arXiv Papers with Code in Computer Science (July 2025)

Paperid: 1, https://arxiv.org/pdf/2507.23785.pdf   GitHub
Authors:Bowen Zhang, Sicheng Xu, Chuxin Wang, Jiaolong Yang, Feng Zhao, Dong Chen, Baining Guo
Title: Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis
Abstract:
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.

Authors:Jessica Bader, Leander Girrbach, Stephan Alaniz, Zeynep Akata
Title: SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
Abstract:
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.

Authors:Zihan Wang, Jeff Tan, Tarasha Khurana, Neehar Peri, Deva Ramanan
Title: MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion
Abstract:
We address the problem of dynamic scene reconstruction from sparse-view videos. Prior work often requires dense multi-view captures with hundreds of calibrated cameras (e.g. Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras with complete scene coverage (e.g. four equidistant inward-facing static cameras). We find that dense multi-view reconstruction methods struggle to adapt to this sparse-view setup due to limited overlap between viewpoints. To address these limitations, we carefully align independent monocular reconstructions of each camera to produce time- and view-consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior art, particularly when rendering novel views. Code, data, and data-processing scripts are available on https://github.com/ImNotPrepared/MonoFusion.

Authors:Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen, Justin Wagle, Tim Franklin, Baining Guo
Title: Phi-Ground Tech Report: Advancing Perception in GUI Grounding
Abstract:
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}

Authors:Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
Title: Consensus-Driven Active Model Selection
Abstract:
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.

Authors:Rongzhen Zhao, Yi Zhao, Juho Kannala, Joni Pajarinen
Title: Slot Attention with Re-Initialization and Self-Distillation
Abstract:
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our source code and model checkpoints are available on https://github.com/Genera1Z/DIAS.

Authors:Nasim Shirvani-Mahdavi, Devin Wingfield, Amin Ghasemi, Chengkai Li
Title: Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Abstract:
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.

Authors:Dongming Wu, Yanping Fu, Saike Huang, Yingfei Liu, Fan Jia, Nian Liu, Feng Dai, Tiancai Wang, Rao Muhammad Anwer, Fahad Shahbaz Khan, Jianbing Shen
Title: RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping
Abstract:
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.

Authors:Emery Pierson, Lei Li, Angela Dai, Maks Ovsjanikov
Title: DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Abstract:
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/

Authors:Haipeng Liu, Yuxuan Liu, Ting Long
Title: Personalized Education with Ranking Alignment Recommendation
Abstract:
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.

Authors:Yang Gao, Po-Chien Luan, Kaouther Messaoud, Lan Feng, Alexandre Alahi
Title: OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
Abstract:
While large-scale pre-training has advanced human trajectory prediction, a critical challenge remains: zero-shot transfer to unseen dataset with varying temporal dynamics. State-of-the-art pre-trained models often require fine-tuning to adapt to new datasets with different frame rates or observation horizons, limiting their scalability and practical utility. In this work, we systematically investigate this limitation and propose a robust solution. We first demonstrate that existing data-aware discrete models struggle when transferred to new scenarios with shifted temporal setups. We then isolate the temporal generalization from dataset shift, revealing that a simple, explicit conditioning mechanism for temporal metadata is a highly effective solution. Based on this insight, we present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset. Our experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance, reducing prediction error by over 70\% in challenging cross-setup scenarios. After fine-tuning, OmniTraj achieves state-of-the-art results on four datasets, including NBA, JTA, WorldPose, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/omnitraj

Authors:Dustin Carrión-Ojeda, Stefan Roth, Simone Schaub-Meyer
Title: Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Abstract:
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.

Authors:Moaad Khamlich, Francesco Romor, Gianluigi Rozza
Title: Efficient Numerical Strategies for Entropy-Regularized Semi-Discrete Optimal Transport
Abstract:
Semi-discrete optimal transport (SOT), which maps a continuous probability measure to a discrete one, is a fundamental problem with wide-ranging applications. Entropic regularization is often employed to solve the SOT problem, leading to a regularized (RSOT) formulation that can be solved efficiently via its convex dual. However, a significant computational challenge emerges when the continuous source measure is discretized via the finite element (FE) method to handle complex geometries or densities, such as those arising from solutions to Partial Differential Equations (PDEs). The evaluation of the dual objective function requires dense interactions between the numerous source quadrature points and all target points, creating a severe bottleneck for large-scale problems. This paper presents a cohesive framework of numerical strategies to overcome this challenge. We accelerate the dual objective and gradient evaluations by combining distance-based truncation with fast spatial queries using R-trees. For overall convergence, we integrate multilevel techniques based on hierarchies of both the FE source mesh and the discrete target measure, alongside a robust scheduling strategy for the regularization parameter. When unified, these methods drastically reduce the computational cost of RSOT, enabling its practical application to complex, large-scale scenarios. We provide an open-source C++ implementation of this framework, built upon the deal.II finite element library, available at https://github.com/SemiDiscreteOT/SemiDiscreteOT.

Authors:Xin Li, Keren Fu, Qijun Zhao
Title: Mamba-based Efficient Spatio-Frequency Motion Perception for Video Camouflaged Object Detection
Abstract:
Existing video camouflaged object detection (VCOD) methods primarily rely on spatial appearance features to perceive motion cues for breaking camouflage. However, the high similarity between foreground and background in VCOD results in limited discriminability of spatial appearance features (e.g., color and texture), restricting detection accuracy and completeness. Recent studies demonstrate that frequency features can not only enhance feature representation to compensate for appearance limitations but also perceive motion through dynamic variations in frequency energy. Furthermore, the emerging state space model called Mamba, enables efficient perception of motion cues in frame sequences due to its linear-time long-sequence modeling capability. Motivated by this, we propose a novel visual camouflage Mamba (Vcamba) based on spatio-frequency motion perception that integrates frequency and spatial features for efficient and accurate VCOD. Specifically, we propose a receptive field visual state space (RFVSS) module to extract multi-scale spatial features after sequence modeling. For frequency learning, we introduce an adaptive frequency component enhancement (AFE) module with a novel frequency-domain sequential scanning strategy to maintain semantic consistency. Then we propose a space-based long-range motion perception (SLMP) module and a frequency-based long-range motion perception (FLMP) module to model spatio-temporal and frequency-temporal sequences in spatial and frequency phase domains. Finally, the space and frequency motion fusion module (SFMF) integrates dual-domain features for unified motion representation. Experimental results show that our Vcamba outperforms state-of-the-art methods across 6 evaluation metrics on 2 datasets with lower computation cost, confirming the superiority of Vcamba. Our code is available at: https://github.com/BoydeLi/Vcamba.

Authors:Yu-Tang Chang, Shih-Fang Chen
Title: EB-gMCR: Energy-Based Generative Modeling for Signal Unmixing and Multivariate Curve Resolution
Abstract:
Signal unmixing analysis decomposes data into basic patterns and is widely applied in chemical and biological research. Multivariate curve resolution (MCR), a branch of signal unmixing, separates mixed signals into components (base patterns) and their concentrations (intensity), playing a key role in understanding composition. Classical MCR is typically framed as matrix factorization (MF) and requires a user-specified number of components, usually unknown in real data. Once data or component number increases, the scalability of these MCR approaches face significant challenges. This study reformulates MCR as a data generative process (gMCR), and introduces an Energy-Based solver, EB-gMCR, that automatically discovers the smallest component set and their concentrations for reconstructing the mixed signals faithfully. On synthetic benchmarks with up to 256 components, EB-gMCR attains high reconstruction fidelity and recovers the component count within 5% at 20dB noise and near-exact at 30dB. On two public spectral datasets, it identifies the correct component count and improves component separation over MF-based MCR approaches (NMF variants, ICA, MCR-ALS). EB-gMCR is a general solver for fixed-pattern signal unmixing (components remain invariant across mixtures). Domain priors (non-negativity, nonlinear mixing) enter as plug-in modules, enabling adaptation to new instruments or domains without altering the core selection learning step. The source code is available at https://github.com/b05611038/ebgmcr_solver.

Authors:Zijian Dong, Longteng Duan, Jie Song, Michael J. Black, Andreas Geiger
Title: MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
Abstract:
We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to limited 3D training data, such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as model inversion by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides an initialization for model fitting, enforces 3D regularization, and helps in refining pose. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable. For code, see https://zj-dong.github.io/MoGA/.

Authors:Yaoye Zhu, Zhe Wang, Yan Wang
Title: MamV2XCalib: V2X-based Target-less Infrastructure Camera Calibration with State Space Model
Abstract:
As cooperative systems that leverage roadside cameras to assist autonomous vehicle perception become increasingly widespread, large-scale precise calibration of infrastructure cameras has become a critical issue. Traditional manual calibration methods are often time-consuming, labor-intensive, and may require road closures. This paper proposes MamV2XCalib, the first V2X-based infrastructure camera calibration method with the assistance of vehicle-side LiDAR. MamV2XCalib only requires autonomous vehicles equipped with LiDAR to drive near the cameras to be calibrated in the infrastructure, without the need for specific reference objects or manual intervention. We also introduce a new targetless LiDAR-camera calibration method, which combines multi-scale features and a 4D correlation volume to estimate the correlation between vehicle-side point clouds and roadside images. We model the temporal information and estimate the rotation angles with Mamba, effectively addressing calibration failures in V2X scenarios caused by defects in the vehicle-side data (such as occlusions) and large differences in viewpoint. We evaluate MamV2XCalib on the V2X-Seq and TUMTraf-V2X real-world datasets, demonstrating the effectiveness and robustness of our V2X-based automatic calibration approach. Compared to previous LiDAR-camera methods designed for calibration on one car, our approach achieves better and more stable calibration performance in V2X scenarios with fewer parameters. The code is available at https://github.com/zhuyaoye/MamV2XCalib.

Authors:Alva West, Luodan Zhang, Liuliu Zhang, Minjun Zhu, Yixuan Weng, Yue Zhang
Title: T-Detect: Tail-Aware Statistical Normalization for Robust Detection of Adversarial Machine-Generated Text
Abstract:
Large language models (LLMs) have shown the capability to generate fluent and logical content, presenting significant challenges to machine-generated text detection, particularly text polished by adversarial perturbations such as paraphrasing. Current zero-shot detectors often employ Gaussian distributions as statistical measure for computing detection thresholds, which falters when confronted with the heavy-tailed statistical artifacts characteristic of adversarial or non-native English texts. In this paper, we introduce T-Detect, a novel detection method that fundamentally redesigns the curvature-based detectors. Our primary innovation is the replacement of standard Gaussian normalization with a heavy-tailed discrepancy score derived from the Student's t-distribution. This approach is theoretically grounded in the empirical observation that adversarial texts exhibit significant leptokurtosis, rendering traditional statistical assumptions inadequate. T-Detect computes a detection score by normalizing the log-likelihood of a passage against the expected moments of a t-distribution, providing superior resilience to statistical outliers. We validate our approach on the challenging RAID benchmark for adversarial text and the comprehensive HART dataset. Experiments show that T-Detect provides a consistent performance uplift over strong baselines, improving AUROC by up to 3.9\% in targeted domains. When integrated into a two-dimensional detection framework (CT), our method achieves state-of-the-art performance, with an AUROC of 0.926 on the Books domain of RAID. Our contributions are a new, theoretically-justified statistical foundation for text detection, an ablation-validated method that demonstrates superior robustness, and a comprehensive analysis of its performance under adversarial conditions. Ours code are released at https://github.com/ResearAI/t-detect.

Authors:Woo Kyoung Han, Yongjun Lee, Byeonghun Lee, Sang Hyun Park, Sunghoon Im, Kyong Hwan Jin
Title: JPEG Processing Neural Operator for Backward-Compatible Coding
Abstract:
Despite significant advances in learning-based lossy compression algorithms, standardizing codecs remains a critical challenge. In this paper, we present the JPEG Processing Neural Operator (JPNeO), a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format. Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods by incorporating neural operators in both the encoding and decoding stages. JPNeO achieves practical benefits in terms of reduced memory usage and parameter count. We further validate our hypothesis about the existence of a space with high mutual information through empirical evidence. In summary, the JPNeO functions as a high-performance out-of-the-box image compression pipeline without changing source coding's protocol. Our source code is available at https://github.com/WooKyoungHan/JPNeO.

Authors:Yadong Niu, Tianzi Wang, Heinrich Dinkel, Xingwei Sun, Jiahao Zhou, Gang Li, Jizhong Liu, Xunying Liu, Junbo Zhang, Jian Luan
Title: MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
Abstract:
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat

Authors:Mutian Xu, Chongjie Ye, Haolin Liu, Yushuang Wu, Jiahao Chang, Xiaoguang Han
Title: Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion
Abstract:
3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.

Authors:Ting Huang, Zeyu Zhang, Hao Tang
Title: 3D-R1: Enhancing Reasoning in 3D VLMs for Unified Scene Understanding
Abstract:
Large vision-language models (VLMs) have made significant strides in 2D visual understanding tasks, sparking interest in extending these capabilities to 3D scene understanding. However, current 3D VLMs often struggle with robust reasoning and generalization due to limitations in high-quality spatial data and the static nature of viewpoint assumptions. To address these challenges, we propose 3D-R1, a foundation model that enhances the reasoning capabilities of 3D VLMs. Specifically, we first construct a high-quality synthetic dataset with CoT, named Scene-30K, leveraging existing 3D-VL datasets and a data engine based on Gemini 2.5 Pro. It serves as cold-start initialization data for 3D-R1. Moreover, we leverage RLHF policy such as GRPO in the reinforcement learning training process to enhance reasoning capabilities and introduce three reward functions: a perception reward, a semantic similarity reward and a format reward to maintain detection accuracy and answer semantic precision. Furthermore, we introduce a dynamic view selection strategy that adaptively chooses the most informative perspectives for 3D scene understanding. Extensive experiments demonstrate that 3D-R1 delivers an average improvement of 10% across various 3D scene benchmarks, highlighting its effectiveness in enhancing reasoning and generalization in 3D scene understanding. Code: https://github.com/AIGeeksGroup/3D-R1. Website: https://aigeeksgroup.github.io/3D-R1.

Authors:Mingzhe Li, Xin Lu, Yanyan Zhao
Title: Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation
Abstract:
Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate

Authors:Salah Eddine Bekhouche, Azeddine Benlamoudi, Yazid Bounab, Fadi Dornaika, Abdenour Hadid
Title: Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
Abstract:
Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at \href{https://github.com/Bekhouche/APR}{GitHub}.

Authors:Yijie Zhu, Lingsen Zhang, Zitong Yu, Rui Shao, Tao Tan, Liqiang Nie
Title: UniEmo: Unifying Emotional Understanding and Generation with Learnable Expert Queries
Abstract:
Emotional understanding and generation are often treated as separate tasks, yet they are inherently complementary and can mutually enhance each other. In this paper, we propose the UniEmo, a unified framework that seamlessly integrates these two tasks. The key challenge lies in the abstract nature of emotions, necessitating the extraction of visual representations beneficial for both tasks. To address this, we propose a hierarchical emotional understanding chain with learnable expert queries that progressively extracts multi-scale emotional features, thereby serving as a foundational step for unification. Simultaneously, we fuse these expert queries and emotional representations to guide the diffusion model in generating emotion-evoking images. To enhance the diversity and fidelity of the generated emotional images, we further introduce the emotional correlation coefficient and emotional condition loss into the fusion process. This step facilitates fusion and alignment for emotional generation guided by the understanding. In turn, we demonstrate that joint training allows the generation component to provide implicit feedback to the understanding part. Furthermore, we propose a novel data filtering algorithm to select high-quality and diverse emotional images generated by the well-trained model, which explicitly feedback into the understanding part. Together, these generation-driven dual feedback processes enhance the model's understanding capacity. Extensive experiments show that UniEmo significantly outperforms state-of-the-art methods in both emotional understanding and generation tasks. The code for the proposed method is available at https://github.com/JiuTian-VL/UniEmo.

Authors:Ali Youssef
Title: VMatcher: State-Space Semi-Dense Local Feature Matching
Abstract:
This paper introduces VMatcher, a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs. Learning-based feature matching methods, whether detector-based or detector-free, achieve state-of-the-art performance but depend heavily on the Transformer's attention mechanism, which, while effective, incurs high computational costs due to its quadratic complexity. In contrast, Mamba introduces a Selective State-Space Model (SSM) that achieves comparable or superior performance with linear complexity, offering significant efficiency gains. VMatcher leverages a hybrid approach, integrating Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism. Multiple VMatcher configurations are proposed, including hierarchical architectures, demonstrating their effectiveness in setting new benchmarks efficiently while ensuring robustness and practicality for real-time applications where rapid inference is crucial. Source Code is available at: https://github.com/ayoussf/VMatcher

Authors:Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng, Xia Liu
Title: Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling
Abstract:
Software issue resolution is a critical challenge in software engineering and has garnered increasing attention in recent years. With the rapid advancement of large language models (LLMs), substantial progress has been made in addressing real-world software engineering tasks. Recent studies have introduced ensemble reasoning techniques to enhance the performance of LLM-based issue resolution. However, existing prompting-based methods still face limitations in effectively exploring large ensemble spaces and lack the capacity for repository-level understanding, both of which constrain their overall effectiveness. In this paper, we propose Trae Agent, the first agent-based ensemble reasoning approach for repository-level issue resolution. Trae Agent formulates our goal as an optimal solution search problem and addresses two key challenges, i.e., large ensemble spaces and repository-level understanding, through modular agents for generation, pruning, and selection. We conduct extensive experiments using three leading LLMs on the widely-adopted SWE-bench benchmark, comparing Trae Agent against four state-of-the-art ensemble reasoning techniques. Experimental results demonstrate that Trae Agent consistently achieves superior performance, with an average improvement of 10.22% over all baselines in terms of Pass@1. Trae Agent has achieved first place on the SWE-bench Verified leaderboard, with a notable Pass@1 score of 75.20%. We are pleased to release Trae Agent as an open-source project to support the research community, with all resources available at https://github.com/bytedance/trae-agent.

Authors:Ji Ma, Wei Suo, Peng Wang, Yanning Zhang
Title: Short-LVLM: Compressing and Accelerating Large Vision-Language Models by Pruning Redundant Layers
Abstract:
Although large vision-language models (LVLMs) have demonstrated impressive capabilities in multi-modal understanding and reasoning, their practical applications are still limited by massive model parameters and high computational costs. Recent efforts from natural language processing (NLP) have shown the effectiveness of layer pruning, offering a plausible training-free compression solution. However, due to the modality divergence between vision and language, it is unclear whether these NLP techniques are still effective in LVLMs. In this paper, we empirically prove that directly applying these layer pruning methods to LVLMs is ineffective. Through extensive experiments, we find that non-essential vision-language (VL) tokens and inter-layer feature gaps pose critical challenges to pruning layers in LVLMs. Based on these insights, we propose a novel framework Short-LVLM (SVL) that can utilize important VL tokens and mitigate the layer-wise feature gaps. Notably, Short-LVLM not only achieves a superior trade-off between performance and efficiency but also exhibits several potential advantages, i.e., training-free, model-agnostic, and highly compatible. The code for this work is publicly available at https://github.com/ASGO-MM/Short-LVLM.

Authors:Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo Sun, Lin Cao, Qianxiang Wang
Title: SWE-Exp: Experience-Driven Software Issue Resolution
Abstract:
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience - enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves state-of-the-art resolution rate (41.6% Pass@1) on SWE-bench-Verified under open-source agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.

Authors:Han Li, Yuling Shi, Shaoxin Lin, Xiaodong Gu, Heng Lian, Xin Wang, Yantao Jia, Tao Huang, Qianxiang Wang
Title: SWE-Debate: Competitive Multi-Agent Debate for Software Issue Resolution
Abstract:
Issue resolution has made remarkable progress thanks to the advanced reasoning capabilities of large language models (LLMs). Recently, agent-based frameworks such as SWE-agent have further advanced this progress by enabling autonomous, tool-using agents to tackle complex software engineering tasks. While existing agent-based issue resolution approaches are primarily based on agents' independent explorations, they often get stuck in local solutions and fail to identify issue patterns that span across different parts of the codebase. To address this limitation, we propose SWE-Debate, a competitive multi-agent debate framework that encourages diverse reasoning paths and achieves more consolidated issue localization. SWE-Debate first creates multiple fault propagation traces as localization proposals by traversing a code dependency graph. Then, it organizes a three-round debate among specialized agents, each embodying distinct reasoning perspectives along the fault propagation trace. This structured competition enables agents to collaboratively converge on a consolidated fix plan. Finally, this consolidated fix plan is integrated into an MCTS-based code modification agent for patch generation. Experiments on the SWE-bench benchmark show that SWE-Debate achieves new state-of-the-art results in open-source agent frameworks and outperforms baselines by a large margin.

Authors:Yingjie Zhou, Jiezhang Cao, Zicheng Zhang, Farong Wen, Yanwei Jiang, Jun Jia, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai
Title: Who is a Better Talker: Subjective and Objective Quality Assessment for AI-Generated Talking Heads
Abstract:
Speech-driven methods for portraits are figuratively known as "Talkers" because of their capability to synthesize speaking mouth shapes and facial movements. Especially with the rapid development of the Text-to-Image (T2I) models, AI-Generated Talking Heads (AGTHs) have gradually become an emerging digital human media. However, challenges persist regarding the quality of these talkers and AGTHs they generate, and comprehensive studies addressing these issues remain limited. To address this gap, this paper presents the largest AGTH quality assessment dataset THQA-10K to date, which selects 12 prominent T2I models and 14 advanced talkers to generate AGTHs for 14 prompts. After excluding instances where AGTH generation is unsuccessful, the THQA-10K dataset contains 10,457 AGTHs. Then, volunteers are recruited to subjectively rate the AGTHs and give the corresponding distortion categories. In our analysis for subjective experimental results, we evaluate the performance of talkers in terms of generalizability and quality, and also expose the distortions of existing AGTHs. Finally, an objective quality assessment method based on the first frame, Y-T slice and tone-lip consistency is proposed. Experimental results show that this method can achieve state-of-the-art (SOTA) performance in AGTH quality assessment. The work is released at https://github.com/zyj-2000/Talker.

Authors:Tao He, Rongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, Bing Qin
Title: Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Abstract:
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Tapas Samanta, Sarbajit Pal, Amitabha Das
Title: Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Abstract:
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.

Authors:Alfio Ferrara, Sergio Picascia, Elisabetta Rocchetti
Title: The Cow of Rembrandt - Analyzing Artistic Prompt Interpretation in Text-to-Image Models
Abstract:
Text-to-image diffusion models have demonstrated remarkable capabilities in generating artistic content by learning from billions of images, including popular artworks. However, the fundamental question of how these models internally represent concepts, such as content and style in paintings, remains unexplored. Traditional computer vision assumes content and style are orthogonal, but diffusion models receive no explicit guidance about this distinction during training. In this work, we investigate how transformer-based text-to-image diffusion models encode content and style concepts when generating artworks. We leverage cross-attention heatmaps to attribute pixels in generated images to specific prompt tokens, enabling us to isolate image regions influenced by content-describing versus style-describing tokens. Our findings reveal that diffusion models demonstrate varying degrees of content-style separation depending on the specific artistic prompt and style requested. In many cases, content tokens primarily influence object-related regions while style tokens affect background and texture areas, suggesting an emergent understanding of the content-style distinction. These insights contribute to our understanding of how large-scale generative models internally represent complex artistic concepts without explicit supervision. We share the code and dataset, together with an exploratory tool for visualizing attention maps at https://github.com/umilISLab/artistic-prompt-interpretation.

Authors:Xihang Hu, Fuming Sun, Jiazhe Liu, Feilong Xu, Xiaoli Zhang
Title: ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection
Abstract:
Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations by leveraging limited annotated data and abundant unlabeled data. However, existing SSCOD methods based on Teacher-Student frameworks suffer from severe prediction bias and error propagation under scarce supervision, while their multi-network architectures incur high computational overhead and limited scalability. To overcome these limitations, we propose ST-SAM, a highly annotation-efficient yet concise framework that breaks away from conventional SSCOD constraints. Specifically, ST-SAM employs Self-Training strategy that dynamically filters and expands high-confidence pseudo-labels to enhance a single-model architecture, thereby fundamentally circumventing inter-model prediction bias. Furthermore, by transforming pseudo-labels into hybrid prompts containing domain-specific knowledge, ST-SAM effectively harnesses the Segment Anything Model's potential for specialized tasks to mitigate error accumulation in self-training. Experiments on COD benchmark datasets demonstrate that ST-SAM achieves state-of-the-art performance with only 1\% labeled data, outperforming existing SSCOD methods and even matching fully supervised methods. Remarkably, ST-SAM requires training only a single network, without relying on specific models or loss functions. This work establishes a new paradigm for annotation-efficient SSCOD. Codes will be available at https://github.com/hu-xh/ST-SAM.

Authors:Hanshen Zhu, Zhen Zhu, Kaile Zhang, Yiming Gong, Yuliang Liu, Xiang Bai
Title: Training-free Geometric Image Editing on Diffusion Models
Abstract:
We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine

Authors:Kazushi Kato, Koji Inoue, Divesh Lala, Keiko Ochi, Tatsuya Kawahara
Title: Real-time Generation of Various Types of Nodding for Avatar Attentive Listening System
Abstract:
In human dialogue, nonverbal information such as nodding and facial expressions is as crucial as verbal information, and spoken dialogue systems are also expected to express such nonverbal behaviors. We focus on nodding, which is critical in an attentive listening system, and propose a model that predicts both its timing and type in real time. The proposed model builds on the voice activity projection (VAP) model, which predicts voice activity from both listener and speaker audio. We extend it to prediction of various types of nodding in a continuous and real-time manner unlike conventional models. In addition, the proposed model incorporates multi-task learning with verbal backchannel prediction and pretraining on general dialogue data. In the timing and type prediction task, the effectiveness of multi-task learning was significantly demonstrated. We confirmed that reducing the processing rate enables real-time operation without a substantial drop in accuracy, and integrated the model into an avatar attentive listening system. Subjective evaluations showed that it outperformed the conventional method, which always does nodding in sync with verbal backchannel. The code and trained models are available at https://github.com/MaAI-Kyoto/MaAI.

Authors:RJ Skerry-Ryan, Julian Salazar, Soroosh Mariooryad, David Kao, Daisy Stanton, Eric Battenberg, Matt Shannon, Ron J. Weiss, Robin Scheibler, Jonas Rothfuss, Tom Bagby
Title: SequenceLayers: Sequence Processing and Streaming Neural Networks Made Easy
Abstract:
We introduce a neural network layer API and library for sequence modeling, designed for easy creation of sequence models that can be executed both layer-by-layer (e.g., teacher-forced training) and step-by-step (e.g., autoregressive sampling). To achieve this, layers define an explicit representation of their state over time (e.g., a Transformer KV cache, a convolution buffer, an RNN hidden state), and a step method that evolves that state, tested to give identical results to a stateless layer-wise invocation. This and other aspects of the SequenceLayers contract enables complex models to be immediately streamable, mitigates a wide range of common bugs arising in both streaming and parallel sequence processing, and can be implemented in any deep learning library. A composable and declarative API, along with a comprehensive suite of layers and combinators, streamlines the construction of production-scale models from simple streamable components while preserving strong correctness guarantees. Our current implementations of SequenceLayers (JAX, TensorFlow 2) are available at https://github.com/google/sequence-layers.

Authors:Dohwan Ko, Ji Soo Lee, Minhyuk Choi, Zihang Meng, Hyunwoo J. Kim
Title: Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Abstract:
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

Authors:Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, Kehong Yuan
Title: Unveiling Super Experts in Mixture-of-Experts Large Language Models
Abstract:
Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

Authors:Gyeongjin Kang, Seungtae Nam, Xiangyu Sun, Sameh Khamis, Abdelrahman Mohamed, Eunbyung Park
Title: iLRM: An Iterative Large 3D Reconstruction Model
Abstract:
Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed. Notably, iLRM exhibits superior scalability, delivering significantly higher reconstruction quality under comparable computational cost by efficiently leveraging a larger number of input views.

Authors:Jiawei Liu, Chenwang Wu, Defu Lian, Enhong Chen
Title: Efficient Machine Unlearning via Influence Approximation
Abstract:
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.

Authors:Shimanto Bhowmik, Tawsif Tashwar Dipto, Md Sazzad Islam, Sheryl Hsu, Tahsin Reasat
Title: Evaluating LLMs' Multilingual Capabilities for Bengali: Benchmark Creation and Performance Analysis
Abstract:
Bengali is an underrepresented language in NLP research. However, it remains a challenge due to its unique linguistic structure and computational constraints. In this work, we systematically investigate the challenges that hinder Bengali NLP performance by focusing on the absence of standardized evaluation benchmarks. We then evaluated 10 recent open source Large Language Models (LLMs) in 8 of the translated datasets and performed a comprehensive error analysis to pinpoint their primary failure modes. Our findings reveal consistent performance gaps for Bengali compared to English, particularly for smaller models and specific model families like Mistral. We also identified promising robustness in certain architectures, such as DeepSeek, that maintain more stable performance across languages. Our analysis reveals an inverse relationship between tokenization efficiency and LLM accuracy where models tend to perform worse when inputs are excessively tokenized, whereas more efficient \& concise tokenization results in improved performance. These findings highlight critical areas where current models fall short and underscore the need for improved dataset quality and evaluation methodologies tailored to multilingual contexts. This work will catalyze further research on NLP for underrepresented languages, helping to democratize access to advanced language technologies worldwide. The code and dataset used in this research is publicly available at https://github.com/BengaliAI/bn-llm-benchmark.

Authors:Yang Ren, Hai Jiang, Wei Li, Menglong Yang, Heng Zhang, Zehua Sheng, Qingsheng Ye, Shuaicheng Liu
Title: Learning Arbitrary-Scale RAW Image Downscaling with Wavelet-based Recurrent Reconstruction
Abstract:
Image downscaling is critical for efficient storage and transmission of high-resolution (HR) images. Existing learning-based methods focus on performing downscaling within the sRGB domain, which typically suffers from blurred details and unexpected artifacts. RAW images, with their unprocessed photonic information, offer greater flexibility but lack specialized downscaling frameworks. In this paper, we propose a wavelet-based recurrent reconstruction framework that leverages the information lossless attribute of wavelet transformation to fulfill the arbitrary-scale RAW image downscaling in a coarse-to-fine manner, in which the Low-Frequency Arbitrary-Scale Downscaling Module (LASDM) and the High-Frequency Prediction Module (HFPM) are proposed to preserve structural and textural integrity of the reconstructed low-resolution (LR) RAW images, alongside an energy-maximization loss to align high-frequency energy between HR and LR domain. Furthermore, we introduce the Realistic Non-Integer RAW Downscaling (Real-NIRD) dataset, featuring a non-integer downscaling factor of 1.3$\times$, and incorporate it with publicly available datasets with integer factors (2$\times$, 3$\times$, 4$\times$) for comprehensive benchmarking arbitrary-scale image downscaling purposes. Extensive experiments demonstrate that our method outperforms existing state-of-the-art competitors both quantitatively and visually. The code and dataset will be released at https://github.com/RenYangSCU/ASRD.

Authors:Wei-Wei Du, Takuma Udagawa, Kei Tateno
Title: Not Just What, But When: Integrating Irregular Intervals to LLM for Sequential Recommendation
Abstract:
Time intervals between purchasing items are a crucial factor in sequential recommendation tasks, whereas existing approaches focus on item sequences and often overlook by assuming the intervals between items are static. However, dynamic intervals serve as a dimension that describes user profiling on not only the history within a user but also different users with the same item history. In this work, we propose IntervalLLM, a novel framework that integrates interval information into LLM and incorporates the novel interval-infused attention to jointly consider information of items and intervals. Furthermore, unlike prior studies that address the cold-start scenario only from the perspectives of users and items, we introduce a new viewpoint: the interval perspective to serve as an additional metric for evaluating recommendation methods on the warm and cold scenarios. Extensive experiments on 3 benchmarks with both traditional- and LLM-based baselines demonstrate that our IntervalLLM achieves not only 4.4% improvements in average but also the best-performing warm and cold scenarios across all users, items, and the proposed interval perspectives. In addition, we observe that the cold scenario from the interval perspective experiences the most significant performance drop among all recommendation methods. This finding underscores the necessity of further research on interval-based cold challenges and our integration of interval information in the realm of sequential recommendation tasks. Our code is available here: https://github.com/sony/ds-research-code/tree/master/recsys25-IntervalLLM.

Authors:Youngsun Jang, Dongyoun Kim, Chulwoo Pack, Kwanghee Won
Title: A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
Abstract:
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image \c{opyright} 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on .

Authors:Viraj Joshi, Zifan Xu, Bo Liu, Peter Stone, Amy Zhang
Title: Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks
Abstract:
Multi-task Reinforcement Learning (MTRL) has emerged as a critical training paradigm for applying reinforcement learning (RL) to a set of complex real-world robotic tasks, which demands a generalizable and robust policy. At the same time, \emph{massively parallelized training} has gained popularity, not only for significantly accelerating data collection through GPU-accelerated simulation but also for enabling diverse data collection across multiple tasks by simulating heterogeneous scenes in parallel. However, existing MTRL research has largely been limited to off-policy methods like SAC in the low-parallelization regime. MTRL could capitalize on the higher asymptotic performance of on-policy algorithms, whose batches require data from the current policy, and as a result, take advantage of massive parallelization offered by GPU-accelerated simulation. To bridge this gap, we introduce a massively parallelized $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{Bench}$mark for robotics (MTBench), an open-sourced benchmark featuring a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented using the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL algorithms combined with seven state-of-the-art MTRL algorithms and architectures, providing a unified framework for evaluating their performance. Our extensive experiments highlight the superior speed of evaluating MTRL approaches using MTBench, while also uncovering unique challenges that arise from combining massive parallelism with MTRL. Code is available at https://github.com/Viraj-Joshi/MTBench

Authors:Xiaochen Zhao, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xiu Li, Linjie Luo, Jinli Suo, Yebin Liu
Title: X-NeMo: Expressive Neural Motion Reenactment via Disentangled Latent Attention
Abstract:
We propose X-NeMo, a novel zero-shot diffusion-based portrait animation pipeline that animates a static portrait using facial movements from a driving video of a different individual. Our work first identifies the root causes of the key issues in prior approaches, such as identity leakage and difficulty in capturing subtle and extreme expressions. To address these challenges, we introduce a fully end-to-end training framework that distills a 1D identity-agnostic latent motion descriptor from driving image, effectively controlling motion through cross-attention during image generation. Our implicit motion descriptor captures expressive facial motion in fine detail, learned end-to-end from a diverse video dataset without reliance on pretrained motion detectors. We further enhance expressiveness and disentangle motion latents from identity cues by supervising their learning with a dual GAN decoder, alongside spatial and color augmentations. By embedding the driving motion into a 1D latent vector and controlling motion via cross-attention rather than additive spatial guidance, our design eliminates the transmission of spatial-aligned structural clues from the driving condition to the diffusion backbone, substantially mitigating identity leakage. Extensive experiments demonstrate that X-NeMo surpasses state-of-the-art baselines, producing highly expressive animations with superior identity resemblance. Our code and models are available for research.

Authors:Xinwei Wu, Haojie Li, Hongyu Liu, Xinyu Ji, Ruohan Li, Yule Chen, Yigeng Zhang
Title: Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity
Abstract:
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.

Authors:Richard Williams, Eric Nalisnick, Andrew Holbrook
Title: Scalable Generative Modeling of Weighted Graphs
Abstract:
Weighted graphs are ubiquitous throughout biology, chemistry, and the social sciences, motivating the development of generative models for abstract weighted graph data using deep neural networks. However, most current deep generative models are either designed for unweighted graphs and are not easily extended to weighted topologies or incorporate edge weights without consideration of a joint distribution with topology. Furthermore, learning a distribution over weighted graphs must account for complex nonlocal dependencies between both the edges of the graph and corresponding weights of each edge. We develop an autoregressive model BiGG-E, a nontrivial extension of the BiGG model, that learns a joint distribution over weighted graphs while still exploiting sparsity to generate a weighted graph with $n$ nodes and $m$ edges in $O((n + m)\log n)$ time. Simulation studies and experiments on a variety of benchmark datasets demonstrate that BiGG-E best captures distributions over weighted graphs while remaining scalable and computationally efficient.

Authors:Dmitry Demidov, Zaigham Zaheer, Omkar Thawakar, Salman Khan, Fahad Shahbaz Khan
Title: Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model
Abstract:
Fine-grained image classification, the task of distinguishing between visually similar subcategories within a broader category (e.g., bird species, car models, flower types), is a challenging computer vision problem. Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms, limiting their scalability and adaptability in real-world settings where novel classes frequently emerge. Recent research has demonstrated that combining large language models (LLMs) with vision-language models (VLMs) makes open-set recognition possible without the need for predefined class labels. However, the existing methods are often limited in harnessing the power of LLMs at the classification phase, and also rely heavily on the guessed class names provided by an LLM without thorough analysis and refinement. To address these bottlenecks, we propose our training-free method, Enriched-FineR (or E-FineR for short), which demonstrates state-of-the-art results in fine-grained visual recognition while also offering greater interpretability, highlighting its strong potential in real-world scenarios and new domains where expert annotations are difficult to obtain. Additionally, we demonstrate the application of our proposed approach to zero-shot and few-shot classification, where it demonstrated performance on par with the existing SOTA while being training-free and not requiring human interventions. Overall, our vocabulary-free framework supports the shift in image classification from rigid label prediction to flexible, language-driven understanding, enabling scalable and generalizable systems for real-world applications. Well-documented code is available on https://github.com/demidovd98/e-finer.

Authors:Giuseppe Cartella, Vittorio Cuculo, Alessandro D'Amelio, Marcella Cornia, Giuseppe Boccignone, Rita Cucchiara
Title: Modeling Human Gaze Behavior with Diffusion Models for Unified Scanpath Prediction
Abstract:
Predicting human gaze scanpaths is crucial for understanding visual attention, with applications in human-computer interaction, autonomous systems, and cognitive robotics. While deep learning models have advanced scanpath prediction, most existing approaches generate averaged behaviors, failing to capture the variability of human visual exploration. In this work, we present ScanDiff, a novel architecture that combines diffusion models with Vision Transformers to generate diverse and realistic scanpaths. Our method explicitly models scanpath variability by leveraging the stochastic nature of diffusion models, producing a wide range of plausible gaze trajectories. Additionally, we introduce textual conditioning to enable task-driven scanpath generation, allowing the model to adapt to different visual search objectives. Experiments on benchmark datasets show that ScanDiff surpasses state-of-the-art methods in both free-viewing and task-driven scenarios, producing more diverse and accurate scanpaths. These results highlight its ability to better capture the complexity of human visual behavior, pushing forward gaze prediction research. Source code and models are publicly available at https://aimagelab.github.io/ScanDiff.

Authors:Zhensheng Yuan, Haozhi Huang, Zhen Xiong, Di Wang, Guanghua Yang
Title: Robust and Efficient 3D Gaussian Splatting for Urban Scene Reconstruction
Abstract:
We present a framework that enables fast reconstruction and real-time rendering of urban-scale scenes while maintaining robustness against appearance variations across multi-view captures. Our approach begins with scene partitioning for parallel training, employing a visibility-based image selection strategy to optimize training efficiency. A controllable level-of-detail (LOD) strategy explicitly regulates Gaussian density under a user-defined budget, enabling efficient training and rendering while maintaining high visual fidelity. The appearance transformation module mitigates the negative effects of appearance inconsistencies across images while enabling flexible adjustments. Additionally, we utilize enhancement modules, such as depth regularization, scale regularization, and antialiasing, to improve reconstruction fidelity. Experimental results demonstrate that our method effectively reconstructs urban-scale scenes and outperforms previous approaches in both efficiency and quality. The source code is available at: https://yzslab.github.io/REUrbanGS.

Authors:Chengqian Ma, Wei Tao, Yiwen Guo
Title: C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Abstract:
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.

Authors:Ruslan Khrulev
Title: CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
Abstract:
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math

Authors:Harry Shomer, Jiejun Xu
Title: Automated Label Placement on Maps via Large Language Models
Abstract:
Label placement is a critical aspect of map design, serving as a form of spatial annotation that directly impacts clarity and interpretability. Despite its importance, label placement remains largely manual and difficult to scale, as existing automated systems struggle to integrate cartographic conventions, adapt to context, or interpret labeling instructions. In this work, we introduce a new paradigm for automatic label placement (ALP) that formulates the task as a data editing problem and leverages large language models (LLMs) for context-aware spatial annotation. To support this direction, we curate MAPLE, the first known benchmarking dataset for evaluating ALP on real-world maps, encompassing diverse landmark types and label placement annotations from open-source data. Our method retrieves labeling guidelines relevant to each landmark type leveraging retrieval-augmented generation (RAG), integrates them into prompts, and employs instruction-tuned LLMs to generate ideal label coordinates. We evaluate four open-source LLMs on MAPLE, analyzing both overall performance and generalization across different types of landmarks. This includes both zero-shot and instruction-tuned performance. Our results demonstrate that LLMs, when guided by structured prompts and domain-specific retrieval, can learn to perform accurate spatial edits, aligning the generated outputs with expert cartographic standards. Overall, our work presents a scalable framework for AI-assisted map finishing and demonstrates the potential of foundation models in structured data editing tasks. The code and data can be found at https://github.com/HarryShomer/MAPLE.

Authors:Shou'ang Wei, Xinyun Wang, Shuzhen Bi, Jian Chen, Ruijia Li, Bo Jiang, Xin Lin, Min Zhang, Yu Song, BingDong Li, Aimin Zhou, Hao Hao
Title: ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
Abstract:
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at \emph{https://github.com/sii-research/elmes.git}.

Authors:Yixuan Mi, Yiduo Yu, Yiyi Zhao
Title: SmartCourse: A Contextual AI-Powered Course Advising System for Undergraduates
Abstract:
We present SmartCourse, an integrated course management and AI-driven advising system for undergraduate students (specifically tailored to the Computer Science (CPS) major). SmartCourse addresses the limitations of traditional advising tools by integrating transcript and plan information for student-specific context. The system combines a command-line interface (CLI) and a Gradio web GUI for instructors and students, manages user accounts, course enrollment, grading, and four-year degree plans, and integrates a locally hosted large language model (via Ollama) for personalized course recommendations. It leverages transcript and major plan to offer contextual advice (e.g., prioritizing requirements or retakes). We evaluated the system on 25 representative advising queries and introduced custom metrics: PlanScore, PersonalScore, Lift, and Recall to assess recommendation quality across different context conditions. Experiments show that using full context yields substantially more relevant recommendations than context-omitted modes, confirming the necessity of transcript and plan information for personalized academic advising. SmartCourse thus demonstrates how transcript-aware AI can enhance academic planning.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Zhehao Tan, Yihan Jiao, Dan Yang, Lei Liu, Jie Feng, Duolin Sun, Yue Shen, Jian Wang, Peng Wei, Jinjie Gu
Title: PRGB Benchmark: A Robust Placeholder-Assisted Algorithm for Benchmarking Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by integrating external knowledge, where the LLM's ability to generate responses based on the combination of a given query and retrieved documents is crucial. However, most benchmarks focus on overall RAG system performance, rarely assessing LLM-specific capabilities. Current benchmarks emphasize broad aspects such as noise robustness, but lack a systematic and granular evaluation framework on document utilization. To this end, we introduce \textit{Placeholder-RAG-Benchmark}, a multi-level fine-grained benchmark, emphasizing the following progressive dimensions: (1) multi-level filtering abilities, (2) combination abilities, and (3) reference reasoning. To provide a more nuanced understanding of LLMs' roles in RAG systems, we formulate an innovative placeholder-based approach to decouple the contributions of the LLM's parametric knowledge and the external knowledge. Experiments demonstrate the limitations of representative LLMs in the RAG system's generation capabilities, particularly in error resilience and context faithfulness. Our benchmark provides a reproducible framework for developing more reliable and efficient RAG systems. Our code is available in https://github.com/Alipay-Med/PRGB.

Authors:Jindong Li, Yali Fu, Jiahong Liu, Linxiao Cao, Wei Ji, Menglin Yang, Irwin King, Ming-Hsuan Yang
Title: Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
Abstract:
The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.

Authors:Kwun Hang Lau, Ruiyuan Zhang, Weijie Shi, Xiaofang Zhou, Xiaojun Cheng
Title: Reading Between the Timelines: RAG for Answering Diachronic Questions
Abstract:
While Retrieval-Augmented Generation (RAG) excels at injecting static, factual knowledge into Large Language Models (LLMs), it exhibits a critical deficit in handling longitudinal queries that require tracking entities and phenomena across time. This blind spot arises because conventional, semantically-driven retrieval methods are not equipped to gather evidence that is both topically relevant and temporally coherent for a specified duration. We address this challenge by proposing a new framework that fundamentally redesigns the RAG pipeline to infuse temporal logic. Our methodology begins by disentangling a user's query into its core subject and its temporal window. It then employs a specialized retriever that calibrates semantic matching against temporal relevance, ensuring the collection of a contiguous evidence set that spans the entire queried period. To enable rigorous evaluation of this capability, we also introduce the Analytical Diachronic Question Answering Benchmark (ADQAB), a challenging evaluation suite grounded in a hybrid corpus of real and synthetic financial news. Empirical results on ADQAB show that our approach yields substantial gains in answer accuracy, surpassing standard RAG implementations by 13% to 27%. This work provides a validated pathway toward RAG systems capable of performing the nuanced, evolutionary analysis required for complex, real-world questions. The dataset and code for this study are publicly available at https://github.com/kwunhang/TA-RAG.

Authors:Siqi Luo, Haoran Yang, Yi Xin, Mingyang Yi, Guangyang Wu, Guangtao Zhai, Xiaohong Liu
Title: TR-PTS: Task-Relevant Parameter and Token Selection for Efficient Tuning
Abstract:
Large pre-trained models achieve remarkable performance in vision tasks but are impractical for fine-tuning due to high computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods mitigate this issue by updating only a subset of parameters; however, most existing approaches are task-agnostic, failing to fully exploit task-specific adaptations, which leads to suboptimal efficiency and performance. To address this limitation, we propose Task-Relevant Parameter and Token Selection (TR-PTS), a task-driven framework that enhances both computational efficiency and accuracy. Specifically, we introduce Task-Relevant Parameter Selection, which utilizes the Fisher Information Matrix (FIM) to identify and fine-tune only the most informative parameters in a layer-wise manner, while keeping the remaining parameters frozen. Simultaneously, Task-Relevant Token Selection dynamically preserves the most informative tokens and merges redundant ones, reducing computational overhead. By jointly optimizing parameters and tokens, TR-PTS enables the model to concentrate on task-discriminative information. We evaluate TR-PTS on benchmark, including FGVC and VTAB-1k, where it achieves state-of-the-art performance, surpassing full fine-tuning by 3.40% and 10.35%, respectively. The code are available at https://github.com/synbol/TR-PTS.

Authors:Haichuan Hu, Xiaochen Xie, Quanjun Zhang
Title: Repair-R1: Better Test Before Repair
Abstract:
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.

Authors:Yang Luo, Haoyang Luan, Haoyun Pan, Yongquan Jia, Xiaofeng Gao, Guihai Chen
Title: PAF-Net: Phase-Aligned Frequency Decoupling Network for Multi-Process Manufacturing Quality Prediction
Abstract:
Accurate quality prediction in multi-process manufacturing is critical for industrial efficiency but hindered by three core challenges: time-lagged process interactions, overlapping operations with mixed periodicity, and inter-process dependencies in shared frequency bands. To address these, we propose PAF-Net, a frequency decoupled time series prediction framework with three key innovations: (1) A phase-correlation alignment method guided by frequency domain energy to synchronize time-lagged quality series, resolving temporal misalignment. (2) A frequency independent patch attention mechanism paired with Discrete Cosine Transform (DCT) decomposition to capture heterogeneous operational features within individual series. (3) A frequency decoupled cross attention module that suppresses noise from irrelevant frequencies, focusing exclusively on meaningful dependencies within shared bands. Experiments on 4 real-world datasets demonstrate PAF-Net's superiority. It outperforms 10 well-acknowledged baselines by 7.06% lower MSE and 3.88% lower MAE. Our code is available at https://github.com/StevenLuan904/PAF-Net-Official.

Authors:Yilei Jiang, Yaozhi Zheng, Yuxuan Wan, Jiaming Han, Qunzhong Wang, Michael R. Lyu, Xiangyu Yue
Title: ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Abstract:
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.

Authors:Yuhe Wang, Min Wang, Zhihang Xu
Title: Numerical Methods for Solving Nonlinearly Coupled Poisson Equations in Dual-Continuum Modeled Porous Electrodes
Abstract:
Porous electrodes are widely used in electrochemical systems, where accurately determining electric potentials, particularly overpotentials, is essential for understanding electrode behavior. At the macroscopic scale, porous electrodes are typically modeled using a dual-continuum approach, treating the porous solid phase and the liquid electrolyte as spatially superimposed domains. Determining potential distributions requires solving two Poisson equations that are nonlinearly coupled through Butler-Volmer kinetics under galvanostatic and potentiostatic operating modes. Under galvanostatic operation, these equations form an underconstrained singular system due to all-Neumann boundary conditions, posing numerical challenges. This paper systematically presents numerical methods for solving nonlinearly coupled Poisson equations in dual-continuum porous electrodes, with a particular focus on galvanostatic solutions. We mathematically establish solution uniqueness in terms of the potential difference between the electrode and electrolyte (or overpotential), as well as the individual potentials up to a shared constant shift. To resolve the nonuniqueness of the solution, we introduce three numerical approaches: (1) Lagrange Constrained Method (LCM), (2) Dirichlet Substitution Method (DSM), and (3) Global Constraining Method (GCM), where GCM enables solving the overpotential without imposing an explicit system reference potential. Additionally, we develop both decoupled and fully coupled nonlinear solution strategies and evaluate their computational performance in both homogeneous and heterogeneous conductivity cases. The presented numerical methods are general for addressing similar underconstrained nonlinear systems. A Python implementation is provided at https://github.com/harrywang1129/porous_electrode_solver.

Authors:Hossein Mirzaei, Zeinab Taghavi, Sepehr Rezaee, Masoud Hadi, Moein Madadi, Mackenzie W. Mathis
Title: DISTIL: Data-Free Inversion of Suspicious Trojan Inputs via Latent Diffusion
Abstract:
Deep neural networks have demonstrated remarkable success across numerous tasks, yet they remain vulnerable to Trojan (backdoor) attacks, raising serious concerns about their safety in real-world mission-critical applications. A common countermeasure is trigger inversion -- reconstructing malicious "shortcut" patterns (triggers) inserted by an adversary during training. Current trigger-inversion methods typically search the full pixel space under specific assumptions but offer no assurances that the estimated trigger is more than an adversarial perturbation that flips the model output. Here, we propose a data-free, zero-shot trigger-inversion strategy that restricts the search space while avoiding strong assumptions on trigger appearance. Specifically, we incorporate a diffusion-based generator guided by the target classifier; through iterative generation, we produce candidate triggers that align with the internal representations the model relies on for malicious behavior. Empirical evaluations, both quantitative and qualitative, show that our approach reconstructs triggers that effectively distinguish clean versus Trojaned models. DISTIL surpasses alternative methods by high margins, achieving up to 7.1% higher accuracy on the BackdoorBench dataset and a 9.4% improvement on trojaned object detection model scanning, offering a promising new direction for reliable backdoor defense without reliance on extensive data or strong prior assumptions about triggers. The code is available at https://github.com/AdaptiveMotorControlLab/DISTIL.

Authors:Dongli He, Hu Wang, Mohammad Yaqub
Title: Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings
Abstract:
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Authors:Hang Su, Yunlong Feng, Daniel Gehrig, Panfeng Jiang, Ling Gao, Xavier Lagorce, Laurent Kneip
Title: A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
Abstract:
Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.

Authors:Quanwei Yang, Luying Huang, Kaisiyuan Wang, Jiazhi Guan, Shengyi He, Fengguo Li, Hang Zhou, Lingyun Yu, Yingying Li, Haocheng Feng, Hongtao Xie
Title: GestureHYDRA: Semantic Co-speech Gesture Synthesis via Hybrid Modality Diffusion Transformer and Cascaded-Synchronized Retrieval-Augmented Generation
Abstract:
While increasing attention has been paid to co-speech gesture synthesis, most previous works neglect to investigate hand gestures with explicit and essential semantics. In this paper, we study co-speech gesture generation with an emphasis on specific hand gesture activation, which can deliver more instructional information than common body movements. To achieve this, we first build a high-quality dataset of 3D human body movements including a set of semantically explicit hand gestures that are commonly used by live streamers. Then we present a hybrid-modality gesture generation system GestureHYDRA built upon a hybrid-modality diffusion transformer architecture with novelly designed motion-style injective transformer layers, which enables advanced gesture modeling ability and versatile gesture operations. To guarantee these specific hand gestures can be activated, we introduce a cascaded retrieval-augmented generation strategy built upon a semantic gesture repository annotated for each subject and an adaptive audio-gesture synchronization mechanism, which substantially improves semantic gesture activation and production efficiency. Quantitative and qualitative experiments demonstrate that our proposed approach achieves superior performance over all the counterparts. The project page can be found at https://mumuwei.github.io/GestureHYDRA/.

Authors:Jie He, Victor Gutiérrez-Basulto, Jeff Z. Pan
Title: From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Abstract:
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.

Authors:Thuy Tran, Ruochen Chen, Shaifali Parashar
Title: Image-Guided Shape-from-Template Using Mesh Inextensibility Constraints
Abstract:
Shape-from-Template (SfT) refers to the class of methods that reconstruct the 3D shape of a deforming object from images/videos using a 3D template. Traditional SfT methods require point correspondences between images and the texture of the 3D template in order to reconstruct 3D shapes from images/videos in real time. Their performance severely degrades when encountered with severe occlusions in the images because of the unavailability of correspondences. In contrast, modern SfT methods use a correspondence-free approach by incorporating deep neural networks to reconstruct 3D objects, thus requiring huge amounts of data for supervision. Recent advances use a fully unsupervised or self-supervised approach by combining differentiable physics and graphics to deform 3D template to match input images. In this paper, we propose an unsupervised SfT which uses only image observations: color features, gradients and silhouettes along with a mesh inextensibility constraint to reconstruct at a $400\times$ faster pace than (best-performing) unsupervised SfT. Moreover, when it comes to generating finer details and severe occlusions, our method outperforms the existing methodologies by a large margin. Code is available at https://github.com/dvttran/nsft.

Authors:Jia Li, Yang Wang, Wenhao Qian, Jialong Hu, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Listening to the Unspoken: Exploring "365" Aspects of Multimodal Interview Performance Assessment
Abstract:
Interview performance assessment is essential for determining candidates' suitability for professional positions. To ensure holistic and fair evaluations, we propose a novel and comprehensive framework that explores ``365'' aspects of interview performance by integrating \textit{three} modalities (video, audio, and text), \textit{six} responses per candidate, and \textit{five} key evaluation dimensions. The framework employs modality-specific feature extractors to encode heterogeneous data streams and subsequently fused via a Shared Compression Multilayer Perceptron. This module compresses multimodal embeddings into a unified latent space, facilitating efficient feature interaction. To enhance prediction robustness, we incorporate a two-level ensemble learning strategy: (1) independent regression heads predict scores for each response, and (2) predictions are aggregated across responses using a mean-pooling mechanism to produce final scores for the five target dimensions. By listening to the unspoken, our approach captures both explicit and implicit cues from multimodal data, enabling comprehensive and unbiased assessments. Achieving a multi-dimensional average MSE of 0.1824, our framework secured first place in the AVI Challenge 2025, demonstrating its effectiveness and robustness in advancing automated and multimodal interview performance assessment. The full implementation is available at https://github.com/MSA-LMC/365Aspects.

Authors:Federico Girella, Davide Talon, Ziyue Liu, Zanxi Ruan, Yiming Wang, Marco Cristani
Title: LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing
Abstract:
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Yuanhan Wang, Chang Liu, Shuo Jiang, Feiwei Qin, Changmiao Wang
Title: Bridging the Gap in Missing Modalities: Leveraging Knowledge Distillation and Style Matching for Brain Tumor Segmentation
Abstract:
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.

Authors:Daniil Gurgurov, Katharina Trinley, Ivan Vykopal, Josef van Genabith, Simon Ostermann, Roberto Zamparelli
Title: Multilingual Political Views of Large Language Models: Identification and Steering
Abstract:
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.

Authors:Daniil Gurgurov, Katharina Trinley, Yusser Al Ghussin, Tanja Baeumel, Josef van Genabith, Simon Ostermann
Title: Language Arithmetics: Towards Systematic Language Neuron Identification and Manipulation
Abstract:
Large language models (LLMs) exhibit strong multilingual abilities, yet the neural mechanisms behind language-specific processing remain unclear. We analyze language-specific neurons in Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B & 32B across 21 typologically diverse languages, identifying neurons that control language behavior. Using the Language Activation Probability Entropy (LAPE) method, we show that these neurons cluster in deeper layers, with non-Latin scripts showing greater specialization. Related languages share overlapping neurons, reflecting internal representations of linguistic proximity. Through language arithmetics, i.e. systematic activation addition and multiplication, we steer models to deactivate unwanted languages and activate desired ones, outperforming simpler replacement approaches. These interventions effectively guide behavior across five multilingual tasks: language forcing, translation, QA, comprehension, and NLI. Manipulation is more successful for high-resource languages, while typological similarity improves effectiveness. We also demonstrate that cross-lingual neuron steering enhances downstream performance and reveal internal "fallback" mechanisms for language selection when neurons are progressively deactivated. Our code is made publicly available at https://github.com/d-gurgurov/Language-Neurons-Manipulation.

Authors:Takuma Amada, Kazuya Kakizaki, Taiki Miyagawa, Akinori F. Ebihara, Kaede Shiohara, Toshihiko Yamasaki
Title: Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
Abstract:
In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.

Authors:Inaya Rahmanisa, Lyzander Marciano Andrylie, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Unveiling the Influence of Amplifying Language-Specific Neurons
Abstract:
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.

Authors:Galadrielle Humblot-Renaux, Gianni Franchi, Sergio Escalera, Thomas B. Moeslund
Title: COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP
Abstract:
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD

Authors:Shijing Chen, Xinrui Zhou, Yuhao Wang, Yuhao Huang, Ao Chang, Dong Ni, Ruobing Huang
Title: Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound
Abstract:
Accurate identification of breast lesion subtypes can facilitate personalized treatment and interventions. Ultrasound (US), as a safe and accessible imaging modality, is extensively employed in breast abnormality screening and diagnosis. However, the incidence of different subtypes exhibits a skewed long-tailed distribution, posing significant challenges for automated recognition. Generative augmentation provides a promising solution to rectify data distribution. Inspired by this, we propose a dual-phase framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis while avoiding overuse that corrupts holistic performance. The framework incorporates a reinforcement learning-driven adaptive sampler, dynamically calibrating synthetic-real data ratios by training a strategic multi-agent to compensate for scarcities of real data while ensuring stable discriminative capability. Furthermore, our class-controllable synthetic network integrates a sketch-grounded perception branch that harnesses anatomical priors to maintain distinctive class features while enabling annotation-free inference. Extensive experiments on an in-house long-tailed and a public imbalanced breast US datasets demonstrate that our method achieves promising performance compared to state-of-the-art approaches. More synthetic images can be found at https://github.com/Stinalalala/Breast-LT-GenAug.

Authors:Weicheng Gao
Title: Exploration of Low-Cost but Accurate Radar-Based Human Motion Direction Determination
Abstract:
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.

Authors:Joshua Dimasaka, Christian Geiß, Emily So
Title: DeepC4: Deep Conditional Census-Constrained Clustering for Large-scale Multitask Spatial Disaggregation of Urban Morphology
Abstract:
To understand our global progress for sustainable development and disaster risk reduction in many developing economies, two recent major initiatives - the Uniform African Exposure Dataset of the Global Earthquake Model (GEM) Foundation and the Modelling Exposure through Earth Observation Routines (METEOR) Project - implemented classical spatial disaggregation techniques to generate large-scale mapping of urban morphology using the information from various satellite imagery and its derivatives, geospatial datasets of the built environment, and subnational census statistics. However, the local discrepancy with well-validated census statistics and the propagated model uncertainties remain a challenge in such coarse-to-fine-grained mapping problems, specifically constrained by weak and conditional label supervision. Therefore, we present Deep Conditional Census-Constrained Clustering (DeepC4), a novel deep learning-based spatial disaggregation approach that incorporates local census statistics as cluster-level constraints while considering multiple conditional label relationships in a joint multitask learning of the patterns of satellite imagery. To demonstrate, compared to GEM and METEOR, we enhanced the quality of Rwandan maps of urban morphology, specifically building exposure and physical vulnerability, at the third-level administrative unit from the 2022 census. As the world approaches the conclusion of our global frameworks in 2030, our work has offered a new deep learning-based mapping technique towards a spatial auditing of our existing coarse-grained derived information at large scales.

Authors:Rishabh Batra, Zhili Chen, Rahul Jain, YaoNan Zhang
Title: Scalable, quantum-accessible, and adaptive pseudorandom quantum state and pseudorandom function-like quantum state generators
Abstract:
Pseudorandom quantum states (PRSs) and pseudorandom function-like quantum state (PRFS) generators are quantum analogues of pseudorandom generators and pseudorandom functions. It is known that PRS (and PRFS) can exist even if BQP = QMA (relative to a quantum oracle) or if P = NP (relative to a classical oracle), which does not allow for the existence of one-way functions (relative to these oracles). Hence, these are potentially weaker objects than quantum-secure one-way functions, which can be used to do quantum cryptography. A desirable property of PRS and PRFS constructions is scalability, which ensures that the security parameter $λ$ (which determines indistinguishability from their Haar-random counterparts) can be much larger than $n$ (the number of qubits of the output states). This may be important in some applications where PRS and PRFS primitives are used. We present an isometric procedure to prepare quantum states that can be arbitrarily random (i.e., the trace distance from the Haar-random state can be arbitrarily small for the true random case, or the distinguishing advantage can be arbitrarily small for the pseudorandom case). Our procedure provides a new method for scalable PRS that introduces no entanglement or correlations with the environment. This naturally gives the first construction for scalable, quantum-accessible, and adaptive PRFS assuming quantum-secure one-way functions. Our PRFS construction implies various primitives, including long-input PRFS, short-input PRFS, short-output PRFS, non-adaptive PRFS, and classically-accessible adaptive PRFS. This new construction may be helpful in some simplification of the microcrypt zoo (https://sattath.github.io/microcrypt-zoo/).

Authors:Xincheng Yao, Yijun Yang, Kangwei Guo, Ruiqiang Xiao, Haipeng Zhou, Haisu Tao, Jian Yang, Lei Zhu
Title: HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
Abstract:
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.

Authors:Ziyi Wang, Peiming Li, Hong Liu, Zhichao Deng, Can Wang, Jun Liu, Junsong Yuan, Mengyuan Liu
Title: Recognizing Actions from Robotic View for Natural Human-Robot Interaction
Abstract:
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.

Authors:Haipeng Li, Tianhao Zhou, Zhanglei Yang, Yi Wu, Yan Chen, Zijing Mao, Shen Cheng, Bing Zeng, Shuaicheng Liu
Title: Estimating 2D Camera Motion with Hybrid Motion Basis
Abstract:
Estimating 2D camera motion is a fundamental computer vision task that models the projection of 3D camera movements onto the 2D image plane. Current methods rely on either homography-based approaches, limited to planar scenes, or meshflow techniques that use grid-based local homographies but struggle with complex non-linear transformations. A key insight of our work is that combining flow fields from different homographies creates motion patterns that cannot be represented by any single homography. We introduce CamFlow, a novel framework that represents camera motion using hybrid motion bases: physical bases derived from camera geometry and stochastic bases for complex scenarios. Our approach includes a hybrid probabilistic loss function based on the Laplace distribution that enhances training robustness. For evaluation, we create a new benchmark by masking dynamic objects in existing optical flow datasets to isolate pure camera motion. Experiments show CamFlow outperforms state-of-the-art methods across diverse scenarios, demonstrating superior robustness and generalization in zero-shot settings. Code and datasets are available at our project page: https://lhaippp.github.io/CamFlow/.

Authors:Lei Sheng, Shuai-Shuai Xu
Title: SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
Abstract:
Large language models (LLMs) have demonstrated strong performance in translating natural language questions into SQL queries (Text-to-SQL). In contrast, small language models (SLMs) ranging from 0.5B to 1.5B parameters currently underperform on Text-to-SQL tasks due to their limited logical reasoning capabilities. However, SLMs offer inherent advantages in inference speed and suitability for edge deployment. To explore their potential in Text-to-SQL applications, we leverage recent advancements in post-training techniques. Specifically, we used the open-source SynSQL-2.5M dataset to construct two derived datasets: SynSQL-Think-916K for SQL generation and SynSQL-Merge-Think-310K for SQL merge revision. We then applied supervised fine-tuning and reinforcement learning-based post-training to the SLM, followed by inference using a corrective self-consistency approach. Experimental results validate the effectiveness and generalizability of our method, SLM-SQL. On the BIRD development set, the five evaluated models achieved an average improvement of 31.4 points. Notably, the 0.5B model reached 56.87\% execution accuracy (EX), while the 1.5B model achieved 67.08\% EX. We will release our dataset, model, and code to github: https://github.com/CycloneBoy/slm_sql.

Authors:Hui Liu, Chen Jia, Fan Shi, Xu Cheng, Mengfei Shi, Xia Xie, Shengyong Chen
Title: LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Abstract:
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.

Authors:Zheng Xiangyu, He Songcheng, Li Wanyun, Li Xiaoqiang, Zhang Wei
Title: Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation
Abstract:
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .

Authors:Jaeha Kim, Junghun Oh, Kyoung Mu Lee
Title: Exploiting Diffusion Prior for Task-driven Image Restoration
Abstract:
Task-driven image restoration (TDIR) has recently emerged to address performance drops in high-level vision tasks caused by low-quality (LQ) inputs. Previous TDIR methods struggle to handle practical scenarios in which images are degraded by multiple complex factors, leaving minimal clues for restoration. This motivates us to leverage the diffusion prior, one of the most powerful natural image priors. However, while the diffusion prior can help generate visually plausible results, using it to restore task-relevant details remains challenging, even when combined with recent TDIR methods. To address this, we propose EDTR, which effectively harnesses the power of diffusion prior to restore task-relevant details. Specifically, we propose directly leveraging useful clues from LQ images in the diffusion process by generating from pixel-error-based pre-restored LQ images with mild noise added. Moreover, we employ a small number of denoising steps to prevent the generation of redundant details that dilute crucial task-related information. We demonstrate that our method effectively utilizes diffusion prior for TDIR, significantly enhancing task performance and visual quality across diverse tasks with multiple complex degradations.

Authors:Jiuming Liu, Zheng Huang, Mengmeng Liu, Tianchen Deng, Francesco Nex, Hao Cheng, Hesheng Wang
Title: TopoLiDM: Topology-Aware LiDAR Diffusion Models for Interpretable and Realistic LiDAR Point Cloud Generation
Abstract:
LiDAR scene generation is critical for mitigating real-world LiDAR data collection costs and enhancing the robustness of downstream perception tasks in autonomous driving. However, existing methods commonly struggle to capture geometric realism and global topological consistency. Recent LiDAR Diffusion Models (LiDMs) predominantly embed LiDAR points into the latent space for improved generation efficiency, which limits their interpretable ability to model detailed geometric structures and preserve global topological consistency. To address these challenges, we propose TopoLiDM, a novel framework that integrates graph neural networks (GNNs) with diffusion models under topological regularization for high-fidelity LiDAR generation. Our approach first trains a topological-preserving VAE to extract latent graph representations by graph construction and multiple graph convolutional layers. Then we freeze the VAE and generate novel latent topological graphs through the latent diffusion models. We also introduce 0-dimensional persistent homology (PH) constraints, ensuring the generated LiDAR scenes adhere to real-world global topological structures. Extensive experiments on the KITTI-360 dataset demonstrate TopoLiDM's superiority over state-of-the-art methods, achieving improvements of 22.6% lower Frechet Range Image Distance (FRID) and 9.2% lower Minimum Matching Distance (MMD). Notably, our model also enables fast generation speed with an average inference time of 1.68 samples/s, showcasing its scalability for real-world applications. We will release the related codes at https://github.com/IRMVLab/TopoLiDM.

Authors:Youngho Kim, Hoonhee Cho, Kuk-Jin Yoon
Title: From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
Abstract:
Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems. However, rapid motion and low-light conditions often introduce motion blur, significantly degrading pose estimation due to the domain gap between sharp and blurred images. Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments. To address this, we introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data and are inherently robust to motion blur. Using event-based augmentation, we generate motion-aware blurred images, effectively bridging the domain gap between sharp and blurred domains without requiring paired annotations. Additionally, we develop a student-teacher framework that iteratively refines pseudo-labels, leveraging mutual uncertainty masking to eliminate incorrect labels and enable more effective learning. Experimental results demonstrate that our approach outperforms conventional domain-adaptive human pose estimation methods, achieving robust pose estimation under motion blur without requiring annotations in the target domain. Our findings highlight the potential of event cameras as a scalable and effective solution for domain adaptation in real-world motion blur environments. Our project codes are available at https://github.com/kmax2001/EvSharp2Blur.

Authors:Yixuan Nan, Xixun Lin, Yanmin Shang, Zhuofan Li, Can Zhao, Yanan Cao
Title: RANA: Robust Active Learning for Noisy Network Alignment
Abstract:
Network alignment has attracted widespread attention in various fields. However, most existing works mainly focus on the problem of label sparsity, while overlooking the issue of noise in network alignment, which can substantially undermine model performance. Such noise mainly includes structural noise from noisy edges and labeling noise caused by human-induced and process-driven errors. To address these problems, we propose RANA, a Robust Active learning framework for noisy Network Alignment. RANA effectively tackles both structure noise and label noise while addressing the sparsity of anchor link annotations, which can improve the robustness of network alignment models. Specifically, RANA introduces the proposed Noise-aware Selection Module and the Label Denoising Module to address structural noise and labeling noise, respectively. In the first module, we design a noise-aware maximization objective to select node pairs, incorporating a cleanliness score to address structural noise. In the second module, we propose a novel multi-source fusion denoising strategy that leverages model and twin node pairs labeling to provide more accurate labels for node pairs. Empirical results on three real-world datasets demonstrate that RANA outperforms state-of-the-art active learning-based methods in alignment accuracy. Our code is available at https://github.com/YXNan0110/RANA.

Authors:Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran
Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Abstract:
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty

Authors:Sijie Wang, Siqi Li, Yawei Zhang, Shangshu Yu, Shenghai Yuan, Rui She, Quanjiang Guo, JinXuan Zheng, Ong Kang Howe, Leonrich Chandra, Shrivarshann Srijeyan, Aditya Sivadas, Toshan Aggarwal, Heyuan Liu, Hongming Zhang, Chujie Chen, Junyu Jiang, Lihua Xie, Wee Peng Tay
Title: UAVScenes: A Multi-Modal Dataset for UAVs
Abstract:
Multi-modal perception is essential for unmanned aerial vehicle (UAV) operations, as it enables a comprehensive understanding of the UAVs' surrounding environment. However, most existing multi-modal UAV datasets are primarily biased toward localization and 3D reconstruction tasks, or only support map-level semantic segmentation due to the lack of frame-wise annotations for both camera images and LiDAR point clouds. This limitation prevents them from being used for high-level scene understanding tasks. To address this gap and advance multi-modal UAV perception, we introduce UAVScenes, a large-scale dataset designed to benchmark various tasks across both 2D and 3D modalities. Our benchmark dataset is built upon the well-calibrated multi-modal UAV dataset MARS-LVIG, originally developed only for simultaneous localization and mapping (SLAM). We enhance this dataset by providing manually labeled semantic annotations for both frame-wise images and LiDAR point clouds, along with accurate 6-degree-of-freedom (6-DoF) poses. These additions enable a wide range of UAV perception tasks, including segmentation, depth estimation, 6-DoF localization, place recognition, and novel view synthesis (NVS). Our dataset is available at https://github.com/sijieaaa/UAVScenes

Authors:Hyeonseok Moon, Heuiseok Lim
Title: NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
Abstract:
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain

Authors:Seungryong Lee, Woojeong Baek, Younghyun Kim, Eunwoo Kim, Haru Moon, Donggon Yoo, Eunbyung Park
Title: Moiré Zero: An Efficient and High-Performance Neural Architecture for Moiré Removal
Abstract:
Moiré patterns, caused by frequency aliasing between fine repetitive structures and a camera sensor's sampling process, have been a significant obstacle in various real-world applications, such as consumer photography and industrial defect inspection. With the advancements in deep learning algorithms, numerous studies-predominantly based on convolutional neural networks-have suggested various solutions to address this issue. Despite these efforts, existing approaches still struggle to effectively eliminate artifacts due to the diverse scales, orientations, and color shifts of moiré patterns, primarily because the constrained receptive field of CNN-based architectures limits their ability to capture the complex characteristics of moiré patterns. In this paper, we propose MZNet, a U-shaped network designed to bring images closer to a 'Moire-Zero' state by effectively removing moiré patterns. It integrates three specialized components: Multi-Scale Dual Attention Block (MSDAB) for extracting and refining multi-scale features, Multi-Shape Large Kernel Convolution Block (MSLKB) for capturing diverse moiré structures, and Feature Fusion-Based Skip Connection for enhancing information flow. Together, these components enhance local texture restoration and large-scale artifact suppression. Experiments on benchmark datasets demonstrate that MZNet achieves state-of-the-art performance on high-resolution datasets and delivers competitive results on lower-resolution dataset, while maintaining a low computational cost, suggesting that it is an efficient and practical solution for real-world applications. Project page: https://sngryonglee.github.io/MoireZero

Authors:Anubhav Kataria, Surbhi Madan, Shreya Ghosh, Tom Gedeon, Abhinav Dhall
Title: Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Abstract:
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS

Authors:Jia Li, Yichao He, Jiacheng Xu, Tianhao Luo, Zhenzhen Hu, Richang Hong, Meng Wang
Title: Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
Abstract:
Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textit{\textbf{Traits Run Deep}}. It employs \textit{\textbf{psychology-informed prompts}} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textit{\textbf{Text-Centric Trait Fusion Network}} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.

Authors:Mykola Maslych, Mohammadreza Katebi, Christopher Lee, Yahya Hmaiti, Amirpouya Ghasemaghaei, Christian Pumarada, Janneese Palmer, Esteban Segarra Martinez, Marco Emporio, Warren Snipes, Ryan P. McMahan, Joseph J. LaViola
Title: Mitigating Response Delays in Free-Form Conversations with LLM-powered Intelligent Virtual Agents
Abstract:
We investigated the challenges of mitigating response delays in free-form conversations with virtual agents powered by Large Language Models (LLMs) within Virtual Reality (VR). For this, we used conversational fillers, such as gestures and verbal cues, to bridge delays between user input and system responses and evaluate their effectiveness across various latency levels and interaction scenarios. We found that latency above 4 seconds degrades quality of experience, while natural conversational fillers improve perceived response time, especially in high-delay conditions. Our findings provide insights for practitioners and researchers to optimize user engagement whenever conversational systems' responses are delayed by network limitations or slow hardware. We also contribute an open-source pipeline that streamlines deploying conversational agents in virtual environments.

Authors:Pei Deng, Wenqian Zhou, Hanlin Wu
Title: DeltaVLM: Interactive Remote Sensing Image Change Analysis via Instruction-guided Difference Perception
Abstract:
Accurate interpretation of land-cover changes in multi-temporal satellite imagery is critical for real-world scenarios. However, existing methods typically provide only one-shot change masks or static captions, limiting their ability to support interactive, query-driven analysis. In this work, we introduce remote sensing image change analysis (RSICA) as a new paradigm that combines the strengths of change detection and visual question answering to enable multi-turn, instruction-guided exploration of changes in bi-temporal remote sensing images. To support this task, we construct ChangeChat-105k, a large-scale instruction-following dataset, generated through a hybrid rule-based and GPT-assisted process, covering six interaction types: change captioning, classification, quantification, localization, open-ended question answering, and multi-turn dialogues. Building on this dataset, we propose DeltaVLM, an end-to-end architecture tailored for interactive RSICA. DeltaVLM features three innovations: (1) a fine-tuned bi-temporal vision encoder to capture temporal differences; (2) a visual difference perception module with a cross-semantic relation measuring (CSRM) mechanism to interpret changes; and (3) an instruction-guided Q-former to effectively extract query-relevant difference information from visual changes, aligning them with textual instructions. We train DeltaVLM on ChangeChat-105k using a frozen large language model, adapting only the vision and alignment modules to optimize efficiency. Extensive experiments and ablation studies demonstrate that DeltaVLM achieves state-of-the-art performance on both single-turn captioning and multi-turn interactive change analysis, outperforming existing multimodal large language models and remote sensing vision-language models. Code, dataset and pre-trained weights are available at https://github.com/hanlinwu/DeltaVLM.

Authors:Zhicheng Song, Jinglan Xu, Chunxin Zheng, Yulin Li, Zhihai Bi, Jun Ma
Title: FLORES: A Reconfigured Wheel-Legged Robot for Enhanced Steering and Adaptability
Abstract:
Wheel-legged robots integrate the agility of legs for navigating rough terrains while harnessing the efficiency of wheels for smooth surfaces. However, most existing designs do not fully capitalize on the benefits of both legged and wheeled structures, which limits overall system flexibility and efficiency. We present FLORES (reconfigured wheel-legged robot for enhanced steering and adaptability), a novel wheel-legged robot design featuring a distinctive front-leg configuration that sets it beyond standard design approaches. Specifically, FLORES replaces the conventional hip-roll degree of freedom (DoF) of the front leg with hip-yaw DoFs, and this allows for efficient movement on flat surfaces while ensuring adaptability when navigating complex terrains. This innovative design facilitates seamless transitions between different locomotion modes (i.e., legged locomotion and wheeled locomotion) and optimizes the performance across varied environments. To fully exploit FLORES's mechanical capabilities, we develop a tailored reinforcement learning (RL) controller that adapts the Hybrid Internal Model (HIM) with a customized reward structure optimized for our unique mechanical configuration. This framework enables the generation of adaptive, multi-modal locomotion strategies that facilitate smooth transitions between wheeled and legged movements. Furthermore, our distinctive joint design enables the robot to exhibit novel and highly efficient locomotion gaits that capitalize on the synergistic advantages of both locomotion modes. Through comprehensive experiments, we demonstrate FLORES's enhanced steering capabilities, improved navigation efficiency, and versatile locomotion across various terrains. The open-source project can be found at https://github.com/ZhichengSong6/FLORES-A-Reconfigured-Wheel-Legged-Robot-for-Enhanced-Steering-and-Adaptability.git.

Authors:Yuki Fujimura, Takahiro Kushida, Kazuya Kitano, Takuya Funatomi, Yasuhiro Mukaigawa
Title: UFV-Splatter: Pose-Free Feed-Forward 3D Gaussian Splatting Adapted to Unfavorable Views
Abstract:
This paper presents a pose-free, feed-forward 3D Gaussian Splatting (3DGS) framework designed to handle unfavorable input views. A common rendering setup for training feed-forward approaches places a 3D object at the world origin and renders it from cameras pointed toward the origin -- i.e., from favorable views, limiting the applicability of these models to real-world scenarios involving varying and unknown camera poses. To overcome this limitation, we introduce a novel adaptation framework that enables pretrained pose-free feed-forward 3DGS models to handle unfavorable views. We leverage priors learned from favorable images by feeding recentered images into a pretrained model augmented with low-rank adaptation (LoRA) layers. We further propose a Gaussian adapter module to enhance the geometric consistency of the Gaussians derived from the recentered inputs, along with a Gaussian alignment method to render accurate target views for training. Additionally, we introduce a new training strategy that utilizes an off-the-shelf dataset composed solely of favorable images. Experimental results on both synthetic images from the Google Scanned Objects dataset and real images from the OmniObject3D dataset validate the effectiveness of our method in handling unfavorable input views.

Authors:Romulo B. da Silva, Diego Passos, Cássio M. Oishi, J. Nathan Kutz
Title: CS-SHRED: Enhancing SHRED for Robust Recovery of Spatiotemporal Dynamics
Abstract:
We present CS-SHRED, a novel deep learning architecture that integrates Compressed Sensing (CS) into a Shallow Recurrent Decoder (SHRED) to reconstruct spatiotemporal dynamics from incomplete, compressed, or corrupted data. Our approach introduces two key innovations. First, by incorporating CS techniques into the SHRED architecture, our method leverages a batch-based forward framework with $\ell_1$ regularization to robustly recover signals even in scenarios with sparse sensor placements, noisy measurements, and incomplete sensor acquisitions. Second, an adaptive loss function dynamically combines Mean Squared Error (MSE) and Mean Absolute Error (MAE) terms with a piecewise Signal-to-Noise Ratio (SNR) regularization, which suppresses noise and outliers in low-SNR regions while preserving fine-scale features in high-SNR regions. We validate CS-SHRED on challenging problems including viscoelastic fluid flows, maximum specific humidity fields, sea surface temperature distributions, and rotating turbulent flows. Compared to the traditional SHRED approach, CS-SHRED achieves significantly higher reconstruction fidelity -- as demonstrated by improved SSIM and PSNR values, lower normalized errors, and enhanced LPIPS scores-thereby providing superior preservation of small-scale structures and increased robustness against noise and outliers. Our results underscore the advantages of the jointly trained CS and SHRED design architecture which includes an LSTM sequence model for characterizing the temporal evolution with a shallow decoder network (SDN) for modeling the high-dimensional state space. The SNR-guided adaptive loss function for the spatiotemporal data recovery establishes CS-SHRED as a promising tool for a wide range of applications in environmental, climatic, and scientific data analyses.

Authors:Phuc Truong Loc Nguyen, Thanh Hung Do
Title: ConGaIT: A Clinician-Centered Dashboard for Contestable AI in Parkinson's Disease Care
Abstract:
AI-assisted gait analysis holds promise for improving Parkinson's Disease (PD) care, but current clinical dashboards lack transparency and offer no meaningful way for clinicians to interrogate or contest AI decisions. We present Con-GaIT (Contestable Gait Interpretation & Tracking), a clinician-centered system that advances Contestable AI through a tightly integrated interface designed for interpretability, oversight, and procedural recourse. Grounded in HCI principles, ConGaIT enables structured disagreement via a novel Contest & Justify interaction pattern, supported by visual explanations, role-based feedback, and traceable justification logs. Evaluated using the Contestability Assessment Score (CAS), the framework achieves a score of 0.970, demonstrating that contestability can be operationalized through human-centered design in compliance with emerging regulatory standards. A demonstration of the framework is available at https://github.com/hungdothanh/Con-GaIT.

Authors:Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, Kun Zhang
Title: SmartCLIP: Modular Vision-language Alignment with Identification Guarantees
Abstract:
Contrastive Language-Image Pre-training (CLIP)~\citep{radford2021learning} has emerged as a pivotal model in computer vision and multimodal learning, achieving state-of-the-art performance at aligning visual and textual representations through contrastive learning. However, CLIP struggles with potential information misalignment in many image-text datasets and suffers from entangled representation. On the one hand, short captions for a single image in datasets like MSCOCO may describe disjoint regions in the image, leaving the model uncertain about which visual features to retain or disregard. On the other hand, directly aligning long captions with images can lead to the retention of entangled details, preventing the model from learning disentangled, atomic concepts -- ultimately limiting its generalization on certain downstream tasks involving short prompts. In this paper, we establish theoretical conditions that enable flexible alignment between textual and visual representations across varying levels of granularity. Specifically, our framework ensures that a model can not only \emph{preserve} cross-modal semantic information in its entirety but also \emph{disentangle} visual representations to capture fine-grained textual concepts. Building on this foundation, we introduce \ours, a novel approach that identifies and aligns the most relevant visual and textual representations in a modular manner. Superior performance across various tasks demonstrates its capability to handle information misalignment and supports our identification theory. The code is available at https://github.com/Mid-Push/SmartCLIP.

Authors:Stéphane d'Ascoli, Jérémy Rapin, Yohann Benchetrit, Hubert Banville, Jean-Rémi King
Title: TRIBE: TRImodal Brain Encoder for whole-brain fMRI response prediction
Abstract:
Historically, neuroscience has progressed by fragmenting into specialized domains, each focusing on isolated modalities, tasks, or brain regions. While fruitful, this approach hinders the development of a unified model of cognition. Here, we introduce TRIBE, the first deep neural network trained to predict brain responses to stimuli across multiple modalities, cortical areas and individuals. By combining the pretrained representations of text, audio and video foundational models and handling their time-evolving nature with a transformer, our model can precisely model the spatial and temporal fMRI responses to videos, achieving the first place in the Algonauts 2025 brain encoding competition with a significant margin over competitors. Ablations show that while unimodal models can reliably predict their corresponding cortical networks (e.g. visual or auditory networks), they are systematically outperformed by our multimodal model in high-level associative cortices. Currently applied to perception and comprehension, our approach paves the way towards building an integrative model of representations in the human brain. Our code is available at https://github.com/facebookresearch/algonauts-2025.

Authors:Clark Mingxuan Ju, Liam Collins, Leonardo Neves, Bhuvesh Kumar, Louis Yufeng Wang, Tong Zhao, Neil Shah
Title: Generative Recommendation with Semantic IDs: A Practitioner's Handbook
Abstract:
Generative recommendation (GR) has gained increasing attention for its promising performance compared to traditional models. A key factor contributing to the success of GR is the semantic ID (SID), which converts continuous semantic representations (e.g., from large language models) into discrete ID sequences. This enables GR models with SIDs to both incorporate semantic information and learn collaborative filtering signals, while retaining the benefits of discrete decoding. However, varied modeling techniques, hyper-parameters, and experimental setups in existing literature make direct comparisons between GR proposals challenging. Furthermore, the absence of an open-source, unified framework hinders systematic benchmarking and extension, slowing model iteration. To address this challenge, our work introduces and open-sources a framework for Generative Recommendation with semantic ID, namely GRID, specifically designed for modularity to facilitate easy component swapping and accelerate idea iteration. Using GRID, we systematically experiment with and ablate different components of GR models with SIDs on public benchmarks. Our comprehensive experiments with GRID reveal that many overlooked architectural components in GR models with SIDs substantially impact performance. This offers both novel insights and validates the utility of an open-source platform for robust benchmarking and GR research advancement. GRID is open-sourced at https://github.com/snap-research/GRID.

Authors:Jayanth Yetukuri, Ishita Khan
Title: Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search
Abstract:
Understanding and modeling buyer intent is a foundational challenge in optimizing search query reformulation within the dynamic landscape of e-commerce search systems. This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs, with a focus on extracting fine-grained intent signals from both explicit interactions and implicit behavioral cues. Leveraging advanced sequence mining techniques and supervised learning models, the pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset. The proposed framework facilitates the development of adaptive query rewrite strategies by grounding reformulations in inferred user intent rather than surface-level lexical signals. This alignment between query rewriting and underlying user objectives enhances both retrieval relevance and downstream engagement metrics. Empirical evaluations across multiple product verticals demonstrate measurable gains in precision-oriented relevance metrics, underscoring the efficacy of intent-aware reformulation. Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals, and establish a scalable foundation for future research in user-aligned neural retrieval and ranking systems.

Authors:Zheng Zhang, Peilin Zhao, Deheng Ye, Hao Wang
Title: Enhancing Jailbreak Attacks on LLMs via Persona Prompts
Abstract:
Jailbreak attacks aim to exploit large language models (LLMs) by inducing them to generate harmful content, thereby revealing their vulnerabilities. Understanding and addressing these attacks is crucial for advancing the field of LLM safety. Previous jailbreak approaches have mainly focused on direct manipulations of harmful intent, with limited attention to the impact of persona prompts. In this study, we systematically explore the efficacy of persona prompts in compromising LLM defenses. We propose a genetic algorithm-based method that automatically crafts persona prompts to bypass LLM's safety mechanisms. Our experiments reveal that: (1) our evolved persona prompts reduce refusal rates by 50-70% across multiple LLMs, and (2) these prompts demonstrate synergistic effects when combined with existing attack methods, increasing success rates by 10-20%. Our code and data are available at https://github.com/CjangCjengh/Generic_Persona.

Authors:Umair Nawaz, Muhammad Zaigham Zaheer, Fahad Shahbaz Khan, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock
Abstract:
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population. However, these sectors face considerable challenges, including climate variability, resource limitations, and the need for sustainable management. Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI). This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques (e.g., vision transformers), and recent vision-language foundation models (e.g., CLIP) in the agriculture domain, focusing on diverse tasks such as crop disease detection, livestock health management, and aquatic species monitoring. We further cover major implementation challenges such as data variability and experimental aspects: datasets, performance evaluation metrics, and geographical focus. We finish the survey by discussing potential open research directions emphasizing the need for multimodal data integration, efficient edge-device deployment, and domain-adaptable AI models for diverse farming environments. Rapid growth of evolving developments in this field can be actively tracked on our project page: https://github.com/umair1221/AI-in-Agriculture

Authors:Sicheng Zhang, Binzhu Xie, Zhonghao Yan, Yuli Zhang, Donghao Zhou, Xiaofei Chen, Shi Qiu, Jiaqi Liu, Guoyang Xie, Zhichao Lu
Title: Trade-offs in Image Generation: How Do Different Dimensions Interact?
Abstract:
Model performance in text-to-image (T2I) and image-to-image (I2I) generation often depends on multiple aspects, including quality, alignment, diversity, and robustness. However, models' complex trade-offs among these dimensions have rarely been explored due to (1) the lack of datasets that allow fine-grained quantification of these trade-offs, and (2) the use of a single metric for multiple dimensions. To bridge this gap, we introduce TRIG-Bench (Trade-offs in Image Generation), which spans 10 dimensions (Realism, Originality, Aesthetics, Content, Relation, Style, Knowledge, Ambiguity, Toxicity, and Bias), contains 40,200 samples, and covers 132 pairwise dimensional subsets. Furthermore, we develop TRIGScore, a VLM-as-judge metric that automatically adapts to various dimensions. Based on TRIG-Bench and TRIGScore, we evaluate 14 models across T2I and I2I tasks. In addition, we propose the Relation Recognition System to generate the Dimension Trade-off Map (DTM) that visualizes the trade-offs among model-specific capabilities. Our experiments demonstrate that DTM consistently provides a comprehensive understanding of the trade-offs between dimensions for each type of generative model. Notably, we show that the model's dimension-specific weaknesses can be mitigated through fine-tuning on DTM to enhance overall performance. Code is available at: https://github.com/fesvhtr/TRIG

Authors:Joy Arulraj
Title: Towards a Periodic Table of Computer System Design Principles
Abstract:
System design is often taught through domain-specific solutions specific to particular domains, such as databases, operating systems, or computer architecture, each with its own methods and vocabulary. While this diversity is a strength, it can obscure cross-cutting principles that recur across domains. This paper proposes a preliminary "periodic table" of system design principles distilled from several domains in computer systems. The goal is a shared, concise vocabulary that helps students, researchers, and practitioners reason about structure and trade-offs, compare designs across domains, and communicate choices more clearly. For supporting materials and updates, please refer to the repository at: https://github.com/jarulraj/periodic-table.

Authors:Honghua Dong, Jiacheng Yang, Xun Deng, Yuhe Jiang, Gennady Pekhimenko, Fan Long, Xujie Si
Title: TypyBench: Evaluating LLM Type Inference for Untyped Python Repositories
Abstract:
Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce TypyBench, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. TypyBench features two novel metrics: TypeSim, which captures nuanced semantic relationships between predicted and ground truth types, and TypeCheck, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent TypeSim scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. TypyBench provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at https://github.com/typybench/typybench.

Authors:Liwenhan Xie, Jiayi Zhou, Anyi Rao, Huamin Qu, Xinhuan Shu
Title: DataSway: Vivifying Metaphoric Visualization with Animation Clip Generation and Coordination
Abstract:
Animating metaphoric visualizations brings data to life, enhancing the comprehension of abstract data encodings and fostering deeper engagement. However, creators face significant challenges in designing these animations, such as crafting motions that align semantically with the metaphors, maintaining faithful data representation during animation, and seamlessly integrating interactivity. We propose a human-AI co-creation workflow that facilitates creating animations for SVG-based metaphoric visualizations. Users can initially derive animation clips for data elements from vision-language models (VLMs) and subsequently coordinate their timelines based on entity order, attribute values, spatial layout, or randomness. Our design decisions were informed by a formative study with experienced designers (N=8). We further developed a prototype, DataSway, and conducted a user study (N=14) to evaluate its creativity support and usability. A gallery with 6 cases demonstrates its capabilities and applications in web-based hypermedia. We conclude with implications for future research on bespoke data visualization animation.

Authors:Minghao Guo, Qingcheng Zeng, Xujiang Zhao, Yanchi Liu, Wenchao Yu, Mengnan Du, Haifeng Chen, Wei Cheng
Title: DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router
Abstract:
Large Language Models (LLMs) excel at many reasoning tasks but struggle with knowledge-intensive queries due to their inability to dynamically access up-to-date or domain-specific information. Retrieval-Augmented Generation (RAG) has emerged as a promising solution, enabling LLMs to ground their responses in external sources. However, existing RAG methods lack fine-grained control over both the query and source sides, often resulting in noisy retrieval and shallow reasoning. In this work, we introduce DeepSieve, an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router. DeepSieve decomposes complex queries into structured sub-questions and recursively routes each to the most suitable knowledge source, filtering irrelevant information through a multi-stage distillation process. Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design. Experiments on multi-hop QA tasks across heterogeneous sources demonstrate improved reasoning depth, retrieval precision, and interpretability over conventional RAG approaches. Our codes are available at https://github.com/MinghoKwok/DeepSieve.

Authors:Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, Hui Li
Title: UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE for enhancing GUI agents at both training and inference. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a continuous reward function to incentivize high-precision grounding; 2) a ``Simple Thinking'' reward to balance planning with speed and grounding accuracy; and 3) a cropping-based resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present decomposed grounding with selection to dramatically improve grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art grounding performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2 while it also exhibits strong general agent capabilities. For instance, using both our training and inference enhancement methods brings 23\% grounding accuracy improvement over the best baseline on ScreenSpot-Pro. We provide the code in https://github.com/KDEGroup/UI-AGILE.

Authors:Ziyun Dai, Xiaoqiang Li, Shaohua Zhang, Yuanchen Wu, Jide Li
Title: See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in visual understanding and multimodal reasoning. However, LVLMs frequently exhibit hallucination phenomena, manifesting as the generated textual responses that demonstrate inconsistencies with the provided visual content. Existing hallucination mitigation methods are predominantly text-centric, the challenges of visual-semantic alignment significantly limit their effectiveness, especially when confronted with fine-grained visual understanding scenarios. To this end, this paper presents ViHallu, a Vision-Centric Hallucination mitigation framework that enhances visual-semantic alignment through Visual Variation Image Generation and Visual Instruction Construction. ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure. These images, combined with carefully constructed visual instructions, enable LVLMs to better understand fine-grained visual content through fine-tuning, allowing models to more precisely capture the correspondence between visual content and text, thereby enhancing visual-semantic alignment. Extensive experiments on multiple benchmarks show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies. Furthermore, we release ViHallu-Instruction, a visual instruction dataset specifically designed for hallucination mitigation and visual-semantic alignment. Code is available at https://github.com/oliviadzy/ViHallu.

Authors:Yufei Jia, Guangyu Wang, Yuhang Dong, Junzhe Wu, Yupei Zeng, Haonan Lin, Zifan Wang, Haizhou Ge, Weibin Gu, Kairui Ding, Zike Yan, Yunjie Cheng, Yue Li, Ziming Wang, Chuxuan Li, Wei Sui, Lu Shi, Guanzhong Tian, Ruqi Huang, Guyue Zhou
Title: DISCOVERSE: Efficient Robot Simulation in Complex High-Fidelity Environments
Abstract:
We present the first unified, modular, open-source 3DGS-based simulation framework for Real2Sim2Real robot learning. It features a holistic Real2Sim pipeline that synthesizes hyper-realistic geometry and appearance of complex real-world scenarios, paving the way for analyzing and bridging the Sim2Real gap. Powered by Gaussian Splatting and MuJoCo, Discoverse enables massively parallel simulation of multiple sensor modalities and accurate physics, with inclusive supports for existing 3D assets, robot models, and ROS plugins, empowering large-scale robot learning and complex robotic benchmarks. Through extensive experiments on imitation learning, Discoverse demonstrates state-of-the-art zero-shot Sim2Real transfer performance compared to existing simulators. For code and demos: https://air-discoverse.github.io/.

Authors:Jihao Gu, Kun Li, Fei Wang, Yanyan Wei, Zhiliang Wu, Hehe Fan, Meng Wang
Title: Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition
Abstract:
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.

