence of instructions embedded within external content, which can alter the behavioral states of LLMs. Can the effective detection of such state changes help us defend against IPI attacks? In this paper, we propose InstructDetector, a novel detection-based approach that leverages the behavioral states of LLMs to identify potential IPI attacks. Specifically, we demonstrate the hidden states and gradients from intermediate layers provide highly discriminative features for instruction detection. By effectively combining these features, InstructDetector achieves a detection accuracy of 99.60% in the in-domain setting and 96.90% in the out-of-domain setting, and reduces the attack success rate to just 0.03% on the BIPIA benchmark. The code is publicly available at https://github.com/MYVAE/Instruction-detection.
Authors:Wei Xiong, Junming Lin, Jiangtong Li, Jie Li, Changjun Jiang
Abstract:
While foundation models excel in text, image, and video domains, the critical biological signals, particularly electroencephalography(EEG), remain underexplored. EEG benefits neurological research with its high temporal resolution, operational practicality, and safety profile. However, low signal-to-noise ratio, inter-subject variability, and cross-paradigm differences hinder the generalization of current models. Existing methods often employ simplified strategies, such as a single loss function or a channel-temporal joint representation module, and suffer from a domain gap between pretraining and evaluation tasks that compromises efficiency and adaptability. To address these limitations, we propose the Adaptive Large Foundation model for EEG signal representation(ALFEE) framework, a novel hybrid transformer architecture with two learning stages for robust EEG representation learning. ALFEE employs a hybrid attention that separates channel-wise feature aggregation from temporal dynamics modeling, enabling robust EEG representation with variable channel configurations. A channel encoder adaptively compresses variable channel information, a temporal encoder captures task-guided evolution, and a hybrid decoder reconstructs signals in both temporal and frequency domains. During pretraining, ALFEE optimizes task prediction, channel and temporal mask reconstruction, and temporal forecasting to enhance multi-scale and multi-channel representation. During fine-tuning, a full-model adaptation with a task-specific token dictionary and a cross-attention layer boosts performance across multiple tasks. After 25,000 hours of pretraining, extensive experimental results on six downstream EEG tasks demonstrate the superior performance of ALFEE over existing models. Our ALFEE framework establishes a scalable foundation for biological signal analysis with implementation at https://github.com/xw1216/ALFEE.
Authors:Zixu Wang, Bingbing Xu, Yige Yuan, Huawei Shen, Xueqi Cheng
Abstract:
As an important graph pre-training method, Graph Contrastive Learning (GCL) continues to play a crucial role in the ongoing surge of research on graph foundation models or LLM as enhancer for graphs. Traditional GCL optimizes InfoNCE by using augmentations to define self-supervised tasks, treating augmented pairs as positive samples and others as negative. However, this leads to semantically similar pairs being classified as negative, causing significant sampling bias and limiting performance. In this paper, we argue that GCL is essentially a Positive-Unlabeled (PU) learning problem, where the definition of self-supervised tasks should be semantically guided, i.e., augmented samples with similar semantics are considered positive, while others, with unknown semantics, are treated as unlabeled. From this perspective, the key lies in how to extract semantic information. To achieve this, we propose IFL-GCL, using InfoNCE as a "free lunch" to extract semantic information. Specifically, We first prove that under InfoNCE, the representation similarity of node pairs aligns with the probability that the corresponding contrastive sample is positive. Then we redefine the maximum likelihood objective based on the corrected samples, leading to a new InfoNCE loss function. Extensive experiments on both the graph pretraining framework and LLM as an enhancer show significantly improvements of IFL-GCL in both IID and OOD scenarios, achieving up to a 9.05% improvement, validating the effectiveness of semantically guided. Code for IFL-GCL is publicly available at: https://github.com/Camel-Prince/IFL-GCL.
Authors:Gabriele Rosi, Fabio Cermelli
Abstract:
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
Authors:Baijiong Lin, Weisen Jiang, Yuancheng Xu, Hao Chen, Ying-Cong Chen
Abstract:
Multi-objective test-time alignment aims to adapt large language models (LLMs) to diverse multi-dimensional user preferences during inference while keeping LLMs frozen. Recently, GenARM (Xu et al., 2025) first independently trains Autoregressive Reward Models (ARMs) for each preference dimension without awareness of each other, then combines their outputs based on user-specific preference vectors during inference to achieve multi-objective test-time alignment, leading to two key limitations: the need for \textit{multiple} ARMs increases the inference cost, and the separate training of ARMs causes the misalignment between the guided generation and the user preferences. To address these issues, we propose Preference-aware ARM (PARM), a single unified ARM trained across all preference dimensions. PARM uses our proposed Preference-Aware Bilinear Low-Rank Adaptation (PBLoRA), which employs a bilinear form to condition the ARM on preference vectors, enabling it to achieve precise control over preference trade-offs during inference. Experiments demonstrate that PARM reduces inference costs and achieves better alignment with preference vectors compared with existing methods. Additionally, PARM enables weak-to-strong guidance, allowing a smaller PARM to guide a larger frozen LLM without expensive training, making multi-objective alignment accessible with limited computing resources. The code is available at https://github.com/Baijiong-Lin/PARM.
Authors:Junzhou Xu, Boyu Diao
Abstract:
As deep learning models expand, the pre-training-fine-tuning paradigm has become the standard approach for handling various downstream tasks. However, shared parameters can lead to diminished performance when dealing with complex datasets involving multiple tasks. While introducing Mixture-of-Experts (MoE) methods has alleviated this issue to some extent, it also significantly increases the number of parameters required for fine-tuning and training time, introducing greater parameter redundancy. To address these challenges, we propose a method for allocating expert numbers based on parameter sensitivity LoRA-SMoE (A Sensitivity-Driven Expert Allocation Method in LoRA-MoE for Efficient Fine-Tuning). This method rapidly assesses the sensitivity of different tasks to parameters by sampling a small amount of data and using gradient information. It then adaptively allocates expert numbers within a given budget. The process maintains comparable memory consumption to LoRA (Low-Rank Adaptation) while ensuring an efficient and resource-friendly fine-tuning procedure. Experimental results demonstrate that compared to SOTA fine-tuning methods, our LoRA-SMoE approach can enhance model performance while reducing the number of trainable parameters. This significantly improves model performance in resource-constrained environments. Additionally, due to its efficient parameter sensitivity evaluation mechanism, LoRA-SMoE requires minimal computational overhead to optimize expert allocation, making it particularly suitable for scenarios with limited computational resources. All the code in this study will be made publicly available following the acceptance of the paper for publication. Source code is at https://github.com/EMLS-ICTCAS/LoRA-SMoE
Authors:Zhiyu Zhu, Jiayu Zhang, Zhibo Jin, Fang Chen, Jianlong Zhou
Abstract:
Attribution algorithms are essential for enhancing the interpretability and trustworthiness of deep learning models by identifying key features driving model decisions. Existing frameworks, such as InterpretDL and OmniXAI, integrate multiple attribution methods but suffer from scalability limitations, high coupling, theoretical constraints, and lack of user-friendly implementations, hindering neural network transparency and interoperability. To address these challenges, we propose Attribution-Based Explainability (ABE), a unified framework that formalizes Fundamental Attribution Methods and integrates state-of-the-art attribution algorithms while ensuring compliance with attribution axioms. ABE enables researchers to develop novel attribution techniques and enhances interpretability through four customizable modules: Robustness, Interpretability, Validation, and Data & Model. This framework provides a scalable, extensible foundation for advancing attribution-based explainability and fostering transparent AI systems. Our code is available at: https://github.com/LMBTough/ABE-XAI.
Authors:Yufan Deng, Yuhao Zhang, Chen Geng, Shangzhe Wu, Jiajun Wu
Abstract:
Rigging and skinning are essential steps to create realistic 3D animations, often requiring significant expertise and manual effort. Traditional attempts at automating these processes rely heavily on geometric heuristics and often struggle with objects of complex geometry. Recent data-driven approaches show potential for better generality, but are often constrained by limited training data. We present the Anymate Dataset, a large-scale dataset of 230K 3D assets paired with expert-crafted rigging and skinning information -- 70 times larger than existing datasets. Using this dataset, we propose a learning-based auto-rigging framework with three sequential modules for joint, connectivity, and skinning weight prediction. We systematically design and experiment with various architectures as baselines for each module and conduct comprehensive evaluations on our dataset to compare their performance. Our models significantly outperform existing methods, providing a foundation for comparing future methods in automated rigging and skinning. Code and dataset can be found at https://anymate3d.github.io/.
Authors:Radu Alexandru Rosu, Keyu Wu, Yao Feng, Youyi Zheng, Michael J. Black
Abstract:
We address the task of generating 3D hair geometry from a single image, which is challenging due to the diversity of hairstyles and the lack of paired image-to-3D hair data. Previous methods are primarily trained on synthetic data and cope with the limited amount of such data by using low-dimensional intermediate representations, such as guide strands and scalp-level embeddings, that require post-processing to decode, upsample, and add realism. These approaches fail to reconstruct detailed hair, struggle with curly hair, or are limited to handling only a few hairstyles. To overcome these limitations, we propose DiffLocks, a novel framework that enables detailed reconstruction of a wide variety of hairstyles directly from a single image. First, we address the lack of 3D hair data by automating the creation of the largest synthetic hair dataset to date, containing 40K hairstyles. Second, we leverage the synthetic hair dataset to learn an image-conditioned diffusion-transfomer model that generates accurate 3D strands from a single frontal image. By using a pretrained image backbone, our method generalizes to in-the-wild images despite being trained only on synthetic data. Our diffusion model predicts a scalp texture map in which any point in the map contains the latent code for an individual hair strand. These codes are directly decoded to 3D strands without post-processing techniques. Representing individual strands, instead of guide strands, enables the transformer to model the detailed spatial structure of complex hairstyles. With this, DiffLocks can recover highly curled hair, like afro hairstyles, from a single image for the first time. Data and code is available at https://radualexandru.github.io/difflocks/
Authors:Wenqi Zeng, Yuqi Sun, Chenxi Ma, Weimin Tan, Bo Yan
Abstract:
Medical vision-language models (VLMs) have shown promise as clinical assistants across various medical fields. However, specialized dermatology VLM capable of delivering professional and detailed diagnostic analysis remains underdeveloped, primarily due to less specialized text descriptions in current dermatology multimodal datasets. To address this issue, we propose MM-Skin, the first large-scale multimodal dermatology dataset that encompasses 3 imaging modalities, including clinical, dermoscopic, and pathological and nearly 10k high-quality image-text pairs collected from professional textbooks. In addition, we generate over 27k diverse, instruction-following vision question answering (VQA) samples (9 times the size of current largest dermatology VQA dataset). Leveraging public datasets and MM-Skin, we developed SkinVL, a dermatology-specific VLM designed for precise and nuanced skin disease interpretation. Comprehensive benchmark evaluations of SkinVL on VQA, supervised fine-tuning (SFT) and zero-shot classification tasks across 8 datasets, reveal its exceptional performance for skin diseases in comparison to both general and medical VLM models. The introduction of MM-Skin and SkinVL offers a meaningful contribution to advancing the development of clinical dermatology VLM assistants. MM-Skin is available at https://github.com/ZwQ803/MM-Skin
Authors:Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, Hongyang Li
Abstract:
A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.
Authors:Wendy Carvalho, Meriem Elkoudi, Brendan Hertel, Reza Azadeh
Abstract:
Often, robots are asked to execute primitive movements, whether as a single action or in a series of actions representing a larger, more complex task. These movements can be learned in many ways, but a common one is from demonstrations presented to the robot by a teacher. However, these demonstrations are not always simple movements themselves, and complex demonstrations must be broken down, or segmented, into primitive movements. In this work, we present a parameter-free approach to segmentation using techniques inspired by autocorrelation and cross-correlation from signal processing. In cross-correlation, a representative signal is found in some larger, more complex signal by correlating the representative signal with the larger signal. This same idea can be applied to segmenting robot motion and demonstrations, provided with a representative motion primitive. This results in a fast and accurate segmentation, which does not take any parameters. One of the main contributions of this paper is the modification of the cross-correlation process by employing similarity metrics that can capture features specific to robot movements. To validate our framework, we conduct several experiments of complex tasks both in simulation and in real-world. We also evaluate the effectiveness of our segmentation framework by comparing various similarity metrics.
Authors:Brendan Hertel, Reza Azadeh
Abstract:
To learn manipulation skills, robots need to understand the features of those skills. An easy way for robots to learn is through Learning from Demonstration (LfD), where the robot learns a skill from an expert demonstrator. While the main features of a skill might be captured in one differential coordinate (i.e., Cartesian), they could have meaning in other coordinates. For example, an important feature of a skill may be its shape or velocity profile, which are difficult to discover in Cartesian differential coordinate. In this work, we present a method which enables robots to learn skills from human demonstrations via encoding these skills into various differential coordinates, then determines the importance of each coordinate to reproduce the skill. We also introduce a modified form of Elastic Maps that includes multiple differential coordinates, combining statistical modeling of skills in these differential coordinate spaces. Elastic Maps, which are flexible and fast to compute, allow for the incorporation of several different types of constraints and the use of any number of demonstrations. Additionally, we propose methods for auto-tuning several parameters associated with the modified Elastic Map formulation. We validate our approach in several simulated experiments and a real-world writing task with a UR5e manipulator arm.
Authors:Shuaiyi Huang, Mara Levy, Anubhav Gupta, Daniel Ekpo, Ruijie Zheng, Abhinav Shrivastava
Abstract:
Preference feedback collected by human or VLM annotators is often noisy, presenting a significant challenge for preference-based reinforcement learning that relies on accurate preference labels. To address this challenge, we propose TREND, a novel framework that integrates few-shot expert demonstrations with a tri-teaching strategy for effective noise mitigation. Our method trains three reward models simultaneously, where each model views its small-loss preference pairs as useful knowledge and teaches such useful pairs to its peer network for updating the parameters. Remarkably, our approach requires as few as one to three expert demonstrations to achieve high performance. We evaluate TREND on various robotic manipulation tasks, achieving up to 90% success rates even with noise levels as high as 40%, highlighting its effective robustness in handling noisy preference feedback. Project page: https://shuaiyihuang.github.io/publications/TREND.
Authors:Gabriel Gagné, Anisha Azad, Thomas Labbé, Evan Campbell, Xavier Isabel, Erik Scheme, Ulysse Côté-Allard, Benoit Gosselin
Abstract:
Electromyography (EMG)-based gesture recognition is a promising approach for designing intuitive human-computer interfaces. However, while these systems typically perform well in controlled laboratory settings, their usability in real-world applications is compromised by declining performance during real-time control. This decline is largely due to goal-directed behaviors that are not captured in static, offline scenarios. To address this issue, we use \textit{Context Informed Incremental Learning} (CIIL) - marking its first deployment in an object-manipulation scenario - to continuously adapt the classifier using contextual cues. Nine participants without upper limb differences completed a functional task in a virtual reality (VR) environment involving transporting objects with life-like grips. We compared two scenarios: one where the classifier was adapted in real-time using contextual information, and the other using a traditional open-loop approach without adaptation. The CIIL-based approach not only enhanced task success rates and efficiency, but also reduced the perceived workload by 7.1 %, despite causing a 5.8 % reduction in offline classification accuracy. This study highlights the potential of real-time contextualized adaptation to enhance user experience and usability of EMG-based systems for practical, goal-oriented applications, crucial elements towards their long-term adoption. The source code for this study is available at: https://github.com/BiomedicalITS/ciil-emg-vr.
Authors:Dongqian Guo, Wencheng Han, Pang Lyu, Yuxi Zhou, Jianbing Shen
Abstract:
Cephalometric landmark detection is essential for orthodontic diagnostics and treatment planning. Nevertheless, the scarcity of samples in data collection and the extensive effort required for manual annotation have significantly impeded the availability of diverse datasets. This limitation has restricted the effectiveness of deep learning-based detection methods, particularly those based on large-scale vision models. To address these challenges, we have developed an innovative data generation method capable of producing diverse cephalometric X-ray images along with corresponding annotations without human intervention. To achieve this, our approach initiates by constructing new cephalometric landmark annotations using anatomical priors. Then, we employ a diffusion-based generator to create realistic X-ray images that correspond closely with these annotations. To achieve precise control in producing samples with different attributes, we introduce a novel prompt cephalometric X-ray image dataset. This dataset includes real cephalometric X-ray images and detailed medical text prompts describing the images. By leveraging these detailed prompts, our method improves the generation process to control different styles and attributes. Facilitated by the large, diverse generated data, we introduce large-scale vision detection models into the cephalometric landmark detection task to improve accuracy. Experimental results demonstrate that training with the generated data substantially enhances the performance. Compared to methods without using the generated data, our approach improves the Success Detection Rate (SDR) by 6.5%, attaining a notable 82.2%. All code and data are available at: https://um-lab.github.io/cepha-generation
Authors:Congqi Cao, Peiheng Han, Yueran zhang, Yating Yu, Qinyi Lv, Lingtong Min, Yanning zhang
Abstract:
Large-scale pre-trained models have achieved remarkable success in language and image tasks, leading an increasing number of studies to explore the application of pre-trained image models, such as CLIP, in the domain of few-shot action recognition (FSAR). However, current methods generally suffer from several problems: 1) Direct fine-tuning often undermines the generalization capability of the pre-trained model; 2) The exploration of task-specific information is insufficient in the visual tasks; 3) The semantic order information is typically overlooked during text modeling; 4) Existing cross-modal alignment techniques ignore the temporal coupling of multimodal information. To address these, we propose Task-Adapter++, a parameter-efficient dual adaptation method for both image and text encoders. Specifically, to make full use of the variations across different few-shot learning tasks, we design a task-specific adaptation for the image encoder so that the most discriminative information can be well noticed during feature extraction. Furthermore, we leverage large language models (LLMs) to generate detailed sequential sub-action descriptions for each action class, and introduce semantic order adapters into the text encoder to effectively model the sequential relationships between these sub-actions. Finally, we develop an innovative fine-grained cross-modal alignment strategy that actively maps visual features to reside in the same temporal stage as semantic descriptions. Extensive experiments fully demonstrate the effectiveness and superiority of the proposed method, which achieves state-of-the-art performance on 5 benchmarks consistently. The code is open-sourced at https://github.com/Jaulin-Bage/Task-Adapter-pp.
Authors:Vytenis Šliogeris, Povilas Daniušis, Artūras Nakvosas
Abstract:
In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at https://github.com/Neurotechnology/LLM_EWC.
Authors:Weihong Li, Xiaoqiong Liu, Heng Fan, Libo Zhang
Abstract:
Recent advancements in visual object tracking have markedly improved the capabilities of unmanned aerial vehicle (UAV) tracking, which is a critical component in real-world robotics applications. While the integration of hierarchical lightweight networks has become a prevalent strategy for enhancing efficiency in UAV tracking, it often results in a significant drop in network capacity, which further exacerbates challenges in UAV scenarios, such as frequent occlusions and extreme changes in viewing angles. To address these issues, we introduce a novel family of UAV trackers, termed CGTrack, which combines explicit and implicit techniques to expand network capacity within a coarse-to-fine framework. Specifically, we first introduce a Hierarchical Feature Cascade (HFC) module that leverages the spirit of feature reuse to increase network capacity by integrating the deep semantic cues with the rich spatial information, incurring minimal computational costs while enhancing feature representation. Based on this, we design a novel Lightweight Gated Center Head (LGCH) that utilizes gating mechanisms to decouple target-oriented coordinates from previously expanded features, which contain dense local discriminative information. Extensive experiments on three challenging UAV tracking benchmarks demonstrate that CGTrack achieves state-of-the-art performance while running fast. Code will be available at https://github.com/Nightwatch-Fox11/CGTrack.
Authors:Jianjian Yin, Yi Chen, Chengyu Li, Zhichao Zheng, Yanhui Gu, Junsheng Zhou
Abstract:
Current methods for medical image segmentation primarily focus on extracting contextual feature information from the perspective of the whole image. While these methods have shown effective performance, none of them take into account the fact that pixels at the boundary and regions with a low number of class pixels capture more contextual feature information from other classes, leading to misclassification of pixels by unequal contextual feature information. In this paper, we propose a dual feature equalization network based on the hybrid architecture of Swin Transformer and Convolutional Neural Network, aiming to augment the pixel feature representations by image-level equalization feature information and class-level equalization feature information. Firstly, the image-level feature equalization module is designed to equalize the contextual information of pixels within the image. Secondly, we aggregate regions of the same class to equalize the pixel feature representations of the corresponding class by class-level feature equalization module. Finally, the pixel feature representations are enhanced by learning weights for image-level equalization feature information and class-level equalization feature information. In addition, Swin Transformer is utilized as both the encoder and decoder, thereby bolstering the ability of the model to capture long-range dependencies and spatial correlations. We conducted extensive experiments on Breast Ultrasound Images (BUSI), International Skin Imaging Collaboration (ISIC2017), Automated Cardiac Diagnosis Challenge (ACDC) and PH$^2$ datasets. The experimental results demonstrate that our method have achieved state-of-the-art performance. Our code is publicly available at https://github.com/JianJianYin/DFEN.
Authors:Hanzhe Liang, Aoran Wang, Jie Zhou, Xin Jin, Can Gao, Jinbao Wang
Abstract:
In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD
Authors:Changkun Ye, Russell Tsuchida, Lars Petersson, Nick Barnes
Abstract:
Open set label shift (OSLS) occurs when label distributions change from a source to a target distribution, and the target distribution has an additional out-of-distribution (OOD) class. In this work, we build estimators for both source and target open set label distributions using a source domain in-distribution (ID) classifier and an ID/OOD classifier. With reasonable assumptions on the ID/OOD classifier, the estimators are assembled into a sequence of three stages: 1) an estimate of the source label distribution of the OOD class, 2) an EM algorithm for Maximum Likelihood estimates (MLE) of the target label distribution, and 3) an estimate of the target label distribution of OOD class under relaxed assumptions on the OOD classifier. The sampling errors of estimates in 1) and 3) are quantified with a concentration inequality. The estimation result allows us to correct the ID classifier trained on the source distribution to the target distribution without retraining. Experiments on a variety of open set label shift settings demonstrate the effectiveness of our model. Our code is available at https://github.com/ChangkunYe/OpenSetLabelShift.
Authors:Chunlai Dong, Haochao Ying, Qibo Qiu, Jinhong Wang, Danny Chen, Jian Wu
Abstract:
Ordinal regression bridges regression and classification by assigning objects to ordered classes. While human experts rely on discriminative patch-level features for decisions, current approaches are limited by the availability of only image-level ordinal labels, overlooking fine-grained patch-level characteristics. In this paper, we propose a Dual-level Fuzzy Learning with Patch Guidance framework, named DFPG that learns precise feature-based grading boundaries from ambiguous ordinal labels, with patch-level supervision. Specifically, we propose patch-labeling and filtering strategies to enable the model to focus on patch-level features exclusively with only image-level ordinal labels available. We further design a dual-level fuzzy learning module, which leverages fuzzy logic to quantitatively capture and handle label ambiguity from both patch-wise and channel-wise perspectives. Extensive experiments on various image ordinal regression datasets demonstrate the superiority of our proposed method, further confirming its ability in distinguishing samples from difficult-to-classify categories. The code is available at https://github.com/ZJUMAI/DFPG-ord.
Authors:Zhiyuan Chen, Keyi Li, Yifan Jia, Le Ye, Yufei Ma
Abstract:
Diffusion transformer (DiT) models have achieved remarkable success in image generation, thanks for their exceptional generative capabilities and scalability. Nonetheless, the iterative nature of diffusion models (DMs) results in high computation complexity, posing challenges for deployment. Although existing cache-based acceleration methods try to utilize the inherent temporal similarity to skip redundant computations of DiT, the lack of correction may induce potential quality degradation. In this paper, we propose increment-calibrated caching, a training-free method for DiT acceleration, where the calibration parameters are generated from the pre-trained model itself with low-rank approximation. To deal with the possible correction failure arising from outlier activations, we introduce channel-aware Singular Value Decomposition (SVD), which further strengthens the calibration effect. Experimental results show that our method always achieve better performance than existing naive caching methods with a similar computation resource budget. When compared with 35-step DDIM, our method eliminates more than 45% computation and improves IS by 12 at the cost of less than 0.06 FID increase. Code is available at https://github.com/ccccczzy/icc.
Authors:Yizhuo Yang, Jiulin Zhao, Xinhang Xu, Kun Cao, Shenghai Yuan, Lihua Xie
Abstract:
Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.
Authors:Haojie Duanmu, Xiuhong Li, Zhihang Yuan, Size Zheng, Jiangfei Duan, Xingcheng Zhang, Dahua Lin
Abstract:
Mixture-of-Experts (MoE) models face deployment challenges due to their large parameter counts and computational demands. We explore quantization for MoE models and highlight two key insights: 1) linear blocks exhibit varying quantization sensitivity, and 2) divergent expert activation frequencies create heterogeneous computational characteristics. Based on these observations, we introduce MxMoE, a mixed-precision optimization framework for MoE models that considers both algorithmic and system perspectives. MxMoE navigates the design space defined by parameter sensitivity, expert activation dynamics, and hardware resources to derive efficient mixed-precision configurations. Additionally, MxMoE automatically generates optimized mixed-precision GroupGEMM kernels, enabling parallel execution of GEMMs with different precisions. Evaluations show that MxMoE outperforms existing methods, achieving 2.4 lower Wikitext-2 perplexity than GPTQ at 2.25-bit and delivering up to 3.4x speedup over full precision, as well as up to 29.4% speedup over uniform quantization at equivalent accuracy with 5-bit weight-activation quantization. Our code is available at https://github.com/cat538/MxMoE.
Authors:Chengyang He, Xu Liu, Gadiel Sznaier Camps, Guillaume Sartoretti, Mac Schwager
Abstract:
Diffusion policies have demonstrated remarkable dexterity and robustness in intricate, high-dimensional robot manipulation tasks, while training from a small number of demonstrations. However, the reason for this performance remains a mystery. In this paper, we offer a surprising hypothesis: diffusion policies essentially memorize an action lookup table -- and this is beneficial. We posit that, at runtime, diffusion policies find the closest training image to the test image in a latent space, and recall the associated training action sequence, offering reactivity without the need for action generalization. This is effective in the sparse data regime, where there is not enough data density for the model to learn action generalization. We support this claim with systematic empirical evidence. Even when conditioned on wildly out of distribution (OOD) images of cats and dogs, the Diffusion Policy still outputs an action sequence from the training data. With this insight, we propose a simple policy, the Action Lookup Table (ALT), as a lightweight alternative to the Diffusion Policy. Our ALT policy uses a contrastive image encoder as a hash function to index the closest corresponding training action sequence, explicitly performing the computation that the Diffusion Policy implicitly learns. We show empirically that for relatively small datasets, ALT matches the performance of a diffusion model, while requiring only 0.0034 of the inference time and 0.0085 of the memory footprint, allowing for much faster closed-loop inference with resource constrained robots. We also train our ALT policy to give an explicit OOD flag when the distance between the runtime image is too far in the latent space from the training images, giving a simple but effective runtime monitor. More information can be found at: https://stanfordmsl.github.io/alt/.
Authors:Azim Ospanov, Farzan Farnia, Roozbeh Yousefzadeh
Abstract:
Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with LLMs remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, modelagnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proofgeneration results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sublemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low budget. The repaired subproofs are recombined and reverified, iterating up to a usercontrolled maximum number of attempts. On the miniF2F benchmark, we establish a new stateoftheart accuracy of 84.9% among sub 8Bparameter models while keeping the sampling budget below one hundred. Moreover, Apollo raises the stateoftheart accuracy for GoedelProverSFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. Generalpurpose models (o3mini, o4mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compilerguided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving. The codebase is available at https://github.com/aziksh-ospanov/APOLLO
Authors:Amin Ghafourian, Andrew Lee, Dechen Gao, Tyler Beer, Kin Yen, Iman Soltani
Abstract:
Automation can play a prominent role in improving efficiency, accuracy, and scalability in infrastructure surveying and assessing construction and compliance standards. This paper presents a framework for automation of geometric measurements and compliance assessment using point cloud data. The proposed approach integrates deep learning-based detection and segmentation, in conjunction with geometric and signal processing techniques, to automate surveying tasks. As a proof of concept, we apply this framework to automatically evaluate the compliance of curb ramps with the Americans with Disabilities Act (ADA), demonstrating the utility of point cloud data in survey automation. The method leverages a newly collected, large annotated dataset of curb ramps, made publicly available as part of this work, to facilitate robust model training and evaluation. Experimental results, including comparison with manual field measurements of several ramps, validate the accuracy and reliability of the proposed method, highlighting its potential to significantly reduce manual effort and improve consistency in infrastructure assessment. Beyond ADA compliance, the proposed framework lays the groundwork for broader applications in infrastructure surveying and automated construction evaluation, promoting wider adoption of point cloud data in these domains. The annotated database, manual ramp survey data, and developed algorithms are publicly available on the project's GitHub page: https://github.com/Soltanilara/SurveyAutomation.
Authors:Zhangchi Hu, Peixi Wu, Jie Chen, Huyue Zhu, Yijun Wang, Yansong Peng, Hebei Li, Xiaoyan Sun
Abstract:
Tiny object detection plays a vital role in drone surveillance, remote sensing, and autonomous systems, enabling the identification of small targets across vast landscapes. However, existing methods suffer from inefficient feature leverage and high computational costs due to redundant feature processing and rigid query allocation. To address these challenges, we propose Dome-DETR, a novel framework with Density-Oriented Feature-Query Manipulation for Efficient Tiny Object Detection. To reduce feature redundancies, we introduce a lightweight Density-Focal Extractor (DeFE) to produce clustered compact foreground masks. Leveraging these masks, we incorporate Masked Window Attention Sparsification (MWAS) to focus computational resources on the most informative regions via sparse attention. Besides, we propose Progressive Adaptive Query Initialization (PAQI), which adaptively modulates query density across spatial areas for better query allocation. Extensive experiments demonstrate that Dome-DETR achieves state-of-the-art performance (+3.3 AP on AI-TOD-V2 and +2.5 AP on VisDrone) while maintaining low computational complexity and a compact model size. Code is available at https://github.com/RicePasteM/Dome-DETR.
Authors:Jinze Lv, Jian Chen, Zi Long, Xianghua Fu, Yin Chen
Abstract:
Most existing multimodal machine translation (MMT) datasets are predominantly composed of static images or short video clips, lacking extensive video data across diverse domains and topics. As a result, they fail to meet the demands of real-world MMT tasks, such as documentary translation. In this study, we developed TopicVD, a topic-based dataset for video-supported multimodal machine translation of documentaries, aiming to advance research in this field. We collected video-subtitle pairs from documentaries and categorized them into eight topics, such as economy and nature, to facilitate research on domain adaptation in video-guided MMT. Additionally, we preserved their contextual information to support research on leveraging the global context of documentaries in video-guided MMT. To better capture the shared semantics between text and video, we propose an MMT model based on a cross-modal bidirectional attention module. Extensive experiments on the TopicVD dataset demonstrate that visual information consistently improves the performance of the NMT model in documentary translation. However, the MMT model's performance significantly declines in out-of-domain scenarios, highlighting the need for effective domain adaptation methods. Additionally, experiments demonstrate that global context can effectively improve translation performance. % Dataset and our implementations are available at https://github.com/JinzeLv/TopicVD
Authors:Ho-Joong Kim, Yearang Lee, Jung-Ho Hong, Seong-Whan Lee
Abstract:
In this paper, we examine a key limitation in query-based detectors for temporal action detection (TAD), which arises from their direct adaptation of originally designed architectures for object detection. Despite the effectiveness of the existing models, they struggle to fully address the unique challenges of TAD, such as the redundancy in multi-scale features and the limited ability to capture sufficient temporal context. To address these issues, we propose a multi-dilated gated encoder and central-adjacent region integrated decoder for temporal action detection transformer (DiGIT). Our approach replaces the existing encoder that consists of multi-scale deformable attention and feedforward network with our multi-dilated gated encoder. Our proposed encoder reduces the redundant information caused by multi-level features while maintaining the ability to capture fine-grained and long-range temporal information. Furthermore, we introduce a central-adjacent region integrated decoder that leverages a more comprehensive sampling strategy for deformable cross-attention to capture the essential information. Extensive experiments demonstrate that DiGIT achieves state-of-the-art performance on THUMOS14, ActivityNet v1.3, and HACS-Segment. Code is available at: https://github.com/Dotori-HJ/DiGIT
Authors:Etai Sella, Yanir Kleiman, Hadar Averbuch-Elor
Abstract:
Despite rapid advancements in the capabilities of generative models, pretrained text-to-image models still struggle in capturing the semantics conveyed by complex prompts that compound multiple objects and instance-level attributes. Consequently, we are witnessing growing interests in integrating additional structural constraints, typically in the form of coarse bounding boxes, to better guide the generation process in such challenging cases. In this work, we take the idea of structural guidance a step further by making the observation that contemporary image generation models can directly provide a plausible fine-grained structural initialization. We propose a technique that couples this image-based structural guidance with LLM-based instance-level instructions, yielding output images that adhere to all parts of the text prompt, including object counts, instance-level attributes, and spatial relations between instances.
Authors:Gengyan Li, Paulo Gotardo, Timo Bolkart, Stephan Garbin, Kripasindhu Sarkar, Abhimitra Meka, Alexandros Lattas, Thabo Beeler
Abstract:
Sparse volumetric reconstruction and rendering via 3D Gaussian splatting have recently enabled animatable 3D head avatars that are rendered under arbitrary viewpoints with impressive photorealism. Today, such photoreal avatars are seen as a key component in emerging applications in telepresence, extended reality, and entertainment. Building a photoreal avatar requires estimating the complex non-rigid motion of different facial components as seen in input video images; due to inaccurate motion estimation, animatable models typically present a loss of fidelity and detail when compared to their non-animatable counterparts, built from an individual facial expression. Also, recent state-of-the-art models are often affected by memory limitations that reduce the number of 3D Gaussians used for modeling, leading to lower detail and quality. To address these problems, we present a new high-detail 3D head avatar model that improves upon the state of the art, largely increasing the number of 3D Gaussians and modeling quality for rendering at 4K resolution. Our high-quality model is reconstructed from multiview input video and builds on top of a mesh-based 3D morphable model, which provides a coarse deformation layer for the head. Photoreal appearance is modelled by 3D Gaussians embedded within the continuous UVD tangent space of this mesh, allowing for more effective densification where most needed. Additionally, these Gaussians are warped by a novel UVD deformation field to capture subtle, localized motion. Our key contribution is the novel deformable Gaussian encoding and overall fitting procedure that allows our head model to preserve appearance detail, while capturing facial motion and other transient high-frequency features such as skin wrinkling.
Authors:Guilherme Vieira Neto, Marcos Eduardo Valle
Abstract:
EfficientNet models are convolutional neural networks optimized for parameter allocation by jointly balancing network width, depth, and resolution. Renowned for their exceptional accuracy, these models have become a standard for image classification tasks across diverse computer vision benchmarks. While traditional neural networks learn correlations between feature channels during training, vector-valued neural networks inherently treat multidimensional data as coherent entities, taking for granted the inter-channel relationships. This paper introduces vector-valued EfficientNets (V-EfficientNets), a novel extension of EfficientNet designed to process arbitrary vector-valued data. The proposed models are evaluated on a medical image classification task, achieving an average accuracy of 99.46% on the ALL-IDB2 dataset for detecting acute lymphoblastic leukemia. V-EfficientNets demonstrate remarkable efficiency, significantly reducing parameters while outperforming state-of-the-art models, including the original EfficientNet. The source code is available at https://github.com/mevalle/v-nets.
Authors:Zhongweiyang Xu, Xulin Fan, Zhong-Qiu Wang, Xilin Jiang, Romit Roy Choudhury
Abstract:
Blind Speech Separation (BSS) aims to separate multiple speech sources from audio mixtures recorded by a microphone array. The problem is challenging because it is a blind inverse problem, i.e., the microphone array geometry, the room impulse response (RIR), and the speech sources, are all unknown. We propose ArrayDPS to solve the BSS problem in an unsupervised, array-agnostic, and generative manner. The core idea builds on diffusion posterior sampling (DPS), but unlike DPS where the likelihood is tractable, ArrayDPS must approximate the likelihood by formulating a separate optimization problem. The solution to the optimization approximates room acoustics and the relative transfer functions between microphones. These approximations, along with the diffusion priors, iterate through the ArrayDPS sampling process and ultimately yield separated voice sources. We only need a simple single-speaker speech diffusion model as a prior along with the mixtures recorded at the microphones; no microphone array information is necessary. Evaluation results show that ArrayDPS outperforms all baseline unsupervised methods while being comparable to supervised methods in terms of SDR. Audio demos are provided at: https://arraydps.github.io/ArrayDPSDemo/.
Authors:Tien Dang, Truong-Son Hy
Abstract:
Molecular interactions often involve high-order relationships that cannot be fully captured by traditional graph-based models limited to pairwise connections. Hypergraphs naturally extend graphs by enabling multi-way interactions, making them well-suited for modeling complex molecular systems. In this work, we introduce EquiHGNN, an Equivariant HyperGraph Neural Network framework that integrates symmetry-aware representations to improve molecular modeling. By enforcing the equivariance under relevant transformation groups, our approach preserves geometric and topological properties, leading to more robust and physically meaningful representations. We examine a range of equivariant architectures and demonstrate that integrating symmetry constraints leads to notable performance gains on large-scale molecular datasets. Experiments on both small and large molecules show that high-order interactions offer limited benefits for small molecules but consistently outperform 2D graphs on larger ones. Adding geometric features to these high-order structures further improves the performance, emphasizing the value of spatial information in molecular learning. Our source code is available at https://github.com/HySonLab/EquiHGNN/
Authors:Mohamed-Khalil Bouzidi, Christian Schlauch, Nicole Scheuerer, Yue Yao, Nadja Klein, Daniel Göhring, Jörg Reichardt
Abstract:
Fueled by motion prediction competitions and benchmarks, recent years have seen the emergence of increasingly large learning based prediction models, many with millions of parameters, focused on improving open-loop prediction accuracy by mere centimeters. However, these benchmarks fail to assess whether such improvements translate to better performance when integrated into an autonomous driving stack. In this work, we systematically evaluate the interplay between state-of-the-art motion predictors and motion planners. Our results show that higher open-loop accuracy does not always correlate with better closed-loop driving behavior and that other factors, such as temporal consistency of predictions and planner compatibility, also play a critical role. Furthermore, we investigate downsized variants of these models, and, surprisingly, find that in some cases models with up to 86% fewer parameters yield comparable or even superior closed-loop driving performance. Our code is available at https://github.com/continental/pred2plan.
Authors:Weichen Zhang, Chen Gao, Shiquan Yu, Ruiying Peng, Baining Zhao, Qian Zhang, Jinqiang Cui, Xinlei Chen, Yong Li
Abstract:
Aerial vision-and-language navigation (VLN), requiring drones to interpret natural language instructions and navigate complex urban environments, emerges as a critical embodied AI challenge that bridges human-robot interaction, 3D spatial reasoning, and real-world deployment. Although existing ground VLN agents achieved notable results in indoor and outdoor settings, they struggle in aerial VLN due to the absence of predefined navigation graphs and the exponentially expanding action space in long-horizon exploration. In this work, we propose \textbf{CityNavAgent}, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN. Specifically, we design a hierarchical semantic planning module (HSPM) that decomposes the long-horizon task into sub-goals with different semantic levels. The agent reaches the target progressively by achieving sub-goals with different capacities of the LLM. Additionally, a global memory module storing historical trajectories into a topological graph is developed to simplify navigation for visited targets. Extensive benchmark experiments show that our method achieves state-of-the-art performance with significant improvement. Further experiments demonstrate the effectiveness of different modules of CityNavAgent for aerial VLN in continuous city environments. The code is available at \href{https://github.com/VinceOuti/CityNavAgent}{link}.
Authors:Seraj Al Mahmud Mostafa, Chenxi Wang, Jia Yue, Yuta Hozumi, Jianwu Wang
Abstract:
Object localization in satellite imagery is particularly challenging due to the high variability of objects, low spatial resolution, and interference from noise and dominant features such as clouds and city lights. In this research, we focus on three satellite datasets: upper atmospheric Gravity Waves (GW), mesospheric Bores (Bore), and Ocean Eddies (OE), each presenting its own unique challenges. These challenges include the variability in the scale and appearance of the main object patterns, where the size, shape, and feature extent of objects of interest can differ significantly. To address these challenges, we introduce YOLO-DCAP, a novel enhanced version of YOLOv5 designed to improve object localization in these complex scenarios. YOLO-DCAP incorporates a Multi-scale Dilated Residual Convolution (MDRC) block to capture multi-scale features at scale with varying dilation rates, and an Attention-aided Spatial Pooling (AaSP) module to focus on the global relevant spatial regions, enhancing feature selection. These structural improvements help to better localize objects in satellite imagery. Experimental results demonstrate that YOLO-DCAP significantly outperforms both the YOLO base model and state-of-the-art approaches, achieving an average improvement of 20.95% in mAP50 and 32.23% in IoU over the base model, and 7.35% and 9.84% respectively over state-of-the-art alternatives, consistently across all three satellite datasets. These consistent gains across all three satellite datasets highlight the robustness and generalizability of the proposed approach. Our code is open sourced at https://github.com/AI-4-atmosphere-remote-sensing/satellite-object-localization.
Authors:Yueh-Cheng Liu, Lukas Höllein, Matthias NieÃner, Angela Dai
Abstract:
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more. Existing approaches based on volumetric rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model under-observed or textureless regions. We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes. This provides a strong starting point for the reconstruction, which accelerates the convergence of the optimization and improves the geometry of flat wall structures. We further learn to jointly estimate the densification and update of the scene parameters during each iteration; our proposed densifier network predicts new Gaussians based on the rendering gradients of existing ones, removing the needs of heuristics for densification. Extensive experiments on large-scale indoor scene reconstruction demonstrate the superiority of our data-driven optimization. Concretely, we accelerate runtime by 8x, while decreasing depth errors by up to 48% in comparison to state of the art methods.
Authors:Peihao Wang, Yuehao Wang, Dilin Wang, Sreyas Mohan, Zhiwen Fan, Lemeng Wu, Ruisi Cai, Yu-Ying Yeh, Zhangyang Wang, Qiang Liu, Rakesh Ranjan
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time, high-resolution novel view synthesis. By representing scenes as a mixture of Gaussian primitives, 3DGS leverages GPU rasterization pipelines for efficient rendering and reconstruction. To optimize scene coverage and capture fine details, 3DGS employs a densification algorithm to generate additional points. However, this process often leads to redundant point clouds, resulting in excessive memory usage, slower performance, and substantial storage demands - posing significant challenges for deployment on resource-constrained devices. To address this limitation, we propose a theoretical framework that demystifies and improves density control in 3DGS. Our analysis reveals that splitting is crucial for escaping saddle points. Through an optimization-theoretic approach, we establish the necessary conditions for densification, determine the minimal number of offspring Gaussians, identify the optimal parameter update direction, and provide an analytical solution for normalizing off-spring opacity. Building on these insights, we introduce SteepGS, incorporating steepest density control, a principled strategy that minimizes loss while maintaining a compact point cloud. SteepGS achieves a ~50% reduction in Gaussian points without compromising rendering quality, significantly enhancing both efficiency and scalability.
Authors:Qianbo Zang, Christophe Zgrzendek, Igor Tchappi, Afshin Khadangi, Johannes Sedlmeir
Abstract:
Hierarchical Text Classification (HTC) involves assigning documents to labels organized within a taxonomy. Most previous research on HTC has focused on supervised methods. However, in real-world scenarios, employing supervised HTC can be challenging due to a lack of annotated data. Moreover, HTC often faces issues with large label spaces and long-tail distributions. In this work, we present Knowledge Graphs for zero-shot Hierarchical Text Classification (KG-HTC), which aims to address these challenges of HTC in applications by integrating knowledge graphs with Large Language Models (LLMs) to provide structured semantic context during classification. Our method retrieves relevant subgraphs from knowledge graphs related to the input text using a Retrieval-Augmented Generation (RAG) approach. Our KG-HTC can enhance LLMs to understand label semantics at various hierarchy levels. We evaluate KG-HTC on three open-source HTC datasets: WoS, DBpedia, and Amazon. Our experimental results show that KG-HTC significantly outperforms three baselines in the strict zero-shot setting, particularly achieving substantial improvements at deeper levels of the hierarchy. This evaluation demonstrates the effectiveness of incorporating structured knowledge into LLMs to address HTC's challenges in large label spaces and long-tailed label distributions. Our code is available at: https://github.com/QianboZang/KG-HTC.
Authors:Mikhail Chaichuk, Sushant Gautam, Steven Hicks, Elena Tutubalina
Abstract:
The generation of realistic medical images from text descriptions has significant potential to address data scarcity challenges in healthcare AI while preserving patient privacy. This paper presents a comprehensive study of text-to-image synthesis in the medical domain, comparing two distinct approaches: (1) fine-tuning large pre-trained latent diffusion models and (2) training small, domain-specific models. We introduce a novel model named MSDM, an optimized architecture based on Stable Diffusion that integrates a clinical text encoder, variational autoencoder, and cross-attention mechanisms to better align medical text prompts with generated images. Our study compares two approaches: fine-tuning large pre-trained models (FLUX, Kandinsky) versus training compact domain-specific models (MSDM). Evaluation across colonoscopy (MedVQA-GI) and radiology (ROCOv2) datasets reveals that while large models achieve higher fidelity, our optimized MSDM delivers comparable quality with lower computational costs. Quantitative metrics and qualitative evaluations by medical experts reveal strengths and limitations of each approach.
Authors:Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, Muhan Zhang
Abstract:
We introduce Griffin, the first foundation model attemptation designed specifically for Relational Databases (RDBs). Unlike previous smaller models focused on single RDB tasks, Griffin unifies the data encoder and task decoder to handle diverse tasks. Additionally, we enhance the architecture by incorporating a cross-attention module and a novel aggregator. Griffin utilizes pretraining on both single-table and RDB datasets, employing advanced encoders for categorical, numerical, and metadata features, along with innovative components such as cross-attention modules and enhanced message-passing neural networks (MPNNs) to capture the complexities of relational data. Evaluated on large-scale, heterogeneous, and temporal graphs extracted from RDBs across various domains (spanning over 150 million nodes), Griffin demonstrates superior or comparable performance to individually trained models, excels in low-data scenarios, and shows strong transferability with similarity and diversity in pretraining across new datasets and tasks, highlighting its potential as a universally applicable foundation model for RDBs. Code available at https://github.com/yanxwb/Griffin.
Authors:Md Kamrujjaman Mobin, Md Saiful Islam, Sadik Al Barid, Md Masum
Abstract:
Electrocardiogram (ECG) classification is crucial for automated cardiac disease diagnosis, yet existing methods often struggle to capture local morphological details and long-range temporal dependencies simultaneously. To address these challenges, we propose Cardioformer, a novel multi-granularity hybrid model that integrates cross-channel patching, hierarchical residual learning, and a two-stage self-attention mechanism. Cardioformer first encodes multi-scale token embeddings to capture fine-grained local features and global contextual information and then selectively fuses these representations through intra- and inter-granularity self-attention. Extensive evaluations on three benchmark ECG datasets under subject-independent settings demonstrate that model consistently outperforms four state-of-the-art baselines. Our Cardioformer model achieves the AUROC of 96.34$\pm$0.11, 89.99$\pm$0.12, and 95.59$\pm$1.66 in MIMIC-IV, PTB-XL and PTB dataset respectively outperforming PatchTST, Reformer, Transformer, and Medformer models. It also demonstrates strong cross-dataset generalization, achieving 49.18% AUROC on PTB and 68.41% on PTB-XL when trained on MIMIC-IV. These findings underscore the potential of Cardioformer to advance automated ECG analysis, paving the way for more accurate and robust cardiovascular disease diagnosis. We release the source code at https://github.com/KMobin555/Cardioformer.
Authors:Kai Liu, Qian Zheng, Kaiwen Tao, Zhiteng Li, Haotong Qin, Wenbo Li, Yong Guo, Xianglong Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang
Abstract:
With unprecedented rapid development, deep neural networks (DNNs) have deeply influenced almost all fields. However, their heavy computation costs and model sizes are usually unacceptable in real-world deployment. Model quantization, an effective weight-lighting technique, has become an indispensable procedure in the whole deployment pipeline. The essence of quantization acceleration is the conversion from continuous floating-point numbers to discrete integer ones, which significantly speeds up the memory I/O and calculation, i.e., addition and multiplication. However, performance degradation also comes with the conversion because of the loss of precision. Therefore, it has become increasingly popular and critical to investigate how to perform the conversion and how to compensate for the information loss. This article surveys the recent five-year progress towards low-bit quantization on DNNs. We discuss and compare the state-of-the-art quantization methods and classify them into 8 main categories and 24 sub-categories according to their core techniques. Furthermore, we shed light on the potential research opportunities in the field of model quantization. A curated list of model quantization is provided at https://github.com/Kai-Liu001/Awesome-Model-Quantization.
Authors:Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, James Bailey
Abstract:
As Contrastive Language-Image Pre-training (CLIP) models are increasingly adopted for diverse downstream tasks and integrated into large vision-language models (VLMs), their susceptibility to adversarial perturbations has emerged as a critical concern. In this work, we introduce \textbf{X-Transfer}, a novel attack method that exposes a universal adversarial vulnerability in CLIP. X-Transfer generates a Universal Adversarial Perturbation (UAP) capable of deceiving various CLIP encoders and downstream VLMs across different samples, tasks, and domains. We refer to this property as \textbf{super transferability}--a single perturbation achieving cross-data, cross-domain, cross-model, and cross-task adversarial transferability simultaneously. This is achieved through \textbf{surrogate scaling}, a key innovation of our approach. Unlike existing methods that rely on fixed surrogate models, which are computationally intensive to scale, X-Transfer employs an efficient surrogate scaling strategy that dynamically selects a small subset of suitable surrogates from a large search space. Extensive evaluations demonstrate that X-Transfer significantly outperforms previous state-of-the-art UAP methods, establishing a new benchmark for adversarial transferability across CLIP models. The code is publicly available in our \href{https://github.com/HanxunH/XTransferBench}{GitHub repository}.
Authors:Hongyi Chen, Yunchao Yao, Yufei Ye, Zhixuan Xu, Homanga Bharadhwaj, Jiashun Wang, Shubham Tulsiani, Zackory Erickson, Jeffrey Ichnowski
Abstract:
Functional grasp is essential for enabling dexterous multi-finger robot hands to manipulate objects effectively. However, most prior work either focuses on power grasping, which simply involves holding an object still, or relies on costly teleoperated robot demonstrations to teach robots how to grasp each object functionally. Instead, we propose extracting human grasp information from web images since they depict natural and functional object interactions, thereby bypassing the need for curated demonstrations. We reconstruct human hand-object interaction (HOI) 3D meshes from RGB images, retarget the human hand to multi-finger robot hands, and align the noisy object mesh with its accurate 3D shape. We show that these relatively low-quality HOI data from inexpensive web sources can effectively train a functional grasping model. To further expand the grasp dataset for seen and unseen objects, we use the initially-trained grasping policy with web data in the IsaacGym simulator to generate physically feasible grasps while preserving functionality. We train the grasping model on 10 object categories and evaluate it on 9 unseen objects, including challenging items such as syringes, pens, spray bottles, and tongs, which are underrepresented in existing datasets. The model trained on the web HOI dataset, achieving a 75.8% success rate on seen objects and 61.8% across all objects in simulation, with a 6.7% improvement in success rate and a 1.8x increase in functionality ratings over baselines. Simulator-augmented data further boosts performance from 61.8% to 83.4%. The sim-to-real transfer to the LEAP Hand achieves a 85% success rate. Project website is at: https://web2grasp.github.io/.
Authors:Zinan Liu, Haoran Li, Jingyi Lu, Gaoyuan Ma, Xu Hong, Giovanni Iacca, Arvind Kumar, Shaojun Tang, Lin Wang
Abstract:
Autonomous AI is no longer a hard-to-reach concept, it enables the agents to move beyond executing tasks to independently addressing complex problems, adapting to change while handling the uncertainty of the environment. However, what makes the agents truly autonomous? It is agentic reasoning, that is crucial for foundation models to develop symbolic logic, statistical correlations, or large-scale pattern recognition to process information, draw inferences, and make decisions. However, it remains unclear why and how existing agentic reasoning approaches work, in comparison to biological reasoning, which instead is deeply rooted in neural mechanisms involving hierarchical cognition, multimodal integration, and dynamic interactions. In this work, we propose a novel neuroscience-inspired framework for agentic reasoning. Grounded in three neuroscience-based definitions and supported by mathematical and biological foundations, we propose a unified framework modeling reasoning from perception to action, encompassing four core types, perceptual, dimensional, logical, and interactive, inspired by distinct functional roles observed in the human brain. We apply this framework to systematically classify and analyze existing AI reasoning methods, evaluating their theoretical foundations, computational designs, and practical limitations. We also explore its implications for building more generalizable, cognitively aligned agents in physical and virtual environments. Finally, building on our framework, we outline future directions and propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting. By bridging cognitive neuroscience and AI, this work offers a theoretical foundation and practical roadmap for advancing agentic reasoning in intelligent systems. The associated project can be found at: https://github.com/BioRAILab/Awesome-Neuroscience-Agent-Reasoning .
Authors:Thomas Sommariva, Simone Calderara, Angelo Porrello
Abstract:
Neural Metamorphosis (NeuMeta) is a recent paradigm for generating neural networks of varying width and depth. Based on Implicit Neural Representation (INR), NeuMeta learns a continuous weight manifold, enabling the direct generation of compressed models, including those with configurations not seen during training. While promising, the original formulation of NeuMeta proves effective only for the final layers of the undelying model, limiting its broader applicability. In this work, we propose a training algorithm that extends the capabilities of NeuMeta to enable full-network metamorphosis with minimal accuracy degradation. Our approach follows a structured recipe comprising block-wise incremental training, INR initialization, and strategies for replacing batch normalization. The resulting metamorphic networks maintain competitive accuracy across a wide range of compression ratios, offering a scalable solution for adaptable and efficient deployment of deep models. The code is available at: https://github.com/TSommariva/HTTY_NeuMeta.
Authors:Yiming Qin, Zhu Xu, Yang Liu
Abstract:
Recent text-to-3D models can render high-quality assets, yet they still stumble on objects with complex attributes. The key obstacles are: (1) existing text-to-3D approaches typically lift text-to-image models to extract semantics via text encoders, while the text encoder exhibits limited comprehension ability for long descriptions, leading to deviated cross-attention focus, subsequently wrong attribute binding in generated results. (2) Occluded object parts demand a disciplined generation order and explicit part disentanglement. Though some works introduce manual efforts to alleviate the above issues, their quality is unstable and highly reliant on manual information. To tackle above problems, we propose a automated method Hierarchical-Chain-of-Generation (HCoG). It leverages a large language model to decompose the long description into blocks representing different object parts, and orders them from inside out according to occlusions, forming a hierarchical chain. Within each block we first coarsely create components, then precisely bind attributes via target-region localization and corresponding 3D Gaussian kernel optimization. Between blocks, we introduce Gaussian Extension and Label Elimination to seamlessly generate new parts by extending new Gaussian kernels, re-assigning semantic labels, and eliminating unnecessary kernels, ensuring that only relevant parts are added without disrupting previously optimized parts. Experiments confirm that HCoG yields structurally coherent, attribute-faithful 3D objects with complex attributes. The code is available at https://github.com/Wakals/GASCOL .
Authors:Xingyu Jiang, Ning Gao, Xiuhui Zhang, Hongkun Dou, Shaowen Fu, Xiaoqing Zhong, Hongjue Li, Yue Deng
Abstract:
Due to adverse atmospheric and imaging conditions, natural images suffer from various degradation phenomena. Consequently, image restoration has emerged as a key solution and garnered substantial attention. Although recent Transformer architectures have demonstrated impressive success across various restoration tasks, their considerable model complexity poses significant challenges for both training and real-time deployment. Furthermore, instead of investigating the commonalities among different degradations, most existing restoration methods focus on modifying Transformer under limited restoration priors. In this work, we first review various degradation phenomena under multi-domain perspective, identifying common priors. Then, we introduce a novel restoration framework, which integrates multi-domain learning into Transformer. Specifically, in Token Mixer, we propose a Spatial-Wavelet-Fourier multi-domain structure that facilitates local-region-global multi-receptive field modeling to replace vanilla self-attention. Additionally, in Feed-Forward Network, we incorporate multi-scale learning to fuse multi-domain features at different resolutions. Comprehensive experimental results across ten restoration tasks, such as dehazing, desnowing, motion deblurring, defocus deblurring, rain streak/raindrop removal, cloud removal, shadow removal, underwater enhancement and low-light enhancement, demonstrate that our proposed model outperforms state-of-the-art methods and achieves a favorable trade-off among restoration performance, parameter size, computational cost and inference latency. The code is available at: https://github.com/deng-ai-lab/SWFormer.
Authors:Yunfan Lu, Xiaogang Xu, Pengteng Li, Yusheng Wang, Yi Cui, Huizai Yao, Hui Xiong
Abstract:
Event cameras offering high dynamic range and low latency have emerged as disruptive technologies in imaging. Despite growing research on leveraging these benefits for different imaging tasks, a comprehensive study of recently advances and challenges are still lacking. This limits the broader understanding of how to utilize events in universal imaging applications. In this survey, we first introduce a physical model and the characteristics of different event sensors as the foundation. Following this, we highlight the advancement and interaction of image/video enhancement tasks with events. Additionally, we explore advanced tasks, which capture richer light information with events, \eg~light field estimation, multi-view generation, and photometric. Finally, we discuss new challenges and open questions offering a perspective for this rapidly evolving field. More continuously updated resources are at this link: https://github.com/yunfanLu/Awesome-Event-Imaging
Authors:Yonwoo Choi
Abstract:
Creating high-quality animatable 3D human avatars from a single image remains a significant challenge in computer vision due to the inherent difficulty of reconstructing complete 3D information from a single viewpoint. Current approaches face a clear limitation: 3D Gaussian Splatting (3DGS) methods produce high-quality results but require multiple views or video sequences, while video diffusion models can generate animations from single images but struggle with consistency and identity preservation. We present SVAD, a novel approach that addresses these limitations by leveraging complementary strengths of existing techniques. Our method generates synthetic training data through video diffusion, enhances it with identity preservation and image restoration modules, and utilizes this refined data to train 3DGS avatars. Comprehensive evaluations demonstrate that SVAD outperforms state-of-the-art (SOTA) single-image methods in maintaining identity consistency and fine details across novel poses and viewpoints, while enabling real-time rendering capabilities. Through our data augmentation pipeline, we overcome the dependency on dense monocular or multi-view training data typically required by traditional 3DGS approaches. Extensive quantitative, qualitative comparisons show our method achieves superior performance across multiple metrics against baseline models. By effectively combining the generative power of diffusion models with both the high-quality results and rendering efficiency of 3DGS, our work establishes a new approach for high-fidelity avatar generation from a single image input.
Authors:Beichen Wen, Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, Ziwei Liu
Abstract:
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
Authors:Qitao Zhao, Amy Lin, Jeff Tan, Jason Y. Zhang, Deva Ramanan, Shubham Tulsiani
Abstract:
Current Structure-from-Motion (SfM) methods typically follow a two-stage pipeline, combining learned or geometric pairwise reasoning with a subsequent global optimization step. In contrast, we propose a data-driven multi-view reasoning approach that directly infers 3D scene geometry and camera poses from multi-view images. Our framework, DiffusionSfM, parameterizes scene geometry and cameras as pixel-wise ray origins and endpoints in a global frame and employs a transformer-based denoising diffusion model to predict them from multi-view inputs. To address practical challenges in training diffusion models with missing data and unbounded scene coordinates, we introduce specialized mechanisms that ensure robust learning. We empirically validate DiffusionSfM on both synthetic and real datasets, demonstrating that it outperforms classical and learning-based approaches while naturally modeling uncertainty.
Authors:Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, Wanli Ouyang
Abstract:
We propose Flow-GRPO, the first method integrating online reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original inference timestep number, significantly improving sampling efficiency without performance degradation. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For complex compositions, RL-tuned SD3.5 generates nearly perfect object counts, spatial relations, and fine-grained attributes, boosting GenEval accuracy from 63% to 95%. In visual text rendering, its accuracy improves from 59% to 92%, significantly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.
Authors:Ava Pun, Kangle Deng, Ruixuan Liu, Deva Ramanan, Changliu Liu, Jun-Yan Zhu
Abstract:
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
Authors:Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, Junxian He
Abstract:
Vision-Language Models (VLMs) combine visual perception with the general capabilities, such as reasoning, of Large Language Models (LLMs). However, the mechanisms by which these two abilities can be combined and contribute remain poorly understood. In this work, we explore to compose perception and reasoning through model merging that connects parameters of different models. Unlike previous works that often focus on merging models of the same kind, we propose merging models across modalities, enabling the incorporation of the reasoning capabilities of LLMs into VLMs. Through extensive experiments, we demonstrate that model merging offers a successful pathway to transfer reasoning abilities from LLMs to VLMs in a training-free manner. Moreover, we utilize the merged models to understand the internal mechanism of perception and reasoning and how merging affects it. We find that perception capabilities are predominantly encoded in the early layers of the model, whereas reasoning is largely facilitated by the middle-to-late layers. After merging, we observe that all layers begin to contribute to reasoning, whereas the distribution of perception abilities across layers remains largely unchanged. These observations shed light on the potential of model merging as a tool for multimodal integration and interpretation.
Authors:Ran Zhang, Wei Zhao, Lieve Macken, Steffen Eger
Abstract:
The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation as being superior to human translation from experienced professionals. In the long run, this bias could result in an irreversible decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce LiTransProQA, a novel, reference-free, LLM-based question-answering framework designed for literary translation evaluation. LiTransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, LiTransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation and surpassing the best state-of-the-art metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, LiTransProQA reaches human-level evaluation performance comparable to trained student evaluators. It shows broad applicability to open-source models like LLaMa3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free tool for evaluating literary translations that require local processing due to copyright or ethical considerations. The code and datasets are available under: https://github.com/zhangr2021/TransProQA.
Authors:Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun, Ying Shan
Abstract:
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
Authors:Sooyoung Park, Arda Senocak, Joon Son Chung
Abstract:
Large-scale vision-language models demonstrate strong multimodal alignment and generalization across diverse tasks. Among them, CLIP stands out as one of the most successful approaches. In this work, we extend the application of CLIP to sound source localization, proposing a self-supervised method operates without explicit text input. We introduce a framework that maps audios into tokens compatible with CLIP's text encoder, producing audio-driven embeddings. These embeddings are used to generate sounding region masks, from which visual features are extracted and aligned with the audio embeddings through a contrastive audio-visual correspondence objective. Our findings show that alignment knowledge of pre-trained multimodal foundation model enables our method to generate more complete and compact localization for sounding objects. We further propose an LLM-guided extension that distills object-aware audio-visual scene understanding into the model during training to enhance alignment. Extensive experiments across five diverse tasks demonstrate that our method, in all variants, outperforms state-of-the-art approaches and achieves strong generalization in zero-shot settings.
Authors:Thevathayarajh Thayananthan, Xin Zhang, Yanbo Huang, Jingdao Chen, Nuwan K. Wijewardane, Vitor S. Martins, Gary D. Chesser, Christopher T. Goodin
Abstract:
In this study, an autonomous visual-guided robotic cotton-picking system, built on a Clearpath's Husky robot platform and the Cotton-Eye perception system, was developed in the Gazebo robotic simulator. Furthermore, a virtual cotton farm was designed and developed as a Robot Operating System (ROS 1) package to deploy the robotic cotton picker in the Gazebo environment for simulating autonomous field navigation. The navigation was assisted by the map coordinates and an RGB-depth camera, while the ROS navigation algorithm utilized a trained YOLOv8n-seg model for instance segmentation. The model achieved a desired mean Average Precision (mAP) of 85.2%, a recall of 88.9%, and a precision of 93.0% for scene segmentation. The developed ROS navigation packages enabled our robotic cotton-picking system to autonomously navigate through the cotton field using map-based and GPS-based approaches, visually aided by a deep learning-based perception system. The GPS-based navigation approach achieved a 100% completion rate (CR) with a threshold of 5 x 10^-6 degrees, while the map-based navigation approach attained a 96.7% CR with a threshold of 0.25 m. This study establishes a fundamental baseline of simulation for future agricultural robotics and autonomous vehicles in cotton farming and beyond. CottonSim code and data are released to the research community via GitHub: https://github.com/imtheva/CottonSim
Authors:Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, Caiming Xiong
Abstract:
Large reasoning models (LRMs) have achieved remarkable progress on complex tasks by generating extended chains of thought (CoT). However, their uncontrolled output lengths pose significant challenges for real-world deployment, where inference-time budgets on tokens, latency, or compute are strictly constrained. We propose Elastic Reasoning, a novel framework for scalable chain of thoughts that explicitly separates reasoning into two phases--thinking and solution--with independently allocated budgets. At test time, Elastic Reasoning prioritizes the completeness of solution segments, significantly improving reliability under tight resource constraints. To train models that are robust to truncated thinking, we introduce a lightweight budget-constrained rollout strategy, integrated into GRPO, which teaches the model to reason adaptively when the thinking process is cut short and generalizes effectively to unseen budget constraints without additional training. Empirical results on mathematical (AIME, MATH500) and programming (LiveCodeBench, Codeforces) benchmarks demonstrate that Elastic Reasoning performs robustly under strict budget constraints, while incurring significantly lower training cost than baseline methods. Remarkably, our approach also produces more concise and efficient reasoning even in unconstrained settings. Our code has been made available at https://github.com/SalesforceAIResearch/Elastic-Reasoning.
Authors:Yifan Bian, Chuanbo Tang, Li Li, Dong Liu
Abstract:
Most Neural Video Codecs (NVCs) only employ temporal references to generate temporal-only contexts and latent prior. These temporal-only NVCs fail to handle large motions or emerging objects due to limited contexts and misaligned latent prior. To relieve the limitations, we propose a Spatially Embedded Video Codec (SEVC), in which the low-resolution video is compressed for spatial references. Firstly, our SEVC leverages both spatial and temporal references to generate augmented motion vectors and hybrid spatial-temporal contexts. Secondly, to address the misalignment issue in latent prior and enrich the prior information, we introduce a spatial-guided latent prior augmented by multiple temporal latent representations. At last, we design a joint spatial-temporal optimization to learn quality-adaptive bit allocation for spatial references, further boosting rate-distortion performance. Experimental results show that our SEVC effectively alleviates the limitations in handling large motions or emerging objects, and also reduces 11.9% more bitrate than the previous state-of-the-art NVC while providing an additional low-resolution bitstream. Our code and model are available at https://github.com/EsakaK/SEVC.
Authors:Ahmed Abdelreheem, Filippo Aleotti, Jamie Watson, Zawar Qureshi, Abdelrahman Eldesokey, Peter Wonka, Gabriel Brostow, Sara Vicente, Guillermo Garcia-Hernando
Abstract:
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
Authors:You Peng, Youhe Jiang, Chen Wang, Binhang Yuan
Abstract:
Recent advances in leveraging the agentic paradigm of large language models (LLMs) utilization have significantly enhanced Text-to-SQL capabilities, enabling users without specialized database expertise to query data intuitively. However, deploying these agentic LLM-based Text-to-SQL systems in production poses substantial challenges due to their inherently multi-stage workflows, stringent latency constraints, and potentially heterogeneous GPU infrastructure in enterprise environments. Current LLM serving frameworks lack effective mechanisms for handling interdependent inference tasks, dynamic latency variability, and resource heterogeneity, leading to suboptimal performance and frequent service-level objective (SLO) violations. In this paper, we introduce HEXGEN-TEXT2SQL, a novel framework designed explicitly to schedule and execute agentic multi-stage LLM-based Text-to-SQL workflows on heterogeneous GPU clusters that handle multi-tenant end-to-end queries. HEXGEN-TEXT2SQL introduce a hierarchical scheduling approach combining global workload-balanced task dispatching and local adaptive urgency-guided prioritization, guided by a systematic analysis of agentic Text-to-SQL workflows. Additionally, we propose a lightweight simulation-based method for tuning critical scheduling hyperparameters, further enhancing robustness and adaptability. Our extensive evaluation on realistic Text-to-SQL benchmarks demonstrates that HEXGEN-TEXT2SQL significantly outperforms state-of-the-art LLM serving frameworks. Specifically, HEXGEN-TEXT2SQL reduces latency deadlines by up to 1.67$\times$ (average: 1.41$\times$) and improves system throughput by up to 1.75$\times$ (average: 1.65$\times$) compared to vLLM under diverse, realistic workload conditions. Our code is available at https://github.com/Relaxed-System-Lab/Hexgen-Flow.
Authors:Mengze Hong, Wailing Ng, Chen Jason Zhang, Di Jiang
Abstract:
The rapid advancement of Chinese LLMs underscores the need for vertical-domain evaluations to ensure reliable applications. However, existing benchmarks often lack domain coverage and provide limited insights into the Chinese working context. Leveraging qualification exams as a unified framework for expertise evaluation, we introduce QualBench, the first multi-domain Chinese QA benchmark dedicated to localized assessment of Chinese LLMs. The dataset includes over 17,000 questions across six vertical domains, drawn from 24 Chinese qualifications to align with national policies and professional standards. Results reveal an interesting pattern of Chinese LLMs consistently surpassing non-Chinese models, with the Qwen2.5 model outperforming the more advanced GPT-4o, emphasizing the value of localized domain knowledge in meeting qualification requirements. The average accuracy of 53.98% reveals the current gaps in domain coverage within model capabilities. Furthermore, we identify performance degradation caused by LLM crowdsourcing, assess data contamination, and illustrate the effectiveness of prompt engineering and model fine-tuning, suggesting opportunities for future improvements through multi-domain RAG and Federated Learning.
Authors:Qian Zeng, Chenggong Hu, Mingli Song, Jie Song
Abstract:
Recent success of large text-to-image models has empirically underscored the exceptional performance of diffusion models in generative tasks. To facilitate their efficient deployment on resource-constrained edge devices, model quantization has emerged as a pivotal technique for both compression and acceleration. This survey offers a thorough review of the latest advancements in diffusion model quantization, encapsulating and analyzing the current state of the art in this rapidly advancing domain. First, we provide an overview of the key challenges encountered in the quantization of diffusion models, including those based on U-Net architectures and Diffusion Transformers (DiT). We then present a comprehensive taxonomy of prevalent quantization techniques, engaging in an in-depth discussion of their underlying principles. Subsequently, we perform a meticulous analysis of representative diffusion model quantization schemes from both qualitative and quantitative perspectives. From a quantitative standpoint, we rigorously benchmark a variety of methods using widely recognized datasets, delivering an extensive evaluation of the most recent and impactful research in the field. From a qualitative standpoint, we categorize and synthesize the effects of quantization errors, elucidating these impacts through both visual analysis and trajectory examination. In conclusion, we outline prospective avenues for future research, proposing novel directions for the quantization of generative models in practical applications. The list of related papers, corresponding codes, pre-trained models and comparison results are publicly available at the survey project homepage https://github.com/TaylorJocelyn/Diffusion-Model-Quantization.
Authors:Wangkun Xu, Zhongda Chu, Fei Teng
Abstract:
With the high penetration of renewables, traditional model-based power system operation is challenged to deliver economic, stable, and robust decisions. Machine learning has emerged as a powerful modeling tool for capturing complex dynamics to address these challenges. However, its separate design often lacks systematic integration with existing methods. To fill the gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced as Lap-So). Adopting a native optimization perspective, LAPSO is centered on the operation stage and aims to break the boundary between temporally siloed power system tasks, such as forecast, operation and control, while unifying the objectives of machine learning and model-based optimizations at both training and inference stages. Systematic analysis and simulations demonstrate the effectiveness of applying LAPSO in designing new integrated algorithms, such as stability-constrained optimization (SCO) and objective-based forecasting (OBF), while enabling end-to-end tracing of different sources of uncertainties. In addition, a dedicated Python package-lapso is introduced to automatically augment existing power system optimization models with learnable components. All code and data are available at https://github.com/xuwkk/lapso_exp.
Authors:Wei Peng, Kang Liu, Jianchen Hu, Meng Zhang
Abstract:
Prompt learning is one of the most effective paradigms for adapting pre-trained vision-language models (VLMs) to the biomedical image classification tasks in few shot scenarios. However, most of the current prompt learning methods only used the text prompts and ignored the particular structures (such as the complex anatomical structures and subtle pathological features) in the biomedical images. In this work, we propose Biomed-DPT, a knowledge-enhanced dual modality prompt tuning technique. In designing the text prompt, Biomed-DPT constructs a dual prompt including the template-driven clinical prompts and the large language model (LLM)-driven domain-adapted prompts, then extracts the clinical knowledge from the domain-adapted prompts through the knowledge distillation technique. In designing the vision prompt, Biomed-DPT introduces the zero vector as a soft prompt to leverage attention re-weighting so that the focus on non-diagnostic regions and the recognition of non-critical pathological features are avoided. Biomed-DPT achieves an average classification accuracy of 66.14\% across 11 biomedical image datasets covering 9 modalities and 10 organs, with performance reaching 78.06\% in base classes and 75.97\% in novel classes, surpassing the Context Optimization (CoOp) method by 6.20\%, 3.78\%, and 8.04\%, respectively. Our code are available at \underline{https://github.com/Kanyooo/Biomed-DPT}.
Authors:Cong Hua, Qianqian Xu, Zhiyong Yang, Zitai Wang, Shilong Bao, Qingming Huang
Abstract:
Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What's more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose OpenworldAUC, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize OpenworldAUC effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on OpenworldAUC and other metrics. We release the code at https://github.com/huacong/OpenworldAUC
Authors:Boyi Deng, Yu Wan, Yidan Zhang, Baosong Yang, Fuli Feng
Abstract:
The mechanisms behind multilingual capabilities in Large Language Models (LLMs) have been examined using neuron-based or internal-activation-based methods. However, these methods often face challenges such as superposition and layer-wise activation variance, which limit their reliability. Sparse Autoencoders (SAEs) offer a more nuanced analysis by decomposing the activations of LLMs into a sparse linear combination of SAE features. We introduce a novel metric to assess the monolinguality of features obtained from SAEs, discovering that some features are strongly related to specific languages. Additionally, we show that ablating these SAE features only significantly reduces abilities in one language of LLMs, leaving others almost unaffected. Interestingly, we find some languages have multiple synergistic SAE features, and ablating them together yields greater improvement than ablating individually. Moreover, we leverage these SAE-derived language-specific features to enhance steering vectors, achieving control over the language generated by LLMs. The code is publicly available at https://github.com/Aatrox103/multilingual-llm-features.
Authors:Shashank Agnihotri, Amaan Ansari, Annika Dackermann, Fabian Rösch, Margret Keuper
Abstract:
Deep learning (DL) has surpassed human performance on standard benchmarks, driving its widespread adoption in computer vision tasks. One such task is disparity estimation, estimating the disparity between matching pixels in stereo image pairs, which is crucial for safety-critical applications like medical surgeries and autonomous navigation. However, DL-based disparity estimation methods are highly susceptible to distribution shifts and adversarial attacks, raising concerns about their reliability and generalization. Despite these concerns, a standardized benchmark for evaluating the robustness of disparity estimation methods remains absent, hindering progress in the field.
To address this gap, we introduce DispBench, a comprehensive benchmarking tool for systematically assessing the reliability of disparity estimation methods. DispBench evaluates robustness against synthetic image corruptions such as adversarial attacks and out-of-distribution shifts caused by 2D Common Corruptions across multiple datasets and diverse corruption scenarios. We conduct the most extensive performance and robustness analysis of disparity estimation methods to date, uncovering key correlations between accuracy, reliability, and generalization. Open-source code for DispBench: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/disparity_estimation/final/disparity_estimation
Authors:Zuntao Liu, Hao Zhuang, Junjie Jiang, Yuhang Song, Zheng Fang
Abstract:
Event cameras have the potential to capture continuous motion information over time and space, making them well-suited for optical flow estimation. However, most existing learning-based methods for event-based optical flow adopt frame-based techniques, ignoring the spatio-temporal characteristics of events. Additionally, these methods assume linear motion between consecutive events within the loss time window, which increases optical flow errors in long-time sequences. In this work, we observe that rich spatio-temporal information and accurate nonlinear motion between events are crucial for event-based optical flow estimation. Therefore, we propose E-NMSTFlow, a novel unsupervised event-based optical flow network focusing on long-time sequences. We propose a Spatio-Temporal Motion Feature Aware (STMFA) module and an Adaptive Motion Feature Enhancement (AMFE) module, both of which utilize rich spatio-temporal information to learn spatio-temporal data associations. Meanwhile, we propose a nonlinear motion compensation loss that utilizes the accurate nonlinear motion between events to improve the unsupervised learning of our network. Extensive experiments demonstrate the effectiveness and superiority of our method. Remarkably, our method ranks first among unsupervised learning methods on the MVSEC and DSEC-Flow datasets. Our project page is available at https://wynelio.github.io/E-NMSTFlow.
Authors:Wenyang Liu, Jianjun Gao, Kim-Hui Yap
Abstract:
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.
Authors:Hyunho Song, Dongjae Lee, Seunghun Oh, Minwoo Jung, Ayoung Kim
Abstract:
Large-scale construction and demolition significantly challenge long-term place recognition (PR) by drastically reshaping urban and suburban environments. Existing datasets predominantly reflect limited or indoor-focused changes, failing to adequately represent extensive outdoor transformations. To bridge this gap, we introduce the City that Never Settles (CNS) dataset, a simulation-based dataset created using the CARLA simulator, capturing major structural changes-such as building construction and demolition-across diverse maps and sequences. Additionally, we propose TCR_sym, a symmetric version of the original TCR metric, enabling consistent measurement of structural changes irrespective of source-target ordering. Quantitative comparisons demonstrate that CNS encompasses more extensive transformations than current real-world benchmarks. Evaluations of state-of-the-art LiDAR-based PR methods on CNS reveal substantial performance degradation, underscoring the need for robust algorithms capable of handling significant environmental changes. Our dataset is available at https://github.com/Hyunho111/CNS_dataset.
Authors:Tommaso Apicella, Alessio Xompero, Andrea Cavallaro
Abstract:
Human-robot interaction for assistive technologies relies on the prediction of affordances, which are the potential actions a robot can perform on objects. Predicting object affordances from visual perception is formulated differently for tasks such as grasping detection, affordance classification, affordance segmentation, and hand-object interaction synthesis. In this work, we highlight the reproducibility issue in these redefinitions, making comparative benchmarks unfair and unreliable. To address this problem, we propose a unified formulation for visual affordance prediction, provide a comprehensive and systematic review of previous works highlighting strengths and limitations of methods and datasets, and analyse what challenges reproducibility. To favour transparency, we introduce the Affordance Sheet, a document to detail the proposed solution, the datasets, and the validation. As the physical properties of an object influence the interaction with the robot, we present a generic framework that links visual affordance prediction to the physical world. Using the weight of an object as an example for this framework, we discuss how estimating object mass can affect the affordance prediction. Our approach bridges the gap between affordance perception and robot actuation, and accounts for the complete information about objects of interest and how the robot interacts with them to accomplish its task.
Authors:Chunyu Xie, Bin Wang, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng, Yuhui Yin
Abstract:
Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FineHARD, by integrating high-quality region-specific annotations with hard fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.
Authors:Ruihuai Liang, Bo Yang, Pengyu Chen, Xuelin Cao, Zhiwen Yu, H. Vincent Poor, Chau Yuen
Abstract:
As intelligent network services continue to diversify, ensuring efficient and adaptive resource allocation in edge networks has become increasingly critical. Yet the wide functional variations across services often give rise to new and unforeseen optimization problems, rendering traditional manual modeling and solver design both time-consuming and inflexible. This limitation reveals a key gap between current methods and human solving - the inability to recognize and understand problem characteristics. It raises the question of whether problem-aware learning can bridge this gap and support effective cross-problem generalization. To answer this question, we propose a problem-aware diffusion (PAD) model, which leverages a problem-aware learning framework to enable cross-problem generalization. By explicitly encoding the mathematical formulations of optimization problems into token-level embeddings, PAD empowers the model to understand and adapt to problem structures. Extensive experiments across six diverse network optimization problems show that PAD generalizes well to unseen problems while significantly improving solution quality and feasibility. Meanwhile, an auxiliary constraint-aware module is designed to enforce solution validity further. The experiments reveal that problem-aware learning is promising for building general-purpose solvers for intelligent network operation and resource management. Our code is open source at https://github.com/qiyu3816/PAD.
Authors:Xinyang Lu, Xinyuan Niu, Gregory Kang Ruey Lau, Bui Thi Cam Nhung, Rachael Hwee Ling Sim, Fanyu Wen, Chuan-Sheng Foo, See-Kiong Ng, Bryan Kian Hsiang Low
Abstract:
Large language model (LLM) unlearning is critical in real-world applications where it is necessary to efficiently remove the influence of private, copyrighted, or harmful data from some users. However, existing utility-centric unlearning metrics (based on model utility) may fail to accurately evaluate the extent of unlearning in realistic settings such as when (a) the forget and retain set have semantically similar content, (b) retraining the model from scratch on the retain set is impractical, and/or (c) the model owner can improve the unlearning metric without directly performing unlearning on the LLM. This paper presents the first data-centric unlearning metric for LLMs called WaterDrum that exploits robust text watermarking for overcoming these limitations. We also introduce new benchmark datasets for LLM unlearning that contain varying levels of similar data points and can be used to rigorously evaluate unlearning algorithms using WaterDrum. Our code is available at https://github.com/lululu008/WaterDrum and our new benchmark datasets are released at https://huggingface.co/datasets/Glow-AI/WaterDrum-Ax.
Authors:Ao Jin, Weijian Zhao, Yifeng Ma, Panfeng Huang, Fan Zhang
Abstract:
This work focuses the tracking control problem for nonlinear systems subjected to unknown external disturbances. Inspired by contraction theory, a neural network-dirven CCM synthesis is adopted to obtain a feedback controller that could track any feasible trajectory. Based on the observation that the system states under continuous control input inherently contain embedded information about unknown external disturbances, we propose an online learning scheme that captures the disturbances dyanmics from online historical data and embeds the compensation within the CCM controller. The proposed scheme operates as a plug-and-play module that intrinsically enhances the tracking performance of CCM synthesis. The numerical simulations on tethered space robot and PVTOL demonstrate the effectiveness of proposed scheme. The source code of the proposed online learning scheme can be found at https://github.com/NPU-RCIR/Online_CCM.git.
Authors:Yingyi Zhang, Pengyue Jia, Xianneng Li, Derong Xu, Maolin Wang, Yichao Wang, Zhaocheng Du, Huifeng Guo, Yong Liu, Ruiming Tang, Xiangyu Zhao
Abstract:
Cloud-device collaboration leverages on-cloud Large Language Models (LLMs) for handling public user queries and on-device Small Language Models (SLMs) for processing private user data, collectively forming a powerful and privacy-preserving solution. However, existing approaches often fail to fully leverage the scalable problem-solving capabilities of on-cloud LLMs while underutilizing the advantage of on-device SLMs in accessing and processing personalized data. This leads to two interconnected issues: 1) Limited utilization of the problem-solving capabilities of on-cloud LLMs, which fail to align with personalized user-task needs, and 2) Inadequate integration of user data into on-device SLM responses, resulting in mismatches in contextual user information.
In this paper, we propose a Leader-Subordinate Retrieval framework for Privacy-preserving cloud-device collaboration (LSRP), a novel solution that bridges these gaps by: 1) enhancing on-cloud LLM guidance to on-device SLM through a dynamic selection of task-specific leader strategies named as user-to-user retrieval-augmented generation (U-U-RAG), and 2) integrating the data advantages of on-device SLMs through small model feedback Direct Preference Optimization (SMFB-DPO) for aligning the on-cloud LLM with the on-device SLM. Experiments on two datasets demonstrate that LSRP consistently outperforms state-of-the-art baselines, significantly improving question-answer relevance and personalization, while preserving user privacy through efficient on-device retrieval. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/LSRP.
Authors:Jaehyun Jeon, Min Soo Kim, Jang Han Yoon, Sumin Shim, Yejin Choi, Hanbin Kim, Youngjae Yu
Abstract:
User interface (UI) design goes beyond visuals, guiding user behavior and overall user experience (UX). Strategically crafted interfaces, for example, can boost sign-ups and drive business sales, underscoring the shift toward UI/UX as a unified design concept. While recent studies have explored UI quality evaluation using Multimodal Large Language Models (MLLMs), they largely focus on surface-level features, overlooking behavior-oriented aspects. To fill this gap, we introduce WiserUI-Bench, a novel benchmark for assessing models' multimodal understanding of UI/UX design. It includes 300 diverse real-world UI image pairs, each consisting of two design variants A/B-tested at scale by actual companies, where one was empirically validated to steer more user actions than the other. Each pair is accompanied one or more of 684 expert-curated rationales that capture key factors behind each winning design's effectiveness, spanning diverse cognitive dimensions of UX. Our benchmark supports two core tasks: (1) selecting the more effective UI/UX design by predicting the A/B test verified winner and (2) assessing how well a model, given the winner, can explain its effectiveness in alignment with expert reasoning. Experiments across several MLLMs show that current models exhibit limited nuanced reasoning about UI/UX design and its behavioral impact. We believe our work will foster research in UI/UX understanding and enable broader applications such as behavior-aware interface optimization.
Authors:Tingting Liao, Yujian Zheng, Adilbek Karmanov, Liwen Hu, Leyang Jin, Yuliang Xiu, Hao Li
Abstract:
Creating animatable 3D avatars from a single image remains challenging due to style limitations (realistic, cartoon, anime) and difficulties in handling accessories or hairstyles. While 3D diffusion models advance single-view reconstruction for general objects, outputs often lack animation controls or suffer from artifacts because of the domain gap. We propose SOAP, a style-omniscient framework to generate rigged, topology-consistent avatars from any portrait. Our method leverages a multiview diffusion model trained on 24K 3D heads with multiple styles and an adaptive optimization pipeline to deform the FLAME mesh while maintaining topology and rigging via differentiable rendering. The resulting textured avatars support FACS-based animation, integrate with eyeballs and teeth, and preserve details like braided hair or accessories. Extensive experiments demonstrate the superiority of our method over state-of-the-art techniques for both single-view head modeling and diffusion-based generation of Image-to-3D. Our code and data are publicly available for research purposes at https://github.com/TingtingLiao/soap.
Authors:Yuntai Bao, Xuhong Zhang, Tianyu Du, Xinkui Zhao, Jiang Zong, Hao Peng, Jianwei Yin
Abstract:
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks. Since the majority of knowledge is acquired during pre-training, attributing the predictions of fine-tuned LLMs to their pre-training data may provide valuable insights. Influence functions have been proposed as a means to explain model predictions based on training data. However, existing approaches fail to compute ``multi-stage'' influence and lack scalability to billion-scale LLMs.
In this paper, we propose the multi-stage influence function to attribute the downstream predictions of fine-tuned LLMs to pre-training data under the full-parameter fine-tuning paradigm. To enhance the efficiency and practicality of our multi-stage influence function, we leverage Eigenvalue-corrected Kronecker-Factored (EK-FAC) parameterization for efficient approximation. Empirical results validate the superior scalability of EK-FAC approximation and the effectiveness of our multi-stage influence function. Additionally, case studies on a real-world LLM, dolly-v2-3b, demonstrate its interpretive power, with exemplars illustrating insights provided by multi-stage influence estimates. Our code is public at https://github.com/colored-dye/multi_stage_influence_function.
Authors:Xinyu Yi, Shaohua Pan, Feng Xu
Abstract:
By learning human motion priors, motion capture can be achieved by 6 inertial measurement units (IMUs) in recent years with the development of deep learning techniques, even though the sensor inputs are sparse and noisy. However, human global motions are still challenging to be reconstructed by IMUs. This paper aims to solve this problem by involving physics. It proposes a physical optimization scheme based on multiple contacts to enable physically plausible translation estimation in the full 3D space where the z-directional motion is usually challenging for previous works. It also considers gravity in local pose estimation which well constrains human global orientations and refines local pose estimation in a joint estimation manner. Experiments demonstrate that our method achieves more accurate motion capture for both local poses and global motions. Furthermore, by deeply integrating physics, we can also estimate 3D contact, contact forces, joint torques, and interacting proxy surfaces.