Authors:Jiahui Ren, Mochu Xiang, Jiajun Zhu, Yuchao Dai
Title: PanoSplatt3R: Leveraging Perspective Pretraining for Generalized Unposed Wide-Baseline Panorama Reconstruction
Abstract:
Wide-baseline panorama reconstruction has emerged as a highly effective and pivotal approach for not only achieving geometric reconstruction of the surrounding 3D environment, but also generating highly realistic and immersive novel views. Although existing methods have shown remarkable performance across various benchmarks, they are predominantly reliant on accurate pose information. In real-world scenarios, the acquisition of precise pose often requires additional computational resources and is highly susceptible to noise. These limitations hinder the broad applicability and practicality of such methods. In this paper, we present PanoSplatt3R, an unposed wide-baseline panorama reconstruction method. We extend and adapt the foundational reconstruction pretrainings from the perspective domain to the panoramic domain, thus enabling powerful generalization capabilities. To ensure a seamless and efficient domain-transfer process, we introduce RoPE rolling that spans rolled coordinates in rotary positional embeddings across different attention heads, maintaining a minimal modification to RoPE's mechanism, while modeling the horizontal periodicity of panorama images. Comprehensive experiments demonstrate that PanoSplatt3R, even in the absence of pose information, significantly outperforms current state-of-the-art methods. This superiority is evident in both the generation of high-quality novel views and the accuracy of depth estimation, thereby showcasing its great potential for practical applications. Project page: https://npucvr.github.io/PanoSplatt3R

Authors:Théo Ladune, Thomas Leguay, Pierrick Philippe, Gordon Clare, Félix Henry
Title: Efficient Sub-pixel Motion Compensation in Learned Video Codecs
Abstract:
Motion compensation is a key component of video codecs. Conventional codecs (HEVC and VVC) have carefully refined this coding step, with an important focus on sub-pixel motion compensation. On the other hand, learned codecs achieve sub-pixel motion compensation through simple bilinear filtering. This paper offers to improve learned codec motion compensation by drawing inspiration from conventional codecs. It is shown that the usage of more advanced interpolation filters, block-based motion information and finite motion accuracy lead to better compression performance and lower decoding complexity. Experimental results are provided on the Cool-chic video codec, where we demonstrate a rate decrease of more than 10% and a lowering of motion-related decoding complexity from 391 MAC per pixel to 214 MAC per pixel. All contributions are made open-source at https://github.com/Orange-OpenSource/Cool-Chic

Authors:Tianhong Gao, Yannian Fu, Weiqun Wu, Haixiao Yue, Shanshan Liu, Gang Zhang
Title: MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Abstract:
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.

Authors:Nicola Fanelli, Gennaro Vessio, Giovanna Castellano
Title: ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval
Abstract:
Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.

Authors:Shengjia Chen, Ruchika Verma, Kevin Clare, Jannes Jegminat, Eugenia Alleva, Kuan-lin Huang, Brandon Veremis, Thomas Fuchs, Gabriele Campanella
Title: Predict Patient Self-reported Race from Skin Histological Images
Abstract:
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.

Authors:Viacheslav Pirogov, Maksim Artemev
Title: Evaluating Deepfake Detectors in the Wild
Abstract:
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/SumSubstance/Deepfake-Detectors-in-the-Wild.

Authors:Stefanos Gkikas, Ioannis Kyprakis, Manolis Tsiknakis
Title: Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Abstract:
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN). The proposed approach introduces Tiny-BioMoE, a lightweight pretrained embedding model for biosignal analysis. Trained on 4.4 million biosignal image representations and consisting of only 7.3 million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.

Authors:Raffaele Pojer, Andrea Passerini, Kim G. Larsen, Manfred Jaeger
Title: A Neuro-Symbolic Approach for Probabilistic Reasoning on Graph Data
Abstract:
Graph neural networks (GNNs) excel at predictive tasks on graph-structured data but often lack the ability to incorporate symbolic domain knowledge and perform general reasoning. Relational Bayesian Networks (RBNs), in contrast, enable fully generative probabilistic modeling over graph-like structures and support rich symbolic knowledge and probabilistic inference. This paper presents a neuro-symbolic framework that seamlessly integrates GNNs into RBNs, combining the learning strength of GNNs with the flexible reasoning capabilities of RBNs. We develop two implementations of this integration: one compiles GNNs directly into the native RBN language, while the other maintains the GNN as an external component. Both approaches preserve the semantics and computational properties of GNNs while fully aligning with the RBN modeling paradigm. We also propose a maximum a-posteriori (MAP) inference method for these neuro-symbolic models. To demonstrate the framework's versatility, we apply it to two distinct problems. First, we transform a GNN for node classification into a collective classification model that explicitly models homo- and heterophilic label patterns, substantially improving accuracy. Second, we introduce a multi-objective network optimization problem in environmental planning, where MAP inference supports complex decision-making. Both applications include new publicly available benchmark datasets. This work introduces a powerful and coherent neuro-symbolic approach to graph data, bridging learning and reasoning in ways that enable novel applications and improved performance across diverse tasks.

Authors:Julia Wolleb, Florentin Bieder, Paul Friedrich, Hemant D. Tagare, Xenophon Papademetris
Title: VidFuncta: Towards Generalizable Neural Representations for Ultrasound Videos
Abstract:
Ultrasound is widely used in clinical care, yet standard deep learning methods often struggle with full video analysis due to non-standardized acquisition and operator bias. We offer a new perspective on ultrasound video analysis through implicit neural representations (INRs). We build on Functa, an INR framework in which each image is represented by a modulation vector that conditions a shared neural network. However, its extension to the temporal domain of medical videos remains unexplored. To address this gap, we propose VidFuncta, a novel framework that leverages Functa to encode variable-length ultrasound videos into compact, time-resolved representations. VidFuncta disentangles each video into a static video-specific vector and a sequence of time-dependent modulation vectors, capturing both temporal dynamics and dataset-level redundancies. Our method outperforms 2D and 3D baselines on video reconstruction and enables downstream tasks to directly operate on the learned 1D modulation vectors. We validate VidFuncta on three public ultrasound video datasets -- cardiac, lung, and breast -- and evaluate its downstream performance on ejection fraction prediction, B-line detection, and breast lesion classification. These results highlight the potential of VidFuncta as a generalizable and efficient representation framework for ultrasound videos. Our code is publicly available under https://github.com/JuliaWolleb/VidFuncta_public.

Authors:Jiahao He, Daerji Suolang, Keren Fu, Qijun Zhao
Title: Unleashing the Power of Motion and Depth: A Selective Fusion Strategy for RGB-D Video Salient Object Detection
Abstract:
Applying salient object detection (SOD) to RGB-D videos is an emerging task called RGB-D VSOD and has recently gained increasing interest, due to considerable performance gains of incorporating motion and depth and that RGB-D videos can be easily captured now in daily life. Existing RGB-D VSOD models have different attempts to derive motion cues, in which extracting motion information explicitly from optical flow appears to be a more effective and promising alternative. Despite this, there remains a key issue that how to effectively utilize optical flow and depth to assist the RGB modality in SOD. Previous methods always treat optical flow and depth equally with respect to model designs, without explicitly considering their unequal contributions in individual scenarios, limiting the potential of motion and depth. To address this issue and unleash the power of motion and depth, we propose a novel selective cross-modal fusion framework (SMFNet) for RGB-D VSOD, incorporating a pixel-level selective fusion strategy (PSF) that achieves optimal fusion of optical flow and depth based on their actual contributions. Besides, we propose a multi-dimensional selective attention module (MSAM) to integrate the fused features derived from PSF with the remaining RGB modality at multiple dimensions, effectively enhancing feature representation to generate refined features. We conduct comprehensive evaluation of SMFNet against 19 state-of-the-art models on both RDVS and DVisal datasets, making the evaluation the most comprehensive RGB-D VSOD benchmark up to date, and it also demonstrates the superiority of SMFNet over other models. Meanwhile, evaluation on five video benchmark datasets incorporating synthetic depth validates the efficacy of SMFNet as well. Our code and benchmark results are made publicly available at https://github.com/Jia-hao999/SMFNet.

Authors:Xingjian Zhang, Siwei Wen, Wenjun Wu, Lei Huang
Title: EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Abstract:
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.

Authors:Yifan Wei, Xiaoyan Yu, Yixuan Weng, Tengfei Pan, Angsheng Li, Li Du
Title: AutoTIR: Autonomous Tools Integrated Reasoning via Reinforcement Learning
Abstract:
Large Language Models (LLMs), when enhanced through reasoning-oriented post-training, evolve into powerful Large Reasoning Models (LRMs). Tool-Integrated Reasoning (TIR) further extends their capabilities by incorporating external tools, but existing methods often rely on rigid, predefined tool-use patterns that risk degrading core language competence. Inspired by the human ability to adaptively select tools, we introduce AutoTIR, a reinforcement learning framework that enables LLMs to autonomously decide whether and which tool to invoke during the reasoning process, rather than following static tool-use strategies. AutoTIR leverages a hybrid reward mechanism that jointly optimizes for task-specific answer correctness, structured output adherence, and penalization of incorrect tool usage, thereby encouraging both precise reasoning and efficient tool integration. Extensive evaluations across diverse knowledge-intensive, mathematical, and general language modeling tasks demonstrate that AutoTIR achieves superior overall performance, significantly outperforming baselines and exhibits superior generalization in tool-use behavior. These results highlight the promise of reinforcement learning in building truly generalizable and scalable TIR capabilities in LLMs. The code and data are available at https://github.com/weiyifan1023/AutoTIR.

Authors:Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, Zhao Zhong
Title: MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Abstract:
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.

Authors:Xie Zhang, Yina Wang, Chenshu Wu
Title: Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
Abstract:
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.

Authors:Zhaolong Wang, Tongfeng Sun, Mingzheng Du, Yachao Huang
Title: MSGCoOp: Multiple Semantic-Guided Context Optimization for Few-Shot Learning
Abstract:
Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: \href{https://github.com/Rain-Bus/MSGCoOp}{https://github.com/Rain-Bus/MSGCoOp}.

Authors:Zhishu Liu, Kaishen Yuan, Bo Zhao, Yong Xu, Zitong Yu
Title: AU-LLM: Micro-Expression Action Unit Detection via Enhanced LLM-Based Feature Fusion
Abstract:
The detection of micro-expression Action Units (AUs) is a formidable challenge in affective computing, pivotal for decoding subtle, involuntary human emotions. While Large Language Models (LLMs) demonstrate profound reasoning abilities, their application to the fine-grained, low-intensity domain of micro-expression AU detection remains unexplored. This paper pioneers this direction by introducing \textbf{AU-LLM}, a novel framework that for the first time uses LLM to detect AUs in micro-expression datasets with subtle intensities and the scarcity of data. We specifically address the critical vision-language semantic gap, the \textbf{Enhanced Fusion Projector (EFP)}. The EFP employs a Multi-Layer Perceptron (MLP) to intelligently fuse mid-level (local texture) and high-level (global semantics) visual features from a specialized 3D-CNN backbone into a single, information-dense token. This compact representation effectively empowers the LLM to perform nuanced reasoning over subtle facial muscle movements.Through extensive evaluations on the benchmark CASME II and SAMM datasets, including stringent Leave-One-Subject-Out (LOSO) and cross-domain protocols, AU-LLM establishes a new state-of-the-art, validating the significant potential and robustness of LLM-based reasoning for micro-expression analysis. The codes are available at https://github.com/ZS-liu-JLU/AU-LLMs.

Authors:Lian Yan, Haotian Wang, Chen Tang, Haifeng Liu, Tianyang Sun, Liangliang Liu, Yi Guan, Jingchi Jiang
Title: AgriEval: A Comprehensive Chinese Agricultural Benchmark for Large Language Models
Abstract:
In the agricultural domain, the deployment of large language models (LLMs) is hindered by the lack of training data and evaluation benchmarks. To mitigate this issue, we propose AgriEval, the first comprehensive Chinese agricultural benchmark with three main characteristics: (1) Comprehensive Capability Evaluation. AgriEval covers six major agriculture categories and 29 subcategories within agriculture, addressing four core cognitive scenarios: memorization, understanding, inference, and generation. (2) High-Quality Data. The dataset is curated from university-level examinations and assignments, providing a natural and robust benchmark for assessing the capacity of LLMs to apply knowledge and make expert-like decisions. (3) Diverse Formats and Extensive Scale. AgriEval comprises 14,697 multiple-choice questions and 2,167 open-ended question-and-answer questions, establishing it as the most extensive agricultural benchmark available to date. We also present comprehensive experimental results over 51 open-source and commercial LLMs. The experimental results reveal that most existing LLMs struggle to achieve 60% accuracy, underscoring the developmental potential in agricultural LLMs. Additionally, we conduct extensive experiments to investigate factors influencing model performance and propose strategies for enhancement. AgriEval is available at https://github.com/YanPioneer/AgriEval/.

Authors:Aybora Koksal, A. Aydin Alatan
Title: Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards
Abstract:
Recent advances in large language and vision-language models have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from language models to vision-language models, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.

Authors:Shaojun E, Yuchen Yang, Jiaheng Wu, Yan Zhang, Tiejun Zhao, Ziyan Chen
Title: MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
Abstract:
In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE.

Authors:Qianxiong Xu, Lanyun Zhu, Chenxi Liu, Guosheng Lin, Cheng Long, Ziyue Li, Rui Zhao
Title: SAMITE: Position Prompted SAM2 with Calibrated Memory for Visual Object Tracking
Abstract:
Visual Object Tracking (VOT) is widely used in applications like autonomous driving to continuously track targets in videos. Existing methods can be roughly categorized into template matching and autoregressive methods, where the former usually neglects the temporal dependencies across frames and the latter tends to get biased towards the object categories during training, showing weak generalizability to unseen classes. To address these issues, some methods propose to adapt the video foundation model SAM2 for VOT, where the tracking results of each frame would be encoded as memory for conditioning the rest of frames in an autoregressive manner. Nevertheless, existing methods fail to overcome the challenges of object occlusions and distractions, and do not have any measures to intercept the propagation of tracking errors. To tackle them, we present a SAMITE model, built upon SAM2 with additional modules, including: (1) Prototypical Memory Bank: We propose to quantify the feature-wise and position-wise correctness of each frame's tracking results, and select the best frames to condition subsequent frames. As the features of occluded and distracting objects are feature-wise and position-wise inaccurate, their scores would naturally be lower and thus can be filtered to intercept error propagation; (2) Positional Prompt Generator: To further reduce the impacts of distractors, we propose to generate positional mask prompts to provide explicit positional clues for the target, leading to more accurate tracking. Extensive experiments have been conducted on six benchmarks, showing the superiority of SAMITE. The code is available at https://github.com/Sam1224/SAMITE.

Authors:Raj Vardhan Tomar, Preslav Nakov, Yuxia Wang
Title: UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
Abstract:
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain

Authors:Raiyan R. Khan, Philippe Chlenski, Itsik Pe'er
Title: Hyperbolic Genome Embeddings
Abstract:
Current approaches to genomic sequence modeling often struggle to align the inductive biases of machine learning models with the evolutionarily-informed structure of biological systems. To this end, we formulate a novel application of hyperbolic CNNs that exploits this structure, enabling more expressive DNA sequence representations. Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences pertaining to core functional and regulatory behavior. Across 37 out of 42 genome interpretation benchmark datasets, our hyperbolic models outperform their Euclidean equivalents. Notably, our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets, consistently outperforming many DNA language models while using orders of magnitude fewer parameters and avoiding pretraining. Our results include a novel set of benchmark datasets--the Transposable Elements Benchmark--which explores a major but understudied component of the genome with deep evolutionary significance. We further motivate our work by exploring how our hyperbolic models recognize genomic signal under various data-generating conditions and by constructing an empirical method for interpreting the hyperbolicity of dataset embeddings. Throughout these assessments, we find persistent evidence highlighting the potential of our hyperbolic framework as a robust paradigm for genome representation learning. Our code and benchmark datasets are available at https://github.com/rrkhan/HGE.

Authors:Leonard Hinckeldey, Elliot Fosong, Elle Miller, Rimvydas Rubavicius, Trevor McInroe, Patricia Wollstadt, Christiane B. Wiebel-Herboth, Subramanian Ramamoorthy, Stefano V. Albrecht
Title: Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
Abstract:
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Ning Li, Shuxiang Song
Title: Decoupled Spatio-Temporal Consistency Learning for Self-Supervised Tracking
Abstract:
The success of visual tracking has been largely driven by datasets with manual box annotations. However, these box annotations require tremendous human effort, limiting the scale and diversity of existing tracking datasets. In this work, we present a novel Self-Supervised Tracking framework named \textbf{\tracker}, designed to eliminate the need of box annotations. Specifically, a decoupled spatio-temporal consistency training framework is proposed to learn rich target information across timestamps through global spatial localization and local temporal association. This allows for the simulation of appearance and motion variations of instances in real-world scenarios. Furthermore, an instance contrastive loss is designed to learn instance-level correspondences from a multi-view perspective, offering robust instance supervision without additional labels. This new design paradigm enables {\tracker} to effectively learn generic tracking representations in a self-supervised manner, while reducing reliance on extensive box annotations. Extensive experiments on nine benchmark datasets demonstrate that {\tracker} surpasses \textit{SOTA} self-supervised tracking methods, achieving an improvement of more than 25.3\%, 20.4\%, and 14.8\% in AUC (AO) score on the GOT10K, LaSOT, TrackingNet datasets, respectively. Code: https://github.com/GXNU-ZhongLab/SSTrack.

Authors:Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, Xichun Sheng
Title: Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning
Abstract:
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.

Authors:Hao Ye, Mengshi Qi, Zhaohong Liu, Liang Liu, Huadong Ma
Title: SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation
Abstract:
In this work, we study how vision-language models (VLMs) can be utilized to enhance the safety for the autonomous driving system, including perception, situational understanding, and path planning. However, existing research has largely overlooked the evaluation of these models in traffic safety-critical driving scenarios. To bridge this gap, we create the benchmark (SafeDrive228K) and propose a new baseline based on VLM with knowledge graph-based retrieval-augmented generation (SafeDriveRAG) for visual question answering (VQA). Specifically, we introduce SafeDrive228K, the first large-scale multimodal question-answering benchmark comprising 228K examples across 18 sub-tasks. This benchmark encompasses a diverse range of traffic safety queries, from traffic accidents and corner cases to common safety knowledge, enabling a thorough assessment of the comprehension and reasoning abilities of the models. Furthermore, we propose a plug-and-play multimodal knowledge graph-based retrieval-augmented generation approach that employs a novel multi-scale subgraph retrieval algorithm for efficient information retrieval. By incorporating traffic safety guidelines collected from the Internet, this framework further enhances the model's capacity to handle safety-critical situations. Finally, we conduct comprehensive evaluations on five mainstream VLMs to assess their reliability in safety-sensitive driving tasks. Experimental results demonstrate that integrating RAG significantly improves performance, achieving a +4.73% gain in Traffic Accidents tasks, +8.79% in Corner Cases tasks and +14.57% in Traffic Safety Commonsense across five mainstream VLMs, underscoring the potential of our proposed benchmark and methodology for advancing research in traffic safety. Our source code and data are available at https://github.com/Lumos0507/SafeDriveRAG.

Authors:Jing Xu, Weiqiang Wang, Cunjian Chen, Jun Liu, Qiuhong Ke
Title: ST-GDance: Long-Term and Collision-Free Group Choreography from Music
Abstract:
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.

Authors:Yanxu Zhu, Shitong Duan, Xiangxu Zhang, Jitao Sang, Peng Zhang, Tun Lu, Xiao Zhou, Jing Yao, Xiaoyuan Yi, Xing Xie
Title: MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Abstract:
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.

Authors:Wenxuan Bao, Ruxi Deng, Ruizhong Qiu, Tianxin Wei, Hanghang Tong, Jingrui He
Title: Latte: Collaborative Test-Time Adaptation of Vision-Language Models in Federated Learning
Abstract:
Test-time adaptation with pre-trained vision-language models has gained increasing attention for addressing distribution shifts during testing. Among these approaches, memory-based algorithms stand out due to their training-free nature and ability to leverage historical test data. However, existing test-time adaptation methods are typically designed for a single domain with abundant data. In decentralized settings such as federated learning, applying these methods individually to each client suffers from limited test data, while directly sharing a single global memory via the server prevents proper personalization to each client's unique distribution. To address this, we propose Latte, a novel framework where each client maintains a local memory to store embeddings from its own historical test data and an external memory to store class prototypes from other relevant clients. During communication, each client retrieves prototypes from similar clients under the server's coordination to expand its memory. For local adaptation, Latte utilizes both embedding similarity and uncertainty to enhance model performance. Our theoretical analysis shows that Latte effectively leverages in-distribution clients while remaining robust to out-of-distribution clients. Extensive experiments on domain adaptation and corruption benchmarks validate that Latte achieves superior performance in decentralized settings, while introducing only negligible communication and computation costs. Our code is available at https://github.com/baowenxuan/Latte .

Authors:Zhichuan Wang, Yang Zhou, Zhe Liu, Rui Yu, Song Bai, Yulong Wang, Xinwei He, Xiang Bai
Title: Describe, Adapt and Combine: Empowering CLIP Encoders for Open-set 3D Object Retrieval
Abstract:
Open-set 3D object retrieval (3DOR) is an emerging task aiming to retrieve 3D objects of unseen categories beyond the training set. Existing methods typically utilize all modalities (i.e., voxels, point clouds, multi-view images) and train specific backbones before fusion. However, they still struggle to produce generalized representations due to insufficient 3D training data. Being contrastively pre-trained on web-scale image-text pairs, CLIP inherently produces generalized representations for a wide range of downstream tasks. Building upon it, we present a simple yet effective framework named Describe, Adapt and Combine (DAC) by taking only multi-view images for open-set 3DOR. DAC innovatively synergizes a CLIP model with a multi-modal large language model (MLLM) to learn generalized 3D representations, where the MLLM is used for dual purposes. First, it describes the seen category information to align with CLIP's training objective for adaptation during training. Second, it provides external hints about unknown objects complementary to visual cues during inference. To improve the synergy, we introduce an Additive-Bias Low-Rank adaptation (AB-LoRA), which alleviates overfitting and further enhances the generalization to unseen categories. With only multi-view images, DAC significantly surpasses prior arts by an average of +10.01\% mAP on four open-set 3DOR datasets. Moreover, its generalization is also validated on image-based and cross-dataset setups. Code is available at https://github.com/wangzhichuan123/DAC.

Authors:Marco Mambelli, Shrijan Swaminathan
Title: GlideinBenchmark: collecting resource information to optimize provisioning
Abstract:
Choosing the right resource can speed up job completion, better utilize the available hardware, and visibly reduce costs, especially when renting computers in the cloud. This was demonstrated in earlier studies on HEPCloud. However, the benchmarking of the resources proved to be a laborious and time-consuming process. This paper presents GlideinBenchmark, a new Web application leveraging the pilot infrastructure of GlideinWMS to benchmark resources, and it shows how to use the data collected and published by GlideinBenchmark to automate the optimal selection of resources. An experiment can select the benchmark or the set of benchmarks that most closely evaluate the performance of its workflows. GlideinBenchmark, with the help of the GlideinWMS Factory, controls the benchmark execution. Finally, a scheduler like HEPCloud's Decision Engine can use the results to optimize resource provisioning.

Authors:Marco Mambelli, Bruno Moreira Coimbra, Namratha Urs, Ilya Baburashvili
Title: Using Containers to Speed Up Development, to Run Integration Tests and to Teach About Distributed Systems
Abstract:
GlideinWMS is a workload manager provisioning resources for many experiments, including CMS and DUNE. The software is distributed both as native packages and specialized production containers. Following an approach used in other communities like web development, we built our workspaces, system-like containers to ease development and testing. Developers can change the source tree or check out a different branch and quickly reconfigure the services to see the effect of their changes. In this paper, we will talk about what differentiates workspaces from other containers. We will describe our base system, composed of three containers: a one-node cluster including a compute element and a batch system, a GlideinWMS Factory controlling pilot jobs, and a scheduler and Frontend to submit jobs and provision resources. Additional containers can be used for optional components. This system can easily run on a laptop, and we will share our evaluation of different container runtimes, with an eye for ease of use and performance. Finally, we will talk about our experience as developers and with students. The GlideinWMS workspaces are easily integrated with IDEs like VS Code, simplifying debugging and allowing development and testing of the system even when offline. They simplified the training and onboarding of new team members and summer interns. And they were useful in workshops where students could have first-hand experience with the mechanisms and components that, in production, run millions of jobs.

Authors:Wen Huang, Yanmei Gu, Zhiming Wang, Huijia Zhu, Yanmin Qian
Title: SpeechFake: A Large-Scale Multilingual Speech Deepfake Dataset Incorporating Cutting-Edge Generation Methods
Abstract:
As speech generation technology advances, the risk of misuse through deepfake audio has become a pressing concern, which underscores the critical need for robust detection systems. However, many existing speech deepfake datasets are limited in scale and diversity, making it challenging to train models that can generalize well to unseen deepfakes. To address these gaps, we introduce SpeechFake, a large-scale dataset designed specifically for speech deepfake detection. SpeechFake includes over 3 million deepfake samples, totaling more than 3,000 hours of audio, generated using 40 different speech synthesis tools. The dataset encompasses a wide range of generation techniques, including text-to-speech, voice conversion, and neural vocoder, incorporating the latest cutting-edge methods. It also provides multilingual support, spanning 46 languages. In this paper, we offer a detailed overview of the dataset's creation, composition, and statistics. We also present baseline results by training detection models on SpeechFake, demonstrating strong performance on both its own test sets and various unseen test sets. Additionally, we conduct experiments to rigorously explore how generation methods, language diversity, and speaker variation affect detection performance. We believe SpeechFake will be a valuable resource for advancing speech deepfake detection and developing more robust models for evolving generation techniques.

Authors:Han Wu, Chong Wang, Zhiming Cui
Title: Dual Cross-image Semantic Consistency with Self-aware Pseudo Labeling for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised learning has proven highly effective in tackling the challenge of limited labeled training data in medical image segmentation. In general, current approaches, which rely on intra-image pixel-wise consistency training via pseudo-labeling, overlook the consistency at more comprehensive semantic levels (e.g., object region) and suffer from severe discrepancy of extracted features resulting from an imbalanced number of labeled and unlabeled data. To overcome these limitations, we present a new \underline{Du}al \underline{C}ross-\underline{i}mage \underline{S}emantic \underline{C}onsistency (DuCiSC) learning framework, for semi-supervised medical image segmentation. Concretely, beyond enforcing pixel-wise semantic consistency, DuCiSC proposes dual paradigms to encourage region-level semantic consistency across: 1) labeled and unlabeled images; and 2) labeled and fused images, by explicitly aligning their prototypes. Relying on the dual paradigms, DuCiSC can effectively establish consistent cross-image semantics via prototype representations, thereby addressing the feature discrepancy issue. Moreover, we devise a novel self-aware confidence estimation strategy to accurately select reliable pseudo labels, allowing for exploiting the training dynamics of unlabeled data. Our DuCiSC method is extensively validated on four datasets, including two popular binary benchmarks in segmenting the left atrium and pancreas, a multi-class Automatic Cardiac Diagnosis Challenge dataset, and a challenging scenario of segmenting the inferior alveolar nerve that features complicated anatomical structures, showing superior segmentation results over previous state-of-the-art approaches. Our code is publicly available at \href{https://github.com/ShanghaiTech-IMPACT/DuCiSC}{https://github.com/ShanghaiTech-IMPACT/DuCiSC}.

Authors:Haiquan Wang, Yi Chen, Shang Zeng, Yun Bian, Zhe Cui
Title: GovRelBench:A Benchmark for Government Domain Relevance
Abstract:
Current evaluations of LLMs in the government domain primarily focus on safety considerations in specific scenarios, while the assessment of the models' own core capabilities, particularly domain relevance, remains insufficient. To address this gap, we propose GovRelBench, a benchmark specifically designed for evaluating the core capabilities of LLMs in the government domain. GovRelBench consists of government domain prompts and a dedicated evaluation tool, GovRelBERT. During the training process of GovRelBERT, we introduce the SoftGovScore method: this method trains a model based on the ModernBERT architecture by converting hard labels to soft scores, enabling it to accurately compute the text's government domain relevance score. This work aims to enhance the capability evaluation framework for large models in the government domain, providing an effective tool for relevant research and practice. Our code and dataset are available at https://github.com/pan-xi/GovRelBench.

Authors:Amber Huang, Ian Scott Knight, Slava Naprienko
Title: Data Leakage and Redundancy in the LIT-PCBA Benchmark
Abstract:
LIT-PCBA is widely used to benchmark virtual screening models, but our audit reveals that it is fundamentally compromised. We find extensive data leakage and molecular redundancy across its splits, including 2D-identical ligands within and across partitions, pervasive analog overlap, and low-diversity query sets. In ALDH1 alone, for instance, 323 active training -- validation analog pairs occur at ECFP4 Tanimoto similarity $\geq 0.6$; across all targets, 2,491 2D-identical inactives appear in both training and validation, with very few corresponding actives. These overlaps allow models to succeed through scaffold memorization rather than generalization, inflating enrichment factors and AUROC scores. These flaws are not incidental -- they are so severe that a trivial memorization-based baseline with no learnable parameters can exploit them to match or exceed the reported performance of state-of-the-art deep learning and 3D-similarity models. As a result, nearly all published results on LIT-PCBA are undermined. Even models evaluated in "zero-shot" mode are affected by analog leakage into the query set, weakening claims of generalization. In its current form, the benchmark does not measure a model's ability to recover novel chemotypes and should not be taken as evidence of methodological progress. All code, data, and baseline implementations are available at: https://github.com/sievestack/LIT-PCBA-audit

Authors:Shijie Zhou, Ruiyi Zhang, Huaisheng Zhu, Branislav Kveton, Yufan Zhou, Jiuxiang Gu, Jian Chen, Changyou Chen
Title: Multimodal LLMs as Customized Reward Models for Text-to-Image Generation
Abstract:
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.

Authors:Jicheng Yuan, Manh Nguyen Duc, Qian Liu, Manfred Hauswirth, Danh Le Phuoc
Title: Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy
Abstract:
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.

Authors:Amirmohammad Shamaei, Alexander Stebner, Salome, Bosshart, Johanna Ospel, Gouri Ginde, Mariana Bento, Roberto Souza
Title: Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging
Abstract:
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.

Authors:Satyananda Kashyap, Sola Shirai, Nandana Mihindukulasooriya, Horst Samulowitz
Title: StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Abstract:
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.

Authors:Feixiang Zhou, Zhuangzhi Gao, He Zhao, Jianyang Xie, Yanda Meng, Yitian Zhao, Gregory Y. H. Lip, Yalin Zheng
Title: GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation
Abstract:
Accurate segmentation of tubular structures, such as vascular networks, plays a critical role in various medical domains. A remaining significant challenge in this task is structural fragmentation, which can adversely impact downstream applications. Existing methods primarily focus on designing various loss functions to constrain global topological structures. However, they often overlook local discontinuity regions, leading to suboptimal segmentation results. To overcome this limitation, we propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics of tubular networks. Specifically, we propose an Interactive Multi-head Segmentation (IMS) module to jointly learn global segmentation, skeleton maps, and local discontinuity maps, respectively. This enables our model to explicitly target local discontinuity regions while maintaining global topological integrity. In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality by refining the resulting segmentation maps. Extensive experiments on both 2D and 3D datasets demonstrate that our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches. The source codes will be available at https://github.com/FeixiangZhou/GLCP.

Authors:Théo Sourget, David Restrepo, Céline Hudelot, Enzo Ferrante, Stergios Christodoulidis, Maria Vakalopoulou
Title: Fairness and Robustness of CLIP-Based Models for Chest X-rays
Abstract:
Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness

Authors:Amartya Banerjee, Xingyu Xu, Caroline Moosmüller, Harlin Lee
Title: Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors
Abstract:
In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.

Authors:Van Chung Nguyen, Pratik Walunj, Chuong Le, An Duy Nguyen, Hung Manh La
Title: NMPCM: Nonlinear Model Predictive Control on Resource-Constrained Microcontrollers
Abstract:
Nonlinear Model Predictive Control (NMPC) is a powerful approach for controlling highly dynamic robotic systems, as it accounts for system dynamics and optimizes control inputs at each step. However, its high computational complexity makes implementation on resource-constrained microcontrollers impractical. While recent studies have demonstrated the feasibility of Model Predictive Control (MPC) with linearized dynamics on microcontrollers, applying full NMPC remains a significant challenge. This work presents an efficient solution for generating and deploying NMPC on microcontrollers (NMPCM) to control quadrotor UAVs. The proposed method optimizes computational efficiency while maintaining high control accuracy. Simulations in Gazebo/ROS and real-world experiments validate the effectiveness of the approach, demonstrating its capability to achieve high-frequency NMPC execution in real-time systems. The code is available at: https://github.com/aralab-unr/NMPCM.

Authors:Christopher Indris, Raiyan Rahman, Goetz Bramesfeld, Guanghui Wang
Title: Tracking Moose using Aerial Object Detection
Abstract:
Aerial wildlife tracking is critical for conservation efforts and relies on detecting small objects on the ground below the aircraft. It presents technical challenges: crewed aircraft are expensive, risky and disruptive; autonomous drones have limited computational capacity for onboard AI systems. Since the objects of interest may appear only a few pixels wide, small object detection is an inherently challenging computer vision subfield compounded by computational efficiency needs. This paper applies a patching augmentation to datasets to study model performance under various settings. A comparative study of three common yet architecturally diverse object detectors is conducted using the data, varying the patching method's hyperparameters against detection accuracy. Each model achieved at least 93\% mAP@IoU=0.5 on at least one patching configuration. Statistical analyses provide an in-depth commentary on the effects of various factors. Analysis also shows that faster, simpler models are about as effective as models that require more computational power for this task and perform well given limited patch scales, encouraging UAV deployment. Datasets and models will be made available via https://github.com/chrisindris/Moose.

Authors:Yingxuan Yang, Mulei Ma, Yuxuan Huang, Huacan Chai, Chenyu Gong, Haoran Geng, Yuanjian Zhou, Ying Wen, Meng Fang, Muhao Chen, Shangding Gu, Ming Jin, Costas Spanos, Yang Yang, Pieter Abbeel, Dawn Song, Weinan Zhang, Jun Wang
Title: Agentic Web: Weaving the Next Web with AI Agents
Abstract:
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.

Authors:Haowei Lin, Xiangyu Wang, Jianzhu Ma, Yitao Liang
Title: EvoSLD: Automated Neural Scaling Law Discovery With Large Language Models
Abstract:
Scaling laws are fundamental mathematical relationships that predict how neural network performance evolves with changes in variables such as model size, dataset size, and computational resources. Traditionally, discovering these laws requires extensive human expertise and manual experimentation. We introduce EvoSLD, an automated framework for Scaling Law Discovery (SLD) that leverages evolutionary algorithms guided by Large Language Models (LLMs) to co-evolve symbolic expressions and their optimization routines. Formulated to handle scaling variables, control variables, and response metrics across diverse experimental settings, EvoSLD searches for parsimonious, universal functional forms that minimize fitting errors on grouped data subsets. Evaluated on five real-world scenarios from recent literature, EvoSLD rediscovers exact human-derived laws in two cases and surpasses them in others, achieving up to orders-of-magnitude reductions in normalized mean squared error on held-out test sets. Compared to baselines like symbolic regression and ablated variants, EvoSLD demonstrates superior accuracy, interpretability, and efficiency, highlighting its potential to accelerate AI research. Code is available at https://github.com/linhaowei1/SLD.

Authors:Donglu Yang, Liang Zhang, Zihao Yue, Liangyu Chen, Yichen Xu, Wenxuan Wang, Qin Jin
Title: ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Abstract:
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.

Authors:Nicolas Pinon, Carole Lartizien
Title: OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning

Authors:Aditya Pujari, Ajita Rattani
Title: WaveVerify: A Novel Audio Watermarking Framework for Media Authentication and Combatting Deepfakes
Abstract:
The rapid advancement of voice generation technologies has enabled the synthesis of speech that is perceptually indistinguishable from genuine human voices. While these innovations facilitate beneficial applications such as personalized text-to-speech systems and voice preservation, they have also introduced significant risks, including deepfake impersonation scams and synthetic media-driven disinformation campaigns. Recent reports indicate that in 2024, deepfake fraud attempts surged by over 1,300% compared to 2023, underscoring the urgent need for robust audio content authentication. The financial sector has been particularly impacted, with a loss of over 10 million USD to voice scams and individual victims reporting losses exceeding $6,000 from AI-generated deepfake calls. In response, regulators and governments worldwide are enacting measures to improve AI content transparency and traceability, emphasizing the development of forensic tools and watermarking techniques as essential strategies to uphold media integrity.

Authors:Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, Cheryl Fichter, Pavel Filimonov, Louis Fischer, Kylan Gibbs, Valeria Gusarova, Pavel Karpik, Andreas Assad Kottner, Ian Lee, Oliver Louie, Jasmine Mai, Mikhail Mamontov, Suri Mao, Nurullah Morshed, Igor Poletaev, Florin Radu, Dmytro Semernia, Evgenii Shingarev, Vikram Sivaraja, Peter Skirko, Rinat Takhautdinov, Robert Villahermosa, Jean Wang
Title: TTS-1 Technical Report
Abstract:
We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license.

Authors:Zheng Hui, Yijiang River Dong, Ehsan Shareghi, Nigel Collier
Title: TRIDENT: Benchmarking LLM Safety in Finance, Medicine, and Law
Abstract:
As large language models (LLMs) are increasingly deployed in high-risk domains such as law, finance, and medicine, systematically evaluating their domain-specific safety and compliance becomes critical. While prior work has largely focused on improving LLM performance in these domains, it has often neglected the evaluation of domain-specific safety risks. To bridge this gap, we first define domain-specific safety principles for LLMs based on the AMA Principles of Medical Ethics, the ABA Model Rules of Professional Conduct, and the CFA Institute Code of Ethics. Building on this foundation, we introduce Trident-Bench, a benchmark specifically targeting LLM safety in the legal, financial, and medical domains. We evaluated 19 general-purpose and domain-specialized models on Trident-Bench and show that it effectively reveals key safety gaps -- strong generalist models (e.g., GPT, Gemini) can meet basic expectations, whereas domain-specialized models often struggle with subtle ethical nuances. This highlights an urgent need for finer-grained domain-specific safety improvements. By introducing Trident-Bench, our work provides one of the first systematic resources for studying LLM safety in law and finance, and lays the groundwork for future research aimed at reducing the safety risks of deploying LLMs in professionally regulated fields. Code and benchmark will be released at: https://github.com/zackhuiiiii/TRIDENT

Authors:Karan Mirhosseini, Arya Aftab, Alireza Sheikh
Title: RATE: An LLM-Powered Retrieval Augmented Generation Technology-Extraction Pipeline
Abstract:
In an era of radical technology transformations, technology maps play a crucial role in enhancing decision making. These maps heavily rely on automated methods of technology extraction. This paper introduces Retrieval Augmented Technology Extraction (RATE), a Large Language Model (LLM) based pipeline for automated technology extraction from scientific literature. RATE combines Retrieval Augmented Generation (RAG) with multi-definition LLM-based validation. This hybrid method results in high recall in candidate generation alongside with high precision in candidate filtering. While the pipeline is designed to be general and widely applicable, we demonstrate its use on 678 research articles focused on Brain-Computer Interfaces (BCIs) and Extended Reality (XR) as a case study. Consequently, The validated technology terms by RATE were mapped into a co-occurrence network, revealing thematic clusters and structural features of the research landscape. For the purpose of evaluation, a gold standard dataset of technologies in 70 selected random articles had been curated by the experts. In addition, a technology extraction model based on Bidirectional Encoder Representations of Transformers (BERT) was used as a comparative method. RATE achieved F1-score of 91.27%, Significantly outperforming BERT with F1-score of 53.73%. Our findings highlight the promise of definition-driven LLM methods for technology extraction and mapping. They also offer new insights into emerging trends within the BCI-XR field. The source code is available https://github.com/AryaAftab/RATE

Authors:Bereket A. Yilma, Luis A. Leiva
Title: Affect-aware Cross-Domain Recommendation for Art Therapy via Music Preference Elicitation
Abstract:
Art Therapy (AT) is an established practice that facilitates emotional processing and recovery through creative expression. Recently, Visual Art Recommender Systems (VA RecSys) have emerged to support AT, demonstrating their potential by personalizing therapeutic artwork recommendations. Nonetheless, current VA RecSys rely on visual stimuli for user modeling, limiting their ability to capture the full spectrum of emotional responses during preference elicitation. Previous studies have shown that music stimuli elicit unique affective reflections, presenting an opportunity for cross-domain recommendation (CDR) to enhance personalization in AT. Since CDR has not yet been explored in this context, we propose a family of CDR methods for AT based on music-driven preference elicitation. A large-scale study with 200 users demonstrates the efficacy of music-driven preference elicitation, outperforming the classic visual-only elicitation approach. Our source code, data, and models are available at https://github.com/ArtAICare/Affect-aware-CDR

Authors:Franck Bardol
Title: ChatGPT Reads Your Tone and Responds Accordingly -- Until It Does Not -- Emotional Framing Induces Bias in LLM Outputs
Abstract:
Large Language Models like GPT-4 adjust their responses not only based on the question asked, but also on how it is emotionally phrased. We systematically vary the emotional tone of 156 prompts - spanning controversial and everyday topics - and analyze how it affects model responses. Our findings show that GPT-4 is three times less likely to respond negatively to a negatively framed question than to a neutral one. This suggests a "rebound" bias where the model overcorrects, often shifting toward neutrality or positivity. On sensitive topics (e.g., justice or politics), this effect is even more pronounced: tone-based variation is suppressed, suggesting an alignment override. We introduce concepts like the "tone floor" - a lower bound in response negativity - and use tone-valence transition matrices to quantify behavior. Visualizations based on 1536-dimensional embeddings confirm semantic drift based on tone. Our work highlights an underexplored class of biases driven by emotional framing in prompts, with implications for AI alignment and trust. Code and data are available at: https://github.com/bardolfranck/llm-responses-viewer

Authors:Anushka Debnath, Stephen Cranefield, Emiliano Lorini, Bastin Tony Roy Savarimuthu
Title: Can LLMs Reason About Trust?: A Pilot Study
Abstract:
In human society, trust is an essential component of social attitude that helps build and maintain long-term, healthy relationships which creates a strong foundation for cooperation, enabling individuals to work together effectively and achieve shared goals. As many human interactions occur through electronic means such as using mobile apps, the potential arises for AI systems to assist users in understanding the social state of their relationships. In this paper we investigate the ability of Large Language Models (LLMs) to reason about trust between two individuals in an environment which requires fostering trust relationships. We also assess whether LLMs are capable of inducing trust by role-playing one party in a trust based interaction and planning actions which can instil trust.

Authors:Zedong Wang, Siyuan Li, Dan Xu
Title: Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
Abstract:
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.

Authors:Yukang Cao, Jiahao Lu, Zhisheng Huang, Zhuowen Shen, Chengfeng Zhao, Fangzhou Hong, Zhaoxi Chen, Xin Li, Wenping Wang, Yuan Liu, Ziwei Liu
Title: Reconstructing 4D Spatial Intelligence: A Survey
Abstract:
Reconstructing 4D spatial intelligence from visual observations has long been a central yet challenging task in computer vision, with broad real-world applications. These range from entertainment domains like movies, where the focus is often on reconstructing fundamental visual elements, to embodied AI, which emphasizes interaction modeling and physical realism. Fueled by rapid advances in 3D representations and deep learning architectures, the field has evolved quickly, outpacing the scope of previous surveys. Additionally, existing surveys rarely offer a comprehensive analysis of the hierarchical structure of 4D scene reconstruction. To address this gap, we present a new perspective that organizes existing methods into five progressive levels of 4D spatial intelligence: (1) Level 1 -- reconstruction of low-level 3D attributes (e.g., depth, pose, and point maps); (2) Level 2 -- reconstruction of 3D scene components (e.g., objects, humans, structures); (3) Level 3 -- reconstruction of 4D dynamic scenes; (4) Level 4 -- modeling of interactions among scene components; and (5) Level 5 -- incorporation of physical laws and constraints. We conclude the survey by discussing the key challenges at each level and highlighting promising directions for advancing toward even richer levels of 4D spatial intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence.

Authors:Haoyang Liu, Yijiang Li, Haohan Wang
Title: GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Abstract:
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.

Authors:Weichen Zhang, Yiyou Sun, Pohao Huang, Jiayue Pu, Heyue Lin, Dawn Song
Title: MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them
Abstract:
Hallucinations pose critical risks for large language model (LLM)-based agents, often manifesting as hallucinative actions resulting from fabricated or misinterpreted information within the cognitive context. While recent studies have exposed such failures, existing evaluations remain fragmented and lack a principled testbed. In this paper, we present MIRAGE-Bench--Measuring Illusions in Risky AGEnt settings--the first unified benchmark for eliciting and evaluating hallucinations in interactive LLM-agent scenarios. We begin by introducing a three-part taxonomy to address agentic hallucinations: actions that are unfaithful to (i) task instructions, (ii) execution history, or (iii) environment observations. To analyze, we first elicit such failures by performing a systematic audit of existing agent benchmarks, then synthesize test cases using a snapshot strategy that isolates decision points in deterministic and reproducible manners. To evaluate hallucination behaviors, we adopt a fine-grained-level LLM-as-a-Judge paradigm with tailored risk-aware prompts, enabling scalable, high-fidelity assessment of agent actions without enumerating full action spaces. MIRAGE-Bench provides actionable insights on failure modes of LLM agents and lays the groundwork for principled progress in mitigating hallucinations in interactive environments.

Authors:Licai Sun, Xingxun Jiang, Haoyu Chen, Yante Li, Zheng Lian, Biu Liu, Yuan Zong, Wenming Zheng, Jukka M. Leppänen, Guoying Zhao
Title: Learning Transferable Facial Emotion Representations from Large-Scale Semantically Rich Captions
Abstract:
Current facial emotion recognition systems are predominately trained to predict a fixed set of predefined categories or abstract dimensional values. This constrained form of supervision hinders generalization and applicability, as it reduces the rich and nuanced spectrum of emotions into oversimplified labels or scales. In contrast, natural language provides a more flexible, expressive, and interpretable way to represent emotions, offering a much broader source of supervision. Yet, leveraging semantically rich natural language captions as supervisory signals for facial emotion representation learning remains relatively underexplored, primarily due to two key challenges: 1) the lack of large-scale caption datasets with rich emotional semantics, and 2) the absence of effective frameworks tailored to harness such rich supervision. To this end, we introduce EmoCap100K, a large-scale facial emotion caption dataset comprising over 100,000 samples, featuring rich and structured semantic descriptions that capture both global affective states and fine-grained local facial behaviors. Building upon this dataset, we further propose EmoCapCLIP, which incorporates a joint global-local contrastive learning framework enhanced by a cross-modal guided positive mining module. This design facilitates the comprehensive exploitation of multi-level caption information while accommodating semantic similarities between closely related expressions. Extensive evaluations on over 20 benchmarks covering five tasks demonstrate the superior performance of our method, highlighting the promise of learning facial emotion representations from large-scale semantically rich captions. The code and data will be available at https://github.com/sunlicai/EmoCapCLIP.

Authors:Fang Li
Title: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Abstract:
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.

Authors:Shen Li, Liuyi Yao, Wujia Niu, Lan Zhang, Yaliang Li
Title: Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Abstract:
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.

Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Title: JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:Xiao Fang, Minhyek Jeon, Zheyang Qin, Stanislav Panev, Celso de Melo, Shuowen Hu, Shayok Chakraborty, Fernando De la Torre
Title: Adapting Vehicle Detectors for Aerial Imagery to Unseen Domains with Weak Supervision
Abstract:
Detecting vehicles in aerial imagery is a critical task with applications in traffic monitoring, urban planning, and defense intelligence. Deep learning methods have provided state-of-the-art (SOTA) results for this application. However, a significant challenge arises when models trained on data from one geographic region fail to generalize effectively to other areas. Variability in factors such as environmental conditions, urban layouts, road networks, vehicle types, and image acquisition parameters (e.g., resolution, lighting, and angle) leads to domain shifts that degrade model performance. This paper proposes a novel method that uses generative AI to synthesize high-quality aerial images and their labels, improving detector training through data augmentation. Our key contribution is the development of a multi-stage, multi-modal knowledge transfer framework utilizing fine-tuned latent diffusion models (LDMs) to mitigate the distribution gap between the source and target environments. Extensive experiments across diverse aerial imagery domains show consistent performance improvements in AP50 over supervised learning on source domain data, weakly supervised adaptation methods, unsupervised domain adaptation methods, and open-set object detectors by 4-23%, 6-10%, 7-40%, and more than 50%, respectively. Furthermore, we introduce two newly annotated aerial datasets from New Zealand and Utah to support further research in this field. Project page is available at: https://humansensinglab.github.io/AGenDA

Authors:David Ye, Jan Williams, Mars Gao, Stefano Riva, Matteo Tomasetto, David Zoro, J. Nathan Kutz
Title: PySHRED: A Python package for SHallow REcurrent Decoding for sparse sensing, model reduction and scientific discovery
Abstract:
SHallow REcurrent Decoders (SHRED) provide a deep learning strategy for modeling high-dimensional dynamical systems and/or spatiotemporal data from dynamical system snapshot observations. PySHRED is a Python package that implements SHRED and several of its major extensions, including for robust sensing, reduced order modeling and physics discovery. In this paper, we introduce the version 1.0 release of PySHRED, which includes data preprocessors and a number of cutting-edge SHRED methods specifically designed to handle real-world data that may be noisy, multi-scale, parameterized, prohibitively high-dimensional, and strongly nonlinear. The package is easy to install, thoroughly-documented, supplemented with extensive code examples, and modularly-structured to support future additions. The entire codebase is released under the MIT license and is available at https://github.com/pyshred-dev/pyshred.

Authors:Yuying Ge, Yixiao Ge, Chen Li, Teng Wang, Junfu Pu, Yizhuo Li, Lu Qiu, Jin Ma, Lisheng Duan, Xinyu Zuo, Jinwen Luo, Weibo Gu, Zexuan Li, Xiaojing Zhang, Yangyu Tao, Han Hu, Di Wang, Ying Shan
Title: ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts
Abstract:
Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.

Authors:Likun Tan, Kuan-Wei Huang, Kevin Wu
Title: FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Abstract:
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.

Authors:Hongzhi Zhang, Zhonglie Liu, Kun Meng, Jiameng Chen, Jia Wu, Bo Du, Di Lin, Yan Che, Wenbin Hu
Title: Zero-Shot Learning with Subsequence Reordering Pretraining for Compound-Protein Interaction
Abstract:
Given the vastness of chemical space and the ongoing emergence of previously uncharacterized proteins, zero-shot compound-protein interaction (CPI) prediction better reflects the practical challenges and requirements of real-world drug development. Although existing methods perform adequately during certain CPI tasks, they still face the following challenges: (1) Representation learning from local or complete protein sequences often overlooks the complex interdependencies between subsequences, which are essential for predicting spatial structures and binding properties. (2) Dependence on large-scale or scarce multimodal protein datasets demands significant training data and computational resources, limiting scalability and efficiency. To address these challenges, we propose a novel approach that pretrains protein representations for CPI prediction tasks using subsequence reordering, explicitly capturing the dependencies between protein subsequences. Furthermore, we apply length-variable protein augmentation to ensure excellent pretraining performance on small training datasets. To evaluate the model's effectiveness and zero-shot learning ability, we combine it with various baseline methods. The results demonstrate that our approach can improve the baseline model's performance on the CPI task, especially in the challenging zero-shot scenario. Compared to existing pre-training models, our model demonstrates superior performance, particularly in data-scarce scenarios where training samples are limited. Our implementation is available at https://github.com/Hoch-Zhang/PSRP-CPI.

Authors:Minh Hieu Ha, Hung Phan, Tung Duy Doan, Tung Dao, Dao Tran, Huynh Thi Thanh Binh
Title: Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization
Abstract:
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.

Authors:Kai Ye, YingShi Luan, Zhudi Chen, Guangyue Meng, Pingyang Dai, Liujuan Cao
Title: RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
Abstract:
Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

Authors:Renhang Liu, Chia-Yu Hung, Navonil Majumder, Taylor Gautreaux, Amir Ali Bagherzadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Abstract:
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.

Authors:Ziling Wu, Armaghan Moemeni, Praminda Caleb-Solly
Title: Ensemble Foreground Management for Unsupervised Object Discovery
Abstract:
Unsupervised object discovery (UOD) aims to detect and segment objects in 2D images without handcrafted annotations. Recent progress in self-supervised representation learning has led to some success in UOD algorithms. However, the absence of ground truth provides existing UOD methods with two challenges: 1) determining if a discovered region is foreground or background, and 2) knowing how many objects remain undiscovered. To address these two problems, previous solutions rely on foreground priors to distinguish if the discovered region is foreground, and conduct one or fixed iterations of discovery. However, the existing foreground priors are heuristic and not always robust, and a fixed number of discoveries leads to under or over-segmentation, since the number of objects in images varies. This paper introduces UnionCut, a robust and well-grounded foreground prior based on min-cut and ensemble methods that detects the union of foreground areas of an image, allowing UOD algorithms to identify foreground objects and stop discovery once the majority of the foreground union in the image is segmented. In addition, we propose UnionSeg, a distilled transformer of UnionCut that outputs the foreground union more efficiently and accurately. Our experiments show that by combining with UnionCut or UnionSeg, previous state-of-the-art UOD methods witness an increase in the performance of single object discovery, saliency detection and self-supervised instance segmentation on various benchmarks. The code is available at https://github.com/YFaris/UnionCut.

Authors:Yilun Qiu, Tianhao Shi, Xiaoyan Zhao, Fengbin Zhu, Yang Zhang, Fuli Feng
Title: Latent Inter-User Difference Modeling for LLM Personalization
Abstract:
Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.

Authors:Yuchen Liu, Yaoming Wang, Bowen Shi, Xiaopeng Zhang, Wenrui Dai, Chenglin Li, Hongkai Xiong, Qi Tian
Title: METEOR: Multi-Encoder Collaborative Token Pruning for Efficient Vision Language Models
Abstract:
Vision encoders serve as the cornerstone of multimodal understanding. Single-encoder architectures like CLIP exhibit inherent constraints in generalizing across diverse multimodal tasks, while recent multi-encoder fusion methods introduce prohibitive computational overhead to achieve superior performance using complementary visual representations from multiple vision encoders. To address this, we propose a progressive pruning framework, namely Multi-Encoder collaboraTivE tOken pRuning (METEOR), that eliminates redundant visual tokens across the encoding, fusion, and decoding stages for multi-encoder MLLMs. For multi-vision encoding, we discard redundant tokens within each encoder via a rank guided collaborative token assignment strategy. Subsequently, for multi-vision fusion, we combine the visual features from different encoders while reducing cross-encoder redundancy with cooperative pruning. Finally, we propose an adaptive token pruning method in the LLM decoding stage to further discard irrelevant tokens based on the text prompts with dynamically adjusting pruning ratios for specific task demands. To our best knowledge, this is the first successful attempt that achieves an efficient multi-encoder based vision language model with multi-stage pruning strategies. Extensive experiments on 11 benchmarks demonstrate the effectiveness of our proposed approach. Compared with EAGLE, a typical multi-encoder MLLMs, METEOR reduces 76% visual tokens with only 0.3% performance drop in average. The code is available at https://github.com/YuchenLiu98/METEOR.

Authors:Jakob Snel, Seong Joon Oh
Title: First Hallucination Tokens Are Different from Conditional Ones
Abstract:
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.

Authors:Chunshi Wang, Bin Zhao, Shuxue Ding
Title: SCANet: Split Coordinate Attention Network for Building Footprint Extraction
Abstract:
Building footprint extraction holds immense significance in remote sensing image analysis and has great value in urban planning, land use, environmental protection and disaster assessment. Despite the progress made by conventional and deep learning approaches in this field, they continue to encounter significant challenges. This paper introduces a novel plug-and-play attention module, Split Coordinate Attention (SCA), which ingeniously captures spatially remote interactions by employing two spatial range of pooling kernels, strategically encoding each channel along x and y planes, and separately performs a series of split operations for each feature group, thus enabling more efficient semantic feature extraction. By inserting into a 2D CNN to form an effective SCANet, our SCANet outperforms recent SOTA methods on the public Wuhan University (WHU) Building Dataset and Massachusetts Building Dataset in terms of various metrics. Particularly SCANet achieves the best IoU, 91.61% and 75.49% for the two datasets. Our code is available at https://github.com/AiEson/SCANet

Authors:Yang Chen, Yufan Shen, Wenxuan Huang, Sheng Zhou, Qunshu Lin, Xinyu Cai, Zhi Yu, Jiajun Bu, Botian Shi, Yu Qiao
Title: Learning Only with Images: Visual Reinforcement Learning with Reasoning, Rendering, and Visual Feedback
Abstract:
Multimodal Large Language Models (MLLMs) exhibit impressive performance across various visual tasks. Subsequent investigations into enhancing their visual reasoning abilities have significantly expanded their performance envelope. However, a critical bottleneck in the advancement of MLLMs toward deep visual reasoning is their heavy reliance on curated image-text supervision. To solve this problem, we introduce a novel framework, ``Reasoning-Rendering-Visual-Feedback'' (RRVF), that enables MLLMs to learn complex visual reasoning from only raw images. This framework builds on the ``Asymmetry of Verification'' principle, i.e., verifying the rendered output against the source image is substantially easier than performing deep visual reasoning to generate a faithful, structured representation such as code. We demonstrate that this relative ease provides an ideal reward signal for optimization via Reinforcement Learning (RL), thereby reducing reliance on image-text supervision. RRVF implements a closed-loop iterative process encompassing reasoning, rendering, and visual feedback components, enabling the model to perform complex reasoning, including self-correction through multi-turn interactions. This process is optimized end-to-end using the GRPO algorithm. Extensive evaluations are conducted on image-to-code generation across two diverse domains: data charts and web interfaces. The RRVF-trained model not only outperforms existing similarly sized open-source MLLMs and supervised fine-tuning baselines but also exhibits superior generalization. Notably, the model outperforms the more advanced MLLM used to generate visual feedback during training. Code is available at https://github.com/L-O-I/RRVF.

Authors:Kangcheng Bin, Chen Chen, Ting Hu, Jiahao Qi, Ping Zhong
Title: ATR-UMMIM: A Benchmark Dataset for UAV-Based Multimodal Image Registration under Complex Imaging Conditions
Abstract:
Multimodal fusion has become a key enabler for UAV-based object detection, as each modality provides complementary cues for robust feature extraction. However, due to significant differences in resolution, field of view, and sensing characteristics across modalities, accurate registration is a prerequisite before fusion. Despite its importance, there is currently no publicly available benchmark specifically designed for multimodal registration in UAV-based aerial scenarios, which severely limits the development and evaluation of advanced registration methods under real-world conditions. To bridge this gap, we present ATR-UMMIM, the first benchmark dataset specifically tailored for multimodal image registration in UAV-based applications. This dataset includes 7,969 triplets of raw visible, infrared, and precisely registered visible images captured covers diverse scenarios including flight altitudes from 80m to 300m, camera angles from 0° to 75°, and all-day, all-year temporal variations under rich weather and illumination conditions. To ensure high registration quality, we design a semi-automated annotation pipeline to introduce reliable pixel-level ground truth to each triplet. In addition, each triplet is annotated with six imaging condition attributes, enabling benchmarking of registration robustness under real-world deployment settings. To further support downstream tasks, we provide object-level annotations on all registered images, covering 11 object categories with 77,753 visible and 78,409 infrared bounding boxes. We believe ATR-UMMIM will serve as a foundational benchmark for advancing multimodal registration, fusion, and perception in real-world UAV scenarios. The datatset can be download from https://github.com/supercpy/ATR-UMMIM

Authors:Zhuoer Yin, Calvin Yeung, Tomohiro Suzuki, Ryota Tanaka, Keisuke Fujii
Title: KASportsFormer: Kinematic Anatomy Enhanced Transformer for 3D Human Pose Estimation on Short Sports Scene Video
Abstract:
Recent transformer based approaches have demonstrated impressive performance in solving real-world 3D human pose estimation problems. Albeit these approaches achieve fruitful results on benchmark datasets, they tend to fall short of sports scenarios where human movements are more complicated than daily life actions, as being hindered by motion blur, occlusions, and domain shifts. Moreover, due to the fact that critical motions in a sports game often finish in moments of time (e.g., shooting), the ability to focus on momentary actions is becoming a crucial factor in sports analysis, where current methods appear to struggle with instantaneous scenarios. To overcome these limitations, we introduce KASportsFormer, a novel transformer based 3D pose estimation framework for sports that incorporates a kinematic anatomy-informed feature representation and integration module. In which the inherent kinematic motion information is extracted with the Bone Extractor (BoneExt) and Limb Fuser (LimbFus) modules and encoded in a multimodal manner. This improved the capability of comprehending sports poses in short videos. We evaluate our method through two representative sports scene datasets: SportsPose and WorldPose. Experimental results show that our proposed method achieves state-of-the-art results with MPJPE errors of 58.0mm and 34.3mm, respectively. Our code and models are available at: https://github.com/jw0r1n/KASportsFormer

Authors:Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma
Title: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Abstract:
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.

Authors:Yue Zhu, Haiwen Diao, Shang Gao, Jiazuo Yu, Jiawen Zhu, Yunzhi Zhuge, Shuai Hao, Xu Jia, Lu Zhang, Ying Zhang, Huchuan Lu
Title: Regularizing Subspace Redundancy of Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.

Authors:Andong Li, Tong Lei, Zhihang Sun, Rilin Chen, Erwei Yin, Xiaodong Li, Chengshi Zheng
Title: Learning Neural Vocoder from Range-Null Space Decomposition
Abstract:
Despite the rapid development of neural vocoders in recent years, they usually suffer from some intrinsic challenges like opaque modeling, and parameter-performance trade-off. In this study, we propose an innovative time-frequency (T-F) domain-based neural vocoder to resolve the above-mentioned challenges. To be specific, we bridge the connection between the classical signal range-null decomposition (RND) theory and vocoder task, and the reconstruction of target spectrogram can be decomposed into the superimposition between the range-space and null-space, where the former is enabled by a linear domain shift from the original mel-scale domain to the target linear-scale domain, and the latter is instantiated via a learnable network for further spectral detail generation. Accordingly, we propose a novel dual-path framework, where the spectrum is hierarchically encoded/decoded, and the cross- and narrow-band modules are elaborately devised for efficient sub-band and sequential modeling. Comprehensive experiments are conducted on the LJSpeech and LibriTTS benchmarks. Quantitative and qualitative results show that while enjoying lightweight network parameters, the proposed approach yields state-of-the-art performance among existing advanced methods. Our code and the pretrained model weights are available at https://github.com/Andong-Li-speech/RNDVoC.

Authors:Haowen Li, Zhenfeng Fan, Zhang Wen, Zhengzhou Zhu, Yunjin Li
Title: AIComposer: Any Style and Content Image Composition via Feature Integration
Abstract:
Image composition has advanced significantly with large-scale pre-trained T2I diffusion models. Despite progress in same-domain composition, cross-domain composition remains under-explored. The main challenges are the stochastic nature of diffusion models and the style gap between input images, leading to failures and artifacts. Additionally, heavy reliance on text prompts limits practical applications. This paper presents the first cross-domain image composition method that does not require text prompts, allowing natural stylization and seamless compositions. Our method is efficient and robust, preserving the diffusion prior, as it involves minor steps for backward inversion and forward denoising without training the diffuser. Our method also uses a simple multilayer perceptron network to integrate CLIP features from foreground and background, manipulating diffusion with a local cross-attention strategy. It effectively preserves foreground content while enabling stable stylization without a pre-stylization network. Finally, we create a benchmark dataset with diverse contents and styles for fair evaluation, addressing the lack of testing datasets for cross-domain image composition. Our method outperforms state-of-the-art techniques in both qualitative and quantitative evaluations, significantly improving the LPIPS score by 30.5% and the CSD metric by 18.1%. We believe our method will advance future research and applications. Code and benchmark at https://github.com/sherlhw/AIComposer.

Authors:Anxiao Song, Shujie Cui, Jianli Bai, Ke Cheng, Yulong Shen, Giovanni Russello
Title: Guard-GBDT: Efficient Privacy-Preserving Approximated GBDT Training on Vertical Dataset
Abstract:
In light of increasing privacy concerns and stringent legal regulations, using secure multiparty computation (MPC) to enable collaborative GBDT model training among multiple data owners has garnered significant attention. Despite this, existing MPC-based GBDT frameworks face efficiency challenges due to high communication costs and the computation burden of non-linear operations, such as division and sigmoid calculations. In this work, we introduce Guard-GBDT, an innovative framework tailored for efficient and privacy-preserving GBDT training on vertical datasets. Guard-GBDT bypasses MPC-unfriendly division and sigmoid functions by using more streamlined approximations and reduces communication overhead by compressing the messages exchanged during gradient aggregation. We implement a prototype of Guard-GBDT and extensively evaluate its performance and accuracy on various real-world datasets. The results show that Guard-GBDT outperforms state-of-the-art HEP-XGB (CIKM'21) and SiGBDT (ASIA CCS'24) by up to $2.71\times$ and $12.21 \times$ on LAN network and up to $2.7\times$ and $8.2\times$ on WAN network. Guard-GBDT also achieves comparable accuracy with SiGBDT and plaintext XGBoost (better than HEP-XGB ), which exhibits a deviation of $\pm1\%$ to $\pm2\%$ only. Our implementation code is provided at https://github.com/XidianNSS/Guard-GBDT.git.

Authors:Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan Huang, Lei Cui, Qixiang Ye, Fang Wan, Furu Wei
Title: Geometric-Mean Policy Optimization
Abstract:
Recent advancements, such as Group Relative Policy Optimization (GRPO), have enhanced the reasoning capabilities of large language models by optimizing the arithmetic mean of token-level rewards. However, GRPO suffers from unstable policy updates when processing tokens with outlier importance-weighted rewards, which manifests as extreme importance sampling ratios during training, i.e., the ratio between the sampling probabilities assigned to a token by the current and old policies. In this work, we propose Geometric-Mean Policy Optimization (GMPO), a stabilized variant of GRPO. Instead of optimizing the arithmetic mean, GMPO maximizes the geometric mean of token-level rewards, which is inherently less sensitive to outliers and maintains a more stable range of importance sampling ratio. In addition, we provide comprehensive theoretical and experimental analysis to justify the design and stability benefits of GMPO. Beyond improved stability, GMPO-7B outperforms GRPO by an average of 4.1% on multiple mathematical benchmarks and 1.4% on multimodal reasoning benchmark, including AIME24, AMC, MATH500, OlympiadBench, Minerva, and Geometry3K. Code is available at https://github.com/callsys/GMPO.

Authors:Ao Li, Yuxiang Duan, Jinghui Zhang, Congbo Ma, Yutong Xie, Gustavo Carneiro, Mohammad Yaqub, Hu Wang
Title: TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Abstract:
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.

Authors:Junxian Wu, Weitao You, Heda Zuo, Dengming Zhang, Pei Chen, Lingyun Sun
Title: Controllable Video-to-Music Generation with Multiple Time-Varying Conditions
Abstract:
Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.

Authors:Zhixi Cai, Kartik Kuckreja, Shreya Ghosh, Akanksha Chuchra, Muhammad Haris Khan, Usman Tariq, Tom Gedeon, Abhinav Dhall
Title: AV-Deepfake1M++: A Large-Scale Audio-Visual Deepfake Benchmark with Real-World Perturbations
Abstract:
The rapid surge of text-to-speech and face-voice reenactment models makes video fabrication easier and highly realistic. To encounter this problem, we require datasets that rich in type of generation methods and perturbation strategy which is usually common for online videos. To this end, we propose AV-Deepfake1M++, an extension of the AV-Deepfake1M having 2 million video clips with diversified manipulation strategy and audio-visual perturbation. This paper includes the description of data generation strategies along with benchmarking of AV-Deepfake1M++ using state-of-the-art methods. We believe that this dataset will play a pivotal role in facilitating research in Deepfake domain. Based on this dataset, we host the 2025 1M-Deepfakes Detection Challenge. The challenge details, dataset and evaluation scripts are available online under a research-only license at https://deepfakes1m.github.io/2025.

Authors:Yanyin Guo, Runxuan An, Junwei Li, Zhiyuan Zhang
Title: LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
Abstract:
Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet

Authors:Hyung Kyu Kim, Hak Gu Kim
Title: Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Abstract:
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/

Authors:Duc-Tai Dinh, Duc Anh Khoa Dinh
Title: ZSE-Cap: A Zero-Shot Ensemble for Image Retrieval and Prompt-Guided Captioning
Abstract:
We present ZSE-Cap (Zero-Shot Ensemble for Captioning), our 4th place system in Event-Enriched Image Analysis (EVENTA) shared task on article-grounded image retrieval and captioning. Our zero-shot approach requires no finetuning on the competition's data. For retrieval, we ensemble similarity scores from CLIP, SigLIP, and DINOv2. For captioning, we leverage a carefully engineered prompt to guide the Gemma 3 model, enabling it to link high-level events from the article to the visual content in the image. Our system achieved a final score of 0.42002, securing a top-4 position on the private test set, demonstrating the effectiveness of combining foundation models through ensembling and prompting. Our code is available at https://github.com/ductai05/ZSE-Cap.

Authors:Hyung Kyu Kim, Sangmin Lee, Hak Gu Kim
Title: MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization
Abstract:
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.

Authors:Gilhwan Kang, Hogyun Kim, Byunghee Choi, Seokhwan Jeong, Young-Sik Shin, Younggun Cho
Title: Uni-Mapper: Unified Mapping Framework for Multi-modal LiDARs in Complex and Dynamic Environments
Abstract:
The unification of disparate maps is crucial for enabling scalable robot operation across multiple sessions and collaborative multi-robot scenarios. However, achieving a unified map robust to sensor modalities and dynamic environments remains a challenging problem. Variations in LiDAR types and dynamic elements lead to differences in point cloud distribution and scene consistency, hindering reliable descriptor generation and loop closure detection essential for accurate map alignment. To address these challenges, this paper presents Uni-Mapper, a dynamic-aware 3D point cloud map merging framework for multi-modal LiDAR systems. It comprises dynamic object removal, dynamic-aware loop closure, and multi-modal LiDAR map merging modules. A voxel-wise free space hash map is built in a coarse-to-fine manner to identify and reject dynamic objects via temporal occupancy inconsistencies. The removal module is integrated with a LiDAR global descriptor, which encodes preserved static local features to ensure robust place recognition in dynamic environments. In the final stage, multiple pose graph optimizations are conducted for both intra-session and inter-map loop closures. We adopt a centralized anchor-node strategy to mitigate intra-session drift errors during map merging. In the final stage, centralized anchor-node-based pose graph optimization is performed to address intra- and inter-map loop closures for globally consistent map merging. Our framework is evaluated on diverse real-world datasets with dynamic objects and heterogeneous LiDARs, showing superior performance in loop detection across sensor modalities, robust mapping in dynamic environments, and accurate multi-map alignment over existing methods. Project Page: https://sparolab.github.io/research/uni_mapper.

Authors:Chieh-Yun Chen, Min Shi, Gong Zhang, Humphrey Shi
Title: T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation
Abstract:
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.

Authors:Chaitanya Manem, Pratik Prabhanjan Brahma, Prakamya Mishra, Zicheng Liu, Emad Barsoum
Title: SAND-Math: Using LLMs to Generate Novel, Difficult and Useful Mathematics Questions and Answers
Abstract:
The demand for Large Language Models (LLMs) capable of sophisticated mathematical reasoning is growing across industries. However, the development of performant mathematical LLMs is critically bottlenecked by the scarcity of difficult, novel training data. We introduce \textbf{SAND-Math} (Synthetic Augmented Novel and Difficult Mathematics problems and solutions), a pipeline that addresses this by first generating high-quality problems from scratch and then systematically elevating their complexity via a new \textbf{Difficulty Hiking} step. We demonstrate the effectiveness of our approach through two key findings. First, augmenting a strong baseline with SAND-Math data significantly boosts performance, outperforming the next-best synthetic dataset by \textbf{$\uparrow$ 17.85 absolute points} on the AIME25 benchmark. Second, in a dedicated ablation study, we show our Difficulty Hiking process is highly effective: by increasing average problem difficulty from 5.02 to 5.98, this step lifts AIME25 performance from 46.38\% to 49.23\%. The full generation pipeline, final dataset, and a fine-tuned model form a practical and scalable toolkit for building more capable and efficient mathematical reasoning LLMs. SAND-Math dataset is released here: \href{https://huggingface.co/datasets/amd/SAND-MATH}{https://huggingface.co/datasets/amd/SAND-MATH}

Authors:Risa Shinoda, Nakamasa Inoue, Hirokatsu Kataoka, Masaki Onishi, Yoshitaka Ushiku
Title: AgroBench: Vision-Language Model Benchmark in Agriculture
Abstract:
Precise automated understanding of agricultural tasks such as disease identification is essential for sustainable crop production. Recent advances in vision-language models (VLMs) are expected to further expand the range of agricultural tasks by facilitating human-model interaction through easy, text-based communication. Here, we introduce AgroBench (Agronomist AI Benchmark), a benchmark for evaluating VLM models across seven agricultural topics, covering key areas in agricultural engineering and relevant to real-world farming. Unlike recent agricultural VLM benchmarks, AgroBench is annotated by expert agronomists. Our AgroBench covers a state-of-the-art range of categories, including 203 crop categories and 682 disease categories, to thoroughly evaluate VLM capabilities. In our evaluation on AgroBench, we reveal that VLMs have room for improvement in fine-grained identification tasks. Notably, in weed identification, most open-source VLMs perform close to random. With our wide range of topics and expert-annotated categories, we analyze the types of errors made by VLMs and suggest potential pathways for future VLM development. Our dataset and code are available at https://dahlian00.github.io/AgroBenchPage/ .

Authors:Yili Li, Gang Xiong, Gaopeng Gou, Xiangyan Qu, Jiamin Zhuang, Zhen Li, Junzheng Shi
Title: T2VParser: Adaptive Decomposition Tokens for Partial Alignment in Text to Video Retrieval
Abstract:
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.

Authors:Binxiong Li, Yuefei Wang, Binyu Zhao, Heyang Gao, Benhan Yang, Quanzhou Luo, Xue Li, Xu Xiang, Yujie Liu, Huijie Tang
Title: Attributed Graph Clustering with Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning
Abstract:
This study introduces the Multi-Scale Weight-Based Pairwise Coarsening and Contrastive Learning (MPCCL) model, a novel approach for attributed graph clustering that effectively bridges critical gaps in existing methods, including long-range dependency, feature collapse, and information loss. Traditional methods often struggle to capture high-order graph features due to their reliance on low-order attribute information, while contrastive learning techniques face limitations in feature diversity by overemphasizing local neighborhood structures. Similarly, conventional graph coarsening methods, though reducing graph scale, frequently lose fine-grained structural details. MPCCL addresses these challenges through an innovative multi-scale coarsening strategy, which progressively condenses the graph while prioritizing the merging of key edges based on global node similarity to preserve essential structural information. It further introduces a one-to-many contrastive learning paradigm, integrating node embeddings with augmented graph views and cluster centroids to enhance feature diversity, while mitigating feature masking issues caused by the accumulation of high-frequency node weights during multi-scale coarsening. By incorporating a graph reconstruction loss and KL divergence into its self-supervised learning framework, MPCCL ensures cross-scale consistency of node representations. Experimental evaluations reveal that MPCCL achieves a significant improvement in clustering performance, including a remarkable 15.24% increase in NMI on the ACM dataset and notable robust gains on smaller-scale datasets such as Citeseer, Cora and DBLP.

Authors:Liu Zhang, Oscar Mickelin, Sheng Xu, Amit Singer
Title: Diagonally-Weighted Generalized Method of Moments Estimation for Gaussian Mixture Modeling
Abstract:
Since Pearson [Philosophical Transactions of the Royal Society of London. A, 185 (1894), pp. 71-110] first applied the method of moments (MM) for modeling data as a mixture of one-dimensional Gaussians, moment-based estimation methods have proliferated. Among these methods, the generalized method of moments (GMM) improves the statistical efficiency of MM by weighting the moments appropriately. However, the computational complexity and storage complexity of MM and GMM grow exponentially with the dimension, making these methods impractical for high-dimensional data or when higher-order moments are required. Such computational bottlenecks are more severe in GMM since it additionally requires estimating a large weighting matrix. To overcome these bottlenecks, we propose the diagonally-weighted GMM (DGMM), which achieves a balance among statistical efficiency, computational complexity, and numerical stability. We apply DGMM to study the parameter estimation problem for weakly separated heteroscedastic low-rank Gaussian mixtures and design a computationally efficient and numerically stable algorithm that obtains the DGMM estimator without explicitly computing or storing the moment tensors. We implement the proposed algorithm and empirically validate the advantages of DGMM: in numerical studies, DGMM attains smaller estimation errors while requiring substantially shorter runtime than MM and GMM. The code and data will be available upon publication at https://github.com/liu-lzhang/dgmm.

Authors:Camilo Tamayo-Rousseau, Yunjia Zhao, Yiqun Zhang, Randall Balestriero
Title: Your Attention Matters: to Improve Model Robustness to Noise and Spurious Correlations
Abstract:
Self-attention mechanisms are foundational to Transformer architectures, supporting their impressive success in a wide range of tasks. While there are many self-attention variants, their robustness to noise and spurious correlations has not been well studied. This study evaluates Softmax, Sigmoid, Linear, Doubly Stochastic, and Cosine attention within Vision Transformers under different data corruption scenarios. Through testing across the CIFAR-10, CIFAR-100, and Imagenette datasets, we show that Doubly Stochastic attention is the most robust. It consistently outperformed the next best mechanism by $0.1\%-5.1\%$ when training data, or both training and testing data, were corrupted. Our findings inform self-attention selection in contexts with imperfect data. The code used is available at https://github.com/ctamayor/NeurIPS-Robustness-ViT.

Authors:Alexandru Brateanu, Raul Balmez, Ciprian Orhei, Codruta Ancuti, Cosmin Ancuti
Title: ModalFormer: Multimodal Transformer for Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) is a fundamental yet challenging task due to the presence of noise, loss of detail, and poor contrast in images captured under insufficient lighting conditions. Recent methods often rely solely on pixel-level transformations of RGB images, neglecting the rich contextual information available from multiple visual modalities. In this paper, we present ModalFormer, the first large-scale multimodal framework for LLIE that fully exploits nine auxiliary modalities to achieve state-of-the-art performance. Our model comprises two main components: a Cross-modal Transformer (CM-T) designed to restore corrupted images while seamlessly integrating multimodal information, and multiple auxiliary subnetworks dedicated to multimodal feature reconstruction. Central to the CM-T is our novel Cross-modal Multi-headed Self-Attention mechanism (CM-MSA), which effectively fuses RGB data with modality-specific features--including deep feature embeddings, segmentation information, geometric cues, and color information--to generate information-rich hybrid attention maps. Extensive experiments on multiple benchmark datasets demonstrate ModalFormer's state-of-the-art performance in LLIE. Pre-trained models and results are made available at https://github.com/albrateanu/ModalFormer.

Authors:Hengyu Liu, Tianyi Li, Yuqiang He, Kristian Torp, Yushuai Li, Christian S. Jensen
Title: MH-GIN: Multi-scale Heterogeneous Graph-based Imputation Network for AIS Data (Extended Version)
Abstract:
Location-tracking data from the Automatic Identification System, much of which is publicly available, plays a key role in a range of maritime safety and monitoring applications. However, the data suffers from missing values that hamper downstream applications. Imputing the missing values is challenging because the values of different heterogeneous attributes are updated at diverse rates, resulting in the occurrence of multi-scale dependencies among attributes. Existing imputation methods that assume similar update rates across attributes are unable to capture and exploit such dependencies, limiting their imputation accuracy. We propose MH-GIN, a Multi-scale Heterogeneous Graph-based Imputation Network that aims improve imputation accuracy by capturing multi-scale dependencies. Specifically, MH-GIN first extracts multi-scale temporal features for each attribute while preserving their intrinsic heterogeneous characteristics. Then, it constructs a multi-scale heterogeneous graph to explicitly model dependencies between heterogeneous attributes to enable more accurate imputation of missing values through graph propagation. Experimental results on two real-world datasets find that MH-GIN is capable of an average 57% reduction in imputation errors compared to state-of-the-art methods, while maintaining computational efficiency. The source code and implementation details of MH-GIN are publicly available https://github.com/hyLiu1994/MH-GIN.

Authors:Zheng Wei, Hongtao Wu, Lvmin Zhang, Xian Xu, Yefeng Zheng, Pan Hui, Maneesh Agrawala, Huamin Qu, Anyi Rao
Title: CineVision: An Interactive Pre-visualization Storyboard System for Director-Cinematographer Collaboration
Abstract:
Effective communication between directors and cinematographers is fundamental in film production, yet traditional approaches relying on visual references and hand-drawn storyboards often lack the efficiency and precision necessary during pre-production. We present CineVision, an AI-driven platform that integrates scriptwriting with real-time visual pre-visualization to bridge this communication gap. By offering dynamic lighting control, style emulation based on renowned filmmakers, and customizable character design, CineVision enables directors to convey their creative vision with heightened clarity and rapidly iterate on scene composition. In a 24-participant lab study, CineVision yielded shorter task times and higher usability ratings than two baseline methods, suggesting a potential to ease early-stage communication and accelerate storyboard drafts under controlled conditions. These findings underscore CineVision's potential to streamline pre-production processes and foster deeper creative synergy among filmmaking teams, particularly for new collaborators. Our code and demo are available at https://github.com/TonyHongtaoWu/CineVision.

Authors:Peng Liu, Bianca Güttner, Yutong Su, Chenyang Li, Jinjing Xu, Mingyang Liu, Zhe Min, Andrey Zhylka, Jasper Smit, Karin Olthof, Matteo Fusaglia, Rudi Apolle, Matthias Miederer, Laura Frohneberger, Carina Riediger, Jügen Weitz, Fiona Kolbinger, Stefanie Speidel, Micha Pfeiffer
Title: PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
Abstract:
Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.

Authors:Chenjian Gao, Lihe Ding, Rui Han, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Title: From Gallery to Wrist: Realistic 3D Bracelet Insertion in Videos
Abstract:
Inserting 3D objects into videos is a longstanding challenge in computer graphics with applications in augmented reality, virtual try-on, and video composition. Achieving both temporal consistency, or realistic lighting remains difficult, particularly in dynamic scenarios with complex object motion, perspective changes, and varying illumination. While 2D diffusion models have shown promise for producing photorealistic edits, they often struggle with maintaining temporal coherence across frames. Conversely, traditional 3D rendering methods excel in spatial and temporal consistency but fall short in achieving photorealistic lighting. In this work, we propose a hybrid object insertion pipeline that combines the strengths of both paradigms. Specifically, we focus on inserting bracelets into dynamic wrist scenes, leveraging the high temporal consistency of 3D Gaussian Splatting (3DGS) for initial rendering and refining the results using a 2D diffusion-based enhancement model to ensure realistic lighting interactions. Our method introduces a shading-driven pipeline that separates intrinsic object properties (albedo, shading, reflectance) and refines both shading and sRGB images for photorealism. To maintain temporal coherence, we optimize the 3DGS model with multi-frame weighted adjustments. This is the first approach to synergize 3D rendering and 2D diffusion for video object insertion, offering a robust solution for realistic and consistent video editing. Project Page: https://cjeen.github.io/BraceletPaper/

Authors:Stepan Dergachev, Konstantin Yakovlev
Title: Decentralized Uncertainty-Aware Multi-Agent Collision Avoidance with Model Predictive Path Integral
Abstract:
Decentralized multi-agent navigation under uncertainty is a complex task that arises in numerous robotic applications. It requires collision avoidance strategies that account for both kinematic constraints, sensing and action execution noise. In this paper, we propose a novel approach that integrates the Model Predictive Path Integral (MPPI) with a probabilistic adaptation of Optimal Reciprocal Collision Avoidance. Our method ensures safe and efficient multi-agent navigation by incorporating probabilistic safety constraints directly into the MPPI sampling process via a Second-Order Cone Programming formulation. This approach enables agents to operate independently using local noisy observations while maintaining safety guarantees. We validate our algorithm through extensive simulations with differential-drive robots and benchmark it against state-of-the-art methods, including ORCA-DD and B-UAVC. Results demonstrate that our approach outperforms them while achieving high success rates, even in densely populated environments. Additionally, validation in the Gazebo simulator confirms its practical applicability to robotic platforms. A source code is available at http://github.com/PathPlanning/MPPI-Collision-Avoidance.

Authors:Qiaosi Yi, Shuai Li, Rongyuan Wu, Lingchen Sun, Yuhui Wu, Lei Zhang
Title: Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training
Abstract:
Impressive results on real-world image super-resolution (Real-ISR) have been achieved by employing pre-trained stable diffusion (SD) models. However, one critical issue of such methods lies in their poor reconstruction of image fine structures, such as small characters and textures, due to the aggressive resolution reduction of the VAE (eg., 8$\times$ downsampling) in the SD model. One solution is to employ a VAE with a lower downsampling rate for diffusion; however, adapting its latent features with the pre-trained UNet while mitigating the increased computational cost poses new challenges. To address these issues, we propose a Transfer VAE Training (TVT) strategy to transfer the 8$\times$ downsampled VAE into a 4$\times$ one while adapting to the pre-trained UNet. Specifically, we first train a 4$\times$ decoder based on the output features of the original VAE encoder, then train a 4$\times$ encoder while keeping the newly trained decoder fixed. Such a TVT strategy aligns the new encoder-decoder pair with the original VAE latent space while enhancing image fine details. Additionally, we introduce a compact VAE and compute-efficient UNet by optimizing their network architectures, reducing the computational cost while capturing high-resolution fine-scale features. Experimental results demonstrate that our TVT method significantly improves fine-structure preservation, which is often compromised by other SD-based methods, while requiring fewer FLOPs than state-of-the-art one-step diffusion models. The official code can be found at https://github.com/Joyies/TVT.

Authors:Dingkun Liu, Zhu Chen, Jingwei Luo, Shijie Lian, Dongrui Wu
Title: MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Abstract:
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHub\footnote{https://github.com/staraink/MIRepNet}.

Authors:Lang Yu, Zhangyang Gao, Cheng Tan, Qin Chen, Jie Zhou, Liang He
Title: Protein-SE(3): Benchmarking SE(3)-based Generative Models for Protein Structure Design
Abstract:
SE(3)-based generative models have shown great promise in protein geometry modeling and effective structure design. However, the field currently lacks a modularized benchmark to enable comprehensive investigation and fair comparison of different methods. In this paper, we propose Protein-SE(3), a new benchmark based on a unified training framework, which comprises protein scaffolding tasks, integrated generative models, high-level mathematical abstraction, and diverse evaluation metrics. Recent advanced generative models designed for protein scaffolding, from multiple perspectives like DDPM (Genie1 and Genie2), Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and FrameFlow) are integrated into our framework. All integrated methods are fairly investigated with the same training dataset and evaluation metrics. Furthermore, we provide a high-level abstraction of the mathematical foundations behind the generative models, enabling fast prototyping of future algorithms without reliance on explicit protein structures. Accordingly, we release the first comprehensive benchmark built upon unified training framework for SE(3)-based protein structure design, which is publicly accessible at https://github.com/BruthYU/protein-se3.

Authors:Risa Shinoda, Nakamasa Inoue, Iro Laina, Christian Rupprecht, Hirokatsu Kataoka
Title: AnimalClue: Recognizing Animals by their Traces
Abstract:
Wildlife observation plays an important role in biodiversity conservation, necessitating robust methodologies for monitoring wildlife populations and interspecies interactions. Recent advances in computer vision have significantly contributed to automating fundamental wildlife observation tasks, such as animal detection and species identification. However, accurately identifying species from indirect evidence like footprints and feces remains relatively underexplored, despite its importance in contributing to wildlife monitoring. To bridge this gap, we introduce AnimalClue, the first large-scale dataset for species identification from images of indirect evidence. Our dataset consists of 159,605 bounding boxes encompassing five categories of indirect clues: footprints, feces, eggs, bones, and feathers. It covers 968 species, 200 families, and 65 orders. Each image is annotated with species-level labels, bounding boxes or segmentation masks, and fine-grained trait information, including activity patterns and habitat preferences. Unlike existing datasets primarily focused on direct visual features (e.g., animal appearances), AnimalClue presents unique challenges for classification, detection, and instance segmentation tasks due to the need for recognizing more detailed and subtle visual features. In our experiments, we extensively evaluate representative vision models and identify key challenges in animal identification from their traces. Our dataset and code are available at https://dahlian00.github.io/AnimalCluePage/

Authors:Ruizi Yang, Xiaolu Liu, Junbo Chen, Jianke Zhu
Title: MambaMap: Online Vectorized HD Map Construction using State Space Model
Abstract:
High-definition (HD) maps are essential for autonomous driving, as they provide precise road information for downstream tasks. Recent advances highlight the potential of temporal modeling in addressing challenges like occlusions and extended perception range. However, existing methods either fail to fully exploit temporal information or incur substantial computational overhead in handling extended sequences. To tackle these challenges, we propose MambaMap, a novel framework that efficiently fuses long-range temporal features in the state space to construct online vectorized HD maps. Specifically, MambaMap incorporates a memory bank to store and utilize information from historical frames, dynamically updating BEV features and instance queries to improve robustness against noise and occlusions. Moreover, we introduce a gating mechanism in the state space, selectively integrating dependencies of map elements in high computational efficiency. In addition, we design innovative multi-directional and spatial-temporal scanning strategies to enhance feature extraction at both BEV and instance levels. These strategies significantly boost the prediction accuracy of our approach while ensuring robust temporal consistency. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that our proposed MambaMap approach outperforms state-of-the-art methods across various splits and perception ranges. Source code will be available at https://github.com/ZiziAmy/MambaMap.

Authors:Bohong Chen, Yumeng Li, Youyi Zheng, Yao-Xiang Ding, Kun Zhou
Title: Motion-example-controlled Co-speech Gesture Generation Leveraging Large Language Models
Abstract:
The automatic generation of controllable co-speech gestures has recently gained growing attention. While existing systems typically achieve gesture control through predefined categorical labels or implicit pseudo-labels derived from motion examples, these approaches often compromise the rich details present in the original motion examples. We present MECo, a framework for motion-example-controlled co-speech gesture generation by leveraging large language models (LLMs). Our method capitalizes on LLMs' comprehension capabilities through fine-tuning to simultaneously interpret speech audio and motion examples, enabling the synthesis of gestures that preserve example-specific characteristics while maintaining speech congruence. Departing from conventional pseudo-labeling paradigms, we position motion examples as explicit query contexts within the prompt structure to guide gesture generation. Experimental results demonstrate state-of-the-art performance across three metrics: Fréchet Gesture Distance (FGD), motion diversity, and example-gesture similarity. Furthermore, our framework enables granular control of individual body parts and accommodates diverse input modalities including motion clips, static poses, human video sequences, and textual descriptions. Our code, pre-trained models, and videos are available at https://robinwitch.github.io/MECo-Page.

Authors:Minh Hoang Nguyen, Thuat Thien Nguyen, Minh Nhat Ta
Title: Co-NAML-LSTUR: A Combined Model with Attentive Multi-View Learning and Long- and Short-term User Representations for News Recommendation
Abstract:
News recommendation systems play a vital role in mitigating information overload by delivering personalized news content. A central challenge is to effectively model both multi-view news representations and the dynamic nature of user interests, which often span both short- and long-term preferences. Existing methods typically rely on single-view features of news articles (e.g., titles or categories) or fail to comprehensively capture user preferences across time scales. In this work, we propose Co-NAML-LSTUR, a hybrid news recommendation framework that integrates NAML for attentive multi-view news modeling and LSTUR for capturing both long- and short-term user representations. Our model also incorporates BERT-based word embeddings to enhance semantic feature extraction. We evaluate Co-NAML-LSTUR on two widely used benchmarks, MIND-small and MIND-large. Experimental results show that Co-NAML-LSTUR achieves substantial improvements over most state-of-the-art baselines on MIND-small and MIND-large, respectively. These results demonstrate the effectiveness of combining multi-view news representations with dual-scale user modeling. The implementation of our model is publicly available at https://github.com/MinhNguyenDS/Co-NAML-LSTUR.

Authors:Kele Shao, Keda Tao, Kejia Zhang, Sicheng Feng, Mu Cai, Yuzhang Shang, Haoxuan You, Can Qin, Yang Sui, Huan Wang
Title: When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Abstract:
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

Authors:Li Jinfu, Song Hong, Xia Jianghan, Lin Yucong, Wang Ting, Shao Long, Fan Jingfan, Yang Jian
Title: MoCTEFuse: Illumination-Gated Mixture of Chiral Transformer Experts for Multi-Level Infrared and Visible Image Fusion
Abstract:
While illumination changes inevitably affect the quality of infrared and visible image fusion, many outstanding methods still ignore this factor and directly merge the information from source images, leading to modality bias in the fused results. To this end, we propose a dynamic multi-level image fusion network called MoCTEFuse, which applies an illumination-gated Mixture of Chiral Transformer Experts (MoCTE) to adaptively preserve texture details and object contrasts in balance. MoCTE consists of high- and low-illumination expert subnetworks, each built upon the Chiral Transformer Fusion Block (CTFB). Guided by the illumination gating signals, CTFB dynamically switches between the primary and auxiliary modalities as well as assigning them corresponding weights with its asymmetric cross-attention mechanism. Meanwhile, it is stacked at multiple stages to progressively aggregate and refine modality-specific and cross-modality information. To facilitate robust training, we propose a competitive loss function that integrates illumination distributions with three levels of sub-loss terms. Extensive experiments conducted on the DroneVehicle, MSRS, TNO and RoadScene datasets show MoCTEFuse's superior fusion performance. Finally, it achieves the best detection mean Average Precision (mAP) of 70.93% on the MFNet dataset and 45.14% on the DroneVehicle dataset. The code and model are released at https://github.com/Bitlijinfu/MoCTEFuse.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Shengping Zhang, Guorong Li, Xianxian Li, Rongrong Ji
Title: Towards Universal Modal Tracking with Online Dense Temporal Token Learning
Abstract:
We propose a universal video-level modality-awareness tracking model with online dense temporal token learning (called {\modaltracker}). It is designed to support various tracking tasks, including RGB, RGB+Thermal, RGB+Depth, and RGB+Event, utilizing the same model architecture and parameters. Specifically, our model is designed with three core goals: \textbf{Video-level Sampling}. We expand the model's inputs to a video sequence level, aiming to see a richer video context from an near-global perspective. \textbf{Video-level Association}. Furthermore, we introduce two simple yet effective online dense temporal token association mechanisms to propagate the appearance and motion trajectory information of target via a video stream manner. \textbf{Modality Scalable}. We propose two novel gated perceivers that adaptively learn cross-modal representations via a gated attention mechanism, and subsequently compress them into the same set of model parameters via a one-shot training manner for multi-task inference. This new solution brings the following benefits: (i) The purified token sequences can serve as temporal prompts for the inference in the next video frames, whereby previous information is leveraged to guide future inference. (ii) Unlike multi-modal trackers that require independent training, our one-shot training scheme not only alleviates the training burden, but also improves model representation. Extensive experiments on visible and multi-modal benchmarks show that our {\modaltracker} achieves a new \textit{SOTA} performance. The code will be available at https://github.com/GXNU-ZhongLab/ODTrack.

Authors:Fei Kong, Jinhao Duan, Kaidi Xu, Zhenhua Guo, Xiaofeng Zhu, Xiaoshuang Shi
Title: LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Abstract:
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.

Authors:Zeyu Xi, Haoying Sun, Yaofei Wu, Junchi Yan, Haoran Zhang, Lifang Wu, Liang Wang, Changwen Chen
Title: Player-Centric Multimodal Prompt Generation for Large Language Model Based Identity-Aware Basketball Video Captioning
Abstract:
Existing sports video captioning methods often focus on the action yet overlook player identities, limiting their applicability. Although some methods integrate extra information to generate identity-aware descriptions, the player identities are sometimes incorrect because the extra information is independent of the video content. This paper proposes a player-centric multimodal prompt generation network for identity-aware sports video captioning (LLM-IAVC), which focuses on recognizing player identities from a visual perspective. Specifically, an identity-related information extraction module (IRIEM) is designed to extract player-related multimodal embeddings. IRIEM includes a player identification network (PIN) for extracting visual features and player names, and a bidirectional semantic interaction module (BSIM) to link player features with video content for mutual enhancement. Additionally, a visual context learning module (VCLM) is designed to capture the key video context information. Finally, by integrating the outputs of the above modules as the multimodal prompt for the large language model (LLM), it facilitates the generation of descriptions with player identities. To support this work, we construct a new benchmark called NBA-Identity, a large identity-aware basketball video captioning dataset with 9,726 videos covering 9 major event types. The experimental results on NBA-Identity and VC-NBA-2022 demonstrate that our proposed model achieves advanced performance. Code and dataset are publicly available at https://github.com/Zeyu1226-mt/LLM-IAVC.

Authors:Cheng Huang, Fan Gao, Yutong Liu, Yadi Liu, Xiaoli Ma, Ye Aung Moe, Yuhan Zhang, Yao Ma, Hao Wang, Xiangxiang Wang, Yongbin Yu
Title: IFD: A Large-Scale Benchmark for Insider Filing Violation Detection
Abstract:
Insider trading violations, particularly delayed disclosures of Form 4 filings, remain a persistent challenge for financial market surveillance. Despite regulatory requirements such as the two-business-day rule of the Securities and Exchange Commission (SEC), enforcement is limited by the lack of large-scale, labeled datasets and task-specific benchmarks. In this paper, we introduce the Insider Filing Delay (IFD) dataset, the first and largest publicly available resource for insider disclosure behavior, comprising over one million Form 4 transactions spanning two decades (2002 to 2025), with structured annotations on delay status, insider roles, governance factors, and firm-level financial indicators. IFD enables the first large-scale formulation of strategic disclosure violation detection as a binary classification task grounded in regulatory compliance. To demonstrate the utility of IFD, we propose MaBoost, a hybrid framework combining a Mamba-based state space encoder with XGBoost, achieving high accuracy and interpretability in identifying high-risk behavioral patterns. Experiments across statistical baselines, deep learning models, and large language models confirm that MaBoost outperforms prior approaches, achieving an F1 score of up to 99.47 percent under constrained regulatory settings. IFD provides a realistic, reproducible, and behavior-rich dataset for developing AI models in financial compliance, regulatory forensics, and interpretable time series classification. All data and codes are available at: https://github.com/CH-YellowOrange/MaBoost-and-IFD.

Authors:Yuhong Zhang, Liyao Wang, Han Wang, Danni Wu, Zuzeng Lin, Feng Wang, Li Song
Title: AnimeColor: Reference-based Animation Colorization with Diffusion Transformers
Abstract:
Animation colorization plays a vital role in animation production, yet existing methods struggle to achieve color accuracy and temporal consistency. To address these challenges, we propose \textbf{AnimeColor}, a novel reference-based animation colorization framework leveraging Diffusion Transformers (DiT). Our approach integrates sketch sequences into a DiT-based video diffusion model, enabling sketch-controlled animation generation. We introduce two key components: a High-level Color Extractor (HCE) to capture semantic color information and a Low-level Color Guider (LCG) to extract fine-grained color details from reference images. These components work synergistically to guide the video diffusion process. Additionally, we employ a multi-stage training strategy to maximize the utilization of reference image color information. Extensive experiments demonstrate that AnimeColor outperforms existing methods in color accuracy, sketch alignment, temporal consistency, and visual quality. Our framework not only advances the state of the art in animation colorization but also provides a practical solution for industrial applications. The code will be made publicly available at \href{https://github.com/IamCreateAI/AnimeColor}{https://github.com/IamCreateAI/AnimeColor}.

Authors:Daulet Toibazar, Kesen Wang, Sherif Mohamed, Abdulaziz Al-Badawi, Abdulrahman Alfulayt, Pedro J. Moreno
Title: Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Abstract:
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.

Authors:Jingxi Liao, Shijie Hao, Richang Hong, Meng Wang
Title: GT-Mean Loss: A Simple Yet Effective Solution for Brightness Mismatch in Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) aims to improve the visual quality of images captured under poor lighting conditions. In supervised LLIE research, there exists a significant yet often overlooked inconsistency between the overall brightness of an enhanced image and its ground truth counterpart, referred to as brightness mismatch in this study. Brightness mismatch negatively impact supervised LLIE models by misleading model training. However, this issue is largely neglected in current research. In this context, we propose the GT-mean loss, a simple yet effective loss function directly modeling the mean values of images from a probabilistic perspective. The GT-mean loss is flexible, as it extends existing supervised LLIE loss functions into the GT-mean form with minimal additional computational costs. Extensive experiments demonstrate that the incorporation of the GT-mean loss results in consistent performance improvements across various methods and datasets.

Authors:Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alkahtani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, Pedro J. Moreno
Title: Multi-Agent Interactive Question Generation Framework for Long Document Understanding
Abstract:
Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.

Authors:Zeyi Liu, Songqiao Hu, Pengyu Han, Jiaming Liu, Xiao He
Title: Awesome-OL: An Extensible Toolkit for Online Learning
Abstract:
In recent years, online learning has attracted increasing attention due to its adaptive capability to process streaming and non-stationary data. To facilitate algorithm development and practical deployment in this area, we introduce Awesome-OL, an extensible Python toolkit tailored for online learning research. Awesome-OL integrates state-of-the-art algorithm, which provides a unified framework for reproducible comparisons, curated benchmark datasets, and multi-modal visualization. Built upon the scikit-multiflow open-source infrastructure, Awesome-OL emphasizes user-friendly interactions without compromising research flexibility or extensibility. The source code is publicly available at: https://github.com/liuzy0708/Awesome-OL.

Authors:Baiyu Chen, Wilson Wongso, Xiaoqian Hu, Yue Tan, Flora Salim
Title: Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Abstract:
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .

Authors:Shizuka Akahori, Shotaro Teruya, Pragyan Shrestha, Yuichi Yoshii, Satoshi Iizuka, Akira Ikumi, Hiromitsu Tsuge, Itaru Kitahara
Title: Detection of Medial Epicondyle Avulsion in Elbow Ultrasound Images via Bone Structure Reconstruction
Abstract:
This study proposes a reconstruction-based framework for detecting medial epicondyle avulsion in elbow ultrasound images, trained exclusively on normal cases. Medial epicondyle avulsion, commonly observed in baseball players, involves bone detachment and deformity, often appearing as discontinuities in bone contour. Therefore, learning the structure and continuity of normal bone is essential for detecting such abnormalities. To achieve this, we propose a masked autoencoder-based, structure-aware reconstruction framework that learns the continuity of normal bone structures. Even in the presence of avulsion, the model attempts to reconstruct the normal structure, resulting in large reconstruction errors at the avulsion site. For evaluation, we constructed a novel dataset comprising normal and avulsion ultrasound images from 16 baseball players, with pixel-level annotations under orthopedic supervision. Our method outperformed existing approaches, achieving a pixel-wise AUC of 0.965 and an image-wise AUC of 0.967. The dataset is publicly available at: https://github.com/Akahori000/Ultrasound-Medial-Epicondyle-Avulsion-Dataset.

Authors:Haoyue Li, Di Wu
Title: Hybrid-Domain Synergistic Transformer for Hyperspectral Image Denoising
Abstract:
Hyperspectral image denoising faces the challenge of multi-dimensional coupling of spatially non-uniform noise and spectral correlation interference. Existing deep learning methods mostly focus on RGB images and struggle to effectively handle the unique spatial-spectral characteristics and complex noise distributions of hyperspectral images (HSI). This paper proposes an HSI denoising framework, Hybrid-Domain Synergistic Transformer Network (HDST), based on frequency domain enhancement and multiscale modeling, achieving three-dimensional collaborative processing of spatial, frequency and channel domains. The method innovatively integrates three key mechanisms: (1) introducing an FFT preprocessing module with multi-band convolution to extract cross-band correlations and decouple spectral noise components; (2) designing a dynamic cross-domain attention module that adaptively fuses spatial domain texture features and frequency domain noise priors through a learnable gating mechanism; (3) building a hierarchical architecture where shallow layers capture global noise statistics using multiscale atrous convolution, and deep layers achieve detail recovery through frequency domain postprocessing. Experiments on both real and synthetic datasets demonstrate that HDST significantly improves denoising performance while maintaining computational efficiency, validating the effectiveness of the proposed method. This research provides new insights and a universal framework for addressing complex noise coupling issues in HSI and other high-dimensional visual data. The code is available at https://github.com/lhy-cn/HDST-HSIDenoise.

Authors:Shibang Liu, Xuemei Xie, Guangming Shi
Title: KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Abstract:
Recent methods using diffusion models have made significant progress in Human Image Generation (HIG) with various control signals such as pose priors. In HIG, both accurate human poses and coherent visual quality are crucial for image generation. However, most existing methods mainly focus on pose accuracy while neglecting overall image quality, often improving pose alignment at the cost of image quality. To address this, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB), implemented as a visual codebook, provides coarse, global guidance based on input text-related visual features, improving pose accuracy while maintaining image quality, while the Dynamic pose Mask (DM) offers fine-grained local control to enhance precise pose accuracy. By injecting KB and DM at different stages of the diffusion process, our framework enhances pose accuracy through both global and local control without compromising image quality. Experiments demonstrate the effectiveness of KB-DMGen, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The project page and code are available at https://lushbng.github.io/KBDMGen.

Authors:Chaytan Inman
Title: Studying Disinformation Narratives on Social Media with LLMs and Semantic Similarity
Abstract:
This thesis develops a continuous scale measurement of similarity to disinformation narratives that can serve to detect disinformation and capture the nuanced, partial truths that are characteristic of it. To do so, two tools are developed and their methodologies are documented. The tracing tool takes tweets and a target narrative, rates the similarities of each to the target narrative, and graphs it as a timeline. The second narrative synthesis tool clusters tweets above a similarity threshold and generates the dominant narratives within each cluster. These tools are combined into a Tweet Narrative Analysis Dashboard. The tracing tool is validated on the GLUE STS-B benchmark, and then the two tools are used to analyze two case studies for further empirical validation. The first case study uses the target narrative "The 2020 election was stolen" and analyzes a dataset of Donald Trump's tweets during 2020. The second case study uses the target narrative, "Transgender people are harmful to society" and analyzes tens of thousands of tweets from the media outlets The New York Times, The Guardian, The Gateway Pundit, and Fox News. Together, the empirical findings from these case studies demonstrate semantic similarity for nuanced disinformation detection, tracing, and characterization. The tools developed in this thesis are hosted and can be accessed through the permission of the author. Please explain your use case in your request. The HTML friendly version of this paper is at https://chaytanc.github.io/projects/disinfo-research (Inman, 2025).

Authors:Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wenqi Shi, Carl Yang
Title: RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.

Authors:Yin Xie, Kaicheng Yang, Xiang An, Kun Wu, Yongle Zhao, Weimo Deng, Zimin Ran, Yumeng Wang, Ziyong Feng, Roy Miles, Ismail Elezi, Jiankang Deng
Title: Region-based Cluster Discrimination for Visual Representation Learning
Abstract:
Learning visual representations is foundational for a broad spectrum of downstream tasks. Although recent vision-language contrastive models, such as CLIP and SigLIP, have achieved impressive zero-shot performance via large-scale vision-language alignment, their reliance on global representations constrains their effectiveness for dense prediction tasks, such as grounding, OCR, and segmentation. To address this gap, we introduce Region-Aware Cluster Discrimination (RICE), a novel method that enhances region-level visual and OCR capabilities. We first construct a billion-scale candidate region dataset and propose a Region Transformer layer to extract rich regional semantics. We further design a unified region cluster discrimination loss that jointly supports object and OCR learning within a single classification framework, enabling efficient and scalable distributed training on large-scale data. Extensive experiments show that RICE consistently outperforms previous methods on tasks, including segmentation, dense detection, and visual perception for Multimodal Large Language Models (MLLMs). The pre-trained models have been released at https://github.com/deepglint/MVT.

Authors:Lehan Wang, Hualiang Wang, Chubin Ou, Lushi Chen, Yunyi Liang, Xiaomeng Li
Title: VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction
Abstract:
Cardiovascular disease (CVD) remains the leading cause of death worldwide, requiring urgent development of effective risk assessment methods for timely intervention. While current research has introduced non-invasive and efficient approaches to predict CVD risk from retinal imaging with deep learning models, the commonly used fundus photographs and Optical Coherence Tomography (OCT) fail to capture detailed vascular features critical for CVD assessment compared with OCT angiography (OCTA) images. Moreover, existing methods typically classify CVD risk only as high or low, without providing a deeper analysis on CVD-related blood factor conditions, thus limiting prediction accuracy and clinical utility. As a result, we propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction, aligning with clinical experiences. Based on this core idea, we introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images. Our proposed model aims to extract crucial vascular characteristics through two key components: (1) a Mamba-Based Directional (MBD) Module that captures fine-grained vascular trajectory features and (2) an Information-Enhanced Morphological (IEM) Module that incorporates comprehensive vessel morphology knowledge. Experimental results demonstrate that our method can surpass standard classification backbones, OCTA-based detection methods, and ophthalmologic foundation models. Our codes and the collected OCTA-CVD dataset are available at https://github.com/xmed-lab/VAMPIRE.

Authors:Liu junkang, Yuanyuan Liu, Fanhua Shang, Hongying Liu, Jin Liu, Wei Feng
Title: FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
Abstract:
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called \texttt{FedSWA}), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (\texttt{FedMoSWA}), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for \texttt{FedSWA} and \texttt{FedMoSWA}. We also prove that the optimization and generalization errors of \texttt{FedMoSWA} are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.

Authors:Padmavathi Moorthy
Title: Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Abstract:
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.

Authors:Hao-Yu Hou, Chun-Yi Lee, Motoharu Sonogashira, Yasutomo Kawanishi
Title: FROSS: Faster-than-Real-Time Online 3D Semantic Scene Graph Generation from RGB-D Images
Abstract:
The ability to abstract complex 3D environments into simplified and structured representations is crucial across various domains. 3D semantic scene graphs (SSGs) achieve this by representing objects as nodes and their interrelationships as edges, facilitating high-level scene understanding. Existing methods for 3D SSG generation, however, face significant challenges, including high computational demands and non-incremental processing that hinder their suitability for real-time open-world applications. To address this issue, we propose FROSS (Faster-than-Real-Time Online 3D Semantic Scene Graph Generation), an innovative approach for online and faster-than-real-time 3D SSG generation that leverages the direct lifting of 2D scene graphs to 3D space and represents objects as 3D Gaussian distributions. This framework eliminates the dependency on precise and computationally-intensive point cloud processing. Furthermore, we extend the Replica dataset with inter-object relationship annotations, creating the ReplicaSSG dataset for comprehensive evaluation of FROSS. The experimental results from evaluations on ReplicaSSG and 3DSSG datasets show that FROSS can achieve superior performance while operating significantly faster than prior 3D SSG generation methods. Our implementation and dataset are publicly available at https://github.com/Howardkhh/FROSS.

Authors:Mizanur Rahman, Md Tahmid Rahman Laskar, Shafiq Joty, Enamul Hoque
Title: Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Abstract:
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.

Authors:Cesar Kadir Torrico Villanueva, Jiaxin Cindy Tu, Mihir Tripathy, Connor Lane, Rishab Iyer, Paul S. Scotti
Title: Predicting Brain Responses To Natural Movies With Multimodal LLMs
Abstract:
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.

Authors:Chengyu Zheng, Jin Huang, Honghua Chen, Mingqiang Wei
Title: RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Abstract:
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.

Authors:Qingqing Fang, Wenxi Lv, Qinliang Su
Title: AF-CLIP: Zero-Shot Anomaly Detection via Anomaly-Focused CLIP Adaptation
Abstract:
Visual anomaly detection has been widely used in industrial inspection and medical diagnosis. Existing methods typically demand substantial training samples, limiting their utility in zero-/few-shot scenarios. While recent efforts have leveraged CLIP's zero-shot recognition capability for this task, they often ignore optimizing visual features to focus on local anomalies, reducing their efficacy. In this work, we propose AF-CLIP (Anomaly-Focused CLIP) by dramatically enhancing its visual representations to focus on local defects. Our approach introduces a lightweight adapter that emphasizes anomaly-relevant patterns in visual features, simultaneously optimizing both class-level features for image classification and patch-level features for precise localization. To capture anomalies of different sizes and improve detection accuracy, prior to the adapter, we develop a multi-scale spatial aggregation mechanism to effectively consolidate neighborhood context. Complementing these visual enhancements, we design learnable textual prompts that generically characterize normal and abnormal states. After optimization on auxiliary datasets using a composite objective function, AF-CLIP demonstrates strong zero-shot detection capability. Our method is also extended to few-shot scenarios by extra memory banks. Experimental results across diverse industrial and medical datasets demonstrate the effectiveness and generalization of our proposed method. Code is available at https://github.com/Faustinaqq/AF-CLIP.

Authors:Supawich Sitdhipol, Waritwong Sukprasongdee, Ekapol Chuangsuwanich, Rina Tse
Title: Spatial Language Likelihood Grounding Network for Bayesian Fusion of Human-Robot Observations
Abstract:
Fusing information from human observations can help robots overcome sensing limitations in collaborative tasks. However, an uncertainty-aware fusion framework requires a grounded likelihood representing the uncertainty of human inputs. This paper presents a Feature Pyramid Likelihood Grounding Network (FP-LGN) that grounds spatial language by learning relevant map image features and their relationships with spatial relation semantics. The model is trained as a probability estimator to capture aleatoric uncertainty in human language using three-stage curriculum learning. Results showed that FP-LGN matched expert-designed rules in mean Negative Log-Likelihood (NLL) and demonstrated greater robustness with lower standard deviation. Collaborative sensing results demonstrated that the grounded likelihood successfully enabled uncertainty-aware fusion of heterogeneous human language observations and robot sensor measurements, achieving significant improvements in human-robot collaborative task performance.

Authors:Zimin Chen, Yue Pan, Siyu Lu, Jiayi Xu, Claire Le Goues, Martin Monperrus, He Ye
Title: Prometheus: Unified Knowledge Graphs for Issue Resolution in Multilingual Codebases
Abstract:
Language model (LM) agents, such as SWE-agent and OpenHands, have made progress toward automated issue resolution. However, existing approaches are often limited to Python-only issues and rely on pre-constructed containers in SWE-bench with reproduced issues, restricting their applicability to real-world and work for multi-language repositories. We present Prometheus, designed to resolve real-world issues beyond benchmark settings. Prometheus is a multi-agent system that transforms an entire code repository into a unified knowledge graph to guide context retrieval for issue resolution. Prometheus encodes files, abstract syntax trees, and natural language text into a graph of typed nodes and five general edge types to support multiple programming languages. Prometheus uses Neo4j for graph persistence, enabling scalable and structured reasoning over large codebases. Integrated by the DeepSeek-V3 model, Prometheus resolves 28.67% and 13.7% of issues on SWE-bench Lite and SWE-bench Multilingual, respectively, with an average API cost of $0.23 and $0.38 per issue. Prometheus resolves 10 unique issues not addressed by prior work and is the first to demonstrate effectiveness across seven programming languages. Moreover, it shows the ability to resolve real-world GitHub issues in the LangChain and OpenHands repositories. We have open-sourced Prometheus at: https://github.com/Pantheon-temple/Prometheus

Authors:Qing Xu, Yanming Chen, Yue Li, Ziyu Liu, Zhenye Lou, Yixuan Zhang, Xiangjian He
Title: MambaVesselNet++: A Hybrid CNN-Mamba Architecture for Medical Image Segmentation
Abstract:
Medical image segmentation plays an important role in computer-aided diagnosis. Traditional convolution-based U-shape segmentation architectures are usually limited by the local receptive field. Existing vision transformers have been widely applied to diverse medical segmentation frameworks due to their superior capabilities of capturing global contexts. Despite the advantage, the real-world application of vision transformers is challenged by their non-linear self-attention mechanism, requiring huge computational costs. To address this issue, the selective state space model (SSM) Mamba has gained recognition for its adeptness in modeling long-range dependencies in sequential data, particularly noted for its efficient memory costs. In this paper, we propose MambaVesselNet++, a Hybrid CNN-Mamba framework for medical image segmentation. Our MambaVesselNet++ is comprised of a hybrid image encoder (Hi-Encoder) and a bifocal fusion decoder (BF-Decoder). In Hi-Encoder, we first devise the texture-aware layer to capture low-level semantic features by leveraging convolutions. Then, we utilize Mamba to effectively model long-range dependencies with linear complexity. The Bi-Decoder adopts skip connections to combine local and global information of the Hi-Encoder for the accurate generation of segmentation masks. Extensive experiments demonstrate that MambaVesselNet++ outperforms current convolution-based, transformer-based, and Mamba-based state-of-the-arts across diverse medical 2D, 3D, and instance segmentation tasks. The code is available at https://github.com/CC0117/MambaVesselNet.

Authors:Chang Liu, Yunfan Ye, Fan Zhang, Qingyang Zhou, Yuchuan Luo, Zhiping Cai
Title: HumanSAM: Classifying Human-centric Forgery Videos in Human Spatial, Appearance, and Motion Anomaly
Abstract:
Numerous synthesized videos from generative models, especially human-centric ones that simulate realistic human actions, pose significant threats to human information security and authenticity. While progress has been made in binary forgery video detection, the lack of fine-grained understanding of forgery types raises concerns regarding both reliability and interpretability, which are critical for real-world applications. To address this limitation, we propose HumanSAM, a new framework that builds upon the fundamental challenges of video generation models. Specifically, HumanSAM aims to classify human-centric forgeries into three distinct types of artifacts commonly observed in generated content: spatial, appearance, and motion anomaly. To better capture the features of geometry, semantics and spatiotemporal consistency, we propose to generate the human forgery representation by fusing two branches of video understanding and spatial depth. We also adopt a rank-based confidence enhancement strategy during the training process to learn more robust representation by introducing three prior scores. For training and evaluation, we construct the first public benchmark, the Human-centric Forgery Video (HFV) dataset, with all types of forgeries carefully annotated semi-automatically. In our experiments, HumanSAM yields promising results in comparison with state-of-the-art methods, both in binary and multi-class forgery classification.

Authors:Parsa Vares, Éloi Durant, Jun Pang, Nicolas Médoc, Mohammad Ghoniem
Title: TS-Insight: Visualizing Thompson Sampling for Verification and XAI
Abstract:
Thompson Sampling (TS) and its variants are powerful Multi-Armed Bandit algorithms used to balance exploration and exploitation strategies in active learning. Yet, their probabilistic nature often turns them into a "black box", hindering debugging and trust. We introduce TS-Insight, a visual analytics tool explicitly designed to shed light on the internal decision mechanisms of Thompson Sampling-based algorithms, for model developers. It comprises multiple plots, tracing for each arm the evolving posteriors, evidence counts, and sampling outcomes, enabling the verification, diagnosis, and explainability of exploration/exploitation dynamics. This tool aims at fostering trust and facilitating effective debugging and deployment in complex binary decision-making scenarios especially in sensitive domains requiring interpretable decision-making.

Authors:Xiaohua Feng, Jiaming Zhang, Fengyuan Yu, Chengye Wang, Li Zhang, Kaixiang Li, Yuyuan Li, Chaochao Chen, Jianwei Yin
Title: A Survey on Generative Model Unlearning: Fundamentals, Taxonomy, Evaluation, and Future Direction
Abstract:
With the rapid advancement of generative models, associated privacy concerns have attracted growing attention. To address this, researchers have begun adapting machine unlearning techniques from traditional classification models to generative settings. Although notable progress has been made in this area, a unified framework for systematically organizing and integrating existing work is still lacking. The substantial differences among current studies in terms of unlearning objectives and evaluation protocols hinder the objective and fair comparison of various approaches. While some studies focus on specific types of generative models, they often overlook the commonalities and systematic characteristics inherent in Generative Model Unlearning (GenMU). To bridge this gap, we provide a comprehensive review of current research on GenMU and propose a unified analytical framework for categorizing unlearning objectives, methodological strategies, and evaluation metrics. In addition, we explore the connections between GenMU and related techniques, including model editing, reinforcement learning from human feedback, and controllable generation. We further highlight the potential practical value of unlearning techniques in real-world applications. Finally, we identify key challenges and outline future research directions aimed at laying a solid foundation for further advancements in this field. We consistently maintain the related open-source materials at https://github.com/caxLee/Generative-model-unlearning-survey.

Authors:Drandreb Earl O. Juanico, Rowel O. Atienza, Jeffrey Kenneth Go
Title: Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention
Abstract:
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca

Authors:X. Feng, S. Hu, X. Li, D. Zhang, M. Wu, J. Zhang, X. Chen, K. Huang
Title: ATCTrack: Aligning Target-Context Cues with Dynamic Target States for Robust Vision-Language Tracking
Abstract:
Vision-language tracking aims to locate the target object in the video sequence using a template patch and a language description provided in the initial frame. To achieve robust tracking, especially in complex long-term scenarios that reflect real-world conditions as recently highlighted by MGIT, it is essential not only to characterize the target features but also to utilize the context features related to the target. However, the visual and textual target-context cues derived from the initial prompts generally align only with the initial target state. Due to their dynamic nature, target states are constantly changing, particularly in complex long-term sequences. It is intractable for these cues to continuously guide Vision-Language Trackers (VLTs). Furthermore, for the text prompts with diverse expressions, our experiments reveal that existing VLTs struggle to discern which words pertain to the target or the context, complicating the utilization of textual cues. In this work, we present a novel tracker named ATCTrack, which can obtain multimodal cues Aligned with the dynamic target states through comprehensive Target-Context feature modeling, thereby achieving robust tracking. Specifically, (1) for the visual modality, we propose an effective temporal visual target-context modeling approach that provides the tracker with timely visual cues. (2) For the textual modality, we achieve precise target words identification solely based on textual content, and design an innovative context words calibration method to adaptively utilize auxiliary context words. (3) We conduct extensive experiments on mainstream benchmarks and ATCTrack achieves a new SOTA performance. The code and models will be released at: https://github.com/XiaokunFeng/ATCTrack.

Authors:Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, Zhicheng Dou
Title: Agentic Reinforced Policy Optimization
Abstract:
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

Authors:Wenjie Zhu, Yabin Zhang, Xin Jin, Wenjun Zeng, Lei Zhang
Title: Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models. Although negative prompt tuning has enhanced the OOD detection capabilities of vision-language models, these tuned models often suffer from reduced generalization performance on unseen classes and styles. To address this challenge, we propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT), which integrates an innovative adaptation architecture termed Negative Feature Tuning (NFT) and a corresponding knowledge-regularization (KR) optimization strategy. Specifically, NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces. This separation maximizes the distinction between in-distribution (ID) and OOD images. Additionally, we introduce image-conditional learnable factors through a lightweight meta-network, enabling dynamic adaptation to individual images and mitigating sensitivity to class and style shifts. Compared to traditional negative prompt tuning, NFT demonstrates superior efficiency and scalability. To optimize this adaptation architecture, the KR optimization strategy is designed to enhance the discrimination between ID and OOD sets while mitigating pre-trained knowledge forgetting. This enhances OOD detection performance on trained ID classes while simultaneously improving OOD detection on unseen ID datasets. Notably, when trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44\% under an unexplored generalization setting with unseen ID categories. Codes can be found at \href{https://github.com/ZhuWenjie98/KRNFT}.

Authors:Yuze Wang, Yue Qi
Title: Taking Language Embedded 3D Gaussian Splatting into the Wild
Abstract:
Recent advances in leveraging large-scale Internet photo collections for 3D reconstruction have enabled immersive virtual exploration of landmarks and historic sites worldwide. However, little attention has been given to the immersive understanding of architectural styles and structural knowledge, which remains largely confined to browsing static text-image pairs. Therefore, can we draw inspiration from 3D in-the-wild reconstruction techniques and use unconstrained photo collections to create an immersive approach for understanding the 3D structure of architectural components? To this end, we extend language embedded 3D Gaussian splatting (3DGS) and propose a novel framework for open-vocabulary scene understanding from unconstrained photo collections. Specifically, we first render multiple appearance images from the same viewpoint as the unconstrained image with the reconstructed radiance field, then extract multi-appearance CLIP features and two types of language feature uncertainty maps-transient and appearance uncertainty-derived from the multi-appearance features to guide the subsequent optimization process. Next, we propose a transient uncertainty-aware autoencoder, a multi-appearance language field 3DGS representation, and a post-ensemble strategy to effectively compress, learn, and fuse language features from multiple appearances. Finally, to quantitatively evaluate our method, we introduce PT-OVS, a new benchmark dataset for assessing open-vocabulary segmentation performance on unconstrained photo collections. Experimental results show that our method outperforms existing methods, delivering accurate open-vocabulary segmentation and enabling applications such as interactive roaming with open-vocabulary queries, architectural style pattern recognition, and 3D scene editing.

Authors:Yanrui Yu, Tianfei Zhou, Jiaxin Sun, Lianpeng Qiao, Lizhong Ding, Ye Yuan, Guoren Wang
Title: LAVA: Language Driven Scalable and Versatile Traffic Video Analytics
Abstract:
In modern urban environments, camera networks generate massive amounts of operational footage -- reaching petabytes each day -- making scalable video analytics essential for efficient processing. Many existing approaches adopt an SQL-based paradigm for querying such large-scale video databases; however, this constrains queries to rigid patterns with predefined semantic categories, significantly limiting analytical flexibility. In this work, we explore a language-driven video analytics paradigm aimed at enabling flexible and efficient querying of high-volume video data driven by natural language. Particularly, we build \textsc{Lava}, a system that accepts natural language queries and retrieves traffic targets across multiple levels of granularity and arbitrary categories. \textsc{Lava} comprises three main components: 1) a multi-armed bandit-based efficient sampling method for video segment-level localization; 2) a video-specific open-world detection module for object-level retrieval; and 3) a long-term object trajectory extraction scheme for temporal object association, yielding complete trajectories for object-of-interests. To support comprehensive evaluation, we further develop a novel benchmark by providing diverse, semantically rich natural language predicates and fine-grained annotations for multiple videos. Experiments on this benchmark demonstrate that \textsc{Lava} improves $F_1$-scores for selection queries by $\mathbf{14\%}$, reduces MPAE for aggregation queries by $\mathbf{0.39}$, and achieves top-$k$ precision of $\mathbf{86\%}$, while processing videos $ \mathbf{9.6\times} $ faster than the most accurate baseline. Our code and dataset are available at https://github.com/yuyanrui/LAVA.

Authors:Ziyin Xiong, Yinghan Chen, Puhao Li, Yixin Zhu, Tengyu Liu, Siyuan Huang
Title: Ag2x2: Robust Agent-Agnostic Visual Representations for Zero-Shot Bimanual Manipulation
Abstract:
Bimanual manipulation, fundamental to human daily activities, remains a challenging task due to its inherent complexity of coordinated control. Recent advances have enabled zero-shot learning of single-arm manipulation skills through agent-agnostic visual representations derived from human videos; however, these methods overlook crucial agent-specific information necessary for bimanual coordination, such as end-effector positions. We propose Ag2x2, a computational framework for bimanual manipulation through coordination-aware visual representations that jointly encode object states and hand motion patterns while maintaining agent-agnosticism. Extensive experiments demonstrate that Ag2x2 achieves a 73.5% success rate across 13 diverse bimanual tasks from Bi-DexHands and PerAct2, including challenging scenarios with deformable objects like ropes. This performance outperforms baseline methods and even surpasses the success rate of policies trained with expert-engineered rewards. Furthermore, we show that representations learned through Ag2x2 can be effectively leveraged for imitation learning, establishing a scalable pipeline for skill acquisition without expert supervision. By maintaining robust performance across diverse tasks without human demonstrations or engineered rewards, Ag2x2 represents a step toward scalable learning of complex bimanual robotic skills.

Authors:Guiping Cao, Xiangyuan Lan, Wenjian Huang, Jianguo Zhang, Dongmei Jiang, Yaowei Wang
Title: DS-Det: Single-Query Paradigm and Attention Disentangled Learning for Flexible Object Detection
Abstract:
Popular transformer detectors have achieved promising performance through query-based learning using attention mechanisms. However, the roles of existing decoder query types (e.g., content query and positional query) are still underexplored. These queries are generally predefined with a fixed number (fixed-query), which limits their flexibility. We find that the learning of these fixed-query is impaired by Recurrent Opposing inTeractions (ROT) between two attention operations: Self-Attention (query-to-query) and Cross-Attention (query-to-encoder), thereby degrading decoder efficiency. Furthermore, "query ambiguity" arises when shared-weight decoder layers are processed with both one-to-one and one-to-many label assignments during training, violating DETR's one-to-one matching principle. To address these challenges, we propose DS-Det, a more efficient detector capable of detecting a flexible number of objects in images. Specifically, we reformulate and introduce a new unified Single-Query paradigm for decoder modeling, transforming the fixed-query into flexible. Furthermore, we propose a simplified decoder framework through attention disentangled learning: locating boxes with Cross-Attention (one-to-many process), deduplicating predictions with Self-Attention (one-to-one process), addressing "query ambiguity" and "ROT" issues directly, and enhancing decoder efficiency. We further introduce a unified PoCoo loss that leverages box size priors to prioritize query learning on hard samples such as small objects. Extensive experiments across five different backbone models on COCO2017 and WiderPerson datasets demonstrate the general effectiveness and superiority of DS-Det. The source codes are available at https://github.com/Med-Process/DS-Det/.

Authors:Peng Cai, Qiang Li, Kaicheng Yang, Dong Guo, Jia Li, Nan Zhou, Xiang An, Ninghua Yang, Jiankang Deng
Title: ForCenNet: Foreground-Centric Network for Document Image Rectification
Abstract:
Document image rectification aims to eliminate geometric deformation in photographed documents to facilitate text recognition. However, existing methods often neglect the significance of foreground elements, which provide essential geometric references and layout information for document image correction. In this paper, we introduce Foreground-Centric Network (ForCenNet) to eliminate geometric distortions in document images. Specifically, we initially propose a foreground-centric label generation method, which extracts detailed foreground elements from an undistorted image. Then we introduce a foreground-centric mask mechanism to enhance the distinction between readable and background regions. Furthermore, we design a curvature consistency loss to leverage the detailed foreground labels to help the model understand the distorted geometric distribution. Extensive experiments demonstrate that ForCenNet achieves new state-of-the-art on four real-world benchmarks, such as DocUNet, DIR300, WarpDoc, and DocReal. Quantitative analysis shows that the proposed method effectively undistorts layout elements, such as text lines and table borders. The resources for further comparison are provided at https://github.com/caipeng328/ForCenNet.

Authors:Tianxiang Chen, Zhentao Tan, Xiaofan Bo, Yue Wu, Tao Gong, Qi Chu, Jieping Ye, Nenghai Yu
Title: Flora: Effortless Context Construction to Arbitrary Length and Scale
Abstract:
Effectively handling long contexts is challenging for Large Language Models (LLMs) due to the rarity of long texts, high computational demands, and substantial forgetting of short-context abilities. Recent approaches have attempted to construct long contexts for instruction tuning, but these methods often require LLMs or human interventions, which are both costly and limited in length and diversity. Also, the drop in short-context performances of present long-context LLMs remains significant. In this paper, we introduce Flora, an effortless (human/LLM-free) long-context construction strategy. Flora can markedly enhance the long-context performance of LLMs by arbitrarily assembling short instructions based on categories and instructing LLMs to generate responses based on long-context meta-instructions. This enables Flora to produce contexts of arbitrary length and scale with rich diversity, while only slightly compromising short-context performance. Experiments on Llama3-8B-Instruct and QwQ-32B show that LLMs enhanced by Flora excel in three long-context benchmarks while maintaining strong performances in short-context tasks. Our data-construction code is available at \href{https://github.com/txchen-USTC/Flora}{https://github.com/txchen-USTC/Flora}.

Authors:Kanglin Qu, Pan Gao, Qun Dai, Yuanhao Sun
Title: HydraMamba: Multi-Head State Space Model for Global Point Cloud Learning
Abstract:
The attention mechanism has become a dominant operator in point cloud learning, but its quadratic complexity leads to limited inter-point interactions, hindering long-range dependency modeling between objects. Due to excellent long-range modeling capability with linear complexity, the selective state space model (S6), as the core of Mamba, has been exploited in point cloud learning for long-range dependency interactions over the entire point cloud. Despite some significant progress, related works still suffer from imperfect point cloud serialization and lack of locality learning. To this end, we explore a state space model-based point cloud network termed HydraMamba to address the above challenges. Specifically, we design a shuffle serialization strategy, making unordered point sets better adapted to the causal nature of S6. Meanwhile, to overcome the deficiency of existing techniques in locality learning, we propose a ConvBiS6 layer, which is capable of capturing local geometries and global context dependencies synergistically. Besides, we propose MHS6 by extending the multi-head design to S6, further enhancing its modeling capability. HydraMamba achieves state-of-the-art results on various tasks at both object-level and scene-level. The code is available at https://github.com/Point-Cloud-Learning/HydraMamba.

Authors:Seunghun Lee, Jiwan Seo, Minwoo Choi, Kiljoon Han, Jaehoon Jeong, Zane Durante, Ehsan Adeli, Sang Hyun Park, Sunghoon Im
Title: Latest Object Memory Management for Temporally Consistent Video Instance Segmentation
Abstract:
In this paper, we present Latest Object Memory Management (LOMM) for temporally consistent video instance segmentation that significantly improves long-term instance tracking. At the core of our method is Latest Object Memory (LOM), which robustly tracks and continuously updates the latest states of objects by explicitly modeling their presence in each frame. This enables consistent tracking and accurate identity management across frames, enhancing both performance and reliability through the VIS process. Moreover, we introduce Decoupled Object Association (DOA), a strategy that separately handles newly appearing and already existing objects. By leveraging our memory system, DOA accurately assigns object indices, improving matching accuracy and ensuring stable identity consistency, even in dynamic scenes where objects frequently appear and disappear. Extensive experiments and ablation studies demonstrate the superiority of our method over traditional approaches, setting a new benchmark in VIS. Notably, our LOMM achieves state-of-the-art AP score of 54.0 on YouTube-VIS 2022, a dataset known for its challenging long videos. Project page: https://seung-hun-lee.github.io/projects/LOMM/

Authors:Lin Ren, Guohui Xiao, Guilin Qi, Yishuai Geng, Haohan Xue
Title: Can LLMs Solve ASP Problems? Insights from a Benchmarking Study (Extended Version)
Abstract:
Answer Set Programming (ASP) is a powerful paradigm for non-monotonic reasoning. Recently, large language models (LLMs) have demonstrated promising capabilities in logical reasoning. Despite this potential, current evaluations of LLM capabilities in ASP are often limited. Existing works normally employ overly simplified ASP programs, do not support negation, disjunction, or multiple answer sets. Furthermore, there is a lack of benchmarks that introduce tasks specifically designed for ASP solving. To bridge this gap, we introduce ASPBench, a comprehensive ASP benchmark, including three ASP specific tasks: ASP entailment, answer set verification, and answer set computation. Our extensive evaluations on ASPBench reveal that while 14 state-of-the-art LLMs, including \emph{deepseek-r1}, \emph{o4-mini}, and \emph{gemini-2.5-flash-thinking}, perform relatively well on the first two simpler tasks, they struggle with answer set computation, which is the core of ASP solving. These findings offer insights into the current limitations of LLMs in ASP solving. This highlights the need for new approaches that integrate symbolic reasoning capabilities more effectively. The code and dataset are available at https://github.com/HomuraT/ASPBench.

Authors:Yinzhou Tang, Huandong Wang, Xiaochen Fan, Yong Li
Title: Predicting Human Mobility in Disasters via LLM-Enhanced Cross-City Learning
Abstract:
The vulnerability of cities to natural disasters has increased with urbanization and climate change, making it more important to predict human mobility in the disaster scenarios for downstream tasks including location-based early disaster warning and pre-allocating rescue resources, etc. However, existing human mobility prediction models are mainly designed for normal scenarios, and fail to adapt to disaster scenarios due to the shift of human mobility patterns under disaster. To address this issue, we introduce \textbf{DisasterMobLLM}, a mobility prediction framework for disaster scenarios that can be integrated into existing deep mobility prediction methods by leveraging LLMs to model the mobility intention and transferring the common knowledge of how different disasters affect mobility intentions between cities. This framework utilizes a RAG-Enhanced Intention Predictor to forecast the next intention, refines it with an LLM-based Intention Refiner, and then maps the intention to an exact location using an Intention-Modulated Location Predictor. Extensive experiments illustrate that DisasterMobLLM can achieve a 32.8\% improvement in terms of Acc@1 and a 35.0\% improvement in terms of the F1-score of predicting immobility compared to the baselines. The code is available at https://github.com/tsinghua-fib-lab/DisasterMobLLM.

Authors:Liyang Wang, Shiqian Wu, Shun Fang, Qile Zhu, Jiaxin Wu, Sos Again
Title: Quaternion-Based Robust PCA for Efficient Moving Target Detection and Background Recovery in Color Videos
Abstract:
Moving target detection is a challenging computer vision task aimed at generating accurate segmentation maps in diverse in-the-wild color videos captured by static cameras. If backgrounds and targets can be simultaneously extracted and recombined, such synthetic data can significantly enrich annotated in-the-wild datasets and enhance the generalization ability of deep models. Quaternion-based RPCA (QRPCA) is a promising unsupervised paradigm for color image processing. However, in color video processing, Quaternion Singular Value Decomposition (QSVD) incurs high computational costs, and rank-1 quaternion matrix fails to yield rank-1 color channels. In this paper, we reduce the computational complexity of QSVD to o(1) by utilizing a quaternion Riemannian manifold. Furthermor, we propose the universal QRPCA (uQRPCA) framework, which achieves a balance in simultaneously segmenting targets and recovering backgrounds from color videos. Moreover, we expand to uQRPCA+ by introducing the Color Rank-1 Batch (CR1B) method to further process and obtain the ideal low-rank background across color channels. Experiments demonstrate our uQRPCA+ achieves State Of The Art (SOTA) performance on moving target detection and background recovery tasks compared to existing open-source methods. Our implementation is publicly available on GitHub at https://github.com/Ruchtech/uQRPCA

Authors:Zhaoliang Zheng, Xu Han, Yuxin Bao, Yun Zhang, Johnson Liu, Zonglin Meng, Xin Xia, Jiaqi Ma
Title: CDA-SimBoost: A Unified Framework Bridging Real Data and Simulation for Infrastructure-Based CDA Systems
Abstract:
Cooperative Driving Automation (CDA) has garnered increasing research attention, yet the role of intelligent infrastructure remains insufficiently explored. Existing solutions offer limited support for addressing long-tail challenges, real-synthetic data fusion, and heterogeneous sensor management. This paper introduces CDA-SimBoost, a unified framework that constructs infrastructure-centric simulation environments from real-world data. CDA-SimBoost consists of three main components: a Digital Twin Builder for generating high-fidelity simulator assets based on sensor and HD map data, OFDataPip for processing both online and offline data streams, and OpenCDA-InfraX, a high-fidelity platform for infrastructure-focused simulation. The system supports realistic scenario construction, rare event synthesis, and scalable evaluation for CDA research. With its modular architecture and standardized benchmarking capabilities, CDA-SimBoost bridges real-world dynamics and virtual environments, facilitating reproducible and extensible infrastructure-driven CDA studies. All resources are publicly available at https://github.com/zhz03/CDA-SimBoost

Authors:Faruk Alpay, Hamdi Alakkad, Bugra Kilictas, Taylan Alpay
Title: Ultracoarse Equilibria and Ordinal-Folding Dynamics in Operator-Algebraic Models of Infinite Multi-Agent Games
Abstract:
We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.

Authors:Bermet Burkanova, Payam Jome Yazdian, Chuxuan Zhang, Trinity Evans, Paige Tuttösí, Angelica Lim
Title: Salsa as a Nonverbal Embodied Language -- The CoMPAS3D Dataset and Benchmarks
Abstract:
Imagine a humanoid that can safely and creatively dance with a human, adapting to its partner's proficiency, using haptic signaling as a primary form of communication. While today's AI systems excel at text or voice-based interaction with large language models, human communication extends far beyond text-it includes embodied movement, timing, and physical coordination. Modeling coupled interaction between two agents poses a formidable challenge: it is continuous, bidirectionally reactive, and shaped by individual variation. We present CoMPAS3D, the largest and most diverse motion capture dataset of improvised salsa dancing, designed as a challenging testbed for interactive, expressive humanoid AI. The dataset includes 3 hours of leader-follower salsa dances performed by 18 dancers spanning beginner, intermediate, and professional skill levels. For the first time, we provide fine-grained salsa expert annotations, covering over 2,800 move segments, including move types, combinations, execution errors and stylistic elements. We draw analogies between partner dance communication and natural language, evaluating CoMPAS3D on two benchmark tasks for synthetic humans that parallel key problems in spoken language and dialogue processing: leader or follower generation with proficiency levels (speaker or listener synthesis), and duet (conversation) generation. Towards a long-term goal of partner dance with humans, we release the dataset, annotations, and code, along with a multitask SalsaAgent model capable of performing all benchmark tasks, alongside additional baselines to encourage research in socially interactive embodied AI and creative, expressive humanoid motion generation.

Authors:Haochen Wang, Qirui Chen, Cilin Yan, Jiayin Cai, Xiaolong Jiang, Yao Hu, Weidi Xie, Stratis Gavves
Title: Object-centric Video Question Answering with Visual Grounding and Referring
Abstract:
Video Large Language Models (VideoLLMs) have recently demonstrated remarkable progress in general video understanding. However, existing models primarily focus on high-level comprehension and are limited to text-only responses, restricting the flexibility for object-centric, multiround interactions. In this paper, we make three contributions: (i) we address these limitations by introducing a VideoLLM model, capable of performing both object referring for input and grounding for output in video reasoning tasks, i.e., allowing users to interact with videos using both textual and visual prompts; (ii) we propose STOM (Spatial-Temporal Overlay Module), a novel approach that propagates arbitrary visual prompts input at any single timestamp to the remaining frames within a video; (iii) we present VideoInfer, a manually curated object-centric video instruction dataset featuring questionanswering pairs that require reasoning. We conduct comprehensive experiments on VideoInfer and other existing benchmarks across video question answering and referring object segmentation. The results on 12 benchmarks of 6 tasks show that our proposed model consistently outperforms baselines in both video question answering and segmentation, underscoring its robustness in multimodal, object-centric video and image understanding. Project page: https://qirui-chen.github.io/RGA3-release/.

Authors:Maria Emilia Mazzolenis, Ruirui Zhang
Title: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
Abstract:
Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.

Authors:Chenchen Zhao, Zhengyuan Shi, Xiangyu Wen, Chengjie Liu, Yi Liu, Yunhao Zhou, Yuxiang Zhao, Hefei Feng, Yinan Zhu, Gwok-Waa Wan, Xin Cheng, Weiyu Chen, Yongqi Fu, Chujie Chen, Chenhao Xue, Guangyu Sun, Ying Wang, Yibo Lin, Jun Yang, Ning Xu, Xi Wang, Qiang Xu
Title: MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
Abstract:
The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.

Authors:Xingyu Su, Xiner Li, Yuchao Lin, Ziqian Xie, Degui Zhi, Shuiwang Ji
Title: Language Models for Controllable DNA Sequence Design
Abstract:
We consider controllable DNA sequence design, where sequences are generated by conditioning on specific biological properties. While language models (LMs) such as GPT and BERT have achieved remarkable success in natural language generation, their application to DNA sequence generation remains largely underexplored. In this work, we introduce ATGC-Gen, an Automated Transformer Generator for Controllable Generation, which leverages cross-modal encoding to integrate diverse biological signals. ATGC-Gen is instantiated with both decoder-only and encoder-only transformer architectures, allowing flexible training and generation under either autoregressive or masked recovery objectives. We evaluate ATGC-Gen on representative tasks including promoter and enhancer sequence design, and further introduce a new dataset based on ChIP-Seq experiments for modeling protein binding specificity. Our experiments demonstrate that ATGC-Gen can generate fluent, diverse, and biologically relevant sequences aligned with the desired properties. Compared to prior methods, our model achieves notable improvements in controllability and functional relevance, highlighting the potential of language models in advancing programmable genomic design. The source code is released at (https://github.com/divelab/AIRS/blob/main/OpenBio/ATGC_Gen).

Authors:Jovana Kondic, Pengyuan Li, Dhiraj Joshi, Zexue He, Shafiq Abedin, Jennifer Sun, Ben Wiesel, Eli Schwartz, Ahmed Nassar, Bo Wu, Assaf Arbelle, Aude Oliva, Dan Gutfreund, Leonid Karlinsky, Rogerio Feris
Title: ChartGen: Scaling Chart Understanding Via Code-Guided Synthetic Chart Generation
Abstract:
Chart-to-code reconstruction -- the task of recovering executable plotting scripts from chart images -- provides important insights into a model's ability to ground data visualizations in precise, machine-readable form. Yet many existing multimodal benchmarks largely focus primarily on answering questions about charts or summarizing them. To bridge this gap, we present ChartGen, a fully-automated pipeline for code-guided synthetic chart generation. Starting from seed chart images, ChartGen (i) prompts a vision-language model (VLM) to reconstruct each image into a python script, and (ii) iteratively augments that script with a code-oriented large language model (LLM). Using ChartGen, we create 222.5K unique chart-image code pairs from 13K seed chart images, and present an open-source synthetic chart dataset covering 27 chart types, 11 plotting libraries, and multiple data modalities (image, code, text, CSV, DocTags). From this corpus, we curate a held-out chart-to-code evaluation subset of 4.3K chart image-code pairs, and evaluate six open-weight VLMs (3B - 26B parameters), highlighting substantial room for progress. We release the pipeline, prompts, and the dataset to help accelerate efforts towards robust chart understanding and vision-conditioned code generation: https://github.com/SD122025/ChartGen/

Authors:Byungjun Kim, Shunsuke Saito, Giljoo Nam, Tomas Simon, Jason Saragih, Hanbyul Joo, Junxuan Li
Title: HairCUP: Hair Compositional Universal Prior for 3D Gaussian Avatars
Abstract:
We present a universal prior model for 3D head avatars with explicit hair compositionality. Existing approaches to build generalizable priors for 3D head avatars often adopt a holistic modeling approach, treating the face and hair as an inseparable entity. This overlooks the inherent compositionality of the human head, making it difficult for the model to naturally disentangle face and hair representations, especially when the dataset is limited. Furthermore, such holistic models struggle to support applications like 3D face and hairstyle swapping in a flexible and controllable manner. To address these challenges, we introduce a prior model that explicitly accounts for the compositionality of face and hair, learning their latent spaces separately. A key enabler of this approach is our synthetic hairless data creation pipeline, which removes hair from studio-captured datasets using estimated hairless geometry and texture derived from a diffusion prior. By leveraging a paired dataset of hair and hairless captures, we train disentangled prior models for face and hair, incorporating compositionality as an inductive bias to facilitate effective separation. Our model's inherent compositionality enables seamless transfer of face and hair components between avatars while preserving identity. Additionally, we demonstrate that our model can be fine-tuned in a few-shot manner using monocular captures to create high-fidelity, hair-compositional 3D head avatars for unseen subjects. These capabilities highlight the practical applicability of our approach in real-world scenarios, paving the way for flexible and expressive 3D avatar generation.

Authors:Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu, Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang, Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, Wenhai Wang
Title: MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
Abstract:
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.

Authors:Chen Zhu, Wangbo Zhao, Huiwen Zhang, Samir Khaki, Yuhao Zhou, Weidong Tang, Shuo Wang, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng, Kai Wang, Dawei Yang
Title: EA-ViT: Efficient Adaptation for Elastic Vision Transformer
Abstract:
Vision Transformers (ViTs) have emerged as a foundational model in computer vision, excelling in generalization and adaptation to downstream tasks. However, deploying ViTs to support diverse resource constraints typically requires retraining multiple, size-specific ViTs, which is both time-consuming and energy-intensive. To address this issue, we propose an efficient ViT adaptation framework that enables a single adaptation process to generate multiple models of varying sizes for deployment on platforms with various resource constraints. Our approach comprises two stages. In the first stage, we enhance a pre-trained ViT with a nested elastic architecture that enables structural flexibility across MLP expansion ratio, number of attention heads, embedding dimension, and network depth. To preserve pre-trained knowledge and ensure stable adaptation, we adopt a curriculum-based training strategy that progressively increases elasticity. In the second stage, we design a lightweight router to select submodels according to computational budgets and downstream task demands. Initialized with Pareto-optimal configurations derived via a customized NSGA-II algorithm, the router is then jointly optimized with the backbone. Extensive experiments on multiple benchmarks demonstrate the effectiveness and versatility of EA-ViT. The code is available at https://github.com/zcxcf/EA-ViT.

Authors:Lanmiao Liu, Esam Ghaleb, Aslı Özyürek, Zerrin Yumak
Title: SemGes: Semantics-aware Co-Speech Gesture Generation using Semantic Coherence and Relevance Learning
Abstract:
Creating a virtual avatar with semantically coherent gestures that are aligned with speech is a challenging task. Existing gesture generation research mainly focused on generating rhythmic beat gestures, neglecting the semantic context of the gestures. In this paper, we propose a novel approach for semantic grounding in co-speech gesture generation that integrates semantic information at both fine-grained and global levels. Our approach starts with learning the motion prior through a vector-quantized variational autoencoder. Built on this model, a second-stage module is applied to automatically generate gestures from speech, text-based semantics and speaker identity that ensures consistency between the semantic relevance of generated gestures and co-occurring speech semantics through semantic coherence and relevance modules. Experimental results demonstrate that our approach enhances the realism and coherence of semantic gestures. Extensive experiments and user studies show that our method outperforms state-of-the-art approaches across two benchmarks in co-speech gesture generation in both objective and subjective metrics. The qualitative results of our model, code, dataset and pre-trained models can be viewed at https://semgesture.github.io/.

Authors:Minghao Tang, Shiyu Ni, Jiafeng Guo, Keping Bi
Title: Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found \href{here}{https://github.com/mh-tang/Passage-Injection}.

Authors:Muhammad Ibrahim, Naveed Akhtar, Haitian Wang, Saeed Anwar, Ajmal Mian
Title: Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
Abstract:
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git

Authors:Sakuya Ota, Qing Yu, Kent Fujiwara, Satoshi Ikehata, Ikuro Sato
Title: PINO: Person-Interaction Noise Optimization for Long-Duration and Customizable Motion Generation of Arbitrary-Sized Groups
Abstract:
Generating realistic group interactions involving multiple characters remains challenging due to increasing complexity as group size expands. While existing conditional diffusion models incrementally generate motions by conditioning on previously generated characters, they rely on single shared prompts, limiting nuanced control and leading to overly simplified interactions. In this paper, we introduce Person-Interaction Noise Optimization (PINO), a novel, training-free framework designed for generating realistic and customizable interactions among groups of arbitrary size. PINO decomposes complex group interactions into semantically relevant pairwise interactions, and leverages pretrained two-person interaction diffusion models to incrementally compose group interactions. To ensure physical plausibility and avoid common artifacts such as overlapping or penetration between characters, PINO employs physics-based penalties during noise optimization. This approach allows precise user control over character orientation, speed, and spatial relationships without additional training. Comprehensive evaluations demonstrate that PINO generates visually realistic, physically coherent, and adaptable multi-person interactions suitable for diverse animation, gaming, and robotics applications.

Authors:Guoping Xu, Yan Dai, Hengrui Zhao, Ying Zhang, Jie Deng, Weiguo Lu, You Zhang
Title: SAM2-Aug: Prior knowledge-based Augmentation for Target Volume Auto-Segmentation in Adaptive Radiation Therapy Using Segment Anything Model 2
Abstract:
Purpose: Accurate tumor segmentation is vital for adaptive radiation therapy (ART) but remains time-consuming and user-dependent. Segment Anything Model 2 (SAM2) shows promise for prompt-based segmentation but struggles with tumor accuracy. We propose prior knowledge-based augmentation strategies to enhance SAM2 for ART. Methods: Two strategies were introduced to improve SAM2: (1) using prior MR images and annotations as contextual inputs, and (2) improving prompt robustness via random bounding box expansion and mask erosion/dilation. The resulting model, SAM2-Aug, was fine-tuned and tested on the One-Seq-Liver dataset (115 MRIs from 31 liver cancer patients), and evaluated without retraining on Mix-Seq-Abdomen (88 MRIs, 28 patients) and Mix-Seq-Brain (86 MRIs, 37 patients). Results: SAM2-Aug outperformed convolutional, transformer-based, and prompt-driven models across all datasets, achieving Dice scores of 0.86(liver), 0.89(abdomen), and 0.90(brain). It demonstrated strong generalization across tumor types and imaging sequences, with improved performance in boundary-sensitive metrics. Conclusions: Incorporating prior images and enhancing prompt diversity significantly boosts segmentation accuracy and generalizability. SAM2-Aug offers a robust, efficient solution for tumor segmentation in ART. Code and models will be released at https://github.com/apple1986/SAM2-Aug.

Authors:An Xiang, Zixuan Huang, Xitong Gao, Kejiang Ye, Cheng-zhong Xu
Title: BridgeNet: A Unified Multimodal Framework for Bridging 2D and 3D Industrial Anomaly Detection
Abstract:
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet

Authors:Yifan Zhang
Title: A Markov Categorical Framework for Language Modeling
Abstract:
Autoregressive language models achieve remarkable performance, yet a unified theory explaining their internal mechanisms, how training shapes their representations, and enables complex behaviors, remains elusive. We introduce a new analytical framework that models the single-step generation process as a composition of information-processing stages using the language of Markov categories. This compositional perspective provides a unified mathematical language to connect three critical aspects of language modeling that are typically studied in isolation: the training objective, the geometry of the learned representation space, and practical model capabilities. First, our framework provides a precise information-theoretic rationale for the success of multi-token prediction methods like speculative decoding, quantifying the information surplus a model's hidden state contains about tokens beyond the immediate next one. Second, we clarify how the standard negative log-likelihood (NLL) objective compels the model to learn not just the next word, but also the data's intrinsic conditional uncertainty, a process we formalize using categorical entropy. Our central result shows that, under a linear-softmax head with bounded features, minimizing NLL induces spectral alignment: the learned representation space aligns with the eigenspectrum of a predictive similarity operator. This work presents a powerful new lens for understanding how information flows through a model and how the training objective shapes its internal geometry.

Authors:Jiaru Zhong, Jiahao Wang, Jiahui Xu, Xiaofan Li, Zaiqing Nie, Haibao Yu
Title: CoopTrack: Exploring End-to-End Learning for Efficient Cooperative Sequential Perception
Abstract:
Cooperative perception aims to address the inherent limitations of single-vehicle autonomous driving systems through information exchange among multiple agents. Previous research has primarily focused on single-frame perception tasks. However, the more challenging cooperative sequential perception tasks, such as cooperative 3D multi-object tracking, have not been thoroughly investigated. Therefore, we propose CoopTrack, a fully instance-level end-to-end framework for cooperative tracking, featuring learnable instance association, which fundamentally differs from existing approaches. CoopTrack transmits sparse instance-level features that significantly enhance perception capabilities while maintaining low transmission costs. Furthermore, the framework comprises two key components: Multi-Dimensional Feature Extraction, and Cross-Agent Association and Aggregation, which collectively enable comprehensive instance representation with semantic and motion features, and adaptive cross-agent association and fusion based on a feature graph. Experiments on both the V2X-Seq and Griffin datasets demonstrate that CoopTrack achieves excellent performance. Specifically, it attains state-of-the-art results on V2X-Seq, with 39.0\% mAP and 32.8\% AMOTA. The project is available at https://github.com/zhongjiaru/CoopTrack.

Authors:Tianfu Wang, Liwei Deng, Xi Chen, Junyang Wang, Huiguo He, Leilei Ding, Wei Wu, Qilin Fan, Hui Xiong
Title: Virne: A Comprehensive Benchmark for Deep RL-based Network Resource Allocation in NFV
Abstract:
Resource allocation (RA) is critical to efficient service deployment in Network Function Virtualization (NFV), a transformative networking paradigm. Recently, deep Reinforcement Learning (RL)-based methods have been showing promising potential to address this complexity. However, the lack of a systematic benchmarking framework and thorough analysis hinders the exploration of emerging networks and the development of more robust algorithms while causing inconsistent evaluation. In this paper, we introduce Virne, a comprehensive benchmarking framework for the NFV-RA problem, with a focus on supporting deep RL-based methods. Virne provides customizable simulations for diverse network scenarios, including cloud, edge, and 5G environments. It also features a modular and extensible implementation pipeline that supports over 30 methods of various types, and includes practical evaluation perspectives beyond effectiveness, such as scalability, generalization, and scalability. Furthermore, we conduct in-depth analysis through extensive experiments to provide valuable insights into performance trade-offs for efficient implementation and offer actionable guidance for future research directions. Overall, with its diverse simulations, rich implementations, and extensive evaluation capabilities, Virne could serve as a comprehensive benchmark for advancing NFV-RA methods and deep RL applications. The code is publicly available at https://github.com/GeminiLight/virne.

Authors:Donggeun Lim, Jinseok Bae, Inwoo Hwang, Seungmin Lee, Hwanhee Lee, Young Min Kim
Title: Event-Driven Storytelling with Multiple Lifelike Humans in a 3D Scene
Abstract:
In this work, we propose a framework that creates a lively virtual dynamic scene with contextual motions of multiple humans. Generating multi-human contextual motion requires holistic reasoning over dynamic relationships among human-human and human-scene interactions. We adapt the power of a large language model (LLM) to digest the contextual complexity within textual input and convert the task into tangible subproblems such that we can generate multi-agent behavior beyond the scale that was not considered before. Specifically, our event generator formulates the temporal progression of a dynamic scene into a sequence of small events. Each event calls for a well-defined motion involving relevant characters and objects. Next, we synthesize the motions of characters at positions sampled based on spatial guidance. We employ a high-level module to deliver scalable yet comprehensive context, translating events into relative descriptions that enable the retrieval of precise coordinates. As the first to address this problem at scale and with diversity, we offer a benchmark to assess diverse aspects of contextual reasoning. Benchmark results and user studies show that our framework effectively captures scene context with high scalability. The code and benchmark, along with result videos, are available at our project page: https://rms0329.github.io/Event-Driven-Storytelling/.

Authors:Zi Liang, Liantong Yu, Shiyu Zhang, Qingqing Ye, Haibo Hu
Title: How Much Do Large Language Model Cheat on Evaluation? Benchmarking Overestimation under the One-Time-Pad-Based Framework
Abstract:
Overestimation in evaluating large language models (LLMs) has become an increasing concern. Due to the contamination of public benchmarks or imbalanced model training, LLMs may achieve unreal evaluation results on public benchmarks, either intentionally or unintentionally, which leads to unfair comparisons among LLMs and undermines their realistic capability assessments. Existing benchmarks attempt to address these issues by keeping test cases permanently secret, mitigating contamination through human evaluation, or repeatedly collecting and constructing new samples. However, these approaches fail to ensure reproducibility, transparency, and high efficiency simultaneously. Moreover, the extent of overestimation in current LLMs remains unquantified. To address these issues, we propose ArxivRoll, a dynamic evaluation framework inspired by one-time pad encryption in cryptography. ArxivRoll comprises two key components: \emph{i) SCP (Sequencing, Cloze, and Prediction)}, an automated generator for private test cases, and \emph{ii) Rugged Scores (RS)}, metrics that measure the proportion of public benchmark contamination and training bias. Leveraging SCP, ArxivRoll constructs a new benchmark every six months using recent articles from ArXiv and employs them for one-time evaluations of LLM performance. Extensive experiments demonstrate the high quality of our benchmark, and we provide a systematic evaluation of current LLMs. The source code is available at https://github.com/liangzid/ArxivRoll/.

Authors:Hanbing Wu, Ping Jiang, Anyang Su, Chenxu Zhao, Tianyu Fu, Minghui Wu, Beiping Tan, Huiying Li
Title: PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
Abstract:
Visual selective attention, driven by individual preferences, regulates human prioritization of visual stimuli by bridging subjective cognitive mechanisms with objective visual elements, thereby steering the semantic interpretation and hierarchical processing of dynamic visual scenes. However, existing models and datasets predominantly neglect the influence of subjective cognitive diversity on fixation behavior. Conventional saliency prediction models, typically employing segmentation approaches, rely on low-resolution imagery to generate saliency heatmaps, subsequently upscaled to native resolutions, which limiting their capacity to capture personalized attention patterns. Furthermore, MLLMs are constrained by factors such as hallucinations, making it very costly to strictly adhere to the expected format in tasks involving multiple point predictions, and achieving precise point positioning is challenging. To address these limitations, we present Subjective Personalized Attention for Advertisement Videos, namely SPA-ADV, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos. Furthermore, we propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points. To ensure MLLMs produce prediction points that are both format-correct and spatially accurate, we introduce Consistency Group Relative Policy Optimization (C-GRPO), inspired by the variability in eye movement points and Multi-Attribute profiles. Extensive experiments on SPA-ADV and other benchmarks demonstrate the effectiveness of our approach. The code and dataset are available at \href{https://github.com/mininglamp-MLLM/PRE-MAP}{this URL}.

Authors:Etienne Buehrle, Ömer Şahin Taş, Christoph Stiller
Title: Optimal Control of Hybrid Systems via Measure Relaxations
Abstract:
We propose an approach to trajectory optimization for piecewise polynomial systems based on the recently proposed graphs of convex sets framework. We instantiate the framework with a convex relaxation of optimal control based on occupation measures, resulting in a convex optimization problem resembling the discrete shortest-paths linear program that can be solved efficiently to global optimality. While this approach inherits the limitations of semidefinite programming, scalability to large numbers of discrete modes improves compared to the NP-hard mixed-integer formulation. We use this to plan trajectories under temporal logic specifications, comparing the computed cost lower bound to a nonconvex optimization approach with fixed mode sequence. In our numerical experiments, we find that this bound is typically in the vicinity of the nonconvex solution, while the runtime speedup is significant compared to the often intractable mixed-integer formulation. Our implementation is available at https://github.com/ebuehrle/hpoc.

Authors:Simon Malan, Benjamin van Niekerk, Herman Kamper
Title: Should Top-Down Clustering Affect Boundaries in Unsupervised Word Discovery?
Abstract:
We investigate the problem of segmenting unlabeled speech into word-like units and clustering these to create a lexicon. Prior work can be categorized into two frameworks. Bottom-up methods first determine boundaries and then cluster the fixed segmented words into a lexicon. In contrast, top-down methods incorporate information from the clustered words to inform boundary selection. However, it is unclear whether top-down information is necessary to improve segmentation. To explore this, we look at two similar approaches that differ in whether top-down clustering informs boundary selection. Our simple bottom-up strategy predicts word boundaries using the dissimilarity between adjacent self-supervised features, then clusters the resulting segments to construct a lexicon. Our top-down system is an updated version of the ES-KMeans dynamic programming method that iteratively uses K-means to update its boundaries. On the five-language ZeroSpeech benchmarks, both approaches achieve comparable state-of-the-art results, with the bottom-up system being nearly five times faster. Through detailed analyses, we show that the top-down influence of ES-KMeans can be beneficial (depending on factors like the candidate boundaries), but in many cases the simple bottom-up method performs just as well. For both methods, we show that the clustering step is a limiting factor. Therefore, we recommend that future work focus on improved clustering techniques and learning more discriminative word-like representations. Project code repository: https://github.com/s-malan/prom-seg-clus.

Authors:Nao Tokui, Tom Baker
Title: Latent Granular Resynthesis using Neural Audio Codecs
Abstract:
We introduce a novel technique for creative audio resynthesis that operates by reworking the concept of granular synthesis at the latent vector level. Our approach creates a "granular codebook" by encoding a source audio corpus into latent vector segments, then matches each latent grain of a target audio signal to its closest counterpart in the codebook. The resulting hybrid sequence is decoded to produce audio that preserves the target's temporal structure while adopting the source's timbral characteristics. This technique requires no model training, works with diverse audio materials, and naturally avoids the discontinuities typical of traditional concatenative synthesis through the codec's implicit interpolation during decoding. We include supplementary material at https://github.com/naotokui/latentgranular/ , as well as a proof-of-concept implementation to allow users to experiment with their own sounds at https://huggingface.co/spaces/naotokui/latentgranular .

Authors:Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang
Title: Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Abstract:
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/

Authors:Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang
Title: Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
Abstract:
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

Authors:Jie Chen, Zhangchi Hu, Peixi Wu, Huyue Zhu, Hebei Li, Xiaoyan Sun
Title: DASH: 4D Hash Encoding with Self-Supervised Decomposition for Real-Time Dynamic Scene Rendering
Abstract:
Dynamic scene reconstruction is a long-term challenge in 3D vision. Existing plane-based methods in dynamic Gaussian splatting suffer from an unsuitable low-rank assumption, causing feature overlap and poor rendering quality. Although 4D hash encoding provides an explicit representation without low-rank constraints, directly applying it to the entire dynamic scene leads to substantial hash collisions and redundancy. To address these challenges, we present DASH, a real-time dynamic scene rendering framework that employs 4D hash encoding coupled with self-supervised decomposition. Our approach begins with a self-supervised decomposition mechanism that separates dynamic and static components without manual annotations or precomputed masks. Next, we introduce a multiresolution 4D hash encoder for dynamic elements, providing an explicit representation that avoids the low-rank assumption. Finally, we present a spatio-temporal smoothness regularization strategy to mitigate unstable deformation artifacts. Experiments on real-world datasets demonstrate that DASH achieves state-of-the-art dynamic rendering performance, exhibiting enhanced visual quality at real-time speeds of 264 FPS on a single 4090 GPU. Code: https://github.com/chenj02/DASH.

Authors:Tianyu Zou, Shengwu Xiong, Ruilin Yao, Yi Rong
Title: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
Abstract:
This paper studies the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image by learning a model on a small number of well-annotated support samples. Our analysis of two mainstream FSS paradigms reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive. This observation motivates us to balance the conservative and aggressive information captured by these two types of FSS frameworks so as to improve the segmentation performance. To achieve this, we propose a **P**rototype-**A**ffinity **H**ybrid **Net**work (PAHNet), which introduces a Prototype-guided Feature Enhancement (PFE) module and an Attention Score Calibration (ASC) module in each attention block of an affinity learning model (called affinity learner). These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations and suppress the mismatched foreground-background (FG-BG) relationships between them, respectively. In this way, the aggressiveness of the affinity learner can be effectively mitigated, thereby eventually increasing the segmentation accuracy of our PAHNet method. Experimental results show that PAHNet outperforms most recently proposed methods across 1-shot and 5-shot settings on both PASCAL-5$^i$ and COCO-20$^i$ datasets, suggesting its effectiveness. The code is available at: [GitHub - tianyu-zou/PAHNet: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation (ICCV'25)](https://github.com/tianyu-zou/PAHNet)

Authors:Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang, Yingqian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing Qi, Bowen Zhou
Title: OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Abstract:
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

Authors:Yuqi Li, Haotian Zhang, Li Li, Dong Liu
Title: Learned Image Compression with Hierarchical Progressive Context Modeling
Abstract:
Context modeling is essential in learned image compression for accurately estimating the distribution of latents. While recent advanced methods have expanded context modeling capacity, they still struggle to efficiently exploit long-range dependency and diverse context information across different coding steps. In this paper, we introduce a novel Hierarchical Progressive Context Model (HPCM) for more efficient context information acquisition. Specifically, HPCM employs a hierarchical coding schedule to sequentially model the contextual dependencies among latents at multiple scales, which enables more efficient long-range context modeling. Furthermore, we propose a progressive context fusion mechanism that incorporates contextual information from previous coding steps into the current step, effectively exploiting diverse contextual information. Experimental results demonstrate that our method achieves state-of-the-art rate-distortion performance and strikes a better balance between compression performance and computational complexity. The code is available at https://github.com/lyq133/LIC-HPCM.

Authors:Binxiong Li, Xu Xiang, Xue Li, Quanzhou Lou, Binyu Zhao, Yujie Liu, Huijie Tang, Benhan Yang
Title: GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
Abstract:
Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.

Authors:Antonio Tudisco, Deborah Volpe, Giacomo Orlandi, Giovanna Turvani
Title: Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
Abstract:
The growing variety of quantum hardware technologies, each with unique peculiarities such as connectivity and native gate sets, creates challenges when selecting the best platform for executing a specific quantum circuit. This selection process usually involves a brute-force approach: compiling the circuit on various devices and evaluating performance based on factors such as circuit depth and gate fidelity. However, this method is computationally expensive and does not scale well as the number of available quantum processors increases. In this work, we propose a Graph Neural Network (GNN)-based predictor that automates hardware selection by analyzing the Directed Acyclic Graph (DAG) representation of a quantum circuit. Our study evaluates 498 quantum circuits (up to 27 qubits) from the MQT Bench dataset, compiled using Qiskit on four devices: three superconducting quantum processors (IBM-Kyiv, IBM-Brisbane, IBM-Sherbrooke) and one trapped-ion processor (IONQ-Forte). Performance is estimated using a metric that integrates circuit depth and gate fidelity, resulting in a dataset where 93 circuits are optimally compiled on the trapped-ion device, while the remaining circuits prefer superconducting platforms. By exploiting graph-based machine learning, our approach avoids extracting the circuit features for the model evaluation but directly embeds it as a graph, significantly accelerating the optimal target decision-making process and maintaining all the information. Experimental results prove 94.4% accuracy and an 85.5% F1 score for the minority class, effectively predicting the best compilation target. The developed code is publicly available on GitHub (https://github.com/antotu/GNN-Model-Quantum-Predictor).

Authors:Shuhao Li, Weidong Yang, Yue Cui, Xiaoxing Liu, Lingkai Meng, Lipeng Ma, Fan Zhang
Title: Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Abstract:
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.

Authors:Rui Pan, Ruiying Lu
Title: SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection
Abstract:
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Authors:Shuiqing Zhao, Meihuan Wang, Jiaxuan Xu, Jie Feng, Wei Qian, Rongchang Chen, Zhenyu Liang, Shouliang Qi, Yanan Wu
Title: A Self-training Framework for Semi-supervised Pulmonary Vessel Segmentation and Its Application in COPD
Abstract:
Background: It is fundamental for accurate segmentation and quantification of the pulmonary vessel, particularly smaller vessels, from computed tomography (CT) images in chronic obstructive pulmonary disease (COPD) patients. Objective: The aim of this study was to segment the pulmonary vasculature using a semi-supervised method. Methods: In this study, a self-training framework is proposed by leveraging a teacher-student model for the segmentation of pulmonary vessels. First, the high-quality annotations are acquired in the in-house data by an interactive way. Then, the model is trained in the semi-supervised way. A fully supervised model is trained on a small set of labeled CT images, yielding the teacher model. Following this, the teacher model is used to generate pseudo-labels for the unlabeled CT images, from which reliable ones are selected based on a certain strategy. The training of the student model involves these reliable pseudo-labels. This training process is iteratively repeated until an optimal performance is achieved. Results: Extensive experiments are performed on non-enhanced CT scans of 125 COPD patients. Quantitative and qualitative analyses demonstrate that the proposed method, Semi2, significantly improves the precision of vessel segmentation by 2.3%, achieving a precision of 90.3%. Further, quantitative analysis is conducted in the pulmonary vessel of COPD, providing insights into the differences in the pulmonary vessel across different severity of the disease. Conclusion: The proposed method can not only improve the performance of pulmonary vascular segmentation, but can also be applied in COPD analysis. The code will be made available at https://github.com/wuyanan513/semi-supervised-learning-for-vessel-segmentation.

Authors:Haochen Han, Alex Jinpeng Wang, Fangming Liu, Jun Zhu
Title: Negation-Aware Test-Time Adaptation for Vision-Language Models
Abstract:
In this paper, we study a practical but less-touched problem in Vision-Language Models (VLMs), \ie, negation understanding. Specifically, many real-world applications require models to explicitly identify what is false or non-existent, \eg, radiologists may search for images that exclude specific conditions. Despite the impressive transferability of VLMs through large-scale training, they suffer from a critical limitation that fails to handle negation. To address this challenge, existing methods attribute its root cause to the scarcity of negation training data and propose to fine-tune VLMs on massive data containing explicit negation. Undoubtedly, such data-centric solutions demand substantial data and computational resources, limiting their sustainable widespread adoption. To tackle negation in a low-carbon manner, we empirically observe that the key obstacle lies in the dual-concept shifts between the affirmation and negation distributions. Therefore, we propose a Negation-Aware Test-Time Adaptation (NEAT) method to efficiently adjust distribution-related parameters during inference. In brief, NEAT can reduce distribution shift in consistent semantics while eliminating false distributional consistency in unrelated semantics. Extensive experiments on the various negation understanding tasks verify the effectiveness of the proposed method. Remarkably, with less than 0.01\% of trainable parameters, NEAT achieves comparable or superior performance to state-of-the-art post-training approaches. Our code is available at https://github.com/hhc1997/NEAT.

Authors:Chong Xia, Shengjun Zhang, Fangfu Liu, Chang Liu, Khodchaphun Hirunyaratsameewong, Yueqi Duan
Title: ScenePainter: Semantically Consistent Perpetual 3D Scene Generation with Concept Relation Alignment
Abstract:
Perpetual 3D scene generation aims to produce long-range and coherent 3D view sequences, which is applicable for long-term video synthesis and 3D scene reconstruction. Existing methods follow a "navigate-and-imagine" fashion and rely on outpainting for successive view expansion. However, the generated view sequences suffer from semantic drift issue derived from the accumulated deviation of the outpainting module. To tackle this challenge, we propose ScenePainter, a new framework for semantically consistent 3D scene generation, which aligns the outpainter's scene-specific prior with the comprehension of the current scene. To be specific, we introduce a hierarchical graph structure dubbed SceneConceptGraph to construct relations among multi-level scene concepts, which directs the outpainter for consistent novel views and can be dynamically refined to enhance diversity. Extensive experiments demonstrate that our framework overcomes the semantic drift issue and generates more consistent and immersive 3D view sequences. Project Page: https://xiac20.github.io/ScenePainter/.

Authors:Binxu Li, Yuhui Zhang, Xiaohan Wang, Weixin Liang, Ludwig Schmidt, Serena Yeung-Levy
Title: Closing the Modality Gap for Mixed Modality Search
Abstract:
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.

Authors:Yufei Ma, Hanwen Zhang, Qiya Yang, Guibo Luo, Yuesheng Zhu
Title: A New One-Shot Federated Learning Framework for Medical Imaging Classification with Feature-Guided Rectified Flow and Knowledge Distillation
Abstract:
In multi-center scenarios, One-Shot Federated Learning (OSFL) has attracted increasing attention due to its low communication overhead, requiring only a single round of transmission. However, existing generative model-based OSFL methods suffer from low training efficiency and potential privacy leakage in the healthcare domain. Additionally, achieving convergence within a single round of model aggregation is challenging under non-Independent and Identically Distributed (non-IID) data. To address these challenges, in this paper a modified OSFL framework is proposed, in which a new Feature-Guided Rectified Flow Model (FG-RF) and Dual-Layer Knowledge Distillation (DLKD) aggregation method are developed. FG-RF on the client side accelerates generative modeling in medical imaging scenarios while preserving privacy by synthesizing feature-level images rather than pixel-level images. To handle non-IID distributions, DLKD enables the global student model to simultaneously mimic the output logits and align the intermediate-layer features of client-side teacher models during aggregation. Experimental results on three non-IID medical imaging datasets show that our new framework and method outperform multi-round federated learning approaches, achieving up to 21.73% improvement, and exceeds the baseline FedISCA by an average of 21.75%. Furthermore, our experiments demonstrate that feature-level synthetic images significantly reduce privacy leakage risks compared to pixel-level synthetic images. The code is available at https://github.com/LMIAPC/one-shot-fl-medical.

Authors:Ying Ba, Tianyu Zhang, Yalong Bai, Wenyi Mo, Tao Liang, Bing Su, Ji-Rong Wen
Title: Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment
Abstract:
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.

Authors:Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Shinichiro Omachi
Title: GPSMamba: A Global Phase and Spectral Prompt-guided Mamba for Infrared Image Super-Resolution
Abstract:
Infrared Image Super-Resolution (IRSR) is challenged by the low contrast and sparse textures of infrared data, requiring robust long-range modeling to maintain global coherence. While State-Space Models like Mamba offer proficiency in modeling long-range dependencies for this task, their inherent 1D causal scanning mechanism fragments the global context of 2D images, hindering fine-detail restoration. To address this, we propose Global Phase and Spectral Prompt-guided Mamba (GPSMamba), a framework that synergizes architectural guidance with non-causal supervision. First, our Adaptive Semantic-Frequency State Space Module (ASF-SSM) injects a fused semantic-frequency prompt directly into the Mamba block, integrating non-local context to guide reconstruction. Then, a novel Thermal-Spectral Attention and Phase Consistency Loss provides explicit, non-causal supervision to enforce global structural and spectral fidelity. By combining these two innovations, our work presents a systematic strategy to mitigate the limitations of causal modeling. Extensive experiments demonstrate that GPSMamba achieves state-of-the-art performance, validating our approach as a powerful new paradigm for infrared image restoration. Code is available at https://github.com/yongsongH/GPSMamba.

Authors:Zixiang Ai, Zhenyu Cui, Yuxin Peng, Jiahuan Zhou
Title: UPP: Unified Point-Level Prompting for Robust Point Cloud Analysis
Abstract:
Pre-trained point cloud analysis models have shown promising advancements in various downstream tasks, yet their effectiveness is typically suffering from low-quality point cloud (i.e., noise and incompleteness), which is a common issue in real scenarios due to casual object occlusions and unsatisfactory data collected by 3D sensors. To this end, existing methods focus on enhancing point cloud quality by developing dedicated denoising and completion models. However, due to the isolation between the point cloud enhancement and downstream tasks, these methods fail to work in various real-world domains. In addition, the conflicting objectives between denoising and completing tasks further limit the ensemble paradigm to preserve critical geometric features. To tackle the above challenges, we propose a unified point-level prompting method that reformulates point cloud denoising and completion as a prompting mechanism, enabling robust analysis in a parameter-efficient manner. We start by introducing a Rectification Prompter to adapt to noisy points through the predicted rectification vector prompts, effectively filtering noise while preserving intricate geometric features essential for accurate analysis. Sequentially, we further incorporate a Completion Prompter to generate auxiliary point prompts based on the rectified point clouds, facilitating their robustness and adaptability. Finally, a Shape-Aware Unit module is exploited to efficiently unify and capture the filtered geometric features for the downstream point cloud analysis.Extensive experiments on four datasets demonstrate the superiority and robustness of our method when handling noisy and incomplete point cloud data against existing state-of-the-art methods. Our code is released at https://github.com/zhoujiahuan1991/ICCV2025-UPP.

Authors:Zeyi Lu, Xiaoxiao Ma, Yujun Huang, Minxiao Chen, Bin Chen, Baoyi An, Shu-Tao Xia
Title: EDPC: Accelerating Lossless Compression via Lightweight Probability Models and Decoupled Parallel Dataflow
Abstract:
The explosive growth of multi-source multimedia data has significantly increased the demands for transmission and storage, placing substantial pressure on bandwidth and storage infrastructures. While Autoregressive Compression Models (ACMs) have markedly improved compression efficiency through probabilistic prediction, current approaches remain constrained by two critical limitations: suboptimal compression ratios due to insufficient fine-grained feature extraction during probability modeling, and real-time processing bottlenecks caused by high resource consumption and low compression speeds. To address these challenges, we propose Efficient Dual-path Parallel Compression (EDPC), a hierarchically optimized compression framework that synergistically enhances modeling capability and execution efficiency via coordinated dual-path operations. At the modeling level, we introduce the Information Flow Refinement (IFR) metric grounded in mutual information theory, and design a Multi-path Byte Refinement Block (MBRB) to strengthen cross-byte dependency modeling via heterogeneous feature propagation. At the system level, we develop a Latent Transformation Engine (LTE) for compact high-dimensional feature representation and a Decoupled Pipeline Compression Architecture (DPCA) to eliminate encoding-decoding latency through pipelined parallelization. Experimental results demonstrate that EDPC achieves comprehensive improvements over state-of-the-art methods, including a 2.7x faster compression speed, and a 3.2% higher compression ratio. These advancements establish EDPC as an efficient solution for real-time processing of large-scale multimedia data in bandwidth-constrained scenarios. Our code is available at https://github.com/Magie0/EDPC.

Authors:Jionghao Wang, Cheng Lin, Yuan Liu, Rui Xu, Zhiyang Dou, Xiao-Xiao Long, Hao-Xiang Guo, Taku Komura, Wenping Wang, Xin Li
Title: PDT: Point Distribution Transformation with Diffusion Models
Abstract:
Point-based representations have consistently played a vital role in geometric data structures. Most point cloud learning and processing methods typically leverage the unordered and unconstrained nature to represent the underlying geometry of 3D shapes. However, how to extract meaningful structural information from unstructured point cloud distributions and transform them into semantically meaningful point distributions remains an under-explored problem. We present PDT, a novel framework for point distribution transformation with diffusion models. Given a set of input points, PDT learns to transform the point set from its original geometric distribution into a target distribution that is semantically meaningful. Our method utilizes diffusion models with novel architecture and learning strategy, which effectively correlates the source and the target distribution through a denoising process. Through extensive experiments, we show that our method successfully transforms input point clouds into various forms of structured outputs - ranging from surface-aligned keypoints, and inner sparse joints to continuous feature lines. The results showcase our framework's ability to capture both geometric and semantic features, offering a powerful tool for various 3D geometry processing tasks where structured point distributions are desired. Code will be available at this link: https://github.com/shanemankiw/PDT.

Authors:Lei Zhang, Xin Zhou, Chaoyue He, Di Wang, Yi Wu, Hong Xu, Wei Liu, Chunyan Miao
Title: MMESGBench: Pioneering Multimodal Understanding and Complex Reasoning Benchmark for ESG Tasks
Abstract:
Environmental, Social, and Governance (ESG) reports are essential for evaluating sustainability practices, ensuring regulatory compliance, and promoting financial transparency. However, these documents are often lengthy, structurally diverse, and multimodal, comprising dense text, structured tables, complex figures, and layout-dependent semantics. Existing AI systems often struggle to perform reliable document-level reasoning in such settings, and no dedicated benchmark currently exists in ESG domain. To fill the gap, we introduce \textbf{MMESGBench}, a first-of-its-kind benchmark dataset targeted to evaluate multimodal understanding and complex reasoning across structurally diverse and multi-source ESG documents. This dataset is constructed via a human-AI collaborative, multi-stage pipeline. First, a multimodal LLM generates candidate question-answer (QA) pairs by jointly interpreting rich textual, tabular, and visual information from layout-aware document pages. Second, an LLM verifies the semantic accuracy, completeness, and reasoning complexity of each QA pair. This automated process is followed by an expert-in-the-loop validation, where domain specialists validate and calibrate QA pairs to ensure quality, relevance, and diversity. MMESGBench comprises 933 validated QA pairs derived from 45 ESG documents, spanning across seven distinct document types and three major ESG source categories. Questions are categorized as single-page, cross-page, or unanswerable, with each accompanied by fine-grained multimodal evidence. Initial experiments validate that multimodal and retrieval-augmented models substantially outperform text-only baselines, particularly on visually grounded and cross-page tasks. MMESGBench is publicly available as an open-source dataset at https://github.com/Zhanglei1103/MMESGBench.

Authors:Jian Chen, Yuxuan Hu, Haifeng Lu, Wei Wang, Min Yang, Chengming Li, Xiping Hu
Title: MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Abstract:
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.

Authors:Zhihao Luo, Luojun Lin, Zheng Lin
Title: Synthetic-to-Real Camouflaged Object Detection
Abstract:
Due to the high cost of collection and labeling, there are relatively few datasets for camouflaged object detection (COD). In particular, for certain specialized categories, the available image dataset is insufficiently populated. Synthetic datasets can be utilized to alleviate the problem of limited data to some extent. However, directly training with synthetic datasets compared to real datasets can lead to a degradation in model performance. To tackle this problem, in this work, we investigate a new task, namely Syn-to-Real Camouflaged Object Detection (S2R-COD). In order to improve the model performance in real world scenarios, a set of annotated synthetic camouflaged images and a limited number of unannotated real images must be utilized. We propose the Cycling Syn-to-Real Domain Adaptation Framework (CSRDA), a method based on the student-teacher model. Specially, CSRDA propagates class information from the labeled source domain to the unlabeled target domain through pseudo labeling combined with consistency regularization. Considering that narrowing the intra-domain gap can improve the quality of pseudo labeling, CSRDA utilizes a recurrent learning framework to build an evolving real domain for bridging the source and target domain. Extensive experiments demonstrate the effectiveness of our framework, mitigating the problem of limited data and handcraft annotations in COD. Our code is publicly available at: https://github.com/Muscape/S2R-COD.

Authors:Chuxuan Hu, Liyun Zhang, Yeji Lim, Aum Wadhwani, Austin Peters, Daniel Kang
Title: REPRO-Bench: Can Agentic AI Systems Assess the Reproducibility of Social Science Research?
Abstract:
Assessing the reproducibility of social science papers is essential for promoting rigor in research processes, but manual assessment is costly. With recent advances in agentic AI systems (i.e., AI agents), we seek to evaluate their capability to automate this process. However, existing benchmarks for reproducing research papers (1) focus solely on reproducing results using provided code and data without assessing their consistency with the paper, (2) oversimplify real-world scenarios, and (3) lack necessary diversity in data formats and programming languages. To address these issues, we introduce REPRO-Bench, a collection of 112 task instances, each representing a social science paper with a publicly available reproduction report. The agents are tasked with assessing the reproducibility of the paper based on the original paper PDF and the corresponding reproduction package. REPRO-Bench features end-to-end evaluation tasks on the reproducibility of social science papers with complexity comparable to real-world assessments. We evaluate three representative AI agents on REPRO-Bench, with the best-performing agent achieving an accuracy of only 21.4%. Building on our empirical analysis, we develop REPRO-Agent, which improves the highest accuracy achieved by existing agents by 71%. We conclude that more advanced AI agents should be developed to automate real-world reproducibility assessment. REPRO-Bench is publicly available at https://github.com/uiuc-kang-lab/REPRO-Bench.

Authors:Rongkun Xue, Yazhe Niu, Shuai Hu, Zixin Yin, Yongqiang Yao, Jing Yang
Title: HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
Abstract:
Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.

Authors:Beidi Zhao, SangMook Kim, Hao Chen, Chen Zhou, Zu-hua Gao, Gang Wang, Xiaoxiao Li
Title: PTCMIL: Multiple Instance Learning via Prompt Token Clustering for Whole Slide Image Analysis
Abstract:
Multiple Instance Learning (MIL) has advanced WSI analysis but struggles with the complexity and heterogeneity of WSIs. Existing MIL methods face challenges in aggregating diverse patch information into robust WSI representations. While ViTs and clustering-based approaches show promise, they are computationally intensive and fail to capture task-specific and slide-specific variability. To address these limitations, we propose PTCMIL, a novel Prompt Token Clustering-based ViT for MIL aggregation. By introducing learnable prompt tokens into the ViT backbone, PTCMIL unifies clustering and prediction tasks in an end-to-end manner. It dynamically aligns clustering with downstream tasks, using projection-based clustering tailored to each WSI, reducing complexity while preserving patch heterogeneity. Through token merging and prototype-based pooling, PTCMIL efficiently captures task-relevant patterns. Extensive experiments on eight datasets demonstrate its superior performance in classification and survival analysis tasks, outperforming state-of-the-art methods. Systematic ablation studies confirm its robustness and strong interpretability. The code is released at https://github.com/ubc-tea/PTCMIL.

Authors:Pinhao Song, Yutong Hu, Pengteng Li, Renaud Detry
Title: Equivariant Volumetric Grasping
Abstract:
We propose a new volumetric grasp model that is equivariant to rotations around the vertical axis, leading to a significant improvement in sample efficiency. Our model employs a tri-plane volumetric feature representation -- i.e., the projection of 3D features onto three canonical planes. We introduce a novel tri-plane feature design in which features on the horizontal plane are equivariant to 90° rotations, while the sum of features from the other two planes remains invariant to the same transformations. This design is enabled by a new deformable steerable convolution, which combines the adaptability of deformable convolutions with the rotational equivariance of steerable ones. This allows the receptive field to adapt to local object geometry while preserving equivariance properties. We further develop equivariant adaptations of two state-of-the-art volumetric grasp planners, GIGA and IGD. Specifically, we derive a new equivariant formulation of IGD's deformable attention mechanism and propose an equivariant generative model of grasp orientations based on flow matching. We provide a detailed analytical justification of the proposed equivariance properties and validate our approach through extensive simulated and real-world experiments. Our results demonstrate that the proposed projection-based design significantly reduces both computational and memory costs. Moreover, the equivariant grasp models built on top of our tri-plane features consistently outperform their non-equivariant counterparts, achieving higher performance with only a modest computational overhead. Video and code can be viewed in: https://mousecpn.github.io/evg-page/

Authors:Fabio De Sousa Ribeiro, Omar Todd, Charles Jones, Avinash Kori, Raghav Mehta, Ben Glocker
Title: Flow Stochastic Segmentation Networks
Abstract:
We introduce the Flow Stochastic Segmentation Network (Flow-SSN), a generative segmentation model family featuring discrete-time autoregressive and modern continuous-time flow variants. We prove fundamental limitations of the low-rank parameterisation of previous methods and show that Flow-SSNs can estimate arbitrarily high-rank pixel-wise covariances without assuming the rank or storing the distributional parameters. Flow-SSNs are also more efficient to sample from than standard diffusion-based segmentation models, thanks to most of the model capacity being allocated to learning the base distribution of the flow, constituting an expressive prior. We apply Flow-SSNs to challenging medical imaging benchmarks and achieve state-of-the-art results. Code available: https://github.com/biomedia-mira/flow-ssn.

Authors:Maksymilian Wojnar
Title: Even Faster Simulations with Flow Matching: A Study of Zero Degree Calorimeter Responses
Abstract:
Recent advances in generative neural networks, particularly flow matching (FM), have enabled the generation of high-fidelity samples while significantly reducing computational costs. A promising application of these models is accelerating simulations in high-energy physics (HEP), helping research institutions meet their increasing computational demands. In this work, we leverage FM to develop surrogate models for fast simulations of zero degree calorimeters in the ALICE experiment. We present an effective training strategy that enables the training of fast generative models with an exceptionally low number of parameters. This approach achieves state-of-the-art simulation fidelity for both neutron (ZN) and proton (ZP) detectors, while offering substantial reductions in computational costs compared to existing methods. Our FM model achieves a Wasserstein distance of 1.27 for the ZN simulation with an inference time of 0.46 ms per sample, compared to the current best of 1.20 with an inference time of approximately 109 ms. The latent FM model further improves the inference speed, reducing the sampling time to 0.026 ms per sample, with a minimal trade-off in accuracy. Similarly, our approach achieves a Wasserstein distance of 1.30 for the ZP simulation, outperforming the current best of 2.08. The source code is available at https://github.com/m-wojnar/faster_zdc.

Authors:Miguel Saavedra-Ruiz, Samer B. Nashed, Charlie Gauthier, Liam Paull
Title: Perpetua: Multi-Hypothesis Persistence Modeling for Semi-Static Environments
Abstract:
Many robotic systems require extended deployments in complex, dynamic environments. In such deployments, parts of the environment may change between subsequent robot observations. Most robotic mapping or environment modeling algorithms are incapable of representing dynamic features in a way that enables predicting their future state. Instead, they opt to filter certain state observations, either by removing them or some form of weighted averaging. This paper introduces Perpetua, a method for modeling the dynamics of semi-static features. Perpetua is able to: incorporate prior knowledge about the dynamics of the feature if it exists, track multiple hypotheses, and adapt over time to enable predicting of future feature states. Specifically, we chain together mixtures of "persistence" and "emergence" filters to model the probability that features will disappear or reappear in a formal Bayesian framework. The approach is an efficient, scalable, general, and robust method for estimating the states of features in an environment, both in the present as well as at arbitrary future times. Through experiments on simulated and real-world data, we find that Perpetua yields better accuracy than similar approaches while also being online adaptable and robust to missing observations.

Authors:Yilun Yang, Yekun Chai
Title: CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Abstract:
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.

Authors:Yiguo He, Xinjun Cheng, Junjie Zhu, Chunping Qiu, Jun Wang, Xichuan Zhang, Qiangjuan Huang, Ke Yang
Title: SAR-TEXT: A Large-Scale SAR Image-Text Dataset Built with SAR-Narrator and A Progressive Learning Strategy for Downstream Tasks
Abstract:
Vision Language Models (VLMs) have achieved remarkable breakthroughs in the field of remote sensing in recent years. Synthetic Aperture Radar (SAR) imagery, with its all-weather capability, is essential in remote sensing, yet the lack of large-scale, high-quality SAR image-text datasets hinders its semantic understanding. In this paper, we construct SAR-TEXT, a large-scale and high-quality dataset consisting of over 130,000 SAR image-text pairs. To construct the SAR-TEXT dataset, we design the SAR-Narrator framework, which generates textual descriptions for SAR images through a multi-stage strategy. To verify the effectiveness of the SAR-TEXT dataset, we conduct experiments on three typical vision-language tasks: image-text retrieval, image captioning, and visual question answering (VQA). Specifically, we construct three representative models on SAR-TEXT: SAR-RS-CLIP, SAR-RS-CoCa, and SAR-GPT. SAR-RS-CLIP achieves notable improvements in retrieval performance, boosting average recall by 12.97% and 10.0% on the OSdataset_512 and HRSID test sets, respectively. In the captioning task, SAR-RS-CoCa achieves significant improvements over the original CoCa models in terms of BLEU-4, SPICE, and CIDEr scores. In the VQA task, SAR-GPT outperforms baseline and single-stage models on multiple SAR-VQA datasets, demonstrating stronger semantic understanding and reasoning ability, as further confirmed by qualitative results. It is worth noting that, as a flexible captioning tool, SAR-Narrator can be readily adopted by the community to construct larger-scale SAR image-text datasets. All code, pretrained models, and the SAR-Text dataset are publicly available at: https://github.com/YiguoHe/SAR-TEXT.