Authors:Xin Bi, Zhichao Li, Yuxuan Xia, Panpan Tong, Lijuan Zhang, Yang Chen, Junsheng Fu
Abstract:
Accurate online map matching is fundamental to vehicle navigation and the activation of intelligent driving functions. Current online map matching methods are prone to errors in complex road networks, especially in multilevel road area. To address this challenge, we propose an online Standard Definition (SD) map matching method by constructing a Hidden Markov Model (HMM) with multiple probability factors. Our proposed method can achieve accurate map matching even in complex road networks by carefully leveraging lane markings and scenario recognition in the designing of the probability factors. First, the lane markings are generated by a multi-lane tracking method and associated with the SD map using HMM to build an enriched SD map. In areas covered by the enriched SD map, the vehicle can re-localize itself by performing Iterative Closest Point (ICP) registration for the lane markings. Then, the probability factor accounting for the lane marking detection can be obtained using the association probability between adjacent lanes and roads. Second, the driving scenario recognition model is applied to generate the emission probability factor of scenario recognition, which improves the performance of map matching on elevated roads and ordinary urban roads underneath them. We validate our method through extensive road tests in Europe and China, and the experimental results show that our proposed method effectively improves the online map matching accuracy as compared to other existing methods, especially in multilevel road area. Specifically, the experiments show that our proposed method achieves $F_1$ scores of 98.04% and 94.60% on the Zenseact Open Dataset and test data of multilevel road areas in Shanghai respectively, significantly outperforming benchmark methods. The implementation is available at https://github.com/TRV-Lab/LMSR-OMM.
Authors:Lang Nie, Chunyu Lin, Kang Liao, Yun Zhang, Shuaicheng Liu, Yao Zhao
Abstract:
We retarget video stitching to an emerging issue, named warping shake, which unveils the temporal content shakes induced by sequentially unsmooth warps when extending image stitching to video stitching. Even if the input videos are stable, the stitched video can inevitably cause undesired warping shakes and affect the visual experience. To address this issue, we propose StabStitch++, a novel video stitching framework to realize spatial stitching and temporal stabilization with unsupervised learning simultaneously. First, different from existing learning-based image stitching solutions that typically warp one image to align with another, we suppose a virtual midplane between original image planes and project them onto it. Concretely, we design a differentiable bidirectional decomposition module to disentangle the homography transformation and incorporate it into our spatial warp, evenly spreading alignment burdens and projective distortions across two views. Then, inspired by camera paths in video stabilization, we derive the mathematical expression of stitching trajectories in video stitching by elaborately integrating spatial and temporal warps. Finally, a warp smoothing model is presented to produce stable stitched videos with a hybrid loss to simultaneously encourage content alignment, trajectory smoothness, and online collaboration. Compared with StabStitch that sacrifices alignment for stabilization, StabStitch++ makes no compromise and optimizes both of them simultaneously, especially in the online mode. To establish an evaluation benchmark and train the learning framework, we build a video stitching dataset with a rich diversity in camera motions and scenes. Experiments exhibit that StabStitch++ surpasses current solutions in stitching performance, robustness, and efficiency, offering compelling advancements in this field by building a real-time online video stitching system.
Authors:Ling Yue, Nithin Somasekharan, Yadi Cao, Shaowu Pan
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent
Authors:Lizhe Fang, Yifei Wang, Khashayar Gatmiry, Lei Fang, Yisen Wang
Abstract:
In-Context Learning (ICL) has emerged as a pivotal capability of auto-regressive large language models, yet it is hindered by a notable sensitivity to the ordering of context examples regardless of their mutual independence. To address this issue, recent studies have introduced several variant algorithms of ICL that achieve permutation invariance. However, many of these do not exhibit comparable performance with the standard auto-regressive ICL algorithm. In this work, we identify two crucial elements in the design of an invariant ICL algorithm: information non-leakage and context interdependence, which are not simultaneously achieved by any of the existing methods. These investigations lead us to the proposed Invariant ICL (InvICL), a methodology designed to achieve invariance in ICL while ensuring the two properties. Empirically, our findings reveal that InvICL surpasses previous models, both invariant and non-invariant, in most benchmark datasets, showcasing superior generalization capabilities across varying input lengths. Code is available at https://github.com/PKU-ML/InvICL.
Authors:Wanjiang Weng, Xiaofeng Tan, Hongsong Wang, Pan Zhou
Abstract:
Bilingual text-to-motion generation, which synthesizes 3D human motions from bilingual text inputs, holds immense potential for cross-linguistic applications in gaming, film, and robotics. However, this task faces critical challenges: the absence of bilingual motion-language datasets and the misalignment between text and motion distributions in diffusion models, leading to semantically inconsistent or low-quality motions. To address these challenges, we propose BiHumanML3D, a novel bilingual human motion dataset, which establishes a crucial benchmark for bilingual text-to-motion generation models. Furthermore, we propose a Bilingual Motion Diffusion model (BiMD), which leverages cross-lingual aligned representations to capture semantics, thereby achieving a unified bilingual model. Building upon this, we propose Reward-guided sampling Alignment (ReAlign) method, comprising a step-aware reward model to assess alignment quality during sampling and a reward-guided strategy that directs the diffusion process toward an optimally aligned distribution. This reward model integrates step-aware tokens and combines a text-aligned module for semantic consistency and a motion-aligned module for realism, refining noisy motions at each timestep to balance probability density and alignment. Experiments demonstrate that our approach significantly improves text-motion alignment and motion quality compared to existing state-of-the-art methods. Project page: https://wengwanjiang.github.io/ReAlign-page/.
Authors:Xin Zhou, Xiaoxiong Zhang, Dusit Niyato, Zhiqi Shen
Abstract:
Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.
Authors:Fangwei Zhu, Peiyi Wang, Zhifang Sui
Abstract:
Chain-of-thoughts (CoT) requires large language models (LLMs) to generate intermediate steps before reaching the final answer, and has been proven effective to help LLMs solve complex reasoning tasks. However, the inner mechanism of CoT still remains largely unclear. In this paper, we empirically study the role of CoT tokens in LLMs on two compositional tasks: multi-digit multiplication and dynamic programming. While CoT is essential for solving these problems, we find that preserving only tokens that store intermediate results would achieve comparable performance. Furthermore, we observe that storing intermediate results in an alternative latent form will not affect model performance. We also randomly intervene some values in CoT, and notice that subsequent CoT tokens and the final answer would change correspondingly. These findings suggest that CoT tokens may function like variables in computer programs but with potential drawbacks like unintended shortcuts and computational complexity limits between tokens. The code and data are available at https://github.com/solitaryzero/CoTs_are_Variables.
Authors:Md Aminul Islam, Ahmed Sayeed Faruk
Abstract:
Recommender systems are essential for delivering personalized content across digital platforms by modeling user preferences and behaviors. Recently, large language models (LLMs) have been adopted for prompt-based recommendation due to their ability to generate personalized outputs without task-specific training. However, LLM-based methods face limitations such as limited context window size, inefficient pointwise and pairwise prompting, and difficulty handling listwise ranking due to token constraints. LLMs can also be sensitive to position bias, as they may overemphasize earlier items in the prompt regardless of their true relevance. To address and investigate these issues, we propose a hybrid framework that combines a traditional recommendation model with an LLM for reranking top-k items using structured prompts. We evaluate the effects of user history reordering and instructional prompts for mitigating position bias. Experiments on MovieLens-100K show that randomizing user history improves ranking quality, but LLM-based reranking does not outperform the base model. Explicit instructions to reduce position bias are also ineffective. Our evaluations reveal limitations in LLMs' ability to model ranking context and mitigate bias. Our code is publicly available at https://github.com/aminul7506/LLMForReRanking.
Authors:Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhenran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan Jiang, Xintong Wang, Jifang Wang, Shouzheng Huang, Xinping Zhao, Borui Jiang, Lanqing Hong, Longyue Wang, Zhuotao Tian, Baoxing Huai, Wenhan Luo, Weihua Luo, Zheng Zhang, Baotian Hu, Min Zhang
Abstract:
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.
Authors:Jiaqi Zheng, Qing Ling, Yerong Feng
Abstract:
Although deep learning models have demonstrated remarkable potential in weather prediction, most of them overlook either the \textbf{physics} of the underlying weather evolution or the \textbf{topology} of the Earth's surface. In light of these disadvantages, we develop PASSAT, a novel Physics-ASSisted And Topology-informed deep learning model for weather prediction. PASSAT attributes the weather evolution to two key factors: (i) the advection process that can be characterized by the advection equation and the Navier-Stokes equation; (ii) the Earth-atmosphere interaction that is difficult to both model and calculate. PASSAT also takes the topology of the Earth's surface into consideration, other than simply treating it as a plane. With these considerations, PASSAT numerically solves the advection equation and the Navier-Stokes equation on the spherical manifold, utilizes a spherical graph neural network to capture the Earth-atmosphere interaction, and generates the initial velocity fields that are critical to solving the advection equation from the same spherical graph neural network. In the $5.625^\circ$-resolution ERA5 data set, PASSAT outperforms both the state-of-the-art deep learning-based weather prediction models and the operational numerical weather prediction model IFS T42. Code and checkpoint are available at https://github.com/Yumenomae/PASSAT_5p625.
Authors:I-Chun Arthur Liu, Jason Chen, Gaurav Sukhatme, Daniel Seita
Abstract:
Learning bimanual manipulation is challenging due to its high dimensionality and tight coordination required between two arms. Eye-in-hand imitation learning, which uses wrist-mounted cameras, simplifies perception by focusing on task-relevant views. However, collecting diverse demonstrations remains costly, motivating the need for scalable data augmentation. While prior work has explored visual augmentation in single-arm settings, extending these approaches to bimanual manipulation requires generating viewpoint-consistent observations across both arms and producing corresponding action labels that are both valid and feasible. In this work, we propose Diffusion for COordinated Dual-arm Data Augmentation (D-CODA), a method for offline data augmentation tailored to eye-in-hand bimanual imitation learning that trains a diffusion model to synthesize novel, viewpoint-consistent wrist-camera images for both arms while simultaneously generating joint-space action labels. It employs constrained optimization to ensure that augmented states involving gripper-to-object contacts adhere to constraints suitable for bimanual coordination. We evaluate D-CODA on 5 simulated and 3 real-world tasks. Our results across 2250 simulation trials and 300 real-world trials demonstrate that it outperforms baselines and ablations, showing its potential for scalable data augmentation in eye-in-hand bimanual manipulation. Our project website is at: https://dcodaaug.github.io/D-CODA/.
Authors:Shashank Agnihotri, David Schader, Nico Sharei, Mehmet Ege Kaçar, Margret Keuper
Abstract:
Deep learning (DL) models are widely used in real-world applications but remain vulnerable to distribution shifts, especially due to weather and lighting changes. Collecting diverse real-world data for testing the robustness of DL models is resource-intensive, making synthetic corruptions an attractive alternative for robustness testing. However, are synthetic corruptions a reliable proxy for real-world corruptions? To answer this, we conduct the largest benchmarking study on semantic segmentation models, comparing performance on real-world corruptions and synthetic corruptions datasets. Our results reveal a strong correlation in mean performance, supporting the use of synthetic corruptions for robustness evaluation. We further analyze corruption-specific correlations, providing key insights to understand when synthetic corruptions succeed in representing real-world corruptions. Open-source Code: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/segmentation_david/semantic_segmentation
Authors:Tao Hong, Zhaoyi Xu, Se Young Chun, Luis Hernandez-Garcia, Jeffrey A. Fessler
Abstract:
In compressed sensing (CS) MRI, model-based methods are pivotal to achieving accurate reconstruction. One of the main challenges in model-based methods is finding an effective prior to describe the statistical distribution of the target image. Plug-and-Play (PnP) and REgularization by Denoising (RED) are two general frameworks that use denoisers as the prior. While PnP/RED methods with convolutional neural networks (CNNs) based denoisers outperform classical hand-crafted priors in CS MRI, their convergence theory relies on assumptions that do not hold for practical CNNs. The recently developed gradient-driven denoisers offer a framework that bridges the gap between practical performance and theoretical guarantees. However, the numerical solvers for the associated minimization problem remain slow for CS MRI reconstruction. This paper proposes a complex quasi-Newton proximal method that achieves faster convergence than existing approaches. To address the complex domain in CS MRI, we propose a modified Hessian estimation method that guarantees Hermitian positive definiteness. Furthermore, we provide a rigorous convergence analysis of the proposed method for nonconvex settings. Numerical experiments on both Cartesian and non-Cartesian sampling trajectories demonstrate the effectiveness and efficiency of our approach.
Authors:Richard Liu, Daniel Fu, Noah Tan, Itai Lang, Rana Hanocka
Abstract:
In this work we present WIR3D, a technique for abstracting 3D shapes through a sparse set of visually meaningful curves in 3D. We optimize the parameters of Bezier curves such that they faithfully represent both the geometry and salient visual features (e.g. texture) of the shape from arbitrary viewpoints. We leverage the intermediate activations of a pre-trained foundation model (CLIP) to guide our optimization process. We divide our optimization into two phases: one for capturing the coarse geometry of the shape, and the other for representing fine-grained features. Our second phase supervision is spatially guided by a novel localized keypoint loss. This spatial guidance enables user control over abstracted features. We ensure fidelity to the original surface through a neural SDF loss, which allows the curves to be used as intuitive deformation handles. We successfully apply our method for shape abstraction over a broad dataset of shapes with varying complexity, geometric structure, and texture, and demonstrate downstream applications for feature control and shape deformation.
Authors:Bangyan Liao, Zhenjun Zhao, Haoang Li, Yi Zhou, Yingping Zeng, Hao Li, Peidong Liu
Abstract:
Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a "soft" association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called GlobustVP), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that GlobustVP achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.
Authors:Shuoyan Wei, Feng Li, Shengeng Tang, Yao Zhao, Huihui Bai
Abstract:
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
Authors:Zilong Chen, Yikai Wang, Wenqiang Sun, Feng Wang, Yiwen Chen, Huaping Liu
Abstract:
In this paper, we introduce MeshGen, an advanced image-to-3D pipeline that generates high-quality 3D meshes with detailed geometry and physically based rendering (PBR) textures. Addressing the challenges faced by existing 3D native diffusion models, such as suboptimal auto-encoder performance, limited controllability, poor generalization, and inconsistent image-based PBR texturing, MeshGen employs several key innovations to overcome these limitations. We pioneer a render-enhanced point-to-shape auto-encoder that compresses meshes into a compact latent space by designing perceptual optimization with ray-based regularization. This ensures that the 3D shapes are accurately represented and reconstructed to preserve geometric details within the latent space. To address data scarcity and image-shape misalignment, we further propose geometric augmentation and generative rendering augmentation techniques, which enhance the model's controllability and generalization ability, allowing it to perform well even with limited public datasets. For the texture generation, MeshGen employs a reference attention-based multi-view ControlNet for consistent appearance synthesis. This is further complemented by our multi-view PBR decomposer that estimates PBR components and a UV inpainter that fills invisible areas, ensuring a seamless and consistent texture across the 3D mesh. Our extensive experiments demonstrate that MeshGen largely outperforms previous methods in both shape and texture generation, setting a new standard for the quality of 3D meshes generated with PBR textures. See our code at https://github.com/heheyas/MeshGen, project page https://heheyas.github.io/MeshGen
Authors:Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen
Abstract:
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.
Authors:Hicham Assoudi
Abstract:
This paper presents a comparative benchmark evaluating the performance of Typica.ai's custom Moroccan Darija toxicity detection model against major LLM-based moderation APIs: OpenAI (omni-moderation-latest), Mistral (mistral-moderation-latest), and Anthropic Claude (claude-3-haiku-20240307). We focus on culturally grounded toxic content, including implicit insults, sarcasm, and culturally specific aggression often overlooked by general-purpose systems. Using a balanced test set derived from the OMCD_Typica.ai_Mix dataset, we report precision, recall, F1-score, and accuracy, offering insights into challenges and opportunities for moderation in underrepresented languages. Our results highlight Typica.ai's superior performance, underlining the importance of culturally adapted models for reliable content moderation.
Authors:Abdulaziz Almuzairee, Rohan Patil, Dwait Bhatt, Henrik I. Christensen
Abstract:
Vision is well-known for its use in manipulation, especially using visual servoing. Due to the 3D nature of the world, using multiple camera views and merging them creates better representations for Q-learning and in turn, trains more sample efficient policies. Nevertheless, these multi-view policies are sensitive to failing cameras and can be burdensome to deploy. To mitigate these issues, we introduce a Merge And Disentanglement (MAD) algorithm that efficiently merges views to increase sample efficiency while simultaneously disentangling views by augmenting multi-view feature inputs with single-view features. This produces robust policies and allows lightweight deployment. We demonstrate the efficiency and robustness of our approach using Meta-World and ManiSkill3. For project website and code, see https://aalmuzairee.github.io/mad
Authors:Yuning Du, Jingshuai Liu, Rohan Dharmakumar, Sotirios A. Tsaftaris
Abstract:
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
Authors:Kunlun Xu, Xu Zou, Gang Hua, Jiahuan Zhou
Abstract:
Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference.To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt
Authors:Guanghui Wang, Zhiyong Yang, Zitai Wang, Shi Wang, Qianqian Xu, Qingming Huang
Abstract:
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student model by minimizing the divergence between their output distributions, typically using forward Kullback-Leibler divergence (FKLD) or reverse KLD (RKLD). It has become an effective training paradigm due to the broader supervision information provided by the teacher distribution compared to one-hot labels. We identify that the core challenge in KD lies in balancing two mode-concentration effects: the \textbf{\textit{Hardness-Concentration}} effect, which refers to focusing on modes with large errors, and the \textbf{\textit{Confidence-Concentration}} effect, which refers to focusing on modes with high student confidence. Through an analysis of how probabilities are reassigned during gradient updates, we observe that these two effects are entangled in FKLD and RKLD, but in extreme forms. Specifically, both are too weak in FKLD, causing the student to fail to concentrate on the target class. In contrast, both are too strong in RKLD, causing the student to overly emphasize the target class while ignoring the broader distributional information from the teacher. To address this imbalance, we propose ABKD, a generic framework with $α$-$β$-divergence. Our theoretical results show that ABKD offers a smooth interpolation between FKLD and RKLD, achieving an effective trade-off between these effects. Extensive experiments on 17 language/vision datasets with 12 teacher-student settings confirm its efficacy. The code is available at https://github.com/ghwang-s/abkd.
Authors:Ashutosh Singandhupe, Sanket Lokhande, Hung Manh La
Abstract:
Point cloud registration is a fundamental problem in computer vision and robotics, involving the alignment of 3D point sets captured from varying viewpoints using depth sensors such as LiDAR or structured light. In modern robotic systems, especially those focused on mapping, it is essential to merge multiple views of the same environment accurately. However, state-of-the-art registration techniques often struggle when large rotational differences exist between point sets or when the data is significantly corrupted by sensor noise. These challenges can lead to misalignments and, consequently, to inaccurate or distorted 3D reconstructions. In this work, we address both these limitations by proposing a robust modification to the classic Iterative Closest Point (ICP) algorithm. Our method, termed Exponential Similarity Matrix ICP (ESM-ICP), integrates a Gaussian-inspired exponential weighting scheme to construct a similarity matrix that dynamically adapts across iterations. This matrix facilitates improved estimation of both rotational and translational components during alignment. We demonstrate the robustness of ESM-ICP in two challenging scenarios: (i) large rotational discrepancies between the source and target point clouds, and (ii) data corrupted by non-Gaussian noise. Our results show that ESM-ICP outperforms traditional geometric registration techniques as well as several recent learning-based methods. To encourage reproducibility and community engagement, our full implementation is made publicly available on GitHub. https://github.com/aralab-unr/ESM_ICP
Authors:Qi Zhou, Yukai Shi, Xiaojun Yang, Xiaoyu Xian, Lunjia Liao, Ruimao Zhang, Liang Lin
Abstract:
Visible and infrared image fusion is one of the most crucial tasks in the field of image fusion, aiming to generate fused images with clear structural information and high-quality texture features for high-level vision tasks. However, when faced with severe illumination degradation in visible images, the fusion results of existing image fusion methods often exhibit blurry and dim visual effects, posing major challenges for autonomous driving. To this end, a Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO), which employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion), addressing the issue of information entropy loss caused by hierarchical data transmission. Specifically, we construct a latent-common feature extractor (LCFE) to obtain latent features for the cascaded tasks strategy. Firstly, a details-extraction module (DEM) is devised to acquire high-frequency semantic information. Secondly, we design a hyper cross-attention module (HCAM) to extract low-frequency information and preserve texture features from source images. Finally, a relevant loss function is designed to guide the holistic network learning, thereby achieving better image fusion. Extensive experiments demonstrate that our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations. Particularly, DFVO can generate clearer, more informative, and more evenly illuminated fusion results in the dark environments, achieving best performance on the LLVIP dataset with 63.258 dB PSNR and 0.724 CC, providing more effective information for high-level vision tasks. Our code is publicly accessible at https://github.com/DaVin-Qi530/DFVO.
Authors:Zhikai Zhao, Chuanbo Hua, Federico Berto, Kanghoon Lee, Zihan Ma, Jiachen Li, Jinkyoo Park
Abstract:
Trajectory prediction is a crucial task in modeling human behavior, especially in fields as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy, while recently proposed deep learning approaches suffer from computational cost, lack of explainability, and generalization issues that limit their practical adoption. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We introduce a Cross-Generation Elite Sampling to promote population diversity and a Statistics Feedback Loop allowing the LLM to analyze alternative predictions. Our evaluations show TrajEvo outperforms previous heuristic methods on the ETH-UCY datasets, and remarkably outperforms both heuristics and deep learning methods when generalizing to the unseen SDD dataset. TrajEvo represents a first step toward automated design of fast, explainable, and generalizable trajectory prediction heuristics. We make our source code publicly available to foster future research at https://github.com/ai4co/trajevo.
Authors:Jing Hu, Chengming Feng, Shu Hu, Ming-Ching Chang, Xin Li, Xi Wu, Xin Wang
Abstract:
Arbitrary style transfer aims to apply the style of any given artistic image to another content image. Still, existing deep learning-based methods often require significant computational costs to generate diverse stylized results. Motivated by this, we propose a novel reinforcement learning-based framework for arbitrary style transfer RLMiniStyler. This framework leverages a unified reinforcement learning policy to iteratively guide the style transfer process by exploring and exploiting stylization feedback, generating smooth sequences of stylized results while achieving model lightweight. Furthermore, we introduce an uncertainty-aware multi-task learning strategy that automatically adjusts loss weights to adapt to the content and style balance requirements at different training stages, thereby accelerating model convergence. Through a series of experiments across image various resolutions, we have validated the advantages of RLMiniStyler over other state-of-the-art methods in generating high-quality, diverse artistic image sequences at a lower cost. Codes are available at https://github.com/fengxiaoming520/RLMiniStyler.
Authors:Ren Wang, Pengcheng Zhou
Abstract:
Manifold learning aims to discover and represent low-dimensional structures underlying high-dimensional data while preserving critical topological and geometric properties. Existing methods often fail to capture local details with global topological integrity from noisy data or construct a balanced dimensionality reduction, resulting in distorted or fractured embeddings. We present an AutoEncoder-based method that integrates a manifold reconstruction layer, which uncovers latent manifold structures from noisy point clouds, and further provides regularizations on topological and geometric properties during dimensionality reduction, whereas the two components promote each other during training. Experiments on point cloud datasets demonstrate that our method outperforms baselines like t-SNE, UMAP, and Topological AutoEncoders in discovering manifold structures from noisy data and preserving them through dimensionality reduction, as validated by visualization and quantitative metrics. This work demonstrates the significance of combining manifold reconstruction with manifold learning to achieve reliable representation of the latent manifold, particularly when dealing with noisy real-world data. Code repository: https://github.com/Thanatorika/mrtg.
Authors:Junjie Wang, Bin Chen, Yulin Li, Bin Kang, Yichi Chen, Zhuotao Tian
Abstract:
Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at \textcolor{magenta}{https://github.com/xiaomoguhz/DeCLIP}.
Authors:Mohammad Elayan, Wissam Kontar
Abstract:
Transportation systems have long been shaped by complexity and heterogeneity, driven by the interdependency of agent actions and traffic outcomes. The deployment of automated vehicles (AVs) in such systems introduces a new challenge: achieving consensus across safety, interaction quality, and traffic performance. In this work, we position consensus as a fundamental property of the traffic system and aim to quantify it. We use high-resolution trajectory data from the Third Generation Simulation (TGSIM) dataset to empirically analyze AV and human-driven vehicle (HDV) behavior at a signalized urban intersection and around vulnerable road users (VRUs). Key metrics, including Time-to-Collision (TTC), Post-Encroachment Time (PET), deceleration patterns, headways, and string stability, are evaluated across the three performance dimensions. Results show that full consensus across safety, interaction, and performance is rare, with only 1.63% of AV-VRU interaction frames meeting all three conditions. These findings highlight the need for AV models that explicitly balance multi-dimensional performance in mixed-traffic environments. Full reproducibility is supported via our open-source codebase on https://github.com/wissamkontar/Consensus-AV-Analysis.
Authors:Jie Sun, Heng Liu, Yongzhen Wang, Xiao-Ping Zhang, Mingqiang Wei
Abstract:
In this paper, we reveal a novel haze-specific wavelet degradation prior observed through wavelet transform analysis, which shows that haze-related information predominantly resides in low-frequency components. Exploiting this insight, we propose a novel dehazing framework, WDMamba, which decomposes the image dehazing task into two sequential stages: low-frequency restoration followed by detail enhancement. This coarse-to-fine strategy enables WDMamba to effectively capture features specific to each stage of the dehazing process, resulting in high-quality restored images. Specifically, in the low-frequency restoration stage, we integrate Mamba blocks to reconstruct global structures with linear complexity, efficiently removing overall haze and producing a coarse restored image. Thereafter, the detail enhancement stage reinstates fine-grained information that may have been overlooked during the previous phase, culminating in the final dehazed output. Furthermore, to enhance detail retention and achieve more natural dehazing, we introduce a self-guided contrastive regularization during network training. By utilizing the coarse restored output as a hard negative example, our model learns more discriminative representations, substantially boosting the overall dehazing performance. Extensive evaluations on public dehazing benchmarks demonstrate that our method surpasses state-of-the-art approaches both qualitatively and quantitatively. Code is available at https://github.com/SunJ000/WDMamba.
Authors:Kai Ruan, Mowen Huang, Ji-Rong Wen, Hao Sun
Abstract:
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict swarm-like constraints-limited local perception and communication-remains largely unexplored. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks (Pursuit, Synchronization, Foraging, Flocking, Transport) within a configurable 2D grid environment, forcing agents to rely solely on local sensory input ($k\times k$ view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Zero-shot evaluations of leading LLMs (e.g., deepseek-v3, o4-mini) reveal significant task-dependent performance variations. While some rudimentary coordination is observed, our results indicate that current LLMs significantly struggle with robust long-range planning and adaptive strategy formation under the uncertainty inherent in these decentralized scenarios. Assessing LLMs under such swarm-like constraints is crucial for understanding their utility in future decentralized intelligent systems. We release SwarmBench as an open, extensible toolkit-built on a customizable physical system-providing environments, prompts, evaluation scripts, and comprehensive datasets. This aims to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of emergent collective behavior under severe informational decentralization. Our code repository is available at https://github.com/x66ccff/swarmbench.
Authors:Yi Li, Zhiyuan Zhang, Jiangnan Xia, Jianghan Cheng, Qilong Wu, Junwei Li, Yibin Tian, Hui Kong
Abstract:
This paper presents a novel Two-Stage Diffusion Model (TS-Diff) for enhancing extremely low-light RAW images. In the pre-training stage, TS-Diff synthesizes noisy images by constructing multiple virtual cameras based on a noise space. Camera Feature Integration (CFI) modules are then designed to enable the model to learn generalizable features across diverse virtual cameras. During the aligning stage, CFIs are averaged to create a target-specific CFI$^T$, which is fine-tuned using a small amount of real RAW data to adapt to the noise characteristics of specific cameras. A structural reparameterization technique further simplifies CFI$^T$ for efficient deployment. To address color shifts during the diffusion process, a color corrector is introduced to ensure color consistency by dynamically adjusting global color distributions. Additionally, a novel dataset, QID, is constructed, featuring quantifiable illumination levels and a wide dynamic range, providing a comprehensive benchmark for training and evaluation under extreme low-light conditions. Experimental results demonstrate that TS-Diff achieves state-of-the-art performance on multiple datasets, including QID, SID, and ELD, excelling in denoising, generalization, and color consistency across various cameras and illumination levels. These findings highlight the robustness and versatility of TS-Diff, making it a practical solution for low-light imaging applications. Source codes and models are available at https://github.com/CircccleK/TS-Diff
Authors:Weiwei Ye, Zhuopeng Xu, Ning Gui
Abstract:
Due to the dynamics of underlying physics and external influences, the uncertainty of time series often varies over time. However, existing Denoising Diffusion Probabilistic Models (DDPMs) often fail to capture this non-stationary nature, constrained by their constant variance assumption from the additive noise model (ANM). In this paper, we innovatively utilize the Location-Scale Noise Model (LSNM) to relax the fixed uncertainty assumption of ANM. A diffusion-based probabilistic forecasting framework, termed Non-stationary Diffusion (NsDiff), is designed based on LSNM that is capable of modeling the changing pattern of uncertainty. Specifically, NsDiff combines a denoising diffusion-based conditional generative model with a pre-trained conditional mean and variance estimator, enabling adaptive endpoint distribution modeling. Furthermore, we propose an uncertainty-aware noise schedule, which dynamically adjusts the noise levels to accurately reflect the data uncertainty at each step and integrates the time-varying variances into the diffusion process. Extensive experiments conducted on nine real-world and synthetic datasets demonstrate the superior performance of NsDiff compared to existing approaches. Code is available at https://github.com/wwy155/NsDiff.
Authors:Yajie Fu, Chaorui Huang, Junwei Li, Hui Kong, Yibin Tian, Huakang Li, Zhiyuan Zhang
Abstract:
We propose HDiffTG, a novel 3D Human Pose Estimation (3DHPE) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework. HDiffTG leverages the strengths of these techniques to significantly improve pose estimation accuracy and robustness while maintaining a lightweight design. The Transformer captures global spatiotemporal dependencies, the GCN models local skeletal structures, and the diffusion model provides step-by-step optimization for fine-tuning, achieving a complementary balance between global and local features. This integration enhances the model's ability to handle pose estimation under occlusions and in complex scenarios. Furthermore, we introduce lightweight optimizations to the integrated model and refine the objective function design to reduce computational overhead without compromising performance. Evaluation results on the Human3.6M and MPI-INF-3DHP datasets demonstrate that HDiffTG achieves state-of-the-art (SOTA) performance on the MPI-INF-3DHP dataset while excelling in both accuracy and computational efficiency. Additionally, the model exhibits exceptional robustness in noisy and occluded environments. Source codes and models are available at https://github.com/CirceJie/HDiffTG
Authors:Yisen Feng, Haoyu Zhang, Meng Liu, Weili Guan, Liqiang Nie
Abstract:
Egocentric video grounding is a crucial task for embodied intelligence applications, distinct from exocentric video moment localization. Existing methods primarily focus on the distributional differences between egocentric and exocentric videos but often neglect key characteristics of egocentric videos and the fine-grained information emphasized by question-type queries. To address these limitations, we propose OSGNet, an Object-Shot enhanced Grounding Network for egocentric video. Specifically, we extract object information from videos to enrich video representation, particularly for objects highlighted in the textual query but not directly captured in the video features. Additionally, we analyze the frequent shot movements inherent to egocentric videos, leveraging these features to extract the wearer's attention information, which enhances the model's ability to perform modality alignment. Experiments conducted on three datasets demonstrate that OSGNet achieves state-of-the-art performance, validating the effectiveness of our approach. Our code can be found at https://github.com/Yisen-Feng/OSGNet.
Authors:Trinh T. L. Vuong, Jin Tae Kwak
Abstract:
We present VideoPath-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, single patch images, automatically keyframe-extracted clips, and manually segmented video pathology images, to mimic the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, VideoPath-LLaVA bridges visual narratives with diagnostic reasoning.
Central to our approach is the VideoPath-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. VideoPath-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at https://github.com/trinhvg/VideoPath-LLaVA.
Authors:Hail Song, Wonsik Shin, Naeun Lee, Soomin Chung, Nojun Kwak, Woontack Woo
Abstract:
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.
Authors:Hongyi Li, Jun Xu, William Ward Armstrong
Abstract:
We introduce the Learning Hyperplane Tree (LHT), a novel oblique decision tree model designed for expressive and interpretable classification. LHT fundamentally distinguishes itself through a non-iterative, statistically-driven approach to constructing splitting hyperplanes. Unlike methods that rely on iterative optimization or heuristics, LHT directly computes the hyperplane parameters, which are derived from feature weights based on the differences in feature expectations between classes within each node. This deterministic mechanism enables a direct and well-defined hyperplane construction process. Predictions leverage a unique piecewise linear membership function within leaf nodes, obtained via local least-squares fitting. We formally analyze the convergence of the LHT splitting process, ensuring that each split yields meaningful, non-empty partitions. Furthermore, we establish that the time complexity for building an LHT up to depth $d$ is $O(mnd)$, demonstrating the practical feasibility of constructing trees with powerful oblique splits using this methodology. The explicit feature weighting at each split provides inherent interpretability. Experimental results on benchmark datasets demonstrate LHT's competitive accuracy, positioning it as a practical, theoretically grounded, and interpretable alternative in the landscape of tree-based models. The implementation of the proposed method is available at https://github.com/Hongyi-Li-sz/LHT_model.
Authors:Zixiang Ai, Zichen Liu, Jiahuan Zhou
Abstract:
Vision GNN (ViG) demonstrates superior performance by representing images as graph structures, providing a more natural way to capture irregular semantic patterns beyond traditional grid or sequence-based representations. To efficiently adapt ViG to downstream tasks, parameter-efficient fine-tuning techniques like visual prompting become increasingly essential. However, existing prompting methods are primarily designed for Transformer-based models, neglecting the rich topological relationships among nodes and edges in graph-based representations, limiting their capacity to model complex semantics. In this paper, we propose Vision Graph Prompting (VGP), a novel framework tailored for vision graph structures. Our core insight reveals that semantically connected components in the graph exhibit low-rank properties. Building on this observation, we introduce a semantic low-rank prompting method that decomposes low-rank semantic features and integrates them with prompts on vision graph topologies, capturing both global structural patterns and fine-grained semantic dependencies. Extensive experiments demonstrate our method significantly improves ViG's transfer performance on diverse downstream tasks, achieving results comparable to full fine-tuning while maintaining parameter efficiency. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-VGP.
Authors:Zixiang Ai, Zichen Liu, Yuanhang Lei, Zhenyu Cui, Xu Zou, Jiahuan Zhou
Abstract:
Pre-trained 3D vision models have gained significant attention for their promising performance on point cloud data. However, fully fine-tuning these models for downstream tasks is computationally expensive and storage-intensive. Existing parameter-efficient fine-tuning (PEFT) approaches, which focus primarily on input token prompting, struggle to achieve competitive performance due to their limited ability to capture the geometric information inherent in point clouds. To address this challenge, we propose a novel Geometry-Aware Point Cloud Prompt (GAPrompt) that leverages geometric cues to enhance the adaptability of 3D vision models. First, we introduce a Point Prompt that serves as an auxiliary input alongside the original point cloud, explicitly guiding the model to capture fine-grained geometric details. Additionally, we present a Point Shift Prompter designed to extract global shape information from the point cloud, enabling instance-specific geometric adjustments at the input level. Moreover, our proposed Prompt Propagation mechanism incorporates the shape information into the model's feature extraction process, further strengthening its ability to capture essential geometric characteristics. Extensive experiments demonstrate that GAPrompt significantly outperforms state-of-the-art PEFT methods and achieves competitive results compared to full fine-tuning on various benchmarks, while utilizing only 2.19% of trainable parameters. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-GAPrompt.
Authors:Xueyao Zhang, Yuancheng Wang, Chaoren Wang, Ziniu Li, Zhuo Chen, Zhizheng Wu
Abstract:
Modern zero-shot text-to-speech (TTS) systems, despite using extensive pre-training, often struggle in challenging scenarios such as tongue twisters, repeated words, code-switching, and cross-lingual synthesis, leading to intelligibility issues. To address these limitations, this paper leverages preference alignment techniques, which enable targeted construction of out-of-pretraining-distribution data to enhance performance. We introduce a new dataset, named the Intelligibility Preference Speech Dataset (INTP), and extend the Direct Preference Optimization (DPO) framework to accommodate diverse TTS architectures. After INTP alignment, in addition to intelligibility, we observe overall improvements including naturalness, similarity, and audio quality for multiple TTS models across diverse domains. Based on that, we also verify the weak-to-strong generalization ability of INTP for more intelligible models such as CosyVoice 2 and Ints. Moreover, we showcase the potential for further improvements through iterative alignment based on Ints. Audio samples are available at https://intalign.github.io/.
Authors:Xu Huang, Yuefeng Huang, Weiwen Liu, Xingshan Zeng, Yasheng Wang, Ruiming Tang, Hong Xie, Defu Lian
Abstract:
Tool invocation is a crucial mechanism for extending the capabilities of Large Language Models (LLMs) and has recently garnered significant attention. It enables LLMs to solve complex problems through tool calls while accessing up-to-date world knowledge. However, existing work primarily focuses on the fundamental ability of LLMs to invoke tools for problem-solving, without considering personalized constraints in tool invocation. In this work, we introduce the concept of Personalized Tool Invocation and define two key tasks: Tool Preference and Profile-dependent Query. Tool Preference addresses user preferences when selecting among functionally similar tools, while Profile-dependent Query considers cases where a user query lacks certain tool parameters, requiring the model to infer them from the user profile. To tackle these challenges, we propose PTool, a data synthesis framework designed for personalized tool invocation. Additionally, we construct \textbf{PTBench}, the first benchmark for evaluating personalized tool invocation. We then fine-tune various open-source models, demonstrating the effectiveness of our framework and providing valuable insights. Our benchmark is public at https://github.com/hyfshadow/PTBench.
Authors:Xuyang Wang, Siyuan Duan, Qizhi Li, Guiduo Duan, Yuan Sun, Dezhong Peng
Abstract:
Trustworthy multi-view learning has attracted extensive attention because evidence learning can provide reliable uncertainty estimation to enhance the credibility of multi-view predictions. Existing trusted multi-view learning methods implicitly assume that multi-view data is secure. However, in safety-sensitive applications such as autonomous driving and security monitoring, multi-view data often faces threats from adversarial perturbations, thereby deceiving or disrupting multi-view models. This inevitably leads to the adversarial unreliability problem (AUP) in trusted multi-view learning. To overcome this tricky problem, we propose a novel multi-view learning framework, namely Reliable Disentanglement Multi-view Learning (RDML). Specifically, we first propose evidential disentanglement learning to decompose each view into clean and adversarial parts under the guidance of corresponding evidences, which is extracted by a pretrained evidence extractor. Then, we employ the feature recalibration module to mitigate the negative impact of adversarial perturbations and extract potential informative features from them. Finally, to further ignore the irreparable adversarial interferences, a view-level evidential attention mechanism is designed. Extensive experiments on multi-view classification tasks with adversarial attacks show that RDML outperforms the state-of-the-art methods by a relatively large margin. Our code is available at https://github.com/Willy1005/2025-IJCAI-RDML.
Authors:Feng Gao, Sheng Liu, Chuanzheng Gong, Xiaowei Zhou, Jiayi Wang, Junyu Dong, Qian Du
Abstract:
Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification by leveraging the complementary information from multiple data sources. Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration. To solve these issues, we present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data. Specifically, we first design a frequency interaction module to enhance the inter-frequency coupling in multi-source feature extraction. The multi-source features are first decoupled into high- and low-frequency components. Then, these features are recoupled to achieve efficient inter-frequency communication. Afterward, we design a prototype-based information compensation module to model the global multi-source complementary information. Two sets of learnable modality prototypes are introduced to represent the global modality information of multi-source data. Subsequently, cross-modal feature integration and alignment are achieved through cross-attention computation between the modality-specific prototype vectors and the raw feature representations. Extensive experiments on three public datasets demonstrate the significant superiority of our PICNet over state-of-the-art methods. The codes are available at https://github.com/oucailab/PICNet.
Authors:Lucia Zheng, Neel Guha, Javokhir Arifov, Sarah Zhang, Michal Skreta, Christopher D. Manning, Peter Henderson, Daniel E. Ho
Abstract:
As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research.
Authors:Gerrit GroÃmann, Larisa Ivanova, Sai Leela Poduru, Mohaddeseh Tabrizian, Islam Mesabah, David A. Selby, Sebastian J. Vollmer
Abstract:
According to Yuval Noah Harari, large-scale human cooperation is driven by shared narratives that encode common beliefs and values. This study explores whether such narratives can similarly nudge LLM agents toward collaboration. We use a finitely repeated public goods game in which LLM agents choose either cooperative or egoistic spending strategies. We prime agents with stories highlighting teamwork to different degrees and test how this influences negotiation outcomes. Our experiments explore four questions:(1) How do narratives influence negotiation behavior? (2) What differs when agents share the same story versus different ones? (3) What happens when the agent numbers grow? (4) Are agents resilient against self-serving negotiators? We find that story-based priming significantly affects negotiation strategies and success rates. Common stories improve collaboration, benefiting each agent. By contrast, priming agents with different stories reverses this effect, and those agents primed toward self-interest prevail. We hypothesize that these results carry implications for multi-agent system design and AI alignment.
Authors:Xiang Li, Yiyang Hao, Doug Fulop
Abstract:
One of the primary aspirations in reinforcement learning research is developing general-purpose agents capable of rapidly adapting to and mastering novel tasks. While RL gaming agents have mastered many Atari games, they remain slow and costly to train for each game. In this work, we demonstrate that latest reasoning LLMs with out-of-domain RL post-training can play a challenging Atari game called Frogger under a zero-shot setting. We then investigate the effect of in-context learning and the amount of reasoning effort on LLM performance. Lastly, we demonstrate a way to bootstrap traditional RL method with LLM demonstrations, which significantly improves their performance and sample efficiency. Our implementation is open sourced at https://github.com/AlienKevin/frogger.
Authors:Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo, Wanqi Zhou, Yang Liu, Bofang Jia, Han Zhao, Siteng Huang, Donglin Wang
Abstract:
Dual-system VLA (Vision-Language-Action) architectures have become a hot topic in embodied intelligence research, but there is a lack of sufficient open-source work for further performance analysis and optimization. To address this problem, this paper will summarize and compare the structural designs of existing dual-system architectures, and conduct systematic empirical evaluations on the core design elements of existing dual-system architectures. Ultimately, it will provide a low-cost open-source model for further exploration. Of course, this project will continue to update with more experimental conclusions and open-source models with improved performance for everyone to choose from. Project page: https://openhelix-robot.github.io/.
Authors:Shuang Zeng, Chee Hong Lee, Micky C Nnamdi, Wenqi Shi, J Ben Tamo, Lei Zhu, Hangzhou He, Xinliang Zhang, Qian Chen, May D. Wang, Yanye Lu, Qiushi Ren
Abstract:
Retinal vessel segmentation is a vital early detection method for several severe ocular diseases. Despite significant progress in retinal vessel segmentation with the advancement of Neural Networks, there are still challenges to overcome. Specifically, retinal vessel segmentation aims to predict the class label for every pixel within a fundus image, with a primary focus on intra-image discrimination, making it vital for models to extract more discriminative features. Nevertheless, existing methods primarily focus on minimizing the difference between the output from the decoder and the label, but ignore fully using feature-level fine-grained representations from the encoder. To address these issues, we propose a novel Attention U-shaped Kolmogorov-Arnold Network named AttUKAN along with a novel Label-guided Pixel-wise Contrastive Loss for retinal vessel segmentation. Specifically, we implement Attention Gates into Kolmogorov-Arnold Networks to enhance model sensitivity by suppressing irrelevant feature activations and model interpretability by non-linear modeling of KAN blocks. Additionally, we also design a novel Label-guided Pixel-wise Contrastive Loss to supervise our proposed AttUKAN to extract more discriminative features by distinguishing between foreground vessel-pixel pairs and background pairs. Experiments are conducted across four public datasets including DRIVE, STARE, CHASE_DB1, HRF and our private dataset. AttUKAN achieves F1 scores of 82.50%, 81.14%, 81.34%, 80.21% and 80.09%, along with MIoU scores of 70.24%, 68.64%, 68.59%, 67.21% and 66.94% in the above datasets, which are the highest compared to 11 networks for retinal vessel segmentation. Quantitative and qualitative results show that our AttUKAN achieves state-of-the-art performance and outperforms existing retinal vessel segmentation methods. Our code will be available at https://github.com/stevezs315/AttUKAN.