Authors:Víctor Gallego
Title: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Abstract:
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .

Authors:Jake McNaughton, Mohamed Hibat-Allah
Title: Adaptive Neural Quantum States: A Recurrent Neural Network Perspective
Abstract:
Neural-network quantum states (NQS) are powerful neural-network ansätzes that have emerged as promising tools for studying quantum many-body physics through the lens of the variational principle. These architectures are known to be systematically improvable by increasing the number of parameters. Here we demonstrate an Adaptive scheme to optimize NQSs, through the example of recurrent neural networks (RNN), using a fraction of the computation cost while reducing training fluctuations and improving the quality of variational calculations targeting ground states of prototypical models in one- and two-spatial dimensions. This Adaptive technique reduces the computational cost through training small RNNs and reusing them to initialize larger RNNs. This work opens up the possibility for optimizing graphical processing unit (GPU) resources deployed in large-scale NQS simulations.

Authors:Siyu Mu, Wei Xuan Chan, Choon Hwai Yap
Title: HeartUnloadNet: A Weakly-Supervised Cycle-Consistent Graph Network for Predicting Unloaded Cardiac Geometry from Diastolic States
Abstract:
The unloaded cardiac geometry (i.e., the state of the heart devoid of luminal pressure) serves as a valuable zero-stress and zero-strain reference and is critical for personalized biomechanical modeling of cardiac function, to understand both healthy and diseased physiology and to predict the effects of cardiac interventions. However, estimating the unloaded geometry from clinical images remains a challenging task. Traditional approaches rely on inverse finite element (FE) solvers that require iterative optimization and are computationally expensive. In this work, we introduce HeartUnloadNet, a deep learning framework that predicts the unloaded left ventricular (LV) shape directly from the end diastolic (ED) mesh while explicitly incorporating biophysical priors. The network accepts a mesh of arbitrary size along with physiological parameters such as ED pressure, myocardial stiffness scale, and fiber helix orientation, and outputs the corresponding unloaded mesh. It adopts a graph attention architecture and employs a cycle-consistency strategy to enable bidirectional (loading and unloading) prediction, allowing for partial self-supervision that improves accuracy and reduces the need for large training datasets. Trained and tested on 20,700 FE simulations across diverse LV geometries and physiological conditions, HeartUnloadNet achieves sub-millimeter accuracy, with an average DSC of 0.986 and HD of 0.083 cm, while reducing inference time to just 0.02 seconds per case, over 10^5 times faster and significantly more accurate than traditional inverse FE solvers. Ablation studies confirm the effectiveness of the architecture. Notably, the cycle-consistent design enables the model to maintain a DSC of 97% even with as few as 200 training samples. This work thus presents a scalable and accurate surrogate for inverse FE solvers, supporting real-time clinical applications in the future.

Authors:Sanyam Jain, Stefano Nichele
Title: Frequency-Histogram Coarse Graining in Elementary Cellular Automata and 2D CA
Abstract:
Cellular automata and other discrete dynamical systems have long been studied as models of emergent complexity. Recently, neural cellular automata have been proposed as models to investigate the emerge of a more general artificial intelligence, thanks to their propensity to support properties such as self-organization, emergence, and open-endedness. However, understanding emergent complexity in large scale systems is an open challenge. How can the important computations leading to emergent complex structures and behaviors be identified? In this work, we systematically investigate a form of dimensionality reduction for 1-dimensional and 2-dimensional cellular automata based on coarse-graining of macrostates into smaller blocks. We discuss selected examples and provide the entire exploration of coarse graining with different filtering levels in the appendix (available also digitally at this link: https://s4nyam.github.io/eca88/). We argue that being able to capture emergent complexity in AI systems may pave the way to open-ended evolution, a plausible path to reach artificial general intelligence.

Authors:James Dickens, Kamyar Hamad
Title: Part Segmentation of Human Meshes via Multi-View Human Parsing
Abstract:
Recent advances in point cloud deep learning have led to models that achieve high per-part labeling accuracy on large-scale point clouds, using only the raw geometry of unordered point sets. In parallel, the field of human parsing focuses on predicting body part and clothing/accessory labels from images. This work aims to bridge these two domains by enabling per-vertex semantic segmentation of large-scale human meshes. To achieve this, a pseudo-ground truth labeling pipeline is developed for the Thuman2.1 dataset: meshes are first aligned to a canonical pose, segmented from multiple viewpoints, and the resulting point-level labels are then backprojected onto the original mesh to produce per-point pseudo ground truth annotations. Subsequently, a novel, memory-efficient sampling strategy is introduced, a windowed iterative farthest point sampling (FPS) with space-filling curve-based serialization to effectively downsample the point clouds. This is followed by a purely geometric segmentation using PointTransformer, enabling semantic parsing of human meshes without relying on texture information. Experimental results confirm the effectiveness and accuracy of the proposed approach. Project code and pre-processed data is available at https://github.com/JamesMcCullochDickens/Human3DParsing/tree/master.

Authors:Haiyang Liu, Xiaolin Hong, Xuancheng Yang, Yudi Ruan, Xiang Lian, Michael Lingelbach, Hongwei Yi, Wei Li
Title: Livatar-1: Real-Time Talking Heads Generation with Tailored Flow Matching
Abstract:
We present Livatar, a real-time audio-driven talking heads videos generation framework. Existing baselines suffer from limited lip-sync accuracy and long-term pose drift. We address these limitations with a flow matching based framework. Coupled with system optimizations, Livatar achieves competitive lip-sync quality with a 8.50 LipSync Confidence on the HDTF dataset, and reaches a throughput of 141 FPS with an end-to-end latency of 0.17s on a single A10 GPU. This makes high-fidelity avatars accessible to broader applications. Our project is available at https://www.hedra.com/ with with examples at https://h-liu1997.github.io/Livatar-1/

Authors:Grace Su, Sheng-Yu Wang, Aaron Hertzmann, Eli Shechtman, Jun-Yan Zhu, Richard Zhang
Title: Identifying Prompted Artist Names from Generated Images
Abstract:
A common and controversial use of text-to-image models is to generate pictures by explicitly naming artists, such as "in the style of Greg Rutkowski". We introduce a benchmark for prompted-artist recognition: predicting which artist names were invoked in the prompt from the image alone. The dataset contains 1.95M images covering 110 artists and spans four generalization settings: held-out artists, increasing prompt complexity, multiple-artist prompts, and different text-to-image models. We evaluate feature similarity baselines, contrastive style descriptors, data attribution methods, supervised classifiers, and few-shot prototypical networks. Generalization patterns vary: supervised and few-shot models excel on seen artists and complex prompts, whereas style descriptors transfer better when the artist's style is pronounced; multi-artist prompts remain the most challenging. Our benchmark reveals substantial headroom and provides a public testbed to advance the responsible moderation of text-to-image models. We release the dataset and benchmark to foster further research: https://graceduansu.github.io/IdentifyingPromptedArtists/

Authors:Hao Li, Lijun Li, Zhenghao Lu, Xianyi Wei, Rui Li, Jing Shao, Lei Sha
Title: Layer-Aware Representation Filtering: Purifying Finetuning Data to Preserve LLM Safety Alignment
Abstract:
With rapid advancement and increasing accessibility of LLMs, fine-tuning aligned models has become a critical step for adapting them to real-world applications, which makes the safety of this fine-tuning process more important than ever. However, recent studies have highlighted a critical challenge: even when fine-tuning with seemingly benign downstream datasets, the safety of aligned LLMs can be compromised, making them more susceptible to malicious instructions. In this paper, we show that fine-tuning datasets often contain samples with safety-degrading features that are not easily identifiable on the surface. These samples can significantly degrade the safety alignment of LLMs during fine-tuning. To address this issue, we propose LARF, a Layer-Aware Representation Filtering method. This method identifies safety-sensitive layers within the LLM and leverages their representations to detect which data samples in the post-training dataset contain safety-degrading features. Experimental results demonstrate that LARF can effectively identify benign data with safety-degrading features. After removing such data, the safety alignment degradation caused by fine-tuning is mitigated. Please see our code at https://github.com/LLLeoLi/LARF.

Authors:Xuhui Kang, Sung-Wook Lee, Haolin Liu, Yuyan Wang, Yen-Ling Kuo
Title: Moving Out: Physically-grounded Human-AI Collaboration
Abstract:
The ability to adapt to physical actions and constraints in an environment is crucial for embodied agents (e.g., robots) to effectively collaborate with humans. Such physically grounded human-AI collaboration must account for the increased complexity of the continuous state-action space and constrained dynamics caused by physical constraints. In this paper, we introduce Moving Out, a new human-AI collaboration benchmark that resembles a wide range of collaboration modes affected by physical attributes and constraints, such as moving heavy items together and maintaining consistent actions to move a big item around a corner. Using Moving Out, we designed two tasks and collected human-human interaction data to evaluate models' abilities to adapt to diverse human behaviors and unseen physical attributes. To address the challenges in physical environments, we propose a novel method, BASS (Behavior Augmentation, Simulation, and Selection), to enhance the diversity of agents and their understanding of the outcome of actions. Our experiments show that BASS outperforms state-of-the-art models in AI-AI and human-AI collaboration. The project page is available at https://live-robotics-uva.github.io/movingout_ai/.

Authors:Xiaopeng Ke, Hexuan Deng, Xuebo Liu, Jun Rao, Zhenxi Song, Jun Yu, Min Zhang
Title: AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs
Abstract:
Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these methods either incur high computational costs or suffer from performance limitations, while also demonstrating insufficient generalization across different tasks. To address these challenges, we propose AQuilt, a framework for constructing instruction-tuning data for any specialized domains from corresponding unlabeled data, including Answer, Question, Unlabeled data, Inspection, Logic, and Task type. By incorporating logic and inspection, we encourage reasoning processes and self-inspection to enhance model performance. Moreover, customizable task instructions enable high-quality data generation for any task. As a result, we construct a dataset of 703k examples to train a powerful data synthesis model. Experiments show that AQuilt is comparable to DeepSeek-V3 while utilizing just 17% of the production cost. Further analysis demonstrates that our generated data exhibits higher relevance to downstream tasks. Source code, models, and scripts are available at https://github.com/Krueske/AQuilt.

Authors:Jiahao Wang, Ramen Liu, Longhui Zhang, Jing Li
Title: System Report for CCL25-Eval Task 10: SRAG-MAV for Fine-Grained Chinese Hate Speech Recognition
Abstract:
This paper presents our system for CCL25-Eval Task 10, addressing Fine-Grained Chinese Hate Speech Recognition (FGCHSR). We propose a novel SRAG-MAV framework that synergistically integrates task reformulation(TR), Self-Retrieval-Augmented Generation (SRAG), and Multi-Round Accumulative Voting (MAV). Our method reformulates the quadruplet extraction task into triplet extraction, uses dynamic retrieval from the training set to create contextual prompts, and applies multi-round inference with voting to improve output stability and performance. Our system, based on the Qwen2.5-7B model, achieves a Hard Score of 26.66, a Soft Score of 48.35, and an Average Score of 37.505 on the STATE ToxiCN dataset, significantly outperforming baselines such as GPT-4o (Average Score 15.63) and fine-tuned Qwen2.5-7B (Average Score 35.365). The code is available at https://github.com/king-wang123/CCL25-SRAG-MAV.

Authors:Liyuan Chen, Shuoling Liu, Jiangpeng Yan, Xiaoyu Wang, Henglin Liu, Chuang Li, Kecheng Jiao, Jixuan Ying, Yang Veronica Liu, Qiang Yang, Xiu Li
Title: Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges
Abstract:
The advent of foundation models (FMs) - large-scale pre-trained models with strong generalization capabilities - has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of Financial Foundation Models (FFMs) - a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: Financial Language Foundation Models (FinLFMs), Financial Time-Series Foundation Models (FinTSFMs), and Financial Visual-Language Foundation Models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints, and offer insights into future research opportunities. We hope this survey serves as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation. An updated collection of FFM-related publications and resources will be maintained on our website https://github.com/FinFM/Awesome-FinFMs.

Authors:Xinyu Wang, Jinghua Hou, Zhe Liu, Yingying Zhu
Title: HybridTM: Combining Transformer and Mamba for 3D Semantic Segmentation
Abstract:
Transformer-based methods have demonstrated remarkable capabilities in 3D semantic segmentation through their powerful attention mechanisms, but the quadratic complexity limits their modeling of long-range dependencies in large-scale point clouds. While recent Mamba-based approaches offer efficient processing with linear complexity, they struggle with feature representation when extracting 3D features. However, effectively combining these complementary strengths remains an open challenge in this field. In this paper, we propose HybridTM, the first hybrid architecture that integrates Transformer and Mamba for 3D semantic segmentation. In addition, we propose the Inner Layer Hybrid Strategy, which combines attention and Mamba at a finer granularity, enabling simultaneous capture of long-range dependencies and fine-grained local features. Extensive experiments demonstrate the effectiveness and generalization of our HybridTM on diverse indoor and outdoor datasets. Furthermore, our HybridTM achieves state-of-the-art performance on ScanNet, ScanNet200, and nuScenes benchmarks. The code will be made available at https://github.com/deepinact/HybridTM.

Authors:Baoyao Yang, Wanyun Li, Dixin Chen, Junxiang Chen, Wenbin Yao, Haifeng Lin
Title: VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding
Abstract:
This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

Authors:Daniil Morozov, Reuben Dorent, Nazim Haouchine
Title: A 3D Cross-modal Keypoint Descriptor for MR-US Matching and Registration
Abstract:
Intraoperative registration of real-time ultrasound (iUS) to preoperative Magnetic Resonance Imaging (MRI) remains an unsolved problem due to severe modality-specific differences in appearance, resolution, and field-of-view. To address this, we propose a novel 3D cross-modal keypoint descriptor for MRI-iUS matching and registration. Our approach employs a patient-specific matching-by-synthesis approach, generating synthetic iUS volumes from preoperative MRI. This enables supervised contrastive training to learn a shared descriptor space. A probabilistic keypoint detection strategy is then employed to identify anatomically salient and modality-consistent locations. During training, a curriculum-based triplet loss with dynamic hard negative mining is used to learn descriptors that are i) robust to iUS artifacts such as speckle noise and limited coverage, and ii) rotation-invariant . At inference, the method detects keypoints in MR and real iUS images and identifies sparse matches, which are then used to perform rigid registration. Our approach is evaluated using 3D MRI-iUS pairs from the ReMIND dataset. Experiments show that our approach outperforms state-of-the-art keypoint matching methods across 11 patients, with an average precision of $69.8\%$. For image registration, our method achieves a competitive mean Target Registration Error of 2.39 mm on the ReMIND2Reg benchmark. Compared to existing iUS-MR registration approach, our framework is interpretable, requires no manual initialization, and shows robustness to iUS field-of-view variation. Code is available at https://github.com/morozovdd/CrossKEY.

Authors:Urchade Zaratiana, Gil Pasternak, Oliver Boyd, George Hurn-Maloney, Ash Lewis
Title: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Abstract:
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.

Authors:Zihang Li, Hao Xie, Xinyang Dong, Lei Wang
Title: Deep Variational Free Energy Calculation of Hydrogen Hugoniot
Abstract:
We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model that represents the Boltzmann distribution of the classical nuclei, an autoregressive transformer that models the distribution of electrons in excited states, and a permutational equivariant flow model that constructs backflow coordinates for electrons in Hartree-Fock orbitals. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. The calculated results provide a valuable benchmark for deuterium in the warm dense matter region.

Authors:Zhekai Chen, Ruihang Chu, Yukang Chen, Shiwei Zhang, Yujie Wei, Yingya Zhang, Xihui Liu
Title: TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation
Abstract:
Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

Authors:Tianheng Qiu, Jingchun Gao, Jingyu Li, Huiyi Leong, Xuan Huang, Xi Wang, Xiaocheng Zhang, Kele Xu, Lan Zhang
Title: IntentVCNet: Bridging Spatio-Temporal Gaps for Intention-Oriented Controllable Video Captioning
Abstract:
Intent-oriented controlled video captioning aims to generate targeted descriptions for specific targets in a video based on customized user intent. Current Large Visual Language Models (LVLMs) have gained strong instruction following and visual comprehension capabilities. Although the LVLMs demonstrated proficiency in spatial and temporal understanding respectively, it was not able to perform fine-grained spatial control in time sequences in direct response to instructions. This substantial spatio-temporal gap complicates efforts to achieve fine-grained intention-oriented control in video. Towards this end, we propose a novel IntentVCNet that unifies the temporal and spatial understanding knowledge inherent in LVLMs to bridge the spatio-temporal gap from both prompting and model perspectives. Specifically, we first propose a prompt combination strategy designed to enable LLM to model the implicit relationship between prompts that characterize user intent and video sequences. We then propose a parameter efficient box adapter that augments the object semantic information in the global visual context so that the visual token has a priori information about the user intent. The final experiment proves that the combination of the two strategies can further enhance the LVLM's ability to model spatial details in video sequences, and facilitate the LVLMs to accurately generate controlled intent-oriented captions. Our proposed method achieved state-of-the-art results in several open source LVLMs and was the runner-up in the IntentVC challenge. Our code is available on https://github.com/thqiu0419/IntentVCNet.

Authors:Clément Cornet, Romaric Besançon, Hervé Le Borgne
Title: Explaining How Visual, Textual and Multimodal Encoders Share Concepts
Abstract:
Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts

Authors:Zongzheng Zhang, Xuchong Qiu, Boran Zhang, Guantian Zheng, Xunjiang Gu, Guoxuan Chi, Huan-ang Gao, Leichen Wang, Ziming Liu, Xinrun Li, Igor Gilitschenski, Hongyang Li, Hang Zhao, Hao Zhao
Title: Delving into Mapping Uncertainty for Mapless Trajectory Prediction
Abstract:
Recent advances in autonomous driving are moving towards mapless approaches, where High-Definition (HD) maps are generated online directly from sensor data, reducing the need for expensive labeling and maintenance. However, the reliability of these online-generated maps remains uncertain. While incorporating map uncertainty into downstream trajectory prediction tasks has shown potential for performance improvements, current strategies provide limited insights into the specific scenarios where this uncertainty is beneficial. In this work, we first analyze the driving scenarios in which mapping uncertainty has the greatest positive impact on trajectory prediction and identify a critical, previously overlooked factor: the agent's kinematic state. Building on these insights, we propose a novel Proprioceptive Scenario Gating that adaptively integrates map uncertainty into trajectory prediction based on forecasts of the ego vehicle's future kinematics. This lightweight, self-supervised approach enhances the synergy between online mapping and trajectory prediction, providing interpretability around where uncertainty is advantageous and outperforming previous integration methods. Additionally, we introduce a Covariance-based Map Uncertainty approach that better aligns with map geometry, further improving trajectory prediction. Extensive ablation studies confirm the effectiveness of our approach, achieving up to 23.6% improvement in mapless trajectory prediction performance over the state-of-the-art method using the real-world nuScenes driving dataset. Our code, data, and models are publicly available at https://github.com/Ethan-Zheng136/Map-Uncertainty-for-Trajectory-Prediction.

Authors:Frauke Wilm, Luis Carlos Rivera Monroy, Mathias Öttl, Lukas Mürdter, Leonid Mill, Andreas Maier
Title: A COCO-Formatted Instance-Level Dataset for Plasmodium Falciparum Detection in Giemsa-Stained Blood Smears
Abstract:
Accurate detection of Plasmodium falciparum in Giemsa-stained blood smears is an essential component of reliable malaria diagnosis, especially in developing countries. Deep learning-based object detection methods have demonstrated strong potential for automated Malaria diagnosis, but their adoption is limited by the scarcity of datasets with detailed instance-level annotations. In this work, we present an enhanced version of the publicly available NIH malaria dataset, with detailed bounding box annotations in COCO format to support object detection training. We validated the revised annotations by training a Faster R-CNN model to detect infected and non-infected red blood cells, as well as white blood cells. Cross-validation on the original dataset yielded F1 scores of up to 0.88 for infected cell detection. These results underscore the importance of annotation volume and consistency, and demonstrate that automated annotation refinement combined with targeted manual correction can produce training data of sufficient quality for robust detection performance. The updated annotations set is publicly available via GitHub: https://github.com/MIRA-Vision-Microscopy/malaria-thin-smear-coco.

Authors:Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu
Title: Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection
Abstract:
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.

Authors:Haoran Xu, Saining Zhang, Peishuo Li, Baijun Ye, Xiaoxue Chen, Huan-ang Gao, Jv Zheng, Xiaowei Song, Ziqiao Peng, Run Miao, Jinrang Jia, Yifeng Shi, Guangqi Yi, Hang Zhao, Hao Tang, Hongyang Li, Kaicheng Yu, Hao Zhao
Title: CRUISE: Cooperative Reconstruction and Editing in V2X Scenarios using Gaussian Splatting
Abstract:
Vehicle-to-everything (V2X) communication plays a crucial role in autonomous driving, enabling cooperation between vehicles and infrastructure. While simulation has significantly contributed to various autonomous driving tasks, its potential for data generation and augmentation in V2X scenarios remains underexplored. In this paper, we introduce CRUISE, a comprehensive reconstruction-and-synthesis framework designed for V2X driving environments. CRUISE employs decomposed Gaussian Splatting to accurately reconstruct real-world scenes while supporting flexible editing. By decomposing dynamic traffic participants into editable Gaussian representations, CRUISE allows for seamless modification and augmentation of driving scenes. Furthermore, the framework renders images from both ego-vehicle and infrastructure views, enabling large-scale V2X dataset augmentation for training and evaluation. Our experimental results demonstrate that: 1) CRUISE reconstructs real-world V2X driving scenes with high fidelity; 2) using CRUISE improves 3D detection across ego-vehicle, infrastructure, and cooperative views, as well as cooperative 3D tracking on the V2X-Seq benchmark; and 3) CRUISE effectively generates challenging corner cases.

Authors:Miguel Aspis, Sebastián A. Cajas Ordónez, Andrés L. Suárez-Cetrulo, Ricardo Simón Carbajo
Title: DriftMoE: A Mixture of Experts Approach to Handle Concept Drifts
Abstract:
Learning from non-stationary data streams subject to concept drift requires models that can adapt on-the-fly while remaining resource-efficient. Existing adaptive ensemble methods often rely on coarse-grained adaptation mechanisms or simple voting schemes that fail to optimally leverage specialized knowledge. This paper introduces DriftMoE, an online Mixture-of-Experts (MoE) architecture that addresses these limitations through a novel co-training framework. DriftMoE features a compact neural router that is co-trained alongside a pool of incremental Hoeffding tree experts. The key innovation lies in a symbiotic learning loop that enables expert specialization: the router selects the most suitable expert for prediction, the relevant experts update incrementally with the true label, and the router refines its parameters using a multi-hot correctness mask that reinforces every accurate expert. This feedback loop provides the router with a clear training signal while accelerating expert specialization. We evaluate DriftMoE's performance across nine state-of-the-art data stream learning benchmarks spanning abrupt, gradual, and real-world drifts testing two distinct configurations: one where experts specialize on data regimes (multi-class variant), and another where they focus on single-class specialization (task-based variant). Our results demonstrate that DriftMoE achieves competitive results with state-of-the-art stream learning adaptive ensembles, offering a principled and efficient approach to concept drift adaptation. All code, data pipelines, and reproducibility scripts are available in our public GitHub repository: https://github.com/miguel-ceadar/drift-moe.

Authors:Jiaming Zhou, Hongjie Chen, Shiwan Zhao, Jian Kang, Jie Li, Enzhi Wang, Yujie Guo, Haoqin Sun, Hui Wang, Aobo Kong, Yong Qin, Xuelong Li
Title: DIFFA: Large Language Diffusion Models Can Listen and Understand
Abstract:
Recent advances in large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce \textbf{DIFFA}, the first diffusion-based large audio-language model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git.

Authors:Simin Huo, Ning Li
Title: Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
Abstract:
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.

Authors:Yonghao Fu, Cheng Hu, Haokun Xiong, Zhanpeng Bao, Wenyuan Du, Edoardo Ghignone, Michele Magno, Lei Xie, Hongye Su
Title: Residual Koopman Model Predictive Control for Enhanced Vehicle Dynamics with Small On-Track Data Input
Abstract:
In vehicle trajectory tracking tasks, the simplest approach is the Pure Pursuit (PP) Control. However, this single-point preview tracking strategy fails to consider vehicle model constraints, compromising driving safety. Model Predictive Control (MPC) as a widely adopted control method, optimizes control actions by incorporating mechanistic models and physical constraints. While its control performance critically depends on the accuracy of vehicle modeling. Traditional vehicle modeling approaches face inherent trade-offs between capturing nonlinear dynamics and maintaining computational efficiency, often resulting in reduced control performance. To address these challenges, this paper proposes Residual Koopman Model Predictive Control (RKMPC) framework. This method uses two linear MPC architecture to calculate control inputs: a Linear Model Predictive Control (LMPC) computes the baseline control input based on the vehicle kinematic model, and a neural network-based RKMPC calculates the compensation input. The final control command is obtained by adding these two components. This design preserves the reliability and interpretability of traditional mechanistic model while achieving performance optimization through residual modeling. This method has been validated on the Carsim-Matlab joint simulation platform and a physical 1:10 scale F1TENTH racing car. Experimental results show that RKMPC requires only 20% of the training data needed by traditional Koopman Model Predictive Control (KMPC) while delivering superior tracking performance. Compared to traditional LMPC, RKMPC reduces lateral error by 11.7%-22.1%, decreases heading error by 8.9%-15.8%, and improves front-wheel steering stability by up to 27.6%. The implementation code is available at: https://github.com/ZJU-DDRX/Residual Koopman.

Authors:Zhuang Qiang Bok, Watson Wei Khong Chua
Title: Reasoning Beyond the Obvious: Evaluating Divergent and Convergent Thinking in LLMs for Financial Scenarios
Abstract:
Most reasoning benchmarks for LLMs emphasize factual accuracy or step-by-step logic. In finance, however, professionals must not only converge on optimal decisions but also generate creative, plausible futures under uncertainty. We introduce ConDiFi, a benchmark that jointly evaluates divergent and convergent thinking in LLMs for financial tasks. ConDiFi features 607 macro-financial prompts for divergent reasoning and 990 multi-hop adversarial MCQs for convergent reasoning. Using this benchmark, we evaluated 14 leading models and uncovered striking differences. Despite high fluency, GPT-4o underperforms on Novelty and Actionability. In contrast, models like DeepSeek-R1 and Cohere Command R+ rank among the top for generating actionable, insights suitable for investment decisions. ConDiFi provides a new perspective to assess reasoning capabilities essential to safe and strategic deployment of LLMs in finance.

Authors:Yilong Hu, Shijie Chang, Lihe Zhang, Feng Tian, Weibing Sun, Huchuan Lu
Title: UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model
Abstract:
The Diffusion Probabilistic Model (DPM) has demonstrated remarkable performance across a variety of generative tasks. The inherent randomness in diffusion models helps address issues such as blurring at the edges of medical images and labels, positioning Diffusion Probabilistic Models (DPMs) as a promising approach for lesion segmentation. However, we find that the current training and inference strategies of diffusion models result in an uneven distribution of attention across different timesteps, leading to longer training times and suboptimal solutions. To this end, we propose UniSegDiff, a novel diffusion model framework designed to address lesion segmentation in a unified manner across multiple modalities and organs. This framework introduces a staged training and inference approach, dynamically adjusting the prediction targets at different stages, forcing the model to maintain high attention across all timesteps, and achieves unified lesion segmentation through pre-training the feature extraction network for segmentation. We evaluate performance on six different organs across various imaging modalities. Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches. The code is available at https://github.com/HUYILONG-Z/UniSegDiff.

Authors:Zhen Han, Mattias Teye, Derek Yadgaroff, Judith Bütepage
Title: Tiny is not small enough: High-quality, low-resource facial animation models through hybrid knowledge distillation
Abstract:
The training of high-quality, robust machine learning models for speech-driven 3D facial animation requires a large, diverse dataset of high-quality audio-animation pairs. To overcome the lack of such a dataset, recent work has introduced large pre-trained speech encoders that are robust to variations in the input audio and, therefore, enable the facial animation model to generalize across speakers, audio quality, and languages. However, the resulting facial animation models are prohibitively large and lend themselves only to offline inference on a dedicated machine. In this work, we explore on-device, real-time facial animation models in the context of game development. We overcome the lack of large datasets by using hybrid knowledge distillation with pseudo-labeling. Given a large audio dataset, we employ a high-performing teacher model to train very small student models. In contrast to the pre-trained speech encoders, our student models only consist of convolutional and fully-connected layers, removing the need for attention context or recurrent updates. In our experiments, we demonstrate that we can reduce the memory footprint to up to 3.4 MB and required future audio context to up to 81 ms while maintaining high-quality animations. This paves the way for on-device inference, an important step towards realistic, model-driven digital characters.

Authors:Yifu Chen, Bingchen Huang, Zhiling Wang, Yuanchao Du, Junfeng Luo, Lei Shen, Zhineng chen
Title: TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
Abstract:
In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples. The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved impressive performances. However, two challenges remain in retrieving high-quality examples: (1) Difficulty in distinguishing cross-task data distributions, (2) Difficulty in making the fine-grained connection between retriever output and feedback from LLMs. In this paper, we propose a novel framework called TDR. TDR decouples the ICL examples from different tasks, which enables the retrieval module to retrieve examples specific to the target task within a multi-task dataset. Furthermore, TDR models fine-grained feedback from LLMs to supervise and guide the training of the retrieval module, which helps to retrieve high-quality examples. We conducted extensive experiments on a suite of 30 NLP tasks, the results demonstrate that TDR consistently improved results across all datasets and achieves state-of-the-art performance. Meanwhile, our approach is a plug-and-play method, which can be easily combined with various LLMs to improve example retrieval abilities for ICL. The code is available at https://github.com/Nnn-s/TDR.

Authors:Runmin Zhang, Zhu Yu, Si-Yuan Cao, Lingyu Zhu, Guangyi Zhang, Xiaokai Bai, Hui-Liang Shen
Title: Boosting Multi-View Indoor 3D Object Detection via Adaptive 3D Volume Construction
Abstract:
This work presents SGCDet, a novel multi-view indoor 3D object detection framework based on adaptive 3D volume construction. Unlike previous approaches that restrict the receptive field of voxels to fixed locations on images, we introduce a geometry and context aware aggregation module to integrate geometric and contextual information within adaptive regions in each image and dynamically adjust the contributions from different views, enhancing the representation capability of voxel features. Furthermore, we propose a sparse volume construction strategy that adaptively identifies and selects voxels with high occupancy probabilities for feature refinement, minimizing redundant computation in free space. Benefiting from the above designs, our framework achieves effective and efficient volume construction in an adaptive way. Better still, our network can be supervised using only 3D bounding boxes, eliminating the dependence on ground-truth scene geometry. Experimental results demonstrate that SGCDet achieves state-of-the-art performance on the ScanNet, ScanNet200 and ARKitScenes datasets. The source code is available at https://github.com/RM-Zhang/SGCDet.

Authors:Jiangjun Peng, Yisi Luo, Xiangyong Cao, Shuang Xu, Deyu Meng
Title: Beyond Low-rankness: Guaranteed Matrix Recovery via Modified Nuclear Norm
Abstract:
The nuclear norm (NN) has been widely explored in matrix recovery problems, such as Robust PCA and matrix completion, leveraging the inherent global low-rank structure of the data. In this study, we introduce a new modified nuclear norm (MNN) framework, where the MNN family norms are defined by adopting suitable transformations and performing the NN on the transformed matrix. The MNN framework offers two main advantages: (1) it jointly captures both local information and global low-rankness without requiring trade-off parameter tuning; (2) Under mild assumptions on the transformation, we provided exact theoretical recovery guarantees for both Robust PCA and MC tasks-an achievement not shared by existing methods that combine local and global information. Thanks to its general and flexible design, MNN can accommodate various proven transformations, enabling a unified and effective approach to structured low-rank recovery. Extensive experiments demonstrate the effectiveness of our method. Code and supplementary material are available at https://github.com/andrew-pengjj/modified_nuclear_norm.

Authors:Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo
Title: SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Abstract:
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.

Authors:Biao Yi, Zekun Fei, Jianing Geng, Tong Li, Lihai Nie, Zheli Liu, Yiming Li
Title: BadReasoner: Planting Tunable Overthinking Backdoors into Large Reasoning Models for Fun or Profit
Abstract:
Large reasoning models (LRMs) have emerged as a significant advancement in artificial intelligence, representing a specialized class of large language models (LLMs) designed to tackle complex reasoning tasks. The defining characteristic of LRMs lies in their extensive chain-of-thought (CoT) reasoning capabilities. In this paper, we identify a previously unexplored attack vector against LRMs, which we term "overthinking backdoors". We advance this concept by proposing a novel tunable backdoor, which moves beyond simple on/off attacks to one where an attacker can precisely control the extent of the model's reasoning verbosity. Our attack is implemented through a novel data poisoning methodology. It pairs a tunable trigger-where the number of repetitions signals the desired intensity-with a correspondingly verbose CoT response. These responses are programmatically generated by instructing a teacher LLM to inject a controlled number of redundant refinement steps into a correct reasoning process. The approach preserves output correctness, which ensures stealth and establishes the attack as a pure resource-consumption vector. Extensive empirical results on various LRMs demonstrate that our method can reliably trigger a controllable, multi-fold increase in the length of the reasoning process, without degrading the final answer's correctness. Our source code is available at https://github.com/FZaKK/BadReasoner.

Authors:Jincheng Li, Chunyu Xie, Ji Ao, Dawei Leng, Yuhui Yin
Title: LMM-Det: Make Large Multimodal Models Excel in Object Detection
Abstract:
Large multimodal models (LMMs) have garnered wide-spread attention and interest within the artificial intelligence research and industrial communities, owing to their remarkable capability in multimodal understanding, reasoning, and in-context learning, among others. While LMMs have demonstrated promising results in tackling multimodal tasks like image captioning, visual question answering, and visual grounding, the object detection capabilities of LMMs exhibit a significant gap compared to specialist detectors. To bridge the gap, we depart from the conventional methods of integrating heavy detectors with LMMs and propose LMM-Det, a simple yet effective approach that leverages a Large Multimodal Model for vanilla object Detection without relying on specialized detection modules. Specifically, we conduct a comprehensive exploratory analysis when a large multimodal model meets with object detection, revealing that the recall rate degrades significantly compared with specialist detection models. To mitigate this, we propose to increase the recall rate by introducing data distribution adjustment and inference optimization tailored for object detection. We re-organize the instruction conversations to enhance the object detection capabilities of large multimodal models. We claim that a large multimodal model possesses detection capability without any extra detection modules. Extensive experiments support our claim and show the effectiveness of the versatile LMM-Det. The datasets, models, and codes are available at https://github.com/360CVGroup/LMM-Det.

Authors:Astrid Rakow, Joe Collenette, Maike Schwammberger, Marija Slavkovik, Gleifer Vs Alves
Title: Designing Value-Aligned Traffic Agents through Conflict Sensitivity
Abstract:
Autonomous traffic agents (ATAs) are expected to act in ways tat are not only safe, but also aligned with stakeholder values across legal, social, and moral dimensions. In this paper, we adopt an established formal model of conflict from epistemic game theory to support the development of such agents. We focus on value conflicts-situations in which agents face competing goals rooted in value-laden situations and show how conflict analysis can inform key phases of the design process. This includes value elicitation, capability specification, explanation, and adaptive system refinement. We elaborate and apply the concept of Value-Aligned Operational Design Domains (VODDs) to structure autonomy in accordance with contextual value priorities. Our approach shifts the emphasis from solving moral dilemmas at runtime to anticipating and structuring value-sensitive behaviour during development.

Authors:Chenyu Su, Weiwei Shang, Chen Qian, Fei Zhang, Shuang Cong
Title: ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Abstract:
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.

Authors:Zhuoguang Chen, Minghui Qin, Tianyuan Yuan, Zhe Liu, Hang Zhao
Title: LONG3R: Long Sequence Streaming 3D Reconstruction
Abstract:
Recent advancements in multi-view scene reconstruction have been significant, yet existing methods face limitations when processing streams of input images. These methods either rely on time-consuming offline optimization or are restricted to shorter sequences, hindering their applicability in real-time scenarios. In this work, we propose LONG3R (LOng sequence streaming 3D Reconstruction), a novel model designed for streaming multi-view 3D scene reconstruction over longer sequences. Our model achieves real-time processing by operating recurrently, maintaining and updating memory with each new observation. We first employ a memory gating mechanism to filter relevant memory, which, together with a new observation, is fed into a dual-source refined decoder for coarse-to-fine interaction. To effectively capture long-sequence memory, we propose a 3D spatio-temporal memory that dynamically prunes redundant spatial information while adaptively adjusting resolution along the scene. To enhance our model's performance on long sequences while maintaining training efficiency, we employ a two-stage curriculum training strategy, each stage targeting specific capabilities. Experiments demonstrate that LONG3R outperforms state-of-the-art streaming methods, particularly for longer sequences, while maintaining real-time inference speed. Project page: https://zgchen33.github.io/LONG3R/.

Authors:Chengchang Tian, Jianwei Ma, Yan Huang, Zhanye Chen, Honghao Wei, Hui Zhang, Wei Hong
Title: DATA: Domain-And-Time Alignment for High-Quality Feature Fusion in Collaborative Perception
Abstract:
Feature-level fusion shows promise in collaborative perception (CP) through balanced performance and communication bandwidth trade-off. However, its effectiveness critically relies on input feature quality. The acquisition of high-quality features faces domain gaps from hardware diversity and deployment conditions, alongside temporal misalignment from transmission delays. These challenges degrade feature quality with cumulative effects throughout the collaborative network. In this paper, we present the Domain-And-Time Alignment (DATA) network, designed to systematically align features while maximizing their semantic representations for fusion. Specifically, we propose a Consistency-preserving Domain Alignment Module (CDAM) that reduces domain gaps through proximal-region hierarchical downsampling and observability-constrained discriminator. We further propose a Progressive Temporal Alignment Module (PTAM) to handle transmission delays via multi-scale motion modeling and two-stage compensation. Building upon the aligned features, an Instance-focused Feature Aggregation Module (IFAM) is developed to enhance semantic representations. Extensive experiments demonstrate that DATA achieves state-of-the-art performance on three typical datasets, maintaining robustness with severe communication delays and pose errors. The code will be released at https://github.com/ChengchangTian/DATA.

Authors:Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, Shirui Pan
Title: Assemble Your Crew: Automatic Multi-agent Communication Topology Design via Autoregressive Graph Generation
Abstract:
Multi-agent systems (MAS) based on large language models (LLMs) have emerged as a powerful solution for dealing with complex problems across diverse domains. The effectiveness of MAS is critically dependent on its collaboration topology, which has become a focal point for automated design research. However, existing approaches are fundamentally constrained by their reliance on a template graph modification paradigm with a predefined set of agents and hard-coded interaction structures, significantly limiting their adaptability to task-specific requirements. To address these limitations, we reframe MAS design as a conditional autoregressive graph generation task, where both the system composition and structure are designed jointly. We propose ARG-Designer, a novel autoregressive model that operationalizes this paradigm by constructing the collaboration graph from scratch. Conditioned on a natural language task query, ARG-Designer sequentially and dynamically determines the required number of agents, selects their appropriate roles from an extensible pool, and establishes the optimal communication links between them. This generative approach creates a customized topology in a flexible and extensible manner, precisely tailored to the unique demands of different tasks. Extensive experiments across six diverse benchmarks demonstrate that ARG-Designer not only achieves state-of-the-art performance but also enjoys significantly greater token efficiency and enhanced extensibility. The source code of ARG-Designer is available at https://github.com/Shiy-Li/ARG-Designer.

Authors:Minghao Fu, Guo-Hua Wang, Xiaohao Chen, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance
Abstract:
Recent advances in text-to-image synthesis largely benefit from sophisticated sampling strategies and classifier-free guidance (CFG) to ensure high-quality generation. However, CFG's reliance on two forward passes, especially when combined with intricate sampling algorithms, results in prohibitively high inference costs. To address this, we introduce TeEFusion (Text Embeddings Fusion), a novel and efficient distillation method that directly incorporates the guidance magnitude into the text embeddings and distills the teacher model's complex sampling strategy. By simply fusing conditional and unconditional text embeddings using linear operations, TeEFusion reconstructs the desired guidance without adding extra parameters, simultaneously enabling the student model to learn from the teacher's output produced via its sophisticated sampling approach. Extensive experiments on state-of-the-art models such as SD3 demonstrate that our method allows the student to closely mimic the teacher's performance with a far simpler and more efficient sampling strategy. Consequently, the student model achieves inference speeds up to 6$\times$ faster than the teacher model, while maintaining image quality at levels comparable to those obtained through the teacher's complex sampling approach. The code is publicly available at https://github.com/AIDC-AI/TeEFusion.

Authors:SeungJun Moon, Hah Min Lew, Seungeun Lee, Ji-Su Kang, Gyeong-Moon Park
Title: GeoAvatar: Adaptive Geometrical Gaussian Splatting for 3D Head Avatar
Abstract:
Despite recent progress in 3D head avatar generation, balancing identity preservation, i.e., reconstruction, with novel poses and expressions, i.e., animation, remains a challenge. Existing methods struggle to adapt Gaussians to varying geometrical deviations across facial regions, resulting in suboptimal quality. To address this, we propose GeoAvatar, a framework for adaptive geometrical Gaussian Splatting. GeoAvatar leverages Adaptive Pre-allocation Stage (APS), an unsupervised method that segments Gaussians into rigid and flexible sets for adaptive offset regularization. Then, based on mouth anatomy and dynamics, we introduce a novel mouth structure and the part-wise deformation strategy to enhance the animation fidelity of the mouth. Finally, we propose a regularization loss for precise rigging between Gaussians and 3DMM faces. Moreover, we release DynamicFace, a video dataset with highly expressive facial motions. Extensive experiments show the superiority of GeoAvatar compared to state-of-the-art methods in reconstruction and novel animation scenarios.

Authors:Shiny Choudhury, Michael Davidson, George Tynan
Title: Physics-Informed Unit Commitment Framework for Nuclear Reactors
Abstract:
Nuclear reactors are often modeled as inflexible baseload generators with fixed downtimes and restrictive ramping constraints. In practice, however, a reactor's operational flexibility is closely tied to its fuel cycle and associated reactivity margin. A key physical constraint for power maneuverability is xenon poisoning, caused from the transient buildup of neutron-absorbing xenon following a power reduction. This transient can delay or prevent subsequent power ramp-up due to suppressed core reactivity. Additionally, if a reactor is shutdown during periods of low reactivity, restart times can vary significantly, leading to prolonged downtimes. This work introduces a physics-informed modeling framework that embeds fuel cycle dynamics within a unit commitment (UC) formulation. The framework tracks reactivity margin, dynamically enforces xenon induced constraints, and endogenously schedules refueling outages based on core conditions. By capturing intracycle reactivity evolution, the model enables operation dependent nuclear dispatch that reflects both techno-economic requirements and irreducible nuclear physics limits. Application to a representative reactor fleet shows that flexible operation can slow reactivity degradation and extend fuel cycles. Results further demonstrate that different operational modes substantially affect VRE utilization, curtailment, and nuclear fleet capacity factors. These findings highlight the importance of fuel cycle aware flexibility modeling for accurate reactor scheduling and integration of nuclear power into energy system models.

Authors:Jinhong He, Minglong Xue, Zhipu Liu, Mingliang Zhou, Aoxiang Ning, Palaiahnakote Shivakumara
Title: Degradation-Consistent Learning via Bidirectional Diffusion for Low-Light Image Enhancement
Abstract:
Low-light image enhancement aims to improve the visibility of degraded images to better align with human visual perception. While diffusion-based methods have shown promising performance due to their strong generative capabilities. However, their unidirectional modelling of degradation often struggles to capture the complexity of real-world degradation patterns, leading to structural inconsistencies and pixel misalignments. To address these challenges, we propose a bidirectional diffusion optimization mechanism that jointly models the degradation processes of both low-light and normal-light images, enabling more precise degradation parameter matching and enhancing generation quality. Specifically, we perform bidirectional diffusion-from low-to-normal light and from normal-to-low light during training and introduce an adaptive feature interaction block (AFI) to refine feature representation. By leveraging the complementarity between these two paths, our approach imposes an implicit symmetry constraint on illumination attenuation and noise distribution, facilitating consistent degradation learning and improving the models ability to perceive illumination and detail degradation. Additionally, we design a reflection-aware correction module (RACM) to guide color restoration post-denoising and suppress overexposed regions, ensuring content consistency and generating high-quality images that align with human visual perception. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art methods in both quantitative and qualitative evaluations while generalizing effectively to diverse degradation scenarios. Code at https://github.com/hejh8/BidDiff

Authors:Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun
Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
Abstract:
We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo

Authors:Qianyi He, Yuan Chang Leong
Title: A Multimodal Seq2Seq Transformer for Predicting Brain Responses to Naturalistic Stimuli
Abstract:
The Algonauts 2025 Challenge called on the community to develop encoding models that predict whole-brain fMRI responses to naturalistic multimodal movies. In this submission, we propose a sequence-to-sequence Transformer that autoregressively predicts fMRI activity from visual, auditory, and language inputs. Stimulus features were extracted using pretrained models including VideoMAE, HuBERT, Qwen, and BridgeTower. The decoder integrates information from prior brain states and current stimuli via dual cross-attention mechanisms that attend to both perceptual information extracted from the stimulus as well as narrative information provided by high-level summaries of the content. One core innovation of our approach is the use of sequences of multimodal context to predict sequences of brain activity, enabling the model to capture long-range temporal structure in both stimuli and neural responses. Another is the combination of a shared encoder with partial subject-specific decoder, which leverages common representational structure across subjects while accounting for individual variability. Our model achieves strong performance on both in-distribution and out-of-distribution data, demonstrating the effectiveness of temporally-aware, multimodal sequence modeling for brain activity prediction. The code is available at https://github.com/Angelneer926/Algonauts_challenge.

Authors:Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao
Title: TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound
Abstract:
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .

Authors:Yuqing Shen, Yuanyuan Shi, Daniel Kirschen, Yize Chen
Title: Carbon Emission Flow Tracing: Fast Algorithm and California Grid Study
Abstract:
Power systems decarbonization are at the focal point of the clean energy transition. While system operators and utility companies increasingly publicize system-level carbon emission information, it remains unclear how emissions from individual generators are transported through the grid and how they impact electricity users at specific locations. This paper presents a novel and computationally efficient approach for exact quantification of nodal average and marginal carbon emission rates, applicable to both AC and DC optimal power flow problems. The approach leverages graph-based topological sorting and directed cycle removal techniques, applied to directed graphs formed by generation dispatch and optimal power flow solutions. Our proposed algorithm efficiently identifies each generator's contribution to each node, capturing how emissions are spatially distributed under varying system conditions. To validate its effectiveness and reveal locational and temporal emission patterns in the real world, we simulate the 8,870-bus realistic California grid using actual CAISO data and the CATS model. Based on year long hourly data on nodal loads and renewable generation, obtained or estimated from CAISO public data, our method accurately estimates power flow conditions, generation mixes, and systemwide emissions, and delivers fine grained spatiotemporal emission analysis for every California county. Both our algorithm and the California study are open-sourced, providing a foundation for future research on grid emissions, planning, operations, and energy policy.

Authors:Xiaoran Sun, Liyan Wang, Cong Wang, Yeying Jin, Kin-man Lam, Zhixun Su, Yang Yang, Jinshan Pan
Title: Adapting Large VLMs with Iterative and Manual Instructions for Generative Low-light Enhancement
Abstract:
Most existing low-light image enhancement (LLIE) methods rely on pre-trained model priors, low-light inputs, or both, while neglecting the semantic guidance available from normal-light images. This limitation hinders their effectiveness in complex lighting conditions. In this paper, we propose VLM-IMI, a novel framework that leverages large vision-language models (VLMs) with iterative and manual instructions (IMIs) for LLIE. VLM-IMI incorporates textual descriptions of the desired normal-light content as enhancement cues, enabling semantically informed restoration. To effectively integrate cross-modal priors, we introduce an instruction prior fusion module, which dynamically aligns and fuses image and text features, promoting the generation of detailed and semantically coherent outputs. During inference, we adopt an iterative and manual instruction strategy to refine textual instructions, progressively improving visual quality. This refinement enhances structural fidelity, semantic alignment, and the recovery of fine details under extremely low-light conditions. Extensive experiments across diverse scenarios demonstrate that VLM-IMI outperforms state-of-the-art methods in both quantitative metrics and perceptual quality. The source code is available at https://github.com/sunxiaoran01/VLM-IMI.

Authors:Yueheng Li, Guangming Xie, Zongqing Lu
Title: Multi-Agent Guided Policy Optimization
Abstract:
Due to practical constraints such as partial observability and limited communication, Centralized Training with Decentralized Execution (CTDE) has become the dominant paradigm in cooperative Multi-Agent Reinforcement Learning (MARL). However, existing CTDE methods often underutilize centralized training or lack theoretical guarantees. We propose Multi-Agent Guided Policy Optimization (MAGPO), a novel framework that better leverages centralized training by integrating centralized guidance with decentralized execution. MAGPO uses an auto-regressive joint policy for scalable, coordinated exploration and explicitly aligns it with decentralized policies to ensure deployability under partial observability. We provide theoretical guarantees of monotonic policy improvement and empirically evaluate MAGPO on 43 tasks across 6 diverse environments. Results show that MAGPO consistently outperforms strong CTDE baselines and matches or surpasses fully centralized approaches, offering a principled and practical solution for decentralized multi-agent learning. Our code and experimental data can be found in https://github.com/liyheng/MAGPO.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Abstract:
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

Authors:Mingfeng Yuan, Letian Wang, Steven L. Waslander
Title: OpenNav: Open-World Navigation with Multimodal Large Language Models
Abstract:
Pre-trained large language models (LLMs) have demonstrated strong common-sense reasoning abilities, making them promising for robotic navigation and planning tasks. However, despite recent progress, bridging the gap between language descriptions and actual robot actions in the open-world, beyond merely invoking limited predefined motion primitives, remains an open challenge. In this work, we aim to enable robots to interpret and decompose complex language instructions, ultimately synthesizing a sequence of trajectory points to complete diverse navigation tasks given open-set instructions and open-set objects. We observe that multi-modal large language models (MLLMs) exhibit strong cross-modal understanding when processing free-form language instructions, demonstrating robust scene comprehension. More importantly, leveraging their code-generation capability, MLLMs can interact with vision-language perception models to generate compositional 2D bird-eye-view value maps, effectively integrating semantic knowledge from MLLMs with spatial information from maps to reinforce the robot's spatial understanding. To further validate our approach, we effectively leverage large-scale autonomous vehicle datasets (AVDs) to validate our proposed zero-shot vision-language navigation framework in outdoor navigation tasks, demonstrating its capability to execute a diverse range of free-form natural language navigation instructions while maintaining robustness against object detection errors and linguistic ambiguities. Furthermore, we validate our system on a Husky robot in both indoor and outdoor scenes, demonstrating its real-world robustness and applicability. Supplementary videos are available at https://trailab.github.io/OpenNav-website/

Authors:Yuezun Li, Delong Zhu, Xinjie Cui, Siwei Lyu
Title: Celeb-DF++: A Large-scale Challenging Video DeepFake Benchmark for Generalizable Forensics
Abstract:
The rapid advancement of AI technologies has significantly increased the diversity of DeepFake videos circulating online, posing a pressing challenge for \textit{generalizable forensics}, \ie, detecting a wide range of unseen DeepFake types using a single model. Addressing this challenge requires datasets that are not only large-scale but also rich in forgery diversity. However, most existing datasets, despite their scale, include only a limited variety of forgery types, making them insufficient for developing generalizable detection methods. Therefore, we build upon our earlier Celeb-DF dataset and introduce {Celeb-DF++}, a new large-scale and challenging video DeepFake benchmark dedicated to the generalizable forensics challenge. Celeb-DF++ covers three commonly encountered forgery scenarios: Face-swap (FS), Face-reenactment (FR), and Talking-face (TF). Each scenario contains a substantial number of high-quality forged videos, generated using a total of 22 various recent DeepFake methods. These methods differ in terms of architectures, generation pipelines, and targeted facial regions, covering the most prevalent DeepFake cases witnessed in the wild. We also introduce evaluation protocols for measuring the generalizability of 24 recent detection methods, highlighting the limitations of existing detection methods and the difficulty of our new dataset.

Authors:Jaeho Shin, Hyeonjae Gil, Junwoo Jang, Maani Ghaffari, Ayoung Kim
Title: Registration beyond Points: General Affine Subspace Alignment via Geodesic Distance on Grassmann Manifold
Abstract:
Affine Grassmannian has been favored for expressing proximity between lines and planes due to its theoretical exactness in measuring distances among features. Despite this advantage, the existing method can only measure the proximity without yielding the distance as an explicit function of rigid body transformation. Thus, an optimizable distance function on the manifold has remained underdeveloped, stifling its application in registration problems. This paper is the first to explicitly derive an optimizable cost function between two Grassmannian features with respect to rigid body transformation ($\mathbf{R}$ and $\mathbf{t}$). Specifically, we present a rigorous mathematical proof demonstrating that the bases of high-dimensional linear subspaces can serve as an explicit representation of the cost. Finally, we propose an optimizable cost function based on the transformed bases that can be applied to the registration problem of any affine subspace. Compared to vector parameter-based approaches, our method is able to find a globally optimal solution by directly minimizing the geodesic distance which is agnostic to representation ambiguity. The resulting cost function and its extension to the inlier-set maximizing Branch-and-Bound (BnB) solver have been demonstrated to improve the convergence of existing solutions or outperform them in various computer vision tasks. The code is available on https://github.com/joomeok/GrassmannRegistration.

Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Akmal Jahan, Clinton Fookes, Sridha Sridharan
Title: AG-VPReID.VIR: Bridging Aerial and Ground Platforms for Video-based Visible-Infrared Person Re-ID
Abstract:
Person re-identification (Re-ID) across visible and infrared modalities is crucial for 24-hour surveillance systems, but existing datasets primarily focus on ground-level perspectives. While ground-based IR systems offer nighttime capabilities, they suffer from occlusions, limited coverage, and vulnerability to obstructions--problems that aerial perspectives uniquely solve. To address these limitations, we introduce AG-VPReID.VIR, the first aerial-ground cross-modality video-based person Re-ID dataset. This dataset captures 1,837 identities across 4,861 tracklets (124,855 frames) using both UAV-mounted and fixed CCTV cameras in RGB and infrared modalities. AG-VPReID.VIR presents unique challenges including cross-viewpoint variations, modality discrepancies, and temporal dynamics. Additionally, we propose TCC-VPReID, a novel three-stream architecture designed to address the joint challenges of cross-platform and cross-modality person Re-ID. Our approach bridges the domain gaps between aerial-ground perspectives and RGB-IR modalities, through style-robust feature learning, memory-based cross-view adaptation, and intermediary-guided temporal modeling. Experiments show that AG-VPReID.VIR presents distinctive challenges compared to existing datasets, with our TCC-VPReID framework achieving significant performance gains across multiple evaluation protocols. Dataset and code are available at https://github.com/agvpreid25/AG-VPReID.VIR.

Authors:Peter Eckmann, Adrian Barnett, Alexandra Bannach-Brown, Elisa Pilar Bascunan Atria, Guillaume Cabanac, Louise Delwen Owen Franzen, Małgorzata Anna Gazda, Kaitlyn Hair, James Howison, Halil Kilicoglu, Cyril Labbe, Sarah McCann, Vladislav Nachev, Martijn Roelandse, Maia Salholz-Hillel, Robert Schulz, Gerben ter Riet, Colby Vorland, Anita Bandrowski, Tracey Weissgerber
Title: Use as Directed? A Comparison of Software Tools Intended to Check Rigor and Transparency of Published Work
Abstract:
The causes of the reproducibility crisis include lack of standardization and transparency in scientific reporting. Checklists such as ARRIVE and CONSORT seek to improve transparency, but they are not always followed by authors and peer review often fails to identify missing items. To address these issues, there are several automated tools that have been designed to check different rigor criteria. We have conducted a broad comparison of 11 automated tools across 9 different rigor criteria from the ScreenIT group. We found some criteria, including detecting open data, where the combination of tools showed a clear winner, a tool which performed much better than other tools. In other cases, including detection of inclusion and exclusion criteria, the combination of tools exceeded the performance of any one tool. We also identified key areas where tool developers should focus their effort to make their tool maximally useful. We conclude with a set of insights and recommendations for stakeholders in the development of rigor and transparency detection tools. The code and data for the study is available at https://github.com/PeterEckmann1/tool-comparison.

Authors:Rui Deng, Ziqi Li, Mingshu Wang
Title: Improving the Computational Efficiency and Explainability of GeoAggregator
Abstract:
Accurate modeling and explaining geospatial tabular data (GTD) are critical for understanding geospatial phenomena and their underlying processes. Recent work has proposed a novel transformer-based deep learning model named GeoAggregator (GA) for this purpose, and has demonstrated that it outperforms other statistical and machine learning approaches. In this short paper, we further improve GA by 1) developing an optimized pipeline that accelerates the dataloading process and streamlines the forward pass of GA to achieve better computational efficiency; and 2) incorporating a model ensembling strategy and a post-hoc model explanation function based on the GeoShapley framework to enhance model explainability. We validate the functionality and efficiency of the proposed strategies by applying the improved GA model to synthetic datasets. Experimental results show that our implementation improves the prediction accuracy and inference speed of GA compared to the original implementation. Moreover, explanation experiments indicate that GA can effectively captures the inherent spatial effects in the designed synthetic dataset. The complete pipeline has been made publicly available for community use (https://github.com/ruid7181/GA-sklearn).

Authors:Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov
Title: Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation
Abstract:
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Authors:Rameen Abdal, Or Patashnik, Ekaterina Deyneka, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Title: Zero-Shot Dynamic Concept Personalization with Grid-Based LoRA
Abstract:
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.

Authors:Md. Al-Masrur Khan, Durgakant Pushp, Lantao Liu
Title: AFRDA: Attentive Feature Refinement for Domain Adaptive Semantic Segmentation
Abstract:
In Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS), a model is trained on labeled source domain data (e.g., synthetic images) and adapted to an unlabeled target domain (e.g., real-world images) without access to target annotations. Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information, leading to segmentation errors in complex regions. To address this, we introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features using semantic priors from low-resolution logits. AFR also integrates high-frequency components, which capture fine-grained structures and provide crucial boundary information, improving object delineation. Additionally, AFR adaptively balances local and global information through uncertaintydriven attention, reducing misclassifications. Its lightweight design allows seamless integration into HRDA-based UDA methods, leading to state-of-the-art segmentation performance. Our approach improves existing UDA-SS methods by 1.05% mIoU on GTA V --> Cityscapes and 1.04% mIoU on Synthia-->Cityscapes. The implementation of our framework is available at: https://github.com/Masrur02/AFRDA

Authors:Russell O'Connor, Andrew Poelstra
Title: Formal Verification of the Safegcd Implementation
Abstract:
The modular inverse is an essential piece of computation required for elliptic curve operations used for digital signatures in Bitcoin and other applications. A novel approach to the extended Euclidean algorithm has been developed by Bernstein and Yang within the last few years and incorporated into the libsecp256k1 cryptographic library used by Bitcoin. However, novel algorithms introduce new risks of errors. To address this we have completed a computer verified proof of the correctness of (one of) libsecp256k1's modular inverse implementations with the Coq proof assistant using the Verifiable C's implementation of separation logic.

Authors:Charles H Martin, Christopher Hinrichs
Title: SETOL: A Semi-Empirical Theory of (Deep) Learning
Abstract:
We present a SemiEmpirical Theory of Learning (SETOL) that explains the remarkable performance of State-Of-The-Art (SOTA) Neural Networks (NNs). We provide a formal explanation of the origin of the fundamental quantities in the phenomenological theory of Heavy-Tailed Self-Regularization (HTSR): the heavy-tailed power-law layer quality metrics, alpha and alpha-hat. In prior work, these metrics have been shown to predict trends in the test accuracies of pretrained SOTA NN models, importantly, without needing access to either testing or training data. Our SETOL uses techniques from statistical mechanics as well as advanced methods from random matrix theory and quantum chemistry. The derivation suggests new mathematical preconditions for ideal learning, including a new metric, ERG, which is equivalent to applying a single step of the Wilson Exact Renormalization Group. We test the assumptions and predictions of SETOL on a simple 3-layer multilayer perceptron (MLP), demonstrating excellent agreement with the key theoretical assumptions. For SOTA NN models, we show how to estimate the individual layer qualities of a trained NN by simply computing the empirical spectral density (ESD) of the layer weight matrices and plugging this ESD into our SETOL formulas. Notably, we examine the performance of the HTSR alpha and the SETOL ERG layer quality metrics, and find that they align remarkably well, both on our MLP and on SOTA NNs.

Authors:Dou Hoon Kwark, Shirui Luo, Xiyue Zhu, Yudu Li, Zhi-Pei Liang, Volodymyr Kindratenko
Title: Hierarchical Diffusion Framework for Pseudo-Healthy Brain MRI Inpainting with Enhanced 3D Consistency
Abstract:
Pseudo-healthy image inpainting is an essential preprocessing step for analyzing pathological brain MRI scans. Most current inpainting methods favor slice-wise 2D models for their high in-plane fidelity, but their independence across slices produces discontinuities in the volume. Fully 3D models alleviate this issue, but their high model capacity demands extensive training data for reliable, high-fidelity synthesis -- often impractical in medical settings. We address these limitations with a hierarchical diffusion framework by replacing direct 3D modeling with two perpendicular coarse-to-fine 2D stages. An axial diffusion model first yields a coarse, globally consistent inpainting; a coronal diffusion model then refines anatomical details. By combining perpendicular spatial views with adaptive resampling, our method balances data efficiency and volumetric consistency. Our experiments show our approach outperforms state-of-the-art baselines in both realism and volumetric consistency, making it a promising solution for pseudo-healthy image inpainting. Code is available at https://github.com/dou0000/3dMRI-Consistent-Inpaint.

Authors:Semih Eren, Deniz Kucukahmetler, Nico Scherf
Title: Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Abstract:
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.

Authors:Yi Xin, Juncheng Yan, Qi Qin, Zhen Li, Dongyang Liu, Shicheng Li, Victor Shea-Jay Huang, Yupeng Zhou, Renrui Zhang, Le Zhuo, Tiancheng Han, Xiaoqing Sun, Siqi Luo, Mengmeng Wang, Bin Fu, Yuewen Cao, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Yu Qiao, Peng Gao
Title: Lumina-mGPT 2.0: Stand-Alone AutoRegressive Image Modeling
Abstract:
We present Lumina-mGPT 2.0, a stand-alone, decoder-only autoregressive model that revisits and revitalizes the autoregressive paradigm for high-quality image generation and beyond. Unlike existing approaches that rely on pretrained components or hybrid architectures, Lumina-mGPT 2.0 is trained entirely from scratch, enabling unrestricted architectural design and licensing freedom. It achieves generation quality on par with state-of-the-art diffusion models such as DALL-E 3 and SANA, while preserving the inherent flexibility and compositionality of autoregressive modeling. Our unified tokenization scheme allows the model to seamlessly handle a wide spectrum of tasks-including subject-driven generation, image editing, controllable synthesis, and dense prediction-within a single generative framework. To further boost usability, we incorporate efficient decoding strategies like inference-time scaling and speculative Jacobi sampling to improve quality and speed, respectively. Extensive evaluations on standard text-to-image benchmarks (e.g., GenEval, DPG) demonstrate that Lumina-mGPT 2.0 not only matches but in some cases surpasses diffusion-based models. Moreover, we confirm its multi-task capabilities on the Graph200K benchmark, with the native Lumina-mGPT 2.0 performing exceptionally well. These results position Lumina-mGPT 2.0 as a strong, flexible foundation model for unified multimodal generation. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-mGPT-2.0.

Authors:Shiyuan Zhang, Tong Li, Zhu Xiao, Hongyang Du, Kaibin Huang
Title: LSDM: LLM-Enhanced Spatio-temporal Diffusion Model for Service-Level Mobile Traffic Prediction
Abstract:
Service-level mobile traffic prediction for individual users is essential for network efficiency and quality of service enhancement. However, current prediction methods are limited in their adaptability across different urban environments and produce inaccurate results due to the high uncertainty in personal traffic patterns, the lack of detailed environmental context, and the complex dependencies among different network services. These challenges demand advanced modeling techniques that can capture dynamic traffic distributions and rich environmental features. Inspired by the recent success of diffusion models in distribution modeling and Large Language Models (LLMs) in contextual understanding, we propose an LLM-Enhanced Spatio-temporal Diffusion Model (LSDM). LSDM integrates the generative power of diffusion models with the adaptive learning capabilities of transformers, augmented by the ability to capture multimodal environmental information for modeling service-level patterns and dynamics. Extensive evaluations on real-world service-level datasets demonstrate that the model excels in traffic usage predictions, showing outstanding generalization and adaptability. After incorporating contextual information via LLM, the performance improves by at least 2.83% in terms of the coefficient of determination. Compared to models of a similar type, such as CSDI, the root mean squared error can be reduced by at least 8.29%. The code and dataset will be available at: https://github.com/SoftYuaneR/LSDM.

Authors:Camille Challier, Xiaowu Sun, Thabo Mahendiran, Ortal Senouf, Bernard De Bruyne, Denise Auberson, Olivier Müller, Stephane Fournier, Pascal Frossard, Emmanuel Abbé, Dorina Thanou
Title: CM-UNet: A Self-Supervised Learning-Based Model for Coronary Artery Segmentation in X-Ray Angiography
Abstract:
Accurate segmentation of coronary arteries remains a significant challenge in clinical practice, hindering the ability to effectively diagnose and manage coronary artery disease. The lack of large, annotated datasets for model training exacerbates this issue, limiting the development of automated tools that could assist radiologists. To address this, we introduce CM-UNet, which leverages self-supervised pre-training on unannotated datasets and transfer learning on limited annotated data, enabling accurate disease detection while minimizing the need for extensive manual annotations. Fine-tuning CM-UNet with only 18 annotated images instead of 500 resulted in a 15.2% decrease in Dice score, compared to a 46.5% drop in baseline models without pre-training. This demonstrates that self-supervised learning can enhance segmentation performance and reduce dependence on large datasets. This is one of the first studies to highlight the importance of self-supervised learning in improving coronary artery segmentation from X-ray angiography, with potential implications for advancing diagnostic accuracy in clinical practice. By enhancing segmentation accuracy in X-ray angiography images, the proposed approach aims to improve clinical workflows, reduce radiologists' workload, and accelerate disease detection, ultimately contributing to better patient outcomes. The source code is publicly available at https://github.com/CamilleChallier/Contrastive-Masked-UNet.

Authors:Zhongzhen Wen, Yinghui Zhang, Zhong Li, Zhongxin Liu, Linna Xie, Tian Zhang
Title: MultiKernelBench: A Multi-Platform Benchmark for Kernel Generation
Abstract:
The automatic generation of deep learning (DL) kernels using large language models (LLMs) has emerged as a promising approach to reduce the manual effort and hardware-specific expertise required for writing high-performance operator implementations. However, existing benchmarks for evaluating LLMs in this domain suffer from limited hardware support, coarse-grained kernel categorization, and imbalanced task coverage. To address these limitations, we introduce MultiKernelBench, the first comprehensive, multi-platform benchmark for LLM-based DL kernel generation. MultiKernelBench spans 285 tasks across 14 well-defined kernel categories and supports three major hardware platforms: Nvidia GPUs, Huawei NPUs, and Google TPUs. To enable future extensibility, we design a modular backend abstraction layer that decouples platform-specific logic from the core benchmarking infrastructure, allowing easy integration of new hardware platforms. We further propose a simple yet effective category-aware one-shot prompting method that improves generation quality by providing in-category exemplars. Through systematic evaluations of seven state-of-the-art LLMs, we reveal significant variation in task difficulty, poor generalization to platforms with less training exposure, and the effectiveness of targeted prompting strategies. MultiKernelBench is publicly available at https://github.com/wzzll123/MultiKernelBench.

Authors:Weixin Chen, Yuhan Zhao, Li Chen, Weike Pan
Title: Leave No One Behind: Fairness-Aware Cross-Domain Recommender Systems for Non-Overlapping Users
Abstract:
Cross-domain recommendation (CDR) methods predominantly leverage overlapping users to transfer knowledge from a source domain to a target domain. However, through empirical studies, we uncover a critical bias inherent in these approaches: while overlapping users experience significant enhancements in recommendation quality, non-overlapping users benefit minimally and even face performance degradation. This unfairness may erode user trust, and, consequently, negatively impact business engagement and revenue. To address this issue, we propose a novel solution that generates virtual source-domain users for non-overlapping target-domain users. Our method utilizes a dual attention mechanism to discern similarities between overlapping and non-overlapping users, thereby synthesizing realistic virtual user embeddings. We further introduce a limiter component that ensures the generated virtual users align with real-data distributions while preserving each user's unique characteristics. Notably, our method is model-agnostic and can be seamlessly integrated into any CDR model. Comprehensive experiments conducted on three public datasets with five CDR baselines demonstrate that our method effectively mitigates the CDR non-overlapping user bias, without loss of overall accuracy. Our code is publicly available at https://github.com/WeixinChen98/VUG.

Authors:Yiwen Chen, Zhihao Li, Yikai Wang, Hu Zhang, Qin Li, Chi Zhang, Guosheng Lin
Title: Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Abstract:
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.

Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Title: Yume: An Interactive World Generation Model
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.

Authors:Zihao Li, Zhichen Zeng, Xiao Lin, Feihao Fang, Yanru Qu, Zhe Xu, Zhining Liu, Xuying Ning, Tianxin Wei, Ge Liu, Hanghang Tong, Jingrui He
Title: Flow Matching Meets Biology and Life Science: A Survey
Abstract:
Over the past decade, advances in generative modeling, such as generative adversarial networks, masked autoencoders, and diffusion models, have significantly transformed biological research and discovery, enabling breakthroughs in molecule design, protein generation, drug discovery, and beyond. At the same time, biological applications have served as valuable testbeds for evaluating the capabilities of generative models. Recently, flow matching has emerged as a powerful and efficient alternative to diffusion-based generative modeling, with growing interest in its application to problems in biology and life sciences. This paper presents the first comprehensive survey of recent developments in flow matching and its applications in biological domains. We begin by systematically reviewing the foundations and variants of flow matching, and then categorize its applications into three major areas: biological sequence modeling, molecule generation and design, and peptide and protein generation. For each, we provide an in-depth review of recent progress. We also summarize commonly used datasets and software tools, and conclude with a discussion of potential future directions. The corresponding curated resources are available at https://github.com/Violet24K/Awesome-Flow-Matching-Meets-Biology.

Authors:Jialiang Wang, Xianming Liu, Xiong Zhou, Gangfeng Hu, Deming Zhai, Junjun Jiang, Xiangyang Ji
Title: Joint Asymmetric Loss for Learning with Noisy Labels
Abstract:
Learning with noisy labels is a crucial task for training accurate deep neural networks. To mitigate label noise, prior studies have proposed various robust loss functions, particularly symmetric losses. Nevertheless, symmetric losses usually suffer from the underfitting issue due to the overly strict constraint. To address this problem, the Active Passive Loss (APL) jointly optimizes an active and a passive loss to mutually enhance the overall fitting ability. Within APL, symmetric losses have been successfully extended, yielding advanced robust loss functions. Despite these advancements, emerging theoretical analyses indicate that asymmetric losses, a new class of robust loss functions, possess superior properties compared to symmetric losses. However, existing asymmetric losses are not compatible with advanced optimization frameworks such as APL, limiting their potential and applicability. Motivated by this theoretical gap and the prospect of asymmetric losses, we extend the asymmetric loss to the more complex passive loss scenario and propose the Asymetric Mean Square Error (AMSE), a novel asymmetric loss. We rigorously establish the necessary and sufficient condition under which AMSE satisfies the asymmetric condition. By substituting the traditional symmetric passive loss in APL with our proposed AMSE, we introduce a novel robust loss framework termed Joint Asymmetric Loss (JAL). Extensive experiments demonstrate the effectiveness of our method in mitigating label noise. Code available at: https://github.com/cswjl/joint-asymmetric-loss

Authors:Daiqi Liu, Tomás Arias-Vergara, Jana Hutter, Andreas Maier, Paula Andrea Pérez-Toro
Title: Audio-Vision Contrastive Learning for Phonological Class Recognition
Abstract:
Accurate classification of articulatory-phonological features plays a vital role in understanding human speech production and developing robust speech technologies, particularly in clinical contexts where targeted phonemic analysis and therapy can improve disease diagnosis accuracy and personalized rehabilitation. In this work, we propose a multimodal deep learning framework that combines real-time magnetic resonance imaging (rtMRI) and speech signals to classify three key articulatory dimensions: manner of articulation, place of articulation, and voicing. We perform classification on 15 phonological classes derived from the aforementioned articulatory dimensions and evaluate the system with four audio/vision configurations: unimodal rtMRI, unimodal audio signals, multimodal middle fusion, and contrastive learning-based audio-vision fusion. Experimental results on the USC-TIMIT dataset show that our contrastive learning-based approach achieves state-of-the-art performance, with an average F1-score of 0.81, representing an absolute increase of 0.23 over the unimodal baseline. The results confirm the effectiveness of contrastive representation learning for multimodal articulatory analysis. Our code and processed dataset will be made publicly available at https://github.com/DaE-plz/AC_Contrastive_Phonology to support future research.

Authors:Jiahui Yin, Xinxing Cheng, Jinming Duan, Yan Pang, Declan O'Regan, Hadrien Reynaud, Qingjie Meng
Title: MCM: Mamba-based Cardiac Motion Tracking using Sequential Images in MRI
Abstract:
Myocardial motion tracking is important for assessing cardiac function and diagnosing cardiovascular diseases, for which cine cardiac magnetic resonance (CMR) has been established as the gold standard imaging modality. Many existing methods learn motion from single image pairs consisting of a reference frame and a randomly selected target frame from the cardiac cycle. However, these methods overlook the continuous nature of cardiac motion and often yield inconsistent and non-smooth motion estimations. In this work, we propose a novel Mamba-based cardiac motion tracking network (MCM) that explicitly incorporates target image sequence from the cardiac cycle to achieve smooth and temporally consistent motion tracking. By developing a bi-directional Mamba block equipped with a bi-directional scanning mechanism, our method facilitates the estimation of plausible deformation fields. With our proposed motion decoder that integrates motion information from frames adjacent to the target frame, our method further enhances temporal coherence. Moreover, by taking advantage of Mamba's structured state-space formulation, the proposed method learns the continuous dynamics of the myocardium from sequential images without increasing computational complexity. We evaluate the proposed method on two public datasets. The experimental results demonstrate that the proposed method quantitatively and qualitatively outperforms both conventional and state-of-the-art learning-based cardiac motion tracking methods. The code is available at https://github.com/yjh-0104/MCM.

Authors:Xuzhi Wang, Xinran Wu, Song Wang, Lingdong Kong, Ziping Zhao
Title: Monocular Semantic Scene Completion via Masked Recurrent Networks
Abstract:
Monocular Semantic Scene Completion (MSSC) aims to predict the voxel-wise occupancy and semantic category from a single-view RGB image. Existing methods adopt a single-stage framework that aims to simultaneously achieve visible region segmentation and occluded region hallucination, while also being affected by inaccurate depth estimation. Such methods often achieve suboptimal performance, especially in complex scenes. We propose a novel two-stage framework that decomposes MSSC into coarse MSSC followed by the Masked Recurrent Network. Specifically, we propose the Masked Sparse Gated Recurrent Unit (MS-GRU) which concentrates on the occupied regions by the proposed mask updating mechanism, and a sparse GRU design is proposed to reduce the computation cost. Additionally, we propose the distance attention projection to reduce projection errors by assigning different attention scores according to the distance to the observed surface. Experimental results demonstrate that our proposed unified framework, MonoMRN, effectively supports both indoor and outdoor scenes and achieves state-of-the-art performance on the NYUv2 and SemanticKITTI datasets. Furthermore, we conduct robustness analysis under various disturbances, highlighting the role of the Masked Recurrent Network in enhancing the model's resilience to such challenges. The source code is publicly available.

Authors:Yotam Erel, Olaf Dünkel, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, Amit H. Bermano
Title: Attention (as Discrete-Time Markov) Chains
Abstract:
We introduce a new interpretation of the attention matrix as a discrete-time Markov chain. Our interpretation sheds light on common operations involving attention scores such as selection, summation, and averaging in a unified framework. It further extends them by considering indirect attention, propagated through the Markov chain, as opposed to previous studies that only model immediate effects. Our main observation is that tokens corresponding to semantically similar regions form a set of metastable states, where the attention clusters, while noisy attention scores tend to disperse. Metastable states and their prevalence can be easily computed through simple matrix multiplication and eigenanalysis, respectively. Using these lightweight tools, we demonstrate state-of-the-art zero-shot segmentation. Lastly, we define TokenRank -- the steady state vector of the Markov chain, which measures global token importance. We demonstrate that using it brings improvements in unconditional image generation. We believe our framework offers a fresh view of how tokens are being attended in modern visual transformers.

Authors:Olaf Dünkel, Artur Jesslen, Jiahao Xie, Christian Theobalt, Christian Rupprecht, Adam Kortylewski
Title: CNS-Bench: Benchmarking Image Classifier Robustness Under Continuous Nuisance Shifts
Abstract:
An important challenge when using computer vision models in the real world is to evaluate their performance in potential out-of-distribution (OOD) scenarios. While simple synthetic corruptions are commonly applied to test OOD robustness, they often fail to capture nuisance shifts that occur in the real world. Recently, diffusion models have been applied to generate realistic images for benchmarking, but they are restricted to binary nuisance shifts. In this work, we introduce CNS-Bench, a Continuous Nuisance Shift Benchmark to quantify OOD robustness of image classifiers for continuous and realistic generative nuisance shifts. CNS-Bench allows generating a wide range of individual nuisance shifts in continuous severities by applying LoRA adapters to diffusion models. To address failure cases, we propose a filtering mechanism that outperforms previous methods, thereby enabling reliable benchmarking with generative models. With the proposed benchmark, we perform a large-scale study to evaluate the robustness of more than 40 classifiers under various nuisance shifts. Through carefully designed comparisons and analyses, we find that model rankings can change for varying shifts and shift scales, which cannot be captured when applying common binary shifts. Additionally, we show that evaluating the model performance on a continuous scale allows the identification of model failure points, providing a more nuanced understanding of model robustness. Project page including code and data: https://genintel.github.io/CNS.

Authors:Yang Li, Zongzheng Zhang, Xuchong Qiu, Xinrun Li, Ziming Liu, Leichen Wang, Ruikai Li, Zhenxin Zhu, Huan-ang Gao, Xiaojian Lin, Zhiyong Cui, Hang Zhao, Hao Zhao
Title: Reusing Attention for One-stage Lane Topology Understanding
Abstract:
Understanding lane toplogy relationships accurately is critical for safe autonomous driving. However, existing two-stage methods suffer from inefficiencies due to error propagations and increased computational overheads. To address these challenges, we propose a one-stage architecture that simultaneously predicts traffic elements, lane centerlines and topology relationship, improving both the accuracy and inference speed of lane topology understanding for autonomous driving. Our key innovation lies in reusing intermediate attention resources within distinct transformer decoders. This approach effectively leverages the inherent relational knowledge within the element detection module to enable the modeling of topology relationships among traffic elements and lanes without requiring additional computationally expensive graph networks. Furthermore, we are the first to demonstrate that knowledge can be distilled from models that utilize standard definition (SD) maps to those operates without using SD maps, enabling superior performance even in the absence of SD maps. Extensive experiments on the OpenLane-V2 dataset show that our approach outperforms baseline methods in both accuracy and efficiency, achieving superior results in lane detection, traffic element identification, and topology reasoning. Our code is available at https://github.com/Yang-Li-2000/one-stage.git.

Authors:Maciej K. Wozniak, Lianhang Liu, Yixi Cai, Patric Jensfelt
Title: PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
Abstract:
While end-to-end autonomous driving models show promising results, their practical deployment is often hindered by large model sizes, a reliance on expensive LiDAR sensors and computationally intensive BEV feature representations. This limits their scalability, especially for mass-market vehicles equipped only with cameras. To address these challenges, we propose PRIX (Plan from Raw Pixels). Our novel and efficient end-to-end driving architecture operates using only camera data, without explicit BEV representation and forgoing the need for LiDAR. PRIX leverages a visual feature extractor coupled with a generative planning head to predict safe trajectories from raw pixel inputs directly. A core component of our architecture is the Context-aware Recalibration Transformer (CaRT), a novel module designed to effectively enhance multi-level visual features for more robust planning. We demonstrate through comprehensive experiments that PRIX achieves state-of-the-art performance on the NavSim and nuScenes benchmarks, matching the capabilities of larger, multimodal diffusion planners while being significantly more efficient in terms of inference speed and model size, making it a practical solution for real-world deployment. Our work is open-source and the code will be at https://maxiuw.github.io/prix.

Authors:Yuqing Lan, Chenyang Zhu, Shuaifeng Zhi, Jiazhao Zhang, Zhoufeng Wang, Renjiao Yi, Yijie Wang, Kai Xu
Title: RemixFusion: Residual-based Mixed Representation for Large-scale Online RGB-D Reconstruction
Abstract:
The introduction of the neural implicit representation has notably propelled the advancement of online dense reconstruction techniques. Compared to traditional explicit representations, such as TSDF, it improves the mapping completeness and memory efficiency. However, the lack of reconstruction details and the time-consuming learning of neural representations hinder the widespread application of neural-based methods to large-scale online reconstruction. We introduce RemixFusion, a novel residual-based mixed representation for scene reconstruction and camera pose estimation dedicated to high-quality and large-scale online RGB-D reconstruction. In particular, we propose a residual-based map representation comprised of an explicit coarse TSDF grid and an implicit neural module that produces residuals representing fine-grained details to be added to the coarse grid. Such mixed representation allows for detail-rich reconstruction with bounded time and memory budget, contrasting with the overly-smoothed results by the purely implicit representations, thus paving the way for high-quality camera tracking. Furthermore, we extend the residual-based representation to handle multi-frame joint pose optimization via bundle adjustment (BA). In contrast to the existing methods, which optimize poses directly, we opt to optimize pose changes. Combined with a novel technique for adaptive gradient amplification, our method attains better optimization convergence and global optimality. Furthermore, we adopt a local moving volume to factorize the mixed scene representation with a divide-and-conquer design to facilitate efficient online learning in our residual-based framework. Extensive experiments demonstrate that our method surpasses all state-of-the-art ones, including those based either on explicit or implicit representations, in terms of the accuracy of both mapping and tracking on large-scale scenes.

Authors:Xinyao Liu, Diping Song
Title: Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning
Abstract:
Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability ($L \propto N^{0.068}$), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

Authors:Jiahao Tang, Youjun Li, Xiangting Fan, Yangxuan Zheng, Siyuan Lu, Xueping Li, Peng Fang, Chenxi Li, Zi-Gang Huang
Title: SDC-Net: A Domain Adaptation Framework with Semantic-Dynamic Consistency for Cross-Subject EEG Emotion Recognition
Abstract:
Emotion recognition based on electroencephalography (EEG) holds significant promise for affective brain-computer interfaces (aBCIs). However, its practical deployment faces challenges due to the variability within inter-subject and the scarcity of labeled data in target domains. To overcome these limitations, we propose SDC-Net, a novel Semantic-Dynamic Consistency domain adaptation network for fully label-free cross-subject EEG emotion recognition. First, we introduce a Same-Subject Same-Trial Mixup strategy that generates augmented samples through intra-trial interpolation, enhancing data diversity while explicitly preserving individual identity to mitigate label ambiguity. Second, we construct a dynamic distribution alignment module within the Reproducing Kernel Hilbert Space (RKHS), jointly aligning marginal and conditional distributions through multi-objective kernel mean embedding, and leveraging a confidence-aware pseudo-labeling strategy to ensure stable adaptation. Third, we propose a dual-domain similarity consistency learning mechanism that enforces cross-domain structural constraints based on latent pairwise similarities, facilitating semantic boundary learning without reliance on temporal synchronization or label priors. To validate the effectiveness and robustness of the proposed SDC-Net, extensive experiments are conducted on three widely used EEG benchmark datasets: SEED, SEED-IV, and FACED. Comparative results against existing unsupervised domain adaptation methods demonstrate that SDC-Net achieves state-of-the-art performance in emotion recognition under both cross-subject and cross-session conditions. This advancement significantly improves the accuracy and generalization capability of emotion decoding, laying a solid foundation for real-world applications of personalized aBCIs. The source code is available at: https://github.com/XuanSuTrum/SDC-Net.

Authors:Kostas Karakontis, Thanos Petsanis, Athanasios Ch. Kapoutsis, Pavlos Ch. Kapoutsis, Elias B. Kosmatopoulos
Title: Terrain-Aware Adaptation for Two-Dimensional UAV Path Planners
Abstract:
Multi-UAV Coverage Path Planning (mCPP) algorithms in popular commercial software typically treat a Region of Interest (RoI) only as a 2D plane, ignoring important3D structure characteristics. This leads to incomplete 3Dreconstructions, especially around occluded or vertical surfaces. In this paper, we propose a modular algorithm that can extend commercial two-dimensional path planners to facilitate terrain-aware planning by adjusting altitude and camera orientations. To demonstrate it, we extend the well-known DARP (Divide Areas for Optimal Multi-Robot Coverage Path Planning) algorithm and produce DARP-3D. We present simulation results in multiple 3D environments and a real-world flight test using DJI hardware. Compared to baseline, our approach consistently captures improved 3D reconstructions, particularly in areas with significant vertical features. An open-source implementation of the algorithm is available here:https://github.com/konskara/TerraPlan

Authors:Jiajun Luo, Yicheng Xiao, Jianru Xu, Yangxiu You, Rongwei Lu, Chen Tang, Jingyan Jiang, Zhi Wang
Title: Accelerating Parallel Diffusion Model Serving with Residual Compression
Abstract:
Diffusion models produce realistic images and videos but require substantial computational resources, necessitating multi-accelerator parallelism for real-time deployment. However, parallel inference introduces significant communication overhead from exchanging large activations between devices, limiting efficiency and scalability. We present CompactFusion, a compression framework that significantly reduces communication while preserving generation quality. Our key observation is that diffusion activations exhibit strong temporal redundancy-adjacent steps produce highly similar activations, saturating bandwidth with near-duplicate data carrying little new information. To address this inefficiency, we seek a more compact representation that encodes only the essential information. CompactFusion achieves this via Residual Compression that transmits only compressed residuals (step-wise activation differences). Based on empirical analysis and theoretical justification, we show that it effectively removes redundant data, enabling substantial data reduction while maintaining high fidelity. We also integrate lightweight error feedback to prevent error accumulation. CompactFusion establishes a new paradigm for parallel diffusion inference, delivering lower latency and significantly higher generation quality than prior methods. On 4xL20, it achieves 3.0x speedup while greatly improving fidelity. It also uniquely supports communication-heavy strategies like sequence parallelism on slow networks, achieving 6.7x speedup over prior overlap-based method. CompactFusion applies broadly across diffusion models and parallel settings, and integrates easily without requiring pipeline rework. Portable implementation demonstrated on xDiT is publicly available at https://github.com/Cobalt-27/CompactFusion

Authors:Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos
Title: Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation
Abstract:
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.

Authors:Minglong Xue, Aoxiang Ning, Shivakumara Palaiahnakote, Mingliang Zhou
Title: DFDNet: Dynamic Frequency-Guided De-Flare Network
Abstract:
Strong light sources in nighttime photography frequently produce flares in images, significantly degrading visual quality and impacting the performance of downstream tasks. While some progress has been made, existing methods continue to struggle with removing large-scale flare artifacts and repairing structural damage in regions near the light source. We observe that these challenging flare artifacts exhibit more significant discrepancies from the reference images in the frequency domain compared to the spatial domain. Therefore, this paper presents a novel dynamic frequency-guided deflare network (DFDNet) that decouples content information from flare artifacts in the frequency domain, effectively removing large-scale flare artifacts. Specifically, DFDNet consists mainly of a global dynamic frequency-domain guidance (GDFG) module and a local detail guidance module (LDGM). The GDFG module guides the network to perceive the frequency characteristics of flare artifacts by dynamically optimizing global frequency domain features, effectively separating flare information from content information. Additionally, we design an LDGM via a contrastive learning strategy that aligns the local features of the light source with the reference image, reduces local detail damage from flare removal, and improves fine-grained image restoration. The experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods in terms of performance. The code is available at \href{https://github.com/AXNing/DFDNet}{https://github.com/AXNing/DFDNet}.

Authors:Junhua Liu, Roy Ka-Wei Lee, Kwan Hui Lim
Title: BGM-HAN: A Hierarchical Attention Network for Accurate and Fair Decision Assessment on Semi-Structured Profiles
Abstract:
Human decision-making in high-stakes domains often relies on expertise and heuristics, but is vulnerable to hard-to-detect cognitive biases that threaten fairness and long-term outcomes. This work presents a novel approach to enhancing complex decision-making workflows through the integration of hierarchical learning alongside various enhancements. Focusing on university admissions as a representative high-stakes domain, we propose BGM-HAN, an enhanced Byte-Pair Encoded, Gated Multi-head Hierarchical Attention Network, designed to effectively model semi-structured applicant data. BGM-HAN captures multi-level representations that are crucial for nuanced assessment, improving both interpretability and predictive performance. Experimental results on real admissions data demonstrate that our proposed model significantly outperforms both state-of-the-art baselines from traditional machine learning to large language models, offering a promising framework for augmenting decision-making in domains where structure, context, and fairness matter. Source code is available at: https://github.com/junhua/bgm-han.

Authors:Francesco Tonini, Lorenzo Vaquero, Alessandro Conti, Cigdem Beyan, Elisa Ricci
Title: Dynamic Scoring with Enhanced Semantics for Training-Free Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to identify humans and objects within images and interpret their interactions. Existing HOI methods rely heavily on large datasets with manual annotations to learn interactions from visual cues. These annotations are labor-intensive to create, prone to inconsistency, and limit scalability to new domains and rare interactions. We argue that recent advances in Vision-Language Models (VLMs) offer untapped potential, particularly in enhancing interaction representation. While prior work has injected such potential and even proposed training-free methods, there remain key gaps. Consequently, we propose a novel training-free HOI detection framework for Dynamic Scoring with enhanced semantics (DYSCO) that effectively utilizes textual and visual interaction representations within a multimodal registry, enabling robust and nuanced interaction understanding. This registry incorporates a small set of visual cues and uses innovative interaction signatures to improve the semantic alignment of verbs, facilitating effective generalization to rare interactions. Additionally, we propose a unique multi-head attention mechanism that adaptively weights the contributions of the visual and textual features. Experimental results demonstrate that our DYSCO surpasses training-free state-of-the-art models and is competitive with training-based approaches, particularly excelling in rare interactions. Code is available at https://github.com/francescotonini/dysco.

Authors:Sneha George Gnanakalavathy, Hairil Abdul Razak, Robert Meertens, Jonathan E. Fieldsend, Xujiong Ye, Mohammed M. Abdelsamea
Title: CAPRI-CT: Causal Analysis and Predictive Reasoning for Image Quality Optimization in Computed Tomography
Abstract:
In computed tomography (CT), achieving high image quality while minimizing radiation exposure remains a key clinical challenge. This paper presents CAPRI-CT, a novel causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging. CAPRI-CT integrates image data with acquisition metadata (such as tube voltage, tube current, and contrast agent types) to model the underlying causal relationships that influence image quality. An ensemble of Variational Autoencoders (VAEs) is employed to extract meaningful features and generate causal representations from observational data, including CT images and associated imaging parameters. These input features are fused to predict the Signal-to-Noise Ratio (SNR) and support counterfactual inference, enabling what-if simulations, such as changes in contrast agents (types and concentrations) or scan parameters. CAPRI-CT is trained and validated using an ensemble learning approach, achieving strong predictive performance. By facilitating both prediction and interpretability, CAPRI-CT provides actionable insights that could help radiologists and technicians design more efficient CT protocols without repeated physical scans. The source code and dataset are publicly available at https://github.com/SnehaGeorge22/capri-ct.

Authors:Jun Li, Jinpeng Wang, Chaolei Tan, Niu Lian, Long Chen, Yaowei Wang, Min Zhang, Shu-Tao Xia, Bin Chen
Title: HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning
Abstract:
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.

Authors:Hao Dai, Jagmohan Chauhan
Title: Continual Generalized Category Discovery: Learning and Forgetting from a Bayesian Perspective
Abstract:
Continual Generalized Category Discovery (C-GCD) faces a critical challenge: incrementally learning new classes from unlabeled data streams while preserving knowledge of old classes. Existing methods struggle with catastrophic forgetting, especially when unlabeled data mixes known and novel categories. We address this by analyzing C-GCD's forgetting dynamics through a Bayesian lens, revealing that covariance misalignment between old and new classes drives performance degradation. Building on this insight, we propose Variational Bayes C-GCD (VB-CGCD), a novel framework that integrates variational inference with covariance-aware nearest-class-mean classification. VB-CGCD adaptively aligns class distributions while suppressing pseudo-label noise via stochastic variational updates. Experiments show VB-CGCD surpasses prior art by +15.21% with the overall accuracy in the final session on standard benchmarks. We also introduce a new challenging benchmark with only 10% labeled data and extended online phases, VB-CGCD achieves a 67.86% final accuracy, significantly higher than state-of-the-art (38.55%), demonstrating its robust applicability across diverse scenarios. Code is available at: https://github.com/daihao42/VB-CGCD

Authors:Hyeongmin Lee, Kyungjune Baek
Title: Temporal Smoothness-Aware Rate-Distortion Optimized 4D Gaussian Splatting
Abstract:
Dynamic 4D Gaussian Splatting (4DGS) effectively extends the high-speed rendering capabilities of 3D Gaussian Splatting (3DGS) to represent volumetric videos. However, the large number of Gaussians, substantial temporal redundancies, and especially the absence of an entropy-aware compression framework result in large storage requirements. Consequently, this poses significant challenges for practical deployment, efficient edge-device processing, and data transmission. In this paper, we introduce a novel end-to-end RD-optimized compression framework tailored for 4DGS, aiming to enable flexible, high-fidelity rendering across varied computational platforms. Leveraging Fully Explicit Dynamic Gaussian Splatting (Ex4DGS), one of the state-of-the-art 4DGS methods, as our baseline, we start from the existing 3DGS compression methods for compatibility while effectively addressing additional challenges introduced by the temporal axis. In particular, instead of storing motion trajectories independently per point, we employ a wavelet transform to reflect the real-world smoothness prior, significantly enhancing storage efficiency. This approach yields significantly improved compression ratios and provides a user-controlled balance between compression efficiency and rendering quality. Extensive experiments demonstrate the effectiveness of our method, achieving up to 91$\times$ compression compared to the original Ex4DGS model while maintaining high visual fidelity. These results highlight the applicability of our framework for real-time dynamic scene rendering in diverse scenarios, from resource-constrained edge devices to high-performance environments. The source code is available at https://github.com/HyeongminLEE/RD4DGS.

Authors:Hyeongjin Nam, Donghwan Kim, Gyeongsik Moon, Kyoung Mu Lee
Title: PARTE: Part-Guided Texturing for 3D Human Reconstruction from a Single Image
Abstract:
The misaligned human texture across different human parts is one of the main limitations of existing 3D human reconstruction methods. Each human part, such as a jacket or pants, should maintain a distinct texture without blending into others. The structural coherence of human parts serves as a crucial cue to infer human textures in the invisible regions of a single image. However, most existing 3D human reconstruction methods do not explicitly exploit such part segmentation priors, leading to misaligned textures in their reconstructions. In this regard, we present PARTE, which utilizes 3D human part information as a key guide to reconstruct 3D human textures. Our framework comprises two core components. First, to infer 3D human part information from a single image, we propose a 3D part segmentation module (PartSegmenter) that initially reconstructs a textureless human surface and predicts human part labels based on the textureless surface. Second, to incorporate part information into texture reconstruction, we introduce a part-guided texturing module (PartTexturer), which acquires prior knowledge from a pre-trained image generation network on texture alignment of human parts. Extensive experiments demonstrate that our framework achieves state-of-the-art quality in 3D human reconstruction. The project page is available at https://hygenie1228.github.io/PARTE/.