Authors:Tin MiÅ¡iÄ, Karlo KolediÄ, Fabio Bonsignorio, Ivan PetroviÄ, Ivan MarkoviÄ
Abstract:
The ability to selectively attend to relevant stimuli while filtering out distractions is essential for agents that process complex, high-dimensional sensory input. This paper introduces a model of covert and overt visual attention through the framework of active inference, utilizing dynamic optimization of sensory precisions to minimize free-energy. The model determines visual sensory precisions based on both current environmental beliefs and sensory input, influencing attentional allocation in both covert and overt modalities. To test the effectiveness of the model, we analyze its behavior in the Posner cueing task and a simple target focus task using two-dimensional(2D) visual data. Reaction times are measured to investigate the interplay between exogenous and endogenous attention, as well as valid and invalid cueing. The results show that exogenous and valid cues generally lead to faster reaction times compared to endogenous and invalid cues. Furthermore, the model exhibits behavior similar to inhibition of return, where previously attended locations become suppressed after a specific cue-target onset asynchrony interval. Lastly, we investigate different aspects of overt attention and show that involuntary, reflexive saccades occur faster than intentional ones, but at the expense of adaptability.
Authors:Chongsheng Zhang, Shuwen Wu, Yingqi Chen, Yi Men, Gaojuan Fan, Matthias AÃenmacher, Christian Heumann, João Gama
Abstract:
Ancient manuscripts are the primary source of ancient linguistic corpora. However, many ancient manuscripts exhibit duplications due to unintentional repeated publication or deliberate forgery. The Dead Sea Scrolls, for example, include counterfeit fragments, whereas Oracle Bones (OB) contain both republished materials and fabricated specimens. Identifying ancient manuscript duplicates is of great significance for both archaeological curation and ancient history study. In this work, we design a progressive OB duplicate discovery framework that combines unsupervised low-level keypoints matching with high-level text-centric content-based matching to refine and rank the candidate OB duplicates with semantic awareness and interpretability. We compare our model with state-of-the-art content-based image retrieval and image matching methods, showing that our model yields comparable recall performance and the highest simplified mean reciprocal rank scores for both Top-5 and Top-15 retrieval results, and with significantly accelerated computation efficiency. We have discovered over 60 pairs of new OB duplicates in real-world deployment, which were missed by domain experts for decades. Code, model and real-world results are available at: https://github.com/cszhangLMU/OBD-Finder/.
Authors:Xuechao Wang, Sven Nomm, Junqing Huang, Kadri Medijainen, Aaro Toomela, Michael Ruzhansky
Abstract:
Deep neural networks have shown potential in analyzing digitized hand-drawn signals for early diagnosis of Parkinson's disease. However, the lack of clear interpretability in existing diagnostic methods presents a challenge to clinical trust. In this paper, we propose PointExplainer, an explainable diagnostic strategy to identify hand-drawn regions that drive model diagnosis. Specifically, PointExplainer assigns discrete attribution values to hand-drawn segments, explicitly quantifying their relative contributions to the model's decision. Its key components include: (i) a diagnosis module, which encodes hand-drawn signals into 3D point clouds to represent hand-drawn trajectories, and (ii) an explanation module, which trains an interpretable surrogate model to approximate the local behavior of the black-box diagnostic model. We also introduce consistency measures to further address the issue of faithfulness in explanations. Extensive experiments on two benchmark datasets and a newly constructed dataset show that PointExplainer can provide intuitive explanations with no diagnostic performance degradation. The source code is available at https://github.com/chaoxuewang/PointExplainer.
Authors:Xin Wang, Ling Feng, Huijun Zhang, Lei Cao, Kaisheng Zeng, Qi Li, Yang Ding, Yi Dai, David Clifton
Abstract:
Stress haunts people in modern society, which may cause severe health issues if left unattended. With social media becoming an integral part of daily life, leveraging social media to detect stress has gained increasing attention. While the majority of the work focuses on classifying stress states and stress categories, this study introduce a new task aimed at estimating more specific stressors (like exam, writing paper, etc.) through users' posts on social media. Unfortunately, the diversity of stressors with many different classes but a few examples per class, combined with the consistent arising of new stressors over time, hinders the machine understanding of stressors. To this end, we cast the stressor estimation problem within a practical scenario few-shot learning setting, and propose a novel meta-learning based stressor estimation framework that is enhanced by a meta-knowledge inheritance mechanism. This model can not only learn generic stressor context through meta-learning, but also has a good generalization ability to estimate new stressors with little labeled data. A fundamental breakthrough in our approach lies in the inclusion of the meta-knowledge inheritance mechanism, which equips our model with the ability to prevent catastrophic forgetting when adapting to new stressors. The experimental results show that our model achieves state-of-the-art performance compared with the baselines. Additionally, we construct a social media-based stressor estimation dataset that can help train artificial intelligence models to facilitate human well-being. The dataset is now public at \href{https://www.kaggle.com/datasets/xinwangcs/stressor-cause-of-mental-health-problem-dataset}{\underline{Kaggle}} and \href{https://huggingface.co/datasets/XinWangcs/Stressor}{\underline{Hugging Face}}.
Authors:Ioannis Nasios
Abstract:
Harmful algal blooms are a growing threat to inland water quality and public health worldwide, creating an urgent need for efficient, accurate, and cost-effective detection methods. This research introduces a high-performing methodology that integrates multiple open-source remote sensing data with advanced artificial intelligence models. Key data sources include Copernicus Sentinel-2 optical imagery, the Copernicus Digital Elevation Model (DEM), and NOAA's High-Resolution Rapid Refresh (HRRR) climate data, all efficiently retrieved using platforms like Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC). The NIR and two SWIR bands from Sentinel-2, the altitude from the elevation model, the temperature and wind from NOAA as well as the longitude and latitude were the most important features. The approach combines two types of machine learning models, tree-based models and a neural network, into an ensemble for classifying algal bloom severity. While the tree models performed strongly on their own, incorporating a neural network added robustness and demonstrated how deep learning models can effectively use diverse remote sensing inputs. The method leverages high-resolution satellite imagery and AI-driven analysis to monitor algal blooms dynamically, and although initially developed for a NASA competition in the U.S., it shows potential for global application. The complete code is available for further adaptation and practical implementation, illustrating the convergence of remote sensing data and AI to address critical environmental challenges (https://github.com/IoannisNasios/HarmfulAlgalBloomDetection).
Authors:Lang Feng, Weihao Tan, Zhiyi Lyu, Longtao Zheng, Haiyang Xu, Ming Yan, Fei Huang, Bo An
Abstract:
Online fine-tuning vision-language model (VLM) agents with reinforcement learning (RL) has shown promise for equipping agents with multi-step, goal-oriented capabilities in dynamic environments. However, their open-ended textual action space and non-end-to-end nature of action generation present significant challenges to effective online exploration in RL, e.g., explosion of the exploration space. We propose a novel online fine-tuning method, Counterfactual Soft Reinforcement Learning (CoSo), better suited to the textual output space of VLM agents. Compared to prior methods that assign uniform uncertainty to all tokens, CoSo leverages counterfactual reasoning to dynamically assess the causal influence of individual tokens on post-processed actions. By prioritizing the exploration of action-critical tokens while reducing the impact of semantically redundant or low-impact tokens, CoSo enables a more targeted and efficient online rollout process. We provide theoretical analysis proving CoSo's convergence and policy improvement guarantees, and extensive empirical evaluations supporting CoSo's effectiveness. Our results across a diverse set of agent tasks, including Android device control, card gaming, and embodied AI, highlight its remarkable ability to enhance exploration efficiency and deliver consistent performance gains. The code is available at https://github.com/langfengQ/CoSo.
Authors:Md Fahim Anjum
Abstract:
Large Language Models (LLM) with reasoning capabilities offer a promising path for improving candidate evaluation in planning frameworks, but their relative performance against traditional non-reasoning models remains largely underexplored. In this study, we benchmark a distilled 1.5B parameter reasoning model (DeepSeek-R1) against several state-of-the-art non-reasoning LLMs within a generator-discriminator LLM planning framework for the text-to-SQL task. For this, we introduce a novel method for extracting soft scores from the chain-of-thought (CoT) outputs from reasoning that enables fine-grained ranking of candidates. Our central hypothesis is that reasoning models are more effective discriminators than non-reasoning LLMs. Our results show that distilled DeepSeek-R1-1.5B achieves up to $87\%$ higher F1 and $3.7\%$ better discrimination accuracy than CodeLlama-7B, as well as $3.7\%$ higher execution accuracy than CodeLlama-13B, despite having significantly fewer parameters. Furthermore, we find that there is a limit to the logical capabilities of reasoning models, and only providing more context or allowing more compute budget for reasoning is not enough to improve their discrimination performance. Finally, we demonstrate that, unlike non-reasoning LLMs, reasoning models find generation more challenging than discrimination and may underperform as generators compared to smaller non-reasoning LLMs. Our work highlights the potential of reasoning models as discriminators in agentic frameworks, far outweighing their capabilities as generators, offering insights into their optimal role within LLM planning infrastructures.
Authors:Eleftherios Tzanis, Michail E. Klontzas
Abstract:
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro
Authors:LG AI Research, Sehyun Chun, Jiye Kim, Ahra Jo, Yeonsik Jo, Seungyul Oh, Seungjun Lee, Kwangrok Ryoo, Jongmin Lee, Seung Hwan Kim, Byung Jun Kang, Soonyoung Lee, Jun Ha Park, Chanwoo Moon, Jiwon Ham, Haein Lee, Heejae Han, Jaeseung Byun, Soojong Do, Minju Ha, Dongyun Kim, Kyunghoon Bae, Woohyung Lim, Edward Hwayoung Lee, Yongmin Park, Jeongsang Yu, Gerrard Jeongwon Jo, Yeonjung Hong, Kyungjae Yoo, Sehui Han, Jaewan Lee, Changyoung Park, Kijeong Jeon, Sihyuk Yi
Abstract:
The extraction of molecular structures and reaction data from scientific documents is challenging due to their varied, unstructured chemical formats and complex document layouts. To address this, we introduce MolMole, a vision-based deep learning framework that unifies molecule detection, reaction diagram parsing, and optical chemical structure recognition (OCSR) into a single pipeline for automating the extraction of chemical data directly from page-level documents. Recognizing the lack of a standard page-level benchmark and evaluation metric, we also present a testset of 550 pages annotated with molecule bounding boxes, reaction labels, and MOLfiles, along with a novel evaluation metric. Experimental results demonstrate that MolMole outperforms existing toolkits on both our benchmark and public datasets. The benchmark testset will be publicly available, and the MolMole toolkit will be accessible soon through an interactive demo on the LG AI Research website. For commercial inquiries, please contact us at \href{mailto:contact_ddu@lgresearch.ai}{contact\_ddu@lgresearch.ai}.
Authors:Asad Aali, Adney Cardoza, Melissa Capo
Abstract:
Efficient inference of LLMs remains a crucial challenge, with two main phases: a compute-intensive prompt computation and a memory-intensive token generation. Despite existing batching and scheduling techniques, token generation phases fail to fully utilize compute resources, especially when compared to prompt computation phases. To address these challenges, we propose Splitwiser, a methodology that splits the two phases of an LLM inference request onto the same GPU, thereby reducing overhead and improving memory access and cache utilization. By eliminating the need to transfer data across devices, Splitwiser aims to minimize network-related overheads. In this report, we describe the basic structure of our proposed pipeline while sharing preliminary results and analysis. We implement our proposed multiprocessing design on two widely-used and independent LLM architectures: Huggingface and vLLM. We open-source our code for the respective implementations: 1) Huggingface (https://github.com/asad-aali/splitwiser), and 2) vLLM (https://github.com/adney11/vllm-sysml).
Authors:Yonghao Tan, Pingcheng Dong, Yongkun Wu, Yu Liu, Xuejiao Liu, Peng Luo, Shih-Yang Liu, Xijie Huang, Dong Zhang, Luhong Liang, Kwang-Ting Cheng
Abstract:
DNN accelerators, significantly advanced by model compression and specialized dataflow techniques, have marked considerable progress. However, the frequent access of high-precision partial sums (PSUMs) leads to excessive memory demands in architectures utilizing input/weight stationary dataflows. Traditional compression strategies have typically overlooked PSUM quantization, which may account for 69% of power consumption. This study introduces a novel Additive Partial Sum Quantization (APSQ) method, seamlessly integrating PSUM accumulation into the quantization framework. A grouping strategy that combines APSQ with PSUM quantization enhanced by a reconfigurable architecture is further proposed. The APSQ performs nearly lossless on NLP and CV tasks across BERT, Segformer, and EfficientViT models while compressing PSUMs to INT8. This leads to a notable reduction in energy costs by 28-87%. Extended experiments on LLaMA2-7B demonstrate the potential of APSQ for large language models. Code is available at https://github.com/Yonghao-Tan/APSQ.
Authors:Zuwei Long, Yunhang Shen, Chaoyou Fu, Heting Gao, Lijiang Li, Peixian Chen, Mengdan Zhang, Hang Shao, Jian Li, Jinlong Peng, Haoyu Cao, Ke Li, Rongrong Ji, Xing Sun
Abstract:
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
Authors:Jiayuan Rao, Zifeng Li, Haoning Wu, Ya Zhang, Yanfeng Wang, Weidi Xie
Abstract:
Recent advances in soccer understanding have demonstrated rapid progress, yet existing research predominantly focuses on isolated or narrow tasks. To bridge this gap, we propose a comprehensive framework for holistic soccer understanding. Concretely, we make the following contributions in this paper: (i) we construct SoccerWiki, the first large-scale multimodal soccer knowledge base, integrating rich domain knowledge about players, teams, referees, and venues to enable knowledge-driven reasoning; (ii) we present SoccerBench, the largest and most comprehensive soccer-specific benchmark, featuring around 10K multimodal (text, image, video) multi-choice QA pairs across 13 distinct tasks; (iii) we introduce SoccerAgent, a novel multi-agent system that decomposes complex soccer questions via collaborative reasoning, leveraging domain expertise from SoccerWiki and achieving robust performance; (iv) extensive evaluations and comparisons with representative MLLMs on SoccerBench highlight the superiority of our agentic system.
Authors:Shiyi Zhang, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, Yansong Tang
Abstract:
Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/
Authors:Shiqi Li, Jihua Zhu, Yifan Xie, Naiwen Hu, Di Wang
Abstract:
Multiview point cloud registration plays a crucial role in robotics, automation, and computer vision fields. This paper concentrates on pose graph construction and motion synchronization within multiview registration. Previous methods for pose graph construction often pruned fully connected graphs or constructed sparse graph using global feature aggregated from local descriptors, which may not consistently yield reliable results. To identify dependable pairs for pose graph construction, we design a network model that extracts information from the matching distance between point cloud pairs. For motion synchronization, we propose another neural network model to calculate the absolute pose in a data-driven manner, rather than optimizing inaccurate handcrafted loss functions. Our model takes into account geometric distribution information and employs a modified attention mechanism to facilitate flexible and reliable feature interaction. Experimental results on diverse indoor and outdoor datasets confirm the effectiveness and generalizability of our approach. The source code is available at https://github.com/Shi-Qi-Li/MDGD.
Authors:Sharvi Endait, Ruturaj Ghatage, Aditya Kulkarni, Rajlaxmi Patil, Raviraj Joshi
Abstract:
The rapid progress in question-answering (QA) systems has predominantly benefited high-resource languages, leaving Indic languages largely underrepresented despite their vast native speaker base. In this paper, we present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages, systematically derived from the SQuAD dataset. Building on previous work with MahaSQuAD for Marathi, our approach adapts and extends translation techniques to maintain high linguistic fidelity and accurate answer-span alignment across diverse languages. IndicSQuAD comprises extensive training, validation, and test sets for each language, providing a robust foundation for model development. We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT. The results indicate some challenges inherent in low-resource settings. Moreover, our experiments suggest potential directions for future work, including expanding to additional languages, developing domain-specific datasets, and incorporating multimodal data. The dataset and models are publicly shared at https://github.com/l3cube-pune/indic-nlp
Authors:Arthur Satouf, Gabriel Ben Zenou, Benjamin Piwowarski, Habiboulaye Amadou Boubacar, Pablo Piantanida
Abstract:
Current sparse neural information retrieval (IR) methods, and to a lesser extent more traditional models such as BM25, do not take into account the document collection and the complex interplay between different term weights when representing a single document. In this paper, we show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case -- and in particular to the high number of potential features (here, tokens). RSA dynamically modulates token-document interactions by considering the influence of other documents in the dataset, better contrasting document representations. Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and achieves state-of-the-art performance on out-of-domain datasets from the BEIR benchmark. https://github.com/arthur-75/Rational-Retrieval-Acts
Authors:Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang, Zhuo Chen, Mengsi Lyu, Cheng Peng, Chenrui He, Yulong Ao, Yonghua Lin, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang
Abstract:
The dawn of embodied intelligence has ushered in an unprecedented imperative for resilient, cognition-enabled multi-agent collaboration across next-generation ecosystems, revolutionizing paradigms in autonomous manufacturing, adaptive service robotics, and cyber-physical production architectures. However, current robotic systems face significant limitations, such as limited cross-embodiment adaptability, inefficient task scheduling, and insufficient dynamic error correction. While End-to-end VLA models demonstrate inadequate long-horizon planning and task generalization, hierarchical VLA models suffer from a lack of cross-embodiment and multi-agent coordination capabilities. To address these challenges, we introduce RoboOS, the first open-source embodied system built on a Brain-Cerebellum hierarchical architecture, enabling a paradigm shift from single-agent to multi-agent intelligence. Specifically, RoboOS consists of three key components: (1) Embodied Brain Model (RoboBrain), a MLLM designed for global perception and high-level decision-making; (2) Cerebellum Skill Library, a modular, plug-and-play toolkit that facilitates seamless execution of multiple skills; and (3) Real-Time Shared Memory, a spatiotemporal synchronization mechanism for coordinating multi-agent states. By integrating hierarchical information flow, RoboOS bridges Embodied Brain and Cerebellum Skill Library, facilitating robust planning, scheduling, and error correction for long-horizon tasks, while ensuring efficient multi-agent collaboration through Real-Time Shared Memory. Furthermore, we enhance edge-cloud communication and cloud-based distributed inference to facilitate high-frequency interactions and enable scalable deployment. Extensive real-world experiments across various scenarios, demonstrate RoboOS's versatility in supporting heterogeneous embodiments. Project website: https://github.com/FlagOpen/RoboOS
Authors:Yifan Xiang, Zhenxi Zhang, Bin Li, Yixuan Weng, Shoujun Zhou, Yangfan He, Keqin Li
Abstract:
Recent advances in personalized MLLMs enable effective capture of user-specific concepts, supporting both recognition of personalized concepts and contextual captioning. However, humans typically explore and reason over relations among objects and individuals, transcending surface-level information to achieve more personalized and contextual understanding. To this end, existing methods may face three main limitations: Their training data lacks multi-object sets in which relations among objects are learnable. Building on the limited training data, their models overlook the relations between different personalized concepts and fail to reason over them. Their experiments mainly focus on a single personalized concept, where evaluations are limited to recognition and captioning tasks. To address the limitations, we present a new dataset named ReGraP, consisting of 120 sets of personalized knowledge. Each set includes images, KGs, and CoT QA pairs derived from the KGs, enabling more structured and sophisticated reasoning pathways. We propose ReGraP-LLaVA, an MLLM trained with the corresponding KGs and CoT QA pairs, where soft and hard graph prompting methods are designed to align KGs within the model's semantic space. We establish the ReGraP Benchmark, which contains diverse task types: multiple-choice, fill-in-the-blank, True/False, and descriptive questions in both open- and closed-ended settings. The proposed benchmark is designed to evaluate the relational reasoning and knowledge-connection capability of personalized MLLMs. We conduct experiments on the proposed ReGraP-LLaVA and other competitive MLLMs. Results show that the proposed model not only learns personalized knowledge but also performs relational reasoning in responses, achieving the SoTA performance compared with the competitive methods. All the codes and datasets are released at: https://github.com/xyfyyds/ReGraP.
Authors:Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, Gonzalo Mateos
Abstract:
Modeling of intricate relational patterns has become a cornerstone of contemporary statistical research and related data science fields. Networks, represented as graphs, offer a natural framework for this analysis. This paper extends the Random Dot Product Graph (RDPG) model to accommodate weighted graphs, markedly broadening the model's scope to scenarios where edges exhibit heterogeneous weight distributions. We propose a nonparametric weighted (W)RDPG model that assigns a sequence of latent positions to each node. Inner products of these nodal vectors specify the moments of their incident edge weights' distribution via moment-generating functions. In this way, and unlike prior art, the WRDPG can discriminate between weight distributions that share the same mean but differ in other higher-order moments. We derive statistical guarantees for an estimator of the nodal's latent positions adapted from the workhorse adjacency spectral embedding, establishing its consistency and asymptotic normality. We also contribute a generative framework that enables sampling of graphs that adhere to a (prescribed or data-fitted) WRDPG, facilitating, e.g., the analysis and testing of observed graph metrics using judicious reference distributions. The paper is organized to formalize the model's definition, the estimation (or nodal embedding) process and its guarantees, as well as the methodologies for generating weighted graphs, all complemented by illustrative and reproducible examples showcasing the WRDPG's effectiveness in various network analytic applications.
Authors:Alessandro Simoni, Francesco Pelosin
Abstract:
Synthetic dataset generation in Computer Vision, particularly for industrial applications, is still underexplored. Industrial defect segmentation, for instance, requires highly accurate labels, yet acquiring such data is costly and time-consuming. To address this challenge, we propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision. Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks, ensuring realistic and accurately localized defect synthesis. Compared to existing layout-conditioned generative methods, our approach improves defect consistency and spatial accuracy. We introduce two quantitative metrics to evaluate the effectiveness of our method and assess its impact on a downstream segmentation task trained on real and synthetic data. Our results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data, fostering more reliable and cost-efficient segmentation models. The code is publicly available at https://github.com/covisionlab/diffusion_labeling.
Authors:Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
Abstract:
Fixed-length fingerprint representations, which map each fingerprint to a compact and fixed-size feature vector, are computationally efficient and well-suited for large-scale matching. However, designing a robust representation that effectively handles diverse fingerprint modalities, pose variations, and noise interference remains a significant challenge. In this work, we propose a fixed-length dense descriptor of fingerprints, and introduce FLARE-a fingerprint matching framework that integrates the Fixed-Length dense descriptor with pose-based Alignment and Robust Enhancement. This fixed-length representation employs a three-dimensional dense descriptor to effectively capture spatial relationships among fingerprint ridge structures, enabling robust and locally discriminative representations. To ensure consistency within this dense feature space, FLARE incorporates pose-based alignment using complementary estimation methods, along with dual enhancement strategies that refine ridge clarity while preserving the original fingerprint modality. The proposed dense descriptor supports fixed-length representation while maintaining spatial correspondence, enabling fast and accurate similarity computation. Extensive experiments demonstrate that FLARE achieves superior performance across rolled, plain, latent, and contactless fingerprints, significantly outperforming existing methods in cross-modality and low-quality scenarios. Further analysis validates the effectiveness of the dense descriptor design, as well as the impact of alignment and enhancement modules on the accuracy of dense descriptor matching. Experimental results highlight the effectiveness and generalizability of FLARE as a unified and scalable solution for robust fingerprint representation and matching. The implementation and code will be publicly available at https://github.com/Yu-Yy/FLARE.
Authors:Songchen Fu, Siang Chen, Shaojing Zhao, Letian Bai, Ta Li, Yonghong Yan
Abstract:
In real-world multi-agent systems (MASs), observation delays are ubiquitous, preventing agents from making decisions based on the environment's true state. An individual agent's local observation often consists of multiple components from other agents or dynamic entities in the environment. These discrete observation components with varying delay characteristics pose significant challenges for multi-agent reinforcement learning (MARL). In this paper, we first formulate the decentralized stochastic individual delay partially observable Markov decision process (DSID-POMDP) by extending the standard Dec-POMDP. We then propose the Rainbow Delay Compensation (RDC), a MARL training framework for addressing stochastic individual delays, along with recommended implementations for its constituent modules. We implement the DSID-POMDP's observation generation pattern using standard MARL benchmarks, including MPE and SMAC. Experiments demonstrate that baseline MARL methods suffer severe performance degradation under fixed and unfixed delays. The RDC-enhanced approach mitigates this issue, remarkably achieving ideal delay-free performance in certain delay scenarios while maintaining generalizability. Our work provides a novel perspective on multi-agent delayed observation problems and offers an effective solution framework. The source code is available at https://anonymous.4open.science/r/RDC-pymarl-4512/.
Authors:Mariya Davydova, Daniel Jeffries, Patrick Barker, Arturo Márquez Flores, Sinéad Ryan
Abstract:
In this paper, we introduce OSUniverse: a benchmark of complex, multimodal desktop-oriented tasks for advanced GUI-navigation AI agents that focuses on ease of use, extensibility, comprehensive coverage of test cases, and automated validation. We divide the tasks in increasing levels of complexity, from basic precision clicking to multistep, multiapplication tests requiring dexterity, precision, and clear thinking from the agent. In version one of the benchmark, presented here, we have calibrated the complexity of the benchmark test cases to ensure that the SOTA (State of the Art) agents (at the time of publication) do not achieve results higher than 50%, while the average white collar worker can perform all these tasks with perfect accuracy. The benchmark can be scored manually, but we also introduce an automated validation mechanism that has an average error rate less than 2%. Therefore, this benchmark presents solid ground for fully automated measuring of progress, capabilities and the effectiveness of GUI-navigation AI agents over the short and medium-term horizon. The source code of the benchmark is available at https://github.com/agentsea/osuniverse.
Authors:Mishal Fatima, Steffen Jung, Margret Keuper
Abstract:
Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet-1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change. The dataset and implementation code are available at https://github.com/Mishalfatima/Corner_Cases.
Authors:João Alves, Pia Haubro Andersen, Rikke Gade
Abstract:
The Equine Facial Action Coding System (EquiFACS) enables the systematic annotation of facial movements through distinct Action Units (AUs). It serves as a crucial tool for assessing affective states in horses by identifying subtle facial expressions associated with discomfort. However, the field of horse affective state assessment is constrained by the scarcity of annotated data, as manually labelling facial AUs is both time-consuming and costly. To address this challenge, automated annotation systems are essential for leveraging existing datasets and improving affective states detection tools. In this work, we study different methods for specific ear AU detection and localization from horse videos. We leverage past works on deep learning-based video feature extraction combined with recurrent neural networks for the video classification task, as well as a classic optical flow based approach. We achieve 87.5% classification accuracy of ear movement presence on a public horse video dataset, demonstrating the potential of our approach. We discuss future directions to develop these systems, with the aim of bridging the gap between automated AU detection and practical applications in equine welfare and veterinary diagnostics. Our code will be made publicly available at https://github.com/jmalves5/read-my-ears.
Authors:Mengfei Duan, Kailun Yang, Yuheng Zhang, Yihong Cao, Fei Teng, Kai Luo, Jiaming Zhang, Zhiyong Li, Shutao Li
Abstract:
Panoramic imaging enables capturing 360° images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to background clutter and pixel distortions. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), achieving OoS for panoramas. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.
Authors:Chuyu Zhao, Hao Huang, Jiashuo Guo, Ziyu Shen, Zhongwei Zhou, Jie Liu, Zekuan Yu
Abstract:
Semi-supervised learning has become a compelling approach for 3D tooth segmentation from CBCT scans, where labeled data is minimal. However, existing methods still face two persistent challenges: limited corrective supervision in structurally ambiguous or mislabeled regions during supervised training and performance degradation caused by unreliable pseudo-labels on unlabeled data. To address these problems, we propose Region-Aware Instructive Learning (RAIL), a dual-group dual-student, semi-supervised framework. Each group contains two student models guided by a shared teacher network. By alternating training between the two groups, RAIL promotes intergroup knowledge transfer and collaborative region-aware instruction while reducing overfitting to the characteristics of any single model. Specifically, RAIL introduces two instructive mechanisms. Disagreement-Focused Supervision (DFS) Controller improves supervised learning by instructing predictions only within areas where student outputs diverge from both ground truth and the best student, thereby concentrating supervision on structurally ambiguous or mislabeled areas. In the unsupervised phase, Confidence-Aware Learning (CAL) Modulator reinforces agreement in regions with high model certainty while reducing the effect of low-confidence predictions during training. This helps prevent our model from learning unstable patterns and improves the overall reliability of pseudo-labels. Extensive experiments on four CBCT tooth segmentation datasets show that RAIL surpasses state-of-the-art methods under limited annotation. Our code will be available at https://github.com/Tournesol-Saturday/RAIL.
Authors:Shenglan Li, Rui Yao, Yong Zhou, Hancheng Zhu, Kunyang Sun, Bing Liu, Zhiwen Shao, Jiaqi Zhao
Abstract:
To reduce the reliance on large-scale annotations, self-supervised RGB-T tracking approaches have garnered significant attention. However, the omission of the object region by erroneous pseudo-label or the introduction of background noise affects the efficiency of modality fusion, while pseudo-label noise triggered by similar object noise can further affect the tracking performance. In this paper, we propose GDSTrack, a novel approach that introduces dynamic graph fusion and temporal diffusion to address the above challenges in self-supervised RGB-T tracking. GDSTrack dynamically fuses the modalities of neighboring frames, treats them as distractor noise, and leverages the denoising capability of a generative model. Specifically, by constructing an adjacency matrix via an Adjacency Matrix Generator (AMG), the proposed Modality-guided Dynamic Graph Fusion (MDGF) module uses a dynamic adjacency matrix to guide graph attention, focusing on and fusing the object's coherent regions. Temporal Graph-Informed Diffusion (TGID) models MDGF features from neighboring frames as interference, and thus improving robustness against similar-object noise. Extensive experiments conducted on four public RGB-T tracking datasets demonstrate that GDSTrack outperforms the existing state-of-the-art methods. The source code is available at https://github.com/LiShenglana/GDSTrack.
Authors:Zhanyuan Jia, Ni Yao, Danyang Sun, Chuang Han, Yanting Li, Jiaofen Nan, Fubao Zhu, Chen Zhao, Weihua Zhou
Abstract:
Background: Brain tumor segmentation has a significant impact on the diagnosis and treatment of brain tumors. Accurate brain tumor segmentation remains challenging due to their irregular shapes, vague boundaries, and high variability. Objective: We propose a brain tumor segmentation method that combines deep learning with prior knowledge derived from a region-growing algorithm. Methods: The proposed method utilizes a multi-scale feature fusion (MSFF) module and adaptive attention mechanisms (AAM) to extract multi-scale features and capture global contextual information. To enhance the model's robustness in low-confidence regions, the Monte Carlo Dropout (MC Dropout) strategy is employed for uncertainty estimation. Results: Extensive experiments demonstrate that the proposed method achieves superior performance on Brain Tumor Segmentation (BraTS) datasets, significantly outperforming various state-of-the-art methods. On the BraTS2021 dataset, the test Dice scores are 89.18% for Enhancing Tumor (ET) segmentation, 93.67% for Whole Tumor (WT) segmentation, and 91.23% for Tumor Core (TC) segmentation. On the BraTS2019 validation set, the validation Dice scores are 87.43%, 90.92%, and 90.40% for ET, WT, and TC segmentation, respectively. Ablation studies further confirmed the contribution of each module to segmentation accuracy, indicating that each component played a vital role in overall performance improvement. Conclusion: This study proposed a novel 3D brain tumor segmentation network based on the U-Net architecture. By incorporating the prior knowledge and employing the uncertainty estimation method, the robustness and performance were improved. The code for the proposed method is available at https://github.com/chenzhao2023/UPMAD_Net_BrainSeg.
Authors:Qi Gan, Sao Mai Nguyen, Eric Fenaux, Stephan Clémençon, Mounîm El Yacoubi
Abstract:
Human pose capture is essential for sports analysis, enabling precise evaluation of athletes' movements. While deep learning-based human pose estimation (HPE) models from RGB videos have achieved impressive performance on public datasets, their effectiveness in real-world sports scenarios is often hindered by motion blur, occlusions, and domain shifts across different pose representations. Fine-tuning these models can partially alleviate such challenges but typically requires large-scale annotated data and still struggles to generalize across diverse sports environments. To address these limitations, we propose a 2D pose prior-guided refinement approach based on Neural Distance Fields (NDF). Unlike existing approaches that rely solely on angular representations of human poses, we introduce a polar coordinate-based representation that explicitly incorporates joint connection lengths, enabling a more accurate correction of erroneous pose estimations. Additionally, we define a novel non-geodesic distance metric that separates angular and radial discrepancies, which we demonstrate is better suited for polar representations than traditional geodesic distances. To mitigate data scarcity, we develop a gradient-based batch-projection augmentation strategy, which synthesizes realistic pose samples through iterative refinement. Our method is evaluated on a long jump dataset, demonstrating its ability to improve 2D pose estimation across multiple pose representations, making it robust across different domains. Experimental results show that our approach enhances pose plausibility while requiring only limited training data. Code is available at: https://github.com/QGAN2019/polar-NDF.
Authors:Kirill Lukyanov, Mikhail Drobyshevskiy, Georgii Sazonov, Mikhail Soloviov, Ilya Makarov
Abstract:
The growing need for Trusted AI (TAI) highlights the importance of interpretability and robustness in machine learning models. However, many existing tools overlook graph data and rarely combine these two aspects into a single solution. Graph Neural Networks (GNNs) have become a popular approach, achieving top results across various tasks. We introduce GNN-AID (Graph Neural Network Analysis, Interpretation, and Defense), an open-source framework designed for graph data to address this gap. Built as a Python library, GNN-AID supports advanced trust methods and architectural layers, allowing users to analyze graph datasets and GNN behavior using attacks, defenses, and interpretability methods.
GNN-AID is built on PyTorch-Geometric, offering preloaded datasets, models, and support for any GNNs through customizable interfaces. It also includes a web interface with tools for graph visualization and no-code features like an interactive model builder, simplifying the exploration and analysis of GNNs. The framework also supports MLOps techniques, ensuring reproducibility and result versioning to track and revisit analyses efficiently.
GNN-AID is a flexible tool for developers and researchers. It helps developers create, analyze, and customize graph models, while also providing access to prebuilt datasets and models for quick experimentation. Researchers can use the framework to explore advanced topics on the relationship between interpretability and robustness, test defense strategies, and combine methods to protect against different types of attacks.
We also show how defenses against evasion and poisoning attacks can conflict when applied to graph data, highlighting the complex connections between defense strategies.
GNN-AID is available at \href{https://github.com/ispras/GNN-AID}{github.com/ispras/GNN-AID}
Authors:Yepeng Liu, Wenpeng Lai, Zhou Zhao, Yuxuan Xiong, Jinchi Zhu, Jun Cheng, Yongchao Xu
Abstract:
Robust and efficient local feature matching plays a crucial role in applications such as SLAM and visual localization for robotics. Despite great progress, it is still very challenging to extract robust and discriminative visual features in scenarios with drastic lighting changes, low texture areas, or repetitive patterns. In this paper, we propose a new lightweight network called \textit{LiftFeat}, which lifts the robustness of raw descriptor by aggregating 3D geometric feature. Specifically, we first adopt a pre-trained monocular depth estimation model to generate pseudo surface normal label, supervising the extraction of 3D geometric feature in terms of predicted surface normal. We then design a 3D geometry-aware feature lifting module to fuse surface normal feature with raw 2D descriptor feature. Integrating such 3D geometric feature enhances the discriminative ability of 2D feature description in extreme conditions. Extensive experimental results on relative pose estimation, homography estimation, and visual localization tasks, demonstrate that our LiftFeat outperforms some lightweight state-of-the-art methods. Code will be released at : https://github.com/lyp-deeplearning/LiftFeat.
Authors:Shanshan Song, Hui Tang, Honglong Yang, Xiaomeng Li
Abstract:
Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modelling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks.
Authors:Saleh Zare Zade, Yao Qiang, Xiangyu Zhou, Hui Zhu, Mohammad Amin Roshani, Prashant Khanduri, Dongxiao Zhu
Abstract:
Membership Inference Attacks (MIAs) have recently been employed to determine whether a specific text was part of the pre-training data of Large Language Models (LLMs). However, existing methods often misinfer non-members as members, leading to a high false positive rate, or depend on additional reference models for probability calibration, which limits their practicality. To overcome these challenges, we introduce a novel framework called Automatic Calibration Membership Inference Attack (ACMIA), which utilizes a tunable temperature to calibrate output probabilities effectively. This approach is inspired by our theoretical insights into maximum likelihood estimation during the pre-training of LLMs. We introduce ACMIA in three configurations designed to accommodate different levels of model access and increase the probability gap between members and non-members, improving the reliability and robustness of membership inference. Extensive experiments on various open-source LLMs demonstrate that our proposed attack is highly effective, robust, and generalizable, surpassing state-of-the-art baselines across three widely used benchmarks. Our code is available at: \href{https://github.com/Salehzz/ACMIA}{\textcolor{blue}{Github}}.
Authors:Dongbin Zhang, Yunfei Liu, Lijian Lin, Ye Zhu, Yang Li, Minghan Qin, Yu Li, Haoqian Wang
Abstract:
Reconstructing a high-quality, animatable 3D human avatar with expressive facial and hand motions from a single image has gained significant attention due to its broad application potential. 3D human avatar reconstruction typically requires multi-view or monocular videos and training on individual IDs, which is both complex and time-consuming. Furthermore, limited by SMPLX's expressiveness, these methods often focus on body motion but struggle with facial expressions. To address these challenges, we first introduce an expressive human model (EHM) to enhance facial expression capabilities and develop an accurate tracking method. Based on this template model, we propose GUAVA, the first framework for fast animatable upper-body 3D Gaussian avatar reconstruction. We leverage inverse texture mapping and projection sampling techniques to infer Ubody (upper-body) Gaussians from a single image. The rendered images are refined through a neural refiner. Experimental results demonstrate that GUAVA significantly outperforms previous methods in rendering quality and offers significant speed improvements, with reconstruction times in the sub-second range (0.1s), and supports real-time animation and rendering.
Authors:Keyu Chen, Wenchao Sun, Hao Cheng, Sifa Zheng
Abstract:
Achieving both realism and controllability in closed-loop traffic simulation remains a key challenge in autonomous driving. Dataset-based methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centric simulation framework that conducts imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and route-level controllability, followed by reinforcement learning fine-tuning in a physics-based simulator to enhance style-level controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a novel group-relative RL fine-tuning strategy that evaluates all candidate modalities through group-relative formulation and employs a surrogate objective for stable optimization, enhancing style-level controllability and mitigating covariate shift while preserving the trajectory-level realism and route-level controllability inherited from IL pre-training. Extensive experiments demonstrate that RIFT improves realism and controllability in traffic simulation while simultaneously exposing the limitations of modern AV systems in closed-loop evaluation. Project Page: https://currychen77.github.io/RIFT/
Authors:Hao Liao, Wensheng Lu, Jianxun Lian, Mingqi Wu, Shuo Wang, Yong Zhang, Yitian Huang, Mingyang Zhou, Xing Xie
Abstract:
Large Language Models (LLMs) have shown promise for generative recommender systems due to their transformative capabilities in user interaction. However, ensuring they do not recommend out-of-domain (OOD) items remains a challenge. We study two distinct methods to address this issue: RecLM-ret, a retrieval-based method, and RecLM-cgen, a constrained generation method. Both methods integrate seamlessly with existing LLMs to ensure in-domain recommendations. Comprehensive experiments on three recommendation datasets demonstrate that RecLM-cgen consistently outperforms RecLM-ret and existing LLM-based recommender models in accuracy while eliminating OOD recommendations, making it the preferred method for adoption. Additionally, RecLM-cgen maintains strong generalist capabilities and is a lightweight plug-and-play module for easy integration into LLMs, offering valuable practical benefits for the community. Source code is available at https://github.com/microsoft/RecAI
Authors:Rui Lan, Yancheng Bai, Xu Duan, Mingxing Li, Dongyang Jin, Ryan Xu, Lei Sun, Xiangxiang Chu
Abstract:
Scene text editing aims to modify or add texts on images while ensuring text fidelity and overall visual quality consistent with the background. Recent methods are primarily built on UNet-based diffusion models, which have improved scene text editing results, but still struggle with complex glyph structures, especially for non-Latin ones (\eg, Chinese, Korean, Japanese). To address these issues, we present \textbf{FLUX-Text}, a simple and advanced multilingual scene text editing DiT method. Specifically, our FLUX-Text enhances glyph understanding and generation through lightweight Visual and Text Embedding Modules, while preserving the original generative capability of FLUX. We further propose a Regional Text Perceptual Loss tailored for text regions, along with a matching two-stage training strategy to better balance text editing and overall image quality. Benefiting from the DiT-based architecture and lightweight feature injection modules, FLUX-Text can be trained with only $0.1$M training examples, a \textbf{97\%} reduction compared to $2.9$M required by popular methods. Extensive experiments on multiple public datasets, including English and Chinese benchmarks, demonstrate that our method surpasses other methods in visual quality and text fidelity. All the code is available at https://github.com/AMAP-ML/FluxText.
Authors:Arthur Corrêa, Alexandre Jesus, Cristóvão Silva, Samuel Moniz
Abstract:
Recently, deep reinforcement learning has emerged as a promising approach for solving complex combinatorial optimization problems. Broadly, deep reinforcement learning methods fall into two categories: policy-based and value-based. While value-based approaches have achieved notable success in domains such as the Arcade Learning Environment, the combinatorial optimization community has predominantly favored policy-based methods, often overlooking the potential of value-based algorithms. In this work, we conduct a comprehensive empirical evaluation of value-based algorithms, including the deep q-network and several of its advanced extensions, within the context of two complex combinatorial problems: the job-shop and the flexible job-shop scheduling problems, two fundamental challenges with multiple industrial applications. Our results challenge the assumption that policy-based methods are inherently superior for combinatorial optimization. We show that several value-based approaches can match or even outperform the widely adopted proximal policy optimization algorithm, suggesting that value-based strategies deserve greater attention from the combinatorial optimization community. Our code is openly available at: https://github.com/AJ-Correa/Unraveling-the-Rainbow.
Authors:Yibin Wang, Zhimin Li, Yuhang Zang, Chunyu Wang, Qinglin Lu, Cheng Jin, Jiaqi Wang
Abstract:
Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.
Authors:Jincheng Zhang, György Fazekas, Charalampos Saitis
Abstract:
The recent surge in the popularity of diffusion models for image synthesis has attracted new attention to their potential for generation tasks in other domains. However, their applications to symbolic music generation remain largely under-explored because symbolic music is typically represented as sequences of discrete events and standard diffusion models are not well-suited for discrete data. We represent symbolic music as image-like pianorolls, facilitating the use of diffusion models for the generation of symbolic music. Moreover, this study introduces a novel diffusion model that incorporates our proposed Transformer-Mamba block and learnable wavelet transform. Classifier-free guidance is utilised to generate symbolic music with target chords. Our evaluation shows that our method achieves compelling results in terms of music quality and controllability, outperforming the strong baseline in pianoroll generation. Our code is available at https://github.com/jinchengzhanggg/proffusion.
Authors:Pierre Adorni, Minh-Tan Pham, Stéphane May, Sébastien Lefèvre
Abstract:
Foundation models constitute a significant advancement in computer vision: after a single, albeit costly, training phase, they can address a wide array of tasks. In the field of Earth observation, over 75 remote sensing vision foundation models have been developed in the past four years. However, none has consistently outperformed the others across all available downstream tasks. To facilitate their comparison, we propose a cost-effective method for predicting a model's performance on multiple downstream tasks without the need for fine-tuning on each one. This method is based on what we call "capabilities encoding." The utility of this novel approach is twofold: we demonstrate its potential to simplify the selection of a foundation model for a given new task, and we employ it to offer a fresh perspective on the existing literature, suggesting avenues for future research. Codes are available at https://github.com/pierreadorni/capabilities-encoding.