Authors:Chao He, Jianqiang Ren, Jianjing Xiang, Xiejie Shen
Title: CartoonAlive: Towards Expressive Live2D Modeling from Single Portraits
Abstract:
With the rapid advancement of large foundation models, AIGC, cloud rendering, and real-time motion capture technologies, digital humans are now capable of achieving synchronized facial expressions and body movements, engaging in intelligent dialogues driven by natural language, and enabling the fast creation of personalized avatars. While current mainstream approaches to digital humans primarily focus on 3D models and 2D video-based representations, interactive 2D cartoon-style digital humans have received relatively less attention. Compared to 3D digital humans that require complex modeling and high rendering costs, and 2D video-based solutions that lack flexibility and real-time interactivity, 2D cartoon-style Live2D models offer a more efficient and expressive alternative. By simulating 3D-like motion through layered segmentation without the need for traditional 3D modeling, Live2D enables dynamic and real-time manipulation. In this technical report, we present CartoonAlive, an innovative method for generating high-quality Live2D digital humans from a single input portrait image. CartoonAlive leverages the shape basis concept commonly used in 3D face modeling to construct facial blendshapes suitable for Live2D. It then infers the corresponding blendshape weights based on facial keypoints detected from the input image. This approach allows for the rapid generation of a highly expressive and visually accurate Live2D model that closely resembles the input portrait, within less than half a minute. Our work provides a practical and scalable solution for creating interactive 2D cartoon characters, opening new possibilities in digital content creation and virtual character animation. The project homepage is https://human3daigc.github.io/CartoonAlive_webpage/.

Authors:Ruijie Yang, Yan Zhu, Peiyao Fu, Yizhe Zhang, Zhihua Wang, Quanlin Li, Pinghong Zhou, Xian Yang, Shuo Wang
Title: EndoFinder: Online Lesion Retrieval for Explainable Colorectal Polyp Diagnosis Leveraging Latent Scene Representations
Abstract:
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, underscoring the importance of timely polyp detection and diagnosis. While deep learning models have improved optical-assisted diagnostics, they often demand extensive labeled datasets and yield "black-box" outputs with limited interpretability. In this paper, we propose EndoFinder, an online polyp retrieval framework that leverages multi-view scene representations for explainable and scalable CRC diagnosis. First, we develop a Polyp-aware Image Encoder by combining contrastive learning and a reconstruction task, guided by polyp segmentation masks. This self-supervised approach captures robust features without relying on large-scale annotated data. Next, we treat each polyp as a three-dimensional "scene" and introduce a Scene Representation Transformer, which fuses multiple views of the polyp into a single latent representation. By discretizing this representation through a hashing layer, EndoFinder enables real-time retrieval from a compiled database of historical polyp cases, where diagnostic information serves as interpretable references for new queries. We evaluate EndoFinder on both public and newly collected polyp datasets for re-identification and pathology classification. Results show that EndoFinder outperforms existing methods in accuracy while providing transparent, retrieval-based insights for clinical decision-making. By contributing a novel dataset and a scalable, explainable framework, our work addresses key challenges in polyp diagnosis and offers a promising direction for more efficient AI-driven colonoscopy workflows. The source code is available at https://github.com/ku262/EndoFinder-Scene.

Authors:Peiqi Chen, Lei Yu, Yi Wan, Yingying Pei, Xinyi Liu, Yongxiang Yao, Yingying Zhang, Lixiang Ru, Liheng Zhong, Jingdong Chen, Ming Yang, Yongjun Zhang
Title: CasP: Improving Semi-Dense Feature Matching Pipeline Leveraging Cascaded Correspondence Priors for Guidance
Abstract:
Semi-dense feature matching methods have shown strong performance in challenging scenarios. However, the existing pipeline relies on a global search across the entire feature map to establish coarse matches, limiting further improvements in accuracy and efficiency. Motivated by this limitation, we propose a novel pipeline, CasP, which leverages cascaded correspondence priors for guidance. Specifically, the matching stage is decomposed into two progressive phases, bridged by a region-based selective cross-attention mechanism designed to enhance feature discriminability. In the second phase, one-to-one matches are determined by restricting the search range to the one-to-many prior areas identified in the first phase. Additionally, this pipeline benefits from incorporating high-level features, which helps reduce the computational costs of low-level feature extraction. The acceleration gains of CasP increase with higher resolution, and our lite model achieves a speedup of $\sim2.2\times$ at a resolution of 1152 compared to the most efficient method, ELoFTR. Furthermore, extensive experiments demonstrate its superiority in geometric estimation, particularly with impressive cross-domain generalization. These advantages highlight its potential for latency-sensitive and high-robustness applications, such as SLAM and UAV systems. Code is available at https://github.com/pq-chen/CasP.

Authors:Tobias Morocutti, Jonathan Greif, Paul Primus, Florian Schmid, Gerhard Widmer
Title: On Temporal Guidance and Iterative Refinement in Audio Source Separation
Abstract:
Spatial semantic segmentation of sound scenes (S5) involves the accurate identification of active sound classes and the precise separation of their sources from complex acoustic mixtures. Conventional systems rely on a two-stage pipeline - audio tagging followed by label-conditioned source separation - but are often constrained by the absence of fine-grained temporal information critical for effective separation. In this work, we address this limitation by introducing a novel approach for S5 that enhances the synergy between the event detection and source separation stages. Our key contributions are threefold. First, we fine-tune a pre-trained Transformer to detect active sound classes. Second, we utilize a separate instance of this fine-tuned Transformer to perform sound event detection (SED), providing the separation module with detailed, time-varying guidance. Third, we implement an iterative refinement mechanism that progressively enhances separation quality by recursively reusing the separator's output from previous iterations. These advancements lead to significant improvements in both audio tagging and source separation performance, as demonstrated by our system's second-place finish in Task 4 of the DCASE Challenge 2025. Our implementation and model checkpoints are available in our GitHub repository: https://github.com/theMoro/dcase25task4 .

Authors:Jianxin Bi, Kevin Yuchen Ma, Ce Hao, Mike Zheng Shou, Harold Soh
Title: VLA-Touch: Enhancing Vision-Language-Action Models with Dual-Level Tactile Feedback
Abstract:
Tactile feedback is generally recognized to be crucial for effective interaction with the physical world. However, state-of-the-art Vision-Language-Action (VLA) models lack the ability to interpret and use tactile signals, limiting their effectiveness in contact-rich tasks. Incorporating tactile feedback into these systems is challenging due to the absence of large multi-modal datasets. We present VLA-Touch, an approach that enhances generalist robot policies with tactile sensing \emph{without fine-tuning} the base VLA. Our method introduces two key innovations: (1) a pipeline that leverages a pretrained tactile-language model that provides semantic tactile feedback for high-level task planning, and (2) a diffusion-based controller that refines VLA-generated actions with tactile signals for contact-rich manipulation. Through real-world experiments, we demonstrate that our dual-level integration of tactile feedback improves task planning efficiency while enhancing execution precision. Code is open-sourced at \href{https://github.com/jxbi1010/VLA-Touch}{this URL}.

Authors:Ruodai Cui, Li Niu, Guosheng Hu
Title: Unsupervised Exposure Correction
Abstract:
Current exposure correction methods have three challenges, labor-intensive paired data annotation, limited generalizability, and performance degradation in low-level computer vision tasks. In this work, we introduce an innovative Unsupervised Exposure Correction (UEC) method that eliminates the need for manual annotations, offers improved generalizability, and enhances performance in low-level downstream tasks. Our model is trained using freely available paired data from an emulated Image Signal Processing (ISP) pipeline. This approach does not need expensive manual annotations, thereby minimizing individual style biases from the annotation and consequently improving its generalizability. Furthermore, we present a large-scale Radiometry Correction Dataset, specifically designed to emphasize exposure variations, to facilitate unsupervised learning. In addition, we develop a transformation function that preserves image details and outperforms state-of-the-art supervised methods [12], while utilizing only 0.01% of their parameters. Our work further investigates the broader impact of exposure correction on downstream tasks, including edge detection, demonstrating its effectiveness in mitigating the adverse effects of poor exposure on low-level features. The source code and dataset are publicly available at https://github.com/BeyondHeaven/uec_code.

Authors:Feng Cao, Zishuo Feng, Wei Shi, Jicong Zhang
Title: HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Abstract:
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline significantly outperforms state-of-the-art tools such as KiloSort4 and MountainSort5 on accuracy and precision on diverse datasets. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings. Code is available at: https://github.com/IgarashiAkatuki/HuiduRep

Authors:Jooyeol Yun, Heng Wang, Yotaro Shimose, Jaegul Choo, Shingo Takamatsu
Title: DesignLab: Designing Slides Through Iterative Detection and Correction
Abstract:
Designing high-quality presentation slides can be challenging for non-experts due to the complexity involved in navigating various design choices. Numerous automated tools can suggest layouts and color schemes, yet often lack the ability to refine their own output, which is a key aspect in real-world workflows. We propose DesignLab, which separates the design process into two roles, the design reviewer, who identifies design-related issues, and the design contributor who corrects them. This decomposition enables an iterative loop where the reviewer continuously detects issues and the contributor corrects them, allowing a draft to be further polished with each iteration, reaching qualities that were unattainable. We fine-tune large language models for these roles and simulate intermediate drafts by introducing controlled perturbations, enabling the design reviewer learn design errors and the contributor learn how to fix them. Our experiments show that DesignLab outperforms existing design-generation methods, including a commercial tool, by embracing the iterative nature of designing which can result in polished, professional slides.

Authors:Haiyu Wu, Jaskirat Singh, Sicong Tian, Liang Zheng, Kevin W. Bowyer
Title: Vec2Face+ for Face Dataset Generation
Abstract:
When synthesizing identities as face recognition training data, it is generally believed that large inter-class separability and intra-class attribute variation are essential for synthesizing a quality dataset. % This belief is generally correct, and this is what we aim for. However, when increasing intra-class variation, existing methods overlook the necessity of maintaining intra-class identity consistency. % To address this and generate high-quality face training data, we propose Vec2Face+, a generative model that creates images directly from image features and allows for continuous and easy control of face identities and attributes. Using Vec2Face+, we obtain datasets with proper inter-class separability and intra-class variation and identity consistency using three strategies: 1) we sample vectors sufficiently different from others to generate well-separated identities; 2) we propose an AttrOP algorithm for increasing general attribute variations; 3) we propose LoRA-based pose control for generating images with profile head poses, which is more efficient and identity-preserving than AttrOP. % Our system generates VFace10K, a synthetic face dataset with 10K identities, which allows an FR model to achieve state-of-the-art accuracy on seven real-world test sets. Scaling the size to 4M and 12M images, the corresponding VFace100K and VFace300K datasets yield higher accuracy than the real-world training dataset, CASIA-WebFace, on five real-world test sets. This is the first time a synthetic dataset beats the CASIA-WebFace in average accuracy. In addition, we find that only 1 out of 11 synthetic datasets outperforms random guessing (\emph{i.e., 50\%}) in twin verification and that models trained with synthetic identities are more biased than those trained with real identities. Both are important aspects for future investigation. Code is available at https://github.com/HaiyuWu/Vec2Face_plus

Authors:Shaohan Li, Hao Yang, Min Chen, Xiaolin Qin
Title: Met$^2$Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for Complex Meteorological Systems
Abstract:
The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the \textbf{end-to-end methods}, thanks to deep learning techniques, but they face limitations of \textit{representation inconsistency} in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a \textbf{two-stage training approach} from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.

Authors:Lingfeng Zeng, Fangqi Lou, Zixuan Wang, Jiajie Xu, Jinyi Niu, Mengping Li, Yifan Dong, Qi Qi, Wei Zhang, Ziwei Yang, Jun Han, Ruilun Feng, Ruiqi Hu, Lejie Zhang, Zhengbo Feng, Yicheng Ren, Xin Guo, Zhaowei Liu, Dongpo Cheng, Weige Cai, Liwen Zhang
Title: FinGAIA: A Chinese Benchmark for AI Agents in Real-World Financial Domain
Abstract:
The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.

Authors:Zhiqiang Liu, Enpei Niu, Yin Hua, Mengshu Sun, Lei Liang, Huajun Chen, Wen Zhang
Title: SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Abstract:
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/zjukg/SKA-Bench.

Authors:Bharath Krishnamurthy, Ajita Rattani
Title: DOOMGAN:High-Fidelity Dynamic Identity Obfuscation Ocular Generative Morphing
Abstract:
Ocular biometrics in the visible spectrum have emerged as a prominent modality due to their high accuracy, resistance to spoofing, and non-invasive nature. However, morphing attacks, synthetic biometric traits created by blending features from multiple individuals, threaten biometric system integrity. While extensively studied for near-infrared iris and face biometrics, morphing in visible-spectrum ocular data remains underexplored. Simulating such attacks demands advanced generation models that handle uncontrolled conditions while preserving detailed ocular features like iris boundaries and periocular textures. To address this gap, we introduce DOOMGAN, that encompasses landmark-driven encoding of visible ocular anatomy, attention-guided generation for realistic morph synthesis, and dynamic weighting of multi-faceted losses for optimized convergence. DOOMGAN achieves over 20% higher attack success rates than baseline methods under stringent thresholds, along with 20% better elliptical iris structure generation and 30% improved gaze consistency. We also release the first comprehensive ocular morphing dataset to support further research in this domain.

Authors:Ruodai Cui, Lei Zhang
Title: UNICE: Training A Universal Image Contrast Enhancer
Abstract:
Existing image contrast enhancement methods are typically designed for specific tasks such as under-/over-exposure correction, low-light and backlit image enhancement, etc. The learned models, however, exhibit poor generalization performance across different tasks, even across different datasets of a specific task. It is important to explore whether we can learn a universal and generalized model for various contrast enhancement tasks. In this work, we observe that the common key factor of these tasks lies in the need of exposure and contrast adjustment, which can be well-addressed if high-dynamic range (HDR) inputs are available. We hence collect 46,928 HDR raw images from public sources, and render 328,496 sRGB images to build multi-exposure sequences (MES) and the corresponding pseudo sRGB ground-truths via multi-exposure fusion. Consequently, we train a network to generate an MES from a single sRGB image, followed by training another network to fuse the generated MES into an enhanced image. Our proposed method, namely UNiversal Image Contrast Enhancer (UNICE), is free of costly human labeling. However, it demonstrates significantly stronger generalization performance than existing image contrast enhancement methods across and within different tasks, even outperforming manually created ground-truths in multiple no-reference image quality metrics. The dataset, code and model are available at https://github.com/BeyondHeaven/UNICE.

Authors:Fangze Lin, Ying He, Fei Yu, Hong Zhang
Title: JAM: Keypoint-Guided Joint Prediction after Classification-Aware Marginal Proposal for Multi-Agent Interaction
Abstract:
Predicting the future motion of road participants is a critical task in autonomous driving. In this work, we address the challenge of low-quality generation of low-probability modes in multi-agent joint prediction. To tackle this issue, we propose a two-stage multi-agent interactive prediction framework named \textit{keypoint-guided joint prediction after classification-aware marginal proposal} (JAM). The first stage is modeled as a marginal prediction process, which classifies queries by trajectory type to encourage the model to learn all categories of trajectories, providing comprehensive mode information for the joint prediction module. The second stage is modeled as a joint prediction process, which takes the scene context and the marginal proposals from the first stage as inputs to learn the final joint distribution. We explicitly introduce key waypoints to guide the joint prediction module in better capturing and leveraging the critical information from the initial predicted trajectories. We conduct extensive experiments on the real-world Waymo Open Motion Dataset interactive prediction benchmark. The results show that our approach achieves competitive performance. In particular, in the framework comparison experiments, the proposed JAM outperforms other prediction frameworks and achieves state-of-the-art performance in interactive trajectory prediction. The code is available at https://github.com/LinFunster/JAM to facilitate future research.

Authors:Anirudh Satheesh, Anant Khandelwal, Mucong Ding, Radu Balan
Title: PICore: Physics-Informed Unsupervised Coreset Selection for Data Efficient Neural Operator Training
Abstract:
Neural operators offer a powerful paradigm for solving partial differential equations (PDEs) that cannot be solved analytically by learning mappings between function spaces. However, there are two main bottlenecks in training neural operators: they require a significant amount of training data to learn these mappings, and this data needs to be labeled, which can only be accessed via expensive simulations with numerical solvers. To alleviate both of these issues simultaneously, we propose PICore, an unsupervised coreset selection framework that identifies the most informative training samples without requiring access to ground-truth PDE solutions. PICore leverages a physics-informed loss to select unlabeled inputs by their potential contribution to operator learning. After selecting a compact subset of inputs, only those samples are simulated using numerical solvers to generate labels, reducing annotation costs. We then train the neural operator on the reduced labeled dataset, significantly decreasing training time as well. Across four diverse PDE benchmarks and multiple coreset selection strategies, PICore achieves up to 78% average increase in training efficiency relative to supervised coreset selection methods with minimal changes in accuracy. We provide code at https://github.com/Asatheesh6561/PICore.

Authors:Ting Jiang, Yixiao Wang, Hancheng Ye, Zishan Shao, Jingwei Sun, Jingyang Zhang, Zekai Chen, Jianyi Zhang, Yiran Chen, Hai Li
Title: SADA: Stability-guided Adaptive Diffusion Acceleration
Abstract:
Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent $\ge 1.8\times$ speedups with minimal fidelity degradation (LPIPS $\leq 0.10$ and FID $\leq 4.5$) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by $1.8\times$ with $\sim 0.01$ spectrogram LPIPS.

Authors:Seokhwan Jeong, Hogyun Kim, Younggun Cho
Title: MARSCalib: Multi-robot, Automatic, Robust, Spherical Target-based Extrinsic Calibration in Field and Extraterrestrial Environments
Abstract:
This paper presents a novel spherical target-based LiDAR-camera extrinsic calibration method designed for outdoor environments with multi-robot systems, considering both target and sensor corruption. The method extracts the 2D ellipse center from the image and the 3D sphere center from the pointcloud, which are then paired to compute the transformation matrix. Specifically, the image is first decomposed using the Segment Anything Model (SAM). Then, a novel algorithm extracts an ellipse from a potentially corrupted sphere, and the extracted center of ellipse is corrected for errors caused by the perspective projection model. For the LiDAR pointcloud, points on the sphere tend to be highly noisy due to the absence of flat regions. To accurately extract the sphere from these noisy measurements, we apply a hierarchical weighted sum to the accumulated pointcloud. Through experiments, we demonstrated that the sphere can be robustly detected even under both types of corruption, outperforming other targets. We evaluated our method using three different types of LiDARs (spinning, solid-state, and non-repetitive) with cameras positioned in three different locations. Furthermore, we validated the robustness of our method to target corruption by experimenting with spheres subjected to various types of degradation. These experiments were conducted in both a planetary test and a field environment. Our code is available at https://github.com/sparolab/MARSCalib.

Authors:Masayoshi Someya, Taisuke Yamada, Tomohisa Okazaki
Title: OkadaTorch: A Differentiable Programming of Okada Model to Calculate Displacements and Strains from Fault Parameters
Abstract:
The Okada model is a widely used analytical solution for displacements and strains caused by a point or rectangular dislocation source in a 3D elastic half-space. We present OkadaTorch, a PyTorch implementation of the Okada model, where the entire code is differentiable; gradients with respect to input can be easily computed using automatic differentiation (AD). Our work consists of two components: a direct translation of the original Okada model into PyTorch, and a convenient wrapper interface for efficiently computing gradients and Hessians with respect to either observation station coordinates or fault parameters. This differentiable framework is well suited for fault parameter inversion, including gradient-based optimization, Bayesian inference, and integration with scientific machine learning (SciML) models. Our code is available here: https://github.com/msomeya1/OkadaTorch

Authors:Zaipeng Duan, Chenxu Dang, Xuzhong Hu, Pei An, Junfeng Ding, Jie Zhan, Yunbiao Xu, Jie Ma
Title: SDGOCC: Semantic and Depth-Guided Bird's-Eye View Transformation for 3D Multimodal Occupancy Prediction
Abstract:
Multimodal 3D occupancy prediction has garnered significant attention for its potential in autonomous driving. However, most existing approaches are single-modality: camera-based methods lack depth information, while LiDAR-based methods struggle with occlusions. Current lightweight methods primarily rely on the Lift-Splat-Shoot (LSS) pipeline, which suffers from inaccurate depth estimation and fails to fully exploit the geometric and semantic information of 3D LiDAR points. Therefore, we propose a novel multimodal occupancy prediction network called SDG-OCC, which incorporates a joint semantic and depth-guided view transformation coupled with a fusion-to-occupancy-driven active distillation. The enhanced view transformation constructs accurate depth distributions by integrating pixel semantics and co-point depth through diffusion and bilinear discretization. The fusion-to-occupancy-driven active distillation extracts rich semantic information from multimodal data and selectively transfers knowledge to image features based on LiDAR-identified regions. Finally, for optimal performance, we introduce SDG-Fusion, which uses fusion alone, and SDG-KL, which integrates both fusion and distillation for faster inference. Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset and shows comparable performance on the more challenging SurroundOcc-nuScenes dataset, demonstrating its effectiveness and robustness. The code will be released at https://github.com/DzpLab/SDGOCC.

Authors:Zheng Tan, Tariq D. Aslam, Andrea L. Bertozzi
Title: Explicit Monotone Stable Super-Time-Stepping Methods for Finite Time Singularities
Abstract:
We explore a novel way to numerically resolve the scaling behavior of finite-time singularities in solutions of nonlinear parabolic PDEs. The Runge--Kutta--Legendre (RKL) and Runge--Kutta--Gegenbauer (RKG) super-time-stepping methods were originally developed for nonlinear complex physics problems with diffusion. These are multi-stage single step second-order, forward-in-time methods with no implicit solves. The advantage is that the timestep size for stability scales with stage number $s$ as $\mathcal{O}(s^2)$. Many interesting nonlinear PDEs have finite-time singularities, and the presence of diffusion often limits one to using implicit or semi-implicit timestep methods for stability constraints. Finite-time singularities are particularly challenging due to the large range of scales that one desires to resolve, often with adaptive spatial grids and adaptive timesteps. Here we show two examples of nonlinear PDEs for which the self-similar singularity structure has time and space scales that are resolvable using the RKL and RKG methods, without forcing even smaller timesteps. Compared to commonly-used implicit numerical methods, we achieve significantly smaller run time while maintaining comparable accuracy. We also prove numerical monotonicity for both the RKL and RKG methods under their linear stability conditions for the constant coefficient heat equation, in the case of infinite domain and periodic boundary condition, leading to a theoretical guarantee of the superiority of the RKL and RKG methods over traditional super-time-stepping methods, such as the Runge-Kutta-Chebyshev (RKC) and the orthogonal Runge-Kutta-Chebyshev (ROCK) methods. Code can be found at https://github.com/ZT220501/SRK-Singularity.

Authors:Luchuan Song, Yang Zhou, Zhan Xu, Yi Zhou, Deepali Aneja, Chenliang Xu
Title: StreamME: Simplify 3D Gaussian Avatar within Live Stream
Abstract:
We propose StreamME, a method focuses on fast 3D avatar reconstruction. The StreamME synchronously records and reconstructs a head avatar from live video streams without any pre-cached data, enabling seamless integration of the reconstructed appearance into downstream applications. This exceptionally fast training strategy, which we refer to as on-the-fly training, is central to our approach. Our method is built upon 3D Gaussian Splatting (3DGS), eliminating the reliance on MLPs in deformable 3DGS and relying solely on geometry, which significantly improves the adaptation speed to facial expression. To further ensure high efficiency in on-the-fly training, we introduced a simplification strategy based on primary points, which distributes the point clouds more sparsely across the facial surface, optimizing points number while maintaining rendering quality. Leveraging the on-the-fly training capabilities, our method protects the facial privacy and reduces communication bandwidth in VR system or online conference. Additionally, it can be directly applied to downstream application such as animation, toonify, and relighting. Please refer to our project page for more details: https://songluchuan.github.io/StreamME/.

Authors:Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, Tom Gunter
Title: Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge?
Abstract:
Pairwise preferences over model responses are widely collected to evaluate and provide feedback to large language models (LLMs). Given two alternative model responses to the same input, a human or AI annotator selects the "better" response. This approach can provide feedback for domains where other hard-coded metrics are difficult to obtain (e.g., chat response quality), thereby helping model evaluation or training. However, for some domains high-quality pairwise comparisons can be tricky to obtain - from AI and humans. For example, for responses with many factual statements, annotators may disproportionately weigh writing quality rather than underlying facts. In this work, we explore augmenting standard AI annotator systems with additional tools to improve performance on three challenging response domains: long-form factual, math and code tasks. We propose a tool-using agentic system to provide higher quality feedback on these domains. Our system uses web-search and code execution to ground itself based on external validation, independent of the LLM's internal knowledge and biases. We provide extensive experimental results evaluating our method across the three targeted response domains as well as general annotation tasks, using RewardBench (incl. AlpacaEval and LLMBar), RewardMath, as well as three new datasets for domains with saturated pre-existing datasets. Our results indicate that external tools can indeed improve performance in many, but not all, cases. More generally, our experiments highlight the sensitivity of performance to simple parameters (e.g., prompt) and the need for improved (non-saturated) annotator benchmarks. We share our code at https://github.com/apple/ml-agent-evaluator.

Authors:Yueyao Xu, Yize Chen
Title: Fast Distribution Grid Topology Estimation via Subset Sum
Abstract:
Faced with increasing penetration of distributed energy resources and fast development of distribution grid energy management, topology identification of distribution grid becomes an important and fundamental task. As the underlying grid topology is usually unknown or incomplete to the utilities, it is becoming a fundamental task to efficiently identify the distribution grid network topology using limited measurements. A fast and accurate topology identification can help achieving the tasks of load monitoring, operation and control of power distribution system as well as outage detection. In this paper, we propose a novel and ultra-fast topology identification method. By adapting the subset sum method with a hierarchical structure, the overall grid topology can be inferred from fewer samples of smart meter power measurements. Such techniques can be applied in real time under the scenarios with fast topology change, and the proposed hierarchical algorithm is also robust against measurement noises.

Authors:Shmuel Amar, Ori Shapira, Aviv Slobodkin, Ido Dagan
Title: A Unifying Scheme for Extractive Content Selection Tasks
Abstract:
A broad range of NLP tasks involve selecting relevant text spans from given source texts. Despite this shared objective, such \textit{content selection} tasks have traditionally been studied in isolation, each with its own modeling approaches, datasets, and evaluation metrics. In this work, we propose \textit{instruction-guided content selection (IGCS)} as a beneficial unified framework for such settings, where the task definition and any instance-specific request are encapsulated as instructions to a language model. To promote this framework, we introduce \igcsbench{}, the first unified benchmark covering diverse content selection tasks. Further, we create a large generic synthetic dataset that can be leveraged for diverse content selection tasks, and show that transfer learning with these datasets often boosts performance, whether dedicated training for the targeted task is available or not. Finally, we address generic inference time issues that arise in LLM-based modeling of content selection, assess a generic evaluation metric, and overall propose the utility of our resources and methods for future content selection models. Models and datasets available at https://github.com/shmuelamar/igcs.

Authors:Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He, Chenyang Zhu, Hongyu Liu, Yingqing He, Zeyu Wang, Zhifeng Li, Xiu Li, Wei Liu, Dan Xu, Linfeng Zhang, Qifeng Chen
Title: Controllable Video Generation: A Survey
Abstract:
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.

Authors:Joey Spronck, Leander van Eekelen, Dominique van Midden, Joep Bogaerts, Leslie Tessier, Valerie Dechering, Muradije Demirel-Andishmand, Gabriel Silva de Souza, Roland Nemeth, Enrico Munari, Giuseppe Bogina, Ilaria Girolami, Albino Eccher, Balazs Acs, Ceren Boyaci, Natalie Klubickova, Monika Looijen-Salamon, Shoko Vos, Francesco Ciompi
Title: A tissue and cell-level annotated H&E and PD-L1 histopathology image dataset in non-small cell lung cancer
Abstract:
The tumor immune microenvironment (TIME) in non-small cell lung cancer (NSCLC) histopathology contains morphological and molecular characteristics predictive of immunotherapy response. Computational quantification of TIME characteristics, such as cell detection and tissue segmentation, can support biomarker development. However, currently available digital pathology datasets of NSCLC for the development of cell detection or tissue segmentation algorithms are limited in scope, lack annotations of clinically prevalent metastatic sites, and forgo molecular information such as PD-L1 immunohistochemistry (IHC). To fill this gap, we introduce the IGNITE data toolkit, a multi-stain, multi-centric, and multi-scanner dataset of annotated NSCLC whole-slide images. We publicly release 887 fully annotated regions of interest from 155 unique patients across three complementary tasks: (i) multi-class semantic segmentation of tissue compartments in H&E-stained slides, with 16 classes spanning primary and metastatic NSCLC, (ii) nuclei detection, and (iii) PD-L1 positive tumor cell detection in PD-L1 IHC slides. To the best of our knowledge, this is the first public NSCLC dataset with manual annotations of H&E in metastatic sites and PD-L1 IHC.

Authors:Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying Peng, Jun Wang, Weinan Zhang
Title: MobileUse: A GUI Agent with Hierarchical Reflection for Autonomous Mobile Operation
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have enabled the development of mobile agents that can understand visual inputs and follow user instructions, unlocking new possibilities for automating complex tasks on mobile devices. However, applying these models to real-world mobile scenarios remains a significant challenge due to the long-horizon task execution, difficulty in error recovery, and the cold-start problem in unfamiliar environments. To address these challenges, we propose MobileUse, a GUI agent designed for robust and adaptive mobile task execution. To improve resilience in long-horizon tasks and dynamic environments, we introduce a hierarchical reflection architecture that enables the agent to self-monitor, detect, and recover from errors across multiple temporal scales-ranging from individual actions to overall task completion-while maintaining efficiency through a reflection-on-demand strategy. To tackle cold-start issues, we further introduce a proactive exploration module, which enriches the agent's understanding of the environment through self-planned exploration. Evaluations on AndroidWorld and AndroidLab benchmarks demonstrate that MobileUse establishes new state-of-the-art performance, achieving success rates of 62.9% and 44.2%, respectively. To facilitate real-world applications, we release an out-of-the-box toolkit for automated task execution on physical mobile devices, which is available at https://github.com/MadeAgents/mobile-use.

Authors:Giovanni De Toni, Erasmo Purificato, Emilia Gómez, Bruno Lepri, Andrea Passerini, Cristian Consonni
Title: You Don't Bring Me Flowers: Mitigating Unwanted Recommendations Through Conformal Risk Control
Abstract:
Recommenders are significantly shaping online information consumption. While effective at personalizing content, these systems increasingly face criticism for propagating irrelevant, unwanted, and even harmful recommendations. Such content degrades user satisfaction and contributes to significant societal issues, including misinformation, radicalization, and erosion of user trust. Although platforms offer mechanisms to mitigate exposure to undesired content, these mechanisms are often insufficiently effective and slow to adapt to users' feedback. This paper introduces an intuitive, model-agnostic, and distribution-free method that uses conformal risk control to provably bound unwanted content in personalized recommendations by leveraging simple binary feedback on items. We also address a limitation of traditional conformal risk control approaches, i.e., the fact that the recommender can provide a smaller set of recommended items, by leveraging implicit feedback on consumed items to expand the recommendation set while ensuring robust risk mitigation. Our experimental evaluation on data coming from a popular online video-sharing platform demonstrates that our approach ensures an effective and controllable reduction of unwanted recommendations with minimal effort. The source code is available here: https://github.com/geektoni/mitigating-harm-recsys.

Authors:Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, Fu-En Yang
Title: ThinkAct: Vision-Language-Action Reasoning via Reinforced Visual Latent Planning
Abstract:
Vision-language-action (VLA) reasoning tasks require agents to interpret multimodal instructions, perform long-horizon planning, and act adaptively in dynamic environments. Existing approaches typically train VLA models in an end-to-end fashion, directly mapping inputs to actions without explicit reasoning, which hinders their ability to plan over multiple steps or adapt to complex task variations. In this paper, we propose ThinkAct, a dual-system framework that bridges high-level reasoning with low-level action execution via reinforced visual latent planning. ThinkAct trains a multimodal LLM to generate embodied reasoning plans guided by reinforcing action-aligned visual rewards based on goal completion and trajectory consistency. These reasoning plans are compressed into a visual plan latent that conditions a downstream action model for robust action execution on target environments. Extensive experiments on embodied reasoning and robot manipulation benchmarks demonstrate that ThinkAct enables few-shot adaptation, long-horizon planning, and self-correction behaviors in complex embodied AI tasks.

Authors:Run-Ze Fan, Zengzhi Wang, Pengfei Liu
Title: MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning
Abstract:
Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

Authors:Yanjun Zheng, Xiyang Du, Longfei Liao, Xiaoke Zhao, Zhaowen Zhou, Jingze Song, Bo Zhang, Jiawei Liu, Xiang Qi, Zhe Li, Zhiqiang Zhang, Wei Wang, Peng Zhang
Title: Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning
Abstract:
Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.

Authors:Changhao Li, Xinrui Chen, Ji Wang, Kang Zhao, Jianfei Chen
Title: Task-Specific Zero-shot Quantization-Aware Training for Object Detection
Abstract:
Quantization is a key technique to reduce network size and computational complexity by representing the network parameters with a lower precision. Traditional quantization methods rely on access to original training data, which is often restricted due to privacy concerns or security challenges. Zero-shot Quantization (ZSQ) addresses this by using synthetic data generated from pre-trained models, eliminating the need for real training data. Recently, ZSQ has been extended to object detection. However, existing methods use unlabeled task-agnostic synthetic images that lack the specific information required for object detection, leading to suboptimal performance. In this paper, we propose a novel task-specific ZSQ framework for object detection networks, which consists of two main stages. First, we introduce a bounding box and category sampling strategy to synthesize a task-specific calibration set from the pre-trained network, reconstructing object locations, sizes, and category distributions without any prior knowledge. Second, we integrate task-specific training into the knowledge distillation process to restore the performance of quantized detection networks. Extensive experiments conducted on the MS-COCO and Pascal VOC datasets demonstrate the efficiency and state-of-the-art performance of our method. Our code is publicly available at: https://github.com/DFQ-Dojo/dfq-toolkit .

Authors:Ran Wang, Xiaoxuan Liu, Hao Ren, Gang Chen, Fanchao Qi, Maosong Sun
Title: WGRAMMAR: Leverage Prior Knowledge to Accelerate Structured Decoding
Abstract:
Structured decoding enables large language models (LLMs) to generate outputs in formats required by downstream systems, such as HTML or JSON. However, existing methods suffer from efficiency bottlenecks due to grammar compilation, state tracking, and mask creation. We observe that many real-world tasks embed strong prior knowledge about output structure. Leveraging this, we propose a decomposition of constraints into static and dynamic components -- precompiling static structures offline and instantiating dynamic arguments at runtime using grammar snippets. Instead of relying on pushdown automata, we employ a compositional set of operators to model regular formats, achieving lower transition latency. We introduce wgrammar, a lightweight decoding engine that integrates domain-aware simplification, constraint decomposition, and mask caching, achieving up to 250x speedup over existing systems. wgrammar's source code is publicly available at https://github.com/wrran/wgrammar.

Authors:Marcel Kleinmann, Shashank Agnihotri, Margret Keuper
Title: Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks
Abstract:
Faithfulness and interpretability are essential for deploying deep neural networks (DNNs) in safety-critical domains such as medical imaging. B-cos networks offer a promising solution by replacing standard linear layers with a weight-input alignment mechanism, producing inherently interpretable, class-specific explanations without post-hoc methods. While maintaining diagnostic performance competitive with state-of-the-art DNNs, standard B-cos models suffer from severe aliasing artifacts in their explanation maps, making them unsuitable for clinical use where clarity is essential. In this work, we address these limitations by introducing anti-aliasing strategies using FLCPooling (FLC) and BlurPool (BP) to significantly improve explanation quality. Our experiments on chest X-ray datasets demonstrate that the modified $\text{B-cos}_\text{FLC}$ and $\text{B-cos}_\text{BP}$ preserve strong predictive performance while providing faithful and artifact-free explanations suitable for clinical application in multi-class and multi-label settings. Code available at: GitHub repository (url: https://github.com/mkleinma/B-cos-medical-paper).

Authors:Keneni W. Tesema, Lyndon Hill, Mark W. Jones, Gary K. L. Tam
Title: Denoising-While-Completing Network (DWCNet): Robust Point Cloud Completion Under Corruption
Abstract:
Point cloud completion is crucial for 3D computer vision tasks in autonomous driving, augmented reality, and robotics. However, obtaining clean and complete point clouds from real-world environments is challenging due to noise and occlusions. Consequently, most existing completion networks -- trained on synthetic data -- struggle with real-world degradations. In this work, we tackle the problem of completing and denoising highly corrupted partial point clouds affected by multiple simultaneous degradations. To benchmark robustness, we introduce the Corrupted Point Cloud Completion Dataset (CPCCD), which highlights the limitations of current methods under diverse corruptions. Building on these insights, we propose DWCNet (Denoising-While-Completing Network), a completion framework enhanced with a Noise Management Module (NMM) that leverages contrastive learning and self-attention to suppress noise and model structural relationships. DWCNet achieves state-of-the-art performance on both clean and corrupted, synthetic and real-world datasets. The dataset and code will be publicly available at https://github.com/keneniwt/DWCNET-Robust-Point-Cloud-Completion-against-Corruptions

Authors:Yilong Xu, Xiang Long, Zhi Zheng, Jinhua Gao
Title: RAVine: Reality-Aligned Evaluation for Agentic Search
Abstract:
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.

Authors:Yiguo He, Junjie Zhu, Yiying Li, Xiaoyu Zhang, Chunping Qiu, Jun Wang, Qiangjuan Huang, Ke Yang
Title: Enhancing Remote Sensing Vision-Language Models Through MLLM and LLM-Based High-Quality Image-Text Dataset Generation
Abstract:
The application of Vision-language foundation models (VLFMs) to remote sensing (RS) imagery has garnered significant attention due to their superior capability in various downstream tasks. A key challenge lies in the scarcity of high-quality, large-scale, image-text paired training data. Recently, several works introduced extensive image-text datasets for RS and trained their VLFMs. However, due to the rudimentary methods used for generating captions, the quality of datasets is suboptimal, requiring larger volumes of training data, while only yielding modest performance improvements. In this paper, we propose a two-stage method named MpGI(Multi-Perspective Generation and Integration) for generating high-quality text captions for RS images. Firstly, we generate distinct and detailed descriptions from different perspectives using Rule-MLLM(Multimodal Large Language Model) Relay Generation and MLLMs generation methods. Next, we utilize Large Language Models (LLMs) to integrate these diverse descriptions into comprehensive captions, capturing details from multiple perspectives. Finally, we have created the HQRS-IT-210K dataset, including about 210,000 RS images and 1.3 million captions. We fine-tuned two VLFMs using our dataset: CLIP, a discriminative model, and CoCa, an image-to-text generative model. This process resulted in our proposed HQRS-CLIP and RS-CoCa models. Experimental results demonstrate that HQRS-CLIP surpassed the previous SOTA RS CLIP model in various downstream tasks while using only 4.2\% of the training data. RS-CoCa outperforms other advanced approaches across benchmark datasets and can generate captions for RS images that rival or even exceed manual annotations. Dataset, pre-trained models, and codes will be released at https://github.com/YiguoHe/HQRS-210K-and-HQRS-CLIP.

Authors:Pingyi Fan, Anbai Jiang, Shuwei Zhang, Zhiqiang Lv, Bing Han, Xinhu Zheng, Wenrui Liang, Junjie Li, Wei-Qiang Zhang, Yanmin Qian, Xie Chen, Cheng Lu, Jia Liu
Title: FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
Abstract:
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER

Authors:Zongzheng Zhang, Jiawen Yang, Ziqiao Peng, Meng Yang, Jianzhu Ma, Lin Cheng, Huazhe Xu, Hang Zhao, Hao Zhao
Title: Morpheus: A Neural-driven Animatronic Face with Hybrid Actuation and Diverse Emotion Control
Abstract:
Previous animatronic faces struggle to express emotions effectively due to hardware and software limitations. On the hardware side, earlier approaches either use rigid-driven mechanisms, which provide precise control but are difficult to design within constrained spaces, or tendon-driven mechanisms, which are more space-efficient but challenging to control. In contrast, we propose a hybrid actuation approach that combines the best of both worlds. The eyes and mouth-key areas for emotional expression-are controlled using rigid mechanisms for precise movement, while the nose and cheek, which convey subtle facial microexpressions, are driven by strings. This design allows us to build a compact yet versatile hardware platform capable of expressing a wide range of emotions. On the algorithmic side, our method introduces a self-modeling network that maps motor actions to facial landmarks, allowing us to automatically establish the relationship between blendshape coefficients for different facial expressions and the corresponding motor control signals through gradient backpropagation. We then train a neural network to map speech input to corresponding blendshape controls. With our method, we can generate distinct emotional expressions such as happiness, fear, disgust, and anger, from any given sentence, each with nuanced, emotion-specific control signals-a feature that has not been demonstrated in earlier systems. We release the hardware design and code at https://github.com/ZZongzheng0918/Morpheus-Hardware and https://github.com/ZZongzheng0918/Morpheus-Software.

Authors:Boyong Wu, Chao Yan, Chen Hu, Cheng Yi, Chengli Feng, Fei Tian, Feiyu Shen, Gang Yu, Haoyang Zhang, Jingbei Li, Mingrui Chen, Peng Liu, Wang You, Xiangyu Tony Zhang, Xingyuan Li, Xuerui Yang, Yayue Deng, Yechang Huang, Yuxin Li, Yuxin Zhang, Zhao You, Brian Li, Changyi Wan, Hanpeng Hu, Jiangjie Zhen, Siyu Chen, Song Yuan, Xuelin Zhang, Yimin Jiang, Yu Zhou, Yuxiang Yang, Bingxin Li, Buyun Ma, Changhe Song, Dongqing Pang, Guoqiang Hu, Haiyang Sun, Kang An, Na Wang, Shuli Gao, Wei Ji, Wen Li, Wen Sun, Xuan Wen, Yong Ren, Yuankai Ma, Yufan Lu, Bin Wang, Bo Li, Changxin Miao, Che Liu, Chen Xu, Dapeng Shi, Dingyuan Hu, Donghang Wu, Enle Liu, Guanzhe Huang, Gulin Yan, Han Zhang, Hao Nie, Haonan Jia, Hongyu Zhou, Jianjian Sun, Jiaoren Wu, Jie Wu, Jie Yang, Jin Yang, Junzhe Lin, Kaixiang Li, Lei Yang, Liying Shi, Li Zhou, Longlong Gu, Ming Li, Mingliang Li, Mingxiao Li, Nan Wu, Qi Han, Qinyuan Tan, Shaoliang Pang, Shengjie Fan, Siqi Liu, Tiancheng Cao, Wanying Lu, Wenqing He, Wuxun Xie, Xu Zhao, Xueqi Li, Yanbo Yu, Yang Yang, Yi Liu, Yifan Lu, Yilei Wang, Yuanhao Ding, Yuanwei Liang, Yuanwei Lu, Yuchu Luo, Yuhe Yin, Yumeng Zhan, Yuxiang Zhang, Zidong Yang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-Yeung Shum, Jiansheng Chen, Jing Li, Xiangyu Zhang, Yibo Zhu
Title: Step-Audio 2 Technical Report
Abstract:
This paper presents Step-Audio 2, an end-to-end multi-modal large language model designed for industry-strength audio understanding and speech conversation. By integrating a latent audio encoder and reasoning-centric reinforcement learning (RL), Step-Audio 2 achieves promising performance in automatic speech recognition (ASR) and audio understanding. To facilitate genuine end-to-end speech conversation, Step-Audio 2 incorporates the generation of discrete audio tokens into language modeling, significantly enhancing its responsiveness to paralinguistic information such as speaking styles and emotions. To effectively leverage the rich textual and acoustic knowledge in real-world data, Step-Audio 2 integrates retrieval-augmented generation (RAG) and is able to call external tools such as web search to mitigate hallucination and audio search to switch timbres. Trained on millions of hours of speech and audio data, Step-Audio 2 delivers intelligence and expressiveness across diverse conversational scenarios. Evaluation results demonstrate that Step-Audio 2 achieves state-of-the-art performance on various audio understanding and conversational benchmarks compared to other open-source and commercial solutions. Please visit https://github.com/stepfun-ai/Step-Audio2 for more information.

Authors:Meng Lou, Yunxiang Fu, Yizhou Yu
Title: A2Mamba: Attention-augmented State Space Models for Visual Recognition
Abstract:
Transformers and Mamba, initially invented for natural language processing, have inspired backbone architectures for visual recognition. Recent studies integrated Local Attention Transformers with Mamba to capture both local details and global contexts. Despite competitive performance, these methods are limited to simple stacking of Transformer and Mamba layers without any interaction mechanism between them. Thus, deep integration between Transformer and Mamba layers remains an open problem. We address this problem by proposing A2Mamba, a powerful Transformer-Mamba hybrid network architecture, featuring a new token mixer termed Multi-scale Attention-augmented State Space Model (MASS), where multi-scale attention maps are integrated into an attention-augmented SSM (A2SSM). A key step of A2SSM performs a variant of cross-attention by spatially aggregating the SSM's hidden states using the multi-scale attention maps, which enhances spatial dependencies pertaining to a two-dimensional space while improving the dynamic modeling capabilities of SSMs. Our A2Mamba outperforms all previous ConvNet-, Transformer-, and Mamba-based architectures in visual recognition tasks. For instance, A2Mamba-L achieves an impressive 86.1% top-1 accuracy on ImageNet-1K. In semantic segmentation, A2Mamba-B exceeds CAFormer-S36 by 2.5% in mIoU, while exhibiting higher efficiency. In object detection and instance segmentation with Cascade Mask R-CNN, A2Mamba-S surpasses MambaVision-B by 1.2%/0.9% in AP^b/AP^m, while having 40% less parameters. Code is publicly available at https://github.com/LMMMEng/A2Mamba.

Authors:Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou
Title: Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation
Abstract:
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Guanghui Wang
Title: Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis
Abstract:
Medical image synthesis plays a crucial role in clinical workflows, addressing the common issue of missing imaging modalities due to factors such as extended scan times, scan corruption, artifacts, patient motion, and intolerance to contrast agents. The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff), which employs a multi-scale hierarchical approach for more detailed control over synthesizing high-quality images across different resolutions and layers. Specifically, this model utilizes randomly multi-scale high-proportion masks to speed up diffusion model training, and balances detail fidelity and overall structure. The integration of a Transformer-based Diffusion model process incorporates cross-granularity regularization, modeling the mutual information consistency across each granularity's latent spaces, thereby enhancing pixel-level perceptual accuracy. Comprehensive experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), highlighting its capability to produce high-quality synthesized images with excellent structural integrity. Ablation studies further confirm the contributions of each component. Furthermore, the PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods. The source code is available at https://github.com/xiaojiao929/PHMDiff

Authors:Shang Liu, Chenjie Cao, Chaohui Yu, Wen Qian, Jing Wang, Fan Wang
Title: EarthCrafter: Scalable 3D Earth Generation via Dual-Sparse Latent Diffusion
Abstract:
Despite the remarkable developments achieved by recent 3D generation works, scaling these methods to geographic extents, such as modeling thousands of square kilometers of Earth's surface, remains an open challenge. We address this through a dual innovation in data infrastructure and model architecture. First, we introduce Aerial-Earth3D, the largest 3D aerial dataset to date, consisting of 50k curated scenes (each measuring 600m x 600m) captured across the U.S. mainland, comprising 45M multi-view Google Earth frames. Each scene provides pose-annotated multi-view images, depth maps, normals, semantic segmentation, and camera poses, with explicit quality control to ensure terrain diversity. Building on this foundation, we propose EarthCrafter, a tailored framework for large-scale 3D Earth generation via sparse-decoupled latent diffusion. Our architecture separates structural and textural generation: 1) Dual sparse 3D-VAEs compress high-resolution geometric voxels and textural 2D Gaussian Splats (2DGS) into compact latent spaces, largely alleviating the costly computation suffering from vast geographic scales while preserving critical information. 2) We propose condition-aware flow matching models trained on mixed inputs (semantics, images, or neither) to flexibly model latent geometry and texture features independently. Extensive experiments demonstrate that EarthCrafter performs substantially better in extremely large-scale generation. The framework further supports versatile applications, from semantic-guided urban layout generation to unconditional terrain synthesis, while maintaining geographic plausibility through our rich data priors from Aerial-Earth3D. Our project page is available at https://whiteinblue.github.io/earthcrafter/

Authors:Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
Title: confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
Abstract:
Gradient-based one-shot neural architecture search (NAS) has significantly reduced the cost of exploring architectural spaces with discrete design choices, such as selecting operations within a model. However, the field faces two major challenges. First, evaluations of gradient-based NAS methods heavily rely on the DARTS benchmark, despite the existence of other available benchmarks. This overreliance has led to saturation, with reported improvements often falling within the margin of noise. Second, implementations of gradient-based one-shot NAS methods are fragmented across disparate repositories, complicating fair and reproducible comparisons and further development. In this paper, we introduce Configurable Optimizer (confopt), an extensible library designed to streamline the development and evaluation of gradient-based one-shot NAS methods. Confopt provides a minimal API that makes it easy for users to integrate new search spaces, while also supporting the decomposition of NAS optimizers into their core components. We use this framework to create a suite of new DARTS-based benchmarks, and combine them with a novel evaluation protocol to reveal a critical flaw in how gradient-based one-shot NAS methods are currently assessed. The code can be found at https://github.com/automl/ConfigurableOptimizer.

Authors:Xiaoyan Wang, Zeju Li, Yifan Xu, Jiaxing Qi, Zhifei Yang, Ruifei Ma, Xiangde Liu, Chao Zhang
Title: Spatial 3D-LLM: Exploring Spatial Awareness in 3D Vision-Language Models
Abstract:
New era has unlocked exciting possibilities for extending Large Language Models (LLMs) to tackle 3D vision-language tasks. However, most existing 3D multimodal LLMs (MLLMs) rely on compressing holistic 3D scene information or segmenting independent objects to perform these tasks, which limits their spatial awareness due to insufficient representation of the richness inherent in 3D scenes. To overcome these limitations, we propose Spatial 3D-LLM, a 3D MLLM specifically designed to enhance spatial awareness for 3D vision-language tasks by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM integrates an LLM backbone with a progressive spatial awareness scheme that progressively captures spatial information as the perception field expands, generating location-enriched 3D scene embeddings to serve as visual prompts. Furthermore, we introduce two novel tasks: 3D object distance measurement and 3D layout editing, and construct a 3D instruction dataset, MODEL, to evaluate the model's spatial awareness capabilities. Experimental results demonstrate that Spatial 3D-LLM achieves state-of-the-art performance across a wide range of 3D vision-language tasks, revealing the improvements stemmed from our progressive spatial awareness scheme of mining more profound spatial information. Our code is available at https://github.com/bjshuyuan/Spatial-3D-LLM.

Authors:Junying Wang, Zicheng Zhang, Yijin Guo, Farong Wen, Ye Shen, Yingji Liang, Yalun Wu, Wenzhe Li, Chunyi Li, Zijian Chen, Qi Jia, Guangtao Zhai
Title: The Ever-Evolving Science Exam
Abstract:
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.

Authors:Fabrizio Nunnari, Shailesh Mishra, Patrick Gebhard
Title: MMS Player: an open source software for parametric data-driven animation of Sign Language avatars
Abstract:
This paper describes the MMS-Player, an open source software able to synthesise sign language animations from a novel sign language representation format called MMS (MultiModal Signstream). The MMS enhances gloss-based representations by adding information on parallel execution of signs, timing, and inflections. The implementation consists of Python scripts for the popular Blender 3D authoring tool and can be invoked via command line or HTTP API. Animations can be rendered as videos or exported in other popular 3D animation exchange formats. The software is freely available under GPL-3.0 license at https://github.com/DFKI-SignLanguage/MMS-Player.

Authors:Kai Deng, Zexin Ti, Jiawei Xu, Jian Yang, Jin Xie
Title: VGGT-Long: Chunk it, Loop it, Align it -- Pushing VGGT's Limits on Kilometer-scale Long RGB Sequences
Abstract:
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. In this work, we propose VGGT-Long, a simple yet effective system that pushes the limits of monocular 3D reconstruction to kilometer-scale, unbounded outdoor environments. Our approach addresses the scalability bottlenecks of existing models through a chunk-based processing strategy combined with overlapping alignment and lightweight loop closure optimization. Without requiring camera calibration, depth supervision or model retraining, VGGT-Long achieves trajectory and reconstruction performance comparable to traditional methods. We evaluate our method on KITTI, Waymo, and Virtual KITTI datasets. VGGT-Long not only runs successfully on long RGB sequences where foundation models typically fail, but also produces accurate and consistent geometry across various conditions. Our results highlight the potential of leveraging foundation models for scalable monocular 3D scene in real-world settings, especially for autonomous driving scenarios. Code is available at https://github.com/DengKaiCQ/VGGT-Long.

Authors:Elza Strazda, Gerasimos Spanakis
Title: Dutch CrowS-Pairs: Adapting a Challenge Dataset for Measuring Social Biases in Language Models for Dutch
Abstract:
Warning: This paper contains explicit statements of offensive stereotypes which might be upsetting. Language models are prone to exhibiting biases, further amplifying unfair and harmful stereotypes. Given the fast-growing popularity and wide application of these models, it is necessary to ensure safe and fair language models. As of recent considerable attention has been paid to measuring bias in language models, yet the majority of studies have focused only on English language. A Dutch version of the US-specific CrowS-Pairs dataset for measuring bias in Dutch language models is introduced. The resulting dataset consists of 1463 sentence pairs that cover bias in 9 categories, such as Sexual orientation, Gender and Disability. The sentence pairs are composed of contrasting sentences, where one of the sentences concerns disadvantaged groups and the other advantaged groups. Using the Dutch CrowS-Pairs dataset, we show that various language models, BERTje, RobBERT, multilingual BERT, GEITje and Mistral-7B exhibit substantial bias across the various bias categories. Using the English and French versions of the CrowS-Pairs dataset, bias was evaluated in English (BERT and RoBERTa) and French (FlauBERT and CamemBERT) language models, and it was shown that English models exhibit the most bias, whereas Dutch models the least amount of bias. Additionally, results also indicate that assigning a persona to a language model changes the level of bias it exhibits. These findings highlight the variability of bias across languages and contexts, suggesting that cultural and linguistic factors play a significant role in shaping model biases.

Authors:Kahim Wong, Jicheng Zhou, Haiwei Wu, Yain-Whar Si, Jiantao Zhou
Title: ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement
Abstract:
The advancement of image editing tools has enabled malicious manipulation of sensitive document images, underscoring the need for robust document image forgery detection.Though forgery detectors for natural images have been extensively studied, they struggle with document images, as the tampered regions can be seamlessly blended into the uniform document background (BG) and structured text. On the other hand, existing document-specific methods lack sufficient robustness against various degradations, which limits their practical deployment. This paper presents ADCD-Net, a robust document forgery localization model that adaptively leverages the RGB/DCT forensic traces and integrates key characteristics of document images. Specifically, to address the DCT traces' sensitivity to block misalignment, we adaptively modulate the DCT feature contribution based on a predicted alignment score, resulting in much improved resilience to various distortions, including resizing and cropping. Also, a hierarchical content disentanglement approach is proposed to boost the localization performance via mitigating the text-BG disparities. Furthermore, noticing the predominantly pristine nature of BG regions, we construct a pristine prototype capturing traces of untampered regions, and eventually enhance both the localization accuracy and robustness. Our proposed ADCD-Net demonstrates superior forgery localization performance, consistently outperforming state-of-the-art methods by 20.79\% averaged over 5 types of distortions. The code is available at https://github.com/KAHIMWONG/ACDC-Net.

Authors:Xian Mo, Fei Liu, Rui Tang, Jintao, Gao, Hao Liu
Title: Knowledge-aware Diffusion-Enhanced Multimedia Recommendation
Abstract:
Multimedia recommendations aim to use rich multimedia content to enhance historical user-item interaction information, which can not only indicate the content relatedness among items but also reveal finer-grained preferences of users. In this paper, we propose a Knowledge-aware Diffusion-Enhanced architecture using contrastive learning paradigms (KDiffE) for multimedia recommendations. Specifically, we first utilize original user-item graphs to build an attention-aware matrix into graph neural networks, which can learn the importance between users and items for main view construction. The attention-aware matrix is constructed by adopting a random walk with a restart strategy, which can preserve the importance between users and items to generate aggregation of attention-aware node features. Then, we propose a guided diffusion model to generate strongly task-relevant knowledge graphs with less noise for constructing a knowledge-aware contrastive view, which utilizes user embeddings with an edge connected to an item to guide the generation of strongly task-relevant knowledge graphs for enhancing the item's semantic information. We perform comprehensive experiments on three multimedia datasets that reveal the effectiveness of our KDiffE and its components on various state-of-the-art methods. Our source codes are available https://github.com/1453216158/KDiffE.

Authors:Kuo-Cheng Wu, Guohang Zhuang, Jinyang Huang, Xiang Zhang, Wanli Ouyang, Yan Lu
Title: STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Abstract:
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.

Authors:Hailin Yue, Hulin Kuang, Jin Liu, Junjian Li, Lanlan Wang, Mengshen He, Jianxin Wang
Title: Bipartite Patient-Modality Graph Learning with Event-Conditional Modelling of Censoring for Cancer Survival Prediction
Abstract:
Accurately predicting the survival of cancer patients is crucial for personalized treatment. However, existing studies focus solely on the relationships between samples with known survival risks, without fully leveraging the value of censored samples. Furthermore, these studies may suffer performance degradation in modality-missing scenarios and even struggle during the inference process. In this study, we propose a bipartite patient-modality graph learning with event-conditional modelling of censoring for cancer survival prediction (CenSurv). Specifically, we first use graph structure to model multimodal data and obtain representation. Then, to alleviate performance degradation in modality-missing scenarios, we design a bipartite graph to simulate the patient-modality relationship in various modality-missing scenarios and leverage a complete-incomplete alignment strategy to explore modality-agnostic features. Finally, we design a plug-and-play event-conditional modeling of censoring (ECMC) that selects reliable censored data using dynamic momentum accumulation confidences, assigns more accurate survival times to these censored data, and incorporates them as uncensored data into training. Comprehensive evaluations on 5 publicly cancer datasets showcase the superiority of CenSurv over the best state-of-the-art by 3.1% in terms of the mean C-index, while also exhibiting excellent robustness under various modality-missing scenarios. In addition, using the plug-and-play ECMC module, the mean C-index of 8 baselines increased by 1.3% across 5 datasets. Code of CenSurv is available at https://github.com/yuehailin/CenSurv.

Authors:Jinquan Guan, Junhong Guo, Qi Chen, Jian Chen, Yongkang Cai, Yilin He, Zhiquan Huang, Yan Wang, Yutong Xie
Title: A High Magnifications Histopathology Image Dataset for Oral Squamous Cell Carcinoma Diagnosis and Prognosis
Abstract:
Oral Squamous Cell Carcinoma (OSCC) is a prevalent and aggressive malignancy where deep learning-based computer-aided diagnosis and prognosis can enhance clinical assessments.However, existing publicly available OSCC datasets often suffer from limited patient cohorts and a restricted focus on either diagnostic or prognostic tasks, limiting the development of comprehensive and generalizable models. To bridge this gap, we introduce Multi-OSCC, a new histopathology image dataset comprising 1,325 OSCC patients, integrating both diagnostic and prognostic information to expand existing public resources. Each patient is represented by six high resolution histopathology images captured at x200, x400, and x1000 magnifications-two per magnification-covering both the core and edge tumor regions.The Multi-OSCC dataset is richly annotated for six critical clinical tasks: recurrence prediction (REC), lymph node metastasis (LNM), tumor differentiation (TD), tumor invasion (TI), cancer embolus (CE), and perineural invasion (PI). To benchmark this dataset, we systematically evaluate the impact of different visual encoders, multi-image fusion techniques, stain normalization, and multi-task learning frameworks. Our analysis yields several key insights: (1) The top-performing models achieve excellent results, with an Area Under the Curve (AUC) of 94.72% for REC and 81.23% for TD, while all tasks surpass 70% AUC; (2) Stain normalization benefits diagnostic tasks but negatively affects recurrence prediction; (3) Multi-task learning incurs a 3.34% average AUC degradation compared to single-task models in our multi-task benchmark, underscoring the challenge of balancing multiple tasks in our dataset. To accelerate future research, we publicly release the Multi-OSCC dataset and baseline models at https://github.com/guanjinquan/OSCC-PathologyImageDataset.

Authors:Yumeng Wang, Zengyi Wo, Wenjun Wang, Xingcheng Fu, Minglai Shao
Title: Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels. This assumption does not hold in many real-world heterophilic graphs. Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures. This leads to suboptimal performance, particularly under noise from conflicting class information across nodes. To address these challenges, we propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks. HPGNN introduces an efficient high-order approximation of Personalized PageRank (PPR) to capture long-range and multi-scale node interactions. This approach reduces computational complexity and mitigates noise from surrounding information. By embedding higher-order structural information into convolutional networks, HPGNN effectively models key interactions across diverse graph dimensions. Extensive experiments on benchmark datasets demonstrate HPGNN's effectiveness. The model achieves better performance than five out of seven state-of-the-art methods on heterophilic graphs in downstream tasks while maintaining competitive performance on homophilic graphs. HPGNN's ability to balance multi-scale information and robustness to noise makes it a versatile solution for real-world graph learning challenges. Codes are available at https://github.com/streetcorner/HPGNN.

Authors:Pengfei Cai, Yan Song, Qing Gu, Nan Jiang, Haoyu Song, Ian McLoughlin
Title: Detect Any Sound: Open-Vocabulary Sound Event Detection with Multi-Modal Queries
Abstract:
Most existing sound event detection~(SED) algorithms operate under a closed-set assumption, restricting their detection capabilities to predefined classes. While recent efforts have explored language-driven zero-shot SED by exploiting audio-language models, their performance is still far from satisfactory due to the lack of fine-grained alignment and cross-modal feature fusion. In this work, we propose the Detect Any Sound Model (DASM), a query-based framework for open-vocabulary SED guided by multi-modal queries. DASM formulates SED as a frame-level retrieval task, where audio features are matched against query vectors derived from text or audio prompts. To support this formulation, DASM introduces a dual-stream decoder that explicitly decouples event recognition and temporal localization: a cross-modality event decoder performs query-feature fusion and determines the presence of sound events at the clip-level, while a context network models temporal dependencies for frame-level localization. Additionally, an inference-time attention masking strategy is proposed to leverage semantic relations between base and novel classes, substantially enhancing generalization to novel classes. Experiments on the AudioSet Strong dataset demonstrate that DASM effectively balances localization accuracy with generalization to novel classes, outperforming CLAP-based methods in open-vocabulary setting (+ 7.8 PSDS) and the baseline in the closed-set setting (+ 6.9 PSDS). Furthermore, in cross-dataset zero-shot evaluation on DESED, DASM achieves a PSDS1 score of 42.2, even exceeding the supervised CRNN baseline. The project page is available at https://cai525.github.io/Transformer4SED/demo_page/DASM/.

Authors:Joseph De Mathia, Carlos Francisco Moreno-García
Title: Scene Text Detection and Recognition "in light of" Challenging Environmental Conditions using Aria Glasses Egocentric Vision Cameras
Abstract:
In an era where wearable technology is reshaping applications, Scene Text Detection and Recognition (STDR) becomes a straightforward choice through the lens of egocentric vision. Leveraging Meta's Project Aria smart glasses, this paper investigates how environmental variables, such as lighting, distance, and resolution, affect the performance of state-of-the-art STDR algorithms in real-world scenarios. We introduce a novel, custom-built dataset captured under controlled conditions and evaluate two OCR pipelines: EAST with CRNN, and EAST with PyTesseract. Our findings reveal that resolution and distance significantly influence recognition accuracy, while lighting plays a less predictable role. Notably, image upscaling emerged as a key pre-processing technique, reducing Character Error Rate (CER) from 0.65 to 0.48. We further demonstrate the potential of integrating eye-gaze tracking to optimise processing efficiency by focusing on user attention zones. This work not only benchmarks STDR performance under realistic conditions but also lays the groundwork for adaptive, user-aware AR systems. Our contributions aim to inspire future research in robust, context-sensitive text recognition for assistive and research-oriented applications, such as asset inspection and nutrition analysis. The code is available at https://github.com/josepDe/Project_Aria_STR.

Authors:Kailai Zhou, Fuqiang Yang, Shixian Wang, Bihan Wen, Chongde Zi, Linsen Chen, Qiu Shen, Xun Cao
Title: M-SpecGene: Generalized Foundation Model for RGBT Multispectral Vision
Abstract:
RGB-Thermal (RGBT) multispectral vision is essential for robust perception in complex environments. Most RGBT tasks follow a case-by-case research paradigm, relying on manually customized models to learn task-oriented representations. Nevertheless, this paradigm is inherently constrained by artificial inductive bias, modality bias, and data bottleneck. To address these limitations, we make the initial attempt to build a Generalized RGBT MultiSpectral foundation model (M-SpecGene), which aims to learn modality-invariant representations from large-scale broad data in a self-supervised manner. M-SpecGene provides new insights into multispectral fusion and integrates prior case-by-case studies into a unified paradigm. Considering the unique characteristic of information imbalance in RGBT data, we introduce the Cross-Modality Structural Sparsity (CMSS) metric to quantify the information density across two modalities. Then we develop the GMM-CMSS progressive masking strategy to facilitate a flexible, easy-to-hard, and object-centric pre-training process. Comprehensive experiments validate M-SpecGene's generalizability across eleven datasets for four RGBT downstream tasks. The code will be available at https://github.com/CalayZhou/M-SpecGene.

Authors:Yanchen Liu, Yanan Sun, Zhening Xing, Junyao Gao, Kai Chen, Wenjie Pei
Title: MotionShot: Adaptive Motion Transfer across Arbitrary Objects for Text-to-Video Generation
Abstract:
Existing text-to-video methods struggle to transfer motion smoothly from a reference object to a target object with significant differences in appearance or structure between them. To address this challenge, we introduce MotionShot, a training-free framework capable of parsing reference-target correspondences in a fine-grained manner, thereby achieving high-fidelity motion transfer while preserving coherence in appearance. To be specific, MotionShot first performs semantic feature matching to ensure high-level alignments between the reference and target objects. It then further establishes low-level morphological alignments through reference-to-target shape retargeting. By encoding motion with temporal attention, our MotionShot can coherently transfer motion across objects, even in the presence of significant appearance and structure disparities, demonstrated by extensive experiments. The project page is available at: https://motionshot.github.io/.

Authors:Xianze Fang, Jingnan Gao, Zhe Wang, Zhuo Chen, Xingyu Ren, Jiangjing Lyu, Qiaomu Ren, Zhonglei Yang, Xiaokang Yang, Yichao Yan, Chengfei Lyu
Title: Dens3R: A Foundation Model for 3D Geometry Prediction
Abstract:
Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

Authors:Danil Gusak, Anna Volodkevich, Anton Klenitskiy, Alexey Vasilev, Evgeny Frolov
Title: Time to Split: Exploring Data Splitting Strategies for Offline Evaluation of Sequential Recommenders
Abstract:
Modern sequential recommender systems, ranging from lightweight transformer-based variants to large language models, have become increasingly prominent in academia and industry due to their strong performance in the next-item prediction task. Yet common evaluation protocols for sequential recommendations remain insufficiently developed: they often fail to reflect the corresponding recommendation task accurately, or are not aligned with real-world scenarios. Although the widely used leave-one-out split matches next-item prediction, it permits the overlap between training and test periods, which leads to temporal leakage and unrealistically long test horizon, limiting real-world relevance. Global temporal splitting addresses these issues by evaluating on distinct future periods. However, its applications to sequential recommendations remain loosely defined, particularly in terms of selecting target interactions and constructing a validation subset that provides necessary consistency between validation and test metrics. In this paper, we demonstrate that evaluation outcomes can vary significantly across splitting strategies, influencing model rankings and practical deployment decisions. To improve reproducibility in both academic and industrial settings, we systematically compare different splitting strategies for sequential recommendations across multiple datasets and established baselines. Our findings show that prevalent splits, such as leave-one-out, may be insufficiently aligned with more realistic evaluation strategies. Code: https://github.com/monkey0head/time-to-split

Authors:Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, Pengfei Liu
Title: ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry
Abstract:
The emergence of deep research systems presents significant capabilities in problem-solving, extending from basic queries to sophisticated research tasks. However, existing benchmarks primarily evaluate these systems as agents for web retrieval and report generation, overlooking their potential to discover novel insights on the frontiers of scientific research. To address this gap, we introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of these advanced, agentic systems - which we refer to as Deep AI Research Systems (DARS) - on frontier AI scientific questions. We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios such as laboratory discussions and interviews, spanning 35 different AI subjects and categorized into three types: technical details, literature review, and open consulting. Our dual evaluation framework combines rubric assessment, which uses expert-designed criteria to evaluate insight quality, with factual assessment, which measures citation accuracy (faithfulness) and coverage (groundedness). We evaluated several leading commercial DARS and baseline systems. Results show that OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions. Such capabilities represent a meaningful step toward AI self-improvement, aligning with the vision of ASI for AI. We open-source ResearcherBench to provide a standardized platform for promoting the development of next-generation AI research assistants, hoping to foster a new perspective in AI research evaluation for a novel pattern of scientific collaboration: https://github.com/GAIR-NLP/ResearcherBench.

Authors:Yu Wang, Bo Dang, Wanchun Li, Wei Chen, Yansheng Li
Title: HoliTracer: Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
Abstract:
With the increasing resolution of remote sensing imagery (RSI), large-size RSI has emerged as a vital data source for high-precision vector mapping of geographic objects. Existing methods are typically constrained to processing small image patches, which often leads to the loss of contextual information and produces fragmented vector outputs. To address these, this paper introduces HoliTracer, the first framework designed to holistically extract vectorized geographic objects from large-size RSI. In HoliTracer, we enhance segmentation of large-size RSI using the Context Attention Net (CAN), which employs a local-to-global attention mechanism to capture contextual dependencies. Furthermore, we achieve holistic vectorization through a robust pipeline that leverages the Mask Contour Reformer (MCR) to reconstruct polygons and the Polygon Sequence Tracer (PST) to trace vertices. Extensive experiments on large-size RSI datasets, including buildings, water bodies, and roads, demonstrate that HoliTracer outperforms state-of-the-art methods. Our code and data are available in https://github.com/vvangfaye/HoliTracer.

Authors:Chao Zhou, Tianyi Wei, Nenghai Yu
Title: Scale Your Instructions: Enhance the Instruction-Following Fidelity of Unified Image Generation Model by Self-Adaptive Attention Scaling
Abstract:
Recent advancements in unified image generation models, such as OmniGen, have enabled the handling of diverse image generation and editing tasks within a single framework, accepting multimodal, interleaved texts and images in free form. This unified architecture eliminates the need for text encoders, greatly reducing model complexity and standardizing various image generation and editing tasks, making it more user-friendly. However, we found that it suffers from text instruction neglect, especially when the text instruction contains multiple sub-instructions. To explore this issue, we performed a perturbation analysis on the input to identify critical steps and layers. By examining the cross-attention maps of these key steps, we observed significant conflicts between neglected sub-instructions and the activations of the input image. In response, we propose Self-Adaptive Attention Scaling (SaaS), a method that leverages the consistency of cross-attention between adjacent timesteps to dynamically scale the attention activation for each sub-instruction. Our SaaS enhances instruction-following fidelity without requiring additional training or test-time optimization. Experimental results on instruction-based image editing and visual conditional image generation validate the effectiveness of our SaaS, showing superior instruction-following fidelity over existing methods. The code is available https://github.com/zhouchao-ops/SaaS.

Authors:Shreelekha Revankar, Utkarsh Mall, Cheng Perng Phoo, Kavita Bala, Bharath Hariharan
Title: MONITRS: Multimodal Observations of Natural Incidents Through Remote Sensing
Abstract:
Natural disasters cause devastating damage to communities and infrastructure every year. Effective disaster response is hampered by the difficulty of accessing affected areas during and after events. Remote sensing has allowed us to monitor natural disasters in a remote way. More recently there have been advances in computer vision and deep learning that help automate satellite imagery analysis, However, they remain limited by their narrow focus on specific disaster types, reliance on manual expert interpretation, and lack of datasets with sufficient temporal granularity or natural language annotations for tracking disaster progression. We present MONITRS, a novel multimodal dataset of more than 10,000 FEMA disaster events with temporal satellite imagery and natural language annotations from news articles, accompanied by geotagged locations, and question-answer pairs. We demonstrate that fine-tuning existing MLLMs on our dataset yields significant performance improvements for disaster monitoring tasks, establishing a new benchmark for machine learning-assisted disaster response systems. Code can be found at: https://github.com/ShreelekhaR/MONITRS

Authors:Wentao Xiang, Haoxian Tan, Cong Wei, Yujie Zhong, Dengjie Li, Yujiu Yang
Title: Advancing Visual Large Language Model for Multi-granular Versatile Perception
Abstract:
Perception is a fundamental task in the field of computer vision, encompassing a diverse set of subtasks that can be systematically categorized into four distinct groups based on two dimensions: prediction type and instruction type. Notably, existing researches often focus solely on a limited subset of these potential combinations, which constrains their applicability and versatility across various contexts. In response to this challenge, we present MVP-LM, a Multi-granular and Versatile Perception framework incorporating Visual Large Language Model. Our framework is designed to integrate both word-based and sentence-based perception tasks alongside box and mask predictions within a single architecture. MVP-LM features an innovative multi-granularity decoder in conjunction with a CoT-inspired dataset unification strategy, enabling seamless supervised fine-tuning across a wide spectrum of tasks, including but not limited to panoptic segmentation, detection, grounding, and referring expression segmentation. Furthermore, we introduce a query enhancement strategy aimed at harnessing the decoding and generative capabilities inherent in VLLMs. Extensive experiments conducted across a range of benchmarks in both word-based and sentence-based perception tasks substantiate the efficacy of our framework. The code will be available at https://github.com/xiangwentao666/MVP-LM.

Authors:Pengwei Jin, Di Huang, Chongxiao Li, Shuyao Cheng, Yang Zhao, Xinyao Zheng, Jiaguo Zhu, Shuyi Xing, Bohan Dou, Rui Zhang, Zidong Du, Qi Guo, Xing Hu
Title: RealBench: Benchmarking Verilog Generation Models with Real-World IP Designs
Abstract:
The automatic generation of Verilog code using Large Language Models (LLMs) has garnered significant interest in hardware design automation. However, existing benchmarks for evaluating LLMs in Verilog generation fall short in replicating real-world design workflows due to their designs' simplicity, inadequate design specifications, and less rigorous verification environments. To address these limitations, we present RealBench, the first benchmark aiming at real-world IP-level Verilog generation tasks. RealBench features complex, structured, real-world open-source IP designs, multi-modal and formatted design specifications, and rigorous verification environments, including 100% line coverage testbenches and a formal checker. It supports both module-level and system-level tasks, enabling comprehensive assessments of LLM capabilities. Evaluations on various LLMs and agents reveal that even one of the best-performing LLMs, o1-preview, achieves only a 13.3% pass@1 on module-level tasks and 0% on system-level tasks, highlighting the need for stronger Verilog generation models in the future. The benchmark is open-sourced at https://github.com/IPRC-DIP/RealBench.

Authors:Zitong Xu, Huiyu Duan, Bingnan Liu, Guangji Ma, Jiarui Wang, Liu Yang, Shiqi Gao, Xiaoyu Wang, Jia Wang, Xiongkuo Min, Guangtao Zhai, Weisi Lin
Title: LMM4Edit: Benchmarking and Evaluating Multimodal Image Editing with LMMs
Abstract:
The rapid advancement of Text-guided Image Editing (TIE) enables image modifications through text prompts. However, current TIE models still struggle to balance image quality, editing alignment, and consistency with the original image, limiting their practical applications. Existing TIE evaluation benchmarks and metrics have limitations on scale or alignment with human perception. To this end, we introduce EBench-18K, the first large-scale image Editing Benchmark including 18K edited images with fine-grained human preference annotations for evaluating TIE. Specifically, EBench-18K includes 1,080 source images with corresponding editing prompts across 21 tasks, 18K+ edited images produced by 17 state-of-the-art TIE models, 55K+ mean opinion scores (MOSs) assessed from three evaluation dimensions, and 18K+ question-answering (QA) pairs. Based on EBench-18K, we employ outstanding LMMs to assess edited images, while the evaluation results, in turn, provide insights into assessing the alignment between the LMMs' understanding ability and human preferences. Then, we propose LMM4Edit, a LMM-based metric for evaluating image Editing models from perceptual quality, editing alignment, attribute preservation, and task-specific QA accuracy in an all-in-one manner. Extensive experiments show that LMM4Edit achieves outstanding performance and aligns well with human preference. Zero-shot validation on the other datasets also shows the generalization ability of our model. The dataset and code are available at https://github.com/IntMeGroup/LMM4Edit.

Authors:Fansheng Zeng, Bineng Zhong, Haiying Xia, Yufei Tan, Xiantao Hu, Liangtao Shi, Shuxiang Song
Title: Explicit Context Reasoning with Supervision for Visual Tracking
Abstract:
Contextual reasoning with constraints is crucial for enhancing temporal consistency in cross-frame modeling for visual tracking. However, mainstream tracking algorithms typically associate context by merely stacking historical information without explicitly supervising the association process, making it difficult to effectively model the target's evolving dynamics. To alleviate this problem, we propose RSTrack, which explicitly models and supervises context reasoning via three core mechanisms. \textit{1) Context Reasoning Mechanism}: Constructs a target state reasoning pipeline, converting unconstrained contextual associations into a temporal reasoning process that predicts the current representation based on historical target states, thereby enhancing temporal consistency. \textit{2) Forward Supervision Strategy}: Utilizes true target features as anchors to constrain the reasoning pipeline, guiding the predicted output toward the true target distribution and suppressing drift in the context reasoning process. \textit{3) Efficient State Modeling}: Employs a compression-reconstruction mechanism to extract the core features of the target, removing redundant information across frames and preventing ineffective contextual associations. These three mechanisms collaborate to effectively alleviate the issue of contextual association divergence in traditional temporal modeling. Experimental results show that RSTrack achieves state-of-the-art performance on multiple benchmark datasets while maintaining real-time running speeds. Our code is available at https://github.com/GXNU-ZhongLab/RSTrack.

Authors:Haoyin Yan, Jie Zhang, Chengqian Jiang, Shuang Zhang
Title: LABNet: A Lightweight Attentive Beamforming Network for Ad-hoc Multichannel Microphone Invariant Real-Time Speech Enhancement
Abstract:
Multichannel speech enhancement (SE) aims to restore clean speech from noisy measurements by leveraging spatiotemporal signal features. In ad-hoc array conditions, microphone invariance (MI) requires systems to handle different microphone numbers and array geometries. From a practical perspective, multichannel recordings inevitably increase the computational burden for edge-device applications, highlighting the necessity of lightweight and efficient deployments. In this work, we propose a lightweight attentive beamforming network (LABNet) to integrate MI in a low-complexity real-time SE system. We design a three-stage framework for efficient intra-channel modeling and inter-channel interaction. A cross-channel attention module is developed to aggregate features from each channel selectively. Experimental results demonstrate our LABNet achieves impressive performance with ultra-light resource overhead while maintaining the MI, indicating great potential for ad-hoc array processing. The code is available:https://github.com/Jokejiangv/LABNet.git

Authors:Nand Kumar Yadav, Rodrigue Rizk, William CW Chen, KC Santosh
Title: MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation
Abstract:
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

Authors:Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao, Raymond H. Chan, Suiyun Zhang, Rui Liu, Dandan Tu, Jean-Michel Morel
Title: PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
Abstract:
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with $\leq$ 1/200 of the training cost (\$500 vs. $\geq$ \$100,000) and $\leq$ 1/2500 of the dataset size (4K vs. $\geq$ 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen

Authors:Andrew Or, Apurva Jain, Daniel Vega-Myhre, Jesse Cai, Charles David Hernandez, Zhenrui Zheng, Driss Guessous, Vasiliy Kuznetsov, Christian Puhrsch, Mark Saroufim, Supriya Rao, Thien Tran, Aleksandar Samardžić
Title: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
Abstract:
We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at https://github.com/pytorch/ao/.

Authors:Rahul Venkatesh, Klemen Kotar, Lilian Naing Chen, Seungwoo Kim, Luca Thomas Wheeler, Jared Watrous, Ashley Xu, Gia Ancone, Wanhee Lee, Honglin Chen, Daniel Bear, Stefan Stojanov, Daniel Yamins
Title: Discovering and using Spelke segments
Abstract:
Segments in computer vision are often defined by semantic considerations and are highly dependent on category-specific conventions. In contrast, developmental psychology suggests that humans perceive the world in terms of Spelke objects--groupings of physical things that reliably move together when acted on by physical forces. Spelke objects thus operate on category-agnostic causal motion relationships which potentially better support tasks like manipulation and planning. In this paper, we first benchmark the Spelke object concept, introducing the SpelkeBench dataset that contains a wide variety of well-defined Spelke segments in natural images. Next, to extract Spelke segments from images algorithmically, we build SpelkeNet, a class of visual world models trained to predict distributions over future motions. SpelkeNet supports estimation of two key concepts for Spelke object discovery: (1) the motion affordance map, identifying regions likely to move under a poke, and (2) the expected-displacement map, capturing how the rest of the scene will move. These concepts are used for "statistical counterfactual probing", where diverse "virtual pokes" are applied on regions of high motion-affordance, and the resultant expected displacement maps are used define Spelke segments as statistical aggregates of correlated motion statistics. We find that SpelkeNet outperforms supervised baselines like SegmentAnything (SAM) on SpelkeBench. Finally, we show that the Spelke concept is practically useful for downstream applications, yielding superior performance on the 3DEditBench benchmark for physical object manipulation when used in a variety of off-the-shelf object manipulation models.

Authors:MSR Avinash, Ismael Lachheb
Title: Fast-VAT: Accelerating Cluster Tendency Visualization using Cython and Numba
Abstract:
Visual Assessment of Cluster Tendency (VAT) is a widely used unsupervised technique to assess the presence of cluster structure in unlabeled datasets. However, its standard implementation suffers from significant performance limitations due to its O(n^2) time complexity and inefficient memory usage. In this work, we present Fast-VAT, a high-performance reimplementation of the VAT algorithm in Python, augmented with Numba's Just-In-Time (JIT) compilation and Cython's static typing and low-level memory optimizations. Our approach achieves up to 50x speedup over the baseline implementation, while preserving the output fidelity of the original method. We validate Fast-VAT on a suite of real and synthetic datasets -- including Iris, Mall Customers, and Spotify subsets -- and verify cluster tendency using Hopkins statistics, PCA, and t-SNE. Additionally, we compare VAT's structural insights with clustering results from DBSCAN and K-Means to confirm its reliability.

Authors:Jaehoon Yoo, Wonjung Kim, Seunghoon Hong
Title: ReDi: Rectified Discrete Flow
Abstract:
Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we rigorously characterize the approximation error from factorization using Conditional Total Correlation (TC), which depends on the coupling. To reduce the Conditional TC and enable efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces factorization error by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete

Authors:Shahar Zuler, Gal Lifshitz, Hadar Averbuch-Elor, Dan Raviv
Title: Systole-Conditioned Generative Cardiac Motion
Abstract:
Accurate motion estimation in cardiac computed tomography (CT) imaging is critical for assessing cardiac function and surgical planning. Data-driven methods have become the standard approach for dense motion estimation, but they rely on vast amounts of labeled data with dense ground-truth (GT) motion annotations, which are often unfeasible to obtain. To address this limitation, we present a novel approach that synthesizes realistically looking pairs of cardiac CT frames enriched with dense 3D flow field annotations. Our method leverages a conditional Variational Autoencoder (CVAE), which incorporates a novel multi-scale feature conditioning mechanism and is trained to generate 3D flow fields conditioned on a single CT frame. By applying the generated flow field to warp the given frame, we create pairs of frames that simulate realistic myocardium deformations across the cardiac cycle. These pairs serve as fully annotated data samples, providing optical flow GT annotations. Our data generation pipeline could enable the training and validation of more complex and accurate myocardium motion models, allowing for substantially reducing reliance on manual annotations. Our code, along with animated generated samples and additional material, is available on our project page: https://shaharzuler.github.io/GenerativeCardiacMotion_Page.

Authors:Noah van der Vleuten
Title: Dr. Boot: Bootstrapping Program Synthesis Language Models to Perform Repairing
Abstract:
Language models for program synthesis are usually trained and evaluated on programming competition datasets (MBPP, APPS). However, these datasets are limited in size and quality, while these language models are extremely data hungry. Additionally, the language models have a misaligned program synthesis process compared to humans. While humans iteratively develop code with the help of a compiler, most program synthesis models currently produce code in one go. To solve these issues, we introduce a bootstrapping algorithm for program synthesis, that supports teaching models how to repair. We show that bootstrapping consistently outperforms regular fine-tuning. Compared to other work, our bootstrapped model performs on par with fine-tuned models that are 68\% larger. Notably, bootstrapping with repairing also improves non-repairing performance compared to regular bootstrapping during inference. However, on our models, repairing during inference is likely inferior to simply sampling the same number of solutions. Furthermore, we find that there are issues with the example test cases in the training portion of the APPS dataset that are valuable to the community, as many repairing and reinforcement learning methods rely on them.

Authors:John Wu, Adam Cross, Jimeng Sun
Title: RDMA: Cost Effective Agent-Driven Rare Disease Discovery within Electronic Health Record Systems
Abstract:
Rare diseases affect 1 in 10 Americans, yet standard ICD coding systems fail to capture these conditions in electronic health records (EHR), leaving crucial information buried in clinical notes. Current approaches struggle with medical abbreviations, miss implicit disease mentions, raise privacy concerns with cloud processing, and lack clinical reasoning abilities. We present Rare Disease Mining Agents (RDMA), a framework that mirrors how medical experts identify rare disease patterns in EHR. RDMA connects scattered clinical observations that together suggest specific rare conditions. By handling clinical abbreviations, recognizing implicit disease patterns, and applying contextual reasoning locally on standard hardware, RDMA reduces privacy risks while improving F1 performance by upwards of 30\% and decreasing inferences costs 10-fold. This approach helps clinicians avoid the privacy risk of using cloud services while accessing key rare disease information from EHR systems, supporting earlier diagnosis for rare disease patients. Available at https://github.com/jhnwu3/RDMA.

Authors:Jiawei Yang, Tianhong Li, Lijie Fan, Yonglong Tian, Yue Wang
Title: Latent Denoising Makes Good Visual Tokenizers
Abstract:
Despite their fundamental role, it remains unclear what properties could make visual tokenizers more effective for generative modeling. We observe that modern generative models share a conceptually similar training objective -- reconstructing clean signals from corrupted inputs such as Gaussian noise or masking -- a process we term denoising. Motivated by this insight, we propose aligning tokenizer embeddings directly with the downstream denoising objective, encouraging latent embeddings to be more easily reconstructed even when heavily corrupted. To achieve this, we introduce the Latent Denoising Tokenizer (l-DeTok), a simple yet effective tokenizer trained to reconstruct clean images from latent embeddings corrupted by interpolative noise and random masking. Extensive experiments on ImageNet 256x256 demonstrate that our tokenizer consistently outperforms standard tokenizers across six representative generative models. Our findings highlight denoising as a fundamental design principle for tokenizer development, and we hope it could motivate new perspectives for future tokenizer design.

Authors:Zhixiong Zhang, Shuangrui Ding, Xiaoyi Dong, Songxin He, Jianfan Lin, Junsong Tang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
Abstract:
Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

Authors:Shangke Lyu, Linjuan Wu, Yuchen Yan, Xingyu Wu, Hao Li, Yongliang Shen, Peisheng Jiang, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: Hierarchical Budget Policy Optimization for Adaptive Reasoning
Abstract:
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.

Authors:Ian Chuang, Jinyu Zou, Andrew Lee, Dechen Gao, Iman Soltani
Title: Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
Abstract:
Human vision is a highly active process driven by gaze, which directs attention to task-relevant regions through foveation, dramatically reducing visual processing. In contrast, robot learning systems typically rely on passive, uniform processing of raw camera images. In this work, we explore how incorporating human-like active gaze into robotic policies can enhance efficiency and robustness. We develop GIAVA (Gaze Integrated Active-Vision ALOHA), a robot vision system that emulates human head and neck movement, and gaze adjustment for foveated processing. Extending the AV-ALOHA robot platform, we introduce a framework for simultaneously collecting eye-tracking, perspective control, and robot manipulation demonstration data from a human operator. We also open-source a simulation benchmark and dataset for training robot policies that incorporate human gaze. Inspired by recent work in foveated image segmentation and given the widespread use of Vision Transformers (ViTs) in robot learning, we integrate gaze information into ViTs using a foveated patch tokenization scheme. Compared to uniform patch tokenization, this significantly reduces the number of tokens, and thus computation. Our results show that our method for foveated robot vision drastically reduces computational overhead, and enhances robustness to background distractors. Notably, on certain high-precision tasks, foveated vision also improves performance, as reflected in higher success rates. Together, these findings suggest that human-inspired foveated visual processing offers untapped potential and should be further considered as a useful inductive bias in robotic vision systems. https://ian-chuang.github.io/gaze-av-aloha/

Authors:Seth Karten, Wenzhe Li, Zihan Ding, Samuel Kleiner, Yu Bai, Chi Jin
Title: LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
Abstract:
We present the LLM Economist, a novel framework that uses agent-based modeling to design and assess economic policies in strategic environments with hierarchical decision-making. At the lower level, bounded rational worker agents -- instantiated as persona-conditioned prompts sampled from U.S. Census-calibrated income and demographic statistics -- choose labor supply to maximize text-based utility functions learned in-context. At the upper level, a planner agent employs in-context reinforcement learning to propose piecewise-linear marginal tax schedules anchored to the current U.S. federal brackets. This construction endows economic simulacra with three capabilities requisite for credible fiscal experimentation: (i) optimization of heterogeneous utilities, (ii) principled generation of large, demographically realistic agent populations, and (iii) mechanism design -- the ultimate nudging problem -- expressed entirely in natural language. Experiments with populations of up to one hundred interacting agents show that the planner converges near Stackelberg equilibria that improve aggregate social welfare relative to Saez solutions, while a periodic, persona-level voting procedure furthers these gains under decentralized governance. These results demonstrate that large language model-based agents can jointly model, simulate, and govern complex economic systems, providing a tractable test bed for policy evaluation at the societal scale to help build better civilizations.

Authors:Shuo Chen, Jianzhe Liu, Zhen Han, Yan Xia, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu
Title: True Multimodal In-Context Learning Needs Attention to the Visual Context
Abstract:
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .

Authors:Ghassen Baklouti, Julio Silva-Rodríguez, Jose Dolz, Houda Bahig, Ismail Ben Ayed
Title: Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation
Abstract:
Parameter-efficient fine-tuning (PEFT) of pre-trained foundation models is increasingly attracting interest in medical imaging due to its effectiveness and computational efficiency. Among these methods, Low-Rank Adaptation (LoRA) is a notable approach based on the assumption that the adaptation inherently occurs in a low-dimensional subspace. While it has shown good performance, its implementation requires a fixed and unalterable rank, which might be challenging to select given the unique complexities and requirements of each medical imaging downstream task. Inspired by advancements in natural image processing, we introduce a novel approach for medical image segmentation that dynamically adjusts the intrinsic rank during adaptation. Viewing the low-rank representation of the trainable weight matrices as a singular value decomposition, we introduce an l_1 sparsity regularizer to the loss function, and tackle it with a proximal optimizer. The regularizer could be viewed as a penalty on the decomposition rank. Hence, its minimization enables to find task-adapted ranks automatically. Our method is evaluated in a realistic few-shot fine-tuning setting, where we compare it first to the standard LoRA and then to several other PEFT methods across two distinguishable tasks: base organs and novel organs. Our extensive experiments demonstrate the significant performance improvements driven by our method, highlighting its efficiency and robustness against suboptimal rank initialization. Our code is publicly available: https://github.com/ghassenbaklouti/ARENA

Authors:Zihang Ma, Qitian Yin
Title: Graph Attention Specialized Expert Fusion Model for Node Classification: Based on Cora and Pubmed Datasets
Abstract:
Graph node classification is a fundamental task in graph neural networks (GNNs), aiming to assign predefined class labels to nodes. On the PubMed citation network dataset, we observe significant classification difficulty disparities, with Category 2 achieving only 74.4% accuracy in traditional GCN, 7.5% lower than Category 1. To address this, we propose a Wasserstein-Rubinstein (WR) distance enhanced Expert Fusion Model (WR-EFM), training specialized GNN models for Categories 0/1 (with layer normalization and residual connections) and Multi-hop Graph Attention Networks (GAT) for Category 2. The WR distance metric optimizes representation similarity between models, particularly focusing on improving Category 2 performance. Our adaptive fusion strategy dynamically weights models based on category-specific performance, with Category 2 assigned a GAT weight of 0.8. WR distance further guides the fusion process by measuring distributional differences between model representations, enabling more principled integration of complementary features. Experimental results show WR-EFM achieves balanced accuracy across categories: 77.8% (Category 0), 78.0% (Category 1), and 79.9% (Category 2), outperforming both single models and standard fusion approaches. The coefficient of variation (CV) of WR-EFM's category accuracies is 0.013, 77.6% lower than GCN's 0.058, demonstrating superior stability. Notably, WR-EFM improves Category 2 accuracy by 5.5% compared to GCN, verifying the effectiveness of WR-guided fusion in capturing complex structural patterns. This work provides a novel paradigm for handling class-imbalanced graph classification tasks. To promote the research community, we release our project at https://github.com/s010m00n/GASEM4NC.

Authors:Felix Köster, Atsushi Uchida
Title: Reservoir Computing as a Language Model
Abstract:
Large Language Models (LLM) have dominated the science and media landscape duo to their impressive performance on processing large chunks of data and produce human-like levels of text. Nevertheless, their huge energy demand and slow processing still a bottleneck for further increasing quality while also making the models accessible to everyone. To solve this bottleneck, we will investigate how reservoir computing performs on natural text processing, which could enable fast and energy efficient hardware implementations. Studies investigating the use of reservoir computing as a language model remain sparse. In this paper, we compare three distinct approaches for character-level language modeling, two different reservoir computing approaches, where only an output layer is trainable, and the well-known transformer-based architectures, which fully learn an attention-based sequence representation. We explore the performance, computational cost and prediction accuracy for both paradigms by equally varying the number of trainable parameters for all models. Using a consistent pipeline for all three approaches, we demonstrate that transformers excel in prediction quality, whereas reservoir computers remain highly efficient reducing the training and inference speed. Furthermore, we investigate two types of reservoir computing: a traditional reservoir with a static linear readout, and an attention-enhanced reservoir that dynamically adapts its output weights via an attention mechanism. Our findings underline how these paradigms scale and offer guidelines to balance resource constraints with performance.

Authors:Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, Guorui Zhou
Title: Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has become an effective post-training method for improving the reasoning abilities of Large Language Models (LLMs), mainly by shaping higher-order behaviors such as reflection and planning. However, previous RLVR algorithms often apply uniform training signals to all tokens, without considering the different roles of low-entropy knowledge-related tokens and high-entropy reasoning-related tokens. Some recent methods try to separate these token types by gradient masking or asynchronous updates, but these approaches may break semantic dependencies in the model output and hinder effective learning. In this work, we propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates. Specifically, our method applies weaker KL regularization and higher clipping thresholds to reasoning tokens to encourage exploration, while using stronger constraints on knowledge tokens to maintain factual knowledge. Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods, reaching or exceeding state-of-the-art performance among models of comparable size. The code is available at https://github.com/wizard-III/ArcherCodeR.

Authors:Feng-Qi Cui, Anyang Tong, Jinyang Huang, Jie Zhang, Dan Guo, Zhi Liu, Meng Wang
Title: Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization
Abstract:
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.

Authors:Xingyu Wu, Yuchen Yan, Shangke Lyu, Linjuan Wu, Yiwen Qiu, Yongliang Shen, Weiming Lu, Jian Shao, Jun Xiao, Yueting Zhuang
Title: LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Abstract:
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.