Authors:Zhenxing Ming, Julie Stephany Berrio, Mao Shan, Yaoqi Huang, Hongyu Lyu, Nguyen Hoang Khoi Tran, Tzu-Yun Tseng, Stewart Worrall
Abstract:
The safe operation of autonomous vehicles (AVs) is highly dependent on their understanding of the surroundings. For this, the task of 3D semantic occupancy prediction divides the space around the sensors into voxels, and labels each voxel with both occupancy and semantic information. Recent perception models have used multisensor fusion to perform this task. However, existing multisensor fusion-based approaches focus mainly on using sensor information in the Cartesian coordinate system. This ignores the distribution of the sensor readings, leading to a loss of fine-grained details and performance degradation. In this paper, we propose OccCylindrical that merges and refines the different modality features under cylindrical coordinates. Our method preserves more fine-grained geometry detail that leads to better performance. Extensive experiments conducted on the nuScenes dataset, including challenging rainy and nighttime scenarios, confirm our approach's effectiveness and state-of-the-art performance. The code will be available at: https://github.com/DanielMing123/OccCylindrical
Authors:Davide Talon, Federico Girella, Ziyue Liu, Marco Cristani, Yiming Wang
Abstract:
Natural language goes beyond dryly describing visual content. It contains rich abstract concepts to express feeling, creativity and properties that cannot be directly perceived. Yet, current research in Vision Language Models (VLMs) has not shed light on abstract-oriented language. Our research breaks new ground by uncovering its wide presence and under-estimated value, with extensive analysis. Particularly, we focus our investigation on the fashion domain, a highly-representative field with abstract expressions. By analyzing recent large-scale multimodal fashion datasets, we find that abstract terms have a dominant presence, rivaling the concrete ones, providing novel information, and being useful in the retrieval task. However, a critical challenge emerges: current general-purpose or fashion-specific VLMs are pre-trained with databases that lack sufficient abstract words in their text corpora, thus hindering their ability to effectively represent abstract-oriented language. We propose a training-free and model-agnostic method, Abstract-to-Concrete Translator (ACT), to shift abstract representations towards well-represented concrete ones in the VLM latent space, using pre-trained models and existing multimodal databases. On the text-to-image retrieval task, despite being training-free, ACT outperforms the fine-tuned VLMs in both same- and cross-dataset settings, exhibiting its effectiveness with a strong generalization capability. Moreover, the improvement introduced by ACT is consistent with various VLMs, making it a plug-and-play solution.
Authors:Yutong Xie, Fuchao Yang, Yuheng Jia
Abstract:
Partial label learning (PLL) is a significant weakly supervised learning framework, where each training example corresponds to a set of candidate labels and only one label is the ground-truth label. For the first time, this paper investigates the partial label clustering problem, which takes advantage of the limited available partial labels to improve the clustering performance. Specifically, we first construct a weight matrix of examples based on their relationships in the feature space and disambiguate the candidate labels to estimate the ground-truth label based on the weight matrix. Then, we construct a set of must-link and cannot-link constraints based on the disambiguation results. Moreover, we propagate the initial must-link and cannot-link constraints based on an adversarial prior promoted dual-graph learning approach. Finally, we integrate weight matrix construction, label disambiguation, and pairwise constraints propagation into a joint model to achieve mutual enhancement. We also theoretically prove that a better disambiguated label matrix can help improve clustering performance. Comprehensive experiments demonstrate our method realizes superior performance when comparing with state-of-the-art constrained clustering methods, and outperforms PLL and semi-supervised PLL methods when only limited samples are annotated. The code is publicly available at https://github.com/xyt-ml/PLC.
Authors:Kien Tran Duc Tuan, Tam Nguyen Trong, Son Nguyen Hoang, Khoat Than, Anh Nguyen Duc
Abstract:
In explainable AI, Integrated Gradients (IG) is a widely adopted technique for assessing the significance of feature attributes of the input on model outputs by evaluating contributions from a baseline input to the current input. The choice of the baseline input significantly influences the resulting explanation. While the traditional Expected Gradients (EG) method assumes baselines can be uniformly sampled and averaged with equal weights, this study argues that baselines should not be treated equivalently. We introduce Weighted Integrated Gradients (WG), a novel approach that unsupervisedly evaluates baseline suitability and incorporates a strategy for selecting effective baselines. Theoretical analysis demonstrates that WG satisfies essential explanation method criteria and offers greater stability than prior approaches. Experimental results further confirm that WG outperforms EG across diverse scenarios, achieving an improvement of 10-35\% on main metrics. Moreover, by evaluating baselines, our method can filter a subset of effective baselines for each input to calculate explanations, maintaining high accuracy while reducing computational cost. The code is available at: https://github.com/tamnt240904/weighted_ig.
Authors:Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li, Zhengying Liu
Abstract:
Neurosymbolic approaches integrating large language models with formal reasoning have recently achieved human-level performance on mathematics competition problems in algebra, geometry and number theory. In comparison, combinatorics remains a challenging domain, characterized by a lack of appropriate benchmarks and theorem libraries. To address this gap, we introduce CombiBench, a comprehensive benchmark comprising 100 combinatorial problems, each formalized in Lean~4 and paired with its corresponding informal statement. The problem set covers a wide spectrum of difficulty levels, ranging from middle school to IMO and university level, and span over ten combinatorial topics. CombiBench is suitable for testing IMO solving capabilities since it includes all IMO combinatorial problems since 2000 (except IMO 2004 P3 as its statement contain an images). Furthermore, we provide a comprehensive and standardized evaluation framework, dubbed Fine-Eval (for $\textbf{F}$ill-in-the-blank $\textbf{in}$ L$\textbf{e}$an Evaluation), for formal mathematics. It accommodates not only proof-based problems but also, for the first time, the evaluation of fill-in-the-blank questions. Using Fine-Eval as the evaluation method and Kimina Lean Server as the backend, we benchmark several LLMs on CombiBench and observe that their capabilities for formally solving combinatorial problems remain limited. Among all models tested (none of which has been trained for this particular task), Kimina-Prover attains the best results, solving 7 problems (out of 100) under both ``with solution'' and ``without solution'' scenarios. We open source the benchmark dataset alongside with the code of the proposed evaluation method at https://github.com/MoonshotAI/CombiBench/.
Authors:Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond
Abstract:
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.
Authors:Zherui Zhang, Rongtao Xu, Jie Zhou, Changwei Wang, Xingtian Pei, Wenhao Xu, Jiguang Zhang, Li Guo, Longxiang Gao, Wenbo Xu, Shibiao Xu
Abstract:
The Transformer architecture has achieved significant success in natural language processing, motivating its adaptation to computer vision tasks. Unlike convolutional neural networks, vision transformers inherently capture long-range dependencies and enable parallel processing, yet lack inductive biases and efficiency benefits, facing significant computational and memory challenges that limit its real-world applicability. This paper surveys various online strategies for generating lightweight vision transformers for image recognition, focusing on three key areas: Efficient Component Design, Dynamic Network, and Knowledge Distillation. We evaluate the relevant exploration for each topic on the ImageNet-1K benchmark, analyzing trade-offs among precision, parameters, throughput, and more to highlight their respective advantages, disadvantages, and flexibility. Finally, we propose future research directions and potential challenges in the lightweighting of vision transformers with the aim of inspiring further exploration and providing practical guidance for the community. Project Page: https://github.com/ajxklo/Lightweight-VIT
Authors:Mohammad Rostami, Atik Faysal, Reihaneh Gh. Roshan, Huaxia Wang, Nikhil Muralidhar, Yu-Dong Yao
Abstract:
Automatic Modulation Classification (AMC) is critical for efficient spectrum management and robust wireless communications. However, AMC remains challenging due to the complex interplay of signal interference and noise. In this work, we propose an innovative framework that integrates traditional signal processing techniques with Large-Language Models (LLMs) to address AMC. Our approach leverages higher-order statistics and cumulant estimation to convert quantitative signal features into structured natural language prompts. By incorporating exemplar contexts into these prompts, our method exploits the LLM's inherent familiarity with classical signal processing, enabling effective one-shot classification without additional training or preprocessing (e.g., denoising). Experimental evaluations on synthetically generated datasets, spanning both noiseless and noisy conditions, demonstrate that our framework achieves competitive performance across diverse modulation schemes and Signal-to-Noise Ratios (SNRs). Moreover, our approach paves the way for robust foundation models in wireless communications across varying channel conditions, significantly reducing the expense associated with developing channel-specific models. This work lays the foundation for scalable, interpretable, and versatile signal classification systems in next-generation wireless networks. The source code is available at https://github.com/RU-SIT/context-is-king
Authors:Lei Wang, Senmao Li, Fei Yang, Jianye Wang, Ziheng Zhang, Yuhan Liu, Yaxing Wang, Jian Yang
Abstract:
The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore the time-wise diffusion models. We initially investigate the key contributions of the U-Net parameters to the denoising process and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially improving the generation quality on the fly. Capitalizing on this discovery, we propose a simple yet effective method-termed ``MaskUNet''- that enhances generation quality with negligible parameter numbers. Our method fully leverages timestep- and sample-dependent effective U-Net parameters. To optimize MaskUNet, we offer two fine-tuning strategies: a training-based approach and a training-free approach, including tailored networks and optimization functions. In zero-shot inference on the COCO dataset, MaskUNet achieves the best FID score and further demonstrates its effectiveness in downstream task evaluations. Project page: https://gudaochangsheng.github.io/MaskUnet-Page/
Authors:Pau Amargant, Peter Hönig, Markus Vincze
Abstract:
The verification of successful grasps is a crucial aspect of robot manipulation, particularly when handling deformable objects. Traditional methods relying on force and tactile sensors often struggle with deformable and non-rigid objects. In this work, we present a vision-based approach for grasp verification to determine whether the robotic gripper has successfully grasped an object. Our method employs a two-stage architecture; first YOLO-based object detection model to detect and locate the robot's gripper and then a ResNet-based classifier determines the presence of an object. To address the limitations of real-world data capture, we introduce HSR-GraspSynth, a synthetic dataset designed to simulate diverse grasping scenarios. Furthermore, we explore the use of Visual Question Answering capabilities as a zero-shot baseline to which we compare our model. Experimental results demonstrate that our approach achieves high accuracy in real-world environments, with potential for integration into grasping pipelines. Code and datasets are publicly available at https://github.com/pauamargant/HSR-GraspSynth .
Authors:Saeed Ebrahimi, Sahar Rahimi, Ali Dabouei, Srinjoy Das, Jeremy M. Dawson, Nasser M. Nasrabadi
Abstract:
Aiming to reduce the computational cost of Softmax in massive label space of Face Recognition (FR) benchmarks, recent studies estimate the output using a subset of identities. Although promising, the association between the computation cost and the number of identities in the dataset remains linear only with a reduced ratio. A shared characteristic among available FR methods is the employment of atomic scalar labels during training. Consequently, the input to label matching is through a dot product between the feature vector of the input and the Softmax centroids. Inspired by generative modeling, we present a simple yet effective method that substitutes scalar labels with structured identity code, i.e., a sequence of integers. Specifically, we propose a tokenization scheme that transforms atomic scalar labels into structured identity codes. Then, we train an FR backbone to predict the code for each input instead of its scalar label. As a result, the associated computational cost becomes logarithmic w.r.t. number of identities. We demonstrate the benefits of the proposed method by conducting experiments. In particular, our method outperforms its competitors by 1.52%, and 0.6% at TAR@FAR$=1e-4$ on IJB-B and IJB-C, respectively, while transforming the association between computational cost and the number of identities from linear to logarithmic. See code at https://github.com/msed-Ebrahimi/GIF
Authors:Nikolay Safonov, Alexey Bryncev, Andrey Moskalenko, Dmitry Kulikov, Dmitry Vatolin, Radu Timofte, Haibo Lei, Qifan Gao, Qing Luo, Yaqing Li, Jie Song, Shaozhe Hao, Meisong Zheng, Jingyi Xu, Chengbin Wu, Jiahui Liu, Ying Chen, Xin Deng, Mai Xu, Peipei Liang, Jie Ma, Junjie Jin, Yingxue Pang, Fangzhou Luo, Kai Chen, Shijie Zhao, Mingyang Wu, Renjie Li, Yushen Zuo, Shengyun Zhong, Zhengzhong Tu
Abstract:
This paper presents an overview of the NTIRE 2025 Challenge on UGC Video Enhancement. The challenge constructed a set of 150 user-generated content videos without reference ground truth, which suffer from real-world degradations such as noise, blur, faded colors, compression artifacts, etc. The goal of the participants was to develop an algorithm capable of improving the visual quality of such videos. Given the widespread use of UGC on short-form video platforms, this task holds substantial practical importance. The evaluation was based on subjective quality assessment in crowdsourcing, obtaining votes from over 8000 assessors. The challenge attracted more than 25 teams submitting solutions, 7 of which passed the final phase with source code verification. The outcomes may provide insights into the state-of-the-art in UGC video enhancement and highlight emerging trends and effective strategies in this evolving research area. All data, including the processed videos and subjective comparison votes and scores, is made publicly available at https://github.com/msu-video-group/NTIRE25_UGC_Video_Enhancement.
Authors:Daniel Goldstein, Eric Alcaide, Janna Lu, Eugene Cheah
Abstract:
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement.
Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
Authors:Anjila Budathoki, Manish Dhakal
Abstract:
Adversarial attacks have been fairly explored for computer vision and vision-language models. However, the avenue of adversarial attack for the vision language segmentation models (VLSMs) is still under-explored, especially for medical image analysis.
Thus, we have investigated the robustness of VLSMs against adversarial attacks for 2D medical images with different modalities with radiology, photography, and endoscopy. The main idea of this project was to assess the robustness of the fine-tuned VLSMs specially in the medical domain setting to address the high risk scenario.
First, we have fine-tuned pre-trained VLSMs for medical image segmentation with adapters.
Then, we have employed adversarial attacks -- projected gradient descent (PGD) and fast gradient sign method (FGSM) -- on that fine-tuned model to determine its robustness against adversaries.
We have reported models' performance decline to analyze the adversaries' impact.
The results exhibit significant drops in the DSC and IoU scores after the introduction of these adversaries. Furthermore, we also explored universal perturbation but were not able to find for the medical images.
\footnote{https://github.com/anjilab/secure-private-ai}
Authors:Egil Diau
Abstract:
The origins of economic behavior remain unresolved-not only in the social sciences but also in AI, where dominant theories often rely on predefined incentives or institutional assumptions. Contrary to the longstanding myth of barter as the foundation of exchange, converging evidence from early human societies suggests that reciprocity-not barter-was the foundational economic logic, enabling communities to sustain exchange and social cohesion long before formal markets emerged. Yet despite its centrality, reciprocity lacks a simulateable and cognitively grounded account. Here, we introduce a minimal behavioral framework based on three empirically supported cognitive primitives-individual recognition, reciprocal credence, and cost--return sensitivity-that enable agents to participate in and sustain reciprocal exchange, laying the foundation for scalable economic behavior. These mechanisms scaffold the emergence of cooperation, proto-economic exchange, and institutional structure from the bottom up. By bridging insights from primatology, developmental psychology, and economic anthropology, this framework offers a unified substrate for modeling trust, coordination, and economic behavior in both human and artificial systems. For an interactive visualization of the framework, see: https://egil158.github.io/cogfoundations-econ/
Authors:Ruiqi Wang, Hao Zhang
Abstract:
We present an open-vocabulary and zero-shot method for arbitrary referring expression segmentation (RES), targeting input expressions that are more general than what prior works were designed to handle. Specifically, our inputs encompass both object- and part-level labels as well as implicit references pointing to properties or qualities of object/part function, design, style, material, etc. Our model, coined RESAnything, leverages Chain-of-Thoughts (CoT) reasoning, where the key idea is attribute prompting. We generate detailed descriptions of object/part attributes including shape, color, and location for potential segment proposals through systematic prompting of a large language model (LLM), where the proposals are produced by a foundational image segmentation model. Our approach encourages deep reasoning about object or part attributes related to function, style, design, etc., enabling the system to handle implicit queries without any part annotations for training or fine-tuning. As the first zero-shot and LLM-based RES method, RESAnything achieves clearly superior performance among zero-shot methods on traditional RES benchmarks and significantly outperforms existing methods on challenging scenarios involving implicit queries and complex part-level relations. Finally, we contribute a new benchmark dataset to offer ~3K carefully curated RES instances to assess part-level, arbitrary RES solutions.
Authors:Franklin Zhang, Sonya Zhang, Alon Halevy
Abstract:
Constructing specialized content corpora from vast, unstructured web sources for domain-specific applications poses substantial data curation challenges. In this paper, we introduce a streamlined approach for generating high-quality, domain-specific corpora by efficiently acquiring, filtering, structuring, and cleaning web-based data. We showcase how Large Language Models (LLMs) can be leveraged to address complex data curation at scale, and propose a strategical framework incorporating LLM-enhanced techniques for structured content extraction and semantic deduplication. We validate our approach in the behavior education domain through its integration into 30 Day Me, a habit formation application. Our data pipeline, named 30DayGen, enabled the extraction and synthesis of 3,531 unique 30-day challenges from over 15K webpages. A user survey reports a satisfaction score of 4.3 out of 5, with 91% of respondents indicating willingness to use the curated content for their habit-formation goals.
Authors:Bang Zhang, Ruotian Ma, Qingxuan Jiang, Peisong Wang, Jiaqi Chen, Zheng Xie, Xingyu Chen, Yue Wang, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Abstract:
Assessing how well a large language model (LLM) understands human, rather than merely text, remains an open challenge. To bridge the gap, we introduce Sentient Agent as a Judge (SAGE), an automated evaluation framework that measures an LLM's higher-order social cognition. SAGE instantiates a Sentient Agent that simulates human-like emotional changes and inner thoughts during interaction, providing a more realistic evaluation of the tested model in multi-turn conversations. At every turn, the agent reasons about (i) how its emotion changes, (ii) how it feels, and (iii) how it should reply, yielding a numerical emotion trajectory and interpretable inner thoughts. Experiments on 100 supportive-dialogue scenarios show that the final Sentient emotion score correlates strongly with Barrett-Lennard Relationship Inventory (BLRI) ratings and utterance-level empathy metrics, validating psychological fidelity. We also build a public Sentient Leaderboard covering 18 commercial and open-source models that uncovers substantial gaps (up to 4x) between frontier systems (GPT-4o-Latest, Gemini2.5-Pro) and earlier baselines, gaps not reflected in conventional leaderboards (e.g., Arena). SAGE thus provides a principled, scalable and interpretable tool for tracking progress toward genuinely empathetic and socially adept language agents.
Authors:Zhikai Wang, Yanyan Shen, Zibin Zhang, Kangyi Lin
Abstract:
Click-through Rate (CTR) prediction in real-world recommender systems often deals with billions of user interactions every day. To improve the training efficiency, it is common to update the CTR prediction model incrementally using the new incremental data and a subset of historical data. However, the feature embeddings of a CTR prediction model often get stale when the corresponding features do not appear in current incremental data. In the next period, the model would have a performance degradation on samples containing stale features, which we call the feature staleness problem. To mitigate this problem, we propose a Feature Staleness Aware Incremental Learning method for CTR prediction (FeSAIL) which adaptively replays samples containing stale features. We first introduce a staleness aware sampling algorithm (SAS) to sample a fixed number of stale samples with high sampling efficiency. We then introduce a staleness aware regularization mechanism (SAR) for a fine-grained control of the feature embedding updating. We instantiate FeSAIL with a general deep learning-based CTR prediction model and the experimental results demonstrate FeSAIL outperforms various state-of-the-art methods on four benchmark datasets.
Authors:Yi-Fan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang, Tingting Gao, Liang Wang
Abstract:
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a $8.4\%$ improvement on the VL Reward-Bench and a $14.3\%$ improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.
Authors:Dengyang Jiang, Mengmeng Wang, Liuzhuozheng Li, Lei Zhang, Haoyu Wang, Wei Wei, Guang Dai, Yanning Zhang, Jingdong Wang
Abstract:
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance the generation quality of diffusion transformers. However, existing approaches necessitate to either introduce an external and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtains representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in the earlier layer with higher noise to that in the later layer with lower noise to progressively enhance the overall representation learning during only the generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that are heavily dependent on powerful external representation priors.
Authors:Jerome Quenum, Wen-Han Hsieh, Tsung-Han Wu, Ritwik Gupta, Trevor Darrell, David M. Chan
Abstract:
Segmentation models can recognize a pre-defined set of objects in images. However, models that can reason over complex user queries that implicitly refer to multiple objects of interest are still in their infancy. Recent advances in reasoning segmentation--generating segmentation masks from complex, implicit query text--demonstrate that vision-language models can operate across an open domain and produce reasonable outputs. However, our experiments show that such models struggle with complex remote-sensing imagery. In this work, we introduce LISAt, a vision-language model designed to describe complex remote-sensing scenes, answer questions about them, and segment objects of interest. We trained LISAt on a new curated geospatial reasoning-segmentation dataset, GRES, with 27,615 annotations over 9,205 images, and a multimodal pretraining dataset, PreGRES, containing over 1 million question-answer pairs. LISAt outperforms existing geospatial foundation models such as RS-GPT4V by over 10.04 % (BLEU-4) on remote-sensing description tasks, and surpasses state-of-the-art open-domain models on reasoning segmentation tasks by 143.36 % (gIoU). Our model, datasets, and code are available at https://lisat-bair.github.io/LISAt/
Authors:Zinan Guo, Pengze Zhang, Yanze Wu, Chong Mou, Songtao Zhao, Qian He
Abstract:
Current multi-subject customization approaches encounter two critical challenges: the difficulty in acquiring diverse multi-subject training data, and attribute entanglement across different subjects. To bridge these gaps, we propose MUSAR - a simple yet effective framework to achieve robust multi-subject customization while requiring only single-subject training data. Firstly, to break the data limitation, we introduce debiased diptych learning. It constructs diptych training pairs from single-subject images to facilitate multi-subject learning, while actively correcting the distribution bias introduced by diptych construction via static attention routing and dual-branch LoRA. Secondly, to eliminate cross-subject entanglement, we introduce dynamic attention routing mechanism, which adaptively establishes bijective mappings between generated images and conditional subjects. This design not only achieves decoupling of multi-subject representations but also maintains scalable generalization performance with increasing reference subjects. Comprehensive experiments demonstrate that our MUSAR outperforms existing methods - even those trained on multi-subject dataset - in image quality, subject consistency, and interaction naturalness, despite requiring only single-subject dataset.
Authors:Dmitriy Shopkhoev, Ammar Ali, Magauiya Zhussip, Valentin Malykh, Stamatios Lefkimmiatis, Nikos Komodakis, Sergey Zagoruyko
Abstract:
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation, which approximates the pruned blocks. The estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25% pruning while retaining approximately 90% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead (see Fig.1). We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at https://github.com/mts-ai/ReplaceMe.
Authors:Jai Prakash Veerla, Partha Sai Guttikonda, Helen H. Shang, Mohammad Sadegh Nasr, Cesar Torres, Jacob M. Luber
Abstract:
Pathologists rely on gigapixel whole-slide images (WSIs) to diagnose diseases like cancer, yet current digital pathology tools hinder diagnosis. The immense scale of WSIs, often exceeding 100,000 X 100,000 pixels, clashes with the limited views traditional monitors offer. This mismatch forces constant panning and zooming, increasing pathologist cognitive load, causing diagnostic fatigue, and slowing pathologists' adoption of digital methods. PathVis, our mixed-reality visualization platform for Apple Vision Pro, addresses these challenges. It transforms the pathologist's interaction with data, replacing cumbersome mouse-and-monitor navigation with intuitive exploration using natural hand gestures, eye gaze, and voice commands in an immersive workspace. PathVis integrates AI to enhance diagnosis. An AI-driven search function instantly retrieves and displays the top five similar patient cases side-by-side, improving diagnostic precision and efficiency through rapid comparison. Additionally, a multimodal conversational AI assistant offers real-time image interpretation support and aids collaboration among pathologists across multiple Apple devices. By merging the directness of traditional pathology with advanced mixed-reality visualization and AI, PathVis improves diagnostic workflows, reduces cognitive strain, and makes pathology practice more effective and engaging. The PathVis source code and a demo video are publicly available at: https://github.com/jaiprakash1824/Path_Vis
Authors:Yankai Jiang, Peng Zhang, Donglin Yang, Yuan Tian, Hai Lin, Xiaosong Wang
Abstract:
We explore Generalizable Tumor Segmentation, aiming to train a single model for zero-shot tumor segmentation across diverse anatomical regions. Existing methods face limitations related to segmentation quality, scalability, and the range of applicable imaging modalities. In this paper, we uncover the potential of the internal representations within frozen medical foundation diffusion models as highly efficient zero-shot learners for tumor segmentation by introducing a novel framework named DiffuGTS. DiffuGTS creates anomaly-aware open-vocabulary attention maps based on text prompts to enable generalizable anomaly segmentation without being restricted by a predefined training category list. To further improve and refine anomaly segmentation masks, DiffuGTS leverages the diffusion model, transforming pathological regions into high-quality pseudo-healthy counterparts through latent space inpainting, and applies a novel pixel-level and feature-level residual learning approach, resulting in segmentation masks with significantly enhanced quality and generalization. Comprehensive experiments on four datasets and seven tumor categories demonstrate the superior performance of our method, surpassing current state-of-the-art models across multiple zero-shot settings. Codes are available at https://github.com/Yankai96/DiffuGTS.
Authors:Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, Weiyang Liu
Abstract:
Formal mathematical reasoning remains a critical challenge for artificial intelligence, hindered by limitations of existing benchmarks in scope and scale. To address this, we present FormalMATH, a large-scale Lean4 benchmark comprising 5,560 formally verified problems spanning from high-school Olympiad challenges to undergraduate-level theorems across diverse domains (e.g., algebra, applied mathematics, calculus, number theory, and discrete mathematics). To mitigate the inefficiency of manual formalization, we introduce a novel human-in-the-loop autoformalization pipeline that integrates: (1) specialized large language models (LLMs) for statement autoformalization, (2) multi-LLM semantic verification, and (3) negation-based disproof filtering strategies using off-the-shelf LLM-based provers. This approach reduces expert annotation costs by retaining 72.09% of statements before manual verification while ensuring fidelity to the original natural-language problems. Our evaluation of state-of-the-art LLM-based theorem provers reveals significant limitations: even the strongest models achieve only 16.46% success rate under practical sampling budgets, exhibiting pronounced domain bias (e.g., excelling in algebra but failing in calculus) and over-reliance on simplified automation tactics. Notably, we identify a counterintuitive inverse relationship between natural-language solution guidance and proof success in chain-of-thought reasoning scenarios, suggesting that human-written informal reasoning introduces noise rather than clarity in the formal reasoning settings. We believe that FormalMATH provides a robust benchmark for benchmarking formal mathematical reasoning.
Authors:Binghong Chen, Tingting Chai, Wei Jiang, Yuanrong Xu, Guanglu Zhou, Xiangqian Wu
Abstract:
Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
Authors:Maxime Poli, Emmanuel Chemla, Emmanuel Dupoux
Abstract:
We introduce fastabx, a high-performance Python library for building ABX discrimination tasks. ABX is a measure of the separation between generic categories of interest. It has been used extensively to evaluate phonetic discriminability in self-supervised speech representations. However, its broader adoption has been limited by the absence of adequate tools. fastabx addresses this gap by providing a framework capable of constructing any type of ABX task while delivering the efficiency necessary for rapid development cycles, both in task creation and in calculating distances between representations. We believe that fastabx will serve as a valuable resource for the broader representation learning community, enabling researchers to systematically investigate what information can be directly extracted from learned representations across several domains beyond speech processing. The source code is available at https://github.com/bootphon/fastabx.
Authors:Xiaobao Wu
Abstract:
Recent developments in Large Language Models (LLMs) have shifted from pre-training scaling to post-training and test-time scaling. Across these developments, a key unified paradigm has arisen: Learning from Rewards, where reward signals act as the guiding stars to steer LLM behavior. It has underpinned a wide range of prevalent techniques, such as reinforcement learning (RLHF, RLAIF, DPO, and GRPO), reward-guided decoding, and post-hoc correction. Crucially, this paradigm enables the transition from passive learning from static data to active learning from dynamic feedback. This endows LLMs with aligned preferences and deep reasoning capabilities for diverse tasks. In this survey, we present a comprehensive overview of learning from rewards, from the perspective of reward models and learning strategies across training, inference, and post-inference stages. We further discuss the benchmarks for reward models and the primary applications. Finally we highlight the challenges and future directions. We maintain a paper collection at https://github.com/bobxwu/learning-from-rewards-llm-papers.
Authors:Shiwei Guo, Ziang Chen, Yupeng Ma, Yunfei Han, Yi Wang
Abstract:
The Transformer model has shown strong performance in multivariate time series forecasting by leveraging channel-wise self-attention. However, this approach lacks temporal constraints when computing temporal features and does not utilize cumulative historical series effectively.To address these limitations, we propose the Structured Channel-wise Transformer with Cumulative Historical state (SCFormer). SCFormer introduces temporal constraints to all linear transformations, including the query, key, and value matrices, as well as the fully connected layers within the Transformer. Additionally, SCFormer employs High-order Polynomial Projection Operators (HiPPO) to deal with cumulative historical time series, allowing the model to incorporate information beyond the look-back window during prediction. Extensive experiments on multiple real-world datasets demonstrate that SCFormer significantly outperforms mainstream baselines, highlighting its effectiveness in enhancing time series forecasting. The code is publicly available at https://github.com/ShiweiGuo1995/SCFormer
Authors:Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, Yang Feng
Abstract:
Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.
Authors:Vincent Brebion, Julien Moreau, Franck Davoine
Abstract:
Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA.
Authors:Xinjie Zhang, Jintao Guo, Shanshan Zhao, Minghao Fu, Lunhao Duan, Jiakui Hu, Yong Xien Chng, Guo-Hua Wang, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Abstract:
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
Authors:Hongze Li, Zesheng Zhou, Zhenbiao Cao, Xinhui Li, Wei Chen, Xiaojin Zhang
Abstract:
Traditional Federated Domain Generalization (FedDG) methods focus on learning domain-invariant features or adapting to unseen target domains, often overlooking the unique knowledge embedded within the source domain, especially in strictly isolated federated learning environments. Through experimentation, we discovered a counterintuitive phenomenon.: features learned from a complete source domain have superior generalization capabilities compared to those learned directly from the target domain. This insight leads us to propose the Federated Source Domain Awareness Framework (FedSDAF), the first systematic approach to enhance FedDG by leveraging source domain-aware features. FedSDAF employs a dual-adapter architecture that decouples "local expertise" from "global generalization consensus". A Domain-Aware Adapter, retained locally, extracts and protects the unique discriminative knowledge of each source domain, while a Domain-Invariant Adapter, shared across clients, builds a robust global consensus. To enable knowledge exchange, we introduce a Bidirectional Knowledge Distillation mechanism that facilitates efficient dialogue between the adapters. Extensive experiments on four benchmark datasets (OfficeHome, PACS, VLCS, DomainNet) show that FedSDAF significantly outperforms existing FedDG methods.The source code is available at https://github.com/pizzareapers/FedSDAF.
Authors:Xiongjun Guan, Zhiyu Pan, Jianjiang Feng, Jie Zhou
Abstract:
Two-dimensional pose estimation plays a crucial role in fingerprint recognition by facilitating global alignment and reduce pose-induced variations. However, existing methods are still unsatisfactory when handling with large angle or small area inputs. These limitations are particularly pronounced on fingerprints captured by under-screen fingerprint sensors in smartphones. In this paper, we present a novel dual-modal input based network for under-screen fingerprint pose estimation. Our approach effectively integrates two distinct yet complementary modalities: texture details extracted from ridge patches through the under-screen fingerprint sensor, and rough contours derived from capacitive images obtained via the touch screen. This collaborative integration endows our network with more comprehensive and discriminative information, substantially improving the accuracy and stability of pose estimation. A decoupled probability distribution prediction task is designed, instead of the traditional supervised forms of numerical regression or heatmap voting, to facilitate the training process. Additionally, we incorporate a Mixture of Experts (MoE) based feature fusion mechanism and a relationship driven cross-domain knowledge transfer strategy to further strengthen feature extraction and fusion capabilities. Extensive experiments are conducted on several public datasets and two private datasets. The results indicate that our method is significantly superior to previous state-of-the-art (SOTA) methods and remarkably boosts the recognition ability of fingerprint recognition algorithms. Our code is available at https://github.com/XiongjunGuan/DRACO.
Authors:Inclusion AI, Biao Gong, Cheng Zou, Dandan Zheng, Hu Yu, Jingdong Chen, Jianxin Sun, Junbo Zhao, Jun Zhou, Kaixiang Ji, Lixiang Ru, Libin Wang, Qingpei Guo, Rui Liu, Weilong Chai, Xinyu Xiao, Ziyuan Huang
Abstract:
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
Authors:Jiaqi Zhang, Zhuodong Liu, Kejian Yu
Abstract:
Accurate identification of agricultural pests is essential for crop protection but remains challenging due to the large intra-class variance and fine-grained differences among pest species. While deep learning has advanced pest detection, most existing approaches rely solely on low-level visual features and lack effective multi-modal integration, leading to limited accuracy and poor interpretability. Moreover, the scarcity of high-quality multi-modal agricultural datasets further restricts progress in this field. To address these issues, we construct two novel multi-modal benchmarks-CTIP102 and STIP102-based on the widely-used IP102 dataset, and introduce a Multi-scale Cross-Modal Fusion Network (MSFNet-CPD) for robust pest detection. Our approach enhances visual quality via a super-resolution reconstruction module, and feeds both the original and reconstructed images into the network to improve clarity and detection performance. To better exploit semantic cues, we propose an Image-Text Fusion (ITF) module for joint modeling of visual and textual features, and an Image-Text Converter (ITC) that reconstructs fine-grained details across multiple scales to handle challenging backgrounds. Furthermore, we introduce an Arbitrary Combination Image Enhancement (ACIE) strategy to generate a more complex and diverse pest detection dataset, MTIP102, improving the model's generalization to real-world scenarios. Extensive experiments demonstrate that MSFNet-CPD consistently outperforms state-of-the-art methods on multiple pest detection benchmarks. All code and datasets will be made publicly available at: https://github.com/Healer-ML/MSFNet-CPD.
Authors:Zichen Liu, Xu Zou, Gang Hua, Jiahuan Zhou
Abstract:
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
Authors:Sungheon Jeong, Jihong Park, Mohsen Imani
Abstract:
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
Authors:Jiarui Yao, Yifan Hao, Hanning Zhang, Hanze Dong, Wei Xiong, Nan Jiang, Tong Zhang
Abstract:
Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.
Authors:Enbo Zhao, Yi Shen, Shuming Shi, Jieyun Huang, Zhihao Chen, Ning Wang, Siqi Xiao, Jian Zhang, Kai Wang, Shiguo Lian
Abstract:
Recently, there is a high demand for deploying DeepSeek-R1 and V3 locally, possibly because the official service often suffers from being busy and some organizations have data privacy concerns. While single-machine deployment offers infrastructure simplicity, the models' 671B FP8 parameter configuration exceeds the practical memory limits of a standard 8-GPU machine. Quantization is a widely used technique that helps reduce model memory consumption. However, it is unclear what the performance of DeepSeek-R1 and V3 will be after being quantized. This technical report presents the first quantitative evaluation of multi-bitwidth quantization across the complete DeepSeek model spectrum. Key findings reveal that 4-bit quantization maintains little performance degradation versus FP8 while enabling single-machine deployment on standard NVIDIA GPU devices. We further propose DQ3_K_M, a dynamic 3-bit quantization method that significantly outperforms traditional Q3_K_M variant on various benchmarks, which is also comparable with 4-bit quantization (Q4_K_M) approach in most tasks. Moreover, DQ3_K_M supports single-machine deployment configurations for both NVIDIA H100/A100 and Huawei 910B. Our implementation of DQ3\_K\_M is released at https://github.com/UnicomAI/DeepSeek-Eval, containing optimized 3-bit quantized variants of both DeepSeek-R1 and DeepSeek-V3.
Authors:Huangyue Yu, Baoxiong Jia, Yixin Chen, Yandan Yang, Puhao Li, Rongpeng Su, Jiaxin Li, Qing Li, Wei Liang, Song-Chun Zhu, Tengyu Liu, Siyuan Huang
Abstract:
Embodied AI (EAI) research requires high-quality, diverse 3D scenes to effectively support skill acquisition, sim-to-real transfer, and generalization. Achieving these quality standards, however, necessitates the precise replication of real-world object diversity. Existing datasets demonstrate that this process heavily relies on artist-driven designs, which demand substantial human effort and present significant scalability challenges. To scalably produce realistic and interactive 3D scenes, we first present MetaScenes, a large-scale, simulatable 3D scene dataset constructed from real-world scans, which includes 15366 objects spanning 831 fine-grained categories. Then, we introduce Scan2Sim, a robust multi-modal alignment model, which enables the automated, high-quality replacement of assets, thereby eliminating the reliance on artist-driven designs for scaling 3D scenes. We further propose two benchmarks to evaluate MetaScenes: a detailed scene synthesis task focused on small item layouts for robotic manipulation and a domain transfer task in vision-and-language navigation (VLN) to validate cross-domain transfer. Results confirm MetaScene's potential to enhance EAI by supporting more generalizable agent learning and sim-to-real applications, introducing new possibilities for EAI research. Project website: https://meta-scenes.github.io/.
Authors:Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang, Denghui Zhang, Tong Zhang, Hanghang Tong, Heng Ji
Abstract:
Reward modeling is essential for aligning large language models with human preferences through reinforcement learning from human feedback. To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. Inspired by recent advances of long chain-of-thought on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RMs interpretability and performance. To this end, we introduce a new class of generative reward models - Reasoning Reward Models (ReasRMs) - which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. RM-R1 features a chain-of-rubrics (CoR) mechanism - self-generating sample-level chat rubrics or math/code solutions, and evaluating candidate responses against them. The training of RM-R1 consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. Empirically, our models achieve state-of-the-art performance across three reward model benchmarks on average, outperforming much larger open-weight models (e.g., INF-ORM-Llama3.1-70B) and proprietary ones (e.g., GPT-4o) by up to 4.9%. Beyond final performance, we perform thorough empirical analyses to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six REASRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.
Authors:Ming Li, Xin Gu, Fan Chen, Xiaoying Xing, Longyin Wen, Chen Chen, Sijie Zhu
Abstract:
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
Authors:Bobo Lian, Dandan Wang, Chenjian Wu, Minxin Chen
Abstract:
Point cloud surface representation is a fundamental problem in computer graphics and vision. This paper presents a machine learning approach for approximating the signed distance function (SDF) of a point cloud using a sparse ellipsoidal radial basis function network, enabling a compact and accurate surface representation. Given the SDF values defined on the grid points constructed from the point cloud, our method approximates the SDF accurately with as few ellipsoidal radial basis functions (ERBFs) as possible, i.e., represents the SDF of a point cloud by sparse ERBFs. To balance sparsity and approximation precision, a dynamic multi-objective optimization strategy is introduced, which adaptively adds the regularization terms and jointly optimizes the weights, centers, shapes, and orientations of ERBFs. To improve computational efficiency, a nearest-neighbor-based data structure is employed, restricting function calculations to points near each Gaussian kernel center. The computations for each kernel are further parallelized on CUDA, which significantly improves the optimization speed. Additionally, a hierarchical octree-based refinement strategy is designed for training. Specifically, the initialization and optimization of network parameters are conducted using coarse grid points in the octree lattice structure. Subsequently, fine lattice points are progressively incorporated to accelerate model convergence and enhance training efficiency. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms previous sparse representation approaches in terms of accuracy, robustness, and computational efficiency. The corresponding executable program is publicly available at https://github.com/lianbobo/SE-RBFNet.git.
Authors:Kahim Wong, Jicheng Zhou, Jiantao Zhou, Yain-Whar Si
Abstract:
The rise of LLMs has increased concerns over source tracing and copyright protection for AIGC, highlighting the need for advanced detection technologies. Passive detection methods usually face high false positives, while active watermarking techniques using logits or sampling manipulation offer more effective protection. Existing LLM watermarking methods, though effective on unaltered content, suffer significant performance drops when the text is modified and could introduce biases that degrade LLM performance in downstream tasks. These methods fail to achieve an optimal tradeoff between text quality and robustness, particularly due to the lack of end-to-end optimization of the encoder and decoder. In this paper, we introduce a novel end-to-end logits perturbation method for watermarking LLM-generated text. By jointly optimization, our approach achieves a better balance between quality and robustness. To address non-differentiable operations in the end-to-end training pipeline, we introduce an online prompting technique that leverages the on-the-fly LLM as a differentiable surrogate. Our method achieves superior robustness, outperforming distortion-free methods by 37-39% under paraphrasing and 17.2% on average, while maintaining text quality on par with these distortion-free methods in terms of text perplexity and downstream tasks. Our method can be easily generalized to different LLMs. Code is available at https://github.com/KAHIMWONG/E2E_LLM_WM.
Authors:Hao Cheng, Zhiwei Zhao, Yichao He, Zhenzhen Hu, Jia Li, Meng Wang, Richang Hong
Abstract:
Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage~1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage~2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.
Authors:Zhichuan Wang, Yang Zhou, Jinhai Xiang, Yulong Wang, Xinwei He
Abstract:
Learning discriminative 3D representations that generalize well to unknown testing categories is an emerging requirement for many real-world 3D applications. Existing well-established methods often struggle to attain this goal due to insufficient 3D training data from broader concepts. Meanwhile, pre-trained large vision-language models (e.g., CLIP) have shown remarkable zero-shot generalization capabilities. Yet, they are limited in extracting suitable 3D representations due to substantial gaps between their 2D training and 3D testing distributions. To address these challenges, we propose Testing-time Distribution Alignment (TeDA), a novel framework that adapts a pretrained 2D vision-language model CLIP for unknown 3D object retrieval at test time. To our knowledge, it is the first work that studies the test-time adaptation of a vision-language model for 3D feature learning. TeDA projects 3D objects into multi-view images, extracts features using CLIP, and refines 3D query embeddings with an iterative optimization strategy by confident query-target sample pairs in a self-boosting manner. Additionally, TeDA integrates textual descriptions generated by a multimodal language model (InternVL) to enhance 3D object understanding, leveraging CLIP's aligned feature space to fuse visual and textual cues. Extensive experiments on four open-set 3D object retrieval benchmarks demonstrate that TeDA greatly outperforms state-of-the-art methods, even those requiring extensive training. We also experimented with depth maps on Objaverse-LVIS, further validating its effectiveness. Code is available at https://github.com/wangzhichuan123/TeDA.
Authors:Michael F. Herbst, Bonan Sun
Abstract:
We propose a novel algorithm based on inexact GMRES methods for linear response calculations in density functional theory. Such calculations require iteratively solving a nested linear problem $\mathcal{E} δÏ= b$ to obtain the variation of the electron density $δÏ$. Notably each application of the dielectric operator $\mathcal{E}$ in turn requires the iterative solution of multiple linear systems, the Sternheimer equations. We develop computable bounds to estimate the accuracy of the density variation given the tolerances to which the Sternheimer equations have been solved. Based on this result we suggest reliable strategies for adaptively selecting the convergence tolerances of the Sternheimer equations, such that each applications of $\mathcal{E}$ is no more accurate than needed. Experiments on challenging materials systems of practical relevance demonstrate our strategies to achieve superlinear convergence as well as a reduction of computational time by about 40% while preserving the accuracy of the returned response solution. Our algorithm seamlessly combines with standard preconditioning approaches known from the context of self-consistent field problems making it a promising framework for efficient response solvers based on Krylov subspace techniques.
Authors:James Read, Ming-Yen Lee, Wei-Hsing Huang, Yuan-Chun Luo, Anni Lu, Shimeng Yu
Abstract:
The exponential growth of artificial intelligence (AI) applications has exposed the inefficiency of conventional von Neumann architectures, where frequent data transfers between compute units and memory create significant energy and latency bottlenecks. Analog Computing-in-Memory (ACIM) addresses this challenge by performing multiply-accumulate (MAC) operations directly in the memory arrays, substantially reducing data movement. However, designing robust ACIM accelerators requires accurate modeling of device- and circuit-level non-idealities. In this work, we present NeuroSim V1.5, introducing several key advances: (1) seamless integration with TensorRT's post-training quantization flow enabling support for more neural networks including transformers, (2) a flexible noise injection methodology built on pre-characterized statistical models, making it straightforward to incorporate data from SPICE simulations or silicon measurements, (3) expanded device support including emerging non-volatile capacitive memories, and (4) up to 6.5x faster runtime than NeuroSim V1.4 through optimized behavioral simulation. The combination of these capabilities uniquely enables systematic design space exploration across both accuracy and hardware efficiency metrics. Through multiple case studies, we demonstrate optimization of critical design parameters while maintaining network accuracy. By bridging high-fidelity noise modeling with efficient simulation, NeuroSim V1.5 advances the design and validation of next-generation ACIM accelerators. All NeuroSim versions are available open-source at https://github.com/neurosim/NeuroSim.