Authors:Ruizhe Zhu, Hao Zhu, Yaxuan Li, Syang Zhou, Shijing Cai, Malgorzata Lazuka, Elliott Ash
Title: DialogueForge: LLM Simulation of Human-Chatbot Dialogue
Abstract:
Collecting human-chatbot dialogues typically demands substantial manual effort and is time-consuming, which limits and poses challenges for research on conversational AI. In this work, we propose DialogueForge - a framework for generating AI-simulated conversations in human-chatbot style. To initialize each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions. We test a variety of LLMs to simulate the human chatbot user, ranging from state-of-the-art proprietary models to small-scale open-source LLMs, and generate multi-turn dialogues tailored to specific tasks. In addition, we explore fine-tuning techniques to enhance the ability of smaller models to produce indistinguishable human-like dialogues. We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols. Our experiments show that large proprietary models (e.g., GPT-4o) generally outperform others in generating more realistic dialogues, while smaller open-source models (e.g., Llama, Mistral) offer promising performance with greater customization. We demonstrate that the performance of smaller models can be significantly improved by employing supervised fine-tuning techniques. Nevertheless, maintaining coherent and natural long-form human-like dialogues remains a common challenge across all models.

Authors:Wenqi Ouyang, Zeqi Xiao, Danni Yang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Title: TokensGen: Harnessing Condensed Tokens for Long Video Generation
Abstract:
Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .

Authors:Wei Sun, Weixia Zhang, Linhan Cao, Jun Jia, Xiangyang Zhu, Dandan Zhu, Xiongkuo Min, Guangtao Zhai
Title: Efficient Face Image Quality Assessment via Self-training and Knowledge Distillation
Abstract:
Face image quality assessment (FIQA) is essential for various face-related applications. Although FIQA has been extensively studied and achieved significant progress, the computational complexity of FIQA algorithms remains a key concern for ensuring scalability and practical deployment in real-world systems. In this paper, we aim to develop a computationally efficient FIQA method that can be easily deployed in real-world applications. Specifically, our method consists of two stages: training a powerful teacher model and distilling a lightweight student model from it. To build a strong teacher model, we adopt a self-training strategy to improve its capacity. We first train the teacher model using labeled face images, then use it to generate pseudo-labels for a set of unlabeled images. These pseudo-labeled samples are used in two ways: (1) to distill knowledge into the student model, and (2) to combine with the original labeled images to further enhance the teacher model through self-training. The enhanced teacher model is used to further pseudo-label another set of unlabeled images for distilling the student models. The student model is trained using a combination of labeled images, pseudo-labeled images from the original teacher model, and pseudo-labeled images from the enhanced teacher model. Experimental results demonstrate that our student model achieves comparable performance to the teacher model with an extremely low computational overhead. Moreover, our method achieved first place in the ICCV 2025 VQualA FIQA Challenge. The code is available at https://github.com/sunwei925/Efficient-FIQA.git.

Authors:Wenjie Huang, Qi Yang, Shuting Xia, He Huang, Zhu Li, Yiling Xu
Title: LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud Geometry Compression
Abstract:
Existing AI-based point cloud compression methods struggle with dependence on specific training data distributions, which limits their real-world deployment. Implicit Neural Representation (INR) methods solve the above problem by encoding overfitted network parameters to the bitstream, resulting in more distribution-agnostic results. However, due to the limitation of encoding time and decoder size, current INR based methods only consider lossy geometry compression. In this paper, we propose the first INR based lossless point cloud geometry compression method called Lossless Implicit Neural Representations for Point Cloud Geometry Compression (LINR-PCGC). To accelerate encoding speed, we design a group of point clouds level coding framework with an effective network initialization strategy, which can reduce around 60% encoding time. A lightweight coding network based on multiscale SparseConv, consisting of scale context extraction, child node prediction, and model compression modules, is proposed to realize fast inference and compact decoder size. Experimental results show that our method consistently outperforms traditional and AI-based methods: for example, with the convergence time in the MVUB dataset, our method reduces the bitstream by approximately 21.21% compared to G-PCC TMC13v23 and 21.95% compared to SparsePCGC. Our project can be seen on https://huangwenjie2023.github.io/LINR-PCGC/.

Authors:Haomin Qi, Yuyang Du, Lihao Zhang, Soung Chang Liew, Kexin Chen, Yining Du
Title: VeriRAG: A Retrieval-Augmented Framework for Automated RTL Testability Repair
Abstract:
Large language models (LLMs) have demonstrated immense potential in computer-aided design (CAD), particularly for automated debugging and verification within electronic design automation (EDA) tools. However, Design for Testability (DFT) remains a relatively underexplored area. This paper presents VeriRAG, the first LLM-assisted DFT-EDA framework. VeriRAG leverages a Retrieval-Augmented Generation (RAG) approach to enable LLM to revise code to ensure DFT compliance. VeriRAG integrates (1) an autoencoder-based similarity measurement model for precise retrieval of reference RTL designs for the LLM, and (2) an iterative code revision pipeline that allows the LLM to ensure DFT compliance while maintaining synthesizability. To support VeriRAG, we introduce VeriDFT, a Verilog-based DFT dataset curated for DFT-aware RTL repairs. VeriRAG retrieves structurally similar RTL designs from VeriDFT, each paired with a rigorously validated correction, as references for code repair. With VeriRAG and VeriDFT, we achieve fully automated DFT correction -- resulting in a 7.72-fold improvement in successful repair rate compared to the zero-shot baseline (Fig. 5 in Section V). Ablation studies further confirm the contribution of each component of the VeriRAG framework. We open-source our data, models, and scripts at https://github.com/yuyangdu01/LLM4DFT.

Authors:Zuo-Liang Zhu, Jian Yang, Beibei Wang
Title: Gaussian Splatting with Discretized SDF for Relightable Assets
Abstract:
3D Gaussian splatting (3DGS) has shown its detailed expressive ability and highly efficient rendering speed in the novel view synthesis (NVS) task. The application to inverse rendering still faces several challenges, as the discrete nature of Gaussian primitives makes it difficult to apply geometry constraints. Recent works introduce the signed distance field (SDF) as an extra continuous representation to regularize the geometry defined by Gaussian primitives. It improves the decomposition quality, at the cost of increasing memory usage and complicating training. Unlike these works, we introduce a discretized SDF to represent the continuous SDF in a discrete manner by encoding it within each Gaussian using a sampled value. This approach allows us to link the SDF with the Gaussian opacity through an SDF-to-opacity transformation, enabling rendering the SDF via splatting and avoiding the computational cost of ray marching.The key challenge is to regularize the discrete samples to be consistent with the underlying SDF, as the discrete representation can hardly apply the gradient-based constraints (\eg Eikonal loss). For this, we project Gaussians onto the zero-level set of SDF and enforce alignment with the surface from splatting, namely a projection-based consistency loss. Thanks to the discretized SDF, our method achieves higher relighting quality, while requiring no extra memory beyond GS and avoiding complex manually designed optimization. The experiments reveal that our method outperforms existing Gaussian-based inverse rendering methods. Our code is available at https://github.com/NK-CS-ZZL/DiscretizedSDF.

Authors:David Bann, Ed Lowther, Liam Wright, Yevgeniya Kovalchuk
Title: Why can't Epidemiology be automated (yet)?
Abstract:
Recent advances in artificial intelligence (AI) - particularly generative AI - present new opportunities to accelerate, or even automate, epidemiological research. Unlike disciplines based on physical experimentation, a sizable fraction of Epidemiology relies on secondary data analysis and thus is well-suited for such augmentation. Yet, it remains unclear which specific tasks can benefit from AI interventions or where roadblocks exist. Awareness of current AI capabilities is also mixed. Here, we map the landscape of epidemiological tasks using existing datasets - from literature review to data access, analysis, writing up, and dissemination - and identify where existing AI tools offer efficiency gains. While AI can increase productivity in some areas such as coding and administrative tasks, its utility is constrained by limitations of existing AI models (e.g. hallucinations in literature reviews) and human systems (e.g. barriers to accessing datasets). Through examples of AI-generated epidemiological outputs, including fully AI-generated papers, we demonstrate that recently developed agentic systems can now design and execute epidemiological analysis, albeit to varied quality (see https://github.com/edlowther/automated-epidemiology). Epidemiologists have new opportunities to empirically test and benchmark AI systems; realising the potential of AI will require two-way engagement between epidemiologists and engineers.

Authors:Zihui Gao, Jia-Wang Bian, Guosheng Lin, Hao Chen, Chunhua Shen
Title: SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting
Abstract:
Surface reconstruction and novel view rendering from sparse-view images are challenging. Signed Distance Function (SDF)-based methods struggle with fine details, while 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. We propose a novel hybrid method that combines the strengths of both approaches: SDF captures coarse geometry to enhance 3DGS-based rendering, while newly rendered images from 3DGS refine the details of SDF for accurate surface reconstruction. As a result, our method surpasses state-of-the-art approaches in surface reconstruction and novel view synthesis on the DTU and MobileBrick datasets. Code will be released at https://github.com/aim-uofa/SurfaceSplat.

Authors:Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng, Ye Wang, Haoqi Yuan, Jiazheng Liu, Chaoyi Xu, Qin Jin, Zongqing Lu
Title: Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
Abstract:
We introduce Being-H0, a dexterous Vision-Language-Action model (VLA) trained on large-scale human videos. Existing VLAs struggle with complex manipulation tasks requiring high dexterity and generalize poorly to novel scenarios and tasks, primarily due to their reliance on synthetic data with significant sim-to-real gaps or teleoperated demonstrations lacking scale and diversity. To address this data bottleneck, we propose leveraging human hands as a foundation manipulator, capitalizing on the rich dexterity and scalability present in web data. Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks. Additionally, we introduce a part-level motion tokenization method which achieves millimeter-level reconstruction accuracy to model precise hand trajectories for action learning. To support our proposed paradigm, we further develop a comprehensive data curation pipeline that integrates heterogeneous sources -- including motion capture, VR, and RGB-only videos -- into a large-scale dataset with millions of motion-based instructional instances. We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes. Importantly, we observe the expected gains of Being-H0 in real-world robotic manipulation as physical instruction tuning is applied. More details are available at https://beingbeyond.github.io/Being-H0.

Authors:Salah Eddine Bekhouche, Gaby Maroun, Fadi Dornaika, Abdenour Hadid
Title: SegDT: A Diffusion Transformer-Based Segmentation Model for Medical Imaging
Abstract:
Medical image segmentation is crucial for many healthcare tasks, including disease diagnosis and treatment planning. One key area is the segmentation of skin lesions, which is vital for diagnosing skin cancer and monitoring patients. In this context, this paper introduces SegDT, a new segmentation model based on diffusion transformer (DiT). SegDT is designed to work on low-cost hardware and incorporates Rectified Flow, which improves the generation quality at reduced inference steps and maintains the flexibility of standard diffusion models. Our method is evaluated on three benchmarking datasets and compared against several existing works, achieving state-of-the-art results while maintaining fast inference speeds. This makes the proposed model appealing for real-world medical applications. This work advances the performance and capabilities of deep learning models in medical image analysis, enabling faster, more accurate diagnostic tools for healthcare professionals. The code is made publicly available at \href{https://github.com/Bekhouche/SegDT}{GitHub}.

Authors:Hugo Carlesso, Maria Eliza Patulea, Moncef Garouani, Radu Tudor Ionescu, Josiane Mothe
Title: GeMix: Conditional GAN-Based Mixup for Improved Medical Image Augmentation
Abstract:
Mixup has become a popular augmentation strategy for image classification, yet its naive pixel-wise interpolation often produces unrealistic images that can hinder learning, particularly in high-stakes medical applications. We propose GeMix, a two-stage framework that replaces heuristic blending with a learned, label-aware interpolation powered by class-conditional GANs. First, a StyleGAN2-ADA generator is trained on the target dataset. During augmentation, we sample two label vectors from Dirichlet priors biased toward different classes and blend them via a Beta-distributed coefficient. Then, we condition the generator on this soft label to synthesize visually coherent images that lie along a continuous class manifold. We benchmark GeMix on the large-scale COVIDx-CT-3 dataset using three backbones (ResNet-50, ResNet-101, EfficientNet-B0). When combined with real data, our method increases macro-F1 over traditional mixup for all backbones, reducing the false negative rate for COVID-19 detection. GeMix is thus a drop-in replacement for pixel-space mixup, delivering stronger regularization and greater semantic fidelity, without disrupting existing training pipelines. We publicly release our code at https://github.com/hugocarlesso/GeMix to foster reproducibility and further research.

Authors:Nicolas Poggi, Shashank Agnihotri, Margret Keuper
Title: Smart Eyes for Silent Threats: VLMs and In-Context Learning for THz Imaging
Abstract:
Terahertz (THz) imaging enables non-invasive analysis for applications such as security screening and material classification, but effective image classification remains challenging due to limited annotations, low resolution, and visual ambiguity. We introduce In-Context Learning (ICL) with Vision-Language Models (VLMs) as a flexible, interpretable alternative that requires no fine-tuning. Using a modality-aligned prompting framework, we adapt two open-weight VLMs to the THz domain and evaluate them under zero-shot and one-shot settings. Our results show that ICL improves classification and interpretability in low-data regimes. This is the first application of ICL-enhanced VLMs to THz imaging, offering a promising direction for resource-constrained scientific domains. Code: \href{https://github.com/Nicolas-Poggi/Project_THz_Classification/tree/main}{GitHub repository}.

Authors:Qinqian Lei, Bo Wang, Robby T. Tan
Title: HOLa: Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation
Abstract:
Zero-shot human-object interaction (HOI) detection remains a challenging task, particularly in generalizing to unseen actions. Existing methods address this challenge by tapping Vision-Language Models (VLMs) to access knowledge beyond the training data. However, they either struggle to distinguish actions involving the same object or demonstrate limited generalization to unseen classes. In this paper, we introduce HOLa (Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation), a novel approach that both enhances generalization to unseen classes and improves action distinction. In training, HOLa decomposes VLM text features for given HOI classes via low-rank factorization, producing class-shared basis features and adaptable weights. These features and weights form a compact HOI representation that preserves shared information across classes, enhancing generalization to unseen classes. Subsequently, we refine action distinction by adapting weights for each HOI class and introducing human-object tokens to enrich visual interaction representations. To further distinguish unseen actions, we guide the weight adaptation with LLM-derived action regularization. Experimental results show that our method sets a new state-of-the-art across zero-shot HOI settings on HICO-DET, achieving an unseen-class mAP of 27.91 in the unseen-verb setting. Our code is available at https://github.com/ChelsieLei/HOLa.

Authors:Jongmin Shin, Enki Cho, Ka Young Kim, Jung Yong Kim, Seong Tae Kim, Namkee Oh
Title: Towards Holistic Surgical Scene Graph
Abstract:
Surgical scene understanding is crucial for computer-assisted intervention systems, requiring visual comprehension of surgical scenes that involves diverse elements such as surgical tools, anatomical structures, and their interactions. To effectively represent the complex information in surgical scenes, graph-based approaches have been explored to structurally model surgical entities and their relationships. Previous surgical scene graph studies have demonstrated the feasibility of representing surgical scenes using graphs. However, certain aspects of surgical scenes-such as diverse combinations of tool-action-target and the identity of the hand operating the tool-remain underexplored in graph-based representations, despite their importance. To incorporate these aspects into graph representations, we propose Endoscapes-SG201 dataset, which includes annotations for tool-action-target combinations and hand identity. We also introduce SSG-Com, a graph-based method designed to learn and represent these critical elements. Through experiments on downstream tasks such as critical view of safety assessment and action triplet recognition, we demonstrated the importance of integrating these essential scene graph components, highlighting their significant contribution to surgical scene understanding. The code and dataset are available at https://github.com/ailab-kyunghee/SSG-Com

Authors:Simon Winther Albertsen, Hjalte Svaneborg Bjørnstrup, Mostafa Mehdipour Ghazi
Title: RARE-UNet: Resolution-Aligned Routing Entry for Adaptive Medical Image Segmentation
Abstract:
Accurate segmentation is crucial for clinical applications, but existing models often assume fixed, high-resolution inputs and degrade significantly when faced with lower-resolution data in real-world scenarios. To address this limitation, we propose RARE-UNet, a resolution-aware multi-scale segmentation architecture that dynamically adapts its inference path to the spatial resolution of the input. Central to our design are multi-scale blocks integrated at multiple encoder depths, a resolution-aware routing mechanism, and consistency-driven training that aligns multi-resolution features with full-resolution representations. We evaluate RARE-UNet on two benchmark brain imaging tasks for hippocampus and tumor segmentation. Compared to standard UNet, its multi-resolution augmented variant, and nnUNet, our model achieves the highest average Dice scores of 0.84 and 0.65 across resolution, while maintaining consistent performance and significantly reduced inference time at lower resolutions. These results highlight the effectiveness and scalability of our architecture in achieving resolution-robust segmentation. The codes are available at: https://github.com/simonsejse/RARE-UNet.

Authors:Hanting Li, Fei Zhou, Xin Sun, Yang Hua, Jungong Han, Liang-Jie Zhang
Title: SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement
Abstract:
Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination. However, they still struggle with non-uniform lighting scenarios, such as backlit and shadow, appearing as over-exposure or inadequate brightness restoration. To address this challenge, we present a Spatially-Adaptive Illumination-Guided Transformer (SAIGFormer) framework that enables accurate illumination restoration. Specifically, we propose a dynamic integral image representation to model the spatially-varying illumination, and further construct a novel Spatially-Adaptive Integral Illumination Estimator ($\text{SAI}^2\text{E}$). Moreover, we introduce an Illumination-Guided Multi-head Self-Attention (IG-MSA) mechanism, which leverages the illumination to calibrate the lightness-relevant features toward visual-pleased illumination enhancement. Extensive experiments on five standard low-light datasets and a cross-domain benchmark (LOL-Blur) demonstrate that our SAIGFormer significantly outperforms state-of-the-art methods in both quantitative and qualitative metrics. In particular, our method achieves superior performance in non-uniform illumination enhancement while exhibiting strong generalization capabilities across multiple datasets. Code is available at https://github.com/LHTcode/SAIGFormer.git.

Authors:Sizhou Chen, Shufan Jiang, Chi Zhang, Xiao-Lei Zhang, Xuelong Li
Title: HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Abstract:
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in AI agents that lack initiative and cannot interact with the physical environment. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences. Our code, dataset and models are available at https://github.com/HAMLET-2025/HAMLET.

Authors:Kaiyan Chang, Yonghao Shi, Chenglong Wang, Hang Zhou, Chi Hu, Xiaoqian Liu, Yingfeng Luo, Yuan Ge, Tong Xiao, Jingbo Zhu
Title: Step-level Verifier-guided Hybrid Test-Time Scaling for Large Language Models
Abstract:
Test-Time Scaling (TTS) is a promising approach to progressively elicit the model's intelligence during inference. Recently, training-based TTS methods, such as continued reinforcement learning (RL), have further surged in popularity, while training-free TTS methods are gradually fading from prominence. However, the additional computation overhead of training amplifies the burden on test-time scaling. In this paper, we focus on training-free TTS methods for reasoning. We first design Conditional Step-level Self-refinement, a fine-grained sequential scaling method guided by process verification. On top of its effectiveness, we further combine it with other classical parallel scaling methods at the step level, to introduce a novel inference paradigm called Hybrid Test-Time Scaling. Extensive experiments on five instruction-tuned LLMs across different scales (3B-14B) and families demonstrate that hybrid strategy incorporating various training-free TTS methods at a fine granularity has considerable potential for expanding the reasoning performance boundaries of LLMs.

Authors:Johannes Ackermann, Takashi Ishida, Masashi Sugiyama
Title: Off-Policy Corrected Reward Modeling for Reinforcement Learning from Human Feedback
Abstract:
Reinforcement Learning from Human Feedback (RLHF) allows us to train models, such as language models (LMs), to follow complex human preferences. In RLHF for LMs, we first train an LM using supervised fine-tuning, sample pairs of responses, obtain human feedback, and use the resulting data to train a reward model (RM). RL methods are then used to train the LM to maximize the reward given by the RM. As training progresses, the responses generated by the LM no longer resemble the responses seen by the RM during training, leading to the RM becoming inaccurate. The score given by the RM keeps increasing, but the learned behavior no longer matches the human preferences. This issue is known as overoptimization. We investigate overoptimization from the point of view of distribution shift and show that the shift results in an inconsistent estimate of the RM parameters, leading to an inconsistent estimate of the policy gradient. We propose Off-Policy Corrected Reward Modeling (OCRM), which iteratively off-policy corrects the RM using importance weighting, without requiring new labels or samples. This results in a more accurate RM, which empirically leads to an improved final policy. We validate our approach in experiments with summarization and chatbot datasets and show that it performs significantly better than standard RLHF methods and baselines. Our implementation is available at https://github.com/JohannesAck/OffPolicyCorrectedRewardModeling

Authors:Deyu Zhang, Tingting Long, Jinrui Zhang, Ligeng Chen, Ju Ren, Yaoxue Zhang
Title: Prompt-aware of Frame Sampling for Efficient Text-Video Retrieval
Abstract:
Enabling efficient text-video retrieval on edge-end devices is critical for real-world applications. Yet, existing methods face a critical challenge in balancing accuracy and computational efficiency: uniform frame sampling methods ensure content coverage but incur prohibitive computational costs, while salient-frame sampling methods reduce overhead but suffer from query-agnostic frame selection that biases retrieval results. To address this, we propose ProCLIP, a user-centric framework that achieves state-of-the-art accuracy with significantly improved efficiency. We design a prompt-aware frame sampling strategy that dynamically guides lightweight feature extractors using textual prompts to select semantically relevant frames, overcoming the limitations of existing salient-frame sampling methods which rely on static, query-agnostic selection criteria. Moreover, we adopt a two-stage candidate pruning strategy that combines rapid coarse filtering via a lightweight module with CLIP-powered fine-grained re-ranking, enhancing retrieval efficiency while preserving accuracy. Experiments across benchmarks show ProCLIP achieves 75.3% latency reduction versus baselines while maintaining competitive accuracy, i.e., R@1=49.0 in MSR-VTT dataset. Code is available at https://github.com/tiffylong/ProCLIP.

Authors:Liang Chen, Ghazi Shazan Ahmad, Tianjun Yao, Lingqiao Liu, Zhiqiang Shen
Title: One Last Attention for Your Vision-Language Model
Abstract:
Pretrained vision-language models (VLMs), such as CLIP, achieve remarkable zero-shot performance, yet their downstream potential hinges on effective fine-tuning. Most adaptation methods typically focus on refining representation from separate modalities (text or vision) but neglect the critical role of their fused representations in the decision-making process, \emph{\ie} rational matrix that drives the final prediction. To bridge the gap, we propose a simple yet effective \textbf{R}ational \textbf{Ada}ptaion ({RAda}) to explicitly exploit the final fused representation during fine-tuning. RAda employs a learned mask, obtained from a lightweight attention layer attached at the end of a VLM, to dynamically calibrate the contribution of each element in the rational matrix, enabling targeted adjustments to the final cross-modal interactions without incurring costly modifications to intermediate features. Experiments in different settings (i.e., updating, or freezing pretrained encoders in adaptation, and test-time training that can only access the unlabeled test data) show that RAda serves as a versatile fine-tuning technique, improving the baseline with minimal code and performing comparably against current arts in most settings. Code is available at \href{https://github.com/khufia/RAda/tree/main}{github.com/khufia/RAda}.

Authors:Ruijie Zhu, Mulin Yu, Linning Xu, Lihan Jiang, Yixuan Li, Tianzhu Zhang, Jiangmiao Pang, Bo Dai
Title: ObjectGS: Object-aware Scene Reconstruction and Scene Understanding via Gaussian Splatting
Abstract:
3D Gaussian Splatting is renowned for its high-fidelity reconstructions and real-time novel view synthesis, yet its lack of semantic understanding limits object-level perception. In this work, we propose ObjectGS, an object-aware framework that unifies 3D scene reconstruction with semantic understanding. Instead of treating the scene as a unified whole, ObjectGS models individual objects as local anchors that generate neural Gaussians and share object IDs, enabling precise object-level reconstruction. During training, we dynamically grow or prune these anchors and optimize their features, while a one-hot ID encoding with a classification loss enforces clear semantic constraints. We show through extensive experiments that ObjectGS not only outperforms state-of-the-art methods on open-vocabulary and panoptic segmentation tasks, but also integrates seamlessly with applications like mesh extraction and scene editing. Project page: https://ruijiezhu94.github.io/ObjectGS_page

Authors:Ka Young Kim, Hyeon Bae Kim, Seong Tae Kim
Title: SurgX: Neuron-Concept Association for Explainable Surgical Phase Recognition
Abstract:
Surgical phase recognition plays a crucial role in surgical workflow analysis, enabling various applications such as surgical monitoring, skill assessment, and workflow optimization. Despite significant advancements in deep learning-based surgical phase recognition, these models remain inherently opaque, making it difficult to understand how they make decisions. This lack of interpretability hinders trust and makes it challenging to debug the model. To address this challenge, we propose SurgX, a novel concept-based explanation framework that enhances the interpretability of surgical phase recognition models by associating neurons with relevant concepts. In this paper, we introduce the process of selecting representative example sequences for neurons, constructing a concept set tailored to the surgical video dataset, associating neurons with concepts and identifying neurons crucial for predictions. Through extensive experiments on two surgical phase recognition models, we validate our method and analyze the explanation for prediction. This highlights the potential of our method in explaining surgical phase recognition. The code is available at https://github.com/ailab-kyunghee/SurgX

Authors:Huiyu Zhai, Xingxing Yang, Yalan Ye, Chenyang Li, Bin Fan, Changze Li
Title: Rethinking Occlusion in FER: A Semantic-Aware Perspective and Go Beyond
Abstract:
Facial expression recognition (FER) is a challenging task due to pervasive occlusion and dataset biases. Especially when facial information is partially occluded, existing FER models struggle to extract effective facial features, leading to inaccurate classifications. In response, we present ORSANet, which introduces the following three key contributions: First, we introduce auxiliary multi-modal semantic guidance to disambiguate facial occlusion and learn high-level semantic knowledge, which is two-fold: 1) we introduce semantic segmentation maps as dense semantics prior to generate semantics-enhanced facial representations; 2) we introduce facial landmarks as sparse geometric prior to mitigate intrinsic noises in FER, such as identity and gender biases. Second, to facilitate the effective incorporation of these two multi-modal priors, we customize a Multi-scale Cross-interaction Module (MCM) to adaptively fuse the landmark feature and semantics-enhanced representations within different scales. Third, we design a Dynamic Adversarial Repulsion Enhancement Loss (DARELoss) that dynamically adjusts the margins of ambiguous classes, further enhancing the model's ability to distinguish similar expressions. We further construct the first occlusion-oriented FER dataset to facilitate specialized robustness analysis on various real-world occlusion conditions, dubbed Occlu-FER. Extensive experiments on both public benchmarks and Occlu-FER demonstrate that our proposed ORSANet achieves SOTA recognition performance. Code is publicly available at https://github.com/Wenyuzhy/ORSANet-master.

Authors:Etai Sella, Noam Atia, Ron Mokady, Hadar Averbuch-Elor
Title: Blended Point Cloud Diffusion for Localized Text-guided Shape Editing
Abstract:
Natural language offers a highly intuitive interface for enabling localized fine-grained edits of 3D shapes. However, prior works face challenges in preserving global coherence while locally modifying the input 3D shape. In this work, we introduce an inpainting-based framework for editing shapes represented as point clouds. Our approach leverages foundation 3D diffusion models for achieving localized shape edits, adding structural guidance in the form of a partial conditional shape, ensuring that other regions correctly preserve the shape's identity. Furthermore, to encourage identity preservation also within the local edited region, we propose an inference-time coordinate blending algorithm which balances reconstruction of the full shape with inpainting at a progression of noise levels during the inference process. Our coordinate blending algorithm seamlessly blends the original shape with its edited version, enabling a fine-grained editing of 3D shapes, all while circumventing the need for computationally expensive and often inaccurate inversion. Extensive experiments show that our method outperforms alternative techniques across a wide range of metrics that evaluate both fidelity to the original shape and also adherence to the textual description.

Authors:Hengyu Zhang, Chunxu Shen, Xiangguo Sun, Jie Tan, Yanchao Tan, Yu Rong, Hong Cheng, Lingling Yi
Title: Hierarchical Graph Information Bottleneck for Multi-Behavior Recommendation
Abstract:
In real-world recommendation scenarios, users typically engage with platforms through multiple types of behavioral interactions. Multi-behavior recommendation algorithms aim to leverage various auxiliary user behaviors to enhance prediction for target behaviors of primary interest (e.g., buy), thereby overcoming performance limitations caused by data sparsity in target behavior records. Current state-of-the-art approaches typically employ hierarchical design following either cascading (e.g., view$\rightarrow$cart$\rightarrow$buy) or parallel (unified$\rightarrow$behavior$\rightarrow$specific components) paradigms, to capture behavioral relationships. However, these methods still face two critical challenges: (1) severe distribution disparities across behaviors, and (2) negative transfer effects caused by noise in auxiliary behaviors. In this paper, we propose a novel model-agnostic Hierarchical Graph Information Bottleneck (HGIB) framework for multi-behavior recommendation to effectively address these challenges. Following information bottleneck principles, our framework optimizes the learning of compact yet sufficient representations that preserve essential information for target behavior prediction while eliminating task-irrelevant redundancies. To further mitigate interaction noise, we introduce a Graph Refinement Encoder (GRE) that dynamically prunes redundant edges through learnable edge dropout mechanisms. We conduct comprehensive experiments on three real-world public datasets, which demonstrate the superior effectiveness of our framework. Beyond these widely used datasets in the academic community, we further expand our evaluation on several real industrial scenarios and conduct an online A/B testing, showing again a significant improvement in multi-behavior recommendations. The source code of our proposed HGIB is available at https://github.com/zhy99426/HGIB.

Authors:Julia Machnio, Mads Nielsen, Mostafa Mehdipour Ghazi
Title: To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
Abstract:
Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling, making it particularly valuable in resource-constrained settings. However, traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process. To address this gap, we propose PALM (Performance Analysis of Active Learning Models), a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters: achievable accuracy, coverage efficiency, early-stage performance, and scalability. PALM provides a predictive description of AL behavior from partial observations, enabling the estimation of future performance and facilitating principled comparisons across different strategies. We validate PALM through extensive experiments on CIFAR-10/100 and ImageNet-50/100/200, covering a wide range of AL methods and self-supervised embeddings. Our results demonstrate that PALM generalizes effectively across datasets, budgets, and strategies, accurately predicting full learning curves from limited labeled data. Importantly, PALM reveals crucial insights into learning efficiency, data space coverage, and the scalability of AL methods. By enabling the selection of cost-effective strategies and predicting performance under tight budget constraints, PALM lays the basis for more systematic, reproducible, and data-efficient evaluation of AL in both research and real-world applications. The code is available at: https://github.com/juliamachnio/PALM.

Authors:Cheng-Han Chiang, Xiaofei Wang, Linjie Li, Chung-Ching Lin, Kevin Lin, Shujie Liu, Zhendong Wang, Zhengyuan Yang, Hung-yi Lee, Lijuan Wang
Title: STITCH: Simultaneous Thinking and Talking with Chunked Reasoning for Spoken Language Models
Abstract:
Spoken Language Models (SLMs) are designed to take speech inputs and produce spoken responses. However, current SLMs lack the ability to perform an internal, unspoken thinking process before responding. In contrast, humans typically engage in complex mental reasoning internally, enabling them to communicate ideas clearly and concisely. Thus, integrating an unspoken thought process into SLMs is highly desirable. While naively generating a complete chain-of-thought (CoT) reasoning before starting to talk can enable thinking for SLMs, this induces additional latency for the speech response, as the CoT reasoning can be arbitrarily long. To solve this issue, we propose Stitch, a novel generation method that alternates between the generation of unspoken reasoning chunks and spoken response chunks. Since the audio duration of a chunk of spoken response is much longer than the time to generate the tokens in a chunk of spoken response, we use the remaining free time to generate the unspoken reasoning tokens. When a chunk of audio is played to the user, the model continues to generate the next unspoken reasoning chunk, achieving simultaneous thinking and talking. Remarkably, Stitch matches the latency of baselines that cannot generate unspoken CoT by design while outperforming those baselines by 15% on math reasoning datasets; Stitch also performs equally well on non-reasoning datasets as those baseline models. Some animations and demonstrations are on the project page: https://d223302.github.io/STITCH.

Authors:Zhenyu Li, Haotong Lin, Jiashi Feng, Peter Wonka, Bingyi Kang
Title: BenchDepth: Are We on the Right Way to Evaluate Depth Foundation Models?
Abstract:
Depth estimation is a fundamental task in computer vision with diverse applications. Recent advancements in deep learning have led to powerful depth foundation models (DFMs), yet their evaluation remains challenging due to inconsistencies in existing protocols. Traditional benchmarks rely on alignment-based metrics that introduce biases, favor certain depth representations, and complicate fair comparisons. In this work, we propose BenchDepth, a new benchmark that evaluates DFMs through five carefully selected downstream proxy tasks: depth completion, stereo matching, monocular feed-forward 3D scene reconstruction, SLAM, and vision-language spatial understanding. Unlike conventional evaluation protocols, our approach assesses DFMs based on their practical utility in real-world applications, bypassing problematic alignment procedures. We benchmark eight state-of-the-art DFMs and provide an in-depth analysis of key findings and observations. We hope our work sparks further discussion in the community on best practices for depth model evaluation and paves the way for future research and advancements in depth estimation.

Authors:Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
Title: Minutiae-Anchored Local Dense Representation for Fingerprint Matching
Abstract:
Fingerprint matching under diverse capture conditions remains a fundamental challenge in biometric recognition. To achieve robust and accurate performance in such scenarios, we propose DMD, a minutiae-anchored local dense representation which captures both fine-grained ridge textures and discriminative minutiae features in a spatially structured manner. Specifically, descriptors are extracted from local patches centered and oriented on each detected minutia, forming a three-dimensional tensor, where two dimensions represent spatial locations on the fingerprint plane and the third encodes semantic features. This representation explicitly captures abstract features of local image patches, enabling a multi-level, fine-grained description that aggregates information from multiple minutiae and their surrounding ridge structures. Furthermore, thanks to its strong spatial correspondence with the patch image, DMD allows for the use of foreground segmentation masks to identify valid descriptor regions. During matching, comparisons are then restricted to overlapping foreground areas, improving efficiency and robustness. Extensive experiments on rolled, plain, parital, contactless, and latent fingerprint datasets demonstrate the effectiveness and generalizability of the proposed method. It achieves state-of-the-art accuracy across multiple benchmarks while maintaining high computational efficiency, showing strong potential for large-scale fingerprint recognition. Corresponding code is available at https://github.com/Yu-Yy/DMD.

Authors:An Wang, Rulin Zhou, Mengya Xu, Yiru Ye, Longfei Gou, Yiting Chang, Hao Chen, Chwee Ming Lim, Jiankun Wang, Hongliang Ren
Title: EndoControlMag: Robust Endoscopic Vascular Motion Magnification with Periodic Reference Resetting and Hierarchical Tissue-aware Dual-Mask Control
Abstract:
Visualizing subtle vascular motions in endoscopic surgery is crucial for surgical precision and decision-making, yet remains challenging due to the complex and dynamic nature of surgical scenes. To address this, we introduce EndoControlMag, a training-free, Lagrangian-based framework with mask-conditioned vascular motion magnification tailored to endoscopic environments. Our approach features two key modules: a Periodic Reference Resetting (PRR) scheme that divides videos into short overlapping clips with dynamically updated reference frames to prevent error accumulation while maintaining temporal coherence, and a Hierarchical Tissue-aware Magnification (HTM) framework with dual-mode mask dilation. HTM first tracks vessel cores using a pretrained visual tracking model to maintain accurate localization despite occlusions and view changes. It then applies one of two adaptive softening strategies to surrounding tissues: motion-based softening that modulates magnification strength proportional to observed tissue displacement, or distance-based exponential decay that simulates biomechanical force attenuation. This dual-mode approach accommodates diverse surgical scenarios-motion-based softening excels with complex tissue deformations while distance-based softening provides stability during unreliable optical flow conditions. We evaluate EndoControlMag on our EndoVMM24 dataset spanning four different surgery types and various challenging scenarios, including occlusions, instrument disturbance, view changes, and vessel deformations. Quantitative metrics, visual assessments, and expert surgeon evaluations demonstrate that EndoControlMag significantly outperforms existing methods in both magnification accuracy and visual quality while maintaining robustness across challenging surgical conditions. The code, dataset, and video results are available at https://szupc.github.io/EndoControlMag/.

Authors:Emile Anand, Sarah Liaw
Title: Feel-Good Thompson Sampling for Contextual Bandits: a Markov Chain Monte Carlo Showdown
Abstract:
Thompson Sampling (TS) is widely used to address the exploration/exploitation tradeoff in contextual bandits, yet recent theory shows that it does not explore aggressively enough in high-dimensional problems. Feel-Good Thompson Sampling (FG-TS) addresses this by adding an optimism bonus that biases toward high-reward models, and it achieves the asymptotically minimax-optimal regret in the linear setting when posteriors are exact. However, its performance with \emph{approximate} posteriors -- common in large-scale or neural problems -- has not been benchmarked. We provide the first systematic study of FG-TS and its smoothed variant (SFG-TS) across eleven real-world and synthetic benchmarks. To evaluate their robustness, we compare performance across settings with exact posteriors (linear and logistic bandits) to approximate regimes produced by fast but coarse stochastic-gradient samplers. Ablations over preconditioning, bonus scale, and prior strength reveal a trade-off: larger bonuses help when posterior samples are accurate, but hurt when sampling noise dominates. FG-TS generally outperforms vanilla TS in linear and logistic bandits, but tends to be weaker in neural bandits. Nevertheless, because FG-TS and its variants are competitive and easy-to-use, we recommend them as baselines in modern contextual-bandit benchmarks. Finally, we provide source code for all our experiments in https://github.com/SarahLiaw/ctx-bandits-mcmc-showdown.

Authors:Navid Ayoobi, Sadat Shahriar, Arjun Mukherjee
Title: Beyond Easy Wins: A Text Hardness-Aware Benchmark for LLM-generated Text Detection
Abstract:
We present a novel evaluation paradigm for AI text detectors that prioritizes real-world and equitable assessment. Current approaches predominantly report conventional metrics like AUROC, overlooking that even modest false positive rates constitute a critical impediment to practical deployment of detection systems. Furthermore, real-world deployment necessitates predetermined threshold configuration, making detector stability (i.e. the maintenance of consistent performance across diverse domains and adversarial scenarios), a critical factor. These aspects have been largely ignored in previous research and benchmarks. Our benchmark, SHIELD, addresses these limitations by integrating both reliability and stability factors into a unified evaluation metric designed for practical assessment. Furthermore, we develop a post-hoc, model-agnostic humanification framework that modifies AI text to more closely resemble human authorship, incorporating a controllable hardness parameter. This hardness-aware approach effectively challenges current SOTA zero-shot detection methods in maintaining both reliability and stability. (Data and code: https://github.com/navid-aub/SHIELD-Benchmark)

Authors:Haichao Liu, Haoren Guo, Pei Liu, Benshan Ma, Yuxiang Zhang, Jun Ma, Tong Heng Lee
Title: VLM-UDMC: VLM-Enhanced Unified Decision-Making and Motion Control for Urban Autonomous Driving
Abstract:
Scene understanding and risk-aware attentions are crucial for human drivers to make safe and effective driving decisions. To imitate this cognitive ability in urban autonomous driving while ensuring the transparency and interpretability, we propose a vision-language model (VLM)-enhanced unified decision-making and motion control framework, named VLM-UDMC. This framework incorporates scene reasoning and risk-aware insights into an upper-level slow system, which dynamically reconfigures the optimal motion planning for the downstream fast system. The reconfiguration is based on real-time environmental changes, which are encoded through context-aware potential functions. More specifically, the upper-level slow system employs a two-step reasoning policy with Retrieval-Augmented Generation (RAG), leveraging foundation models to process multimodal inputs and retrieve contextual knowledge, thereby generating risk-aware insights. Meanwhile, a lightweight multi-kernel decomposed LSTM provides real-time trajectory predictions for heterogeneous traffic participants by extracting smoother trend representations for short-horizon trajectory prediction. The effectiveness of the proposed VLM-UDMC framework is verified via both simulations and real-world experiments with a full-size autonomous vehicle. It is demonstrated that the presented VLM-UDMC effectively leverages scene understanding and attention decomposition for rational driving decisions, thus improving the overall urban driving performance. Our open-source project is available at https://github.com/henryhcliu/vlmudmc.git.

Authors:Zhaochen Guo, Zhixiang Shen, Xuanting Xie, Liangjian Wen, Zhao Kang
Title: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
Abstract:
Multimodal graphs, which integrate unstructured heterogeneous data with structured interconnections, offer substantial real-world utility but remain insufficiently explored in unsupervised learning. In this work, we initiate the study of multimodal graph clustering, aiming to bridge this critical gap. Through empirical analysis, we observe that real-world multimodal graphs often exhibit hybrid neighborhood patterns, combining both homophilic and heterophilic relationships. To address this challenge, we propose a novel framework -- \textsc{Disentangled Multimodal Graph Clustering (DMGC)} -- which decomposes the original hybrid graph into two complementary views: (1) a homophily-enhanced graph that captures cross-modal class consistency, and (2) heterophily-aware graphs that preserve modality-specific inter-class distinctions. We introduce a \emph{Multimodal Dual-frequency Fusion} mechanism that jointly filters these disentangled graphs through a dual-pass strategy, enabling effective multimodal integration while mitigating category confusion. Our self-supervised alignment objectives further guide the learning process without requiring labels. Extensive experiments on both multimodal and multi-relational graph datasets demonstrate that DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings. Our code is available at https://github.com/Uncnbb/DMGC.

Authors:Yanbing Zhang, Zhe Wang, Qin Zhou, Mengping Yang
Title: FreeCus: Free Lunch Subject-driven Customization in Diffusion Transformers
Abstract:
In light of recent breakthroughs in text-to-image (T2I) generation, particularly with diffusion transformers (DiT), subject-driven technologies are increasingly being employed for high-fidelity customized production that preserves subject identity from reference inputs, enabling thrilling design workflows and engaging entertainment. Existing alternatives typically require either per-subject optimization via trainable text embeddings or training specialized encoders for subject feature extraction on large-scale datasets. Such dependencies on training procedures fundamentally constrain their practical applications. More importantly, current methodologies fail to fully leverage the inherent zero-shot potential of modern diffusion transformers (e.g., the Flux series) for authentic subject-driven synthesis. To bridge this gap, we propose FreeCus, a genuinely training-free framework that activates DiT's capabilities through three key innovations: 1) We introduce a pivotal attention sharing mechanism that captures the subject's layout integrity while preserving crucial editing flexibility. 2) Through a straightforward analysis of DiT's dynamic shifting, we propose an upgraded variant that significantly improves fine-grained feature extraction. 3) We further integrate advanced Multimodal Large Language Models (MLLMs) to enrich cross-modal semantic representations. Extensive experiments reflect that our method successfully unlocks DiT's zero-shot ability for consistent subject synthesis across diverse contexts, achieving state-of-the-art or comparable results compared to approaches that require additional training. Notably, our framework demonstrates seamless compatibility with existing inpainting pipelines and control modules, facilitating more compelling experiences. Our code is available at: https://github.com/Monalissaa/FreeCus.

Authors:Xiaofeng Shi, Yuduo Li, Qian Kou, Longbin Yu, Jinxin Xie, Hua Zhou
Title: SPAR: Scholar Paper Retrieval with LLM-based Agents for Enhanced Academic Search
Abstract:
Recent advances in large language models (LLMs) have opened new opportunities for academic literature retrieval. However, existing systems often rely on rigid pipelines and exhibit limited reasoning capabilities. We introduce SPAR, a multi-agent framework that incorporates RefChain-based query decomposition and query evolution to enable more flexible and effective search. To facilitate systematic evaluation, we also construct SPARBench, a challenging benchmark with expert-annotated relevance labels. Experimental results demonstrate that SPAR substantially outperforms strong baselines, achieving up to +56% F1 on AutoScholar and +23% F1 on SPARBench over the best-performing baseline. Together, SPAR and SPARBench provide a scalable, interpretable, and high-performing foundation for advancing research in scholarly retrieval. Code and data will be available at: https://github.com/xiaofengShi/SPAR

Authors:Naeem Paeedeh, Mahardhika Pratama, Wolfgang Mayer, Jimmy Cao, Ryszard Kowlczyk
Title: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
Abstract:
Despite the progress in Cross-Domain Few-Shot Learning (CD-FSL), a model pre-trained with DINO combined with a prototypical classifier outperforms the latest SOTA methods. A crucial limitation that needs to be overcome is that updating too many parameters of the transformers leads to overfitting due to the scarcity of labeled samples. To address this challenge, we propose a new concept, Coalescent Projection (CP), as an effective successor to soft prompts. Additionally, we propose a novel pseudo-class generation method combined with Self-Supervised Transformations (SSTs) that relies solely on the base domain to prepare the network for encountering unseen samples from different domains. The proposed method exhibits its effectiveness in comprehensive experiments on the extreme domain shift scenario of the BSCD-FSL benchmark. Our code is published at https://github.com/Naeem-Paeedeh/CPLSR.

Authors:Le Peng, Yash Travadi, Chuan He, Ying Cui, Ju Sun
Title: Exact Reformulation and Optimization for Direct Metric Optimization in Binary Imbalanced Classification
Abstract:
For classification with imbalanced class frequencies, i.e., imbalanced classification (IC), standard accuracy is known to be misleading as a performance measure. While most existing methods for IC resort to optimizing balanced accuracy (i.e., the average of class-wise recalls), they fall short in scenarios where the significance of classes varies or certain metrics should reach prescribed levels. In this paper, we study two key classification metrics, precision and recall, under three practical binary IC settings: fix precision optimize recall (FPOR), fix recall optimize precision (FROP), and optimize $F_β$-score (OFBS). Unlike existing methods that rely on smooth approximations to deal with the indicator function involved, \textit{we introduce, for the first time, exact constrained reformulations for these direct metric optimization (DMO) problems}, which can be effectively solved by exact penalty methods. Experiment results on multiple benchmark datasets demonstrate the practical superiority of our approach over the state-of-the-art methods for the three DMO problems. We also expect our exact reformulation and optimization (ERO) framework to be applicable to a wide range of DMO problems for binary IC and beyond. Our code is available at https://github.com/sun-umn/DMO.

Authors:Krishna Kanth Nakka
Title: Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders
Abstract:
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level \texttt{Mammo-SAE} on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as \textit{mass} and \textit{suspicious calcification}. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging. The code will be released at https://krishnakanthnakka.github.io/MammoSAE/

Authors:Siqi Chen, Guoqing Zhang, Jiahao Lai, Bingzhi Shen, Sihong Zhang, Caixia Dong, Xuejin Chen, Yang Li
Title: Hierarchical Part-based Generative Model for Realistic 3D Blood Vessel
Abstract:
Advancements in 3D vision have increased the impact of blood vessel modeling on medical applications. However, accurately representing the complex geometry and topology of blood vessels remains a challenge due to their intricate branching patterns, curvatures, and irregular shapes. In this study, we propose a hierarchical part-based frame work for 3D vessel generation that separates the global binary tree-like topology from local geometric details. Our approach proceeds in three stages: (1) key graph generation to model the overall hierarchical struc ture, (2) vessel segment generation conditioned on geometric properties, and (3) hierarchical vessel assembly by integrating the local segments according to the global key graph. We validate our framework on real world datasets, demonstrating superior performance over existing methods in modeling complex vascular networks. This work marks the first successful application of a part-based generative approach for 3D vessel modeling, setting a new benchmark for vascular data generation. The code is available at: https://github.com/CybercatChen/PartVessel.git.

Authors:Justin Turnau, Longchao Da, Khoa Vo, Ferdous Al Rafi, Shreyas Bachiraju, Tiejin Chen, Hua Wei
Title: Joint-Local Grounded Action Transformation for Sim-to-Real Transfer in Multi-Agent Traffic Control
Abstract:
Traffic Signal Control (TSC) is essential for managing urban traffic flow and reducing congestion. Reinforcement Learning (RL) offers an adaptive method for TSC by responding to dynamic traffic patterns, with multi-agent RL (MARL) gaining traction as intersections naturally function as coordinated agents. However, due to shifts in environmental dynamics, implementing MARL-based TSC policies in the real world often leads to a significant performance drop, known as the sim-to-real gap. Grounded Action Transformation (GAT) has successfully mitigated this gap in single-agent RL for TSC, but real-world traffic networks, which involve numerous interacting intersections, are better suited to a MARL framework. In this work, we introduce JL-GAT, an application of GAT to MARL-based TSC that balances scalability with enhanced grounding capability by incorporating information from neighboring agents. JL-GAT adopts a decentralized approach to GAT, allowing for the scalability often required in real-world traffic networks while still capturing key interactions between agents. Comprehensive experiments on various road networks under simulated adverse weather conditions, along with ablation studies, demonstrate the effectiveness of JL-GAT. The code is publicly available at https://github.com/DaRL-LibSignal/JL-GAT/.

Authors:Mohammad-Maher Nakshbandi, Ziad Sharawy, Sorin Grigorescu
Title: LoopNet: A Multitasking Few-Shot Learning Approach for Loop Closure in Large Scale SLAM
Abstract:
One of the main challenges in the Simultaneous Localization and Mapping (SLAM) loop closure problem is the recognition of previously visited places. In this work, we tackle the two main problems of real-time SLAM systems: 1) loop closure detection accuracy and 2) real-time computation constraints on the embedded hardware. Our LoopNet method is based on a multitasking variant of the classical ResNet architecture, adapted for online retraining on a dynamic visual dataset and optimized for embedded devices. The online retraining is designed using a few-shot learning approach. The architecture provides both an index into the queried visual dataset, and a measurement of the prediction quality. Moreover, by leveraging DISK (DIStinctive Keypoints) descriptors, LoopNet surpasses the limitations of handcrafted features and traditional deep learning methods, offering better performance under varying conditions. Code is available at https://github.com/RovisLab/LoopNet. Additinally, we introduce a new loop closure benchmarking dataset, coined LoopDB, which is available at https://github.com/RovisLab/LoopDB.

Authors:Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen
Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Abstract:
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Authors:Xinyue Zhu, Binghao Huang, Yunzhu Li
Title: Touch in the Wild: Learning Fine-Grained Manipulation with a Portable Visuo-Tactile Gripper
Abstract:
Handheld grippers are increasingly used to collect human demonstrations due to their ease of deployment and versatility. However, most existing designs lack tactile sensing, despite the critical role of tactile feedback in precise manipulation. We present a portable, lightweight gripper with integrated tactile sensors that enables synchronized collection of visual and tactile data in diverse, real-world, and in-the-wild settings. Building on this hardware, we propose a cross-modal representation learning framework that integrates visual and tactile signals while preserving their distinct characteristics. The learning procedure allows the emergence of interpretable representations that consistently focus on contacting regions relevant for physical interactions. When used for downstream manipulation tasks, these representations enable more efficient and effective policy learning, supporting precise robotic manipulation based on multimodal feedback. We validate our approach on fine-grained tasks such as test tube insertion and pipette-based fluid transfer, demonstrating improved accuracy and robustness under external disturbances. Our project page is available at https://binghao-huang.github.io/touch_in_the_wild/ .

Authors:Ran Zhang, Xuanhua He, Li Xueheng, Ke Cao, Liu Liu, Wenbo Xu, Fang Jiabin, Yang Qize, Jie Zhang
Title: Rethinking Pan-sharpening: Principled Design, Unified Training, and a Universal Loss Surpass Brute-Force Scaling
Abstract:
The field of pan-sharpening has recently seen a trend towards increasingly large and complex models, often trained on single, specific satellite datasets. This approach, however, leads to high computational overhead and poor generalization on full resolution data, a paradigm we challenge in this paper. In response to this issue, we propose PanTiny, a lightweight, single-step pan-sharpening framework designed for both efficiency and robust performance. More critically, we introduce multiple-in-one training paradigm, where a single, compact model is trained simultaneously on three distinct satellite datasets (WV2, WV3, and GF2) with different resolution and spectral information. Our experiments show that this unified training strategy not only simplifies deployment but also significantly boosts generalization on full-resolution data. Further, we introduce a universally powerful composite loss function that elevates the performance of almost all of models for pan-sharpening, pushing state-of-the-art metrics into a new era. Our PanTiny model, benefiting from these innovations, achieves a superior performance-to-efficiency balance, outperforming most larger, specialized models. Through extensive ablation studies, we validate that principled engineering in model design, training paradigms, and loss functions can surpass brute-force scaling. Our work advocates for a community-wide shift towards creating efficient, generalizable, and data-conscious models for pan-sharpening. The code is available at https://github.com/Zirconium233/PanTiny .

Authors:Zhaotong Yang, Yuhui Li, Shengfeng He, Xinzhe Li, Yangyang Xu, Junyu Dong, Yong Du
Title: OmniVTON: Training-Free Universal Virtual Try-On
Abstract:
Image-based Virtual Try-On (VTON) techniques rely on either supervised in-shop approaches, which ensure high fidelity but struggle with cross-domain generalization, or unsupervised in-the-wild methods, which improve adaptability but remain constrained by data biases and limited universality. A unified, training-free solution that works across both scenarios remains an open challenge. We propose OmniVTON, the first training-free universal VTON framework that decouples garment and pose conditioning to achieve both texture fidelity and pose consistency across diverse settings. To preserve garment details, we introduce a garment prior generation mechanism that aligns clothing with the body, followed by continuous boundary stitching technique to achieve fine-grained texture retention. For precise pose alignment, we utilize DDIM inversion to capture structural cues while suppressing texture interference, ensuring accurate body alignment independent of the original image textures. By disentangling garment and pose constraints, OmniVTON eliminates the bias inherent in diffusion models when handling multiple conditions simultaneously. Experimental results demonstrate that OmniVTON achieves superior performance across diverse datasets, garment types, and application scenarios. Notably, it is the first framework capable of multi-human VTON, enabling realistic garment transfer across multiple individuals in a single scene. Code is available at https://github.com/Jerome-Young/OmniVTON

Authors:Lyes Saad Saoud, Irfan Hussain
Title: EBA-AI: Ethics-Guided Bias-Aware AI for Efficient Underwater Image Enhancement and Coral Reef Monitoring
Abstract:
Underwater image enhancement is vital for marine conservation, particularly coral reef monitoring. However, AI-based enhancement models often face dataset bias, high computational costs, and lack of transparency, leading to potential misinterpretations. This paper introduces EBA-AI, an ethics-guided bias-aware AI framework to address these challenges. EBA-AI leverages CLIP embeddings to detect and mitigate dataset bias, ensuring balanced representation across varied underwater environments. It also integrates adaptive processing to optimize energy efficiency, significantly reducing GPU usage while maintaining competitive enhancement quality. Experiments on LSUI400, Oceanex, and UIEB100 show that while PSNR drops by a controlled 1.0 dB, computational savings enable real-time feasibility for large-scale marine monitoring. Additionally, uncertainty estimation and explainability techniques enhance trust in AI-driven environmental decisions. Comparisons with CycleGAN, FunIEGAN, RAUNENet, WaterNet, UGAN, PUGAN, and UTUIE validate EBA-AI's effectiveness in balancing efficiency, fairness, and interpretability in underwater image processing. By addressing key limitations of AI-driven enhancement, this work contributes to sustainable, bias-aware, and computationally efficient marine conservation efforts. For interactive visualizations, animations, source code, and access to the preprint, visit: https://lyessaadsaoud.github.io/EBA-AI/

Authors:Yuanhan Zhang, Yunice Chew, Yuhao Dong, Aria Leo, Bo Hu, Ziwei Liu
Title: Towards Video Thinking Test: A Holistic Benchmark for Advanced Video Reasoning and Understanding
Abstract:
Human intelligence requires correctness and robustness, with the former being foundational for the latter. In video understanding, correctness ensures the accurate interpretation of visual content, and robustness maintains consistent performance in challenging conditions. Despite advances in video large language models (video LLMs), existing benchmarks inadequately reflect the gap between these models and human intelligence in maintaining correctness and robustness in video interpretation. We introduce the Video Thinking Test (Video-TT), to assess if video LLMs can interpret real-world videos as effectively as humans. Video-TT reflects genuine gaps in understanding complex visual narratives, and evaluates robustness against natural adversarial questions. Video-TT comprises 1,000 YouTube Shorts videos, each with one open-ended question and four adversarial questions that probe visual and narrative complexity. Our evaluation shows a significant gap between video LLMs and human performance.

Authors:Hao Li, Haoxiang Zhang, Ahmed E. Hassan
Title: The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering
Abstract:
The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent

Authors:Hao Zheng, Shunzhi Yang, Zhuoxin He, Jinfeng Yang, Zhenhua Huang
Title: Hierarchical Cross-modal Prompt Learning for Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.

Authors:Saeid Ghafouri, Mohsen Fayyaz, Xiangchen Li, Deepu John, Bo Ji, Dimitrios Nikolopoulos, Hans Vandierendonck
Title: Polymorph: Energy-Efficient Multi-Label Classification for Video Streams on Embedded Devices
Abstract:
Real-time multi-label video classification on embedded devices is constrained by limited compute and energy budgets. Yet, video streams exhibit structural properties such as label sparsity, temporal continuity, and label co-occurrence that can be leveraged for more efficient inference. We introduce Polymorph, a context-aware framework that activates a minimal set of lightweight Low Rank Adapters (LoRA) per frame. Each adapter specializes in a subset of classes derived from co-occurrence patterns and is implemented as a LoRA weight over a shared backbone. At runtime, Polymorph dynamically selects and composes only the adapters needed to cover the active labels, avoiding full-model switching and weight merging. This modular strategy improves scalability while reducing latency and energy overhead. Polymorph achieves 40% lower energy consumption and improves mAP by 9 points over strong baselines on the TAO dataset. Polymorph is open source at https://github.com/inference-serving/polymorph/.

Authors:Hai Huang, Yan Xia, Shulei Wang, Hanting Wang, Minghui Fang, Shengpeng Ji, Sashuai Zhou, Tao Jin, Zhou Zhao
Title: Open-set Cross Modal Generalization via Multimodal Unified Representation
Abstract:
This paper extends Cross Modal Generalization (CMG) to open-set environments by proposing the more challenging Open-set Cross Modal Generalization (OSCMG) task. This task evaluates multimodal unified representations in open-set conditions, addressing the limitations of prior closed-set cross-modal evaluations. OSCMG requires not only cross-modal knowledge transfer but also robust generalization to unseen classes within new modalities, a scenario frequently encountered in real-world applications. Existing multimodal unified representation work lacks consideration for open-set environments. To tackle this, we propose MICU, comprising two key components: Fine-Coarse Masked multimodal InfoNCE (FCMI) and Cross modal Unified Jigsaw Puzzles (CUJP). FCMI enhances multimodal alignment by applying contrastive learning at both holistic semantic and temporal levels, incorporating masking to enhance generalization. CUJP enhances feature diversity and model uncertainty by integrating modality-agnostic feature selection with self-supervised learning, thereby strengthening the model's ability to handle unknown categories in open-set tasks. Extensive experiments on CMG and the newly proposed OSCMG validate the effectiveness of our approach. The code is available at https://github.com/haihuangcode/CMG.

Authors:Eliya Habba, Noam Dahan, Gili Lior, Gabriel Stanovsky
Title: PromptSuite: A Task-Agnostic Framework for Multi-Prompt Generation
Abstract:
Evaluating LLMs with a single prompt has proven unreliable, with small changes leading to significant performance differences. However, generating the prompt variations needed for a more robust multi-prompt evaluation is challenging, limiting its adoption in practice. To address this, we introduce PromptSuite, a framework that enables the automatic generation of various prompts. PromptSuite is flexible - working out of the box on a wide range of tasks and benchmarks. It follows a modular prompt design, allowing controlled perturbations to each component, and is extensible, supporting the addition of new components and perturbation types. Through a series of case studies, we show that PromptSuite provides meaningful variations to support strong evaluation practices. All resources, including the Python API, source code, user-friendly web interface, and demonstration video, are available at: https://eliyahabba.github.io/PromptSuite/.

Authors:Ruhul Amin Khalil, Kashif Ahmad, Hazrat Ali
Title: Redefining Elderly Care with Agentic AI: Challenges and Opportunities
Abstract:
The global ageing population necessitates new and emerging strategies for caring for older adults. In this article, we explore the potential for transformation in elderly care through Agentic Artificial Intelligence (AI), powered by Large Language Models (LLMs). We discuss the proactive and autonomous decision-making facilitated by Agentic AI in elderly care. Personalized tracking of health, cognitive care, and environmental management, all aimed at enhancing independence and high-level living for older adults, represents important areas of application. With a potential for significant transformation of elderly care, Agentic AI also raises profound concerns about data privacy and security, decision independence, and access. We share key insights to emphasize the need for ethical safeguards, privacy protections, and transparent decision-making. Our goal in this article is to provide a balanced discussion of both the potential and the challenges associated with Agentic AI, and to provide insights into its responsible use in elderly care, to bring Agentic AI into harmony with the requirements and vulnerabilities specific to the elderly. Finally, we identify the priorities for the academic research communities, to achieve human-centered advancements and integration of Agentic AI in elderly care. To the best of our knowledge, this is no existing study that reviews the role of Agentic AI in elderly care. Hence, we address the literature gap by analyzing the unique capabilities, applications, and limitations of LLM-based Agentic AI in elderly care. We also provide a companion interactive dashboard at https://hazratali.github.io/agenticai/.

Authors:Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen
Title: U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
Abstract:
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL

Authors:Ronit D. Gross, Yarden Tzach, Tal Halevi, Ella Koresh, Ido Kanter
Title: Tiny language models
Abstract:
A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .

Authors:Xingshu Chen, Sicheng Yu, Chong Cheng, Hao Wang, Ting Tian
Title: An Uncertainty-aware DETR Enhancement Framework for Object Detection
Abstract:
This paper investigates the problem of object detection with a focus on improving both the localization accuracy of bounding boxes and explicitly modeling prediction uncertainty. Conventional detectors rely on deterministic bounding box regression, ignoring uncertainty in predictions and limiting model robustness. In this paper, we propose an uncertainty-aware enhancement framework for DETR-based object detectors. We model bounding boxes as multivariate Gaussian distributions and incorporate the Gromov-Wasserstein distance into the loss function to better align the predicted and ground-truth distributions. Building on this, we derive a Bayes Risk formulation to filter high-risk information and improve detection reliability. We also propose a simple algorithm to quantify localization uncertainty via confidence intervals. Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants, enhancing their performance. We further extend our framework to leukocyte detection tasks, achieving state-of-the-art results on the LISC and WBCDD datasets. These results confirm the scalability of our framework across both general and domain-specific detection tasks. Code page: https://github.com/ParadiseforAndaChen/An-Uncertainty-aware-DETR-Enhancement-Framework-for-Object-Detection.

Authors:Xiang Tang, Ruotong Li, Xiaopeng Fan
Title: Towards Geometric and Textural Consistency 3D Scene Generation via Single Image-guided Model Generation and Layout Optimization
Abstract:
In recent years, 3D generation has made great strides in both academia and industry. However, generating 3D scenes from a single RGB image remains a significant challenge, as current approaches often struggle to ensure both object generation quality and scene coherence in multi-object scenarios. To overcome these limitations, we propose a novel three-stage framework for 3D scene generation with explicit geometric representations and high-quality textural details via single image-guided model generation and spatial layout optimization. Our method begins with an image instance segmentation and inpainting phase, which recovers missing details of occluded objects in the input images, thereby achieving complete generation of foreground 3D assets. Subsequently, our approach captures the spatial geometry of reference image by constructing pseudo-stereo viewpoint for camera parameter estimation and scene depth inference, while employing a model selection strategy to ensure optimal alignment between the 3D assets generated in the previous step and the input. Finally, through model parameterization and minimization of the Chamfer distance between point clouds in 3D and 2D space, our approach optimizes layout parameters to produce an explicit 3D scene representation that maintains precise alignment with input guidance image. Extensive experiments on multi-object scene image sets have demonstrated that our approach not only outperforms state-of-the-art methods in terms of geometric accuracy and texture fidelity of individual generated 3D models, but also has significant advantages in scene layout synthesis.

Authors:Abdul-Kazeem Shamba, Kerstin Bach, Gavin Taylor
Title: eMargin: Revisiting Contrastive Learning with Margin-Based Separation
Abstract:
We revisit previous contrastive learning frameworks to investigate the effect of introducing an adaptive margin into the contrastive loss function for time series representation learning. Specifically, we explore whether an adaptive margin (eMargin), adjusted based on a predefined similarity threshold, can improve the separation between adjacent but dissimilar time steps and subsequently lead to better performance in downstream tasks. Our study evaluates the impact of this modification on clustering performance and classification in three benchmark datasets. Our findings, however, indicate that achieving high scores on unsupervised clustering metrics does not necessarily imply that the learned embeddings are meaningful or effective in downstream tasks. To be specific, eMargin added to InfoNCE consistently outperforms state-of-the-art baselines in unsupervised clustering metrics, but struggles to achieve competitive results in downstream classification with linear probing. The source code is publicly available at https://github.com/sfi-norwai/eMargin.

Authors:Kunyu Yu, Rui Yang, Jingchi Liao, Siqi Li, Huitao Li, Irene Li, Yifan Peng, Rishikesan Kamaleswaran, Nan Liu
Title: Benchmarking Foundation Models with Multimodal Public Electronic Health Records
Abstract:
Foundation models have emerged as a powerful approach for processing electronic health records (EHRs), offering flexibility to handle diverse medical data modalities. In this study, we present a comprehensive benchmark that evaluates the performance, fairness, and interpretability of foundation models, both as unimodal encoders and as multimodal learners, using the publicly available MIMIC-IV database. To support consistent and reproducible evaluation, we developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format. We systematically compared eight foundation models, encompassing both unimodal and multimodal models, as well as domain-specific and general-purpose variants. Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias. Through this benchmark, we aim to support the development of effective and trustworthy multimodal artificial intelligence (AI) systems for real-world clinical applications. Our code is available at https://github.com/nliulab/MIMIC-Multimodal.

Authors:Shoutao Guo, Shaolei Zhang, Qingkai Fang, Zhengrui Ma, Min Zhang, Yang Feng
Title: FastLongSpeech: Enhancing Large Speech-Language Models for Efficient Long-Speech Processing
Abstract:
The rapid advancement of Large Language Models (LLMs) has spurred significant progress in Large Speech-Language Models (LSLMs), enhancing their capabilities in both speech understanding and generation. While existing LSLMs often concentrate on augmenting speech generation or tackling a diverse array of short-speech tasks, the efficient processing of long-form speech remains a critical yet underexplored challenge. This gap is primarily attributed to the scarcity of long-speech training datasets and the high computational costs associated with long sequences. To address these limitations, we introduce FastLongSpeech, a novel framework designed to extend LSLM capabilities for efficient long-speech processing without necessitating dedicated long-speech training data. FastLongSpeech incorporates an iterative fusion strategy that can compress excessively long-speech sequences into manageable lengths. To adapt LSLMs for long-speech inputs, it introduces a dynamic compression training approach, which exposes the model to short-speech sequences at varying compression ratios, thereby transferring the capabilities of LSLMs to long-speech tasks. To assess the long-speech capabilities of LSLMs, we develop a long-speech understanding benchmark called LongSpeech-Eval. Experiments show that our method exhibits strong performance in both long-speech and short-speech tasks, while greatly improving inference efficiency.

Authors:Sam Johnson, Viet Pham, Thai Le
Title: Manipulating LLM Web Agents with Indirect Prompt Injection Attack via HTML Accessibility Tree
Abstract:
This work demonstrates that LLM-based web navigation agents offer powerful automation capabilities but are vulnerable to Indirect Prompt Injection (IPI) attacks. We show that adversaries can embed universal adversarial triggers in webpage HTML to hijack agent behavior that utilizes the accessibility tree to parse HTML, causing unintended or malicious actions. Using the Greedy Coordinate Gradient (GCG) algorithm and a Browser Gym agent powered by Llama-3.1, our system demonstrates high success rates across real websites in both targeted and general attacks, including login credential exfiltration and forced ad clicks. Our empirical results highlight critical security risks and the need for stronger defenses as LLM-driven autonomous web agents become more widely adopted. The system software (https://github.com/sej2020/manipulating-web-agents) is released under the MIT License, with an accompanying publicly available demo website (http://lethaiq.github.io/attack-web-llm-agent).

Authors:Beier Zhu, Ruoyu Wang, Tong Zhao, Hanwang Zhang, Chi Zhang
Title: Distilling Parallel Gradients for Fast ODE Solvers of Diffusion Models
Abstract:
Diffusion models (DMs) have achieved state-of-the-art generative performance but suffer from high sampling latency due to their sequential denoising nature. Existing solver-based acceleration methods often face image quality degradation under a low-latency budget. In this paper, we propose the Ensemble Parallel Direction solver (dubbed as \ours), a novel ODE solver that mitigates truncation errors by incorporating multiple parallel gradient evaluations in each ODE step. Importantly, since the additional gradient computations are independent, they can be fully parallelized, preserving low-latency sampling. Our method optimizes a small set of learnable parameters in a distillation fashion, ensuring minimal training overhead. In addition, our method can serve as a plugin to improve existing ODE samplers. Extensive experiments on various image synthesis benchmarks demonstrate the effectiveness of our \ours~in achieving high-quality and low-latency sampling. For example, at the same latency level of 5 NFE, EPD achieves an FID of 4.47 on CIFAR-10, 7.97 on FFHQ, 8.17 on ImageNet, and 8.26 on LSUN Bedroom, surpassing existing learning-based solvers by a significant margin. Codes are available in https://github.com/BeierZhu/EPD.

Authors:Joseph Raj Vishal, Divesh Basina, Rutuja Patil, Manas Srinivas Gowda, Katha Naik, Yezhou Yang, Bharatesh Chakravarthi
Title: InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
Abstract:
Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces \textbf{InterAct VideoQA}, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA

Authors:Rafał Surdej, Michał Bortkiewicz, Alex Lewandowski, Mateusz Ostaszewski, Clare Lyle
Title: Balancing Expressivity and Robustness: Constrained Rational Activations for Reinforcement Learning
Abstract:
Trainable activation functions, whose parameters are optimized alongside network weights, offer increased expressivity compared to fixed activation functions. Specifically, trainable activation functions defined as ratios of polynomials (rational functions) have been proposed to enhance plasticity in reinforcement learning. However, their impact on training stability remains unclear. In this work, we study trainable rational activations in both reinforcement and continual learning settings. We find that while their flexibility enhances adaptability, it can also introduce instability, leading to overestimation in RL and feature collapse in longer continual learning scenarios. Our main result is demonstrating a trade-off between expressivity and plasticity in rational activations. To address this, we propose a constrained variant that structurally limits excessive output scaling while preserving adaptability. Experiments across MetaWorld and DeepMind Control Suite (DMC) environments show that our approach improves training stability and performance. In continual learning benchmarks, including MNIST with reshuffled labels and Split CIFAR-100, we reveal how different constraints affect the balance between expressivity and long-term retention. While preliminary experiments in discrete action domains (e.g., Atari) did not show similar instability, this suggests that the trade-off is particularly relevant for continuous control. Together, our findings provide actionable design principles for robust and adaptable trainable activations in dynamic, non-stationary environments. Code available at: https://github.com/special114/rl_rational_plasticity.

Authors:Vinicius Anjos de Almeida, Vinicius de Camargo, Raquel Gómez-Bravo, Egbert van der Haring, Kees van Boven, Marcelo Finger, Luis Fernandez Lopez
Title: Large Language Models as Medical Codes Selectors: a benchmark using the International Classification of Primary Care
Abstract:
Background: Medical coding structures healthcare data for research, quality monitoring, and policy. This study assesses the potential of large language models (LLMs) to assign ICPC-2 codes using the output of a domain-specific search engine. Methods: A dataset of 437 Brazilian Portuguese clinical expressions, each annotated with ICPC-2 codes, was used. A semantic search engine (OpenAI's text-embedding-3-large) retrieved candidates from 73,563 labeled concepts. Thirty-three LLMs were prompted with each query and retrieved results to select the best-matching ICPC-2 code. Performance was evaluated using F1-score, along with token usage, cost, response time, and format adherence. Results: Twenty-eight models achieved F1-score > 0.8; ten exceeded 0.85. Top performers included gpt-4.5-preview, o3, and gemini-2.5-pro. Retriever optimization can improve performance by up to 4 points. Most models returned valid codes in the expected format, with reduced hallucinations. Smaller models (<3B) struggled with formatting and input length. Conclusions: LLMs show strong potential for automating ICPC-2 coding, even without fine-tuning. This work offers a benchmark and highlights challenges, but findings are limited by dataset scope and setup. Broader, multilingual, end-to-end evaluations are needed for clinical validation.

Authors:Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin Hou, Tong Lu, Hongsheng Li, Jifeng Dai, Wenhai Wang
Title: Docopilot: Improving Multimodal Models for Document-Level Understanding
Abstract:
Despite significant progress in multimodal large language models (MLLMs), their performance on complex, multi-page document comprehension remains inadequate, largely due to the lack of high-quality, document-level datasets. While current retrieval-augmented generation (RAG) methods offer partial solutions, they suffer from issues, such as fragmented retrieval contexts, multi-stage error accumulation, and extra time costs of retrieval. In this work, we present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents. This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents. Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG. Experiments demonstrate that Docopilot achieves superior coherence, accuracy, and efficiency in document understanding tasks and multi-turn interactions, setting a new baseline for document-level multimodal understanding. Data, code, and models are released at https://github.com/OpenGVLab/Docopilot

Authors:Qibing Ren, Sitao Xie, Longxuan Wei, Zhenfei Yin, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
Abstract:
Recent large-scale events like election fraud and financial scams have shown how harmful coordinated efforts by human groups can be. With the rise of autonomous AI systems, there is growing concern that AI-driven groups could also cause similar harm. While most AI safety research focuses on individual AI systems, the risks posed by multi-agent systems (MAS) in complex real-world situations are still underexplored. In this paper, we introduce a proof-of-concept to simulate the risks of malicious MAS collusion, using a flexible framework that supports both centralized and decentralized coordination structures. We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud. Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones. The increased autonomy of decentralized systems allows them to adapt their strategies and cause more damage. Even when traditional interventions, like content flagging, are applied, decentralized groups can adjust their tactics to avoid detection. We present key insights into how these malicious groups operate and the need for better detection systems and countermeasures. Code is available at https://github.com/renqibing/RogueAgent.

Authors:Jifeng Shen, Haibo Zhan, Shaohua Dong, Xin Zuo, Wankou Yang, Haibin Ling
Title: Multispectral State-Space Feature Fusion: Bridging Shared and Cross-Parametric Interactions for Object Detection
Abstract:
Modern multispectral feature fusion for object detection faces two critical limitations: (1) Excessive preference for local complementary features over cross-modal shared semantics adversely affects generalization performance; and (2) The trade-off between the receptive field size and computational complexity present critical bottlenecks for scalable feature modeling. Addressing these issues, a novel Multispectral State-Space Feature Fusion framework, dubbed MS2Fusion, is proposed based on the state space model (SSM), achieving efficient and effective fusion through a dual-path parametric interaction mechanism. More specifically, the first cross-parameter interaction branch inherits the advantage of cross-attention in mining complementary information with cross-modal hidden state decoding in SSM. The second shared-parameter branch explores cross-modal alignment with joint embedding to obtain cross-modal similar semantic features and structures through parameter sharing in SSM. Finally, these two paths are jointly optimized with SSM for fusing multispectral features in a unified framework, allowing our MS2Fusion to enjoy both functional complementarity and shared semantic space. In our extensive experiments on mainstream benchmarks including FLIR, M3FD and LLVIP, our MS2Fusion significantly outperforms other state-of-the-art multispectral object detection methods, evidencing its superiority. Moreover, MS2Fusion is general and applicable to other multispectral perception tasks. We show that, even without specific design, MS2Fusion achieves state-of-the-art results on RGB-T semantic segmentation and RGBT salient object detection, showing its generality. The source code will be available at https://github.com/61s61min/MS2Fusion.git.

Authors:Guoping Xu, Christopher Kabat, You Zhang
Title: Depthwise-Dilated Convolutional Adapters for Medical Object Tracking and Segmentation Using the Segment Anything Model 2
Abstract:
Recent advances in medical image segmentation have been driven by deep learning; however, most existing methods remain limited by modality-specific designs and exhibit poor adaptability to dynamic medical imaging scenarios. The Segment Anything Model 2 (SAM2) and its related variants, which introduce a streaming memory mechanism for real-time video segmentation, present new opportunities for prompt-based, generalizable solutions. Nevertheless, adapting these models to medical video scenarios typically requires large-scale datasets for retraining or transfer learning, leading to high computational costs and the risk of catastrophic forgetting. To address these challenges, we propose DD-SAM2, an efficient adaptation framework for SAM2 that incorporates a Depthwise-Dilated Adapter (DD-Adapter) to enhance multi-scale feature extraction with minimal parameter overhead. This design enables effective fine-tuning of SAM2 on medical videos with limited training data. Unlike existing adapter-based methods focused solely on static images, DD-SAM2 fully exploits SAM2's streaming memory for medical video object tracking and segmentation. Comprehensive evaluations on TrackRad2025 (tumor segmentation) and EchoNet-Dynamic (left ventricle tracking) datasets demonstrate superior performance, achieving Dice scores of 0.93 and 0.97, respectively. To the best of our knowledge, this work provides an initial attempt at systematically exploring adapter-based SAM2 fine-tuning for medical video segmentation and tracking. Code, datasets, and models will be publicly available at https://github.com/apple1986/DD-SAM2.

Authors:Andrea Moschetto, Lemuel Puglisi, Alec Sargood, Pierluigi Dell'Acqua, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: Benchmarking GANs, Diffusion Models, and Flow Matching for T1w-to-T2w MRI Translation
Abstract:
Magnetic Resonance Imaging (MRI) enables the acquisition of multiple image contrasts, such as T1-weighted (T1w) and T2-weighted (T2w) scans, each offering distinct diagnostic insights. However, acquiring all desired modalities increases scan time and cost, motivating research into computational methods for cross-modal synthesis. To address this, recent approaches aim to synthesize missing MRI contrasts from those already acquired, reducing acquisition time while preserving diagnostic quality. Image-to-image (I2I) translation provides a promising framework for this task. In this paper, we present a comprehensive benchmark of generative models$\unicode{x2013}$specifically, Generative Adversarial Networks (GANs), diffusion models, and flow matching (FM) techniques$\unicode{x2013}$for T1w-to-T2w 2D MRI I2I translation. All frameworks are implemented with comparable settings and evaluated on three publicly available MRI datasets of healthy adults. Our quantitative and qualitative analyses show that the GAN-based Pix2Pix model outperforms diffusion and FM-based methods in terms of structural fidelity, image quality, and computational efficiency. Consistent with existing literature, these results suggest that flow-based models are prone to overfitting on small datasets and simpler tasks, and may require more data to match or surpass GAN performance. These findings offer practical guidance for deploying I2I translation techniques in real-world MRI workflows and highlight promising directions for future research in cross-modal medical image synthesis. Code and models are publicly available at https://github.com/AndreaMoschetto/medical-I2I-benchmark.

Authors:Sujata Gaihre, Amir Thapa Magar, Prasuna Pokharel, Laxmi Tiwari
Title: Multimodal AI for Gastrointestinal Diagnostics: Tackling VQA in MEDVQA-GI 2025
Abstract:
This paper describes our approach to Subtask 1 of the ImageCLEFmed MEDVQA 2025 Challenge, which targets visual question answering (VQA) for gastrointestinal endoscopy. We adopt the Florence model-a large-scale multimodal foundation model-as the backbone of our VQA pipeline, pairing a powerful vision encoder with a text encoder to interpret endoscopic images and produce clinically relevant answers. To improve generalization, we apply domain-specific augmentations that preserve medical features while increasing training diversity. Experiments on the KASVIR dataset show that fine-tuning Florence yields accurate responses on the official challenge metrics. Our results highlight the potential of large multimodal models in medical VQA and provide a strong baseline for future work on explainability, robustness, and clinical integration. The code is publicly available at: https://github.com/TiwariLaxuu/VQA-Florence.git

Authors:Yu Zhang, Baotong Tian, Zhiyao Duan
Title: Conan: A Chunkwise Online Network for Zero-Shot Adaptive Voice Conversion
Abstract:
Zero-shot online voice conversion (VC) holds significant promise for real-time communications and entertainment. However, current VC models struggle to preserve semantic fidelity under real-time constraints, deliver natural-sounding conversions, and adapt effectively to unseen speaker characteristics. To address these challenges, we introduce Conan, a chunkwise online zero-shot voice conversion model that preserves the content of the source while matching the voice timbre and styles of reference speech. Conan comprises three core components: 1) a Stream Content Extractor that leverages Emformer for low-latency streaming content encoding; 2) an Adaptive Style Encoder that extracts fine-grained stylistic features from reference speech for enhanced style adaptation; 3) a Causal Shuffle Vocoder that implements a fully causal HiFiGAN using a pixel-shuffle mechanism. Experimental evaluations demonstrate that Conan outperforms baseline models in subjective and objective metrics. Audio samples can be found at https://aaronz345.github.io/ConanDemo.

Authors:Wenxuan Zeng, Tianshi Xu, Yi Chen, Yifan Zhou, Mingzhe Zhang, Jin Tan, Cheng Hong, Meng Li
Title: Towards Efficient Privacy-Preserving Machine Learning: A Systematic Review from Protocol, Model, and System Perspectives
Abstract:
Privacy-preserving machine learning (PPML) based on cryptographic protocols has emerged as a promising paradigm to protect user data privacy in cloud-based machine learning services. While it achieves formal privacy protection, PPML often incurs significant efficiency and scalability costs due to orders of magnitude overhead compared to the plaintext counterpart. Therefore, there has been a considerable focus on mitigating the efficiency gap for PPML. In this survey, we provide a comprehensive and systematic review of recent PPML studies with a focus on cross-level optimizations. Specifically, we categorize existing papers into protocol level, model level, and system level, and review progress at each level. We also provide qualitative and quantitative comparisons of existing works with technical insights, based on which we discuss future research directions and highlight the necessity of integrating optimizations across protocol, model, and system levels. We hope this survey can provide an overarching understanding of existing approaches and potentially inspire future breakthroughs in the PPML field. As the field is evolving fast, we also provide a public GitHub repository to continuously track the developments, which is available at https://github.com/PKU-SEC-Lab/Awesome-PPML-Papers.

Authors:Jiahao Ma, Tianyu Wang, Miaomiao Liu, David Ahmedt-Aristizabal, Chuong Nguyen
Title: DCHM: Depth-Consistent Human Modeling for Multiview Detection
Abstract:
Multiview pedestrian detection typically involves two stages: human modeling and pedestrian localization. Human modeling represents pedestrians in 3D space by fusing multiview information, making its quality crucial for detection accuracy. However, existing methods often introduce noise and have low precision. While some approaches reduce noise by fitting on costly multiview 3D annotations, they often struggle to generalize across diverse scenes. To eliminate reliance on human-labeled annotations and accurately model humans, we propose Depth-Consistent Human Modeling (DCHM), a framework designed for consistent depth estimation and multiview fusion in global coordinates. Specifically, our proposed pipeline with superpixel-wise Gaussian Splatting achieves multiview depth consistency in sparse-view, large-scaled, and crowded scenarios, producing precise point clouds for pedestrian localization. Extensive validations demonstrate that our method significantly reduces noise during human modeling, outperforming previous state-of-the-art baselines. Additionally, to our knowledge, DCHM is the first to reconstruct pedestrians and perform multiview segmentation in such a challenging setting. Code is available on the \href{https://jiahao-ma.github.io/DCHM/}{project page}.

Authors:Yitong Lin, Jiaying He, Jiahe Chen, Xinnan Zhu, Jianwei Zheng, Tao Bo
Title: BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning
Abstract:
Motivation: Biomedical knowledge graphs (KGs) are crucial for drug discovery and disease understanding, yet their completion and reasoning are challenging. Knowledge Embedding (KE) methods capture global semantics but struggle with dynamic structural integration, while Graph Neural Networks (GNNs) excel locally but often lack semantic understanding. Even ensemble approaches, including those leveraging language models, often fail to achieve a deep, adaptive, and synergistic co-evolution between semantic comprehension and structural learning. Addressing this critical gap in fostering continuous, reciprocal refinement between these two aspects in complex biomedical KGs is paramount. Results: We introduce BioGraphFusion, a novel framework for deeply synergistic semantic and structural learning. BioGraphFusion establishes a global semantic foundation via tensor decomposition, guiding an LSTM-driven mechanism to dynamically refine relation embeddings during graph propagation. This fosters adaptive interplay between semantic understanding and structural learning, further enhanced by query-guided subgraph construction and a hybrid scoring mechanism. Experiments across three key biomedical tasks demonstrate BioGraphFusion's superior performance over state-of-the-art KE, GNN, and ensemble models. A case study on Cutaneous Malignant Melanoma 1 (CMM1) highlights its ability to unveil biologically meaningful pathways. Availability and Implementation: Source code and all training data are freely available for download at https://github.com/Y-TARL/BioGraphFusion. Supplementary information: Supplementary data are available at Bioinformatics online.

Authors:Chi Wan, Yixin Cui, Jiatong Du, Shuo Yang, Yulong Bai, Peng Yi, Nan Li, Yanjun Huang
Title: GEMINUS: Dual-aware Global and Scene-Adaptive Mixture-of-Experts for End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving requires adaptive and robust handling of complex and diverse traffic environments. However, prevalent single-mode planning methods attempt to learn an overall policy while struggling to acquire diversified driving skills to handle diverse scenarios. Therefore, this paper proposes GEMINUS, a Mixture-of-Experts end-to-end autonomous driving framework featuring a Global Expert and a Scene-Adaptive Experts Group, equipped with a Dual-aware Router. Specifically, the Global Expert is trained on the overall dataset, possessing robust performance. The Scene-Adaptive Experts are trained on corresponding scene subsets, achieving adaptive performance. The Dual-aware Router simultaneously considers scenario-level features and routing uncertainty to dynamically activate expert modules. Through the effective coupling of the Global Expert and the Scene-Adaptive Experts Group via the Dual-aware Router, GEMINUS achieves both adaptability and robustness across diverse scenarios. GEMINUS outperforms existing methods in the Bench2Drive closed-loop benchmark and achieves state-of-the-art performance in Driving Score and Success Rate, even with only monocular vision input. The code is available at https://github.com/newbrains1/GEMINUS.

Authors:Chun-Ming Yang, Pranav A. Bhounsule
Title: Koopman Operator Based Time-Delay Embeddings and State History Augmented LQR for Periodic Hybrid Systems: Bouncing Pendulum and Bipedal Walking
Abstract:
Time-delay embedding is a technique that uses snapshots of state history over time to build a linear state space model of a nonlinear smooth system. We demonstrate that periodic non-smooth or hybrid system can also be modeled as a linear state space system using this approach as long as its behavior is consistent in modes and timings. We extend time-delay embeddings to generate a linear model of two periodic hybrid systems: the bouncing pendulum and the simplest walker with control inputs. This leads to a state history augmented linear quadratic regulator (LQR) which uses current and past state history for feedback control. Example code can be found at https://github.com/Chun-MingYang/koopman-timeDelay-lqr.git

Authors:Weikang Gu, Mingyue Han, Li Xue, Heng Dong, Changcai Yang, Riqing Chen, Lifang Wei
Title: GPI-Net: Gestalt-Guided Parallel Interaction Network via Orthogonal Geometric Consistency for Robust Point Cloud Registration
Abstract:
The accurate identification of high-quality correspondences is a prerequisite task in feature-based point cloud registration. However, it is extremely challenging to handle the fusion of local and global features due to feature redundancy and complex spatial relationships. Given that Gestalt principles provide key advantages in analyzing local and global relationships, we propose a novel Gestalt-guided Parallel Interaction Network via orthogonal geometric consistency (GPI-Net) in this paper. It utilizes Gestalt principles to facilitate complementary communication between local and global information. Specifically, we introduce an orthogonal integration strategy to optimally reduce redundant information and generate a more compact global structure for high-quality correspondences. To capture geometric features in correspondences, we leverage a Gestalt Feature Attention (GFA) block through a hybrid utilization of self-attention and cross-attention mechanisms. Furthermore, to facilitate the integration of local detail information into the global structure, we design an innovative Dual-path Multi-Granularity parallel interaction aggregation (DMG) block to promote information exchange across different granularities. Extensive experiments on various challenging tasks demonstrate the superior performance of our proposed GPI-Net in comparison to existing methods. The code will be released at https://github.com/gwk429/GPI-Net.

Authors:Praneeth Namburi, Roger Pallarès-López, Jessica Rosendorf, Duarte Folgado, Brian W. Anthony
Title: DUSTrack: Semi-automated point tracking in ultrasound videos
Abstract:
Ultrasound technology enables safe, non-invasive imaging of dynamic tissue behavior, making it a valuable tool in medicine, biomechanics, and sports science. However, accurately tracking tissue motion in B-mode ultrasound remains challenging due to speckle noise, low edge contrast, and out-of-plane movement. These challenges complicate the task of tracking anatomical landmarks over time, which is essential for quantifying tissue dynamics in many clinical and research applications. This manuscript introduces DUSTrack (Deep learning and optical flow-based toolkit for UltraSound Tracking), a semi-automated framework for tracking arbitrary points in B-mode ultrasound videos. We combine deep learning with optical flow to deliver high-quality and robust tracking across diverse anatomical structures and motion patterns. The toolkit includes a graphical user interface that streamlines the generation of high-quality training data and supports iterative model refinement. It also implements a novel optical-flow-based filtering technique that reduces high-frequency frame-to-frame noise while preserving rapid tissue motion. DUSTrack demonstrates superior accuracy compared to contemporary zero-shot point trackers and performs on par with specialized methods, establishing its potential as a general and foundational tool for clinical and biomechanical research. We demonstrate DUSTrack's versatility through three use cases: cardiac wall motion tracking in echocardiograms, muscle deformation analysis during reaching tasks, and fascicle tracking during ankle plantarflexion. As an open-source solution, DUSTrack offers a powerful, flexible framework for point tracking to quantify tissue motion from ultrasound videos. DUSTrack is available at https://github.com/praneethnamburi/DUSTrack.

Authors:Hui Yang, Jiaoyan Chen, Yuan He, Yongsheng Gao, Ian Horrocks
Title: Language Models as Ontology Encoders
Abstract:
OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.

Authors:Aryana Hou, Li Lin, Justin Li, Shu Hu
Title: Rethinking Individual Fairness in Deepfake Detection
Abstract:
Generative AI models have substantially improved the realism of synthetic media, yet their misuse through sophisticated DeepFakes poses significant risks. Despite recent advances in deepfake detection, fairness remains inadequately addressed, enabling deepfake markers to exploit biases against specific populations. While previous studies have emphasized group-level fairness, individual fairness (i.e., ensuring similar predictions for similar individuals) remains largely unexplored. In this work, we identify for the first time that the original principle of individual fairness fundamentally fails in the context of deepfake detection, revealing a critical gap previously unexplored in the literature. To mitigate it, we propose the first generalizable framework that can be integrated into existing deepfake detectors to enhance individual fairness and generalization. Extensive experiments conducted on leading deepfake datasets demonstrate that our approach significantly improves individual fairness while maintaining robust detection performance, outperforming state-of-the-art methods. The code is available at https://github.com/Purdue-M2/Individual-Fairness-Deepfake-Detection.

Authors:Qiyu Xu, Zhanxuan Hu, Yu Duan, Ercheng Pei, Yonghang Tai
Title: A Hidden Stumbling Block in Generalized Category Discovery: Distracted Attention
Abstract:
Generalized Category Discovery (GCD) aims to classify unlabeled data from both known and unknown categories by leveraging knowledge from labeled known categories. While existing methods have made notable progress, they often overlook a hidden stumbling block in GCD: distracted attention. Specifically, when processing unlabeled data, models tend to focus not only on key objects in the image but also on task-irrelevant background regions, leading to suboptimal feature extraction. To remove this stumbling block, we propose Attention Focusing (AF), an adaptive mechanism designed to sharpen the model's focus by pruning non-informative tokens. AF consists of two simple yet effective components: Token Importance Measurement (TIME) and Token Adaptive Pruning (TAP), working in a cascade. TIME quantifies token importance across multiple scales, while TAP prunes non-informative tokens by utilizing the multi-scale importance scores provided by TIME. AF is a lightweight, plug-and-play module that integrates seamlessly into existing GCD methods with minimal computational overhead. When incorporated into one prominent GCD method, SimGCD, AF achieves up to 15.4% performance improvement over the baseline with minimal computational overhead. The implementation code is provided in https://github.com/Afleve/AFGCD.

Authors:Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Alexander Jacobson, Lu Yuan, Leonid Sigal
Title: In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
Abstract:
Recent methods for customizing Large Vision Language Models (LVLMs) for domain-specific tasks have shown promising results in scientific chart comprehension. However, existing approaches face two major limitations: First, they rely on paired data from only a few chart types, limiting generalization to wide range of chart types. Secondly, they lack targeted pre-training for chart-data alignment, which hampers the model's understanding of underlying data. In this paper, we introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types. We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types, along with a novel Dual-Path training strategy that enabling the model to succinctly capture essential data details while preserving robust reasoning capabilities by incorporating reasoning over the underlying data. Lastly, we establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding. Experimental results demonstrate that ChartScope significantly enhances comprehension on a wide range of chart types. The code and data are available at https://davidhalladay.github.io/chartscope_demo.

Authors:Licheng Liu, Zihan Wang, Linjie Li, Chenwei Xu, Yiping Lu, Han Liu, Avirup Sil, Manling Li
Title: A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning
Abstract:
Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback

Authors:Boyuan Zheng, Zeyi Liao, Scott Salisbury, Zeyuan Liu, Michael Lin, Qinyuan Zheng, Zifan Wang, Xiang Deng, Dawn Song, Huan Sun, Yu Su
Title: WebGuard: Building a Generalizable Guardrail for Web Agents
Abstract:
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.

Authors:Jakub Walczak, Piotr Tomalak, Artur Laskowski
Title: Impact of Code Context and Prompting Strategies on Automated Unit Test Generation with Modern General-Purpose Large Language Models
Abstract:
Generative AI is gaining increasing attention in software engineering, where testing remains an indispensable reliability mechanism. According to the widely adopted testing pyramid, unit tests constitute the majority of test cases and are often schematic, requiring minimal domain expertise. Automatically generating such tests under the supervision of software engineers can significantly enhance productivity during the development phase of the software lifecycle. This paper investigates the impact of code context and prompting strategies on the quality and adequacy of unit tests generated by various large language models (LLMs) across several families. The results show that including docstrings notably improves code adequacy, while further extending context to the full implementation yields definitely smaller gains. Notably, the chain-of-thought prompting strategy -- applied even to 'reasoning' models -- achieves the best results, with up to 96.3\% branch coverage, a 57\% average mutation score, and near-perfect compilation success rate. Among the evaluated models, M5 (Gemini 2.5 Pro) demonstrated superior performance in both mutation score and branch coverage being still in top in terms of compilation success rate. All the code and resulting test suites are publicly available at https://github.com/peetery/LLM-analysis.

Authors:Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan Kautz, Pavlo Molchanov, Yingyan, Lin
Title: LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Abstract:
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.

Authors:Shengji Tang, Jianjian Cao, Weihao Lin, Jiale Hong, Bo Zhang, Shuyue Hu, Lei Bai, Tao Chen, Wanli Ouyang, Peng Ye
Title: Open-Source LLMs Collaboration Beats Closed-Source LLMs: A Scalable Multi-Agent System
Abstract:
This paper aims to demonstrate the potential and strengths of open-source collectives. It leads to a promising question: Can we harness multiple open-source LLMs to match or even beat the closed-source LLMs? To answer this, we propose SMACS, a scalable multi-agent collaboration system (MACS) framework with high performance. Specifically, for continuous integration of new LLMs and generalization to diverse questions, we first propose a Retrieval-based Prior Selection (RPS), which assigns a proxy performance score to each LLM to select the Top-k LLMs at the instance level for any given question. Then, we propose an Exploration-Exploitation-Driven Posterior Enhancement (EPE), encouraging the generation of diverse responses through prior dropping and selecting the high-quality response via a hybrid posterior score. Experiments on eight mainstream benchmarks validate the effectiveness of our SMACS: by integrating fifteen open-source LLMs, SMACS outperforms leading closed-source LLMs in 2025, e.g., Claude-3.7-Sonnet (+12.73%), GPT-4.1(+5.36%) and GPT-o3-mini(+5.28%) across multiple tasks. Remarkably, it even exceeds the average of best results of different datasets from both open-source LLMs (+2.86%) and closed-source LLMs (+2.04%), pushing the upper bound of intelligence. Code will be released at https://github.com/magent4aci/SMACS.