Authors:Jason J. Choi, Jasmine Jerry Aloor, Jingqi Li, Maria G. Mendoza, Hamsa Balakrishnan, Claire J. Tomlin
Abstract:
Preventing collisions in multi-robot navigation is crucial for deployment. This requirement hinders the use of learning-based approaches, such as multi-agent reinforcement learning (MARL), on their own due to their lack of safety guarantees. Traditional control methods, such as reachability and control barrier functions, can provide rigorous safety guarantees when interactions are limited only to a small number of robots. However, conflicts between the constraints faced by different agents pose a challenge to safe multi-agent coordination.
To overcome this challenge, we propose a method that integrates multiple layers of safety by combining MARL with safety filters. First, MARL is used to learn strategies that minimize multiple agent interactions, where multiple indicates more than two. Particularly, we focus on interactions likely to result in conflicting constraints within the engagement distance. Next, for agents that enter the engagement distance, we prioritize pairs requiring the most urgent corrective actions. Finally, a dedicated safety filter provides tactical corrective actions to resolve these conflicts. Crucially, the design decisions for all layers of this framework are grounded in reachability analysis and a control barrier-value function-based filtering mechanism.
We validate our Layered Safe MARL framework in 1) hardware experiments using Crazyflie drones and 2) high-density advanced aerial mobility (AAM) operation scenarios, where agents navigate to designated waypoints while avoiding collisions. The results show that our method significantly reduces conflict while maintaining safety without sacrificing much efficiency (i.e., shorter travel time and distance) compared to baselines that do not incorporate layered safety. The project website is available at https://dinamo-mit.github.io/Layered-Safe-MARL/
Authors:Madhukar Reddy Vongala, Saurabh Srivastava, Jana Košecká
Abstract:
Vision-language pretraining on large datasets of images-text pairs is one of the main building blocks of current Vision-Language Models. While with additional training, these models excel in various downstream tasks, including visual question answering, image captioning, and visual commonsense reasoning. However, a notable weakness of pretrained models like CLIP, is their inability to perform entity grounding and compositional image and text matching~\cite{Jiang2024ComCLIP, yang2023amc, Rajabi2023GroundedVSR, learninglocalizeCVPR24}. In this work we propose a novel learning-free zero-shot augmentation of CLIP embeddings that has favorable compositional properties. We compute separate embeddings of sub-images of object entities and relations that are localized by the state of the art open vocabulary detectors and dynamically adjust the baseline global image embedding. % The final embedding is obtained by computing a weighted combination of the sub-image embeddings. The resulting embedding is then utilized for similarity computation with text embedding, resulting in a average 1.5\% improvement in image-text matching accuracy on the Visual Genome and SVO Probes datasets~\cite{krishna2017visualgenome, svo}. Notably, the enhanced embeddings demonstrate superior retrieval performance, thus achieving significant gains on the Flickr30K and MS-COCO retrieval benchmarks~\cite{flickr30ke, mscoco}, improving the state-of-the-art Recall@1 by 12\% and 0.4\%, respectively. Our code is available at https://github.com/madhukarreddyvongala/GroundingCLIP.
Authors:Henry Ndubuaku, Mouad Talhi
Abstract:
Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
Authors:Xingyu Zheng, Yuye Li, Haoran Chu, Yue Feng, Xudong Ma, Jie Luo, Jinyang Guo, Haotong Qin, Michele Magno, Xianglong Liu
Abstract:
The Qwen series has emerged as a leading family of open-source Large Language Models (LLMs), demonstrating remarkable capabilities in natural language understanding tasks. With the recent release of Qwen3, which exhibits superior performance across diverse benchmarks, there is growing interest in deploying these models efficiently in resource-constrained environments. Low-bit quantization presents a promising solution, yet its impact on Qwen3's performance remains underexplored. This study conducts a systematic evaluation of Qwen3's robustness under various quantization settings, aiming to uncover both opportunities and challenges in compressing this state-of-the-art model. We rigorously assess 5 existing classic post-training quantization techniques applied to Qwen3, spanning bit-widths from 1 to 8 bits, and evaluate their effectiveness across multiple datasets. Our findings reveal that while Qwen3 maintains competitive performance at moderate bit-widths, it experiences notable degradation in linguistic tasks under ultra-low precision, underscoring the persistent hurdles in LLM compression. These results emphasize the need for further research to mitigate performance loss in extreme quantization scenarios. We anticipate that this empirical analysis will provide actionable insights for advancing quantization methods tailored to Qwen3 and future LLMs, ultimately enhancing their practicality without compromising accuracy. Our project is released on https://github.com/Efficient-ML/Qwen3-Quantization and https://huggingface.co/collections/Efficient-ML/qwen3-quantization-68164450decb1c868788cb2b.
Authors:Wenchuan Wang, Mengqi Huang, Yijing Tu, Zhendong Mao
Abstract:
Customized text-to-video generation with pre-trained large-scale models has recently garnered significant attention by focusing on identity and motion consistency. Existing works typically follow the isolated customized paradigm, where the subject identity or motion dynamics are customized exclusively. However, this paradigm completely ignores the intrinsic mutual constraints and synergistic interdependencies between identity and motion, resulting in identity-motion conflicts throughout the generation process that systematically degrade. To address this, we introduce DualReal, a novel framework that employs adaptive joint training to construct interdependencies between dimensions collaboratively. Specifically, DualReal is composed of two units: (1) Dual-aware Adaptation dynamically switches the training step (i.e., identity or motion), learns the current information guided by the frozen dimension prior, and employs a regularization strategy to avoid knowledge leakage; (2) StageBlender Controller leverages the denoising stages and Diffusion Transformer depths to guide different dimensions with adaptive granularity, avoiding conflicts at various stages and ultimately achieving lossless fusion of identity and motion patterns. We constructed a more comprehensive evaluation benchmark than existing methods. The experimental results show that DualReal improves CLIP-I and DINO-I metrics by 21.7% and 31.8% on average, and achieves top performance on nearly all motion metrics. Page: https://wenc-k.github.io/dualreal-customization
Authors:Yamini Sri Krubha, Aryana Hou, Braden Vester, Web Walker, Xin Wang, Li Lin, Shu Hu
Abstract:
Deepfakes, created using advanced AI techniques such as Variational Autoencoder and Generative Adversarial Networks, have evolved from research and entertainment applications into tools for malicious activities, posing significant threats to digital trust. Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP, which capture global anomalies and improve cross-domain generalization. Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models and addressing severe class imbalance between authentic and fake samples in deepfake datasets, which limits their robustness and detection accuracy. To address these challenges, we propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions. The code is available at https://github.com/Purdue-M2/SP_CUP.
Authors:Tao Zhu, Qi Yu, Xinru Dong, Shiyu Li, Yue Liu, Jinlong Jiang, Lei Shu
Abstract:
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP. Code is available at https://github.com/modadundun/ProDisc-VAD.
Authors:Shubhendu Jena, Amine Ouasfi, Mae Younes, Adnane Boukhayma
Abstract:
We present a method for Sparse view reconstruction with surface element splatting that runs within 3 minutes on a consumer grade GPU. While few methods address sparse radiance field learning from noisy or unposed sparse cameras, shape recovery remains relatively underexplored in this setting. Several radiance and shape learning test-time optimization methods address the sparse posed setting by learning data priors or using combinations of external monocular geometry priors. Differently, we propose an efficient and simple pipeline harnessing a single recent 3D foundation model. We leverage its various task heads, notably point maps and camera initializations to instantiate a bundle adjusting 2D Gaussian Splatting (2DGS) model, and image correspondences to guide camera optimization midst 2DGS training. Key to our contribution is a novel formulation of splatted color variance along rays, which can be computed efficiently. Reducing this moment in training leads to more accurate shape reconstructions. We demonstrate state-of-the-art performances in the sparse uncalibrated setting in reconstruction and novel view benchmarks based on established multi-view datasets.
Authors:Shubhendu Jena, Shishir Reddy Vutukur, Adnane Boukhayma
Abstract:
Recovering 3D information from scenes via multi-view stereo reconstruction (MVS) and novel view synthesis (NVS) is inherently challenging, particularly in scenarios involving sparse-view setups. The advent of 3D Gaussian Splatting (3DGS) enabled real-time, photorealistic NVS. Following this, 2D Gaussian Splatting (2DGS) leveraged perspective accurate 2D Gaussian primitive rasterization to achieve accurate geometry representation during rendering, improving 3D scene reconstruction while maintaining real-time performance. Recent approaches have tackled the problem of sparse real-time NVS using 3DGS within a generalizable, MVS-based learning framework to regress 3D Gaussian parameters. Our work extends this line of research by addressing the challenge of generalizable sparse 3D reconstruction and NVS jointly, and manages to perform successfully at both tasks. We propose an MVS-based learning pipeline that regresses 2DGS surface element parameters in a feed-forward fashion to perform 3D shape reconstruction and NVS from sparse-view images. We further show that our generalizable pipeline can benefit from preexisting foundational multi-view deep visual features. The resulting model attains the state-of-the-art results on the DTU sparse 3D reconstruction benchmark in terms of Chamfer distance to ground-truth, as-well as state-of-the-art NVS. It also demonstrates strong generalization on the BlendedMVS and Tanks and Temples datasets. We note that our model outperforms the prior state-of-the-art in feed-forward sparse view reconstruction based on volume rendering of implicit representations, while offering an almost 2 orders of magnitude higher inference speed.
Authors:Minzheng Wang, Yongbin Li, Haobo Wang, Xinghua Zhang, Nan Xu, Bingli Wu, Fei Huang, Haiyang Yu, Wenji Mao
Abstract:
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current studies. Existing methods either lack this kind of reasoning capability or enforce Long Chain-of-Thought reasoning uniformly across all scenarios, resulting in excessive token usage and inflexible social simulation. To address this, we propose an $\textbf{A}$daptive $\textbf{M}$ode $\textbf{L}$earning ($\textbf{AML}$) framework in this paper, aiming to improve the adaptive thinking ability of language agents in dynamic social interactions. To this end, we first identify hierarchical thinking modes ranging from intuitive response to deep deliberation based on the cognitive control theory. We then develop the $\textbf{A}$daptive $\textbf{M}$ode $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{AMPO}$) algorithm to optimize the context-aware mode switching and reasoning. Our framework advances existing research in three key aspects: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence benchmarks verify that AML achieves 15.6% higher task performance than GPT-4o. Notably, our AMPO outperforms GRPO by 7.0% with 32.8% shorter reasoning chains, demonstrating the advantage of adaptive thinking mode selection and optimization mechanism in AMPO over GRPO's fixed-depth solution.
Authors:Oliver Savolainen, Dur e Najaf Amjad, Roxana Petcu
Abstract:
This reproducibility study analyzes and extends the paper "Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models," which investigates how neural retrieval models encode task-relevant properties such as term frequency. We reproduce key experiments from the original paper, confirming that information on query terms is captured in the model encoding. We extend this work by applying activation patching to Spanish and Chinese datasets and by exploring whether document-length information is encoded in the model as well. Our results confirm that the designed activation patching method can isolate the behavior to specific components and tokens in neural retrieval models. Moreover, our findings indicate that the location of term frequency generalizes across languages and that in later layers, the information for sequence-level tasks is represented in the CLS token. The results highlight the need for further research into interpretability in information retrieval and reproducibility in machine learning research. Our code is available at https://github.com/OliverSavolainen/axiomatic-ir-reproduce.
Authors:Muyao Zhong, Yushi Lin, Peng Yang
Abstract:
The Limit Order Book (LOB), the mostly fundamental data of the financial market, provides a fine-grained view of market dynamics while poses significant challenges in dealing with the esteemed deep models due to its strong autocorrelation, cross-feature constrains, and feature scale disparity. Existing approaches often tightly couple representation learning with specific downstream tasks in an end-to-end manner, failed to analyze the learned representations individually and explicitly, limiting their reusability and generalization. This paper conducts the first systematic comparative study of LOB representation learning, aiming to identify the effective way of extracting transferable, compact features that capture essential LOB properties. We introduce LOBench, a standardized benchmark with real China A-share market data, offering curated datasets, unified preprocessing, consistent evaluation metrics, and strong baselines. Extensive experiments validate the sufficiency and necessity of LOB representations for various downstream tasks and highlight their advantages over both the traditional task-specific end-to-end models and the advanced representation learning models for general time series. Our work establishes a reproducible framework and provides clear guidelines for future research. Datasets and code will be publicly available at https://github.com/financial-simulation-lab/LOBench.
Authors:Xiaorui Zhao, Xinyue Zhou, Peibei Cao, Junyu Lou, Shuhang Gu
Abstract:
Developing effective approaches to generate enhanced results that align well with human visual preferences for high-quality well-lit images remains a challenge in low-light image enhancement (LLIE). In this paper, we propose a human-in-the-loop LLIE training framework that improves the visual quality of unsupervised LLIE model outputs through iterative training stages, named HiLLIE. At each stage, we introduce human guidance into the training process through efficient visual quality annotations of enhanced outputs. Subsequently, we employ a tailored image quality assessment (IQA) model to learn human visual preferences encoded in the acquired labels, which is then utilized to guide the training process of an enhancement model. With only a small amount of pairwise ranking annotations required at each stage, our approach continually improves the IQA model's capability to simulate human visual assessment of enhanced outputs, thus leading to visually appealing LLIE results. Extensive experiments demonstrate that our approach significantly improves unsupervised LLIE model performance in terms of both quantitative and qualitative performance. The code and collected ranking dataset will be available at https://github.com/LabShuHangGU/HiLLIE.
Authors:Zhong Guan, Likang Wu, Hongke Zhao, Ming He, Jianpin Fan
Abstract:
Attention mechanisms are critical to the success of large language models (LLMs), driving significant advancements in multiple fields. However, for graph-structured data, which requires emphasis on topological connections, they fall short compared to message-passing mechanisms on fixed links, such as those employed by Graph Neural Networks (GNNs). This raises a question: ``Does attention fail for graphs in natural language settings?'' Motivated by these observations, we embarked on an empirical study from the perspective of attention mechanisms to explore how LLMs process graph-structured data. The goal is to gain deeper insights into the attention behavior of LLMs over graph structures. We uncovered unique phenomena regarding how LLMs apply attention to graph-structured data and analyzed these findings to improve the modeling of such data by LLMs. The primary findings of our research are: 1) While LLMs can recognize graph data and capture text-node interactions, they struggle to model inter-node relationships within graph structures due to inherent architectural constraints. 2) The attention distribution of LLMs across graph nodes does not align with ideal structural patterns, indicating a failure to adapt to graph topology nuances. 3) Neither fully connected attention nor fixed connectivity is optimal; each has specific limitations in its application scenarios. Instead, intermediate-state attention windows improve LLM training performance and seamlessly transition to fully connected windows during inference. Source code: \href{https://github.com/millioniron/LLM_exploration}{LLM4Exploration}
Authors:Xiao Zhou, Zhongxiang Zhao, Hanze Guo
Abstract:
Online platforms aggregate extensive user feedback across diverse behaviors, providing a rich source for enhancing user engagement. Traditional recommender systems, however, typically optimize for a single target behavior and represent user preferences with a single vector, limiting their ability to handle multiple important behaviors or optimization objectives. This conventional approach also struggles to capture the full spectrum of user interests, resulting in a narrow item pool during candidate generation. To address these limitations, we present Tricolore, a versatile multi-vector learning framework that uncovers connections between different behavior types for more robust candidate generation. Tricolore's adaptive multi-task structure is also customizable to specific platform needs. To manage the variability in sparsity across behavior types, we incorporate a behavior-wise multi-view fusion module that dynamically enhances learning. Moreover, a popularity-balanced strategy ensures the recommendation list balances accuracy with item popularity, fostering diversity and improving overall performance. Extensive experiments on public datasets demonstrate Tricolore's effectiveness across various recommendation scenarios, from short video platforms to e-commerce. By leveraging a shared base embedding strategy, Tricolore also significantly improves the performance for cold-start users. The source code is publicly available at: https://github.com/abnering/Tricolore.
Authors:Zeyu Zhang, Quanyu Dai, Xu Chen, Rui Li, Zhongyang Li, Zhenhua Dong
Abstract:
Recently, large language model based (LLM-based) agents have been widely applied across various fields. As a critical part, their memory capabilities have captured significant interest from both industrial and academic communities. Despite the proposal of many advanced memory models in recent research, however, there remains a lack of unified implementations under a general framework. To address this issue, we develop a unified and modular library for developing advanced memory models of LLM-based agents, called MemEngine. Based on our framework, we implement abundant memory models from recent research works. Additionally, our library facilitates convenient and extensible memory development, and offers user-friendly and pluggable memory usage. For benefiting our community, we have made our project publicly available at https://github.com/nuster1128/MemEngine.
Authors:Joy Lim Jia Yin, Daniel Zhang-Li, Jifan Yu, Haoxuan Li, Shangqing Tu, Yuanchun Wang, Zhiyuan Liu, Huiqin Liu, Lei Hou, Juanzi Li, Bin Xu
Abstract:
Evaluating the quality of slide-based multimedia instruction is challenging. Existing methods like manual assessment, reference-based metrics, and large language model evaluators face limitations in scalability, context capture, or bias. In this paper, we introduce LecEval, an automated metric grounded in Mayer's Cognitive Theory of Multimedia Learning, to evaluate multimodal knowledge acquisition in slide-based learning. LecEval assesses effectiveness using four rubrics: Content Relevance (CR), Expressive Clarity (EC), Logical Structure (LS), and Audience Engagement (AE). We curate a large-scale dataset of over 2,000 slides from more than 50 online course videos, annotated with fine-grained human ratings across these rubrics. A model trained on this dataset demonstrates superior accuracy and adaptability compared to existing metrics, bridging the gap between automated and human assessments. We release our dataset and toolkits at https://github.com/JoylimJY/LecEval.
Authors:Volodymyr Havrylov, Haiwen Huang, Dan Zhang, Andreas Geiger
Abstract:
Vision Foundation Models (VFMs) are large-scale, pre-trained models that serve as general-purpose backbones for various computer vision tasks. As VFMs' popularity grows, there is an increasing interest in understanding their effectiveness for dense prediction tasks. However, VFMs typically produce low-resolution features, limiting their direct applicability in this context. One way to tackle this limitation is by employing a task-agnostic feature upsampling module that refines VFM features resolution. To assess the effectiveness of this approach, we investigate Interactive Segmentation (IS) as a novel benchmark for evaluating feature upsampling methods on VFMs. Due to its inherent multimodal input, consisting of an image and a set of user-defined clicks, as well as its dense mask output, IS creates a challenging environment that demands comprehensive visual scene understanding. Our benchmarking experiments show that selecting appropriate upsampling strategies significantly improves VFM features quality. The code is released at https://github.com/havrylovv/iSegProbe
Authors:Yi Han
Abstract:
As time series classification (TSC) gains prominence, ensuring robust TSC models against adversarial attacks is crucial. While adversarial defense is well-studied in Computer Vision (CV), the TSC field has primarily relied on adversarial training (AT), which is computationally expensive. In this paper, five data augmentation-based defense methods tailored for time series are developed, with the most computationally intensive method among them increasing the computational resources by only 14.07% compared to the original TSC model. Moreover, the deployment process for these methods is straightforward. By leveraging these advantages of our methods, we create two combined methods. One of these methods is an ensemble of all the proposed techniques, which not only provides better defense performance than PGD-based AT but also enhances the generalization ability of TSC models. Moreover, the computational resources required for our ensemble are less than one-third of those required for PGD-based AT. These methods advance robust TSC in data mining. Furthermore, as foundation models are increasingly explored for time series feature learning, our work provides insights into integrating data augmentation-based adversarial defense with large-scale pre-trained models in future research.
Authors:Shuhang Xun, Sicheng Tao, Jungang Li, Yibo Shi, Zhixin Lin, Zhanhui Zhu, Yibo Yan, Hanqian Li, Linghao Zhang, Shikang Wang, Yixin Liu, Hanbo Zhang, Ying Ma, Xuming Hu
Abstract:
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.
Authors:Branko BrkljaÄ, Vladimir KaluÅ¡ev, Branislav PopoviÄ, Milan SeÄujski
Abstract:
Face detection and face recognition have been in the focus of vision community since the very beginnings. Inspired by the success of the original Videoface digitizer, a pioneering device that allowed users to capture video signals from any source, we have designed an advanced video analytics tool to efficiently create structured video stories, i.e. identity-based information catalogs. VideoFace2.0 is the name of the developed system for spatial and temporal localization of each unique face in the input video, i.e. face re-identification (ReID), which also allows their cataloging, characterization and creation of structured video outputs for later downstream tasks. Developed near real-time solution is primarily designed to be utilized in application scenarios involving TV production, media analysis, and as an efficient tool for creating large video datasets necessary for training machine learning (ML) models in challenging vision tasks such as lip reading and multimodal speech recognition. Conducted experiments confirm applicability of the proposed face ReID algorithm that is combining the concepts of face detection, face recognition and passive tracking-by-detection in order to achieve robust and efficient face ReID. The system is envisioned as a compact and modular extensions of the existing video production equipment. Presented results are based on test implementation that achieves between 18-25 fps on consumer type notebook. Ablation experiments also confirmed that the proposed algorithm brings relative gain in the reduction of number of false identities in the range of 73%-93%. We hope that the presented work and shared code implementation will stimulate further interest in development of similar, application specific video analysis tools, and lower the entry barrier for production of high-quality multi-modal datasets in the future.
Authors:Rui Lv, Zaixi Zhang, Kai Zhang, Qi Liu, Weibo Gao, Jiawei Liu, Jiaxia Yan, Linan Yue, Fangzhou Yao
Abstract:
Graph In-Context Learning, with the ability to adapt pre-trained graph models to novel and diverse downstream graphs without updating any parameters, has gained much attention in the community. The key to graph in-context learning is to perform downstream graphs conditioned on chosen prompt examples. Existing methods randomly select subgraphs or edges as prompts, leading to noisy graph prompts and inferior model performance. Additionally, due to the gap between pre-training and testing graphs, when the number of classes in the testing graphs is much greater than that in the training, the in-context learning ability will also significantly deteriorate. To tackle the aforementioned challenges, we develop a multi-stage adaptive prompt optimization method GraphPrompter, which optimizes the entire process of generating, selecting, and using graph prompts for better in-context learning capabilities. Firstly, Prompt Generator introduces a reconstruction layer to highlight the most informative edges and reduce irrelevant noise for graph prompt construction. Furthermore, in the selection stage, Prompt Selector employs the $k$-nearest neighbors algorithm and pre-trained selection layers to dynamically choose appropriate samples and minimize the influence of irrelevant prompts. Finally, we leverage a Prompt Augmenter with a cache replacement strategy to enhance the generalization capability of the pre-trained model on new datasets. Extensive experiments show that GraphPrompter effectively enhances the in-context learning ability of graph models. On average across all the settings, our approach surpasses the state-of-the-art baselines by over 8%. Our code is released at https://github.com/karin0018/GraphPrompter.
Authors:Hongbo Zhao, Ziwei Long, Mengtan Zhang, Hanli Wang, Qijun Chen, Rui Fan
Abstract:
Relative pose estimation, a fundamental computer vision problem, has been extensively studied for decades. Existing methods either estimate and decompose the essential matrix or directly estimate the rotation and translation to obtain the solution. In this article, we break the mold by tackling this traditional problem with a novel birotation solution. We first introduce three basis transformations, each associated with a geometric metric to quantify the distance between the relative pose to be estimated and its corresponding basis transformation. Three energy functions, designed based on these metrics, are then minimized on the Riemannian manifold $\mathrm{SO(3)}$ by iteratively updating the two rotation matrices. The two rotation matrices and the basis transformation corresponding to the minimum energy are ultimately utilized to recover the relative pose. Extensive quantitative and qualitative evaluations across diverse relative pose estimation tasks demonstrate the superior performance of our proposed birotation solution. Source code, demo video, and datasets will be available at \href{https://mias.group/birotation-solution}{mias.group/birotation-solution} upon publication.
Authors:Yancheng Chen, Wenguo Yang, Zhipeng Jiang
Abstract:
Wide & Deep, a simple yet effective learning architecture for recommendation systems developed by Google, has had a significant impact in both academia and industry due to its combination of the memorization ability of generalized linear models and the generalization ability of deep models. Graph convolutional networks (GCNs) remain dominant in node classification tasks; however, recent studies have highlighted issues such as heterophily and expressiveness, which focus on graph structure while seemingly neglecting the potential role of node features. In this paper, we propose a flexible framework GCNIII, which leverages the Wide & Deep architecture and incorporates three techniques: Intersect memory, Initial residual and Identity mapping. We provide comprehensive empirical evidence showing that GCNIII can more effectively balance the trade-off between over-fitting and over-generalization on various semi- and full- supervised tasks. Additionally, we explore the use of large language models (LLMs) for node feature engineering to enhance the performance of GCNIII in cross-domain node classification tasks. Our implementation is available at https://github.com/CYCUCAS/GCNIII.
Authors:Zeyuan Ma, Zhiguang Cao, Zhou Jiang, Hongshu Guo, Yue-Jiao Gong
Abstract:
Recent progress in Meta-Black-Box-Optimization (MetaBBO) has demonstrated that using RL to learn a meta-level policy for dynamic algorithm configuration (DAC) over an optimization task distribution could significantly enhance the performance of the low-level BBO algorithm. However, the online learning paradigms in existing works makes the efficiency of MetaBBO problematic. To address this, we propose an offline learning-based MetaBBO framework in this paper, termed Q-Mamba, to attain both effectiveness and efficiency in MetaBBO. Specifically, we first transform DAC task into long-sequence decision process. This allows us further introduce an effective Q-function decomposition mechanism to reduce the learning difficulty within the intricate algorithm configuration space. Under this setting, we propose three novel designs to meta-learn DAC policy from offline data: we first propose a novel collection strategy for constructing offline DAC experiences dataset with balanced exploration and exploitation. We then establish a decomposition-based Q-loss that incorporates conservative Q-learning to promote stable offline learning from the offline dataset. To further improve the offline learning efficiency, we equip our work with a Mamba architecture which helps long-sequence learning effectiveness and efficiency by selective state model and hardware-aware parallel scan respectively. Through extensive benchmarking, we observe that Q-Mamba achieves competitive or even superior performance to prior online/offline baselines, while significantly improving the training efficiency of existing online baselines. We provide sourcecodes of Q-Mamba at https://github.com/MetaEvo/Q-Mamba.
Authors:Zhenxing Mi, Ping Yin, Xue Xiao, Dan Xu
Abstract:
Recent NeRF methods on large-scale scenes have underlined the importance of scene decomposition for scalable NeRFs. Although achieving reasonable scalability, there are several critical problems remaining unexplored, i.e., learnable decomposition, modeling scene heterogeneity, and modeling efficiency. In this paper, we introduce Switch-NeRF++, a Heterogeneous Mixture of Hash Experts (HMoHE) network that addresses these challenges within a unified framework. It is a highly scalable NeRF that learns heterogeneous decomposition and heterogeneous NeRFs efficiently for large-scale scenes in an end-to-end manner. In our framework, a gating network learns to decompose scenes and allocates 3D points to specialized NeRF experts. This gating network is co-optimized with the experts by our proposed Sparsely Gated Mixture of Experts (MoE) NeRF framework. We incorporate a hash-based gating network and distinct heterogeneous hash experts. The hash-based gating efficiently learns the decomposition of the large-scale scene. The distinct heterogeneous hash experts consist of hash grids of different resolution ranges, enabling effective learning of the heterogeneous representation of different scene parts. These design choices make our framework an end-to-end and highly scalable NeRF solution for real-world large-scale scene modeling to achieve both quality and efficiency. We evaluate our accuracy and scalability on existing large-scale NeRF datasets and a new dataset with very large-scale scenes ($>6.5km^2$) from UrbanBIS. Extensive experiments demonstrate that our approach can be easily scaled to various large-scale scenes and achieve state-of-the-art scene rendering accuracy. Furthermore, our method exhibits significant efficiency, with an 8x acceleration in training and a 16x acceleration in rendering compared to Switch-NeRF. Codes will be released at https://github.com/MiZhenxing/Switch-NeRF.
Authors:Jiayi Cheng, Can Gao, Jie Zhou, Jiajun Wen, Tao Dai, Jinbao Wang
Abstract:
3D Anomaly Detection (AD) is a promising means of controlling the quality of manufactured products. However, existing methods typically require carefully training a task-specific model for each category independently, leading to high cost, low efficiency, and weak generalization. Therefore, this paper presents a novel unified model for Multi-Category 3D Anomaly Detection (MC3D-AD) that aims to utilize both local and global geometry-aware information to reconstruct normal representations of all categories. First, to learn robust and generalized features of different categories, we propose an adaptive geometry-aware masked attention module that extracts geometry variation information to guide mask attention. Then, we introduce a local geometry-aware encoder reinforced by the improved mask attention to encode group-level feature tokens. Finally, we design a global query decoder that utilizes point cloud position embeddings to improve the decoding process and reconstruction ability. This leads to local and global geometry-aware reconstructed feature tokens for the AD task. MC3D-AD is evaluated on two publicly available Real3D-AD and Anomaly-ShapeNet datasets, and exhibits significant superiority over current state-of-the-art single-category methods, achieving 3.1\% and 9.3\% improvement in object-level AUROC over Real3D-AD and Anomaly-ShapeNet, respectively. The code is available at https://github.com/iCAN-SZU/MC3D-AD.
Authors:Leyi Yan, Linda Wang, Sihang Liu, Yi Ding
Abstract:
Carbon intensity (CI) measures the average carbon emissions generated per unit of electricity, making it a crucial metric for quantifying and managing the environmental impact. Accurate CI predictions are vital for minimizing carbon footprints, yet the state-of-the-art method (CarbonCast) falls short due to its inability to address regional variability and lack of adaptability. To address these limitations, we introduce EnsembleCI, an adaptive, end-to-end ensemble learning-based approach for CI forecasting. EnsembleCI combines weighted predictions from multiple sublearners, offering enhanced flexibility and regional adaptability. In evaluations across 11 regional grids, EnsembleCI consistently surpasses CarbonCast, achieving the lowest mean absolute percentage error (MAPE) in almost all grids and improving prediction accuracy by an average of 19.58%. While performance still varies across grids due to inherent regional diversity, EnsembleCI reduces variability and exhibits greater robustness in long-term forecasting compared to CarbonCast and identifies region-specific key features, underscoring its interpretability and practical relevance. These findings position EnsembleCI as a more accurate and reliable solution for CI forecasting. EnsembleCI source code and data used in this paper are available at https://github.com/emmayly/EnsembleCI.
Authors:Qi Yang, Le Yang, Geert Van Der Auwera, Zhu Li
Abstract:
Most existing 3D Gaussian Splatting (3DGS) compression schemes focus on producing compact 3DGS representation via implicit data embedding. They have long coding times and highly customized data format, making it difficult for widespread deployment. This paper presents a new 3DGS compression framework called HybridGS, which takes advantage of both compact generation and standardized point cloud data encoding. HybridGS first generates compact and explicit 3DGS data. A dual-channel sparse representation is introduced to supervise the primitive position and feature bit depth. It then utilizes a canonical point cloud encoder to perform further data compression and form standard output bitstreams. A simple and effective rate control scheme is proposed to pivot the interpretable data compression scheme. At the current stage, HybridGS does not include any modules aimed at improving 3DGS quality during generation. But experiment results show that it still provides comparable reconstruction performance against state-of-the-art methods, with evidently higher encoding and decoding speed. The code is publicly available at https://github.com/Qi-Yangsjtu/HybridGS.
Authors:Xingyu Miao, Haoran Duan, Yang Long, Jungong Han
Abstract:
Score Distillation Sampling (SDS) has emerged as a prominent method for text-to-3D generation by leveraging the strengths of 2D diffusion models. However, SDS is limited to generation tasks and lacks the capability to edit existing 3D assets. Conversely, variants of SDS that introduce editing capabilities often can not generate new 3D assets effectively. In this work, we observe that the processes of generation and editing within SDS and its variants have unified underlying gradient terms. Building on this insight, we propose Unified Distillation Sampling (UDS), a method that seamlessly integrates both the generation and editing of 3D assets. Essentially, UDS refines the gradient terms used in vanilla SDS methods, unifying them to support both tasks. Extensive experiments demonstrate that UDS not only outperforms baseline methods in generating 3D assets with richer details but also excels in editing tasks, thereby bridging the gap between 3D generation and editing. The code is available on: https://github.com/xingy038/UDS.
Authors:Siddharth Kothari, Srinivasan Murali, Sankalp Kothari, Ujjwal Verma, Jaya Sreevalsan-Nair
Abstract:
Inland water body segmentation from Synthetic Aperture Radar (SAR) images is an important task needed for several applications, such as flood mapping. While SAR sensors capture data in all-weather conditions as high-resolution images, differentiating water and water-like surfaces from SAR images is not straightforward. Inland water bodies, such as large river basins, have complex geometry, which adds to the challenge of segmentation. U-Net is a widely used deep learning model for land-water segmentation of SAR images. In practice, manual annotation is often used to generate the corresponding water masks as ground truth. Manual annotation of the images is prone to label noise owing to data poisoning attacks, especially due to complex geometry. In this work, we simulate manual errors in the form of adversarial attacks on the U-Net model and study the robustness of the model to human errors in annotation. Our results indicate that U-Net can tolerate a certain level of corruption before its performance drops significantly. This finding highlights the crucial role that the quality of manual annotations plays in determining the effectiveness of the segmentation model. The code and the new dataset, along with adversarial examples for robust training, are publicly available. (GitHub link - https://github.com/GVCL/IWSeg-SAR-Poison.git)
Authors:Jiakun Yan, Marc Snir
Abstract:
The evolution of architectures, programming models, and algorithms is driving communication towards greater asynchrony and concurrency, usually in multithreaded environments. We present LCI, a communication library designed for efficient asynchronous multithreaded communication. LCI provides a concise interface that supports common point-to-point primitives and diverse completion mechanisms, along with flexible controls for incrementally fine-tuning communication resources and runtime behavior. It features a threading-efficient runtime built on atomic data structures, fine-grained non-blocking locks, and low-level network insights. We evaluate LCI on both Infiniband and Slingshot-11 clusters with microbenchmarks and two application-level benchmarks. Experimental results show that LCI significantly outperforms existing communication libraries in various multithreaded scenarios, achieving performance that exceeds the traditional multi-process execution mode and unlocking new possibilities for emerging programming models and applications. LCI is open-source and available at https://github.com/uiuc-hpc/lci.
Authors:Linus Nwankwo, Bjoern Ellensohn, Ozan Ãzdenizci, Elmar Rueckert
Abstract:
Adapting autonomous agents to industrial, domestic, and other daily tasks is currently gaining momentum. However, in the global or cross-lingual application contexts, ensuring effective interaction with the environment and executing unrestricted human task-specified instructions in diverse languages remains an unsolved problem. To address this challenge, we propose ReLI, a language-agnostic framework designed to enable autonomous agents to converse naturally, semantically reason about the environment, and to perform downstream tasks, regardless of the task instruction's linguistic origin. First, we ground large-scale pre-trained foundation models and transform them into language-to-action models that can directly provide common-sense reasoning and high-level robot control through natural, free-flow human-robot conversational interactions. Further, we perform cross-lingual grounding of the models to ensure that ReLI generalises across the global languages. To demonstrate the ReLI's robustness, we conducted extensive simulated and real-world experiments on various short- and long-horizon tasks, including zero-shot and few-shot spatial navigation, scene information retrieval, and query-oriented tasks. We benchmarked the performance on 140 languages involving over 70K multi-turn conversations. On average, ReLI achieved over 90%$\pm$0.2 accuracy in cross-lingual instruction parsing and task execution success rates. These results demonstrate the ReLI's potential to enhance natural human-robot interaction in the real world while championing linguistic diversity. Demonstrations and resources will be publicly available at https://linusnep.github.io/ReLI/.
Authors:Anthony Nguyen, Wenjun Lin
Abstract:
Transformer models have established new benchmarks in natural language processing; however, their increasing depth results in substantial growth in parameter counts. While existing recurrent transformer methods address this issue by reprocessing layers multiple times, they often apply recurrence indiscriminately across entire blocks of layers. In this work, we investigate Intra-Layer Recurrence (ILR), a more targeted approach that applies recurrence selectively to individual layers within a single forward pass. Our experiments show that allocating more iterations to earlier layers yields optimal results. These findings suggest that ILR offers a promising direction for optimizing recurrent structures in transformer architectures.
Authors:Janak Kapuriya, Manit Kaushik, Debasis Ganguly, Sumit Bhatia
Abstract:
In-Context Learning (ICL) has gained prominence due to its ability to perform tasks without requiring extensive training data and its robustness to noisy labels. A typical ICL workflow involves selecting localized examples relevant to a given input using sparse or dense embedding-based similarity functions. However, relying solely on similarity-based selection may introduce topical biases in the retrieved contexts, potentially leading to suboptimal downstream performance. We posit that reranking the retrieved context to enhance topical diversity can improve downstream task performance. To achieve this, we leverage maximum marginal relevance (MMR) which balances topical similarity with inter-example diversity. Our experimental results demonstrate that diversifying the selected examples leads to consistent improvements in downstream performance across various context sizes and similarity functions. The implementation of our approach is made available at https://github.com/janak11111/Diverse-ICL.
Authors:Chenghong Li, Hongjie Liao, Yihao Zhi, Xihe Yang, Zhengwentai Sun, Jiahao Chang, Shuguang Cui, Xiaoguang Han
Abstract:
In this era, the success of large language models and text-to-image models can be attributed to the driving force of large-scale datasets. However, in the realm of 3D vision, while significant progress has been achieved in object-centric tasks through large-scale datasets like Objaverse and MVImgNet, human-centric tasks have seen limited advancement, largely due to the absence of a comparable large-scale human dataset. To bridge this gap, we present MVHumanNet++, a dataset that comprises multi-view human action sequences of 4,500 human identities. The primary focus of our work is on collecting human data that features a large number of diverse identities and everyday clothing using multi-view human capture systems, which facilitates easily scalable data collection. Our dataset contains 9,000 daily outfits, 60,000 motion sequences and 645 million frames with extensive annotations, including human masks, camera parameters, 2D and 3D keypoints, SMPL/SMPLX parameters, and corresponding textual descriptions. Additionally, the proposed MVHumanNet++ dataset is enhanced with newly processed normal maps and depth maps, significantly expanding its applicability and utility for advanced human-centric research. To explore the potential of our proposed MVHumanNet++ dataset in various 2D and 3D visual tasks, we conducted several pilot studies to demonstrate the performance improvements and effective applications enabled by the scale provided by MVHumanNet++. As the current largest-scale 3D human dataset, we hope that the release of MVHumanNet++ dataset with annotations will foster further innovations in the domain of 3D human-centric tasks at scale. MVHumanNet++ is publicly available at https://kevinlee09.github.io/research/MVHumanNet++/.
Authors:Jiesong Bai, Yuhao Yin, Yihang Dong, Xiaofeng Zhang, Chi-Man Pun, Xuhang Chen
Abstract:
Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.
Authors:Wolfgang Gritz, Hewi Salih, Anett Hoppe, Ralph Ewerth
Abstract:
Educational videos have become increasingly relevant in today's learning environments. While prior research in laboratory studies has provided valuable insights, analyzing real-world interaction data can enhance our understanding of authentic user behavior. Previous studies have investigated technical aspects, such as the influence of cuts on pausing behavior, but the impact of visual complexity remains understudied. In this paper, we address this gap and propose a novel approach centered on visual complexity, defined as the number of visually distinguishable and meaningful elements in a video frame, such as mathematical equations, chemical formulas, or graphical representations. Our study introduces a fine-grained taxonomy of visual objects in educational videos, expanding on previous classifications. Applying this taxonomy to 25 videos from physics and chemistry, we examine the relationship between visual complexity and user behavior, including pauses, in-video navigation, and session dropouts. The results indicate that increased visual complexity, especially of textual elements, correlates with more frequent pauses, rewinds, and dropouts. The results offer a deeper understanding of how video design affects user behavior in real-world scenarios. Our work has implications for optimizing educational videos, particularly in STEM fields. We make our code publicly available (https://github.com/TIBHannover/from_formulas_to_figures).
Authors:Xingqun Qi, Yatian Wang, Hengyuan Zhang, Jiahao Pan, Wei Xue, Shanghang Zhang, Wenhan Luo, Qifeng Liu, Yike Guo
Abstract:
Generating gestures from human speech has gained tremendous progress in animating virtual avatars. While the existing methods enable synthesizing gestures cooperated by individual self-talking, they overlook the practicality of concurrent gesture modeling with two-person interactive conversations. Moreover, the lack of high-quality datasets with concurrent co-speech gestures also limits handling this issue. To fulfill this goal, we first construct a large-scale concurrent co-speech gesture dataset that contains more than 7M frames for diverse two-person interactive posture sequences, dubbed GES-Inter. Additionally, we propose Co$^3$Gesture, a novel framework that enables coherent concurrent co-speech gesture synthesis including two-person interactive movements. Considering the asymmetric body dynamics of two speakers, our framework is built upon two cooperative generation branches conditioned on separated speaker audio. Specifically, to enhance the coordination of human postures with respect to corresponding speaker audios while interacting with the conversational partner, we present a Temporal Interaction Module (TIM). TIM can effectively model the temporal association representation between two speakers' gesture sequences as interaction guidance and fuse it into the concurrent gesture generation. Then, we devise a mutual attention mechanism to further holistically boost learning dependencies of interacted concurrent motions, thereby enabling us to generate vivid and coherent gestures. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected GES-Inter dataset. The dataset and source code are publicly available at \href{https://mattie-e.github.io/Co3/}{\textit{https://mattie-e.github.io/Co3/}}.
Authors:Kaidong Zhang, Rongtao Xu, Pengzhen Ren, Junfan Lin, Hefeng Wu, Liang Lin, Xiaodan Liang
Abstract:
Operating robots in open-ended scenarios with diverse tasks is a crucial research and application direction in robotics. While recent progress in natural language processing and large multimodal models has enhanced robots' ability to understand complex instructions, robot manipulation still faces the procedural skill dilemma and the declarative skill dilemma in open environments. Existing methods often compromise cognitive and executive capabilities. To address these challenges, in this paper, we propose RoBridge, a hierarchical intelligent architecture for general robotic manipulation. It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM), an invariant operable representation (IOR) serving as a symbolic bridge, and a generalist embodied agent (GEA). RoBridge maintains the declarative skill of VLM and unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution. RoBridge demonstrates significant performance improvements over existing baselines, achieving a 75% success rate on new tasks and an 83% average success rate in sim-to-real generalization using only five real-world data samples per task. This work represents a significant step towards integrating cognitive reasoning with physical execution in robotic systems, offering a new paradigm for general robotic manipulation.
Authors:Yize Jiang, Xinze Li, Yuanyuan Zhang, Jin Han, Youjun Xu, Ayush Pandit, Zaixi Zhang, Mengdi Wang, Mengyang Wang, Chong Liu, Guang Yang, Yejin Choi, Wu-Jun Li, Tianfan Fu, Fang Wu, Junhong Liu
Abstract:
Existing protein-ligand docking studies typically focus on the self-docking scenario, which is less practical in real applications. Moreover, some studies involve heavy frameworks requiring extensive training, posing challenges for convenient and efficient assessment of docking methods. To fill these gaps, we design PoseX, an open-source benchmark to evaluate both self-docking and cross-docking, enabling a practical and comprehensive assessment of algorithmic advances. Specifically, we curated a novel dataset comprising 718 entries for self-docking and 1,312 entries for cross-docking; second, we incorporated 23 docking methods in three methodological categories, including physics-based methods (e.g., Schrödinger Glide), AI docking methods (e.g., DiffDock) and AI co-folding methods (e.g., AlphaFold3); third, we developed a relaxation method for post-processing to minimize conformational energy and refine binding poses; fourth, we built a leaderboard to rank submitted models in real-time. We derived some key insights and conclusions from extensive experiments: (1) AI approaches have consistently outperformed physics-based methods in overall docking success rate. (2) Most intra- and intermolecular clashes of AI approaches can be greatly alleviated with relaxation, which means combining AI modeling with physics-based post-processing could achieve excellent performance. (3) AI co-folding methods exhibit ligand chirality issues, except for Boltz-1x, which introduced physics-inspired potentials to fix hallucinations, suggesting modeling on stereochemistry improves the structural plausibility markedly. (4) Specifying binding pockets significantly promotes docking performance, indicating that pocket information can be leveraged adequately, particularly for AI co-folding methods, in future modeling efforts. The code, dataset, and leaderboard are released at https://github.com/CataAI/PoseX.