Authors:Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer
Title: Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI
Abstract:
Many program synthesis tasks prove too challenging for even state-of-the-art language models to solve in single attempts. Search-based evolutionary methods offer a promising alternative by exploring solution spaces iteratively, but their effectiveness remain limited by the fixed capabilities of the underlying generative model. We propose SOAR, a method that learns program synthesis by integrating language models into a self-improving evolutionary loop. SOAR alternates between (1) an evolutionary search that uses an LLM to sample and refine candidate solutions, and (2) a hindsight learning phase that converts search attempts into valid problem-solution pairs used to fine-tune the LLM's sampling and refinement capabilities\, -- \,enabling increasingly effective search in subsequent iterations. On the challenging ARC-AGI benchmark, SOAR achieves significant performance gains across model scales and iterations, leveraging positive transfer between the sampling and refinement finetuning tasks. These improvements carry over to test-time adaptation, enabling SOAR to solve 52\% of the public test set. Our code is open-sourced at: https://github.com/flowersteam/SOAR

Authors:Renxiang Qiu, Raghavendra Selvan
Title: UniPhyNet: A Unified Network For Multimodal Physiological Raw Signal Classification
Abstract:
We present UniPhyNet, a novel neural network architecture to classify cognitive load using multimodal physiological data -- specifically EEG, ECG and EDA signals -- without the explicit need for extracting hand-crafted features. UniPhyNet integrates multiscale parallel convolutional blocks and ResNet-type blocks enhanced with channel block attention module to focus on the informative features while a bidirectional gated recurrent unit is used to capture temporal dependencies. This architecture processes and combines signals in both unimodal and multimodal configurations via intermediate fusion of learned feature maps. On the CL-Drive dataset, UniPhyNet improves raw signal classification accuracy from 70% to 80% (binary) and 62% to 74% (ternary), outperforming feature-based models, demonstrating its effectiveness as an end-to-end solution for real-world cognitive state monitoring.

Authors:Kai Yi, Kiarash Jamali, Sjors H. W. Scheres
Title: All-atom inverse protein folding through discrete flow matching
Abstract:
The recent breakthrough of AlphaFold3 in modeling complex biomolecular interactions, including those between proteins and ligands, nucleotides, or metal ions, creates new opportunities for protein design. In so-called inverse protein folding, the objective is to find a sequence of amino acids that adopts a target protein structure. Many inverse folding methods struggle to predict sequences for complexes that contain non-protein components, and perform poorly with complexes that adopt multiple structural states. To address these challenges, we present ADFLIP (All-atom Discrete FLow matching Inverse Protein folding), a generative model based on discrete flow-matching for designing protein sequences conditioned on all-atom structural contexts. ADFLIP progressively incorporates predicted amino acid side chains as structural context during sequence generation and enables the design of dynamic protein complexes through ensemble sampling across multiple structural states. Furthermore, ADFLIP implements training-free classifier guidance sampling, which allows the incorporation of arbitrary pre-trained models to optimise the designed sequence for desired protein properties. We evaluated the performance of ADFLIP on protein complexes with small-molecule ligands, nucleotides, or metal ions, including dynamic complexes for which structure ensembles were determined by nuclear magnetic resonance (NMR). Our model achieves state-of-the-art performance in single-structure and multi-structure inverse folding tasks, demonstrating excellent potential for all-atom protein design. The code is available at https://github.com/ykiiiiii/ADFLIP.

Authors:Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros Gidaris, Elias Ramzi, Andrei Bursuc, Yuki M. Asano
Title: Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
Abstract:
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

Authors:Shikhar Bharadwaj, Samuele Cornell, Kwanghee Choi, Satoru Fukayama, Hye-jin Shim, Soham Deshmukh, Shinji Watanabe
Title: OpenBEATs: A Fully Open-Source General-Purpose Audio Encoder
Abstract:
Masked token prediction has emerged as a powerful pre-training objective across language, vision, and speech, offering the potential to unify these diverse modalities through a single pre-training task. However, its application for general audio understanding remains underexplored, with BEATs being the only notable example. BEATs has seen limited modifications due to the absence of open-source pre-training code. Furthermore, BEATs was trained only on AudioSet, restricting its broader downstream applicability. To address these gaps, we present OpenBEATs, an open-source framework that extends BEATs via multi-domain audio pre-training. We conduct comprehensive evaluations across six types of tasks, twenty five datasets, and three audio domains, including audio reasoning tasks such as audio question answering, entailment, and captioning. OpenBEATs achieves state-of-the-art performance on six bioacoustics datasets, two environmental sound datasets and five reasoning datasets, performing better than models exceeding a billion parameters at one-fourth their parameter size. These results demonstrate the effectiveness of multi-domain datasets and masked token prediction task to learn general-purpose audio representations. To promote further research and reproducibility, we release all pre-training and evaluation code, pretrained and fine-tuned checkpoints, and training logs at https://shikhar-s.github.io/OpenBEATs

Authors:Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, Chris Shum
Title: CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
Abstract:
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.

Authors:Shravan Venkatraman, Pavan Kumar S, Rakesh Raj Madavan, Chandrakala S
Title: UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography
Abstract:
Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL

Authors:Paweł Budzianowski, Wesley Maa, Matthew Freed, Jingxiang Mo, Winston Hsiao, Aaron Xie, Tomasz Młoduchowski, Viraj Tipnis, Benjamin Bolte
Title: EdgeVLA: Efficient Vision-Language-Action Models
Abstract:
Vision-Language Models (VLMs) have emerged as a promising approach to address the data scarcity challenge in robotics, enabling the development of generalizable visuomotor control policies. While models like OpenVLA showcase the potential of this paradigm, deploying large-scale VLMs on resource-constrained mobile manipulation systems remains a significant hurdle. This paper introduces Edge VLA (EVLA), a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models. EVLA maintains the representational power of these models while enabling real-time performance on edge devices. We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs), demonstrating comparable training performance to larger models with significantly reduced computational demands. Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency. We release our model checkpoints and training \href{https://github.com/kscalelabs/evla }{codebase} to foster further research.

Authors:Zhanli Wu, Fabrizio Leisen, F. Javier Rubio
Title: Conformalized Regression for Continuous Bounded Outcomes
Abstract:
Regression problems with bounded continuous outcomes frequently arise in real-world statistical and machine learning applications, such as the analysis of rates and proportions. A central challenge in this setting is predicting a response associated with a new covariate value. Most of the existing statistical and machine learning literature has focused either on point prediction of bounded outcomes or on interval prediction based on asymptotic approximations. We develop conformal prediction intervals for bounded outcomes based on transformation models and beta regression. We introduce tailored non-conformity measures based on residuals that are aligned with the underlying models, and account for the inherent heteroscedasticity in regression settings with bounded outcomes. We present a theoretical result on asymptotic marginal and conditional validity in the context of full conformal prediction, which remains valid under model misspecification. For split conformal prediction, we provide an empirical coverage analysis based on a comprehensive simulation study. The simulation study demonstrates that both methods provide valid finite-sample predictive coverage, including settings with model misspecification. Finally, we demonstrate the practical performance of the proposed conformal prediction intervals on real data and compare them with bootstrap-based alternatives.

Authors:Itay Katav, Aryeh Kontorovich
Title: ParallelTime: Dynamically Weighting the Balance of Short- and Long-Term Temporal Dependencies
Abstract:
Modern multivariate time series forecasting primarily relies on two architectures: the Transformer with attention mechanism and Mamba. In natural language processing, an approach has been used that combines local window attention for capturing short-term dependencies and Mamba for capturing long-term dependencies, with their outputs averaged to assign equal weight to both. We find that for time-series forecasting tasks, assigning equal weight to long-term and short-term dependencies is not optimal. To mitigate this, we propose a dynamic weighting mechanism, ParallelTime Weighter, which calculates interdependent weights for long-term and short-term dependencies for each token based on the input and the model's knowledge. Furthermore, we introduce the ParallelTime architecture, which incorporates the ParallelTime Weighter mechanism to deliver state-of-the-art performance across diverse benchmarks. Our architecture demonstrates robustness, achieves lower FLOPs, requires fewer parameters, scales effectively to longer prediction horizons, and significantly outperforms existing methods. These advances highlight a promising path for future developments of parallel Attention-Mamba in time series forecasting. The implementation is readily available at: \href{https://github.com/itay1551/ParallelTime}{GitHub}.

Authors:Haoran Li, Yuli Tian, Kun Lan, Yong Liao, Lin Wang, Pan Hui, Peng Yuan Zhou
Title: DreamScene: 3D Gaussian-based End-to-end Text-to-3D Scene Generation
Abstract:
Generating 3D scenes from natural language holds great promise for applications in gaming, film, and design. However, existing methods struggle with automation, 3D consistency, and fine-grained control. We present DreamScene, an end-to-end framework for high-quality and editable 3D scene generation from text or dialogue. DreamScene begins with a scene planning module, where a GPT-4 agent infers object semantics and spatial constraints to construct a hybrid graph. A graph-based placement algorithm then produces a structured, collision-free layout. Based on this layout, Formation Pattern Sampling (FPS) generates object geometry using multi-timestep sampling and reconstructive optimization, enabling fast and realistic synthesis. To ensure global consistent, DreamScene employs a progressive camera sampling strategy tailored to both indoor and outdoor settings. Finally, the system supports fine-grained scene editing, including object movement, appearance changes, and 4D dynamic motion. Experiments demonstrate that DreamScene surpasses prior methods in quality, consistency, and flexibility, offering a practical solution for open-domain 3D content creation. Code and demos are available at https://jahnsonblack.github.io/DreamScene-Full/.

Authors:Pablo Marcos-Manchón, Lluís Fuentemilla
Title: Convergent transformations of visual representation in brains and models
Abstract:
A fundamental question in cognitive neuroscience is what shapes visual perception: the external world's structure or the brain's internal architecture. Although some perceptual variability can be traced to individual differences, brain responses to naturalistic stimuli evoke similar activity patterns across individuals, suggesting a convergent representational principle. Here, we test if this stimulus-driven convergence follows a common trajectory across people and deep neural networks (DNNs) during its transformation from sensory to high-level internal representations. We introduce a unified framework that traces representational flow by combining inter-subject similarity with alignment to model hierarchies. Applying this framework to three independent fMRI datasets of visual scene perception, we reveal a cortex-wide network, conserved across individuals, organized into two pathways: a medial-ventral stream for scene structure and a lateral-dorsal stream tuned for social and biological content. This functional organization is captured by the hierarchies of vision DNNs but not language models, reinforcing the specificity of the visual-to-semantic transformation. These findings show a convergent computational solution for visual encoding in both human and artificial vision, driven by the structure of the external world.

Authors:Kobi Hackenburg, Ben M. Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist, Helen Margetts, David G. Rand, Christopher Summerfield
Title: The Levers of Political Persuasion with Conversational AI
Abstract:
There are widespread fears that conversational AI could soon exert unprecedented influence over human beliefs. Here, in three large-scale experiments (N=76,977), we deployed 19 LLMs-including some post-trained explicitly for persuasion-to evaluate their persuasiveness on 707 political issues. We then checked the factual accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show that the persuasive power of current and near-future AI is likely to stem more from post-training and prompting methods-which boosted persuasiveness by as much as 51% and 27% respectively-than from personalization or increasing model scale. We further show that these methods increased persuasion by exploiting LLMs' unique ability to rapidly access and strategically deploy information and that, strikingly, where they increased AI persuasiveness they also systematically decreased factual accuracy.

Authors:Lei Xu, Torkel B Brismar
Title: Software architecture and manual for novel versatile CT image analysis toolbox -- AnatomyArchive
Abstract:
We have developed a novel CT image analysis package named AnatomyArchive, built on top of the recent full body segmentation model TotalSegmentator. It provides automatic target volume selection and deselection capabilities according to user-configured anatomies for volumetric upper- and lower-bounds. It has a knowledge graph-based and time efficient tool for anatomy segmentation mask management and medical image database maintenance. AnatomyArchive enables automatic body volume cropping, as well as automatic arm-detection and exclusion, for more precise body composition analysis in both 2D and 3D formats. It provides robust voxel-based radiomic feature extraction, feature visualization, and an integrated toolchain for statistical tests and analysis. A python-based GPU-accelerated nearly photo-realistic segmentation-integrated composite cinematic rendering is also included. We present here its software architecture design, illustrate its workflow and working principle of algorithms as well provide a few examples on how the software can be used to assist development of modern machine learning models. Open-source codes will be released at https://github.com/lxu-medai/AnatomyArchive for only research and educational purposes.

Authors:Huu-Phu Do, Yu-Wei Chen, Yi-Cheng Liao, Chi-Wei Hsiao, Han-Yang Wang, Wei-Chen Chiu, Ching-Chun Huang
Title: DynFaceRestore: Balancing Fidelity and Quality in Diffusion-Guided Blind Face Restoration with Dynamic Blur-Level Mapping and Guidance
Abstract:
Blind Face Restoration aims to recover high-fidelity, detail-rich facial images from unknown degraded inputs, presenting significant challenges in preserving both identity and detail. Pre-trained diffusion models have been increasingly used as image priors to generate fine details. Still, existing methods often use fixed diffusion sampling timesteps and a global guidance scale, assuming uniform degradation. This limitation and potentially imperfect degradation kernel estimation frequently lead to under- or over-diffusion, resulting in an imbalance between fidelity and quality. We propose DynFaceRestore, a novel blind face restoration approach that learns to map any blindly degraded input to Gaussian blurry images. By leveraging these blurry images and their respective Gaussian kernels, we dynamically select the starting timesteps for each blurry image and apply closed-form guidance during the diffusion sampling process to maintain fidelity. Additionally, we introduce a dynamic guidance scaling adjuster that modulates the guidance strength across local regions, enhancing detail generation in complex areas while preserving structural fidelity in contours. This strategy effectively balances the trade-off between fidelity and quality. DynFaceRestore achieves state-of-the-art performance in both quantitative and qualitative evaluations, demonstrating robustness and effectiveness in blind face restoration. Project page at https://nycu-acm.github.io/DynFaceRestore/

Authors:Enhao Cheng, Shoujia Zhang, Jianhua Yin, Xuemeng Song, Tian Gan, Liqiang Nie
Title: An Enhanced Model-based Approach for Short Text Clustering
Abstract:
Short text clustering has become increasingly important with the popularity of social media like Twitter, Google+, and Facebook. Existing methods can be broadly categorized into two paradigms: topic model-based approaches and deep representation learning-based approaches. This task is inherently challenging due to the sparse, large-scale, and high-dimensional characteristics of the short text data. Furthermore, the computational intensity required by representation learning significantly increases the running time. To address these issues, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM), which effectively handles the sparsity and high dimensionality of short texts while identifying representative words for each cluster. Based on several aspects of GSDMM that warrant further refinement, we propose an improved approach, GSDMM+, designed to further optimize its performance. GSDMM+ reduces initialization noise and adaptively adjusts word weights based on entropy, achieving fine-grained clustering that reveals more topic-related information. Additionally, strategic cluster merging is employed to refine clustering granularity, better aligning the predicted distribution with the true category distribution. We conduct extensive experiments, comparing our methods with both classical and state-of-the-art approaches. The experimental results demonstrate the efficiency and effectiveness of our methods. The source code for our model is publicly available at https://github.com/chehaoa/VEMC.

Authors:Tongtong Su, Chengyu Wang, Bingyan Liu, Jun Huang, Dongming Lu
Title: Encapsulated Composition of Text-to-Image and Text-to-Video Models for High-Quality Video Synthesis
Abstract:
In recent years, large text-to-video (T2V) synthesis models have garnered considerable attention for their abilities to generate videos from textual descriptions. However, achieving both high imaging quality and effective motion representation remains a significant challenge for these T2V models. Existing approaches often adapt pre-trained text-to-image (T2I) models to refine video frames, leading to issues such as flickering and artifacts due to inconsistencies across frames. In this paper, we introduce EVS, a training-free Encapsulated Video Synthesizer that composes T2I and T2V models to enhance both visual fidelity and motion smoothness of generated videos. Our approach utilizes a well-trained diffusion-based T2I model to refine low-quality video frames by treating them as out-of-distribution samples, effectively optimizing them with noising and denoising steps. Meanwhile, we employ T2V backbones to ensure consistent motion dynamics. By encapsulating the T2V temporal-only prior into the T2I generation process, EVS successfully leverages the strengths of both types of models, resulting in videos of improved imaging and motion quality. Experimental results validate the effectiveness of our approach compared to previous approaches. Our composition process also leads to a significant improvement of 1.6x-4.5x speedup in inference time. Source codes: https://github.com/Tonniia/EVS.

Authors:Zizhao Zhang, Tianxiang Zhao, Yu Sun, Liping Sun, Jichuan Kang
Title: Graph-Structured Data Analysis of Component Failure in Autonomous Cargo Ships Based on Feature Fusion
Abstract:
To address the challenges posed by cascading reactions caused by component failures in autonomous cargo ships (ACS) and the uncertainties in emergency decision-making, this paper proposes a novel hybrid feature fusion framework for constructing a graph-structured dataset of failure modes. By employing an improved cuckoo search algorithm (HN-CSA), the literature retrieval efficiency is significantly enhanced, achieving improvements of 7.1% and 3.4% compared to the NSGA-II and CSA search algorithms, respectively. A hierarchical feature fusion framework is constructed, using Word2Vec encoding to encode subsystem/component features, BERT-KPCA to process failure modes/reasons, and Sentence-BERT to quantify the semantic association between failure impact and emergency decision-making. The dataset covers 12 systems, 1,262 failure modes, and 6,150 propagation paths. Validation results show that the GATE-GNN model achieves a classification accuracy of 0.735, comparable to existing benchmarks. Additionally, a silhouette coefficient of 0.641 indicates that the features are highly distinguishable. In the label prediction results, the Shore-based Meteorological Service System achieved an F1 score of 0.93, demonstrating high prediction accuracy. This paper not only provides a solid foundation for failure analysis in autonomous cargo ships but also offers reliable support for fault diagnosis, risk assessment, and intelligent decision-making systems. The link to the dataset is https://github.com/wojiufukele/Graph-Structured-about-CSA.

Authors:Haoyang Li, Zhanchao Xu, Yiming Li, Xuejia Chen, Darian Li, Anxin Tian, Qingfa Xiao, Cheng Deng, Jun Wang, Qing Li, Lei Chen, Mingxuan Yuan
Title: LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues
Abstract:
Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a \href{https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs}{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.

Authors:Xiao Wang, Qian Zhu, Shujuan Wu, Bo Jiang, Shiliang Zhang, Yaowei Wang, Yonghong Tian, Bin Luo
Title: When Person Re-Identification Meets Event Camera: A Benchmark Dataset and An Attribute-guided Re-Identification Framework
Abstract:
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID

Authors:Seungjun Moon, Sangjoon Yu, Gyeong-Moon Park
Title: EPSilon: Efficient Point Sampling for Lightening of Hybrid-based 3D Avatar Generation
Abstract:
The rapid advancement of neural radiance fields (NeRF) has paved the way to generate animatable human avatars from a monocular video. However, the sole usage of NeRF suffers from a lack of details, which results in the emergence of hybrid representation that utilizes SMPL-based mesh together with NeRF representation. While hybrid-based models show photo-realistic human avatar generation qualities, they suffer from extremely slow inference due to their deformation scheme: to be aligned with the mesh, hybrid-based models use the deformation based on SMPL skinning weights, which needs high computational costs on each sampled point. We observe that since most of the sampled points are located in empty space, they do not affect the generation quality but result in inference latency with deformation. In light of this observation, we propose EPSilon, a hybrid-based 3D avatar generation scheme with novel efficient point sampling strategies that boost both training and inference. In EPSilon, we propose two methods to omit empty points at rendering; empty ray omission (ERO) and empty interval omission (EIO). In ERO, we wipe out rays that progress through the empty space. Then, EIO narrows down the sampling interval on the ray, which wipes out the region not occupied by either clothes or mesh. The delicate sampling scheme of EPSilon enables not only great computational cost reduction during deformation but also the designation of the important regions to be sampled, which enables a single-stage NeRF structure without hierarchical sampling. Compared to existing methods, EPSilon maintains the generation quality while using only 3.9% of sampled points and achieves around 20 times faster inference, together with 4 times faster training convergence. We provide video results on https://github.com/seungjun-moon/epsilon.

Authors:Hanbing Zheng, Chenlei Lv
Title: Isotropic Remeshing with Inter-Angle Optimization
Abstract:
As an important metric for mesh quality evaluation, the isotropy property holds significant value for applications such as texture UV-mapping, physical simulation, and discrete geometric analysis. Classical isotropy remeshing methods adjust vertices and edge lengths, which exhibit certain limitations in terms of input data sensitivity, geometric consistency control, and convergence speed. In this paper, we propose an improved isotropy remeshing solution with inter-angle optimization during mesh editing to enhance shape control capability and accelerate convergence. The advantage of the solution lies in its ability to predict the impact of edge length adjustments on subsequent optimization by monitoring angle transformations. It avoids inefficient editing that may cause performance fluctuations, thereby improving efficiency. Experiments demonstrate that the proposed method effectively improves the overall efficiency of mesh optimization.

Authors:Binxiong Li, Xu Xiang, Xue Li, Binyu Zhao, Heyang Gao, Qinyu Zhao
Title: Tri-Learn Graph Fusion Network for Attributed Graph Clustering
Abstract:
In recent years, models based on Graph Convolutional Networks (GCN) have made significant strides in the field of graph data analysis. However, challenges such as over-smoothing and over-compression remain when handling large-scale and complex graph datasets, leading to a decline in clustering quality. Although the Graph Transformer architecture has mitigated some of these issues, its performance is still limited when processing heterogeneous graph data. To address these challenges, this study proposes a novel deep clustering framework that comprising GCN, Autoencoder (AE), and Graph Transformer, termed the Tri-Learn Graph Fusion Network (Tri-GFN). This framework enhances the differentiation and consistency of global and local information through a unique tri-learning mechanism and feature fusion enhancement strategy. The framework integrates GCN, AE, and Graph Transformer modules. These components are meticulously fused by a triple-channel enhancement module, which maximizes the use of both node attributes and topological structures, ensuring robust clustering representation. The tri-learning mechanism allows mutual learning among these modules, while the feature fusion strategy enables the model to capture complex relationships, yielding highly discriminative representations for graph clustering. It surpasses many state-of-the-art methods, achieving an accuracy improvement of approximately 0.87% on the ACM dataset, 14.14 % on the Reuters dataset, and 7.58 % on the USPS dataset. Due to its outstanding performance on the Reuters dataset, Tri-GFN can be applied to automatic news classification, topic retrieval, and related fields.

Authors:Dmitrii Mikhailov, Aleksey Letunovskiy, Maria Kovaleva, Vladimir Arkhipkin, Vladimir Korviakov, Vladimir Polovnikov, Viacheslav Vasilev, Evelina Sidorova, Denis Dimitrov
Title: $\nabla$NABLA: Neighborhood Adaptive Block-Level Attention
Abstract:
Recent progress in transformer-based architectures has demonstrated remarkable success in video generation tasks. However, the quadratic complexity of full attention mechanisms remains a critical bottleneck, particularly for high-resolution and long-duration video sequences. In this paper, we propose NABLA, a novel Neighborhood Adaptive Block-Level Attention mechanism that dynamically adapts to sparsity patterns in video diffusion transformers (DiTs). By leveraging block-wise attention with adaptive sparsity-driven threshold, NABLA reduces computational overhead while preserving generative quality. Our method does not require custom low-level operator design and can be seamlessly integrated with PyTorch's Flex Attention operator. Experiments demonstrate that NABLA achieves up to 2.7x faster training and inference compared to baseline almost without compromising quantitative metrics (CLIP score, VBench score, human evaluation score) and visual quality drop. The code and model weights are available here: https://github.com/gen-ai-team/Wan2.1-NABLA

Authors:Alexander Kolpakov
Title: Loss-Complexity Landscape and Model Structure Functions
Abstract:
We develop a framework for dualizing the Kolmogorov structure function $h_x(α)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.

Authors:Seyyed Saeid Cheshmi, Buyao Lyu, Thomas Lisko, Rajesh Rajamani, Robert A. McGovern, Yogatheesan Varatharajah
Title: Improving Out-of-distribution Human Activity Recognition via IMU-Video Cross-modal Representation Learning
Abstract:
Human Activity Recognition (HAR) based on wearable inertial sensors plays a critical role in remote health monitoring. In patients with movement disorders, the ability to detect abnormal patient movements in their home environments can enable continuous optimization of treatments and help alert caretakers as needed. Machine learning approaches have been proposed for HAR tasks using Inertial Measurement Unit (IMU) data; however, most rely on application-specific labels and lack generalizability to data collected in different environments or populations. To address this limitation, we propose a new cross-modal self-supervised pretraining approach to learn representations from large-sale unlabeled IMU-video data and demonstrate improved generalizability in HAR tasks on out of distribution (OOD) IMU datasets, including a dataset collected from patients with Parkinson's disease. Specifically, our results indicate that the proposed cross-modal pretraining approach outperforms the current state-of-the-art IMU-video pretraining approach and IMU-only pretraining under zero-shot and few-shot evaluations. Broadly, our study provides evidence that in highly dynamic data modalities, such as IMU signals, cross-modal pretraining may be a useful tool to learn generalizable data representations. Our software is available at https://github.com/scheshmi/IMU-Video-OOD-HAR.

Authors:Liang Lin, Zhihao Xu, Xuehai Tang, Shi Liu, Biyu Zhou, Fuqing Zhu, Jizhong Han, Songlin Hu
Title: Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
Abstract:
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (\llmname{PSA}), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack

Authors:Joost Mertens, Joachim Denil
Title: Lab-Scale Gantry Crane Digital Twin Exemplar
Abstract:
The research topic of digital twins has attracted a large amount of interest over the past decade. However, publicly available exemplars remain scarce. In the interest of open and reproducible science, in this exemplar paper we present a lab-scale gantry crane and its digital twin. The exemplar comprises both the physical and digital side of the twin system. The physical side consists of the physical crane and its controller. The digital side covers the CAD models and kinematic model of the crane, and provides services for optimal control, historical data logging, data visualization and continuous validation. We used this setup as use case in several previous publications where its functionality was validated. It is publicly available and only relies on other freely available and commonly used software, this way we hope it can be used for future research or education on the topic of digital twins.

Authors:Aleksey Lapin, Igor Hromov, Stanislav Chumakov, Mile Mitrovic, Dmitry Simakov, Nikolay O. Nikitin, Andrey V. Savchenko
Title: LightAutoDS-Tab: Multi-AutoML Agentic System for Tabular Data
Abstract:
AutoML has advanced in handling complex tasks using the integration of LLMs, yet its efficiency remains limited by dependence on specific underlying tools. In this paper, we introduce LightAutoDS-Tab, a multi-AutoML agentic system for tasks with tabular data, which combines an LLM-based code generation with several AutoML tools. Our approach improves the flexibility and robustness of pipeline design, outperforming state-of-the-art open-source solutions on several data science tasks from Kaggle. The code of LightAutoDS-Tab is available in the open repository https://github.com/sb-ai-lab/LADS

Authors:Qingyun Sun, Jiaqi Yuan, Shan He, Xiao Guan, Haonan Yuan, Xingcheng Fu, Jianxin Li, Philip S. Yu
Title: DyG-RAG: Dynamic Graph Retrieval-Augmented Generation with Event-Centric Reasoning
Abstract:
Graph Retrieval-Augmented Generation has emerged as a powerful paradigm for grounding large language models with external structured knowledge. However, existing Graph RAG methods struggle with temporal reasoning, due to their inability to model the evolving structure and order of real-world events. In this work, we introduce DyG-RAG, a novel event-centric dynamic graph retrieval-augmented generation framework designed to capture and reason over temporal knowledge embedded in unstructured text. To eliminate temporal ambiguity in traditional retrieval units, DyG-RAG proposes Dynamic Event Units (DEUs) that explicitly encode both semantic content and precise temporal anchors, enabling accurate and interpretable time-aware retrieval. To capture temporal and causal dependencies across events, DyG-RAG constructs an event graph by linking DEUs that share entities and occur close in time, supporting efficient and meaningful multi-hop reasoning. To ensure temporally consistent generation, DyG-RAG introduces an event timeline retrieval pipeline that retrieves event sequences via time-aware traversal, and proposes a Time Chain-of-Thought strategy for temporally grounded answer generation. This unified pipeline enables DyG-RAG to retrieve coherent, temporally ordered event sequences and to answer complex, time-sensitive queries that standard RAG systems cannot resolve. Extensive experiments on temporal QA benchmarks demonstrate that DyG-RAG significantly improves the accuracy and recall of three typical types of temporal reasoning questions, paving the way for more faithful and temporal-aware generation. DyG-RAG is available at https://github.com/RingBDStack/DyG-RAG.

Authors:Chihiro Noguchi, Takaki Yamamoto
Title: From Binary to Semantic: Utilizing Large-Scale Binary Occupancy Data for 3D Semantic Occupancy Prediction
Abstract:
Accurate perception of the surrounding environment is essential for safe autonomous driving. 3D occupancy prediction, which estimates detailed 3D structures of roads, buildings, and other objects, is particularly important for vision-centric autonomous driving systems that do not rely on LiDAR sensors. However, in 3D semantic occupancy prediction -- where each voxel is assigned a semantic label -- annotated LiDAR point clouds are required, making data acquisition costly. In contrast, large-scale binary occupancy data, which only indicate occupied or free space without semantic labels, can be collected at a lower cost. Despite their availability, the potential of leveraging such data remains unexplored. In this study, we investigate the utilization of large-scale binary occupancy data from two perspectives: (1) pre-training and (2) learning-based auto-labeling. We propose a novel binary occupancy-based framework that decomposes the prediction process into binary and semantic occupancy modules, enabling effective use of binary occupancy data. Our experimental results demonstrate that the proposed framework outperforms existing methods in both pre-training and auto-labeling tasks, highlighting its effectiveness in enhancing 3D semantic occupancy prediction. The code is available at https://github.com/ToyotaInfoTech/b2s-occupancy

Authors:Xiaojian Lin, Wenxin Zhang, Yuchu Jiang, Wangyu Wu, Yiran Guo, Kangxu Wang, Zongzheng Zhang, Guijin Wang, Lei Jin, Hao Zhao
Title: Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
Abstract:
Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.

Authors:Atharv Goel, Mehar Khurana
Title: Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
Abstract:
Modern 3D object detection datasets are constrained by narrow class taxonomies and costly manual annotations, limiting their ability to scale to open-world settings. In contrast, 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection via natural language prompts. In this work, we leverage the maturity and category diversity of 2D foundation models to perform open-vocabulary 3D object detection without any human-annotated 3D labels. Our pipeline uses a 2D vision-language detector to generate text-conditioned proposals, which are segmented with SAM and back-projected into 3D using camera geometry and either LiDAR or monocular pseudo-depth. We introduce a geometric inflation strategy based on DBSCAN clustering and Rotating Calipers to infer 3D bounding boxes without training. To simulate adverse real-world conditions, we construct Pseudo-nuScenes, a fog-augmented, RGB-only variant of the nuScenes dataset. Experiments demonstrate that our method achieves competitive localization performance across multiple settings, including LiDAR-based and purely RGB-D inputs, all while remaining training-free and open-vocabulary. Our results highlight the untapped potential of 2D foundation models for scalable 3D perception. We open-source our code and resources at https://github.com/atharv0goel/open-world-3D-det.

Authors:Binbin Ji, Siddharth Agrawal, Qiance Tang, Yvonne Wu
Title: Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning
Abstract:
This study investigates the spatial reasoning capabilities of vision-language models (VLMs) through Chain-of-Thought (CoT) prompting and reinforcement learning. We begin by evaluating the impact of different prompting strategies and find that simple CoT formats, where the model generates a reasoning step before the answer, not only fail to help, but can even harm the model's original performance. In contrast, structured multi-stage prompting based on scene graphs (SceneGraph CoT) significantly improves spatial reasoning accuracy. Furthermore, to improve spatial reasoning ability, we fine-tune models using Group Relative Policy Optimization (GRPO) on the SAT dataset and evaluate their performance on CVBench. Compared to supervised fine-tuning (SFT), GRPO achieves higher accuracy on Pass@1 evaluations and demonstrates superior robustness under out-of-distribution (OOD) conditions. In particular, we find that SFT overfits to surface-level linguistic patterns and may degrade performance when test-time phrasing changes (e.g., from "closer to" to "farther from"). GRPO, on the other hand, generalizes more reliably and maintains stable performance under such shifts. Our findings provide insights into how reinforcement learning and structured prompting improve the spatial reasoning capabilities and generalization behavior of modern VLMs. All code is open source at: https://github.com/Yvonne511/spatial-vlm-investigator

Authors:Le-Anh Tran, Chung Nguyen Tran, Ngoc-Luu Nguyen, Nhan Cach Dang, Jordi Carrabina, David Castells-Rufas, Minh Son Nguyen
Title: Low-Light Enhancement via Encoder-Decoder Network with Illumination Guidance
Abstract:
This paper introduces a novel deep learning framework for low-light image enhancement, named the Encoder-Decoder Network with Illumination Guidance (EDNIG). Building upon the U-Net architecture, EDNIG integrates an illumination map, derived from Bright Channel Prior (BCP), as a guidance input. This illumination guidance helps the network focus on underexposed regions, effectively steering the enhancement process. To further improve the model's representational power, a Spatial Pyramid Pooling (SPP) module is incorporated to extract multi-scale contextual features, enabling better handling of diverse lighting conditions. Additionally, the Swish activation function is employed to ensure smoother gradient propagation during training. EDNIG is optimized within a Generative Adversarial Network (GAN) framework using a composite loss function that combines adversarial loss, pixel-wise mean squared error (MSE), and perceptual loss. Experimental results show that EDNIG achieves competitive performance compared to state-of-the-art methods in quantitative metrics and visual quality, while maintaining lower model complexity, demonstrating its suitability for real-world applications. The source code for this work is available at https://github.com/tranleanh/ednig.

Authors:Yang Zhou, Junjie Li, CongYang Ou, Dawei Yan, Haokui Zhang, Xizhe Xue
Title: Open-Vocabulary Object Detection in UAV Imagery: A Review and Future Perspectives
Abstract:
Due to its extensive applications, aerial image object detection has long been a hot topic in computer vision. In recent years, advancements in Unmanned Aerial Vehicles (UAV) technology have further propelled this field to new heights, giving rise to a broader range of application requirements. However, traditional UAV aerial object detection methods primarily focus on detecting predefined categories, which significantly limits their applicability. The advent of cross-modal text-image alignment (e.g., CLIP) has overcome this limitation, enabling open-vocabulary object detection (OVOD), which can identify previously unseen objects through natural language descriptions. This breakthrough significantly enhances the intelligence and autonomy of UAVs in aerial scene understanding. This paper presents a comprehensive survey of OVOD in the context of UAV aerial scenes. We begin by aligning the core principles of OVOD with the unique characteristics of UAV vision, setting the stage for a specialized discussion. Building on this foundation, we construct a systematic taxonomy that categorizes existing OVOD methods for aerial imagery and provides a comprehensive overview of the relevant datasets. This structured review enables us to critically dissect the key challenges and open problems at the intersection of these fields. Finally, based on this analysis, we outline promising future research directions and application prospects. This survey aims to provide a clear road map and a valuable reference for both newcomers and seasoned researchers, fostering innovation in this rapidly evolving domain. We keep tracing related works at https://github.com/zhouyang2002/OVOD-in-UVA-imagery

Authors:Yichi Zhang, Yici Yan, Alex Schwing, Zhizhen Zhao
Title: Hierarchical Rectified Flow Matching with Mini-Batch Couplings
Abstract:
Flow matching has emerged as a compelling generative modeling approach that is widely used across domains. To generate data via a flow matching model, an ordinary differential equation (ODE) is numerically solved via forward integration of the modeled velocity field. To better capture the multi-modality that is inherent in typical velocity fields, hierarchical flow matching was recently introduced. It uses a hierarchy of ODEs that are numerically integrated when generating data. This hierarchy of ODEs captures the multi-modal velocity distribution just like vanilla flow matching is capable of modeling a multi-modal data distribution. While this hierarchy enables to model multi-modal velocity distributions, the complexity of the modeled distribution remains identical across levels of the hierarchy. In this paper, we study how to gradually adjust the complexity of the distributions across different levels of the hierarchy via mini-batch couplings. We show the benefits of mini-batch couplings in hierarchical rectified flow matching via compelling results on synthetic and imaging data. Code is available at https://riccizz.github.io/HRF_coupling.

Authors:Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Abstract:
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.

Authors:Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Jiangmiao Pang, Chunhua Shen, Tong He
Title: $π^3$: Permutation-Equivariant Visual Geometry Learning
Abstract:
We introduce $π^3$, a feed-forward neural network that offers a novel approach to visual geometry reconstruction, breaking the reliance on a conventional fixed reference view. Previous methods often anchor their reconstructions to a designated viewpoint, an inductive bias that can lead to instability and failures if the reference is suboptimal. In contrast, $π^3$ employs a fully permutation-equivariant architecture to predict affine-invariant camera poses and scale-invariant local point maps without any reference frames. This design not only makes our model inherently robust to input ordering, but also leads to higher accuracy and performance. These advantages enable our simple and bias-free approach to achieve state-of-the-art performance on a wide range of tasks, including camera pose estimation, monocular/video depth estimation, and dense point map reconstruction. Code and models are publicly available.

Authors:Minghao Chen, Jianyuan Wang, Roman Shapovalov, Tom Monnier, Hyunyoung Jung, Dilin Wang, Rakesh Ranjan, Iro Laina, Andrea Vedaldi
Title: AutoPartGen: Autogressive 3D Part Generation and Discovery
Abstract:
We introduce AutoPartGen, a model that generates objects composed of 3D parts in an autoregressive manner. This model can take as input an image of an object, 2D masks of the object's parts, or an existing 3D object, and generate a corresponding compositional 3D reconstruction. Our approach builds upon 3DShape2VecSet, a recent latent 3D representation with powerful geometric expressiveness. We observe that this latent space exhibits strong compositional properties, making it particularly well-suited for part-based generation tasks. Specifically, AutoPartGen generates object parts autoregressively, predicting one part at a time while conditioning on previously generated parts and additional inputs, such as 2D images, masks, or 3D objects. This process continues until the model decides that all parts have been generated, thus determining automatically the type and number of parts. The resulting parts can be seamlessly assembled into coherent objects or scenes without requiring additional optimization. We evaluate both the overall 3D generation capabilities and the part-level generation quality of AutoPartGen, demonstrating that it achieves state-of-the-art performance in 3D part generation.

Authors:Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Junshan Zhang, Iman Soltani
Title: VITA: Vision-to-Action Flow Matching Policy
Abstract:
We present VITA, a Vision-To-Action flow matching policy that evolves latent visual representations into latent actions for visuomotor control. Traditional flow matching and diffusion policies sample from standard source distributions (e.g., Gaussian noise) and require additional conditioning mechanisms like cross-attention to condition action generation on visual information, creating time and space overheads. VITA proposes a novel paradigm that treats latent images as the flow source, learning an inherent mapping from vision to action while eliminating separate conditioning modules and preserving generative modeling capabilities. Learning flows between fundamentally different modalities like vision and action is challenging due to sparse action data lacking semantic structures and dimensional mismatches between high-dimensional visual representations and raw actions. We address this by creating a structured action latent space via an autoencoder as the flow matching target, up-sampling raw actions to match visual representation shapes. Crucially, we supervise flow matching with both encoder targets and final action outputs through flow latent decoding, which backpropagates action reconstruction loss through sequential flow matching ODE solving steps for effective end-to-end learning. Implemented as simple MLP layers, VITA is evaluated on challenging bi-manual manipulation tasks on the ALOHA platform, including 5 simulation and 2 real-world tasks. Despite its simplicity, MLP-only VITA outperforms or matches state-of-the-art generative policies while reducing inference latency by 50-130% compared to conventional flow matching policies requiring different conditioning mechanisms or complex architectures. To our knowledge, VITA is the first MLP-only flow matching policy capable of solving complex bi-manual manipulation tasks like those in ALOHA benchmarks.

Authors:Arian Mousakhan, Sudhanshu Mittal, Silvio Galesso, Karim Farid, Thomas Brox
Title: Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Abstract:
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.

Authors:Alicia Durrer, Florentin Bieder, Paul Friedrich, Bjoern Menze, Philippe C. Cattin, Florian Kofler
Title: fastWDM3D: Fast and Accurate 3D Healthy Tissue Inpainting
Abstract:
Healthy tissue inpainting has significant applications, including the generation of pseudo-healthy baselines for tumor growth models and the facilitation of image registration. In previous editions of the BraTS Local Synthesis of Healthy Brain Tissue via Inpainting Challenge, denoising diffusion probabilistic models (DDPMs) demonstrated qualitatively convincing results but suffered from low sampling speed. To mitigate this limitation, we adapted a 2D image generation approach, combining DDPMs with generative adversarial networks (GANs) and employing a variance-preserving noise schedule, for the task of 3D inpainting. Our experiments showed that the variance-preserving noise schedule and the selected reconstruction losses can be effectively utilized for high-quality 3D inpainting in a few time steps without requiring adversarial training. We applied our findings to a different architecture, a 3D wavelet diffusion model (WDM3D) that does not include a GAN component. The resulting model, denoted as fastWDM3D, obtained a SSIM of 0.8571, a MSE of 0.0079, and a PSNR of 22.26 on the BraTS inpainting test set. Remarkably, it achieved these scores using only two time steps, completing the 3D inpainting process in 1.81 s per image. When compared to other DDPMs used for healthy brain tissue inpainting, our model is up to 800 x faster while still achieving superior performance metrics. Our proposed method, fastWDM3D, represents a promising approach for fast and accurate healthy tissue inpainting. Our code is available at https://github.com/AliciaDurrer/fastWDM3D.

Authors:Ahmed Bahloul, Simon Malberg
Title: From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning
Abstract:
Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree's static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree's probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

Authors:Xiaohan Guo, Yusong Cai, Zejia Liu, Zhengning Wang, Lili Pan, Hongliang Li
Title: R^2MoE: Redundancy-Removal Mixture of Experts for Lifelong Concept Learning
Abstract:
Enabling large-scale generative models to continuously learn new visual concepts is essential for personalizing pre-trained models to meet individual user preferences. Existing approaches for continual visual concept learning are constrained by two fundamental challenges: catastrophic forgetting and parameter expansion. In this paper, we propose Redundancy-Removal Mixture of Experts (R^2MoE), a parameter-efficient framework for lifelong visual concept learning that effectively learns new concepts while incurring minimal parameter overhead. Our framework includes three key innovative contributions: First, we propose a mixture-of-experts framework with a routing distillation mechanism that enables experts to acquire concept-specific knowledge while preserving the gating network's routing capability, thereby effectively mitigating catastrophic forgetting. Second, we propose a strategy for eliminating redundant layer-wise experts that reduces the number of expert parameters by fully utilizing previously learned experts. Third, we employ a hierarchical local attention-guided inference approach to mitigate interference between generated visual concepts. Extensive experiments have demonstrated that our method generates images with superior conceptual fidelity compared to the state-of-the-art (SOTA) method, achieving an impressive 87.8\% reduction in forgetting rates and 63.3\% fewer parameters on the CustomConcept 101 dataset. Our code is available at {https://github.com/learninginvision/R2MoE}

Authors:Han Zhang, Xiangde Luo, Yong Chen, Kang Li
Title: DiffOSeg: Omni Medical Image Segmentation via Multi-Expert Collaboration Diffusion Model
Abstract:
Annotation variability remains a substantial challenge in medical image segmentation, stemming from ambiguous imaging boundaries and diverse clinical expertise. Traditional deep learning methods producing single deterministic segmentation predictions often fail to capture these annotator biases. Although recent studies have explored multi-rater segmentation, existing methods typically focus on a single perspective -- either generating a probabilistic ``gold standard'' consensus or preserving expert-specific preferences -- thus struggling to provide a more omni view. In this study, we propose DiffOSeg, a two-stage diffusion-based framework, which aims to simultaneously achieve both consensus-driven (combining all experts' opinions) and preference-driven (reflecting experts' individual assessments) segmentation. Stage I establishes population consensus through a probabilistic consensus strategy, while Stage II captures expert-specific preference via adaptive prompts. Demonstrated on two public datasets (LIDC-IDRI and NPC-170), our model outperforms existing state-of-the-art methods across all evaluated metrics. Source code is available at https://github.com/string-ellipses/DiffOSeg .

Authors:Lefei Shen, Mouxiang Chen, Han Fu, Xiaoxue Ren, Xiaoyun Joy Wang, Jianling Sun, Zhuo Li, Chenghao Liu
Title: The Power of Architecture: Deep Dive into Transformer Architectures for Long-Term Time Series Forecasting
Abstract:
Transformer-based models have recently become dominant in Long-term Time Series Forecasting (LTSF), yet the variations in their architecture, such as encoder-only, encoder-decoder, and decoder-only designs, raise a crucial question: What Transformer architecture works best for LTSF tasks? However, existing models are often tightly coupled with various time-series-specific designs, making it difficult to isolate the impact of the architecture itself. To address this, we propose a novel taxonomy that disentangles these designs, enabling clearer and more unified comparisons of Transformer architectures. Our taxonomy considers key aspects such as attention mechanisms, forecasting aggregations, forecasting paradigms, and normalization layers. Through extensive experiments, we uncover several key insights: bi-directional attention with joint-attention is most effective; more complete forecasting aggregation improves performance; and the direct-mapping paradigm outperforms autoregressive approaches. Furthermore, our combined model, utilizing optimal architectural choices, consistently outperforms several existing models, reinforcing the validity of our conclusions. We hope these findings offer valuable guidance for future research on Transformer architectural designs in LTSF. Our code is available at https://github.com/HALF111/TSF_architecture.

Authors:Yi Xin, Le Zhuo, Qi Qin, Siqi Luo, Yuewen Cao, Bin Fu, Yangfan He, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Peng Gao
Title: Resurrect Mask AutoRegressive Modeling for Efficient and Scalable Image Generation
Abstract:
AutoRegressive (AR) models have made notable progress in image generation, with Masked AutoRegressive (MAR) models gaining attention for their efficient parallel decoding. However, MAR models have traditionally underperformed when compared to standard AR models. This study refines the MAR architecture to improve image generation quality. We begin by evaluating various image tokenizers to identify the most effective one. Subsequently, we introduce an improved Bidirectional LLaMA architecture by replacing causal attention with bidirectional attention and incorporating 2D RoPE, which together form our advanced model, MaskGIL. Scaled from 111M to 1.4B parameters, MaskGIL achieves a FID score of 3.71, matching state-of-the-art AR models in the ImageNet 256x256 benchmark, while requiring only 8 inference steps compared to the 256 steps of AR models. Furthermore, we develop a text-driven MaskGIL model with 775M parameters for generating images from text at various resolutions. Beyond image generation, MaskGIL extends to accelerate AR-based generation and enable real-time speech-to-image conversion. Our codes and models are available at https://github.com/synbol/MaskGIL.

Authors:Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun Chen, Jiangmiao Pang
Title: Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities
Abstract:
Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Authors:Zihua Zhao, Feng Hong, Mengxi Chen, Pengyi Chen, Benyuan Liu, Jiangchao Yao, Ya Zhang, Yanfeng Wang
Title: Differential-informed Sample Selection Accelerates Multimodal Contrastive Learning
Abstract:
The remarkable success of contrastive-learning-based multimodal models has been greatly driven by training on ever-larger datasets with expensive compute consumption. Sample selection as an alternative efficient paradigm plays an important direction to accelerate the training process. However, recent advances on sample selection either mostly rely on an oracle model to offline select a high-quality coreset, which is limited in the cold-start scenarios, or focus on online selection based on real-time model predictions, which has not sufficiently or efficiently considered the noisy correspondence. To address this dilemma, we propose a novel Differential-Informed Sample Selection (DISSect) method, which accurately and efficiently discriminates the noisy correspondence for training acceleration. Specifically, we rethink the impact of noisy correspondence on contrastive learning and propose that the differential between the predicted correlation of the current model and that of a historical model is more informative to characterize sample quality. Based on this, we construct a robust differential-based sample selection and analyze its theoretical insights. Extensive experiments on three benchmark datasets and various downstream tasks demonstrate the consistent superiority of DISSect over current state-of-the-art methods. Source code is available at: https://github.com/MediaBrain-SJTU/DISSect.

Authors:Youssef Tawfilis, Hossam Amer, Minar El-Aasser, Tallal Elshabrawy
Title: A Distributed Generative AI Approach for Heterogeneous Multi-Domain Environments under Data Sharing constraints
Abstract:
Federated Learning has gained increasing attention for its ability to enable multiple nodes to collaboratively train machine learning models without sharing their raw data. At the same time, Generative AI -- particularly Generative Adversarial Networks (GANs) -- have achieved remarkable success across a wide range of domains, such as healthcare, security, and Image Generation. However, training generative models typically requires large datasets and significant computational resources, which are often unavailable in real-world settings. Acquiring such resources can be costly and inefficient, especially when many underutilized devices -- such as IoT devices and edge devices -- with varying capabilities remain idle. Moreover, obtaining large datasets is challenging due to privacy concerns and copyright restrictions, as most devices are unwilling to share their data. To address these challenges, we propose a novel approach for decentralized GAN training that enables the utilization of distributed data and underutilized, low-capability devices while not sharing data in its raw form. Our approach is designed to tackle key challenges in decentralized environments, combining KLD-weighted Clustered Federated Learning to address the issues of data heterogeneity and multi-domain datasets, with Heterogeneous U-Shaped split learning to tackle the challenge of device heterogeneity under strict data sharing constraints -- ensuring that no labels or raw data, whether real or synthetic, are ever shared between nodes. Experimental results shows that our approach demonstrates consistent and significant improvements across key performance metrics, where it achieves 1.1x -- 2.2x higher image generation scores, an average 10% boost in classification metrics (up to 50% in multi-domain non-IID settings), in much lower latency compared to several benchmarks. Find our code at https://github.com/youssefga28/HuSCF-GAN.

Authors:Qiang Wang, Mengchao Wang, Fan Jiang, Yaqi Fan, Yonggang Qi, Mu Xu
Title: FantasyPortrait: Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion Transformers
Abstract:
Producing expressive facial animations from static images is a challenging task. Prior methods relying on explicit geometric priors (e.g., facial landmarks or 3DMM) often suffer from artifacts in cross reenactment and struggle to capture subtle emotions. Furthermore, existing approaches lack support for multi-character animation, as driving features from different individuals frequently interfere with one another, complicating the task. To address these challenges, we propose FantasyPortrait, a diffusion transformer based framework capable of generating high-fidelity and emotion-rich animations for both single- and multi-character scenarios. Our method introduces an expression-augmented learning strategy that utilizes implicit representations to capture identity-agnostic facial dynamics, enhancing the model's ability to render fine-grained emotions. For multi-character control, we design a masked cross-attention mechanism that ensures independent yet coordinated expression generation, effectively preventing feature interference. To advance research in this area, we propose the Multi-Expr dataset and ExprBench, which are specifically designed datasets and benchmarks for training and evaluating multi-character portrait animations. Extensive experiments demonstrate that FantasyPortrait significantly outperforms state-of-the-art methods in both quantitative metrics and qualitative evaluations, excelling particularly in challenging cross reenactment and multi-character contexts. Our project page is https://fantasy-amap.github.io/fantasy-portrait/.

Authors:Jiaxiu Jiang, Wenbo Li, Jingjing Ren, Yuping Qiu, Yong Guo, Xiaogang Xu, Han Wu, Wangmeng Zuo
Title: LoViC: Efficient Long Video Generation with Context Compression
Abstract:
Despite recent advances in diffusion transformers (DiTs) for text-to-video generation, scaling to long-duration content remains challenging due to the quadratic complexity of self-attention. While prior efforts -- such as sparse attention and temporally autoregressive models -- offer partial relief, they often compromise temporal coherence or scalability. We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos, designed to produce long, coherent videos through a segment-wise generation process. At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations. It supports variable-length inputs with linearly adjustable compression rates, enabled by a single query token design based on the Q-Former architecture. Additionally, by encoding temporal context through position-aware mechanisms, our model seamlessly supports prediction, retradiction, interpolation, and multi-shot generation within a unified paradigm. Extensive experiments across diverse tasks validate the effectiveness and versatility of our approach.

Authors:Yucheng Tang, Yunguan Fu, Weixi Yi, Yipei Wang, Daniel C. Alexander, Rhodri Davies, Yipeng Hu
Title: Analysis of Image-and-Text Uncertainty Propagation in Multimodal Large Language Models with Cardiac MR-Based Applications
Abstract:
Multimodal large language models (MLLMs) can process and integrate information from multimodality sources, such as text and images. However, interrelationship among input modalities, uncertainties due to individual uni-modal data and potential clinical applications following such an uncertainty decomposition are yet fully understood in the context of large-scale MLLMs. In this work, we propose a multimodal uncertainty propagation model (MUPM) based on uncertainty propagation, to characterise the relationship among the uncertainties arising from image-only, text-only, and joint image-text variations in MLLM inputs. Using real clinical data consisting of cardiac MR scans and digital health records, we describe that MUPMs can be optimised robustly with a few samples. We then show that the fitted MUPMs are generalisable across different input data distributions and, perhaps surprisingly, across different downstream tasks. Such a transferability may be explained by the shared pretraining, comparatively light MLLM fine-tuning, along with the low-dimensional nature of the MUPMs. More importantly, this learned transferability, quantifying the relationship between these uncertainties, led to direct clinical applications in which uncertainties may be estimated and thus analysed robustly for varying data or even a novel set of cardiac disease prediction tasks. In addition, we show experimentally the efficiency in multimodal data required for estimating the overall uncertainty and its ability to identify redundant factors, both of which are considered practical yet clinically useful applications with the proposed MUPMs. Codes are available at https://github.com/yucheng722/MUPM.

Authors:Caixia Dong, Duwei Dai, Xinyi Han, Fan Liu, Xu Yang, Zongfang Li, Songhua Xu
Title: Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion
Abstract:
Accurate coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD), yet it remains challenging due to the small size, complex morphology, and low contrast with surrounding tissues. To address these challenges, we propose a novel segmentation framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture. Specifically, a vision transformer (ViT) encoder within the VFM captures global structural features, enhanced by the activation of the final two ViT blocks and the integration of an attention-guided enhancement (AGE) module, while a convolutional neural network (CNN) encoder extracts local details. These complementary features are adaptively fused using a cross-branch variational fusion (CVF) module, which models latent distributions and applies variational attention to assign modality-specific weights. Additionally, we introduce an evidential-learning uncertainty refinement (EUR) module, which quantifies uncertainty using evidence theory and refines uncertain regions by incorporating multi-scale feature aggregation and attention mechanisms, further enhancing segmentation accuracy. Extensive evaluations on one in-house and two public datasets demonstrate that the proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation and showcasing strong generalization across multiple datasets. The code is available at https://github.com/d1c2x3/CAseg.

Authors:Dongyeun Lee, Jiwan Hur, Hyounguk Shon, Jae Young Lee, Junmo Kim
Title: DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
Abstract:
Diffusion models have achieved remarkable success in image generation but come with significant computational costs, posing challenges for deployment in resource-constrained environments. Recent post-training quantization (PTQ) methods have attempted to mitigate this issue by focusing on the iterative nature of diffusion models. However, these approaches often overlook outliers, leading to degraded performance at low bit-widths. In this paper, we propose a DMQ which combines Learned Equivalent Scaling (LES) and channel-wise Power-of-Two Scaling (PTS) to effectively address these challenges. Learned Equivalent Scaling optimizes channel-wise scaling factors to redistribute quantization difficulty between weights and activations, reducing overall quantization error. Recognizing that early denoising steps, despite having small quantization errors, crucially impact the final output due to error accumulation, we incorporate an adaptive timestep weighting scheme to prioritize these critical steps during learning. Furthermore, identifying that layers such as skip connections exhibit high inter-channel variance, we introduce channel-wise Power-of-Two Scaling for activations. To ensure robust selection of PTS factors even with small calibration set, we introduce a voting algorithm that enhances reliability. Extensive experiments demonstrate that our method significantly outperforms existing works, especially at low bit-widths such as W4A6 (4-bit weight, 6-bit activation) and W4A8, maintaining high image generation quality and model stability. The code is available at https://github.com/LeeDongYeun/dmq.

Authors:Tomohiro Suzuki, Ryota Tanaka, Calvin Yeung, Keisuke Fujii
Title: AthleticsPose: Authentic Sports Motion Dataset on Athletic Field and Evaluation of Monocular 3D Pose Estimation Ability
Abstract:
Monocular 3D pose estimation is a promising, flexible alternative to costly motion capture systems for sports analysis. However, its practical application is hindered by two factors: a lack of realistic sports datasets and unclear reliability for sports tasks. To address these challenges, we introduce the AthleticsPose dataset, a new public dataset featuring ``real'' motions captured from 23 athletes performing various athletics events on an athletic field. Using this dataset, we trained a representative 3D pose estimation model and performed a comprehensive evaluation. Our results show that the model trained on AthleticsPose significantly outperforms a baseline model trained on an imitated sports motion dataset, reducing MPJPE by approximately 75 %. These results show the importance of training on authentic sports motion data, as models based on imitated motions do not effectively transfer to real-world motions. Further analysis reveals that estimation accuracy is sensitive to camera view and subject scale. In case studies of kinematic indicators, the model demonstrated the potential to capture individual differences in knee angles but struggled with higher-speed metrics, such as knee-drive velocity, due to prediction biases. This work provides the research community with a valuable dataset and clarifies the potential and practical limitations of using monocular 3D pose estimation for sports motion analysis. Our dataset, code, and checkpoints are available at https://github.com/SZucchini/AthleticsPose.

Authors:Pavel Snopov, Oleg R. Musin
Title: Topology-Aware Activation Functions in Neural Networks
Abstract:
This study explores novel activation functions that enhance the ability of neural networks to manipulate data topology during training. Building on the limitations of traditional activation functions like $\mathrm{ReLU}$, we propose $\mathrm{SmoothSplit}$ and $\mathrm{ParametricSplit}$, which introduce topology "cutting" capabilities. These functions enable networks to transform complex data manifolds effectively, improving performance in scenarios with low-dimensional layers. Through experiments on synthetic and real-world datasets, we demonstrate that $\mathrm{ParametricSplit}$ outperforms traditional activations in low-dimensional settings while maintaining competitive performance in higher-dimensional ones. Our findings highlight the potential of topology-aware activation functions in advancing neural network architectures. The code is available via https://github.com/Snopoff/Topology-Aware-Activations.

Authors:Shiqi Huang, Shuting He, Huaiyuan Qin, Bihan Wen
Title: SCORE: Scene Context Matters in Open-Vocabulary Remote Sensing Instance Segmentation
Abstract:
Most existing remote sensing instance segmentation approaches are designed for close-vocabulary prediction, limiting their ability to recognize novel categories or generalize across datasets. This restricts their applicability in diverse Earth observation scenarios. To address this, we introduce open-vocabulary (OV) learning for remote sensing instance segmentation. While current OV segmentation models perform well on natural image datasets, their direct application to remote sensing faces challenges such as diverse landscapes, seasonal variations, and the presence of small or ambiguous objects in aerial imagery. To overcome these challenges, we propose $\textbf{SCORE}$ ($\textbf{S}$cene $\textbf{C}$ontext matters in $\textbf{O}$pen-vocabulary $\textbf{RE}$mote sensing instance segmentation), a framework that integrates multi-granularity scene context, i.e., regional context and global context, to enhance both visual and textual representations. Specifically, we introduce Region-Aware Integration, which refines class embeddings with regional context to improve object distinguishability. Additionally, we propose Global Context Adaptation, which enriches naive text embeddings with remote sensing global context, creating a more adaptable and expressive linguistic latent space for the classifier. We establish new benchmarks for OV remote sensing instance segmentation across diverse datasets. Experimental results demonstrate that, our proposed method achieves SOTA performance, which provides a robust solution for large-scale, real-world geospatial analysis. Our code is available at https://github.com/HuangShiqi128/SCORE.

Authors:Ziyi Wang, Zhi Gao, Jin Chen, Qingjie Zhao, Xinxiao Wu, Jiebo Luo
Title: Simulate, Refocus and Ensemble: An Attention-Refocusing Scheme for Domain Generalization
Abstract:
Domain generalization (DG) aims to learn a model from source domains and apply it to unseen target domains with out-of-distribution data. Owing to CLIP's strong ability to encode semantic concepts, it has attracted increasing interest in domain generalization. However, CLIP often struggles to focus on task-relevant regions across domains, i.e., domain-invariant regions, resulting in suboptimal performance on unseen target domains. To address this challenge, we propose an attention-refocusing scheme, called Simulate, Refocus and Ensemble (SRE), which learns to reduce the domain shift by aligning the attention maps in CLIP via attention refocusing. SRE first simulates domain shifts by performing augmentation on the source data to generate simulated target domains. SRE then learns to reduce the domain shifts by refocusing the attention in CLIP between the source and simulated target domains. Finally, SRE utilizes ensemble learning to enhance the ability to capture domain-invariant attention maps between the source data and the simulated target data. Extensive experimental results on several datasets demonstrate that SRE generally achieves better results than state-of-the-art methods. The code is available at: https://github.com/bitPrincy/SRE-DG.

Authors:Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, Caiming Xiong
Title: MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
Abstract:
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce MCPEval, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.

Authors:Hoang-Son Vo, Quang-Vinh Nguyen, Seungwon Kim, Hyung-Jeong Yang, Soonja Yeom, Soo-Hyung Kim
Title: ATL-Diff: Audio-Driven Talking Head Generation with Early Landmarks-Guide Noise Diffusion
Abstract:
Audio-driven talking head generation requires precise synchronization between facial animations and audio signals. This paper introduces ATL-Diff, a novel approach addressing synchronization limitations while reducing noise and computational costs. Our framework features three key components: a Landmark Generation Module converting audio to facial landmarks, a Landmarks-Guide Noise approach that decouples audio by distributing noise according to landmarks, and a 3D Identity Diffusion network preserving identity characteristics. Experiments on MEAD and CREMA-D datasets demonstrate that ATL-Diff outperforms state-of-the-art methods across all metrics. Our approach achieves near real-time processing with high-quality animations, computational efficiency, and exceptional preservation of facial nuances. This advancement offers promising applications for virtual assistants, education, medical communication, and digital platforms. The source code is available at: \href{https://github.com/sonvth/ATL-Diff}{https://github.com/sonvth/ATL-Diff}

Authors:Qianru Zhang, Chenglei Yu, Haixin Wang, Yudong Yan, Yuansheng Cao, Siu-Ming Yiu, Tailin Wu, Hongzhi Yin
Title: FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction
Abstract:
Time series prediction, a crucial task across various domains, faces significant challenges due to the inherent complexities of time series data, including non-stationarity, multi-scale periodicity, and transient dynamics, particularly when tackling long-term predictions. While Transformer-based architectures have shown promise, their quadratic complexity with sequence length hinders their efficiency for long-term predictions. Recent advancements in State-Space Models, such as Mamba, offer a more efficient alternative for long-term modeling, but they cannot capture multi-scale periodicity and transient dynamics effectively. Meanwhile, they are susceptible to data noise issues in time series. This paper proposes a novel framework, FLDmamba (Fourier and Laplace Transform Decomposition Mamba), addressing these limitations. FLDmamba leverages the strengths of both Fourier and Laplace transforms to effectively capture both multi-scale periodicity, transient dynamics within time series data, and improve the robustness of the model to the data noise issue. Our extensive experiments demonstrate that FLDmamba achieves superior performance on time series prediction benchmarks, outperforming both Transformer-based and other Mamba-based architectures. To promote the reproducibility of our method, we have made both the code and data accessible via the following URL:{\href{https://github.com/AI4Science-WestlakeU/FLDmamba}{https://github.com/AI4Science-WestlakeU/\model}.

Authors:Jikai Wang, Yunqi Cheng, Zonghai Chen
Title: FFI-VTR: Lightweight and Robust Visual Teach and Repeat Navigation based on Feature Flow Indicator and Probabilistic Motion Planning
Abstract:
Though visual and repeat navigation is a convenient solution for mobile robot self-navigation, achieving balance between efficiency and robustness in task environment still remains challenges. In this paper, we propose a novel visual and repeat robotic autonomous navigation method that requires no accurate localization and dense reconstruction modules, which makes our system featured by lightweight and robustness. Firstly, feature flow is introduced and we develop a qualitative mapping between feature flow and robot's motion, in which feature flow is defined as pixel location bias between matched features. Based on the mapping model, the map outputted by the teaching phase is represented as a keyframe graph, in which the feature flow on the edge encodes the relative motion between adjacent keyframes. Secondly, the visual repeating navigation is essentially modeled as a feature flow minimization problem between current observation and the map keyframe. To drive the robot to consistently reduce the feature flow between current frame and map keyframes without accurate localization, a probabilistic motion planning is developed based on our qualitative feature flow-motion mapping indicator. Extensive experiments using our mobile platform demonstrates that our proposed method is lightweight, robust, and superior to baselines. The source code has been made public at https://github.com/wangjks/FFI-VTR to benefit the community.

Authors:Junjie Gao, Runze Liu, Yingzhe Peng, Shujian Yang, Jin Zhang, Kai Yang, Zhiyuan You
Title: DeQA-Doc: Adapting DeQA-Score to Document Image Quality Assessment
Abstract:
Document quality assessment is critical for a wide range of applications including document digitization, OCR, and archival. However, existing approaches often struggle to provide accurate and robust quality scores, limiting their applicability in practical scenarios. With the rapid progress in Multi-modal Large Language Models (MLLMs), recent MLLM-based methods have achieved remarkable performance in image quality assessment. In this work, we extend this success to the document domain by adapting DeQA-Score, a state-of-the-art MLLM-based image quality scorer, for document quality assessment. We propose DeQA-Doc, a framework that leverages the visual language capabilities of MLLMs and a soft label strategy to regress continuous document quality scores. To adapt DeQA-Score to DeQA-Doc, we adopt two complementary solutions to construct soft labels without the variance information. Also, we relax the resolution constrains to support the large resolution of document images. Finally, we introduce ensemble methods to further enhance the performance. Extensive experiments demonstrate that DeQA-Doc significantly outperforms existing baselines, offering accurate and generalizable document quality assessment across diverse degradation types. Codes and model weights are available in https://github.com/Junjie-Gao19/DeQA-Doc.

Authors:Weijieying Ren, Jingxi Zhu, Zehao Liu, Tianxiang Zhao, Vasant Honavar
Title: A Comprehensive Survey of Electronic Health Record Modeling: From Deep Learning Approaches to Large Language Models
Abstract:
Artificial intelligence (AI) has demonstrated significant potential in transforming healthcare through the analysis and modeling of electronic health records (EHRs). However, the inherent heterogeneity, temporal irregularity, and domain-specific nature of EHR data present unique challenges that differ fundamentally from those in vision and natural language tasks. This survey offers a comprehensive overview of recent advancements at the intersection of deep learning, large language models (LLMs), and EHR modeling. We introduce a unified taxonomy that spans five key design dimensions: data-centric approaches, neural architecture design, learning-focused strategies, multimodal learning, and LLM-based modeling systems. Within each dimension, we review representative methods addressing data quality enhancement, structural and temporal representation, self-supervised learning, and integration with clinical knowledge. We further highlight emerging trends such as foundation models, LLM-driven clinical agents, and EHR-to-text translation for downstream reasoning. Finally, we discuss open challenges in benchmarking, explainability, clinical alignment, and generalization across diverse clinical settings. This survey aims to provide a structured roadmap for advancing AI-driven EHR modeling and clinical decision support. For a comprehensive list of EHR-related methods, kindly refer to https://survey-on-tabular-data.github.io/.

Authors:Hengkai Tan, Yao Feng, Xinyi Mao, Shuhe Huang, Guodong Liu, Zhongkai Hao, Hang Su, Jun Zhu
Title: AnyPos: Automated Task-Agnostic Actions for Bimanual Manipulation
Abstract:
Vision-language-action (VLA) models have shown promise on task-conditioned control in complex settings such as bimanual manipulation. However, the heavy reliance on task-specific human demonstrations limits their generalization and incurs high data acquisition costs. In this work, we present a new notion of task-agnostic action paradigm that decouples action execution from task-specific conditioning, enhancing scalability, efficiency, and cost-effectiveness. To address the data collection challenges posed by this paradigm -- such as low coverage density, behavioral redundancy, and safety risks -- we introduce ATARA (Automated Task-Agnostic Random Actions), a scalable self-supervised framework that accelerates collection by over $ 30\times $ compared to human teleoperation. To further enable effective learning from task-agnostic data, which often suffers from distribution mismatch and irrelevant trajectories, we propose AnyPos, an inverse dynamics model equipped with Arm-Decoupled Estimation and a Direction-Aware Decoder (DAD). We additionally integrate a video-conditioned action validation module to verify the feasibility of learned policies across diverse manipulation tasks. Extensive experiments show that the AnyPos-ATARA pipeline yields a 51% improvement in test accuracy and achieves 30-40% higher success rates in downstream tasks such as lifting, pick-and-place, and clicking, using replay-based video validation. Project Page: https://embodiedfoundation.github.io/vidar_anypos

Authors:Lotfi El Hafi, Kazuma Onishi, Shoichi Hasegawa, Akira Oyama, Tomochika Ishikawa, Masashi Osada, Carl Tornberg, Ryoma Kado, Kento Murata, Saki Hashimoto, Sebastian Carrera Villalobos, Akira Taniguchi, Gustavo Alfonso Garcia Ricardez, Yoshinobu Hagiwara, Tatsuya Aoki, Kensuke Iwata, Takato Horii, Yukiko Horikawa, Takahiro Miyashita, Tadahiro Taniguchi, Hiroshi Ishiguro
Title: Public Evaluation on Potential Social Impacts of Fully Autonomous Cybernetic Avatars for Physical Support in Daily-Life Environments: Large-Scale Demonstration and Survey at Avatar Land
Abstract:
Cybernetic avatars (CAs) are key components of an avatar-symbiotic society, enabling individuals to overcome physical limitations through virtual agents and robotic assistants. While semi-autonomous CAs intermittently require human teleoperation and supervision, the deployment of fully autonomous CAs remains a challenge. This study evaluates public perception and potential social impacts of fully autonomous CAs for physical support in daily life. To this end, we conducted a large-scale demonstration and survey during Avatar Land, a 19-day public event in Osaka, Japan, where fully autonomous robotic CAs, alongside semi-autonomous CAs, performed daily object retrieval tasks. Specifically, we analyzed responses from 2,285 visitors who engaged with various CAs, including a subset of 333 participants who interacted with fully autonomous CAs and shared their perceptions and concerns through a survey questionnaire. The survey results indicate interest in CAs for physical support in daily life and at work. However, concerns were raised regarding task execution reliability. In contrast, cost and human-like interaction were not dominant concerns. Project page: https://lotfielhafi.github.io/FACA-Survey/.

Authors:Peijun Wang, Jinhua Zhao
Title: SOD-YOLO: Enhancing YOLO-Based Detection of Small Objects in UAV Imagery
Abstract:
Small object detection remains a challenging problem in the field of object detection. To address this challenge, we propose an enhanced YOLOv8-based model, SOD-YOLO. This model integrates an ASF mechanism in the neck to enhance multi-scale feature fusion, adds a Small Object Detection Layer (named P2) to provide higher-resolution feature maps for better small object detection, and employs Soft-NMS to refine confidence scores and retain true positives. Experimental results demonstrate that SOD-YOLO significantly improves detection performance, achieving a 36.1% increase in mAP$_{50:95}$ and 20.6% increase in mAP$_{50}$ on the VisDrone2019-DET dataset compared to the baseline model. These enhancements make SOD-YOLO a practical and efficient solution for small object detection in UAV imagery. Our source code, hyper-parameters, and model weights are available at https://github.com/iamwangxiaobai/SOD-YOLO.

Authors:Abraham Toluase Owodunni, Orevaoghene Ahia, Sachin Kumar
Title: FLEXITOKENS: Flexible Tokenization for Evolving Language Models
Abstract:
Language models (LMs) are challenging to adapt to new data distributions by simple finetuning. This is due to the rigidity of their subword tokenizers, which typically remain unchanged during adaptation. This inflexibility often leads to inefficient tokenization, causing overfragmentation of out-of-distribution domains, unseen languages, or scripts. In this work, we develop byte-level LMs with learnable tokenizers to make tokenization adaptive. Our models include a submodule that learns to predict boundaries between the input byte sequence, encoding it into variable-length segments. Existing tokenizer-free methods train this boundary predictor using an auxiliary loss that enforces a fixed compression rate across the training corpus, introducing a new kind of rigidity. We propose FLEXITOKENS, a simplified training objective that enables significantly greater flexibility during adaptation. Evaluating across multiple multilingual benchmarks, morphologically diverse tasks, and domains, we demonstrate that FLEXITOKENS consistently reduces token over-fragmentation and achieves up to 10% improvements on downstream task performance compared to subword and other gradient-based tokenizers. Code and data for our experiments will be released at https://github.com/owos/flexitokens

Authors:Yang Yang, Dongni Mao, Hiroaki Santo, Yasuyuki Matsushita, Fumio Okura
Title: NeuraLeaf: Neural Parametric Leaf Models with Shape and Deformation Disentanglement
Abstract:
We develop a neural parametric model for 3D leaves for plant modeling and reconstruction that are essential for agriculture and computer graphics. While neural parametric models are actively studied for humans and animals, plant leaves present unique challenges due to their diverse shapes and flexible deformation. To this problem, we introduce a neural parametric model for leaves, NeuraLeaf. Capitalizing on the fact that flattened leaf shapes can be approximated as a 2D plane, NeuraLeaf disentangles the leaves' geometry into their 2D base shapes and 3D deformations. This representation allows learning from rich sources of 2D leaf image datasets for the base shapes, and also has the advantage of simultaneously learning textures aligned with the geometry. To model the 3D deformation, we propose a novel skeleton-free skinning model and create a newly captured 3D leaf dataset called DeformLeaf. We show that NeuraLeaf successfully generates a wide range of leaf shapes with deformation, resulting in accurate model fitting to 3D observations like depth maps and point clouds. Our implementation and dataset are available at https://neuraleaf-yang.github.io/.

Authors:Zahra TehraniNasab, Hujun Ni, Amar Kumar, Tal Arbel
Title: Pixel Perfect MegaMed: A Megapixel-Scale Vision-Language Foundation Model for Generating High Resolution Medical Images
Abstract:
Medical image synthesis presents unique challenges due to the inherent complexity and high-resolution details required in clinical contexts. Traditional generative architectures such as Generative Adversarial Networks (GANs) or Variational Auto Encoder (VAEs) have shown great promise for high-resolution image generation but struggle with preserving fine-grained details that are key for accurate diagnosis. To address this issue, we introduce Pixel Perfect MegaMed, the first vision-language foundation model to synthesize images at resolutions of 1024x1024. Our method deploys a multi-scale transformer architecture designed specifically for ultra-high resolution medical image generation, enabling the preservation of both global anatomical context and local image-level details. By leveraging vision-language alignment techniques tailored to medical terminology and imaging modalities, Pixel Perfect MegaMed bridges the gap between textual descriptions and visual representations at unprecedented resolution levels. We apply our model to the CheXpert dataset and demonstrate its ability to generate clinically faithful chest X-rays from text prompts. Beyond visual quality, these high-resolution synthetic images prove valuable for downstream tasks such as classification, showing measurable performance gains when used for data augmentation, particularly in low-data regimes. Our code is accessible through the project website - https://tehraninasab.github.io/pixelperfect-megamed.

Authors:Rajesh Sureddi, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik
Title: TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
Abstract:
Image Quality Assessment (IQA) models aim to predict perceptual image quality in alignment with human judgments. No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image. While deep learning has significantly advanced this field, a major hurdle in developing NR-IQA models is the limited availability of subjectively labeled data. Most existing deep learning-based NR-IQA approaches rely on pre-training on large-scale datasets before fine-tuning for IQA tasks. To further advance progress in this area, we propose a novel approach that constructs a custom dataset using a limited number of reference content images and introduces a no-reference IQA model that incorporates both content and quality features for perceptual quality prediction. Specifically, we train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples while achieving strong generalization performance across publicly available datasets. Our repository is available at https://github.com/rajeshsureddi/triqa.

Authors:Christina Thrainer, Md Meftahul Ferdaus, Mahdi Abdelguerfi, Christian Guetl, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: FORTRESS: Function-composition Optimized Real-Time Resilient Structural Segmentation via Kolmogorov-Arnold Enhanced Spatial Attention Networks
Abstract:
Automated structural defect segmentation in civil infrastructure faces a critical challenge: achieving high accuracy while maintaining computational efficiency for real-time deployment. This paper presents FORTRESS (Function-composition Optimized Real-Time Resilient Structural Segmentation), a new architecture that balances accuracy and speed by using a special method that combines depthwise separable convolutions with adaptive Kolmogorov-Arnold Network integration. FORTRESS incorporates three key innovations: a systematic depthwise separable convolution framework achieving a 3.6x parameter reduction per layer, adaptive TiKAN integration that selectively applies function composition transformations only when computationally beneficial, and multi-scale attention fusion combining spatial, channel, and KAN-enhanced features across decoder levels. The architecture achieves remarkable efficiency gains with 91% parameter reduction (31M to 2.9M), 91% computational complexity reduction (13.7 to 1.17 GFLOPs), and 3x inference speed improvement while delivering superior segmentation performance. Evaluation on benchmark infrastructure datasets demonstrates state-of-the-art results with an F1- score of 0.771 and a mean IoU of 0.677, significantly outperforming existing methods including U-Net, SA-UNet, and U- KAN. The dual optimization strategy proves essential for optimal performance, establishing FORTRESS as a robust solution for practical structural defect segmentation in resource-constrained environments where both accuracy and computational efficiency are paramount. Comprehensive architectural specifications are provided in the Supplemental Material. Source code is available at URL: https://github.com/faeyelab/fortress-paper-code.

Authors:Mihran Miroyan, Rose Niousha, Joseph E. Gonzalez, Gireeja Ranade, Narges Norouzi
Title: ParaStudent: Generating and Evaluating Realistic Student Code by Teaching LLMs to Struggle
Abstract:
Large Language Models (LLMs) have shown strong performance on programming tasks, but can they generate student-like code like real students - imperfect, iterative, and stylistically diverse? We present ParaStudent, a systematic study of LLM-based "student-like" code generation in an introductory programming course setting. Using a dataset of timestamped student submissions across multiple semesters, we design low- and high-resolution experiments to model student progress and evaluate code outputs along semantic, functional, and stylistic dimensions. Our results show that fine-tuning significantly improves alignment with real student trajectories and captures error patterns, incremental improvements, and stylistic variations more faithfully. This study shows that modeling realistic student code requires capturing learning dynamics through context-aware generation, temporal modeling, and multi-dimensional evaluation. Code for experiments and evaluation is available at https://github.com/mmiroyan/ParaStudent.

Authors:Athanasios Papastathopoulos-Katsaros, Alexandra Stavrianidi, Zhandong Liu
Title: Improving physics-informed neural network extrapolation via transfer learning and adaptive activation functions
Abstract:
Physics-Informed Neural Networks (PINNs) are deep learning models that incorporate the governing physical laws of a system into the learning process, making them well-suited for solving complex scientific and engineering problems. Recently, PINNs have gained widespread attention as a powerful framework for combining physical principles with data-driven modeling to improve prediction accuracy. Despite their successes, however, PINNs often exhibit poor extrapolation performance outside the training domain and are highly sensitive to the choice of activation functions (AFs). In this paper, we introduce a transfer learning (TL) method to improve the extrapolation capability of PINNs. Our approach applies transfer learning (TL) within an extended training domain, using only a small number of carefully selected collocation points. Additionally, we propose an adaptive AF that takes the form of a linear combination of standard AFs, which improves both the robustness and accuracy of the model. Through a series of experiments, we demonstrate that our method achieves an average of 40% reduction in relative L2 error and an average of 50% reduction in mean absolute error in the extrapolation domain, all without a significant increase in computational cost. The code is available at https://github.com/LiuzLab/PINN-extrapolation .

Authors:George Jiayuan Gao, Tianyu Li, Junyao Shi, Yihan Li, Zizhe Zhang, Nadia Figueroa, Dinesh Jayaraman
Title: VLMgineer: Vision Language Models as Robotic Toolsmiths
Abstract:
Tool design and use reflect the ability to understand and manipulate the physical world through creativity, planning, and foresight. As such, these capabilities are often regarded as measurable indicators of intelligence across biological species. While much of today's research on robotic intelligence focuses on generating better controllers, inventing smarter tools offers a complementary form of physical intelligence: shifting the onus of problem-solving onto the tool's design. Given the vast and impressive common-sense, reasoning, and creative capabilities of today's foundation models, we investigate whether these models can provide useful priors to automatically design and effectively wield such tools? We present VLMgineer, a framework that harnesses the code generation abilities of vision language models (VLMs) together with evolutionary search to iteratively co-design physical tools and the action plans that operate them to perform a task. We evaluate VLMgineer on a diverse new benchmark of everyday manipulation scenarios that demand creative tool design and use. Across this suite, VLMgineer consistently discovers tools and policies that solve tasks more effectively and innovatively, transforming challenging robotics problems into straightforward executions. It also outperforms VLM-generated designs from human specifications and existing human-crafted tools for everyday tasks. To facilitate future research on automated tool invention, we will release our benchmark and code.

Authors:Kuangshi Ai, Kaiyuan Tang, Chaoli Wang
Title: NLI4VolVis: Natural Language Interaction for Volume Visualization via LLM Multi-Agents and Editable 3D Gaussian Splatting
Abstract:
Traditional volume visualization (VolVis) methods, like direct volume rendering, suffer from rigid transfer function designs and high computational costs. Although novel view synthesis approaches enhance rendering efficiency, they require additional learning effort for non-experts and lack support for semantic-level interaction. To bridge this gap, we propose NLI4VolVis, an interactive system that enables users to explore, query, and edit volumetric scenes using natural language. NLI4VolVis integrates multi-view semantic segmentation and vision-language models to extract and understand semantic components in a scene. We introduce a multi-agent large language model architecture equipped with extensive function-calling tools to interpret user intents and execute visualization tasks. The agents leverage external tools and declarative VolVis commands to interact with the VolVis engine powered by 3D editable Gaussians, enabling open-vocabulary object querying, real-time scene editing, best-view selection, and 2D stylization. We validate our system through case studies and a user study, highlighting its improved accessibility and usability in volumetric data exploration. We strongly recommend readers check our case studies, demo video, and source code at https://nli4volvis.github.io/.

Authors:Said Ohamouddou, Abdellatif El Afia, Hanaa El Afia, Raddouane Chiheb
Title: MS-DGCNN++: A Multi-Scale Fusion Dynamic Graph Neural Network with Biological Knowledge Integration for LiDAR Tree Species Classification
Abstract:
Tree species classification from terrestrial LiDAR point clouds is challenging because of the complex multi-scale geometric structures in forest environments. Existing approaches using multi-scale dynamic graph convolutional neural networks (MS-DGCNN) employ parallel multi-scale processing, which fails to capture the semantic relationships between the hierarchical levels of the tree architecture. We present MS-DGCNN++, a hierarchical multiscale fusion dynamic graph convolutional network that uses semantically meaningful feature extraction at local, branch, and canopy scales with cross-scale information propagation. Our method employs scale-specific feature engineering, including standard geometric features for the local scale, normalized relative vectors for the branch scale, and distance information for the canopy scale. This hierarchical approach replaces uniform parallel processing with semantically differentiated representations that are aligned with the natural tree structure. Under the same proposed tree species data augmentation strategy for all experiments, MS-DGCNN++ achieved an accuracy of 94.96 \% on STPCTLS, outperforming DGCNN, MS-DGCNN, and the state-of-the-art model PPT. On FOR-species20K, it achieves 67.25\% accuracy (6.1\% improvement compared to MS-DGCNN). For standard 3D object recognition, our method outperformed DGCNN and MS-DGCNN with overall accuracies of 93.15\% on ModelNet40 and 94.05\% on ModelNet10. With lower parameters and reduced complexity compared to state-of-the-art transformer approaches, our method is suitable for resource-constrained applications while maintaining a competitive accuracy. Beyond tree classification, the method generalizes to standard 3D object recognition, establishing it as a versatile solution for diverse point cloud processing applications. The implementation code is publicly available at https://github.com/said-ohamouddou/MS-DGCNN2.

Authors:Gen Luo, Wenhan Dou, Wenhao Li, Zhaokai Wang, Xue Yang, Changyao Tian, Hao Li, Weiyun Wang, Wenhai Wang, Xizhou Zhu, Yu Qiao, Jifeng Dai
Title: Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models
Abstract:
This paper focuses on monolithic Multimodal Large Language Models (MLLMs), which integrate visual encoding and language decoding into a single model. Existing structures and pre-training strategies for monolithic MLLMs often suffer from unstable optimization and catastrophic forgetting. To address these challenges, our key idea is to embed a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. Based on this principle, we first introduce Mono-InternVL, an advanced monolithic MLLM that incorporates a set of visual experts through a multimodal mixture-of-experts architecture. In addition, we design an innovative Endogenous Visual Pre-training (EViP) for Mono-InternVL to maximize its visual capabilities via progressive learning. Mono-InternVL achieves competitive performance against existing MLLMs but also leads to relatively expensive data cost. Therefore, we further present Mono-InternVL-1.5, a cheaper and stronger monolithic MLLM equipped with an improved EViP (EViP++). EViP++ introduces additional visual attention experts to Mono-InternVL-1.5 and re-organizes the pre-training process in an efficient manner. During inference, it includes a fused CUDA kernel to speed up its MoE operations. With these designs, Mono-InternVL-1.5 significantly reduces training and inference costs, while still maintaining competitive performance with Mono-InternVL. To evaluate our approach, we conduct extensive experiments across 15 benchmarks. Results demonstrate that Mono-InternVL outperforms existing monolithic MLLMs on 12 out of 15 benchmarks, e.g., +114-point improvement over Emu3 on OCRBench. Compared to its modular counterpart, i.e., InternVL-1.5, Mono-InternVL-1.5 achieves similar multimodal performance while reducing first-token latency by up to 69%. Code and models are released at https://github.com/OpenGVLab/Mono-InternVL.

Authors:Yuncong Yang, Jiageng Liu, Zheyuan Zhang, Siyuan Zhou, Reuben Tan, Jianwei Yang, Yilun Du, Chuang Gan
Title: MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Abstract:
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.

Authors:Yuhang Lu, Jiadong Tu, Yuexin Ma, Xinge Zhu
Title: ReAL-AD: Towards Human-Like Reasoning in End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving has emerged as a promising approach to unify perception, prediction, and planning within a single framework, reducing information loss and improving adaptability. However, existing methods often rely on fixed and sparse trajectory supervision, limiting their ability to capture the hierarchical reasoning process that human drivers naturally employ. To bridge this gap, we propose ReAL-AD, a Reasoning-Augmented Learning framework that structures decision-making in autonomous driving based on the three-tier human cognitive model: Driving Strategy, Driving Decision, and Driving Operation, where Vision-Language Models (VLMs) are incorporated to enhance situational awareness and structured reasoning across these levels. Specifically, we introduce: (1) the Strategic Reasoning Injector, which formulates high-level driving strategies by interpreting complex traffic contexts from VLM-generated insights; (2) the Tactical Reasoning Integrator, which refines strategic intent into interpretable tactical choices such as lane changes, overtaking, and speed adjustments; and (3) the Hierarchical Trajectory Decoder, which progressively translates tactical decisions into precise control actions for smooth and human-like trajectory execution. Extensive evaluations show that integrating our framework improves planning accuracy and safety by over 30%, making end-to-end autonomous driving more interpretable and aligned with human-like hierarchical reasoning. The project page can be found at: \href{https://4dvlab.github.io/project_page/realad}{\texttt{4dvlab.github.io/project\_page/realad}}

Authors:Richard Marcus, Marc Stamminger
Title: Physically Based Neural LiDAR Resimulation
Abstract:
Methods for Novel View Synthesis (NVS) have recently found traction in the field of LiDAR simulation and large-scale 3D scene reconstruction. While solutions for faster rendering or handling dynamic scenes have been proposed, LiDAR specific effects remain insufficiently addressed. By explicitly modeling sensor characteristics such as rolling shutter, laser power variations, and intensity falloff, our method achieves more accurate LiDAR simulation compared to existing techniques. We demonstrate the effectiveness of our approach through quantitative and qualitative comparisons with state-of-the-art methods, as well as ablation studies that highlight the importance of each sensor model component. Beyond that, we show that our approach exhibits advanced resimulation capabilities, such as generating high resolution LiDAR scans in the camera perspective. Our code and the resulting dataset are available at https://github.com/richardmarcus/PBNLiDAR.

Authors:Dong Wang, Hanmo You, Lingwei Zhu, Kaiwei Lin, Zheng Chen, Chen Yang, Junji Yu, Zan Wang, Junjie Chen
Title: A Survey of Reinforcement Learning for Software Engineering
Abstract:
Reinforcement Learning (RL) has emerged as a powerful paradigm for sequential decision-making and has attracted growing interest across various domains, particularly following the advent of Deep Reinforcement Learning (DRL) in 2015. Simultaneously, the rapid advancement of Large Language Models (LLMs) has further fueled interest in integrating RL with LLMs to enable more adaptive and intelligent systems. In the field of software engineering (SE), the increasing complexity of systems and the rising demand for automation have motivated researchers to apply RL to a broad range of tasks, from software design and development to quality assurance and maintenance. Despite growing research in RL-for-SE, there remains a lack of a comprehensive and systematic survey of this evolving field. To address this gap, we reviewed 115 peer-reviewed studies published across 22 premier SE venues since the introduction of DRL. We conducted a comprehensive analysis of publication trends, categorized SE topics and RL algorithms, and examined key factors such as dataset usage, model design and optimization, and evaluation practices. Furthermore, we identified open challenges and proposed future research directions to guide and inspire ongoing work in this evolving area. To summarize, this survey offers the first systematic mapping of RL applications in software engineering, aiming to support both researchers and practitioners in navigating the current landscape and advancing the field. Our artifacts are publicly available: https://github.com/KaiWei-Lin-lanina/RL4SE.

Authors:Ishraq Khan, Assad Chowdary, Sharoz Haseeb, Urvish Patel, Yousuf Zaii
Title: Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Abstract:
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.

Authors:Muhammed Furkan Dasdelen, Hyesu Lim, Michele Buck, Katharina S. Götze, Carsten Marr, Steffen Schneider
Title: CytoSAE: Interpretable Cell Embeddings for Hematology
Abstract:
Sparse autoencoders (SAEs) emerged as a promising tool for mechanistic interpretability of transformer-based foundation models. Very recently, SAEs were also adopted for the visual domain, enabling the discovery of visual concepts and their patch-wise attribution to tokens in the transformer model. While a growing number of foundation models emerged for medical imaging, tools for explaining their inferences are still lacking. In this work, we show the applicability of SAEs for hematology. We propose CytoSAE, a sparse autoencoder which is trained on over 40,000 peripheral blood single-cell images. CytoSAE generalizes to diverse and out-of-domain datasets, including bone marrow cytology, where it identifies morphologically relevant concepts which we validated with medical experts. Furthermore, we demonstrate scenarios in which CytoSAE can generate patient-specific and disease-specific concepts, enabling the detection of pathognomonic cells and localized cellular abnormalities at the patch level. We quantified the effect of concepts on a patient-level AML subtype classification task and show that CytoSAE concepts reach performance comparable to the state-of-the-art, while offering explainability on the sub-cellular level. Source code and model weights are available at https://github.com/dynamical-inference/cytosae.

Authors:Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou
Title: SpatialTrackerV2: 3D Point Tracking Made Easy
Abstract:
We present SpatialTrackerV2, a feed-forward 3D point tracking method for monocular videos. Going beyond modular pipelines built on off-the-shelf components for 3D tracking, our approach unifies the intrinsic connections between point tracking, monocular depth, and camera pose estimation into a high-performing and feedforward 3D point tracker. It decomposes world-space 3D motion into scene geometry, camera ego-motion, and pixel-wise object motion, with a fully differentiable and end-to-end architecture, allowing scalable training across a wide range of datasets, including synthetic sequences, posed RGB-D videos, and unlabeled in-the-wild footage. By learning geometry and motion jointly from such heterogeneous data, SpatialTrackerV2 outperforms existing 3D tracking methods by 30%, and matches the accuracy of leading dynamic 3D reconstruction approaches while running 50$\times$ faster.

Authors:Shangpin Peng, Senqiao Yang, Li Jiang, Zhuotao Tian
Title: Mitigating Object Hallucinations via Sentence-Level Early Intervention
Abstract:
Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose SENTINEL (Sentence-level Early iNtervention Through IN-domain prEference Learning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

Authors:Yen-Linh Vu, Dinh-Thang Duong, Truong-Binh Duong, Anh-Khoi Nguyen, Thanh-Huy Nguyen, Le Thien Phuc Nguyen, Jianhua Xing, Xingjian Li, Tianyang Wang, Ulas Bagci, Min Xu
Title: Describe Anything Model for Visual Question Answering on Text-rich Images
Abstract:
Recent progress has been made in region-aware vision-language modeling, particularly with the emergence of the Describe Anything Model (DAM). DAM is capable of generating detailed descriptions of any specific image areas or objects without the need for additional localized image-text alignment supervision. We hypothesize that such region-level descriptive capability is beneficial for the task of Visual Question Answering (VQA), especially in challenging scenarios involving images with dense text. In such settings, the fine-grained extraction of textual information is crucial to producing correct answers. Motivated by this, we introduce DAM-QA, a framework with a tailored evaluation protocol, developed to investigate and harness the region-aware capabilities from DAM for the text-rich VQA problem that requires reasoning over text-based information within images. DAM-QA incorporates a mechanism that aggregates answers from multiple regional views of image content, enabling more effective identification of evidence that may be tied to text-related elements. Experiments on six VQA benchmarks show that our approach consistently outperforms the baseline DAM, with a notable 7+ point gain on DocVQA. DAM-QA also achieves the best overall performance among region-aware models with fewer parameters, significantly narrowing the gap with strong generalist VLMs. These results highlight the potential of DAM-like models for text-rich and broader VQA tasks when paired with efficient usage and integration strategies. Our code is publicly available at https://github.com/Linvyl/DAM-QA.git.

Authors:Ruihan Yang, Qinxi Yu, Yecheng Wu, Rui Yan, Borui Li, An-Chieh Cheng, Xueyan Zou, Yunhao Fang, Xuxin Cheng, Ri-Zhao Qiu, Hongxu Yin, Sifei Liu, Song Han, Yao Lu, Xiaolong Wang
Title: EgoVLA: Learning Vision-Language-Action Models from Egocentric Human Videos
Abstract:
Real robot data collection for imitation learning has led to significant advancements in robotic manipulation. However, the requirement for robot hardware in the process fundamentally constrains the scale of the data. In this paper, we explore training Vision-Language-Action (VLA) models using egocentric human videos. The benefit of using human videos is not only for their scale but more importantly for the richness of scenes and tasks. With a VLA trained on human video that predicts human wrist and hand actions, we can perform Inverse Kinematics and retargeting to convert the human actions to robot actions. We fine-tune the model using a few robot manipulation demonstrations to obtain the robot policy, namely EgoVLA. We propose a simulation benchmark called Ego Humanoid Manipulation Benchmark, where we design diverse bimanual manipulation tasks with demonstrations. We fine-tune and evaluate EgoVLA with Ego Humanoid Manipulation Benchmark and show significant improvements over baselines and ablate the importance of human data. Videos can be found on our website: https://rchalyang.github.io/EgoVLA

Authors:Chandana Cheerla
Title: Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Abstract:
Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot

Authors:Andrea Perin, Giacomo Lagomarsini, Claudio Gallicchio, Giuseppe Nuti
Title: Mixture of Raytraced Experts
Abstract:
We introduce a Mixture of Raytraced Experts, a stacked Mixture of Experts (MoE) architecture which can dynamically select sequences of experts, producing computational graphs of variable width and depth. Existing MoE architectures generally require a fixed amount of computation for a given sample. Our approach, in contrast, yields predictions with increasing accuracy as the computation cycles through the experts' sequence. We train our model by iteratively sampling from a set of candidate experts, unfolding the sequence akin to how Recurrent Neural Networks are trained. Our method does not require load-balancing mechanisms, and preliminary experiments show a reduction in training epochs of 10\% to 40\% with a comparable/higher accuracy. These results point to new research directions in the field of MoEs, allowing the design of potentially faster and more expressive models. The code is available at https://github.com/nutig/RayTracing

Authors:Jaehyun Kwak, Ramahdani Muhammad Izaaz Inhar, Se-Young Yun, Sung-Ju Lee
Title: QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) retrieves relevant images based on a reference image and accompanying text describing desired modifications. However, existing CIR methods only focus on retrieving the target image and disregard the relevance of other images. This limitation arises because most methods employing contrastive learning-which treats the target image as positive and all other images in the batch as negatives-can inadvertently include false negatives. This may result in retrieving irrelevant images, reducing user satisfaction even when the target image is retrieved. To address this issue, we propose Query-Relevant Retrieval through Hard Negative Sampling (QuRe), which optimizes a reward model objective to reduce false negatives. Additionally, we introduce a hard negative sampling strategy that selects images positioned between two steep drops in relevance scores following the target image, to effectively filter false negatives. In order to evaluate CIR models on their alignment with human satisfaction, we create Human-Preference FashionIQ (HP-FashionIQ), a new dataset that explicitly captures user preferences beyond target retrieval. Extensive experiments demonstrate that QuRe achieves state-of-the-art performance on FashionIQ and CIRR datasets while exhibiting the strongest alignment with human preferences on the HP-FashionIQ dataset. The source code is available at https://github.com/jackwaky/QuRe.