Authors:Yifan Liu, Ruichen Yao, Yaokun Liu, Ruohan Zong, Zelin Li, Yang Zhang, Dong Wang
Abstract:
The widespread integration of face recognition technologies into various applications (e.g., access control and personalized advertising) necessitates a critical emphasis on fairness. While previous efforts have focused on demographic fairness, the fairness of individual biological face components remains unexplored. In this paper, we focus on face component fairness, a fairness notion defined by biological face features. To our best knowledge, our work is the first work to mitigate bias of face attribute prediction at the biological feature level. In this work, we identify two key challenges in optimizing face component fairness: attribute label scarcity and attribute inter-dependencies, both of which limit the effectiveness of bias mitigation from previous approaches. To address these issues, we propose \textbf{B}ayesian \textbf{N}etwork-informed \textbf{M}eta \textbf{R}eweighting (BNMR), which incorporates a Bayesian Network calibrator to guide an adaptive meta-learning-based sample reweighting process. During the training process of our approach, the Bayesian Network calibrator dynamically tracks model bias and encodes prior probabilities for face component attributes to overcome the above challenges. To demonstrate the efficacy of our approach, we conduct extensive experiments on a large-scale real-world human face dataset. Our results show that BNMR is able to consistently outperform recent face bias mitigation baselines. Moreover, our results suggest a positive impact of face component fairness on the commonly considered demographic fairness (e.g., \textit{gender}). Our findings pave the way for new research avenues on face component fairness, suggesting that face component fairness could serve as a potential surrogate objective for demographic fairness. The code for our work is publicly available~\footnote{https://github.com/yliuaa/BNMR-FairCompFace.git}.
Authors:Yuying Zhao, Yu Wang, Xueqi Cheng, Anne Marie Tumlin, Yunchao Liu, Damin Xia, Meng Jiang, Tyler Derr
Abstract:
The remarkable advancements in Large Language Models (LLMs) have revolutionized the content generation process in social media, offering significant convenience in writing tasks. However, existing applications, such as sentence completion and fluency enhancement, do not fully address the complex challenges in real-world social media contexts. A prevalent goal among social media users is to increase the visibility and influence of their posts. This paper, therefore, delves into the compelling question: Can LLMs generate personalized influential content to amplify a user's presence on social media? We begin by examining prevalent techniques in content generation to assess their impact on post influence. Acknowledging the critical impact of underlying network structures in social media, which are instrumental in initiating content cascades and highly related to the influence/popularity of a post, we then inject network information into prompt for content generation to boost the post's influence. We design multiple content-centric and structure-aware prompts. The empirical experiments across LLMs validate their ability in improving the influence and draw insights on which strategies are more effective. Our code is available at https://github.com/YuyingZhao/LLM-influence-amplifier.
Authors:Yuying Zhao, Xiaodong Yang, Huiyuan Chen, Xiran Fan, Yu Wang, Yiwei Cai, Tyler Derr
Abstract:
Deep Neural Networks (DNNs) are extensively used in collaborative filtering due to their impressive effectiveness. These systems depend on interaction data to learn user and item embeddings that are crucial for recommendations. However, the data often suffers from sparsity and imbalance issues: limited observations of user-item interactions can result in sub-optimal performance, and a predominance of interactions with popular items may introduce recommendation bias. To address these challenges, we employ Pretrained Language Models (PLMs) to enhance the interaction data with textual information, leading to a denser and more balanced dataset. Specifically, we propose a simple yet effective data augmentation method (SimAug) based on the textual similarity from PLMs, which can be seamlessly integrated to any systems as a lightweight, plug-and-play component in the pre-processing stage. Our experiments across nine datasets consistently demonstrate improvements in both utility and fairness when training with the augmented data generated by SimAug. The code is available at https://github.com/YuyingZhao/SimAug.
Authors:Sihyeong Park, Sungryeol Jeon, Chaelyn Lee, Seokhun Jeon, Byung-Soo Kim, Jemin Lee
Abstract:
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
Authors:Jun Li, Yijue Zhang, Haibo Shi, Minhong Li, Qiwei Li, Xiaohua Qian
Abstract:
Pancreatic cancer, characterized by its notable prevalence and mortality rates, demands accurate lesion delineation for effective diagnosis and therapeutic interventions. The generalizability of extant methods is frequently compromised due to the pronounced variability in imaging and the heterogeneous characteristics of pancreatic lesions, which may mimic normal tissues and exhibit significant inter-patient variability. Thus, we propose a generalization framework that synergizes pixel-level classification and regression tasks, to accurately delineate lesions and improve model stability. This framework not only seeks to align segmentation contours with actual lesions but also uses regression to elucidate spatial relationships between diseased and normal tissues, thereby improving tumor localization and morphological characterization. Enhanced by the reciprocal transformation of task outputs, our approach integrates additional regression supervision within the segmentation context, bolstering the model's generalization ability from a dual-task perspective. Besides, dual self-supervised learning in feature spaces and output spaces augments the model's representational capability and stability across different imaging views. Experiments on 594 samples composed of three datasets with significant imaging differences demonstrate that our generalized pancreas segmentation results comparable to mainstream in-domain validation performance (Dice: 84.07%). More importantly, it successfully improves the results of the highly challenging cross-lesion generalized pancreatic cancer segmentation task by 9.51%. Thus, our model constitutes a resilient and efficient foundational technological support for pancreatic disease management and wider medical applications. The codes will be released at https://github.com/SJTUBME-QianLab/Dual-Task-Seg.
Authors:Daniel Morton, Rika Antonova, Brian Coltin, Marco Pavone, Jeannette Bohg
Abstract:
We present pyastrobee: a simulation environment and control stack for Astrobee in Python, with an emphasis on cargo manipulation and transport tasks. We also demonstrate preliminary success from a sampling-based MPC controller, using reduced-order models of NASA's cargo transfer bag (CTB) to control a high-order deformable finite element model. Our code is open-source, fully documented, and available at https://danielpmorton.github.io/pyastrobee
Authors:Jianxing Qin, Jingrong Chen, Xinhao Kong, Yongji Wu, Tianjun Yuan, Liang Luo, Zhaodong Wang, Ying Zhang, Tingjun Chen, Alvin R. Lebeck, Danyang Zhuo
Abstract:
Modern machine learning (ML) training workloads place substantial demands on both computational and communication resources. Consequently, accurate performance estimation has become increasingly critical for guiding system design decisions, such as the selection of parallelization strategies, cluster configurations, and hardware provisioning. Existing simulation-based performance estimation requires reimplementing the ML framework in a simulator, which demands significant manual effort and is hard to maintain as ML frameworks evolve rapidly. This paper introduces Phantora, a hybrid GPU cluster simulator designed for performance estimation of ML training workloads. Phantora executes unmodified ML frameworks as is within a distributed, containerized environment. Each container emulates the behavior of a GPU server in a large-scale cluster, while Phantora intercepts and simulates GPU- and communication-related operations to provide high-fidelity performance estimation. We call this approach hybrid simulation of ML systems, in contrast to traditional methods that simulate static workloads. The primary advantage of hybrid simulation is that it allows direct reuse of ML framework source code in simulation, avoiding the need for reimplementation. Our evaluation shows that Phantora provides accuracy comparable to static workload simulation while supporting three state-of-the-art LLM training frameworks out-of-the-box. In addition, Phantora operates on a single GPU, eliminating the need for the resource-intensive trace collection and workload extraction steps required by traditional trace-based simulators. Phantora is open-sourced at https://github.com/QDelta/Phantora.
Authors:Abdalwahab Almajed, Maryam Tabar, Peyman Najafirad
Abstract:
As a basic human need, housing plays a key role in enhancing health, well-being, and educational outcome in society, and the housing market is a major factor for promoting quality of life and ensuring social equity. To improve the housing conditions, there has been extensive research on building Machine Learning (ML)-driven house price prediction solutions to accurately forecast the future conditions, and help inform actions and policies in the field. In spite of their success in developing high-accuracy models, there is a gap in our understanding of the extent to which various ML-driven house price prediction approaches show ethnic and/or racial bias, which in turn is essential for the responsible use of ML, and ensuring that the ML-driven solutions do not exacerbate inequity. To fill this gap, this paper develops several ML models from a combination of structural and neighborhood-level attributes, and conducts comprehensive assessments on the fairness of ML models under various definitions of privileged groups. As a result, it finds that the ML-driven house price prediction models show various levels of bias towards protected attributes (i.e., race and ethnicity in this study). Then, it investigates the performance of different bias mitigation solutions, and the experimental results show their various levels of effectiveness on different ML-driven methods. However, in general, the in-processing bias mitigation approach tends to be more effective than the pre-processing one in this problem domain. Our code is available at https://github.com/wahab1412/housing_fairness.
Authors:Challen Enninful Adu, César E. Ramos Chuquiure, Yutong Zhou, Pearl Lin, Ruikai Yang, Bohao Zhang, Shubham Singh, Ram Vasudevan
Abstract:
The generation of optimal trajectories for high-dimensional robotic systems under constraints remains computationally challenging due to the need to simultaneously satisfy dynamic feasibility, input limits, and task-specific objectives while searching over high-dimensional spaces. Recent approaches using the Affine Geometric Heat Flow (AGHF) Partial Differential Equation (PDE) have demonstrated promising results, generating dynamically feasible trajectories for complex systems like the Digit V3 humanoid within seconds. These methods efficiently solve trajectory optimization problems over a two-dimensional domain by evolving an initial trajectory to minimize control effort. However, these AGHF approaches are limited to a single type of optimal control problem (i.e., minimizing the integral of squared control norms) and typically require initial guesses that satisfy constraints to ensure satisfactory convergence. These limitations restrict the potential utility of the AGHF PDE especially when trying to synthesize trajectories for robotic systems. This paper generalizes the AGHF formulation to accommodate arbitrary cost functions, significantly expanding the classes of trajectories that can be generated. This work also introduces a Phase1 - Phase 2 Algorithm that enables the use of constraint-violating initial guesses while guaranteeing satisfactory convergence. The effectiveness of the proposed method is demonstrated through comparative evaluations against state-of-the-art techniques across various dynamical systems and challenging trajectory generation problems. Project Page: https://roahmlab.github.io/BLAZE/
Authors:Stefanos Gkikas, Raul Fernandez Rojas, Manolis Tsiknakis
Abstract:
Pain is a manifold condition that impacts a significant percentage of the population. Accurate and reliable pain evaluation for the people suffering is crucial to developing effective and advanced pain management protocols. Automatic pain assessment systems provide continuous monitoring and support decision-making processes, ultimately aiming to alleviate distress and prevent functionality decline. This study introduces PainFormer, a vision foundation model based on multi-task learning principles trained simultaneously on 14 tasks/datasets with a total of 10.9 million samples. Functioning as an embedding extractor for various input modalities, the foundation model provides feature representations to the Embedding-Mixer, a transformer-based module that performs the final pain assessment. Extensive experiments employing behavioral modalities - including RGB, synthetic thermal, and estimated depth videos - and physiological modalities such as ECG, EMG, GSR, and fNIRS revealed that PainFormer effectively extracts high-quality embeddings from diverse input modalities. The proposed framework is evaluated on two pain datasets, BioVid and AI4Pain, and directly compared to 75 different methodologies documented in the literature. Experiments conducted in unimodal and multimodal settings demonstrate state-of-the-art performances across modalities and pave the way toward general-purpose models for automatic pain assessment. The foundation model's architecture (code) and weights are available at: https://github.com/GkikasStefanos/PainFormer.
Authors:Zhen Yao, Xiaowen Ying, Zhiyu Zhu, Mooi Choo Chuah
Abstract:
Event cameras capture microsecond-level motion cues that complement RGB sensors. However, the prevailing paradigm of treating RGB-Event perception as a fusion problem is ill-posed, as it ignores the intrinsic (i) Spatiotemporal and (ii) Modal Misalignment, unlike other RGB-X sensing domains. To tackle these limitations, we recast RGB-Event segmentation from fusion to registration. We propose BRENet, a novel flow-guided bidirectional framework that adaptively matches correspondence between the asymmetric modalities. Specifically, it leverages temporally aligned optical flows as a coarse-grained guide, along with fine-grained event temporal features, to generate precise forward and backward pixel pairings for registration. This pairing mechanism converts the inherent motion lag into terms governed by flow estimation error, bridging modality gaps. Moreover, we introduce Motion-Enhanced Event Tensor (MET), a new representation that transforms sparse event streams into a dense, temporally coherent form. Extensive experiments on four large-scale datasets validate our approach, establishing flow-guided registration as a promising direction for RGB-Event segmentation. Our code is available at: https://github.com/zyaocoder/BRENet.
Authors:Daoan Zhang, Che Jiang, Ruoshi Xu, Biaoxiang Chen, Zijian Jin, Yutian Lu, Jianguo Zhang, Liang Yong, Jiebo Luo, Shengda Luo
Abstract:
Recent advances in text-to-image (T2I) generation have achieved impressive results, yet existing models still struggle with prompts that require rich world knowledge and implicit reasoning: both of which are critical for producing semantically accurate, coherent, and contextually appropriate images in real-world scenarios. To address this gap, we introduce \textbf{WorldGenBench}, a benchmark designed to systematically evaluate T2I models' world knowledge grounding and implicit inferential capabilities, covering both the humanities and nature domains. We propose the \textbf{Knowledge Checklist Score}, a structured metric that measures how well generated images satisfy key semantic expectations. Experiments across 21 state-of-the-art models reveal that while diffusion models lead among open-source methods, proprietary auto-regressive models like GPT-4o exhibit significantly stronger reasoning and knowledge integration. Our findings highlight the need for deeper understanding and inference capabilities in next-generation T2I systems. Project Page: \href{https://dwanzhang-ai.github.io/WorldGenBench/}{https://dwanzhang-ai.github.io/WorldGenBench/}
Authors:Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha, Jordan Lee Boyd-Graber
Abstract:
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws. Our code is available at https://github.com/zli12321/VideoHallu.git.
Authors:Zhe Zhang, Mingxiu Cai, Hanxiao Wang, Gaochang Wu, Tianyou Chai, Xiatian Zhu
Abstract:
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
Authors:Vaidehi Patil, Yi-Lin Sung, Peter Hase, Jie Peng, Tianlong Chen, Mohit Bansal
Abstract:
LLMs trained on massive datasets may inadvertently acquire sensitive information such as personal details and potentially harmful content. This risk is further heightened in multimodal LLMs as they integrate information from multiple modalities (image and text). Adversaries can exploit this knowledge through multimodal prompts to extract sensitive details. Evaluating how effectively MLLMs can forget such information (targeted unlearning) necessitates the creation of high-quality, well-annotated image-text pairs. While prior work on unlearning has focused on text, multimodal unlearning remains underexplored. To address this gap, we first introduce a multimodal unlearning benchmark, UnLOK-VQA (Unlearning Outside Knowledge VQA), as well as an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs. We extend a visual question-answering dataset using an automated pipeline that generates varying-proximity samples for testing generalization and specificity, followed by manual filtering for maintaining high quality. We then evaluate six defense objectives against seven attacks (four whitebox, three blackbox), including a novel whitebox method leveraging interpretability of hidden states. Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states. Additionally, larger models exhibit greater post-editing robustness, suggesting that scale enhances safety. UnLOK-VQA provides a rigorous benchmark for advancing unlearning in MLLMs.
Authors:Chaoyi Wang, Junjie Zheng, Zihao Chen, Shiyu Xia, Chaofan Ding, Xiaohao Zhang, Xi Tao, Xiaoming He, Xinhan Di
Abstract:
Movie dubbing has advanced significantly, yet assessing the real-world effectiveness of these models remains challenging. A comprehensive evaluation benchmark is crucial for two key reasons: 1) Existing metrics fail to fully capture the complexities of dialogue, narration, monologue, and actor adaptability in movie dubbing. 2) A practical evaluation system should offer valuable insights to improve movie dubbing quality and advancement in film production. To this end, we introduce Talking Adaptive Dubbing Benchmarks (TA-Dubbing), designed to improve film production by adapting to dialogue, narration, monologue, and actors in movie dubbing. TA-Dubbing offers several key advantages: 1) Comprehensive Dimensions: TA-Dubbing covers a variety of dimensions of movie dubbing, incorporating metric evaluations for both movie understanding and speech generation. 2) Versatile Benchmarking: TA-Dubbing is designed to evaluate state-of-the-art movie dubbing models and advanced multi-modal large language models. 3) Full Open-Sourcing: We fully open-source TA-Dubbing at https://github.com/woka- 0a/DeepDubber- V1 including all video suits, evaluation methods, annotations. We also continuously integrate new movie dubbing models into the TA-Dubbing leaderboard at https://github.com/woka- 0a/DeepDubber-V1 to drive forward the field of movie dubbing.
Authors:Carlo Siebenschuh, Kyle Hippe, Ozan Gokdemir, Alexander Brace, Arham Khan, Khalid Hossain, Yadu Babuji, Nicholas Chia, Venkatram Vishwanath, Rick Stevens, Arvind Ramanathan, Ian Foster, Robert Underwood
Abstract:
Language models for scientific tasks are trained on text from scientific publications, most distributed as PDFs that require parsing. PDF parsing approaches range from inexpensive heuristics (for simple documents) to computationally intensive ML-driven systems (for complex or degraded ones). The choice of the "best" parser for a particular document depends on its computational cost and the accuracy of its output. To address these issues, we introduce an Adaptive Parallel PDF Parsing and Resource Scaling Engine (AdaParse), a data-driven strategy for assigning an appropriate parser to each document. We enlist scientists to select preferred parser outputs and incorporate this information through direct preference optimization (DPO) into AdaParse, thereby aligning its selection process with human judgment. AdaParse then incorporates hardware requirements and predicted accuracy of each parser to orchestrate computational resources efficiently for large-scale parsing campaigns. We demonstrate that AdaParse, when compared to state-of-the-art parsers, improves throughput by $17\times$ while still achieving comparable accuracy (0.2 percent better) on a benchmark set of 1000 scientific documents. AdaParse's combination of high accuracy and parallel scalability makes it feasible to parse large-scale scientific document corpora to support the development of high-quality, trillion-token-scale text datasets. The implementation is available at https://github.com/7shoe/AdaParse/
Authors:Wenqi Guo, Mohamed Shehata, Shan Du
Abstract:
Camouflaged object segmentation presents unique challenges compared to traditional segmentation tasks, primarily due to the high similarity in patterns and colors between camouflaged objects and their backgrounds. Effective solutions to this problem have significant implications in critical areas such as pest control, defect detection, and lesion segmentation in medical imaging. Prior research has predominantly emphasized supervised or unsupervised pre-training methods, leaving zero-shot approaches significantly underdeveloped. Existing zero-shot techniques commonly utilize the Segment Anything Model (SAM) in automatic mode or rely on vision-language models to generate cues for segmentation; however, their performances remain unsatisfactory, due to the similarity of the camouflaged object and the background. This work studies how to avoid training by integrating large pre-trained models like SAM-2 and Owl-v2 with temporal information into a modular pipeline. Evaluated on the MoCA-Mask dataset, our approach achieves outstanding performance improvements, significantly outperforming existing zero-shot methods by raising the F-measure ($F_β^w$) from 0.296 to 0.628. Our approach also surpasses supervised methods, increasing the F-measure from 0.476 to 0.628. Additionally, evaluation on the MoCA-Filter dataset demonstrates an increase in the success rate from 0.628 to 0.697 when compared with FlowSAM, a supervised transfer method. A thorough ablation study further validates the individual contributions of each component. Besides our main contributions, we also highlight inconsistencies in previous work regarding metrics and settings. Code can be found in https://github.com/weathon/vcos.
Authors:Rahuul Rangaraj, Jimeng Shi, Azam Shirali, Rajendra Paudel, Yanzhao Wu, Giri Narasimhan
Abstract:
The Everglades play a crucial role in flood and drought regulation, water resource planning, and ecosystem management in the surrounding regions. However, traditional physics-based and statistical methods for predicting water levels often face significant challenges, including high computational costs and limited adaptability to diverse or unforeseen conditions. Recent advancements in large time series models have demonstrated the potential to address these limitations, with state-of-the-art deep learning and foundation models achieving remarkable success in time series forecasting across various domains. Despite this progress, their application to critical environmental systems, such as the Everglades, remains underexplored. In this study, we fill the gap by investigating twelve task-specific models and five time series foundation models across six categories for a real-world application focused on water level prediction in the Everglades. Our primary results show that the foundation model Chronos significantly outperforms all other models while the remaining foundation models exhibit relatively poor performance. We also noticed that the performance of task-specific models varies with the model architectures, and discussed the possible reasons. We hope our study and findings will inspire the community to explore the applicability of large time series models in hydrological applications. The code and data are available at https://github.com/rahuul2992000/Everglades-Benchmark.
Authors:Mohammadreza Teymoorianfard, Shiqing Ma, Amir Houmansadr
Abstract:
The rapid rise of video diffusion models has enabled the generation of highly realistic and temporally coherent videos, raising critical concerns about content authenticity, provenance, and misuse. Existing watermarking approaches, whether passive, post-hoc, or adapted from image-based techniques, often struggle to withstand video-specific manipulations such as frame insertion, dropping, or reordering, and typically degrade visual quality. In this work, we introduce VIDSTAMP, a watermarking framework that embeds per-frame or per-segment messages directly into the latent space of temporally-aware video diffusion models. By fine-tuning the model's decoder through a two-stage pipeline, first on static image datasets to promote spatial message separation, and then on synthesized video sequences to restore temporal consistency, VIDSTAMP learns to embed high-capacity, flexible watermarks with minimal perceptual impact. Leveraging architectural components such as 3D convolutions and temporal attention, our method imposes no additional inference cost and offers better perceptual quality than prior methods, while maintaining comparable robustness against common distortions and tampering. VIDSTAMP embeds 768 bits per video (48 bits per frame) with a bit accuracy of 95.0%, achieves a log P-value of -166.65 (lower is better), and maintains a video quality score of 0.836, comparable to unwatermarked outputs (0.838) and surpassing prior methods in capacity-quality tradeoffs. Code: Code: \url{https://github.com/SPIN-UMass/VidStamp}
Authors:Yang Jin, Jun Lv, Wenye Yu, Hongjie Fang, Yong-Lu Li, Cewu Lu
Abstract:
Self-improvement requires robotic systems to initially learn from human-provided data and then gradually enhance their capabilities through interaction with the environment. This is similar to how humans improve their skills through continuous practice. However, achieving effective self-improvement is challenging, primarily because robots tend to repeat their existing abilities during interactions, often failing to generate new, valuable data for learning. In this paper, we identify the key to successful self-improvement: modal-level exploration and data selection. By incorporating a modal-level exploration mechanism during policy execution, the robot can produce more diverse and multi-modal interactions. At the same time, we select the most valuable trials and high-quality segments from these interactions for learning. We successfully demonstrate effective robot self-improvement on both simulation benchmarks and real-world experiments. The capability for self-improvement will enable us to develop more robust and high-success-rate robotic control strategies at a lower cost. Our code and experiment scripts are available at https://ericjin2002.github.io/SIME/
Authors:Fahong Zhang, Yilei Shi, Xiao Xiang Zhu
Abstract:
This paper addresses the challenge of mapping polygonal buildings from remote sensing images and introduces a novel algorithm, the Global Collinearity-aware Polygonizer (GCP). GCP, built upon an instance segmentation framework, processes binary masks produced by any instance segmentation model. The algorithm begins by collecting polylines sampled along the contours of the binary masks. These polylines undergo a refinement process using a transformer-based regression module to ensure they accurately fit the contours of the targeted building instances. Subsequently, a collinearity-aware polygon simplification module simplifies these refined polylines and generate the final polygon representation. This module employs dynamic programming technique to optimize an objective function that balances the simplicity and fidelity of the polygons, achieving globally optimal solutions. Furthermore, the optimized collinearity-aware objective is seamlessly integrated into network training, enhancing the cohesiveness of the entire pipeline. The effectiveness of GCP has been validated on two public benchmarks for polygonal building mapping. Further experiments reveal that applying the collinearity-aware polygon simplification module to arbitrary polylines, without prior knowledge, enhances accuracy over traditional methods such as the Douglas-Peucker algorithm. This finding underscores the broad applicability of GCP. The code for the proposed method will be made available at https://github.com/zhu-xlab.
Authors:Dan Barry, Davoud Shariat Panah, Alessandro Ragano, Jan Skoglund, Andrew Hines
Abstract:
The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library's capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/
Authors:Dongliang Guo, Mengxuan Hu, Zihan Guan, Thomas Hartvigsen, Sheng Li
Abstract:
Large multi-modal models inevitably decay over time as facts update and previously learned information becomes outdated. Traditional approaches such as fine-tuning are often impractical for updating these models due to their size and complexity. Instead, direct knowledge editing within the models presents a more viable solution. Current model editing techniques, however, typically overlook the unique influence ranges of different facts, leading to compromised model performance in terms of both generality and locality. To address this issue, we introduce the concept of the generality-locality trade-off in multi-modal model editing. We develop a new model editing dataset named OKEDIT, specifically designed to effectively evaluate this trade-off. Building on this foundation, we propose \textbf{BalancEdit}, a novel method for balanced model editing that dynamically achieves an optimal balance between generality and locality. BalancEdit utilizes a unique mechanism that generates both positive and negative samples for each fact to accurately determine its influence scope and incorporates these insights into the model's latent space using a discrete, localized codebook of edits, without modifying the underlying model weights. To our knowledge, this is the first approach explicitly addressing the generality-locality trade-off in multi-modal model editing. Our comprehensive results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities. Our code and dataset are available at https://github.com/donglgcn/BalancEdit/tree/MMOKVQA.
Authors:MatÄj Boxan, Alexander Krawciw, Timothy D. Barfoot, François Pomerleau
Abstract:
Teach and repeat is a rapid way to achieve autonomy in challenging terrain and off-road environments. A human operator pilots the vehicles to create a network of paths that are mapped and associated with odometry. Immediately after teaching, the system can drive autonomously within its tracks. This precision lets operators remain confident that the robot will follow a traversable route. However, this operational paradigm has rarely been explored in off-road environments that change significantly through seasonal variation. This paper presents preliminary field trials using lidar and radar implementations of teach and repeat. Using a subset of the data from the upcoming FoMo dataset, we attempted to repeat routes that were 4 days, 44 days, and 113 days old. Lidar teach and repeat demonstrated a stronger ability to localize when the ground points were removed. FMCW radar was often able to localize on older maps, but only with small deviations from the taught path. Additionally, we highlight specific cases where radar localization failed with recent maps due to the high pitch or roll of the vehicle. We highlight lessons learned during the field deployment and highlight areas to improve to achieve reliable teach and repeat with seasonal changes in the environment. Please follow the dataset at https://norlab-ulaval.github.io/FoMo-website for updates and information on the data release.
Authors:Changhe Chen, Quantao Yang, Xiaohao Xu, Nima Fazeli, Olov Andersson
Abstract:
One of the central challenges preventing robots from acquiring complex manipulation skills is the prohibitive cost of collecting large-scale robot demonstrations. In contrast, humans are able to learn efficiently by watching others interact with their environment. To bridge this gap, we introduce semantic action flow as a core intermediate representation capturing the essential spatio-temporal manipulator-object interactions, invariant to superficial visual differences. We present ViSA-Flow, a framework that learns this representation self-supervised from unlabeled large-scale video data. First, a generative model is pre-trained on semantic action flows automatically extracted from large-scale human-object interaction video data, learning a robust prior over manipulation structure. Second, this prior is efficiently adapted to a target robot by fine-tuning on a small set of robot demonstrations processed through the same semantic abstraction pipeline. We demonstrate through extensive experiments on the CALVIN benchmark and real-world tasks that ViSA-Flow achieves state-of-the-art performance, particularly in low-data regimes, outperforming prior methods by effectively transferring knowledge from human video observation to robotic execution. Videos are available at https://visaflow-web.github.io/ViSAFLOW.
Authors:Yajuan Zhang, Jiahai Jiang, Yule Yan, Liang Yang, Ping Zhang
Abstract:
Accurate wind power forecasting can help formulate scientific dispatch plans, which is of great significance for maintaining the safety, stability, and efficient operation of the power system. In recent years, wind power forecasting methods based on deep learning have focused on extracting the spatiotemporal correlations among data, achieving significant improvements in forecasting accuracy. However, they exhibit two limitations. First, there is a lack of modeling for the inter-variable relationships, which limits the accuracy of the forecasts. Second, by treating endogenous and exogenous variables equally, it leads to unnecessary interactions between the endogenous and exogenous variables, increasing the complexity of the model. In this paper, we propose the 2DXformer, which, building upon the previous work's focus on spatiotemporal correlations, addresses the aforementioned two limitations. Specifically, we classify the inputs of the model into three types: exogenous static variables, exogenous dynamic variables, and endogenous variables. First, we embed these variables as variable tokens in a channel-independent manner. Then, we use the attention mechanism to capture the correlations among exogenous variables. Finally, we employ a multi-layer perceptron with residual connections to model the impact of exogenous variables on endogenous variables. Experimental results on two real-world large-scale datasets indicate that our proposed 2DXformer can further improve the performance of wind power forecasting. The code is available in this repository: \href{https://github.com/jseaj/2DXformer}{https://github.com/jseaj/2DXformer}.
Authors:Vladimir Somers, Baptiste Standaert, Victor Joos, Alexandre Alahi, Christophe De Vleeschouwer
Abstract:
Online multi-object tracking has been recently dominated by tracking-by-detection (TbD) methods, where recent advances rely on increasingly sophisticated heuristics for tracklet representation, feature fusion, and multi-stage matching. The key strength of TbD lies in its modular design, enabling the integration of specialized off-the-shelf models like motion predictors and re-identification. However, the extensive usage of human-crafted rules for temporal associations makes these methods inherently limited in their ability to capture the complex interplay between various tracking cues. In this work, we introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation, that learns resilient association strategies directly from data, breaking free from hand-crafted heuristics while maintaining TbD's valuable modularity. At its core, CAMEL employs two transformer-based modules and relies on a novel association-centric training scheme to effectively model the complex interactions between tracked targets and their various association cues. Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models. Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks. Our code is available at https://github.com/TrackingLaboratory/CAMELTrack.
Authors:Edson Araujo, Andrew Rouditchenko, Yuan Gong, Saurabhchand Bhati, Samuel Thomas, Brian Kingsbury, Leonid Karlinsky, Rogerio Feris, James R. Glass, Hilde Kuehne
Abstract:
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
Authors:Youngsik Yun, Jeongmin Bae, Hyunseung Son, Seoha Kim, Hahyun Lee, Gun Bang, Youngjung Uh
Abstract:
Online reconstruction of dynamic scenes is significant as it enables learning scenes from live-streaming video inputs, while existing offline dynamic reconstruction methods rely on recorded video inputs. However, previous online reconstruction approaches have primarily focused on efficiency and rendering quality, overlooking the temporal consistency of their results, which often contain noticeable artifacts in static regions. This paper identifies that errors such as noise in real-world recordings affect temporal inconsistency in online reconstruction. We propose a method that enhances temporal consistency in online reconstruction from observations with temporal inconsistency which is inevitable in cameras. We show that our method restores the ideal observation by subtracting the learned error. We demonstrate that applying our method to various baselines significantly enhances both temporal consistency and rendering quality across datasets. Code, video results, and checkpoints are available at https://bbangsik13.github.io/OR2.
Authors:Keiller Nogueira, Akram Zaytar, Wanli Ma, Ribana Roscher, Ronny Hänsch, Caleb Robinson, Anthony Ortiz, Simone Nsutezo, Rahul Dodhia, Juan M. Lavista Ferres, Oktay KarakuÅ, Paul L. Rosin
Abstract:
The increasing accessibility of remotely sensed data and the potential of such data to inform large-scale decision-making has driven the development of deep learning models for many Earth Observation tasks. Traditionally, such models must be trained on large datasets. However, the common assumption that broadly larger datasets lead to better outcomes tends to overlook the complexities of the data distribution, the potential for introducing biases and noise, and the computational resources required for processing and storing vast datasets. Therefore, effective solutions should consider both the quantity and quality of data. In this paper, we propose six novel core-set selection methods for selecting important subsets of samples from remote sensing image segmentation datasets that rely on imagery only, labels only, and a combination of each. We benchmark these approaches against a random-selection baseline on three commonly used land cover classification datasets: DFC2022, Vaihingen, and Potsdam. In each of the datasets, we demonstrate that training on a subset of samples outperforms the random baseline, and some approaches outperform training on all available data. This result shows the importance and potential of data-centric learning for the remote sensing domain. The code is available at https://github.com/keillernogueira/data-centric-rs-classification/.
Authors:Kui Jiang, Yan Luo, Junjun Jiang, Xin Xu, Fei Ma, Fei Yu
Abstract:
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications, where wavelength-dependent attenuation causes severe content degradation and color distortion. While recent state space models like Mamba show potential for long-range dependency modeling, their unfolding operations and fixed scan paths on 1D sequences fail to adapt to local object semantics and global relation modeling, limiting their efficacy in complex underwater environments. To address this, we enhance conventional Mamba with the sorting-based scanning mechanism that dynamically reorders scanning sequences based on statistical distribution of spatial correlation of all pixels. In this way, it encourages the network to prioritize the most informative components--structural and semantic features. Upon building this mechanism, we devise a Visually Self-adaptive State Block (VSSB) that harmonizes dynamic sorting of Mamba with input-dependent dynamic convolution, enabling coherent integration of global context and local relational cues. This exquisite design helps eliminate global focus bias, especially for widely distributed contents, which greatly weakens the statistical frequency. For robust feature extraction and refinement, we design a cross-feature bridge (CFB) to adaptively fuse multi-scale representations. These efforts compose the novel relation-driven Mamba framework for effective UIE (RD-UIE). Extensive experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba in both quantitative metrics and visual fidelity, averagely achieving 0.55 dB performance gain on the three benchmarks. Our code is available at https://github.com/kkoucy/RD-UIE/tree/main
Authors:Ziyan Guo, Haoxuan Qu, Hossein Rahmani, Dewen Soh, Ping Hu, Qiuhong Ke, Jun Liu
Abstract:
Text-to-motion generation has recently garnered significant research interest, primarily focusing on generating human motion sequences in blank backgrounds. However, human motions commonly occur within diverse 3D scenes, which has prompted exploration into scene-aware text-to-motion generation methods. Yet, existing scene-aware methods often rely on large-scale ground-truth motion sequences in diverse 3D scenes, which poses practical challenges due to the expensive cost. To mitigate this challenge, we are the first to propose a \textbf{T}raining-free \textbf{S}cene-aware \textbf{T}ext-to-\textbf{Motion} framework, dubbed as \textbf{TSTMotion}, that efficiently empowers pre-trained blank-background motion generators with the scene-aware capability. Specifically, conditioned on the given 3D scene and text description, we adopt foundation models together to reason, predict and validate a scene-aware motion guidance. Then, the motion guidance is incorporated into the blank-background motion generators with two modifications, resulting in scene-aware text-driven motion sequences. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework. We release our code in \href{https://tstmotion.github.io/}{Project Page}.
Authors:Jiangtong Tan, Hu Yu, Jie Huang, Jie Xiao, Feng Zhao
Abstract:
Long video generation involves generating extended videos using models trained on short videos, suffering from distribution shifts due to varying frame counts. It necessitates the use of local information from the original short frames to enhance visual and motion quality, and global information from the entire long frames to ensure appearance consistency. Existing training-free methods struggle to effectively integrate the benefits of both, as appearance and motion in videos are closely coupled, leading to motion inconsistency and visual quality. In this paper, we reveal that global and local information can be precisely decoupled into consistent appearance and motion intensity information by applying Principal Component Analysis (PCA), allowing for refined complementary integration of global consistency and local quality. With this insight, we propose FreePCA, a training-free long video generation paradigm based on PCA that simultaneously achieves high consistency and quality. Concretely, we decouple consistent appearance and motion intensity features by measuring cosine similarity in the principal component space. Critically, we progressively integrate these features to preserve original quality and ensure smooth transitions, while further enhancing consistency by reusing the mean statistics of the initial noise. Experiments demonstrate that FreePCA can be applied to various video diffusion models without requiring training, leading to substantial improvements. Code is available at https://github.com/JosephTiTan/FreePCA.
Authors:Murtadha Ahmed, Wenbo, Liu yunfeng
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in In-Context Learning (ICL). However, the fixed position length constraints in pre-trained models limit the number of demonstration examples. Recent efforts to extend context suffer from attention dispersion as the number of demonstrations increases. In this paper, we introduce Mitigating Attention Dispersion in large-scale ICL (MateICL) that enables LLMs to maintain effective self-attention as the context size grows. We first split the context into multiple windows, each filled to the model's context capacity, which are processed separately. Then, we introduce an additional layer to recalibrate the attention weights, prioritizing the query tokens as the number of demonstrations increases. Our empirical results show that MateICL can effectively leverage larger contexts to improve ICL performance. Compared to retrieval-based baselines, MateICL consistently achieves better performance without requiring an externally trained retrieval model. Despite recent advances in inference strategies (e.g., 32k token contexts), our results demonstrate that MateICL remains beneficial in computationally resource-constrained settings. The code is publicly available at https://github.com/amurtadha/MateICL.
Authors:Daneul Kim, Jaeah Lee, Jaesik Park
Abstract:
Most real-world image editing tasks require multiple sequential edits to achieve desired results. Current editing approaches, primarily designed for single-object modifications, struggle with sequential editing: especially with maintaining previous edits along with adapting new objects naturally into the existing content. These limitations significantly hinder complex editing scenarios where multiple objects need to be modified while preserving their contextual relationships. We address this fundamental challenge through two key proposals: enabling rough mask inputs that preserve existing content while naturally integrating new elements and supporting consistent editing across multiple modifications. Our framework achieves this through layer-wise memory, which stores latent representations and prompt embeddings from previous edits. We propose Background Consistency Guidance that leverages memorized latents to maintain scene coherence and Multi-Query Disentanglement in cross-attention that ensures natural adaptation to existing content. To evaluate our method, we present a new benchmark dataset incorporating semantic alignment metrics and interactive editing scenarios. Through comprehensive experiments, we demonstrate superior performance in iterative image editing tasks with minimal user effort, requiring only rough masks while maintaining high-quality results throughout multiple editing steps.
Authors:Zhiwei Hao, Jianyuan Guo, Li Shen, Yong Luo, Han Hu, Guoxia Wang, Dianhai Yu, Yonggang Wen, Dacheng Tao
Abstract:
Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several components$\unicode{x2013}$such as weights, activations, and gradients$\unicode{x2013}$each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.
Authors:Yeonsang Shin, Jihwan Kim, Yumin Song, Kyungseung Lee, Hyunhee Chung, Taeyoung Na
Abstract:
Despite the remarkable progress in text-to-video models, achieving precise control over text elements and animated graphics remains a significant challenge, especially in applications such as video advertisements. To address this limitation, we introduce Animated Layout Generation, a novel approach to extend static graphic layouts with temporal dynamics. We propose a Structured Text Representation for fine-grained video control through hierarchical visual elements. To demonstrate the effectiveness of our approach, we present VAKER (Video Ad maKER), a text-to-video advertisement generation pipeline that combines a three-stage generation process with Unstructured Text Reasoning for seamless integration with LLMs. VAKER fully automates video advertisement generation by incorporating dynamic layout trajectories for objects and graphics across specific video frames. Through extensive evaluations, we demonstrate that VAKER significantly outperforms existing methods in generating video advertisements. Project Page: https://yeonsangshin.github.io/projects/Vaker
Authors:Lokesh Nagalapatti, Ashutosh Srivastava, Sunita Sarawagi, Amit Sharma
Abstract:
Diagnosing the root cause of an anomaly in a complex interconnected system is a pressing problem in today's cloud services and industrial operations. We propose In-Distribution Interventions (IDI), a novel algorithm that predicts root cause as nodes that meet two criteria: 1) **Anomaly:** root cause nodes should take on anomalous values; 2) **Fix:** had the root cause nodes assumed usual values, the target node would not have been anomalous. Prior methods of assessing the fix condition rely on counterfactuals inferred from a Structural Causal Model (SCM) trained on historical data. But since anomalies are rare and fall outside the training distribution, the fitted SCMs yield unreliable counterfactual estimates. IDI overcomes this by relying on interventional estimates obtained by solely probing the fitted SCM at in-distribution inputs. We present a theoretical analysis comparing and bounding the errors in assessing the fix condition using interventional and counterfactual estimates. We then conduct experiments by systematically varying the SCM's complexity to demonstrate the cases where IDI's interventional approach outperforms the counterfactual approach and vice versa. Experiments on both synthetic and PetShop RCD benchmark datasets demonstrate that \our\ consistently identifies true root causes more accurately and robustly than nine existing state-of-the-art RCD baselines. Code is released at https://github.com/nlokeshiisc/IDI_release.
Authors:Ihab Tabbara, Hussein Sibai
Abstract:
Safety filters, particularly those based on control barrier functions, have gained increased interest as effective tools for safe control of dynamical systems. Existing correct-by-construction synthesis algorithms for such filters, however, suffer from the curse-of-dimensionality. Deep learning approaches have been proposed in recent years to address this challenge. In this paper, we add to this set of approaches an algorithm for training neural control barrier functions from offline datasets. Such functions can be used to design constraints for quadratic programs that are then used as safety filters. Our algorithm trains these functions so that the system is not only prevented from reaching unsafe states but is also disincentivized from reaching out-of-distribution ones, at which they would be less reliable. It is inspired by Conservative Q-learning, an offline reinforcement learning algorithm. We call its outputs Conservative Control Barrier Functions (CCBFs). Our empirical results demonstrate that CCBFs outperform existing methods in maintaining safety while minimally affecting task performance. Source code is available at https://github.com/tabz23/CCBF.
Authors:Viktor Kocur, Charalambos Tzamos, Yaqing Ding, Zuzana Berger Haladova, Torsten Sattler, Zuzana Kukelova
Abstract:
Estimating the relative pose between two cameras is a fundamental step in many applications such as Structure-from-Motion. The common approach to relative pose estimation is to apply a minimal solver inside a RANSAC loop. Highly efficient solvers exist for pinhole cameras. Yet, (nearly) all cameras exhibit radial distortion. Not modeling radial distortion leads to (significantly) worse results. However, minimal radial distortion solvers are significantly more complex than pinhole solvers, both in terms of run-time and implementation efforts. This paper compares radial distortion solvers with two simple-to-implement approaches that do not use minimal radial distortion solvers: The first approach combines an efficient pinhole solver with sampled radial undistortion parameters, where the sampled parameters are used for undistortion prior to applying the pinhole solver. The second approach uses a state-of-the-art neural network to estimate the distortion parameters rather than sampling them from a set of potential values. Extensive experiments on multiple datasets, and different camera setups, show that complex minimal radial distortion solvers are not necessary in practice. We discuss under which conditions a simple sampling of radial undistortion parameters is preferable over calibrating cameras using a learning-based prior approach. Code and newly created benchmark for relative pose estimation under radial distortion are available at https://github.com/kocurvik/rdnet.
Authors:Quang P. M. Pham, Khoi T. N. Nguyen, Nhi H. Doan, Cuong A. Pham, Qinbo Sun, Weimin Qi, Kentaro Inui, Dezhen Song
Abstract:
Efficient path planning in robotics, particularly within large-scale, complex environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability hinder real-time deployment on edge devices. We present SmallPlan - a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like distance travel, providing more efficient path planning. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics. Our source code is available here: https://github.com/quangpham2006/SmallPlan
Authors:Fadi Abdeladhim Zidi, Abdelkrim Ouafi, Fares Bougourzi, Cosimo Distante, Abdelmalik Taleb-Ahmed
Abstract:
As one of the most widely cultivated and consumed crops, wheat is essential to global food security. However, wheat production is increasingly challenged by pests, diseases, climate change, and water scarcity, threatening yields. Traditional crop monitoring methods are labor-intensive and often ineffective for early issue detection. Hyperspectral imaging (HSI) has emerged as a non-destructive and efficient technology for remote crop health assessment. However, the high dimensionality of HSI data and limited availability of labeled samples present notable challenges. In recent years, deep learning has shown great promise in addressing these challenges due to its ability to extract and analysis complex structures. Despite advancements in applying deep learning methods to HSI data for wheat crop analysis, no comprehensive survey currently exists in this field. This review addresses this gap by summarizing benchmark datasets, tracking advancements in deep learning methods, and analyzing key applications such as variety classification, disease detection, and yield estimation. It also highlights the strengths, limitations, and future opportunities in leveraging deep learning methods for HSI-based wheat crop analysis. We have listed the current state-of-the-art papers and will continue tracking updating them in the following https://github.com/fadi-07/Awesome-Wheat-HSI-DeepLearning.
Authors:Wufei Ma, Luoxin Ye, Celso M de Melo, Jieneng Chen, Alan Yuille
Abstract:
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction. Our project page is available at: https://3d-spatial-reasoning.github.io/spatial-llm/
Authors:Junwon Seo, Kensuke Nakamura, Andrea Bajcsy
Abstract:
Recent advances in generative world models have enabled classical safe control methods, such as Hamilton-Jacobi (HJ) reachability, to generalize to complex robotic systems operating directly from high-dimensional sensor observations. However, obtaining comprehensive coverage of all safety-critical scenarios during world model training is extremely challenging. As a result, latent safety filters built on top of these models may miss novel hazards and even fail to prevent known ones, overconfidently misclassifying risky out-of-distribution (OOD) situations as safe. To address this, we introduce an uncertainty-aware latent safety filter that proactively steers robots away from both known and unseen failures. Our key idea is to use the world model's epistemic uncertainty as a proxy for identifying unseen potential hazards. We propose a principled method to detect OOD world model predictions by calibrating an uncertainty threshold via conformal prediction. By performing reachability analysis in an augmented state space-spanning both the latent representation and the epistemic uncertainty-we synthesize a latent safety filter that can reliably safeguard arbitrary policies from both known and unseen safety hazards. In simulation and hardware experiments on vision-based control tasks with a Franka manipulator, we show that our uncertainty-aware safety filter preemptively detects potential unsafe scenarios and reliably proposes safe, in-distribution actions. Video results can be found on the project website at https://cmu-intentlab.github.io/UNISafe
Authors:Branko BrkljaÄ, Milan BrkljaÄ
Abstract:
Practical applications of computer vision in smart cities usually assume system integration and operation in challenging open-world environments. In the case of person re-identification task the main goal is to retrieve information whether the specific person has appeared in another place at a different time instance of the same video, or over multiple camera feeds. This typically assumes collecting raw data from video surveillance cameras in different places and under varying illumination conditions. In the considered open-world setting it also requires detection and localization of the person inside the analyzed video frame before the main re-identification step. With multi-person and multi-camera setups the system complexity becomes higher, requiring sophisticated tracking solutions and re-identification models. In this work we will discuss existing challenges in system design architectures, consider possible solutions based on different computer vision techniques, and describe applications of such systems in retail stores and public spaces for improved marketing analytics. In order to analyse sensitivity of person re-identification task under different open-world environments, a performance of one close to real-time solution will be demonstrated over several video captures and live camera feeds. Finally, based on conducted experiments we will indicate further research directions and possible system improvements.
Authors:Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai Chen, Chunyu Miao, Hoang Nguyen, Yue Zhou, Weizhi Zhang, Liancheng Fang, Langzhou He, Yangning Li, Dongyuan Li, Renhe Jiang, Xue Liu, Philip S. Yu
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. These human-agent collaboration systems enable humans and LLM-based agents to collaborate effectively by leveraging their complementary strengths. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities arising from human-AI collaboration. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-Human-Agent-Collaboration-Interaction-Systems.
Authors:Zhengbin Zhang, Yan Wu, Hongkun Zhang
Abstract:
Collaborative perception has the potential to significantly enhance perceptual accuracy through the sharing of complementary information among agents. However, real-world collaborative perception faces persistent challenges, particularly in balancing perception performance and bandwidth limitations, as well as coping with localization errors. To address these challenges, we propose Fast2comm, a prior knowledge-based collaborative perception framework. Specifically, (1)we propose a prior-supervised confidence feature generation method, that effectively distinguishes foreground from background by producing highly discriminative confidence features; (2)we propose GT Bounding Box-based spatial prior feature selection strategy to ensure that only the most informative prior-knowledge features are selected and shared, thereby minimizing background noise and optimizing bandwidth efficiency while enhancing adaptability to localization inaccuracies; (3)we decouple the feature fusion strategies between model training and testing phases, enabling dynamic bandwidth adaptation. To comprehensively validate our framework, we conduct extensive experiments on both real-world and simulated datasets. The results demonstrate the superior performance of our model and highlight the necessity of the proposed methods. Our code is available at https://github.com/Zhangzhengbin-TJ/Fast2comm.
Authors:Jiajia Li, Xinda Qi, Seyed Hamidreza Nabaei, Meiqi Liu, Dong Chen, Xin Zhang, Xunyuan Yin, Zhaojian Li
Abstract:
Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment, making it crucial for advancing precision agriculture and crop improvement. 3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure, offering significant potential for accurate and automated phenotyping. This paper provides a comprehensive review of the 3D reconstruction techniques for plant phenotyping, covering classical reconstruction methods, emerging Neural Radiance Fields (NeRF), and the novel 3D Gaussian Splatting (3DGS) approach. Classical methods, which often rely on high-resolution sensors, are widely adopted due to their simplicity and flexibility in representing plant structures. However, they face challenges such as data density, noise, and scalability. NeRF, a recent advancement, enables high-quality, photorealistic 3D reconstructions from sparse viewpoints, but its computational cost and applicability in outdoor environments remain areas of active research. The emerging 3DGS technique introduces a new paradigm in reconstructing plant structures by representing geometry through Gaussian primitives, offering potential benefits in both efficiency and scalability. We review the methodologies, applications, and performance of these approaches in plant phenotyping and discuss their respective strengths, limitations, and future prospects (https://github.com/JiajiaLi04/3D-Reconstruction-Plants). Through this review, we aim to provide insights into how these diverse 3D reconstruction techniques can be effectively leveraged for automated and high-throughput plant phenotyping, contributing to the next generation of agricultural technology.
Authors:Marius-Constantin Dinu
Abstract:
This paper presents a novel primality test based on the eigenvalue structure of circulant matrices constructed from roots of unity. We prove that an integer $n > 2$ is prime if and only if the minimal polynomial of the circulant matrix $C_n = W_n + W_n^2$ has exactly two irreducible factors over $\mathbb{Q}$. This characterization connects cyclotomic field theory with matrix algebra, providing both theoretical insights and practical applications. We demonstrate that the eigenvalue patterns of these matrices reveal fundamental distinctions between prime and composite numbers, leading to a deterministic primality test. Our approach leverages the relationship between primitive roots of unity, Galois theory, and the factorization of cyclotomic polynomials. We provide comprehensive experimental validation across various ranges of integers, discuss practical implementation considerations, and analyze the computational complexity of our method in comparison with established primality tests. The visual interpretation of our mathematical framework provides intuitive understanding of the algebraic structures that distinguish prime numbers. Our experimental validation demonstrates that our approach offers a deterministic alternative to existing methods, with performance characteristics reflecting its algebraic foundations.
Authors:Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, Hongsheng Li
Abstract:
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
Authors:Hanwen Jiang, Hao Tan, Peng Wang, Haian Jin, Yue Zhao, Sai Bi, Kai Zhang, Fujun Luan, Kalyan Sunkavalli, Qixing Huang, Georgios Pavlakos
Abstract:
We present RayZer, a self-supervised multi-view 3D Vision model trained without any 3D supervision, i.e., camera poses and scene geometry, while exhibiting emerging 3D awareness. Concretely, RayZer takes unposed and uncalibrated images as input, recovers camera parameters, reconstructs a scene representation, and synthesizes novel views. During training, RayZer relies solely on its self-predicted camera poses to render target views, eliminating the need for any ground-truth camera annotations and allowing RayZer to be trained with 2D image supervision. The emerging 3D awareness of RayZer is attributed to two key factors. First, we design a self-supervised framework, which achieves 3D-aware auto-encoding of input images by disentangling camera and scene representations. Second, we design a transformer-based model in which the only 3D prior is the ray structure, connecting camera, pixel, and scene simultaneously. RayZer demonstrates comparable or even superior novel view synthesis performance than ``oracle'' methods that rely on pose annotations in both training and testing. Project: https://hwjiang1510.github.io/RayZer/
Authors:Wayne Wu, Honglin He, Chaoyuan Zhang, Jack He, Seth Z. Zhao, Ran Gong, Quanyi Li, Bolei Zhou
Abstract:
Micromobility, which utilizes lightweight mobile machines moving in urban public spaces, such as delivery robots and mobility scooters, emerges as a promising alternative to vehicular mobility. Current micromobility depends mostly on human manual operation (in-person or remote control), which raises safety and efficiency concerns when navigating busy urban environments full of unpredictable obstacles and pedestrians. Assisting humans with AI agents in maneuvering micromobility devices presents a viable solution for enhancing safety and efficiency. In this work, we present a scalable urban simulation solution to advance autonomous micromobility. First, we build URBAN-SIM - a high-performance robot learning platform for large-scale training of embodied agents in interactive urban scenes. URBAN-SIM contains three critical modules: Hierarchical Urban Generation pipeline, Interactive Dynamics Generation strategy, and Asynchronous Scene Sampling scheme, to improve the diversity, realism, and efficiency of robot learning in simulation. Then, we propose URBAN-BENCH - a suite of essential tasks and benchmarks to gauge various capabilities of the AI agents in achieving autonomous micromobility. URBAN-BENCH includes eight tasks based on three core skills of the agents: Urban Locomotion, Urban Navigation, and Urban Traverse. We evaluate four robots with heterogeneous embodiments, such as the wheeled and legged robots, across these tasks. Experiments on diverse terrains and urban structures reveal each robot's strengths and limitations.
Authors:Tiange Luo, Lajanugen Logeswaran, Justin Johnson, Honglak Lee
Abstract:
We introduce RegionFocus, a visual test-time scaling approach for Vision Language Model Agents. Understanding webpages is challenging due to the visual complexity of GUI images and the large number of interface elements, making accurate action selection difficult. Our approach dynamically zooms in on relevant regions, reducing background clutter and improving grounding accuracy. To support this process, we propose an image-as-map mechanism that visualizes key landmarks at each step, providing a transparent action record and enables the agent to effectively choose among action candidates. Even with a simple region selection strategy, we observe significant performance gains of 28+\% on Screenspot-pro and 24+\% on WebVoyager benchmarks on top of two state-of-the-art open vision language model agents, UI-TARS and Qwen2.5-VL, highlighting the effectiveness of visual test-time scaling in interactive settings. We achieve a new state-of-the-art grounding performance of 61.6\% on the ScreenSpot-Pro benchmark by applying RegionFocus to a Qwen2.5-VL-72B model. Our code will be released publicly at https://github.com/tiangeluo/RegionFocus.
Authors:Arsha Nagrani, Sachit Menon, Ahmet Iscen, Shyamal Buch, Ramin Mehran, Nilpa Jha, Anja Hauth, Yukun Zhu, Carl Vondrick, Mikhail Sirotenko, Cordelia Schmid, Tobias Weyand
Abstract:
Multimodal LLMs are turning their focus to video benchmarks, however most video benchmarks only provide outcome supervision, with no intermediate or interpretable reasoning steps. This makes it challenging to assess if models are truly able to combine perceptual and temporal information to reason about videos, or simply get the correct answer by chance or by exploiting linguistic biases. To remedy this, we provide a new video reasoning dataset called MINERVA for modern multimodal models. Each question in the dataset comes with 5 answer choices, as well as detailed, hand-crafted reasoning traces. Our dataset is multimodal, diverse in terms of video domain and length, and consists of complex multi-step questions. Extensive benchmarking shows that our dataset provides a challenge for frontier open-source and proprietary models. We perform fine-grained error analysis to identify common failure modes across various models, and create a taxonomy of reasoning errors. We use this to explore both human and LLM-as-a-judge methods for scoring video reasoning traces, and find that failure modes are primarily related to temporal localization, followed by visual perception errors, as opposed to logical or completeness errors. The dataset, along with questions, answer candidates and reasoning traces will be publicly available under https://github.com/google-deepmind/neptune?tab=readme-ov-file\#minerva.
Authors:Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata, Kam-Fai Wong, Jeff Z. Pan
Abstract:
Memory is a fundamental component of AI systems, underpinning large language models (LLMs)-based agents. While prior surveys have focused on memory applications with LLMs (e.g., enabling personalized memory in conversational agents), they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric and contextual forms, and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
Authors:Wenkai Yang, Jingwen Chen, Yankai Lin, Ji-Rong Wen
Abstract:
As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.
Authors:Atahan Karagoz
Abstract:
Unsupervised learning of disease subtypes from multi-omics data presents a significant opportunity for advancing personalized medicine. We introduce OmicsCL, a modular contrastive learning framework that jointly embeds heterogeneous omics modalities-such as gene expression, DNA methylation, and miRNA expression-into a unified latent space. Our method incorporates a survival-aware contrastive loss that encourages the model to learn representations aligned with survival-related patterns, without relying on labeled outcomes. Evaluated on the TCGA BRCA dataset, OmicsCL uncovers clinically meaningful clusters and achieves strong unsupervised concordance with patient survival. The framework demonstrates robustness across hyperparameter configurations and can be tuned to prioritize either subtype coherence or survival stratification. Ablation studies confirm that integrating survival-aware loss significantly enhances the predictive power of learned embeddings. These results highlight the promise of contrastive objectives for biological insight discovery in high-dimensional, heterogeneous omics data.
Authors:Marco Braga, Pranav Kasela, Alessandro Raganato, Gabriella Pasi
Abstract:
Large Language Models (LLMs) have shown impressive zero-shot performance across a variety of Natural Language Processing tasks, including document re-ranking. However, their effectiveness degrades on unseen tasks and domains, largely due to shifts in vocabulary and word distributions. In this paper, we investigate Task Arithmetic, a technique that combines the weights of LLMs pre-trained on different tasks or domains via simple mathematical operations, such as addition or subtraction, to adapt retrieval models without requiring additional fine-tuning. Our method is able to synthesize diverse tasks and domain knowledge into a single model, enabling effective zero-shot adaptation in different retrieval contexts. Extensive experiments on publicly available scientific, biomedical, and multilingual datasets show that our method improves state-of-the-art re-ranking performance by up to 18% in NDCG@10 and 15% in P@10. In addition to these empirical gains, our analysis provides insights into the strengths and limitations of Task Arithmetic as a practical strategy for zero-shot learning and model adaptation. We make our code publicly available at https://github.com/DetectiveMB/Task-Arithmetic-for-ZS-IR.
Authors:Muyi Bao, Shuchang Lyu, Zhaoyang Xu, Huiyu Zhou, Jinchang Ren, Shiming Xiang, Xiangtai Li, Guangliang Cheng
Abstract:
Deep learning has profoundly transformed remote sensing, yet prevailing architectures like Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) remain constrained by critical trade-offs: CNNs suffer from limited receptive fields, while ViTs grapple with quadratic computational complexity, hindering their scalability for high-resolution remote sensing data. State Space Models (SSMs), particularly the recently proposed Mamba architecture, have emerged as a paradigm-shifting solution, combining linear computational scaling with global context modeling. This survey presents a comprehensive review of Mamba-based methodologies in remote sensing, systematically analyzing about 120 Mamba-based remote sensing studies to construct a holistic taxonomy of innovations and applications. Our contributions are structured across five dimensions: (i) foundational principles of vision Mamba architectures, (ii) micro-architectural advancements such as adaptive scan strategies and hybrid SSM formulations, (iii) macro-architectural integrations, including CNN-Transformer-Mamba hybrids and frequency-domain adaptations, (iv) rigorous benchmarking against state-of-the-art methods in multiple application tasks, such as object detection, semantic segmentation, change detection, etc. and (v) critical analysis of unresolved challenges with actionable future directions. By bridging the gap between SSM theory and remote sensing practice, this survey establishes Mamba as a transformative framework for remote sensing analysis. To our knowledge, this paper is the first systematic review of Mamba architectures in remote sensing. Our work provides a structured foundation for advancing research in remote sensing systems through SSM-based methods. We curate an open-source repository (https://github.com/BaoBao0926/Awesome-Mamba-in-Remote-Sensing) to foster community-driven advancements.
Authors:Simon Giebenhain, Tobias Kirschstein, Martin Rünz, Lourdes Agapito, Matthias NieÃner
Abstract:
We address the 3D reconstruction of human faces from a single RGB image. To this end, we propose Pixel3DMM, a set of highly-generalized vision transformers which predict per-pixel geometric cues in order to constrain the optimization of a 3D morphable face model (3DMM). We exploit the latent features of the DINO foundation model, and introduce a tailored surface normal and uv-coordinate prediction head. We train our model by registering three high-quality 3D face datasets against the FLAME mesh topology, which results in a total of over 1,000 identities and 976K images. For 3D face reconstruction, we propose a FLAME fitting opitmization that solves for the 3DMM parameters from the uv-coordinate and normal estimates. To evaluate our method, we introduce a new benchmark for single-image face reconstruction, which features high diversity facial expressions, viewing angles, and ethnicities. Crucially, our benchmark is the first to evaluate both posed and neutral facial geometry. Ultimately, our method outperforms the most competitive baselines by over 15% in terms of geometric accuracy for posed facial expressions.
Authors:Haozheng Luo, Chenghao Qiu, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu
Abstract:
To address the challenge of scarce computational resources in genomic modeling, we introduce GERM, a genomic foundation model with strong compression performance and fast adaptability. GERM improves upon models like DNABERT-2 by eliminating outliers that hinder low-rank adaptation and post-training quantization, enhancing both efficiency and robustness. We replace the vanilla attention layer with an outlier-free mechanism inspired by associative memory models. By removing outliers during both pre-training and fine-tuning, this approach accelerates adaptation, reduces computational costs, and enhances quantization robustness within acceptable loss margins. Additionally, we propose GERM-T, a strategy that employs small-step continual learning within the outlier-free framework, leveraging original checkpoints to avoid retraining from scratch. Empirically, GERM improves fine-tuning performance by 37.98% and quantization by 64.34% over the baseline model. It also reduces average kurtosis by 92.14% and maximum infinity norm by 82.77%. Compared to leading methods, GERM consistently delivers superior performance, offering a practical solution for genomic modeling in resource-constrained settings. Code is available at https://github.com/MAGICS-LAB/GERM.
Authors:Alex Schutz, Yang You, Matias Mattamala, Ipek Caliskanelli, Bruno Lacerda, Nick Hawes
Abstract:
Deterministic partially observable Markov decision processes (DetPOMDPs) often arise in planning problems where the agent is uncertain about its environmental state but can act and observe deterministically. In this paper, we propose DetMCVI, an adaptation of the Monte Carlo Value Iteration (MCVI) algorithm for DetPOMDPs, which builds policies in the form of finite-state controllers (FSCs). DetMCVI solves large problems with a high success rate, outperforming existing baselines for DetPOMDPs. We also verify the performance of the algorithm in a real-world mobile robot forest mapping scenario.
Authors:Lucas Robinet, Ahmad Berjaoui, Elizabeth Cohen-Jonathan Moyal
Abstract:
Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/BM-MAE
Authors:Jorgen Cani, Christos Diou, Spyridon Evangelatos, Panagiotis Radoglou-Grammatikis, Vasileios Argyriou, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos
Abstract:
In the field of X-ray security applications, even the smallest details can significantly impact outcomes. Objects that are heavily occluded or intentionally concealed pose a great challenge for detection, whether by human observation or through advanced technological applications. While certain Deep Learning (DL) architectures demonstrate strong performance in processing local information, such as Convolutional Neural Networks (CNNs), others excel in handling distant information, e.g., transformers. In X-ray security imaging the literature has been dominated by the use of CNN-based methods, while the integration of the two aforementioned leading architectures has not been sufficiently explored. In this paper, various hybrid CNN-transformer architectures are evaluated against a common CNN object detection baseline, namely YOLOv8. In particular, a CNN (HGNetV2) and a hybrid CNN-transformer (Next-ViT-S) backbone are combined with different CNN/transformer detection heads (YOLOv8 and RT-DETR). The resulting architectures are comparatively evaluated on three challenging public X-ray inspection datasets, namely EDS, HiXray, and PIDray. Interestingly, while the YOLOv8 detector with its default backbone (CSP-DarkNet53) is generally shown to be advantageous on the HiXray and PIDray datasets, when a domain distribution shift is incorporated in the X-ray images (as happens in the EDS datasets), hybrid CNN-transformer architectures exhibit increased robustness. Detailed comparative evaluation results, including object-level detection performance and object-size error analysis, demonstrate the strengths and weaknesses of each architectural combination and suggest guidelines for future research. The source code and network weights of the models employed in this study are available at https://github.com/jgenc/xray-comparative-evaluation.
Authors:Yue Meng, Chuchu Fan
Abstract:
Learning to solve complex tasks with signal temporal logic (STL) specifications is crucial to many real-world applications. However, most previous works only consider fixed or parametrized STL specifications due to the lack of a diverse STL dataset and encoders to effectively extract temporal logic information for downstream tasks. In this paper, we propose TeLoGraF, Temporal Logic Graph-encoded Flow, which utilizes Graph Neural Networks (GNN) encoder and flow-matching to learn solutions for general STL specifications. We identify four commonly used STL templates and collect a total of 200K specifications with paired demonstrations. We conduct extensive experiments in five simulation environments ranging from simple dynamical models in the 2D space to high-dimensional 7DoF Franka Panda robot arm and Ant quadruped navigation. Results show that our method outperforms other baselines in the STL satisfaction rate. Compared to classical STL planning algorithms, our approach is 10-100X faster in inference and can work on any system dynamics. Besides, we show our graph-encoding method's capability to solve complex STLs and robustness to out-distribution STL specifications. Code is available at https://github.com/mengyuest/TeLoGraF
Authors:Chanwoo Kim, Jinkyu Sung, Yebonn Han, Joonseok Lee
Abstract:
Graph convolutional networks have recently gained prominence in collaborative filtering (CF) for recommendations. However, we identify potential bottlenecks in two foundational components. First, the embedding layer leads to a latent space with limited capacity, overlooking locally observed but potentially valuable preference patterns. Also, the widely-used neighborhood aggregation is limited in its ability to leverage diverse preference patterns in a fine-grained manner. Building on spectral graph theory, we reveal that these limitations stem from graph filtering with a cut-off in the frequency spectrum and a restricted linear form. To address these issues, we introduce ChebyCF, a CF framework based on graph spectral filtering. Instead of a learned embedding, it takes a user's raw interaction history to utilize the full spectrum of signals contained in it. Also, it adopts Chebyshev interpolation to effectively approximate a flexible non-linear graph filter, and further enhances it by using an additional ideal pass filter and degree-based normalization. Through extensive experiments, we verify that ChebyCF overcomes the aforementioned bottlenecks and achieves state-of-the-art performance across multiple benchmarks and reasonably fast inference. Our code is available at https://github.com/chanwoo0806/ChebyCF.
Authors:Qingyuan Wu, Yuhui Wang, Simon Sinong Zhan, Yixuan Wang, Chung-Wei Lin, Chen Lv, Qi Zhu, Jürgen Schmidhuber, Chao Huang
Abstract:
Reinforcement learning (RL) with delays is challenging as sensory perceptions lag behind the actual events: the RL agent needs to estimate the real state of its environment based on past observations. State-of-the-art (SOTA) methods typically employ recursive, step-by-step forecasting of states. This can cause the accumulation of compounding errors. To tackle this problem, our novel belief estimation method, named Directly Forecasting Belief Transformer (DFBT), directly forecasts states from observations without incrementally estimating intermediate states step-by-step. We theoretically demonstrate that DFBT greatly reduces compounding errors of existing recursively forecasting methods, yielding stronger performance guarantees. In experiments with D4RL offline datasets, DFBT reduces compounding errors with remarkable prediction accuracy. DFBT's capability to forecast state sequences also facilitates multi-step bootstrapping, thus greatly improving learning efficiency. On the MuJoCo benchmark, our DFBT-based method substantially outperforms SOTA baselines. Code is available at https://github.com/QingyuanWuNothing/DFBT.
Authors:Jeremias Ferrao, Luhan Mikaelson, Keenan Pepper, Natalia Perez-Campanero Antolin
Abstract:
A growing intuition in machine learning suggests a link between sparsity and interpretability. We introduce a novel self-ablation mechanism to investigate this connection ante-hoc in the context of language transformers. Our approach dynamically enforces a k-winner-takes-all constraint, forcing the model to demonstrate selective activation across neuron and attention units. Unlike post-hoc methods that analyze already-trained models, our approach integrates interpretability directly into model training, promoting feature localization from inception. Training small models on the TinyStories dataset and employing interpretability tests, we find that self-ablation leads to more localized circuits, concentrated feature representations, and increased neuron specialization without compromising language modelling performance. Surprisingly, our method also decreased overall sparsity, indicating that self-ablation promotes specialization rather than widespread inactivity. This reveals a complex interplay between sparsity and interpretability, where decreased global sparsity can coexist with increased local specialization, leading to enhanced interpretability. To facilitate reproducibility, we make our code available at https://github.com/keenanpepper/self-ablating-transformers.
Authors:Antoni Bigata, Rodrigo Mira, Stella Bounareli, MichaÅ StypuÅkowski, Konstantinos Vougioukas, Stavros Petridis, Maja Pantic
Abstract:
Lip synchronization, known as the task of aligning lip movements in an existing video with new input audio, is typically framed as a simpler variant of audio-driven facial animation. However, as well as suffering from the usual issues in talking head generation (e.g., temporal consistency), lip synchronization presents significant new challenges such as expression leakage from the input video and facial occlusions, which can severely impact real-world applications like automated dubbing, but are often neglected in existing works. To address these shortcomings, we present KeySync, a two-stage framework that succeeds in solving the issue of temporal consistency, while also incorporating solutions for leakage and occlusions using a carefully designed masking strategy. We show that KeySync achieves state-of-the-art results in lip reconstruction and cross-synchronization, improving visual quality and reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore, we demonstrate the effectiveness of our new masking approach in handling occlusions and validate our architectural choices through several ablation studies. Code and model weights can be found at https://antonibigata.github.io/KeySync.
Authors:Kwon Byung-Ki, Qi Dai, Lee Hyoseok, Chong Luo, Tae-Hyun Oh
Abstract:
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, namely, adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timesteps of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a viable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
Authors:Thomas Flinkow, Marco Casadio, Colin Kessler, Rosemary Monahan, Ekaterina Komendantskaya
Abstract:
Neural networks have been shown to frequently fail to learn critical safety and correctness properties purely from data, highlighting the need for training methods that directly integrate logical specifications. While adversarial training can be used to improve robustness to small perturbations within $ε$-cubes, domains other than computer vision -- such as control systems and natural language processing -- may require more flexible input region specifications via generalised hyper-rectangles. Differentiable logics offer a way to encode arbitrary logical constraints as additional loss terms that guide the learning process towards satisfying these constraints. In this paper, we investigate how these two complementary approaches can be unified within a single framework for property-driven machine learning, as a step toward effective formal verification of neural networks. We show that well-known properties from the literature are subcases of this general approach, and we demonstrate its practical effectiveness on a case study involving a neural network controller for a drone system. Our framework is made publicly available at https://github.com/tflinkow/property-driven-ml.
Authors:Fabian Woller, Lis Arend, Christian Fuchsberger, Markus List, David B. Blumenthal
Abstract:
Existing Python libraries and tools lack the ability to efficiently compute statistical test results for large datasets in the presence of missing values. This presents an issue as soon as constraints on runtime and memory availability become essential considerations for a particular usecase. Relevant research areas where such limitations arise include interactive tools and databases for exploratory analysis of biomedical data. To address this problem, we present the Python package NApy, which relies on a Numba and C++ backend with OpenMP parallelization to enable scalable statistical testing for mixed-type datasets in the presence of missing values. Both with respect to runtime and memory consumption, NApy outperforms competitor tools and baseline implementations with naive Python-based parallelization by orders of magnitude, thereby enabling on-the-fly analyses in interactive applications. NApy is publicly available at https://github.com/DyHealthNet/NApy.
Authors:Chenhao Xu, Longxiang Gao, Yuan Miao, Xi Zheng
Abstract:
As large language models (LLMs) become increasingly adopted on edge devices, Retrieval-Augmented Generation (RAG) is gaining prominence as a solution to address factual deficiencies and hallucinations by integrating external knowledge. However, centralized RAG architectures face significant challenges in data privacy and scalability. For instance, smart healthcare services often rely on collecting sensitive patient data and building a centralized knowledge base to provide better diagnosis and treatment advice, while privacy concerns significantly impede this process. Besides, maintaining a comprehensive and continuously updated knowledge base is costly, particularly in response to regional epidemics and rapidly mutating viruses. To address these challenges, this paper introduces Distributed Retrieval-Augmented Generation (DRAG), a novel framework that improves data privacy by eliminating the need for a centralized knowledge base and restoring data control to owners. DRAG incorporates a Topic-Aware Random Walk (TARW) algorithm that leverages LLMs to extract query topics and facilitate targeted peer discovery within a peer-to-peer network, enabling efficient knowledge retrieval in decentralized environments. Extensive experiments across three diverse datasets and LLMs demonstrate that DRAG with TARW achieves near-centralized RAG performance by using half as many messages as flooding. The code is available at https://github.com/xuchenhao001/DRAG.
Authors:Sindre M. Hegre, Welf Rehberg, Mihir Kulkarni, Kostas Alexis
Abstract:
This paper contributes an open-sourced implementation of a neural-network based controller framework within the PX4 stack. We develop a custom module for inference on the microcontroller while retaining all of the functionality of the PX4 autopilot. Policies trained in the Aerial Gym Simulator are converted to the TensorFlow Lite format and then built together with PX4 and flashed to the flight controller. The policies substitute the control-cascade within PX4 to offer an end-to-end position-setpoint tracking controller directly providing normalized motor RPM setpoints. Experiments conducted in simulation and the real-world show similar tracking performance. We thus provide a flight-ready pipeline for testing neural control policies in the real world. The pipeline simplifies the deployment of neural networks on embedded flight controller hardware thereby accelerating research on learning-based control. Both the Aerial Gym Simulator and the PX4 module are open-sourced at https://github.com/ntnu-arl/aerial_gym_simulator and https://github.com/SindreMHegre/PX4-Autopilot-public/tree/for_paper. Video: https://youtu.be/lY1OKz_UOqM?si=VtzL243BAY3lblTJ.
Authors:Ruiyuan Zhang, Qi Wang, Jiaxiang Liu, Yu Zhang, Yuchi Huo, Chao Wu
Abstract:
3D part assembly aims to understand part relationships and predict their 6-DoF poses to construct realistic 3D shapes, addressing the growing demand for autonomous assembly, which is crucial for robots. Existing methods mainly estimate the transformation of each part by training neural networks under supervision, which requires a substantial quantity of manually labeled data. However, the high cost of data collection and the immense variability of real-world shapes and parts make traditional methods impractical for large-scale applications. In this paper, we propose first a zero-shot part assembly method that utilizes pre-trained point cloud diffusion models as discriminators in the assembly process, guiding the manipulation of parts to form realistic shapes. Specifically, we theoretically demonstrate that utilizing a diffusion model for zero-shot part assembly can be transformed into an Iterative Closest Point (ICP) process. Then, we propose a novel pushing-away strategy to address the overlap parts, thereby further enhancing the robustness of the method. To verify our work, we conduct extensive experiments and quantitative comparisons to several strong baseline methods, demonstrating the effectiveness of the proposed approach, which even surpasses the supervised learning method. The code has been released on https://github.com/Ruiyuan-Zhang/Zero-Shot-Assembly.
Authors:Wenxuan Liu, Yao Deng, Kang Chen, Xian Zhong, Zhaofei Yu, Tiejun Huang
Abstract:
Existing saliency detection methods struggle in real-world scenarios due to motion blur and occlusions. In contrast, spike cameras, with their high temporal resolution, significantly enhance visual saliency maps. However, the composite noise inherent to spike camera imaging introduces discontinuities in saliency detection. Low-quality samples further distort model predictions, leading to saliency bias. To address these challenges, we propose Spike-navigated Optimal TrAnsport Saliency Region Detection (SOTA), a framework that leverages the strengths of spike cameras while mitigating biases in both spatial and temporal dimensions. Our method introduces Spike-based Micro-debias (SM) to capture subtle frame-to-frame variations and preserve critical details, even under minimal scene or lighting changes. Additionally, Spike-based Global-debias (SG) refines predictions by reducing inconsistencies across diverse conditions. Extensive experiments on real and synthetic datasets demonstrate that SOTA outperforms existing methods by eliminating composite noise bias. Our code and dataset will be released at https://github.com/lwxfight/sota.
Authors:Feng Xue, Wenzhuang Xu, Guofeng Zhong, Anlong Minga, Nicu Sebe
Abstract:
Open-vocabulary 3D panoptic segmentation has recently emerged as a significant trend. Top-performing methods currently integrate 2D segmentation with geometry-aware 3D primitives. However, the advantage would be lost without high-fidelity 3D point clouds, such as methods based on Neural Radiance Field (NeRF). These methods are limited by the insufficient capacity to maintain consistency across partial observations. To address this, recent works have utilized contrastive loss or cross-view association pre-processing for view consensus. In contrast to them, we present Cues3D, a compact approach that relies solely on NeRF instead of pre-associations. The core idea is that NeRF's implicit 3D field inherently establishes a globally consistent geometry, enabling effective object distinction without explicit cross-view supervision. We propose a three-phase training framework for NeRF, initialization-disambiguation-refinement, whereby the instance IDs are corrected using the initially-learned knowledge. Additionally, an instance disambiguation method is proposed to match NeRF-rendered 3D masks and ensure globally unique 3D instance identities. With the aid of Cues3D, we obtain highly consistent and unique 3D instance ID for each object across views with a balanced version of NeRF. Our experiments are conducted on ScanNet v2, ScanNet200, ScanNet++, and Replica datasets for 3D instance, panoptic, and semantic segmentation tasks. Cues3D outperforms other 2D image-based methods and competes with the latest 2D-3D merging based methods, while even surpassing them when using additional 3D point clouds. The code link could be found in the appendix and will be released on \href{https://github.com/mRobotit/Cues3D}{github}
Authors:Usman Muhammad, Jorma Laaksonen, Lyudmila Mihaylova
Abstract:
Deep neural networks have demonstrated highly competitive performance in super-resolution (SR) for natural images by learning mappings from low-resolution (LR) to high-resolution (HR) images. However, hyperspectral super-resolution remains an ill-posed problem due to the high spectral dimensionality of the data and the scarcity of available training samples. Moreover, existing methods often rely on large models with a high number of parameters or require the fusion with panchromatic or RGB images, both of which are often impractical in real-world scenarios. Inspired by the MobileNet architecture, we introduce a lightweight depthwise separable dilated convolutional network (DSDCN) to address the aforementioned challenges. Specifically, our model leverages multiple depthwise separable convolutions, similar to the MobileNet architecture, and further incorporates a dilated convolution fusion block to make the model more flexible for the extraction of both spatial and spectral features. In addition, we propose a custom loss function that combines mean squared error (MSE), an L2 norm regularization-based constraint, and a spectral angle-based loss, ensuring the preservation of both spectral and spatial details. The proposed model achieves very competitive performance on two publicly available hyperspectral datasets, making it well-suited for hyperspectral image super-resolution tasks. The source codes are publicly available at: \href{https://github.com/Usman1021/lightweight}{https://github.com/Usman1021/lightweight}.
Authors:Seungjun Shin, Suji Kim, Dokwan Oh
Abstract:
Implicit neural representations (INR) has found successful applications across diverse domains. To employ INR in real-life, it is important to speed up training. In the field of INR for video applications, the state-of-the-art approach employs grid-type parametric encoding and successfully achieves a faster encoding speed in comparison to its predecessors. However, the grid usage, which does not consider the video's dynamic nature, leads to redundant use of trainable parameters. As a result, it has significantly lower parameter efficiency and higher bitrate compared to NeRV-style methods that do not use a parametric encoding. To address the problem, we propose Neural Video representation with Temporally coherent Modulation (NVTM), a novel framework that can capture dynamic characteristics of video. By decomposing the spatio-temporal 3D video data into a set of 2D grids with flow information, NVTM enables learning video representation rapidly and uses parameter efficiently. Our framework enables to process temporally corresponding pixels at once, resulting in the fastest encoding speed for a reasonable video quality, especially when compared to the NeRV-style method, with a speed increase of over 3 times. Also, it remarks an average of 1.54dB/0.019 improvements in PSNR/LPIPS on UVG (Dynamic) (even with 10% fewer parameters) and an average of 1.84dB/0.013 improvements in PSNR/LPIPS on MCL-JCV (Dynamic), compared to previous grid-type works. By expanding this to compression tasks, we demonstrate comparable performance to video compression standards (H.264, HEVC) and recent INR approaches for video compression. Additionally, we perform extensive experiments demonstrating the superior performance of our algorithm across diverse tasks, encompassing super resolution, frame interpolation and video inpainting. Project page is https://sujiikim.github.io/NVTM/.
Authors:Yu-Hsiang Lan, Eric K. Oermann
Abstract:
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.
Authors:Shivani Guptasarma, Matthew Strong, Honghao Zhen, Monroe Kennedy
Abstract:
J-PARSE is a method for smooth first-order inverse kinematic control of a serial manipulator near kinematic singularities. The commanded end-effector velocity is interpreted component-wise, according to the available mobility in each dimension of the task space. First, a substitute "Safety" Jacobian matrix is created, keeping the aspect ratio of the manipulability ellipsoid above a threshold value. The desired motion is then projected onto non-singular and singular directions, and the latter projection scaled down by a factor informed by the threshold value. A right-inverse of the non-singular Safety Jacobian is applied to the modified command. In the absence of joint limits and collisions, this ensures smooth transition into and out of low-rank poses, guaranteeing asymptotic stability for target poses within the workspace, and stability for those outside. Velocity control with J-PARSE is benchmarked against the Least-Squares and Damped Least-Squares inversions of the Jacobian, and shows high accuracy in reaching and leaving singular target poses. By expanding the available workspace of manipulators, the method finds applications in servoing, teleoperation, and learning. Videos and code are available at https://jparse-manip.github.io/.
Authors:Zhijie Qiao, Haowei Li, Zhong Cao, Henry X. Liu
Abstract:
Vision-Language Models (VLMs) have demonstrated significant potential for end-to-end autonomous driving. However, the field still lacks a practical platform that enables dynamic model updates, rapid validation, fair comparison, and intuitive performance assessment. To that end, we introduce LightEMMA, a Lightweight End-to-End Multimodal Model for Autonomous driving. LightEMMA provides a unified, VLM-based autonomous driving framework without ad hoc customizations, enabling easy integration with evolving state-of-the-art commercial and open-source models. We construct twelve autonomous driving agents using various VLMs and evaluate their performance on the challenging nuScenes prediction task, comprehensively assessing computational metrics and providing critical insights. Illustrative examples show that, although VLMs exhibit strong scenario interpretation capabilities, their practical performance in autonomous driving tasks remains a concern. Additionally, increased model complexity and extended reasoning do not necessarily lead to better performance, emphasizing the need for further improvements and task-specific designs. The code is available at https://github.com/michigan-traffic-lab/LightEMMA.
Authors:Shingo Higashiguchi, Yasuko Matsubara, Koki Kawabata, Taichi Murayama, Yasushi Sakurai
Abstract:
Large quantities of social activity data, such as weekly web search volumes and the number of new infections with infectious diseases, reflect peoples' interests and activities. It is important to discover temporal patterns from such data and to forecast future activities accurately. However, modeling and forecasting social activity data streams is difficult because they are high-dimensional and composed of multiple time-varying dynamics such as trends, seasonality, and interest diffusion. In this paper, we propose D-Tracker, a method for continuously capturing time-varying temporal patterns within social activity tensor data streams and forecasting future activities. Our proposed method has the following properties: (a) Interpretable: it incorporates the partial differential equation into a tensor decomposition framework and captures time-varying temporal patterns such as trends, seasonality, and interest diffusion between locations in an interpretable manner; (b) Automatic: it has no hyperparameters and continuously models tensor data streams fully automatically; (c) Scalable: the computation time of D-Tracker is independent of the time series length. Experiments using web search volume data obtained from GoogleTrends, and COVID-19 infection data obtained from COVID-19 Open Data Repository show that our method can achieve higher forecasting accuracy in less computation time than existing methods while extracting the interest diffusion between locations. Our source code and datasets are available at {https://github.com/Higashiguchi-Shingo/D-Tracker.
Authors:Xiaoxia Xu, Xidong Mu, Zhaolin Wang, Yuanwei Liu, Arumugam Nallanathan
Abstract:
Pinching-antenna systems (PASS) improve wireless links by configuring the locations of activated pinching antennas along dielectric waveguides, namely pinching beamforming. In this paper, a novel adjustable power radiation model is proposed for PASS, where power radiation ratios of pinching antennas can be flexibly controlled by tuning the spacing between pinching antennas and waveguides. A closed-form pinching antenna spacing arrangement strategy is derived to achieve the commonly assumed equal-power radiation. Based on this, a practical PASS framework relying on discrete activation is considered, where pinching antennas can only be activated among a set of predefined locations. A transmit power minimization problem is formulated, which jointly optimizes the transmit beamforming, pinching beamforming, and the numbers of activated pinching antennas, subject to each user's minimum rate requirement. (1) To solve the resulting highly coupled mixed-integer nonlinear programming (MINLP) problem, branch-and-bound (BnB)-based algorithms are proposed for both single-user and multi-user scenarios, which is guaranteed to converge to globally optimal solutions. (2) A low-complexity many-to-many matching algorithm is further developed. Combined with the Karush-Kuhn-Tucker (KKT) theory, locally optimal and pairwise-stable solutions are obtained within polynomial-time complexity. Simulation results demonstrate that: (i) PASS significantly outperforms conventional multi-antenna architectures, particularly when the number of users and the spatial range increase; and (ii) The proposed matching-based algorithm achieves near-optimal performance, resulting in only a slight performance loss while significantly reducing computational overheads. Code is available at https://github.com/xiaoxiaxusummer/PASS_Discrete
Authors:Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi Wang, Huazheng Wang, Yiran Chen, Qingyun Wu
Abstract:
Failure attribution in LLM multi-agent systems-identifying the agent and step responsible for task failures-provides crucial clues for systems debugging but remains underexplored and labor-intensive. In this paper, we propose and formulate a new research area: automated failure attribution for LLM multi-agent systems. To support this initiative, we introduce the Who&When dataset, comprising extensive failure logs from 127 LLM multi-agent systems with fine-grained annotations linking failures to specific agents and decisive error steps. Using the Who&When, we develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons. The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps, with some methods performing below random. Even SOTA reasoning models, such as OpenAI o1 and DeepSeek R1, fail to achieve practical usability. These results highlight the task's complexity and the need for further research in this area. Code and dataset are available at https://github.com/mingyin1/Agents_Failure_Attribution
Authors:Filipp Nikitin, Ian Dunn, David Ryan Koes, Olexandr Isayev
Abstract:
Deep generative models have shown significant promise in generating valid 3D molecular structures, with the GEOM-Drugs dataset serving as a key benchmark. However, current evaluation protocols suffer from critical flaws, including incorrect valency definitions, bugs in bond order calculations, and reliance on force fields inconsistent with the reference data. In this work, we revisit GEOM-Drugs and propose a corrected evaluation framework: we identify and fix issues in data preprocessing, construct chemically accurate valency tables, and introduce a GFN2-xTB-based geometry and energy benchmark. We retrain and re-evaluate several leading models under this framework, providing updated performance metrics and practical recommendations for future benchmarking. Our results underscore the need for chemically rigorous evaluation practices in 3D molecular generation. Our recommended evaluation methods and GEOM-Drugs processing scripts are available at https://github.com/isayevlab/geom-drugs-3dgen-evaluation.
Authors:Zheng Zhang, Jinyi Li, Yihuai Lan, Xiang Wang, Hao Wang
Abstract:
Prompt engineering enables Large Language Models (LLMs) to perform a variety of tasks. However, lengthy prompts significantly increase computational complexity and economic costs. To address this issue, we study six prompt compression methods for LLMs, aiming to reduce prompt length while maintaining LLM response quality. In this paper, we present a comprehensive analysis covering aspects such as generation performance, model hallucinations, efficacy in multimodal tasks, word omission analysis, and more. We evaluate these methods across 13 datasets, including news, scientific articles, commonsense QA, math QA, long-context QA, and VQA datasets. Our experiments reveal that prompt compression has a greater impact on LLM performance in long contexts compared to short ones. In the Longbench evaluation, moderate compression even enhances LLM performance. Our code and data is available at https://github.com/3DAgentWorld/Toolkit-for-Prompt-Compression.