Authors:Kaiwen Huang, Yi Zhou, Huazhu Fu, Yizhe Zhang, Chen Gong, Tao Zhou
Title: Text-driven Multiplanar Visual Interaction for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised medical image segmentation is a crucial technique for alleviating the high cost of data annotation. When labeled data is limited, textual information can provide additional context to enhance visual semantic understanding. However, research exploring the use of textual data to enhance visual semantic embeddings in 3D medical imaging tasks remains scarce. In this paper, we propose a novel text-driven multiplanar visual interaction framework for semi-supervised medical image segmentation (termed Text-SemiSeg), which consists of three main modules: Text-enhanced Multiplanar Representation (TMR), Category-aware Semantic Alignment (CSA), and Dynamic Cognitive Augmentation (DCA). Specifically, TMR facilitates text-visual interaction through planar mapping, thereby enhancing the category awareness of visual features. CSA performs cross-modal semantic alignment between the text features with introduced learnable variables and the intermediate layer of visual features. DCA reduces the distribution discrepancy between labeled and unlabeled data through their interaction, thus improving the model's robustness. Finally, experiments on three public datasets demonstrate that our model effectively enhances visual features with textual information and outperforms other methods. Our code is available at https://github.com/taozh2017/Text-SemiSeg.

Authors:Diganta Misra, Nizar Islah, Victor May, Brice Rauby, Zihan Wang, Justine Gehring, Antonio Orvieto, Muawiz Chaudhary, Eilif B. Muller, Irina Rish, Samira Ebrahimi Kahou, Massimo Caccia
Title: GitChameleon 2.0: Evaluating AI Code Generation Against Python Library Version Incompatibilities
Abstract:
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent version updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon 2.0, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon 2.0 rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon 2.0 enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.

Authors:M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk
Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
Abstract:
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.

Authors:Feng Xiao, Jicong Fan
Title: Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding
Abstract:
Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.

Authors:Johann Frei, Nils Feldhus, Lisa Raithel, Roland Roller, Alexander Meyer, Frank Kramer
Title: Infherno: End-to-end Agent-based FHIR Resource Synthesis from Free-form Clinical Notes
Abstract:
For clinical data integration and healthcare services, the HL7 FHIR standard has established itself as a desirable format for interoperability between complex health data. Previous attempts at automating the translation from free-form clinical notes into structured FHIR resources rely on modular, rule-based systems or LLMs with instruction tuning and constrained decoding. Since they frequently suffer from limited generalizability and structural inconformity, we propose an end-to-end framework powered by LLM agents, code execution, and healthcare terminology database tools to address these issues. Our solution, called Infherno, is designed to adhere to the FHIR document schema and competes well with a human baseline in predicting FHIR resources from unstructured text. The implementation features a front end for custom and synthetic data and both local and proprietary models, supporting clinical data integration processes and interoperability across institutions.

Authors:Shilin Zhou, Zhenghua Li
Title: Improving Contextual ASR via Multi-grained Fusion with Large Language Models
Abstract:
While end-to-end Automatic Speech Recognition (ASR) models have shown impressive performance in transcribing general speech, they often struggle to accurately recognize contextually relevant keywords, such as proper nouns or user-specific entities. Previous approaches have explored leveraging keyword dictionaries in the textual modality to improve keyword recognition, either through token-level fusion that guides token-by-token generation or phrase-level fusion that enables direct copying of keyword phrases. However, these methods operate at different granularities and have their own limitations. In this paper, we propose a novel multi-grained fusion approach that jointly leverages the strengths of both token-level and phrase-level fusion with Large Language Models (LLMs). Our approach incorporates a late-fusion strategy that elegantly combines ASR's acoustic information with LLM's rich contextual knowledge, balancing fine-grained token precision with holistic phrase-level understanding. Experiments on Chinese and English datasets demonstrate that our approach achieves state-of-the-art performance on keyword-related metrics while preserving high accuracy on non-keyword text. Ablation studies further confirm that the token-level and phrase-level components both contribute significantly to the performance gains, complementing each other in our joint multi-grained framework. The code and models will be publicly available at https://github.com/.

Authors:Felix Nützel, Mischa Dombrowski, Bernhard Kainz
Title: Generate to Ground: Multimodal Text Conditioning Boosts Phrase Grounding in Medical Vision-Language Models
Abstract:
Phrase grounding, i.e., mapping natural language phrases to specific image regions, holds significant potential for disease localization in medical imaging through clinical reports. While current state-of-the-art methods rely on discriminative, self-supervised contrastive models, we demonstrate that generative text-to-image diffusion models, leveraging cross-attention maps, can achieve superior zero-shot phrase grounding performance. Contrary to prior assumptions, we show that fine-tuning diffusion models with a frozen, domain-specific language model, such as CXR-BERT, substantially outperforms domain-agnostic counterparts. This setup achieves remarkable improvements, with mIoU scores doubling those of current discriminative methods. These findings highlight the underexplored potential of generative models for phrase grounding tasks. To further enhance performance, we introduce Bimodal Bias Merging (BBM), a novel post-processing technique that aligns text and image biases to identify regions of high certainty. BBM refines cross-attention maps, achieving even greater localization accuracy. Our results establish generative approaches as a more effective paradigm for phrase grounding in the medical imaging domain, paving the way for more robust and interpretable applications in clinical practice. The source code and model weights are available at https://github.com/Felix-012/generate_to_ground.

Authors:Azhar Ikhtiarudin, Aditi Das, Param Thakkar, Akash Kundu
Title: BenchRL-QAS: Benchmarking reinforcement learning algorithms for quantum architecture search
Abstract:
We introduce BenchRL-QAS, a unified benchmarking framework for systematically evaluating reinforcement learning (RL) algorithms in quantum architecture search (QAS) across diverse variational quantum algorithm tasks and system sizes ranging from 2- to 8-qubit. Our study benchmarks nine RL agents including both value-based and policy-gradient methods on representative quantum problems such as variational quantum eigensolver, variational quantum state diagonalization, quantum classification, and state preparation, spanning both noiseless and realistic noisy regimes. We propose a weighted ranking metric that balances accuracy, circuit depth, gate count, and computational efficiency, enabling fair and comprehensive comparison. Our results first reveal that RL-based quantum classifier outperforms baseline variational classifiers. Then we conclude that no single RL algorithm is universally optimal when considering a set of QAS tasks; algorithmic performance is highly context-dependent, varying with task structure, qubit count, and noise. This empirical finding provides strong evidence for the "no free lunch" principle in RL-based quantum circuit design and highlights the necessity of tailored algorithm selection and systematic benchmarking for advancing quantum circuit synthesis. This work represents the most comprehensive RL-QAS benchmarking effort to date, and BenchRL-QAS along with all experimental data are made publicly available to support reproducibility and future research https://github.com/azhar-ikhtiarudin/bench-rlqas.

Authors:Shuangli Du, Siming Yan, Zhenghao Shi, Zhenzhen You, Lu Sun
Title: Wavelet-based Decoupling Framework for low-light Stereo Image Enhancement
Abstract:
Low-light images suffer from complex degradation, and existing enhancement methods often encode all degradation factors within a single latent space. This leads to highly entangled features and strong black-box characteristics, making the model prone to shortcut learning. To mitigate the above issues, this paper proposes a wavelet-based low-light stereo image enhancement method with feature space decoupling. Our insight comes from the following findings: (1) Wavelet transform enables the independent processing of low-frequency and high-frequency information. (2) Illumination adjustment can be achieved by adjusting the low-frequency component of a low-light image, extracted through multi-level wavelet decomposition. Thus, by using wavelet transform the feature space is decomposed into a low-frequency branch for illumination adjustment and multiple high-frequency branches for texture enhancement. Additionally, stereo low-light image enhancement can extract useful cues from another view to improve enhancement. To this end, we propose a novel high-frequency guided cross-view interaction module (HF-CIM) that operates within high-frequency branches rather than across the entire feature space, effectively extracting valuable image details from the other view. Furthermore, to enhance the high-frequency information, a detail and texture enhancement module (DTEM) is proposed based on cross-attention mechanism. The model is trained on a dataset consisting of images with uniform illumination and images with non-uniform illumination. Experimental results on both real and synthetic images indicate that our algorithm offers significant advantages in light adjustment while effectively recovering high-frequency information. The code and dataset are publicly available at: https://github.com/Cherisherr/WDCI-Net.git.

Authors:Xiucheng Wang, Qiming Zhang, Nan Cheng, Junting Chen, Zezhong Zhang, Zan Li, Shuguang Cui, Xuemin Shen
Title: RadioDiff-3D: A 3D$\times$3D Radio Map Dataset and Generative Diffusion Based Benchmark for 6G Environment-Aware Communication
Abstract:
Radio maps (RMs) serve as a critical foundation for enabling environment-aware wireless communication, as they provide the spatial distribution of wireless channel characteristics. Despite recent progress in RM construction using data-driven approaches, most existing methods focus solely on pathloss prediction in a fixed 2D plane, neglecting key parameters such as direction of arrival (DoA), time of arrival (ToA), and vertical spatial variations. Such a limitation is primarily due to the reliance on static learning paradigms, which hinder generalization beyond the training data distribution. To address these challenges, we propose UrbanRadio3D, a large-scale, high-resolution 3D RM dataset constructed via ray tracing in realistic urban environments. UrbanRadio3D is over 37$\times$3 larger than previous datasets across a 3D space with 3 metrics as pathloss, DoA, and ToA, forming a novel 3D$\times$33D dataset with 7$\times$3 more height layers than prior state-of-the-art (SOTA) dataset. To benchmark 3D RM construction, a UNet with 3D convolutional operators is proposed. Moreover, we further introduce RadioDiff-3D, a diffusion-model-based generative framework utilizing the 3D convolutional architecture. RadioDiff-3D supports both radiation-aware scenarios with known transmitter locations and radiation-unaware settings based on sparse spatial observations. Extensive evaluations on UrbanRadio3D validate that RadioDiff-3D achieves superior performance in constructing rich, high-dimensional radio maps under diverse environmental dynamics. This work provides a foundational dataset and benchmark for future research in 3D environment-aware communication. The dataset is available at https://github.com/UNIC-Lab/UrbanRadio3D.

Authors:Sergey Linok, Gleb Naumov
Title: Open-Vocabulary Indoor Object Grounding with 3D Hierarchical Scene Graph
Abstract:
We propose OVIGo-3DHSG method - Open-Vocabulary Indoor Grounding of objects using 3D Hierarchical Scene Graph. OVIGo-3DHSG represents an extensive indoor environment over a Hierarchical Scene Graph derived from sequences of RGB-D frames utilizing a set of open-vocabulary foundation models and sensor data processing. The hierarchical representation explicitly models spatial relations across floors, rooms, locations, and objects. To effectively address complex queries involving spatial reference to other objects, we integrate the hierarchical scene graph with a Large Language Model for multistep reasoning. This integration leverages inter-layer (e.g., room-to-object) and intra-layer (e.g., object-to-object) connections, enhancing spatial contextual understanding. We investigate the semantic and geometry accuracy of hierarchical representation on Habitat Matterport 3D Semantic multi-floor scenes. Our approach demonstrates efficient scene comprehension and robust object grounding compared to existing methods. Overall OVIGo-3DHSG demonstrates strong potential for applications requiring spatial reasoning and understanding of indoor environments. Related materials can be found at https://github.com/linukc/OVIGo-3DHSG.

Authors:Ye Han, Lijun Zhang, Dejian Meng, Zhuang Zhang
Title: Topology Enhanced MARL for Multi-Vehicle Cooperative Decision-Making of CAVs
Abstract:
The exploration-exploitation trade-off constitutes one of the fundamental challenges in reinforcement learning (RL), which is exacerbated in multi-agent reinforcement learning (MARL) due to the exponential growth of joint state-action spaces. This paper proposes a topology-enhanced MARL (TPE-MARL) method for optimizing cooperative decision-making of connected and autonomous vehicles (CAVs) in mixed traffic. This work presents two primary contributions: First, we construct a game topology tensor for dynamic traffic flow, effectively compressing high-dimensional traffic state information and decrease the search space for MARL algorithms. Second, building upon the designed game topology tensor and using QMIX as the backbone RL algorithm, we establish a topology-enhanced MARL framework incorporating visit counts and agent mutual information. Extensive simulations across varying traffic densities and CAV penetration rates demonstrate the effectiveness of TPE-MARL. Evaluations encompassing training dynamics, exploration patterns, macroscopic traffic performance metrics, and microscopic vehicle behaviors reveal that TPE-MARL successfully balances exploration and exploitation. Consequently, it exhibits superior performance in terms of traffic efficiency, safety, decision smoothness, and task completion. Furthermore, the algorithm demonstrates decision-making rationality comparable to or exceeding that of human drivers in both mixed-autonomy and fully autonomous traffic scenarios. Code of our work is available at \href{https://github.com/leoPub/tpemarl}{https://github.com/leoPub/tpemarl}.

Authors:Yiquan Gao, Duohui Xu
Title: Out-of-distribution data supervision towards biomedical semantic segmentation
Abstract:
Biomedical segmentation networks easily suffer from the unexpected misclassification between foreground and background objects when learning on limited and imperfect medical datasets. Inspired by the strong power of Out-of-Distribution (OoD) data on other visual tasks, we propose a data-centric framework, Med-OoD to address this issue by introducing OoD data supervision into fully-supervised biomedical segmentation with none of the following needs: (i) external data sources, (ii) feature regularization objectives, (iii) additional annotations. Our method can be seamlessly integrated into segmentation networks without any modification on the architectures. Extensive experiments show that Med-OoD largely prevents various segmentation networks from the pixel misclassification on medical images and achieves considerable performance improvements on Lizard dataset. We also present an emerging learning paradigm of training a medical segmentation network completely using OoD data devoid of foreground class labels, surprisingly turning out 76.1% mIoU as test result. We hope this learning paradigm will attract people to rethink the roles of OoD data. Code is made available at https://github.com/StudioYG/Med-OoD.

Authors:Nataliia Molchanova, Alessandro Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Erin Beck, Charidimos Tsagkas, Daniel Reich, Colin Vanden Bulcke, Anna Stolting, Serena Borrelli, Pietro Maggi, Adrien Depeursinge, Cristina Granziera, Henning Mueller, Pedro M. Gordaliza, Meritxell Bach Cuadra
Title: Benchmarking and Explaining Deep Learning Cortical Lesion MRI Segmentation in Multiple Sclerosis
Abstract:
Cortical lesions (CLs) have emerged as valuable biomarkers in multiple sclerosis (MS), offering high diagnostic specificity and prognostic relevance. However, their routine clinical integration remains limited due to subtle magnetic resonance imaging (MRI) appearance, challenges in expert annotation, and a lack of standardized automated methods. We propose a comprehensive multi-centric benchmark of CL detection and segmentation in MRI. A total of 656 MRI scans, including clinical trial and research data from four institutions, were acquired at 3T and 7T using MP2RAGE and MPRAGE sequences with expert-consensus annotations. We rely on the self-configuring nnU-Net framework, designed for medical imaging segmentation, and propose adaptations tailored to the improved CL detection. We evaluated model generalization through out-of-distribution testing, demonstrating strong lesion detection capabilities with an F1-score of 0.64 and 0.5 in and out of the domain, respectively. We also analyze internal model features and model errors for a better understanding of AI decision-making. Our study examines how data variability, lesion ambiguity, and protocol differences impact model performance, offering future recommendations to address these barriers to clinical adoption. To reinforce the reproducibility, the implementation and models will be publicly accessible and ready to use at https://github.com/Medical-Image-Analysis-Laboratory/ and https://doi.org/10.5281/zenodo.15911797.

Authors:Xiang Yu, Xinyao Liu, Guang Liang
Title: YOLOv8-SMOT: An Efficient and Robust Framework for Real-Time Small Object Tracking via Slice-Assisted Training and Adaptive Association
Abstract:
Tracking small, agile multi-objects (SMOT), such as birds, from an Unmanned Aerial Vehicle (UAV) perspective is a highly challenging computer vision task. The difficulty stems from three main sources: the extreme scarcity of target appearance features, the complex motion entanglement caused by the combined dynamics of the camera and the targets themselves, and the frequent occlusions and identity ambiguity arising from dense flocking behavior. This paper details our championship-winning solution in the MVA 2025 "Finding Birds" Small Multi-Object Tracking Challenge (SMOT4SB), which adopts the tracking-by-detection paradigm with targeted innovations at both the detection and association levels. On the detection side, we propose a systematic training enhancement framework named \textbf{SliceTrain}. This framework, through the synergy of 'deterministic full-coverage slicing' and 'slice-level stochastic augmentation, effectively addresses the problem of insufficient learning for small objects in high-resolution image training. On the tracking side, we designed a robust tracker that is completely independent of appearance information. By integrating a \textbf{motion direction maintenance (EMA)} mechanism and an \textbf{adaptive similarity metric} combining \textbf{bounding box expansion and distance penalty} into the OC-SORT framework, our tracker can stably handle irregular motion and maintain target identities. Our method achieves state-of-the-art performance on the SMOT4SB public test set, reaching an SO-HOTA score of \textbf{55.205}, which fully validates the effectiveness and advancement of our framework in solving complex real-world SMOT problems. The source code will be made available at https://github.com/Salvatore-Love/YOLOv8-SMOT.

Authors:Giuliano Martinelli, Tommaso Bonomo, Pere-Lluís Huguet Cabot, Roberto Navigli
Title: BOOKCOREF: Coreference Resolution at Book Scale
Abstract:
Coreference Resolution systems are typically evaluated on benchmarks containing small- to medium-scale documents. When it comes to evaluating long texts, however, existing benchmarks, such as LitBank, remain limited in length and do not adequately assess system capabilities at the book scale, i.e., when co-referring mentions span hundreds of thousands of tokens. To fill this gap, we first put forward a novel automatic pipeline that produces high-quality Coreference Resolution annotations on full narrative texts. Then, we adopt this pipeline to create the first book-scale coreference benchmark, BOOKCOREF, with an average document length of more than 200,000 tokens. We carry out a series of experiments showing the robustness of our automatic procedure and demonstrating the value of our resource, which enables current long-document coreference systems to gain up to +20 CoNLL-F1 points when evaluated on full books. Moreover, we report on the new challenges introduced by this unprecedented book-scale setting, highlighting that current models fail to deliver the same performance they achieve on smaller documents. We release our data and code to encourage research and development of new book-scale Coreference Resolution systems at https://github.com/sapienzanlp/bookcoref.

Authors:Hongxu Ma, Guanshuo Wang, Fufu Yu, Qiong Jia, Shouhong Ding
Title: MS-DETR: Towards Effective Video Moment Retrieval and Highlight Detection by Joint Motion-Semantic Learning
Abstract:
Video Moment Retrieval (MR) and Highlight Detection (HD) aim to pinpoint specific moments and assess clip-wise relevance based on the text query. While DETR-based joint frameworks have made significant strides, there remains untapped potential in harnessing the intricate relationships between temporal motion and spatial semantics within video content. In this paper, we propose the Motion-Semantics DETR (MS-DETR), a framework that captures rich motion-semantics features through unified learning for MR/HD tasks. The encoder first explicitly models disentangled intra-modal correlations within motion and semantics dimensions, guided by the given text queries. Subsequently, the decoder utilizes the task-wise correlation across temporal motion and spatial semantics dimensions to enable precise query-guided localization for MR and refined highlight boundary delineation for HD. Furthermore, we observe the inherent sparsity dilemma within the motion and semantics dimensions of MR/HD datasets. To address this issue, we enrich the corpus from both dimensions by generation strategies and propose contrastive denoising learning to ensure the above components learn robustly and effectively. Extensive experiments on four MR/HD benchmarks demonstrate that our method outperforms existing state-of-the-art models by a margin. Our code is available at https://github.com/snailma0229/MS-DETR.git.

Authors:Kun-Hsiang Lin, Yu-Wen Tseng, Kang-Yang Huang, Jhih-Ciang Wu, Wen-Huang Cheng
Title: InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Abstract:
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.

Authors:Beining Xu, Siting Zhu, Hesheng Wang
Title: SGLoc: Semantic Localization System for Camera Pose Estimation from 3D Gaussian Splatting Representation
Abstract:
We propose SGLoc, a novel localization system that directly regresses camera poses from 3D Gaussian Splatting (3DGS) representation by leveraging semantic information. Our method utilizes the semantic relationship between 2D image and 3D scene representation to estimate the 6DoF pose without prior pose information. In this system, we introduce a multi-level pose regression strategy that progressively estimates and refines the pose of query image from the global 3DGS map, without requiring initial pose priors. Moreover, we introduce a semantic-based global retrieval algorithm that establishes correspondences between 2D (image) and 3D (3DGS map). By matching the extracted scene semantic descriptors of 2D query image and 3DGS semantic representation, we align the image with the local region of the global 3DGS map, thereby obtaining a coarse pose estimation. Subsequently, we refine the coarse pose by iteratively optimizing the difference between the query image and the rendered image from 3DGS. Our SGLoc demonstrates superior performance over baselines on 12scenes and 7scenes datasets, showing excellent capabilities in global localization without initial pose prior. Code will be available at https://github.com/IRMVLab/SGLoc.

Authors:Yuechen Xie, Jie Song, Yicheng Shan, Xiaoyan Zhang, Yuanyu Wan, Shengxuming Zhang, Jiarui Duan, Mingli Song
Title: Dataset Ownership Verification for Pre-trained Masked Models
Abstract:
High-quality open-source datasets have emerged as a pivotal catalyst driving the swift advancement of deep learning, while facing the looming threat of potential exploitation. Protecting these datasets is of paramount importance for the interests of their owners. The verification of dataset ownership has evolved into a crucial approach in this domain; however, existing verification techniques are predominantly tailored to supervised models and contrastive pre-trained models, rendering them ill-suited for direct application to the increasingly prevalent masked models. In this work, we introduce the inaugural methodology addressing this critical, yet unresolved challenge, termed Dataset Ownership Verification for Masked Modeling (DOV4MM). The central objective is to ascertain whether a suspicious black-box model has been pre-trained on a particular unlabeled dataset, thereby assisting dataset owners in safeguarding their rights. DOV4MM is grounded in our empirical observation that when a model is pre-trained on the target dataset, the difficulty of reconstructing masked information within the embedding space exhibits a marked contrast to models not pre-trained on that dataset. We validated the efficacy of DOV4MM through ten masked image models on ImageNet-1K and four masked language models on WikiText-103. The results demonstrate that DOV4MM rejects the null hypothesis, with a $p$-value considerably below 0.05, surpassing all prior approaches. Code is available at https://github.com/xieyc99/DOV4MM.

Authors:Linwei Chen, Lin Gu, Ying Fu
Title: Frequency-Dynamic Attention Modulation for Dense Prediction
Abstract:
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.

Authors:Hao Li, Ju Dai, Feng Zhou, Kaida Ning, Lei Li, Junjun Pan
Title: AU-Blendshape for Fine-grained Stylized 3D Facial Expression Manipulation
Abstract:
While 3D facial animation has made impressive progress, challenges still exist in realizing fine-grained stylized 3D facial expression manipulation due to the lack of appropriate datasets. In this paper, we introduce the AUBlendSet, a 3D facial dataset based on AU-Blendshape representation for fine-grained facial expression manipulation across identities. AUBlendSet is a blendshape data collection based on 32 standard facial action units (AUs) across 500 identities, along with an additional set of facial postures annotated with detailed AUs. Based on AUBlendSet, we propose AUBlendNet to learn AU-Blendshape basis vectors for different character styles. AUBlendNet predicts, in parallel, the AU-Blendshape basis vectors of the corresponding style for a given identity mesh, thereby achieving stylized 3D emotional facial manipulation. We comprehensively validate the effectiveness of AUBlendSet and AUBlendNet through tasks such as stylized facial expression manipulation, speech-driven emotional facial animation, and emotion recognition data augmentation. Through a series of qualitative and quantitative experiments, we demonstrate the potential and importance of AUBlendSet and AUBlendNet in 3D facial animation tasks. To the best of our knowledge, AUBlendSet is the first dataset, and AUBlendNet is the first network for continuous 3D facial expression manipulation for any identity through facial AUs. Our source code is available at https://github.com/wslh852/AUBlendNet.git.

Authors:Jiahao Xia, Yike Wu, Wenjian Huang, Jianguo Zhang, Jian Zhang
Title: Unsupervised Part Discovery via Descriptor-Based Masked Image Restoration with Optimized Constraints
Abstract:
Part-level features are crucial for image understanding, but few studies focus on them because of the lack of fine-grained labels. Although unsupervised part discovery can eliminate the reliance on labels, most of them cannot maintain robustness across various categories and scenarios, which restricts their application range. To overcome this limitation, we present a more effective paradigm for unsupervised part discovery, named Masked Part Autoencoder (MPAE). It first learns part descriptors as well as a feature map from the inputs and produces patch features from a masked version of the original images. Then, the masked regions are filled with the learned part descriptors based on the similarity between the local features and descriptors. By restoring these masked patches using the part descriptors, they become better aligned with their part shapes, guided by appearance features from unmasked patches. Finally, MPAE robustly discovers meaningful parts that closely match the actual object shapes, even in complex scenarios. Moreover, several looser yet more effective constraints are proposed to enable MPAE to identify the presence of parts across various scenarios and categories in an unsupervised manner. This provides the foundation for addressing challenges posed by occlusion and for exploring part similarity across multiple categories. Extensive experiments demonstrate that our method robustly discovers meaningful parts across various categories and scenarios. The code is available at the project https://github.com/Jiahao-UTS/MPAE.

Authors:Jiajian Xie, Shengyu Zhang, Zhou Zhao, Fan Wu, Fei Wu
Title: EC-Diff: Fast and High-Quality Edge-Cloud Collaborative Inference for Diffusion Models
Abstract:
Diffusion Models have shown remarkable proficiency in image and video synthesis. As model size and latency increase limit user experience, hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation, where the cloud model initiates high-quality semantic planning and the edge model expedites later-stage refinement. However, excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output. To address these challenges, we propose EC-Diff that accelerates cloud inference through gradient-based noise estimation while identifying the optimal point for cloud-edge handoff to maintain generation quality. Specifically, we design a K-step noise approximation strategy to reduce cloud inference frequency by using noise gradients between steps and applying cloud inference periodically to adjust errors. Then we design a two-stage greedy search algorithm to efficiently find the optimal parameters for noise approximation and edge model switching. Extensive experiments demonstrate that our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2\times$ speedup in inference compared to cloud inference. Video samples and source code are available at https://ec-diff.github.io/.

Authors:Artem Alekseev, Mikhail Chaichuk, Miron Butko, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: The benefits of query-based KGQA systems for complex and temporal questions in LLM era
Abstract:
Large language models excel in question-answering (QA) yet still struggle with multi-hop reasoning and temporal questions. Query-based knowledge graph QA (KGQA) offers a modular alternative by generating executable queries instead of direct answers. We explore multi-stage query-based framework for WikiData QA, proposing multi-stage approach that enhances performance on challenging multi-hop and temporal benchmarks. Through generalization and rejection studies, we evaluate robustness across multi-hop and temporal QA datasets. Additionally, we introduce a novel entity linking and predicate matching method using CoT reasoning. Our results demonstrate the potential of query-based multi-stage KGQA framework for improving multi-hop and temporal QA with small language models. Code and data: https://github.com/ar2max/NLDB-KGQA-System

Authors:Jianzhe Ma, Wenxuan Wang, Qin Jin
Title: A Survey of Deep Learning for Geometry Problem Solving
Abstract:
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.

Authors:Shuichiro Nishigori, Koichi Saito, Naoki Murata, Masato Hirano, Shusuke Takahashi, Yuki Mitsufuji
Title: Schrödinger Bridge Consistency Trajectory Models for Speech Enhancement
Abstract:
Speech enhancement (SE) utilizing diffusion models is a promising technology that improves speech quality in noisy speech data. Furthermore, the Schrödinger bridge (SB) has recently been used in diffusion-based SE to improve speech quality by resolving a mismatch between the endpoint of the forward process and the starting point of the reverse process. However, the SB still exhibits slow inference owing to the necessity of a large number of function evaluations (NFE) for inference to obtain high-quality results. While Consistency Models (CMs) address this issue by employing consistency training that uses distillation from pretrained models in the field of image generation, it does not improve generation quality when the number of steps increases. As a solution to this problem, Consistency Trajectory Models (CTMs) not only accelerate inference speed but also maintain a favorable trade-off between quality and speed. Furthermore, SoundCTM demonstrates the applicability of CTM techniques to the field of sound generation. In this paper, we present Schrödinger bridge Consistency Trajectory Models (SBCTM) by applying the CTM's technique to the Schrödinger bridge for SE. Additionally, we introduce a novel auxiliary loss, including a perceptual loss, into the original CTM's training framework. As a result, SBCTM achieves an approximately 16x improvement in the real-time factor (RTF) compared to the conventional Schrödinger bridge for SE. Furthermore, the favorable trade-off between quality and speed in SBCTM allows for time-efficient inference by limiting multi-step refinement to cases where 1-step inference is insufficient. Our code, pretrained models, and audio samples are available at https://github.com/sony/sbctm/.

Authors:Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: Resampling strategies for imbalanced regression: a survey and empirical analysis
Abstract:
Imbalanced problems can arise in different real-world situations, and to address this, certain strategies in the form of resampling or balancing algorithms are proposed. This issue has largely been studied in the context of classification, and yet, the same problem features in regression tasks, where target values are continuous. This work presents an extensive experimental study comprising various balancing and predictive models, and wich uses metrics to capture important elements for the user and to evaluate the predictive model in an imbalanced regression data context. It also proposes a taxonomy for imbalanced regression approaches based on three crucial criteria: regression model, learning process, and evaluation metrics. The study offers new insights into the use of such strategies, highlighting the advantages they bring to each model's learning process, and indicating directions for further studies. The code, data and further information related to the experiments performed herein can be found on GitHub: https://github.com/JusciAvelino/imbalancedRegression.

Authors:Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: Imbalanced Regression Pipeline Recommendation
Abstract:
Imbalanced problems are prevalent in various real-world scenarios and are extensively explored in classification tasks. However, they also present challenges for regression tasks due to the rarity of certain target values. A common alternative is to employ balancing algorithms in preprocessing to address dataset imbalance. However, due to the variety of resampling methods and learning models, determining the optimal solution requires testing many combinations. Furthermore, the learning model, dataset, and evaluation metric affect the best strategies. This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) framework, which diverges from existing literature by training meta-classifiers to recommend the best pipeline composed of the resampling strategy and learning model per task in a zero-shot fashion. The meta-classifiers are trained using a set of meta-features to learn how to map the meta-features to the classes indicating the best pipeline. We propose two formulations: Independent and Chained. Independent trains the meta-classifiers to separately indicate the best learning algorithm and resampling strategy. Chained involves a sequential procedure where the output of one meta-classifier is used as input for another to model intrinsic relationship factors. The Chained scenario showed superior performance, suggesting a relationship between the learning algorithm and the resampling strategy per task. Compared with AutoML frameworks, Meta-IR obtained better results. Moreover, compared with baselines of six learning algorithms and six resampling algorithms plus no resampling, totaling 42 (6 X 7) configurations, Meta-IR outperformed all of them. The code, data, and further information of the experiments can be found on GitHub: https://github.com/JusciAvelino/Meta-IR.

Authors:Wei Sun, Linhan Cao, Kang Fu, Dandan Zhu, Jun Jia, Menghan Hu, Xiongkuo Min, Guangtao Zhai
Title: CompressedVQA-HDR: Generalized Full-reference and No-reference Quality Assessment Models for Compressed High Dynamic Range Videos
Abstract:
Video compression is a standard procedure applied to all videos to minimize storage and transmission demands while preserving visual quality as much as possible. Therefore, evaluating the visual quality of compressed videos is crucial for guiding the practical usage and further development of video compression algorithms. Although numerous compressed video quality assessment (VQA) methods have been proposed, they often lack the generalization capability needed to handle the increasing diversity of video types, particularly high dynamic range (HDR) content. In this paper, we introduce CompressedVQA-HDR, an effective VQA framework designed to address the challenges of HDR video quality assessment. Specifically, we adopt the Swin Transformer and SigLip 2 as the backbone networks for the proposed full-reference (FR) and no-reference (NR) VQA models, respectively. For the FR model, we compute deep structural and textural similarities between reference and distorted frames using intermediate-layer features extracted from the Swin Transformer as its quality-aware feature representation. For the NR model, we extract the global mean of the final-layer feature maps from SigLip 2 as its quality-aware representation. To mitigate the issue of limited HDR training data, we pre-train the FR model on a large-scale standard dynamic range (SDR) VQA dataset and fine-tune it on the HDRSDR-VQA dataset. For the NR model, we employ an iterative mixed-dataset training strategy across multiple compressed VQA datasets, followed by fine-tuning on the HDRSDR-VQA dataset. Experimental results show that our models achieve state-of-the-art performance compared to existing FR and NR VQA models. Moreover, CompressedVQA-HDR-FR won first place in the FR track of the Generalizable HDR & SDR Video Quality Measurement Grand Challenge at IEEE ICME 2025. The code is available at https://github.com/sunwei925/CompressedVQA-HDR.

Authors:Linwei Chen, Ying Fu, Lin Gu, Dezhi Zheng, Jifeng Dai
Title: Spatial Frequency Modulation for Semantic Segmentation
Abstract:
High spatial frequency information, including fine details like textures, significantly contributes to the accuracy of semantic segmentation. However, according to the Nyquist-Shannon Sampling Theorem, high-frequency components are vulnerable to aliasing or distortion when propagating through downsampling layers such as strided-convolution. Here, we propose a novel Spatial Frequency Modulation (SFM) that modulates high-frequency features to a lower frequency before downsampling and then demodulates them back during upsampling. Specifically, we implement modulation through adaptive resampling (ARS) and design a lightweight add-on that can densely sample the high-frequency areas to scale up the signal, thereby lowering its frequency in accordance with the Frequency Scaling Property. We also propose Multi-Scale Adaptive Upsampling (MSAU) to demodulate the modulated feature and recover high-frequency information through non-uniform upsampling This module further improves segmentation by explicitly exploiting information interaction between densely and sparsely resampled areas at multiple scales. Both modules can seamlessly integrate with various architectures, extending from convolutional neural networks to transformers. Feature visualization and analysis confirm that our method effectively alleviates aliasing while successfully retaining details after demodulation. Finally, we validate the broad applicability and effectiveness of SFM by extending it to image classification, adversarial robustness, instance segmentation, and panoptic segmentation tasks. The code is available at https://github.com/Linwei-Chen/SFM.

Authors:Bo Zeng, Chenyang Lyu, Sinuo Liu, Mingyan Zeng, Minghao Wu, Xuanfan Ni, Tianqi Shi, Yu Zhao, Yefeng Liu, Chenyu Zhu, Ruizhe Li, Jiahui Geng, Qing Li, Yu Tong, Longyue Wang, Weihua Luo, Kaifu Zhang
Title: Marco-Bench-MIF: On Multilingual Instruction-Following Capability of Large Language Models
Abstract:
Instruction-following capability has become a major ability to be evaluated for Large Language Models (LLMs). However, existing datasets, such as IFEval, are either predominantly monolingual and centered on English or simply machine translated to other languages, limiting their applicability in multilingual contexts. In this paper, we present an carefully-curated extension of IFEval to a localized multilingual version named Marco-Bench-MIF, covering 30 languages with varying levels of localization. Our benchmark addresses linguistic constraints (e.g., modifying capitalization requirements for Chinese) and cultural references (e.g., substituting region-specific company names in prompts) via a hybrid pipeline combining translation with verification. Through comprehensive evaluation of 20+ LLMs on our Marco-Bench-MIF, we found that: (1) 25-35% accuracy gap between high/low-resource languages, (2) model scales largely impact performance by 45-60% yet persists script-specific challenges, and (3) machine-translated data underestimates accuracy by7-22% versus localized data. Our analysis identifies challenges in multilingual instruction following, including keyword consistency preservation and compositional constraint adherence across languages. Our Marco-Bench-MIF is available at https://github.com/AIDC-AI/Marco-Bench-MIF.

Authors:Peiwen Xia, Tangfei Liao, Wei Zhu, Danhuai Zhao, Jianjun Ke, Kaihao Zhang, Tong Lu, Tao Wang
Title: CorrMoE: Mixture of Experts with De-stylization Learning for Cross-Scene and Cross-Domain Correspondence Pruning
Abstract:
Establishing reliable correspondences between image pairs is a fundamental task in computer vision, underpinning applications such as 3D reconstruction and visual localization. Although recent methods have made progress in pruning outliers from dense correspondence sets, they often hypothesize consistent visual domains and overlook the challenges posed by diverse scene structures. In this paper, we propose CorrMoE, a novel correspondence pruning framework that enhances robustness under cross-domain and cross-scene variations. To address domain shift, we introduce a De-stylization Dual Branch, performing style mixing on both implicit and explicit graph features to mitigate the adverse influence of domain-specific representations. For scene diversity, we design a Bi-Fusion Mixture of Experts module that adaptively integrates multi-perspective features through linear-complexity attention and dynamic expert routing. Extensive experiments on benchmark datasets demonstrate that CorrMoE achieves superior accuracy and generalization compared to state-of-the-art methods. The code and pre-trained models are available at https://github.com/peiwenxia/CorrMoE.

Authors:Yash Ingle, Pruthwik Mishra
Title: ILID: Native Script Language Identification for Indian Languages
Abstract:
The language identification task is a crucial fundamental step in NLP. Often it serves as a pre-processing step for widely used NLP applications such as multilingual machine translation, information retrieval, question and answering, and text summarization. The core challenge of language identification lies in distinguishing languages in noisy, short, and code-mixed environments. This becomes even harder in case of diverse Indian languages that exhibit lexical and phonetic similarities, but have distinct differences. Many Indian languages share the same script, making the task even more challenging. Taking all these challenges into account, we develop and release a dataset of 250K sentences consisting of 23 languages including English and all 22 official Indian languages labeled with their language identifiers, where data in most languages are newly created. We also develop and release baseline models using state-of-the-art approaches in machine learning and fine-tuning pre-trained transformer models. Our models outperforms the state-of-the-art pre-trained transformer models for the language identification task. The dataset and the codes are available at https://yashingle-ai.github.io/ILID/ and in Huggingface open source libraries.

Authors:Haoxuan Zhang, Ruochi Li, Yang Zhang, Ting Xiao, Jiangping Chen, Junhua Ding, Haihua Chen
Title: The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
Abstract:
Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.

Authors:Ruofan Hu, Dongyu Zhang, Huayi Zhang, Elke Rundensteiner
Title: CLID-MU: Cross-Layer Information Divergence Based Meta Update Strategy for Learning with Noisy Labels
Abstract:
Learning with noisy labels (LNL) is essential for training deep neural networks with imperfect data. Meta-learning approaches have achieved success by using a clean unbiased labeled set to train a robust model. However, this approach heavily depends on the availability of a clean labeled meta-dataset, which is difficult to obtain in practice. In this work, we thus tackle the challenge of meta-learning for noisy label scenarios without relying on a clean labeled dataset. Our approach leverages the data itself while bypassing the need for labels. Building on the insight that clean samples effectively preserve the consistency of related data structures across the last hidden and the final layer, whereas noisy samples disrupt this consistency, we design the Cross-layer Information Divergence-based Meta Update Strategy (CLID-MU). CLID-MU leverages the alignment of data structures across these diverse feature spaces to evaluate model performance and use this alignment to guide training. Experiments on benchmark datasets with varying amounts of labels under both synthetic and real-world noise demonstrate that CLID-MU outperforms state-of-the-art methods. The code is released at https://github.com/ruofanhu/CLID-MU.

Authors:Hendrik Kraß, Ju Huang, Seyed Mohamad Moosavi
Title: MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling
Abstract:
Universal machine learning interatomic potentials (uMLIPs) have emerged as powerful tools for accelerating atomistic simulations, offering scalable and efficient modeling with accuracy close to quantum calculations. However, their reliability and effectiveness in practical, real-world applications remain an open question. Metal-organic frameworks (MOFs) and related nanoporous materials are highly porous crystals with critical relevance in carbon capture, energy storage, and catalysis applications. Modeling nanoporous materials presents distinct challenges for uMLIPs due to their diverse chemistry, structural complexity, including porosity and coordination bonds, and the absence from existing training datasets. Here, we introduce MOFSimBench, a benchmark to evaluate uMLIPs on key materials modeling tasks for nanoporous materials, including structural optimization, molecular dynamics (MD) stability, the prediction of bulk properties, such as bulk modulus and heat capacity, and guest-host interactions. Evaluating over 20 models from various architectures on a chemically and structurally diverse materials set, we find that top-performing uMLIPs consistently outperform classical force fields and fine-tuned machine learning potentials across all tasks, demonstrating their readiness for deployment in nanoporous materials modeling. Our analysis highlights that data quality, particularly the diversity of training sets and inclusion of out-of-equilibrium conformations, plays a more critical role than model architecture in determining performance across all evaluated uMLIPs. We release our modular and extendable benchmarking framework at https://github.com/AI4ChemS/mofsim-bench, providing an open resource to guide the adoption for nanoporous materials modeling and further development of uMLIPs.

Authors:Nak-Jun Sung, Jun Ma, TaeHeon Kim, Yoo-joo Choi, Min-Hyung Choi, Min Hong
Title: Real-Time Cloth Simulation Using WebGPU: Evaluating Limits of High-Resolution
Abstract:
This study explores the capabilities of WebGPU, an emerging web graphics paradigm, for real-time cloth simulation. Traditional WebGL-based methods have been in handling complex physical simulations due to their emphasis on graphics rendering rather than general-purpose GPU (GPGPU) operations. WebGPU, designed to provide modern 3D graphics and computational capabilities, offers significant improvements through parallel processing and support for computational shaders. In this work, we implemented a cloth simulation system using the Mass-Spring Method within the WebGPU framework, integrating collision detection and response handling with the 3D surface model. First, comparative performance evaluations demonstrate that WebGPU substantially outperforms WebGL, particularly in high-resolution simulations, maintaining 60 frames per second (fps) even with up to 640K nodes. The second experiment aimed to determine the real-time limitations of WebGPU and confirmed that WebGPU can handle real-time collisions between 4K and 100k cloth node models and a 100K triangle surface model in real-time. These experiments also highlight the importance of balancing real-time performance with realistic rendering when handling collisions between cloth models and complex 3D objects. Our source code is available at https://github.com/nakjun/Cloth-Simulation-WebGPU

Authors:Ivan Viakhirev, Daniil Sirota, Aleksandr Smirnov, Kirill Borodin
Title: Towards Scalable AASIST: Refining Graph Attention for Speech Deepfake Detection
Abstract:
Advances in voice conversion and text-to-speech synthesis have made automatic speaker verification (ASV) systems more susceptible to spoofing attacks. This work explores modest refinements to the AASIST anti-spoofing architecture. It incorporates a frozen Wav2Vec 2.0 encoder to retain self-supervised speech representations in limited-data settings, substitutes the original graph attention block with a standardized multi-head attention module using heterogeneous query projections, and replaces heuristic frame-segment fusion with a trainable, context-aware integration layer. When evaluated on the ASVspoof 5 corpus, the proposed system reaches a 7.6\% equal error rate (EER), improving on a re-implemented AASIST baseline under the same training conditions. Ablation experiments suggest that each architectural change contributes to the overall performance, indicating that targeted adjustments to established models may help strengthen speech deepfake detection in practical scenarios. The code is publicly available at https://github.com/KORALLLL/AASIST_SCALING.

Authors:Jay Revolinsky, Harry Shomer, Jiliang Tang
Title: Subgraph Generation for Generalizing on Out-of-Distribution Links
Abstract:
Graphs Neural Networks (GNNs) demonstrate high-performance on the link prediction (LP) task. However, these models often rely on all dataset samples being drawn from the same distribution. In addition, graph generative models (GGMs) show a pronounced ability to generate novel output graphs. Despite this, GGM applications remain largely limited to domain-specific tasks. To bridge this gap, we propose FLEX as a GGM framework which leverages two mechanism: (1) structurally-conditioned graph generation, and (2) adversarial co-training between an auto-encoder and GNN. As such, FLEX ensures structural-alignment between sample distributions to enhance link-prediction performance in out-of-distribution (OOD) scenarios. Notably, FLEX does not require expert knowledge to function in different OOD scenarios. Numerous experiments are conducted in synthetic and real-world OOD settings to demonstrate FLEX's performance-enhancing ability, with further analysis for understanding the effects of graph data augmentation on link structures. The source code is available here: https://github.com/revolins/FlexOOD.

Authors:Stylianos Savva
Title: Norm-Stabilized Imaginary-Time Evolution via Feedback Control
Abstract:
We present a norm-stabilized imaginary-time evolution (ITE) scheme for the one-dimensional nonlinear Schrodinger equation (NLSE). Traditional ITE solvers often require explicit renormalization of the wavefunction after each step to preserve norm, which can be disruptive and algorithmically inflexible. We propose an alternative approach in which the evolution is continuously stabilized using an adaptive feedback term mu(tau), proportional to the time derivative of the wavefunction norm. This results in a self-regulating flow that requires no external normalization while preserving convergence toward soliton solutions. We demonstrate the method's effectiveness by comparing the final wavefunction profiles and L2 errors against analytical solutions and baseline methods without feedback. Although this work focuses on the 1D case, the framework is designed to extend naturally to higher dimensions. Future work will explore the behavior of the feedback mechanism in 2D and 3D systems, multi-soliton scenarios, and external potentials.

Authors:Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, Zsolt Kira
Title: Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
Abstract:
Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.

Authors:Benjamin Keel, Aaron Quyn, David Jayne, Maryam Mohsin, Samuel D. Relton
Title: Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
Abstract:
Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Authors:Steven Dillmann, Juan Rafael Martínez-Galarza
Title: Learning Representations of Event Time Series with Sparse Autoencoders for Anomaly Detection, Similarity Search, and Unsupervised Classification
Abstract:
Event time series are sequences of discrete events occurring at irregular time intervals, each associated with a domain-specific observational modality. They are common in domains such as high-energy astrophysics, computational social science, cybersecurity, finance, healthcare, neuroscience, and seismology. Their unstructured and irregular structure poses significant challenges for extracting meaningful patterns and identifying salient phenomena using conventional techniques. We propose novel two- and three-dimensional tensor representations for event time series, coupled with sparse autoencoders that learn physically meaningful latent representations. These embeddings support a variety of downstream tasks, including anomaly detection, similarity-based retrieval, semantic clustering, and unsupervised classification. We demonstrate our approach on a real-world dataset from X-ray astronomy, showing that these representations successfully capture temporal and spectral signatures and isolate diverse classes of X-ray transients. Our framework offers a flexible, scalable, and generalizable solution for analyzing complex, irregular event time series across scientific and industrial domains.

Authors:Sandeep Suresh Cranganore, Andrei Bodnar, Arturs Berzins, Johannes Brandstetter
Title: Einstein Fields: A Neural Perspective To Computational General Relativity
Abstract:
We introduce Einstein Fields, a neural representation that is designed to compress computationally intensive four-dimensional numerical relativity simulations into compact implicit neural network weights. By modeling the \emph{metric}, which is the core tensor field of general relativity, Einstein Fields enable the derivation of physical quantities via automatic differentiation. However, unlike conventional neural fields (e.g., signed distance, occupancy, or radiance fields), Einstein Fields are \emph{Neural Tensor Fields} with the key difference that when encoding the spacetime geometry of general relativity into neural field representations, dynamics emerge naturally as a byproduct. Einstein Fields show remarkable potential, including continuum modeling of 4D spacetime, mesh-agnosticity, storage efficiency, derivative accuracy, and ease of use. We address these challenges across several canonical test beds of general relativity and release an open source JAX-based library, paving the way for more scalable and expressive approaches to numerical relativity. Code is made available at https://github.com/AndreiB137/EinFields

Authors:Hanxue Gu, Yaqian Chen, Nicholas Konz, Qihang Li, Maciej A. Mazurowski
Title: Are Vision Foundation Models Ready for Out-of-the-Box Medical Image Registration?
Abstract:
Foundation models, pre-trained on large image datasets and capable of capturing rich feature representations, have recently shown potential for zero-shot image registration. However, their performance has mostly been tested in the context of rigid or less complex structures, such as the brain or abdominal organs, and it remains unclear whether these models can handle more challenging, deformable anatomy. Breast MRI registration is particularly difficult due to significant anatomical variation between patients, deformation caused by patient positioning, and the presence of thin and complex internal structure of fibroglandular tissue, where accurate alignment is crucial. Whether foundation model-based registration algorithms can address this level of complexity remains an open question. In this study, we provide a comprehensive evaluation of foundation model-based registration algorithms for breast MRI. We assess five pre-trained encoders, including DINO-v2, SAM, MedSAM, SSLSAM, and MedCLIP, across four key breast registration tasks that capture variations in different years and dates, sequences, modalities, and patient disease status (lesion versus no lesion). Our results show that foundation model-based algorithms such as SAM outperform traditional registration baselines for overall breast alignment, especially under large domain shifts, but struggle with capturing fine details of fibroglandular tissue. Interestingly, additional pre-training or fine-tuning on medical or breast-specific images in MedSAM and SSLSAM, does not improve registration performance and may even decrease it in some cases. Further work is needed to understand how domain-specific training influences registration and to explore targeted strategies that improve both global alignment and fine structure accuracy. We also publicly release our code at \href{https://github.com/mazurowski-lab/Foundation-based-reg}{Github}.

Authors:Zejian Li, Yize Li, Chenye Meng, Zhongni Liu, Yang Ling, Shengyuan Zhang, Guang Yang, Changyuan Yang, Zhiyuan Yang, Lingyun Sun
Title: Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Abstract:
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO

Authors:Ann-Kathrin Dombrowski, Dillon Bowen, Adam Gleave, Chris Cundy
Title: The Safety Gap Toolkit: Evaluating Hidden Dangers of Open-Source Models
Abstract:
Open-weight large language models (LLMs) unlock huge benefits in innovation, personalization, privacy, and democratization. However, their core advantage - modifiability - opens the door to systemic risks: bad actors can trivially subvert current safeguards, turning beneficial models into tools for harm. This leads to a 'safety gap': the difference in dangerous capabilities between a model with intact safeguards and one that has been stripped of those safeguards. We open-source a toolkit to estimate the safety gap for state-of-the-art open-weight models. As a case study, we evaluate biochemical and cyber capabilities, refusal rates, and generation quality of models from two families (Llama-3 and Qwen-2.5) across a range of parameter scales (0.5B to 405B) using different safeguard removal techniques. Our experiments reveal that the safety gap widens as model scale increases and effective dangerous capabilities grow substantially when safeguards are removed. We hope that the Safety Gap Toolkit (https://github.com/AlignmentResearch/safety-gap) will serve as an evaluation framework for common open-source models and as a motivation for developing and testing tamper-resistant safeguards. We welcome contributions to the toolkit from the community.

Authors:Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, Jiwen Lu
Title: Streaming 4D Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.

Authors:Daniel Jaroslawicz, Brendan Whiting, Parth Shah, Karime Maamari
Title: How Many Instructions Can LLMs Follow at Once?
Abstract:
Production-grade LLM systems require robust adherence to dozens or even hundreds of instructions simultaneously. However, the instruction-following capabilities of LLMs at high instruction densities have not yet been characterized, as existing benchmarks only evaluate models on tasks with a single or few instructions. We introduce IFScale, a simple benchmark of 500 keyword-inclusion instructions for a business report writing task to measure how instruction-following performance degrades as instruction density increases. We evaluate 20 state-of-the-art models across seven major providers and find that even the best frontier models only achieve 68% accuracy at the max density of 500 instructions. Our analysis reveals model size and reasoning capability to correlate with 3 distinct performance degradation patterns, bias towards earlier instructions, and distinct categories of instruction-following errors. Our insights can help inform design of instruction-dense prompts in real-world applications and highlight important performance-latency tradeoffs. We open-source the benchmark and all results for further analysis at https://distylai.github.io/IFScale.

Authors:Mengyu Wang, Henghui Ding, Jianing Peng, Yao Zhao, Yunpeng Chen, Yunchao Wei
Title: CharaConsist: Fine-Grained Consistent Character Generation
Abstract:
In text-to-image generation, producing a series of consistent contents that preserve the same identity is highly valuable for real-world applications. Although a few works have explored training-free methods to enhance the consistency of generated subjects, we observe that they suffer from the following problems. First, they fail to maintain consistent background details, which limits their applicability. Furthermore, when the foreground character undergoes large motion variations, inconsistencies in identity and clothing details become evident. To address these problems, we propose CharaConsist, which employs point-tracking attention and adaptive token merge along with decoupled control of the foreground and background. CharaConsist enables fine-grained consistency for both foreground and background, supporting the generation of one character in continuous shots within a fixed scene or in discrete shots across different scenes. Moreover, CharaConsist is the first consistent generation method tailored for text-to-image DiT model. Its ability to maintain fine-grained consistency, combined with the larger capacity of latest base model, enables it to produce high-quality visual outputs, broadening its applicability to a wider range of real-world scenarios. The source code has been released at https://github.com/Murray-Wang/CharaConsist

Authors:Yinsheng Li, Zhen Dong, Yi Shao
Title: DrafterBench: Benchmarking Large Language Models for Tasks Automation in Civil Engineering
Abstract:
Large Language Model (LLM) agents have shown great potential for solving real-world problems and promise to be a solution for tasks automation in industry. However, more benchmarks are needed to systematically evaluate automation agents from an industrial perspective, for example, in Civil Engineering. Therefore, we propose DrafterBench for the comprehensive evaluation of LLM agents in the context of technical drawing revision, a representation task in civil engineering. DrafterBench contains twelve types of tasks summarized from real-world drawing files, with 46 customized functions/tools and 1920 tasks in total. DrafterBench is an open-source benchmark to rigorously test AI agents' proficiency in interpreting intricate and long-context instructions, leveraging prior knowledge, and adapting to dynamic instruction quality via implicit policy awareness. The toolkit comprehensively assesses distinct capabilities in structured data comprehension, function execution, instruction following, and critical reasoning. DrafterBench offers detailed analysis of task accuracy and error statistics, aiming to provide deeper insight into agent capabilities and identify improvement targets for integrating LLMs in engineering applications. Our benchmark is available at https://github.com/Eason-Li-AIS/DrafterBench, with the test set hosted at https://huggingface.co/datasets/Eason666/DrafterBench.

Authors:Harsha Kokel, Aamod Khatiwada, Tejaswini Pedapati, Haritha Ananthakrishnan, Oktie Hassanzadeh, Horst Samulowitz, Kavitha Srinivas
Title: TOPJoin: A Context-Aware Multi-Criteria Approach for Joinable Column Search
Abstract:
One of the major challenges in enterprise data analysis is the task of finding joinable tables that are conceptually related and provide meaningful insights. Traditionally, joinable tables have been discovered through a search for similar columns, where two columns are considered similar syntactically if there is a set overlap or they are considered similar semantically if either the column embeddings or value embeddings are closer in the embedding space. However, for enterprise data lakes, column similarity is not sufficient to identify joinable columns and tables. The context of the query column is important. Hence, in this work, we first define context-aware column joinability. Then we propose a multi-criteria approach, called TOPJoin, for joinable column search. We evaluate TOPJoin against existing join search baselines over one academic and one real-world join search benchmark. Through experiments, we find that TOPJoin performs better on both benchmarks than the baselines.

Authors:Christian Daniele, Silvia Villa, Samuel Vaiter, Luca Calatroni
Title: Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent
Abstract:
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points, which have recently gained attention for learning image regularization functionals, particularly in settings involving Gaussian fidelities, where assumptions on the forward operator ensure contractiveness of standard (proximal) Gradient Descent operators. In this work, we extend the application of DEQs to Poisson inverse problems, where the data fidelity term is more appropriately modeled by the Kullback-Leibler divergence. To this end, we introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry that naturally adapts with the structure of the data term. This enables the learning of neural regularizers within a principled training framework. We derive sufficient conditions to guarantee the convergence of the learned reconstruction scheme and propose computational strategies that enable both efficient training and fully parameter-free inference. Numerical experiments show that our method outperforms traditional model-based approaches and it is comparable to the performance of Bregman Plug-and-Play methods, while mitigating their typical drawbacks - namely, sensitivity to initialization and careful tuning of hyperparameters. The code is publicly available at https://github.com/christiandaniele/DEQ-MD.

Authors:Shuo Yang, Zixin Zhang, John Z. Zhang, Ibrahima Sory Sow, Zachary Manchester
Title: Multi-IMU Sensor Fusion for Legged Robots
Abstract:
This paper presents a state-estimation solution for legged robots that uses a set of low-cost, compact, and lightweight sensors to achieve low-drift pose and velocity estimation under challenging locomotion conditions. The key idea is to leverage multiple inertial measurement units on different links of the robot to correct a major error source in standard proprioceptive odometry. We fuse the inertial sensor information and joint encoder measurements in an extended Kalman filter, then combine the velocity estimate from this filter with camera data in a factor-graph-based sliding-window estimator to form a visual-inertial-leg odometry method. We validate our state estimator through comprehensive theoretical analysis and hardware experiments performed using real-world robot data collected during a variety of challenging locomotion tasks. Our algorithm consistently achieves minimal position deviation, even in scenarios involving substantial ground impact, foot slippage, and sudden body rotations. A C++ implementation, along with a large-scale dataset, is available at https://github.com/ShuoYangRobotics/Cerberus2.0.

Authors:Kaif Shaikh, Franziska Boenisch, Adam Dziedzic
Title: Implementing Adaptations for Vision AutoRegressive Model
Abstract:
Vision AutoRegressive model (VAR) was recently introduced as an alternative to Diffusion Models (DMs) in image generation domain. In this work we focus on its adaptations, which aim to fine-tune pre-trained models to perform specific downstream tasks, like medical data generation. While for DMs there exist many techniques, adaptations for VAR remain underexplored. Similarly, differentially private (DP) adaptations-ones that aim to preserve privacy of the adaptation data-have been extensively studied for DMs, while VAR lacks such solutions. In our work, we implement and benchmark many strategies for VAR, and compare them to state-of-the-art DM adaptation strategies. We observe that VAR outperforms DMs for non-DP adaptations, however, the performance of DP suffers, which necessitates further research in private adaptations for VAR. Code is available at https://github.com/sprintml/finetuning_var_dp.

Authors:Hongbo Ye, Fenghe Tang, Peiang Zhao, Zhen Huang, Dexin Zhao, Minghao Bian, S. Kevin Zhou
Title: U-RWKV: Lightweight medical image segmentation with direction-adaptive RWKV
Abstract:
Achieving equity in healthcare accessibility requires lightweight yet high-performance solutions for medical image segmentation, particularly in resource-limited settings. Existing methods like U-Net and its variants often suffer from limited global Effective Receptive Fields (ERFs), hindering their ability to capture long-range dependencies. To address this, we propose U-RWKV, a novel framework leveraging the Recurrent Weighted Key-Value(RWKV) architecture, which achieves efficient long-range modeling at O(N) computational cost. The framework introduces two key innovations: the Direction-Adaptive RWKV Module(DARM) and the Stage-Adaptive Squeeze-and-Excitation Module(SASE). DARM employs Dual-RWKV and QuadScan mechanisms to aggregate contextual cues across images, mitigating directional bias while preserving global context and maintaining high computational efficiency. SASE dynamically adapts its architecture to different feature extraction stages, balancing high-resolution detail preservation and semantic relationship capture. Experiments demonstrate that U-RWKV achieves state-of-the-art segmentation performance with high computational efficiency, offering a practical solution for democratizing advanced medical imaging technologies in resource-constrained environments. The code is available at https://github.com/hbyecoding/U-RWKV.

Authors:Pierrick Leroy, Antonio Mastropietro, Marco Nurisso, Francesco Vaccarino
Title: Attributes Shape the Embedding Space of Face Recognition Models
Abstract:
Face Recognition (FR) tasks have made significant progress with the advent of Deep Neural Networks, particularly through margin-based triplet losses that embed facial images into high-dimensional feature spaces. During training, these contrastive losses focus exclusively on identity information as labels. However, we observe a multiscale geometric structure emerging in the embedding space, influenced by interpretable facial (e.g., hair color) and image attributes (e.g., contrast). We propose a geometric approach to describe the dependence or invariance of FR models to these attributes and introduce a physics-inspired alignment metric. We evaluate the proposed metric on controlled, simplified models and widely used FR models fine-tuned with synthetic data for targeted attribute augmentation. Our findings reveal that the models exhibit varying degrees of invariance across different attributes, providing insight into their strengths and weaknesses and enabling deeper interpretability. Code available here: https://github.com/mantonios107/attrs-fr-embs}{https://github.com/mantonios107/attrs-fr-embs

Authors:Yuehao Huang, Liang Liu, Shuangming Lei, Yukai Ma, Hao Su, Jianbiao Mei, Pengxiang Zhao, Yaqing Gu, Yong Liu, Jiajun Lv
Title: CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking
Abstract:
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15\%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.

Authors:Jianfei Jiang, Qiankun Liu, Haochen Yu, Hongyuan Liu, Liyong Wang, Jiansheng Chen, Huimin Ma
Title: MonoMVSNet: Monocular Priors Guided Multi-View Stereo Network
Abstract:
Learning-based Multi-View Stereo (MVS) methods aim to predict depth maps for a sequence of calibrated images to recover dense point clouds. However, existing MVS methods often struggle with challenging regions, such as textureless regions and reflective surfaces, where feature matching fails. In contrast, monocular depth estimation inherently does not require feature matching, allowing it to achieve robust relative depth estimation in these regions. To bridge this gap, we propose MonoMVSNet, a novel monocular feature and depth guided MVS network that integrates powerful priors from a monocular foundation model into multi-view geometry. Firstly, the monocular feature of the reference view is integrated into source view features by the attention mechanism with a newly designed cross-view position encoding. Then, the monocular depth of the reference view is aligned to dynamically update the depth candidates for edge regions during the sampling procedure. Finally, a relative consistency loss is further designed based on the monocular depth to supervise the depth prediction. Extensive experiments demonstrate that MonoMVSNet achieves state-of-the-art performance on the DTU and Tanks-and-Temples datasets, ranking first on the Tanks-and-Temples Intermediate and Advanced benchmarks. The source code is available at https://github.com/JianfeiJ/MonoMVSNet.

Authors:Haoran Jin, Meng Li, Xiting Wang, Zhihao Xu, Minlie Huang, Yantao Jia, Defu Lian
Title: Internal Value Alignment in Large Language Models through Controlled Value Vector Activation
Abstract:
Aligning Large Language Models (LLMs) with human values has attracted increasing attention since it provides clarity, transparency, and the ability to adapt to evolving scenarios. In this paper, we introduce a Controlled Value Vector Activation (ConVA) method that directly aligns the internal values of LLMs by interpreting how a value is encoded in their latent representations and modifies relevant activations to ensure consistent values in LLMs. To ensure an accurate and unbiased interpretation, we propose a context-controlled value vector identification method. To consistently control values without sacrificing model performance, we introduce a gated value vector activation method for effective and minimum degree of value control. Experiments show that our method achieves the highest control success rate across 10 basic values without hurting LLM performance and fluency, and ensures target values even with opposite and potentially malicious input prompts. Source code and data are available at~ https://github.com/hr-jin/ConVA.

Authors:Huilin Xu, Jian Ding, Jiakun Xu, Ruixiang Wang, Jun Chen, Jinjie Mai, Yanwei Fu, Bernard Ghanem, Feng Xu, Mohamed Elhoseiny
Title: Diffusion-Based Imaginative Coordination for Bimanual Manipulation
Abstract:
Bimanual manipulation is crucial in robotics, enabling complex tasks in industrial automation and household services. However, it poses significant challenges due to the high-dimensional action space and intricate coordination requirements. While video prediction has been recently studied for representation learning and control, leveraging its ability to capture rich dynamic and behavioral information, its potential for enhancing bimanual coordination remains underexplored. To bridge this gap, we propose a unified diffusion-based framework for the joint optimization of video and action prediction. Specifically, we propose a multi-frame latent prediction strategy that encodes future states in a compressed latent space, preserving task-relevant features. Furthermore, we introduce a unidirectional attention mechanism where video prediction is conditioned on the action, while action prediction remains independent of video prediction. This design allows us to omit video prediction during inference, significantly enhancing efficiency. Experiments on two simulated benchmarks and a real-world setting demonstrate a significant improvement in the success rate over the strong baseline ACT using our method, achieving a \textbf{24.9\%} increase on ALOHA, an \textbf{11.1\%} increase on RoboTwin, and a \textbf{32.5\%} increase in real-world experiments. Our models and code are publicly available at https://github.com/return-sleep/Diffusion_based_imaginative_Coordination.

Authors:An-Lun Liu, Yu-Wei Chao, Yi-Ting Chen
Title: Task-Oriented Human Grasp Synthesis via Context- and Task-Aware Diffusers
Abstract:
In this paper, we study task-oriented human grasp synthesis, a new grasp synthesis task that demands both task and context awareness. At the core of our method is the task-aware contact maps. Unlike traditional contact maps that only reason about the manipulated object and its relation with the hand, our enhanced maps take into account scene and task information. This comprehensive map is critical for hand-object interaction, enabling accurate grasping poses that align with the task. We propose a two-stage pipeline that first constructs a task-aware contact map informed by the scene and task. In the subsequent stage, we use this contact map to synthesize task-oriented human grasps. We introduce a new dataset and a metric for the proposed task to evaluate our approach. Our experiments validate the importance of modeling both scene and task, demonstrating significant improvements over existing methods in both grasp quality and task performance. See our project page for more details: https://hcis-lab.github.io/TOHGS/

Authors:Luohe Shi, Zuchao Li, Lefei Zhang, Guoming Liu, Baoyuan Qi, Hai Zhao
Title: KV-Latent: Dimensional-level KV Cache Reduction with Frequency-aware Rotary Positional Embedding
Abstract:
Large language models (LLMs) based on Transformer Decoders have become the preferred choice for conversational generative AI. Despite the overall superiority of the Decoder architecture, the gradually increasing Key-Value (KV) cache during inference has emerged as a primary efficiency bottleneck, both in aspects of memory consumption and data transfer bandwidth limitations. To address these challenges, we propose a paradigm called KV-Latent. By down-sampling the Key-Value vector dimensions into a latent space, we can significantly reduce the KV Cache footprint and improve inference speed, only with a small amount of extra training, less than 1\% of pre-training takes. Besides, we enhanced the stability of Rotary Positional Embedding applied on lower-dimensional vectors by modifying its frequency sampling mechanism, avoiding noise introduced by higher frequencies while retaining position attenuation. Our experiments, including both models with Grouped Query Attention and those without, have yielded satisfactory results. Finally, we conducted comparative experiments to study the impact of separately reducing Key and Value components on model's performance. Our approach allows for the construction of more efficient language model systems, and opens the new possibility on KV Cache saving and efficient LLMs. Our code is available at https://github.com/ShiLuohe/KV-Latent.

Authors:Ronggang Huang, Haoxin Yang, Yan Cai, Xuemiao Xu, Huaidong Zhang, Shengfeng He
Title: ViewSRD: 3D Visual Grounding via Structured Multi-View Decomposition
Abstract:
3D visual grounding aims to identify and localize objects in a 3D space based on textual descriptions. However, existing methods struggle with disentangling targets from anchors in complex multi-anchor queries and resolving inconsistencies in spatial descriptions caused by perspective variations. To tackle these challenges, we propose ViewSRD, a framework that formulates 3D visual grounding as a structured multi-view decomposition process. First, the Simple Relation Decoupling (SRD) module restructures complex multi-anchor queries into a set of targeted single-anchor statements, generating a structured set of perspective-aware descriptions that clarify positional relationships. These decomposed representations serve as the foundation for the Multi-view Textual-Scene Interaction (Multi-TSI) module, which integrates textual and scene features across multiple viewpoints using shared, Cross-modal Consistent View Tokens (CCVTs) to preserve spatial correlations. Finally, a Textual-Scene Reasoning module synthesizes multi-view predictions into a unified and robust 3D visual grounding. Experiments on 3D visual grounding datasets show that ViewSRD significantly outperforms state-of-the-art methods, particularly in complex queries requiring precise spatial differentiation. Code is available at https://github.com/visualjason/ViewSRD.

Authors:Guanghao Wu, Chen Xu, Hai Song, Chong Wang, Qixing Zhang
Title: MFGDiffusion: Mask-Guided Smoke Synthesis for Enhanced Forest Fire Detection
Abstract:
Smoke is the first visible indicator of a wildfire.With the advancement of deep learning, image-based smoke detection has become a crucial method for detecting and preventing forest fires. However, the scarcity of smoke image data from forest fires is one of the significant factors hindering the detection of forest fire smoke. Image generation models offer a promising solution for synthesizing realistic smoke images. However, current inpainting models exhibit limitations in generating high-quality smoke representations, particularly manifesting as inconsistencies between synthesized smoke and background contexts. To solve these problems, we proposed a comprehensive framework for generating forest fire smoke images. Firstly, we employed the pre-trained segmentation model and the multimodal model to obtain smoke masks and image captions.Then, to address the insufficient utilization of masks and masked images by inpainting models, we introduced a network architecture guided by mask and masked image features. We also proposed a new loss function, the mask random difference loss, which enhances the consistency of the generated effects around the mask by randomly expanding and eroding the mask edges.Finally, to generate a smoke image dataset using random masks for subsequent detection tasks, we incorporated smoke characteristics and use a multimodal large language model as a filtering tool to select diverse and reasonable smoke images, thereby improving the quality of the synthetic dataset. Experiments showed that our generated smoke images are realistic and diverse, and effectively enhance the performance of forest fire smoke detection models. Code is available at https://github.com/wghr123/MFGDiffusion.

Authors:X. Feng, H. Yu, M. Wu, S. Hu, J. Chen, C. Zhu, J. Wu, X. Chu, K. Huang
Title: NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models
Abstract:
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.

Authors:Lyzander Marciano Andrylie, Inaya Rahmanisa, Mahardika Krisna Ihsani, Alfan Farizki Wicaksono, Haryo Akbarianto Wibowo, Alham Fikri Aji
Title: Sparse Autoencoders Can Capture Language-Specific Concepts Across Diverse Languages
Abstract:
Understanding the multilingual mechanisms of large language models (LLMs) provides insight into how they process different languages, yet this remains challenging. Existing studies often focus on individual neurons, but their polysemantic nature makes it difficult to isolate language-specific units from cross-lingual representations. To address this, we explore sparse autoencoders (SAEs) for their ability to learn monosemantic features that represent concrete and abstract concepts across languages in LLMs. While some of these features are language-independent, the presence of language-specific features remains underexplored. In this work, we introduce SAE-LAPE, a method based on feature activation probability, to identify language-specific features within the feed-forward network. We find that many such features predominantly appear in the middle to final layers of the model and are interpretable. These features influence the model's multilingual performance and language output and can be used for language identification with performance comparable to fastText along with more interpretability. Our code is available at https://github.com/LyzanderAndrylie/language-specific-features

Authors:Yuan Yao, Jin Song, Jian Jin
Title: Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking
Abstract:
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.

Authors:Afra Kilic, Kim Batselier
Title: Interpretable Bayesian Tensor Network Kernel Machines with Automatic Rank and Feature Selection
Abstract:
Tensor Network (TN) Kernel Machines speed up model learning by representing parameters as low-rank TNs, reducing computation and memory use. However, most TN-based Kernel methods are deterministic and ignore parameter uncertainty. Further, they require manual tuning of model complexity hyperparameters like tensor rank and feature dimensions, often through trial-and-error or computationally costly methods like cross-validation. We propose Bayesian Tensor Network Kernel Machines, a fully probabilistic framework that uses sparsity-inducing hierarchical priors on TN factors to automatically infer model complexity. This enables automatic inference of tensor rank and feature dimensions, while also identifying the most relevant features for prediction, thereby enhancing model interpretability. All the model parameters and hyperparameters are treated as latent variables with corresponding priors. Given the Bayesian approach and latent variable dependencies, we apply a mean-field variational inference to approximate their posteriors. We show that applying a mean-field approximation to TN factors yields a Bayesian ALS algorithm with the same computational complexity as its deterministic counterpart, enabling uncertainty quantification at no extra computational cost. Experiments on synthetic and real-world datasets demonstrate the superior performance of our model in prediction accuracy, uncertainty quantification, interpretability, and scalability.

Authors:Zhifeng Gu, Bing Wang
Title: MMOne: Representing Multiple Modalities in One Scene
Abstract:
Humans perceive the world through multimodal cues to understand and interact with the environment. Learning a scene representation for multiple modalities enhances comprehension of the physical world. However, modality conflicts, arising from inherent distinctions among different modalities, present two critical challenges: property disparity and granularity disparity. To address these challenges, we propose a general framework, MMOne, to represent multiple modalities in one scene, which can be readily extended to additional modalities. Specifically, a modality modeling module with a novel modality indicator is proposed to capture the unique properties of each modality. Additionally, we design a multimodal decomposition mechanism to separate multi-modal Gaussians into single-modal Gaussians based on modality differences. We address the essential distinctions among modalities by disentangling multimodal information into shared and modality-specific components, resulting in a more compact and efficient multimodal scene representation. Extensive experiments demonstrate that our method consistently enhances the representation capability for each modality and is scalable to additional modalities. The code is available at https://github.com/Neal2020GitHub/MMOne.

Authors:Hankun Liu, Yujian Zhao, Guanglin Niu
Title: Try Harder: Hard Sample Generation and Learning for Clothes-Changing Person Re-ID
Abstract:
Hard samples pose a significant challenge in person re-identification (ReID) tasks, particularly in clothing-changing person Re-ID (CC-ReID). Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck. These issues not only limit the design of targeted learning strategies but also diminish the model's robustness under clothing or viewpoint changes. In this paper, we propose a novel multimodal-guided Hard Sample Generation and Learning (HSGL) framework, which is the first effort to unify textual and visual modalities to explicitly define, generate, and optimize hard samples within a unified paradigm. HSGL comprises two core components: (1) Dual-Granularity Hard Sample Generation (DGHSG), which leverages multimodal cues to synthesize semantically consistent samples, including both coarse- and fine-grained hard positives and negatives for effectively increasing the hardness and diversity of the training data. (2) Hard Sample Adaptive Learning (HSAL), which introduces a hardness-aware optimization strategy that adjusts feature distances based on textual semantic labels, encouraging the separation of hard positives and drawing hard negatives closer in the embedding space to enhance the model's discriminative capability and robustness to hard samples. Extensive experiments on multiple CC-ReID benchmarks demonstrate the effectiveness of our approach and highlight the potential of multimodal-guided hard sample generation and learning for robust CC-ReID. Notably, HSAL significantly accelerates the convergence of the targeted learning procedure and achieves state-of-the-art performance on both PRCC and LTCC datasets. The code is available at https://github.com/undooo/TryHarder-ACMMM25.

Authors:Zichen Wen, Jiashu Qu, Dongrui Liu, Zhiyuan Liu, Ruixi Wu, Yicun Yang, Xiangqi Jin, Haoyun Xu, Xuyang Liu, Weijia Li, Chaochao Lu, Jing Shao, Conghui He, Linfeng Zhang
Title: The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Abstract:
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.

Authors:Vassilis Sioros, Alexandros Potamianos, Giorgos Paraskevopoulos
Title: EditGen: Harnessing Cross-Attention Control for Instruction-Based Auto-Regressive Audio Editing
Abstract:
In this study, we investigate leveraging cross-attention control for efficient audio editing within auto-regressive models. Inspired by image editing methodologies, we develop a Prompt-to-Prompt-like approach that guides edits through cross and self-attention mechanisms. Integrating a diffusion-based strategy, influenced by Auffusion, we extend the model's functionality to support refinement edits, establishing a baseline for prompt-guided audio editing. Additionally, we introduce an alternative approach by incorporating MUSICGEN, a pre-trained frozen auto-regressive model, and propose three editing mechanisms, based on Replacement, Reweighting, and Refinement of the attention scores. We employ commonly-used music-specific evaluation metrics and a human study, to gauge time-varying controllability, adherence to global text cues, and overall audio realism. The automatic and human evaluations indicate that the proposed combination of prompt-to-prompt guidance with autoregressive generation models significantly outperforms the diffusion-based baseline in terms of melody, dynamics, and tempo of the generated audio. Our code is available at https://github.com/billsioros/EditGen

Authors:Weizhao Ma, Dong Zhou, Yuhui Hu, Zipeng He
Title: GKNet: Graph-based Keypoints Network for Monocular Pose Estimation of Non-cooperative Spacecraft
Abstract:
Monocular pose estimation of non-cooperative spacecraft is significant for on-orbit service (OOS) tasks, such as satellite maintenance, space debris removal, and station assembly. Considering the high demands on pose estimation accuracy, mainstream monocular pose estimation methods typically consist of keypoint detectors and PnP solver. However, current keypoint detectors remain vulnerable to structural symmetry and partial occlusion of non-cooperative spacecraft. To this end, we propose a graph-based keypoints network for the monocular pose estimation of non-cooperative spacecraft, GKNet, which leverages the geometric constraint of keypoints graph. In order to better validate keypoint detectors, we present a moderate-scale dataset for the spacecraft keypoint detection, named SKD, which consists of 3 spacecraft targets, 90,000 simulated images, and corresponding high-precise keypoint annotations. Extensive experiments and an ablation study have demonstrated the high accuracy and effectiveness of our GKNet, compared to the state-of-the-art spacecraft keypoint detectors. The code for GKNet and the SKD dataset is available at https://github.com/Dongzhou-1996/GKNet.

Authors:Jeongyun Kim, Seunghoon Jeong, Giseop Kim, Myung-Hwan Jeon, Eunji Jun, Ayoung Kim
Title: TRAN-D: 2D Gaussian Splatting-based Sparse-view Transparent Object Depth Reconstruction via Physics Simulation for Scene Update
Abstract:
Understanding the 3D geometry of transparent objects from RGB images is challenging due to their inherent physical properties, such as reflection and refraction. To address these difficulties, especially in scenarios with sparse views and dynamic environments, we introduce TRAN-D, a novel 2D Gaussian Splatting-based depth reconstruction method for transparent objects. Our key insight lies in separating transparent objects from the background, enabling focused optimization of Gaussians corresponding to the object. We mitigate artifacts with an object-aware loss that places Gaussians in obscured regions, ensuring coverage of invisible surfaces while reducing overfitting. Furthermore, we incorporate a physics-based simulation that refines the reconstruction in just a few seconds, effectively handling object removal and chain-reaction movement of remaining objects without the need for rescanning. TRAN-D is evaluated on both synthetic and real-world sequences, and it consistently demonstrated robust improvements over existing GS-based state-of-the-art methods. In comparison with baselines, TRAN-D reduces the mean absolute error by over 39% for the synthetic TRansPose sequences. Furthermore, despite being updated using only one image, TRAN-D reaches a δ < 2.5 cm accuracy of 48.46%, over 1.5 times that of baselines, which uses six images. Code and more results are available at https://jeongyun0609.github.io/TRAN-D/.

Authors:Hayeon Kim, Ji Ha Jang, Se Young Chun
Title: Robust 3D-Masked Part-level Editing in 3D Gaussian Splatting with Regularized Score Distillation Sampling
Abstract:
Recent advances in 3D neural representations and instance-level editing models have enabled the efficient creation of high-quality 3D content. However, achieving precise local 3D edits remains challenging, especially for Gaussian Splatting, due to inconsistent multi-view 2D part segmentations and inherently ambiguous nature of Score Distillation Sampling (SDS) loss. To address these limitations, we propose RoMaP, a novel local 3D Gaussian editing framework that enables precise and drastic part-level modifications. First, we introduce a robust 3D mask generation module with our 3D-Geometry Aware Label Prediction (3D-GALP), which uses spherical harmonics (SH) coefficients to model view-dependent label variations and soft-label property, yielding accurate and consistent part segmentations across viewpoints. Second, we propose a regularized SDS loss that combines the standard SDS loss with additional regularizers. In particular, an L1 anchor loss is introduced via our Scheduled Latent Mixing and Part (SLaMP) editing method, which generates high-quality part-edited 2D images and confines modifications only to the target region while preserving contextual coherence. Additional regularizers, such as Gaussian prior removal, further improve flexibility by allowing changes beyond the existing context, and robust 3D masking prevents unintended edits. Experimental results demonstrate that our RoMaP achieves state-of-the-art local 3D editing on both reconstructed and generated Gaussian scenes and objects qualitatively and quantitatively, making it possible for more robust and flexible part-level 3D Gaussian editing. Code is available at https://janeyeon.github.io/romap.

Authors:Lirong Zheng, Yanshan Li, Rui Yu, Kaihao Zhang
Title: Efficient Dual-domain Image Dehazing with Haze Prior Perception
Abstract:
Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability. Existing methods predominantly rely on spatial-domain features to capture long-range dependencies, which are computationally expensive and often inadequate under complex haze conditions. While some approaches introduce frequency-domain cues, the weak coupling between spatial and frequency branches limits the overall performance. To overcome these limitations, we propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment across spatial and frequency domains. At its core, the DGFDBlock comprises two key modules: 1) the Haze-Aware Frequency Modulator (HAFM), which generates a pixel-level haze confidence map from dark channel priors to adaptively enhance haze-relevant frequency components, thereby achieving global degradation-aware spectral modulation; 2) the Multi-level Gating Aggregation Module (MGAM), which fuses multi-scale features through diverse convolutional kernels and hybrid gating mechanisms to recover fine structural details. Additionally, a Prior Correction Guidance Branch (PCGB) incorporates a closed-loop feedback mechanism, enabling iterative refinement of the prior by intermediate dehazed features and significantly improving haze localization accuracy, especially in challenging outdoor scenes. Extensive experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency. Code is available at: https://github.com/Dilizlr/DGFDNet.

Authors:Xingyu Zheng, Haotong Qin, Yuye Li, Jiakai Wang, Jinyang Guo, Michele Magno, Xianglong Liu
Title: First-Order Error Matters: Accurate Compensation for Quantized Large Language Models
Abstract:
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by directly computing the difference between latent and full-precision weights, avoiding the high cost and limited generalization of backpropagation-based gradient computation. This approach introduces minimal additional computational overhead. Moreover, FOEM leverages precomputed Cholesky factors to efficiently recover the inverse of Hessian submatrices in real time. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 89.6%, and improves the 5-shot MMLU accuracy of Llama3-70B from 51.7% to 74.9%, approaching the full-precision performance of 78.6%. Furthermore, FOEM can be seamlessly integrated with advanced techniques such as GPTAQ and SpinQuant, yielding additional improvements under the challenging W4A4KV4 setting, and further narrowing the accuracy gap with full-precision baselines beyond what current state-of-the-art methods achieve. The code is available at https://github.com/Xingyu-Zheng/FOEM.

Authors:Chongjie Si, Debing Zhang, Wei Shen
Title: AdaMuon: Adaptive Muon Optimizer
Abstract:
We propose AdaMuon, a novel optimizer that combines element-wise adaptivity with orthogonal updates for large-scale neural network training. AdaMuon incorporates two tightly coupled mechanisms: (1) an element-wise second momentum estimator applied to orthogonalized update directions, and (2) a sign-stabilized orthogonal update, where the momentum is first sign-transformed before orthogonalization. These two components jointly enable variance-adaptive scaling while maintaining stable update geometry. In addition, AdaMuon employs an RMS-aligned rescaling strategy to match the root-mean-square update magnitude to Adam, allowing direct reuse of existing learning rate schedules without extra tuning. Experiments demonstrate that AdaMuon not only maintains stability but can surpass Adam by more than 40% training efficiency in large-scale scenarios.

Authors:Yejun Yoon, Jaeyoon Jung, Seunghyun Yoon, Kunwoo Park
Title: Team HUMANE at AVeriTeC 2025: HerO 2 for Efficient Fact Verification
Abstract:
This paper presents HerO 2, Team HUMANE's system for the AVeriTeC shared task at the FEVER-25 workshop. HerO 2 is an enhanced version of HerO, the best-performing open-source model from the previous year's challenge. It improves evidence quality through document summarization and answer reformulation, optimizes veracity prediction via post-training quantization under computational constraints, and enhances overall system performance by integrating updated language model (LM) backbones. HerO 2 ranked second on the leaderboard while achieving the shortest runtime among the top three systems, demonstrating both high efficiency and strong potential for real-world fact verification. The code is available at https://github.com/ssu-humane/HerO2.

Authors:Yanbo Wang, Zipeng Fang, Lei Zhao, Weidong Chen
Title: Learning to Tune Like an Expert: Interpretable and Scene-Aware Navigation via MLLM Reasoning and CVAE-Based Adaptation
Abstract:
Service robots are increasingly deployed in diverse and dynamic environments, where both physical layouts and social contexts change over time and across locations. In these unstructured settings, conventional navigation systems that rely on fixed parameters often fail to generalize across scenarios, resulting in degraded performance and reduced social acceptance. Although recent approaches have leveraged reinforcement learning to enhance traditional planners, these methods often fail in real-world deployments due to poor generalization and limited simulation diversity, which hampers effective sim-to-real transfer. To tackle these issues, we present LE-Nav, an interpretable and scene-aware navigation framework that leverages multi-modal large language model reasoning and conditional variational autoencoders to adaptively tune planner hyperparameters. To achieve zero-shot scene understanding, we utilize one-shot exemplars and chain-of-thought prompting strategies. Additionally, a conditional variational autoencoder captures the mapping between natural language instructions and navigation hyperparameters, enabling expert-level tuning. Experiments show that LE-Nav can generate hyperparameters achieving human-level tuning across diverse planners and scenarios. Real-world navigation trials and a user study on a smart wheelchair platform demonstrate that it outperforms state-of-the-art methods on quantitative metrics such as success rate, efficiency, safety, and comfort, while receiving higher subjective scores for perceived safety and social acceptance. Code is available at https://github.com/Cavendish518/LE-Nav.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
Abstract:
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

Authors:Zhipeng He, Alexander Stevens, Chun Ouyang, Johannes De Smedt, Alistair Barros, Catarina Moreira
Title: Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Abstract:
Adversarial attacks on tabular data present fundamental challenges distinct from image or text domains due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions, making them detectable. We propose a latent space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate imperceptible adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We specify In-Distribution Success Rate (IDSR) to measure the proportion of adversarial examples that remain statistically indistinguishable from the input distribution. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches. Our comprehensive analysis includes hyperparameter sensitivity, sparsity control mechanisms, and generative architectural comparisons, revealing that VAE-based attacks depend critically on reconstruction quality but offer superior practical utility when sufficient training data is available. This work highlights the importance of on-manifold perturbations for realistic adversarial attacks on tabular data, offering a robust approach for practical deployment. The source code can be accessed through https://github.com/ZhipengHe/VAE-TabAttack.

Authors:Rodney Lafuente-Mercado
Title: High-Throughput Distributed Reinforcement Learning via Adaptive Policy Synchronization
Abstract:
Scaling reinforcement learning (RL) workloads often requires distributing environment simulation across compute clusters. Existing frameworks entangle simulation, learning logic, and orchestration into monolithic systems, limiting modularity and reusability. We present ClusterEnv, a lightweight, learner-agnostic interface for distributed environment execution that mirrors the Gymnasium API. ClusterEnv introduces the DETACH pattern, which decouples simulation from training by offloading reset() and step() operations to remote workers while keeping learning centralized. To address policy staleness in distributed execution, we propose Adaptive Actor Policy Synchronization (AAPS), a divergence-triggered update mechanism that reduces synchronization overhead without sacrificing performance. ClusterEnv integrates cleanly into existing RL pipelines, supports both on-policy and off-policy methods, and requires minimal code changes. Experiments on discrete control tasks demonstrate that AAPS achieves high sample efficiency with significantly fewer weight updates. Source code is available at https://github.com/rodlaf/ClusterEnv.

Authors:Ayush Gupta, Siyuan Huang, Rama Chellappa
Title: Mind the Gap: Bridging Occlusion in Gait Recognition via Residual Gap Correction
Abstract:
Gait is becoming popular as a method of person re-identification because of its ability to identify people at a distance. However, most current works in gait recognition do not address the practical problem of occlusions. Among those which do, some require paired tuples of occluded and holistic sequences, which are impractical to collect in the real world. Further, these approaches work on occlusions but fail to retain performance on holistic inputs. To address these challenges, we propose RG-Gait, a method for residual correction for occluded gait recognition with holistic retention. We model the problem as a residual learning task, conceptualizing the occluded gait signature as a residual deviation from the holistic gait representation. Our proposed network adaptively integrates the learned residual, significantly improving performance on occluded gait sequences without compromising the holistic recognition accuracy. We evaluate our approach on the challenging Gait3D, GREW and BRIAR datasets and show that learning the residual can be an effective technique to tackle occluded gait recognition with holistic retention. We release our code publicly at https://github.com/Ayush-00/rg-gait.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: Conceptualizing Multi-scale Wavelet Attention and Ray-based Encoding for Human-Object Interaction Detection
Abstract:
Human-object interaction (HOI) detection is essential for accurately localizing and characterizing interactions between humans and objects, providing a comprehensive understanding of complex visual scenes across various domains. However, existing HOI detectors often struggle to deliver reliable predictions efficiently, relying on resource-intensive training methods and inefficient architectures. To address these challenges, we conceptualize a wavelet attention-like backbone and a novel ray-based encoder architecture tailored for HOI detection. Our wavelet backbone addresses the limitations of expressing middle-order interactions by aggregating discriminative features from the low- and high-order interactions extracted from diverse convolutional filters. Concurrently, the ray-based encoder facilitates multi-scale attention by optimizing the focus of the decoder on relevant regions of interest and mitigating computational overhead. As a result of harnessing the attenuated intensity of learnable ray origins, our decoder aligns query embeddings with emphasized regions of interest for accurate predictions. Experimental results on benchmark datasets, including ImageNet and HICO-DET, showcase the potential of our proposed architecture. The code is publicly available at [https://github.com/henry-pay/RayEncoder].

Authors:Ashfaq Ali Shafin, Khandaker Mamun Ahmed
Title: Toxicity in State Sponsored Information Operations
Abstract:
State-sponsored information operations (IOs) increasingly influence global discourse on social media platforms, yet their emotional and rhetorical strategies remain inadequately characterized in scientific literature. This study presents the first comprehensive analysis of toxic language deployment within such campaigns, examining 56 million posts from over 42 thousand accounts linked to 18 distinct geopolitical entities on X/Twitter. Using Google's Perspective API, we systematically detect and quantify six categories of toxic content and analyze their distribution across national origins, linguistic structures, and engagement metrics, providing essential information regarding the underlying patterns of such operations. Our findings reveal that while toxic content constitutes only 1.53% of all posts, they are associated with disproportionately high engagement and appear to be strategically deployed in specific geopolitical contexts. Notably, toxic content originating from Russian influence operations receives significantly higher user engagement compared to influence operations from any other country in our dataset. Our code is available at https://github.com/shafin191/Toxic_IO.

Authors:Shaowen Tong, Zimin Xia, Alexandre Alahi, Xuming He, Yujiao Shi
Title: GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization
Abstract:
Cross-view localization, the task of estimating a camera's 3-degrees-of-freedom (3-DoF) pose by aligning ground-level images with satellite images, is crucial for large-scale outdoor applications like autonomous navigation and augmented reality. Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations. In this work, we propose GeoDistill, a Geometry guided weakly supervised self distillation framework that uses teacher-student learning with Field-of-View (FoV)-based masking to enhance local feature learning for robust cross-view localization. In GeoDistill, the teacher model localizes a panoramic image, while the student model predicts locations from a limited FoV counterpart created by FoV-based masking. By aligning the student's predictions with those of the teacher, the student focuses on key features like lane lines and ignores textureless regions, such as roads. This results in more accurate predictions and reduced uncertainty, regardless of whether the query images are panoramas or limited FoV images. Our experiments show that GeoDistill significantly improves localization performance across different frameworks. Additionally, we introduce a novel orientation estimation network that predicts relative orientation without requiring precise planar position ground truth. GeoDistill provides a scalable and efficient solution for real-world cross-view localization challenges. Code and model can be found at https://github.com/tongshw/GeoDistill.

Authors:Roman Naeem, David Hagerman, Jennifer Alvén, Lennart Svensson, Fredrik Kahl
Title: Trexplorer Super: Topologically Correct Centerline Tree Tracking of Tubular Objects in CT Volumes
Abstract:
Tubular tree structures, such as blood vessels and airways, are essential in human anatomy and accurately tracking them while preserving their topology is crucial for various downstream tasks. Trexplorer is a recurrent model designed for centerline tracking in 3D medical images but it struggles with predicting duplicate branches and terminating tracking prematurely. To address these issues, we present Trexplorer Super, an enhanced version that notably improves performance through novel advancements. However, evaluating centerline tracking models is challenging due to the lack of public datasets. To enable thorough evaluation, we develop three centerline datasets, one synthetic and two real, each with increasing difficulty. Using these datasets, we conduct a comprehensive evaluation of existing state-of-the-art (SOTA) models and compare them with our approach. Trexplorer Super outperforms previous SOTA models on every dataset. Our results also highlight that strong performance on synthetic data does not necessarily translate to real datasets. The code and datasets are available at https://github.com/RomStriker/Trexplorer-Super.

Authors:Chetan Madan, Aarjav Satia, Soumen Basu, Pankaj Gupta, Usha Dutta, Chetan Arora
Title: Focus on Texture: Rethinking Pre-training in Masked Autoencoders for Medical Image Classification
Abstract:
Masked Autoencoders (MAEs) have emerged as a dominant strategy for self-supervised representation learning in natural images, where models are pre-trained to reconstruct masked patches with a pixel-wise mean squared error (MSE) between original and reconstructed RGB values as the loss. We observe that MSE encourages blurred image re-construction, but still works for natural images as it preserves dominant edges. However, in medical imaging, when the texture cues are more important for classification of a visual abnormality, the strategy fails. Taking inspiration from Gray Level Co-occurrence Matrix (GLCM) feature in Radiomics studies, we propose a novel MAE based pre-training framework, GLCM-MAE, using reconstruction loss based on matching GLCM. GLCM captures intensity and spatial relationships in an image, hence proposed loss helps preserve morphological features. Further, we propose a novel formulation to convert matching GLCM matrices into a differentiable loss function. We demonstrate that unsupervised pre-training on medical images with the proposed GLCM loss improves representations for downstream tasks. GLCM-MAE outperforms the current state-of-the-art across four tasks - gallbladder cancer detection from ultrasound images by 2.1%, breast cancer detection from ultrasound by 3.1%, pneumonia detection from x-rays by 0.5%, and COVID detection from CT by 0.6%. Source code and pre-trained models are available at: https://github.com/ChetanMadan/GLCM-MAE.

Authors:Motoki Omura, Yusuke Mukuta, Kazuki Ota, Takayuki Osa, Tatsuya Harada
Title: Offline Reinforcement Learning with Wasserstein Regularization via Optimal Transport Maps
Abstract:
Offline reinforcement learning (RL) aims to learn an optimal policy from a static dataset, making it particularly valuable in scenarios where data collection is costly, such as robotics. A major challenge in offline RL is distributional shift, where the learned policy deviates from the dataset distribution, potentially leading to unreliable out-of-distribution actions. To mitigate this issue, regularization techniques have been employed. While many existing methods utilize density ratio-based measures, such as the $f$-divergence, for regularization, we propose an approach that utilizes the Wasserstein distance, which is robust to out-of-distribution data and captures the similarity between actions. Our method employs input-convex neural networks (ICNNs) to model optimal transport maps, enabling the computation of the Wasserstein distance in a discriminator-free manner, thereby avoiding adversarial training and ensuring stable learning. Our approach demonstrates comparable or superior performance to widely used existing methods on the D4RL benchmark dataset. The code is available at https://github.com/motokiomura/Q-DOT .

Authors:Ali Hojjat, Janek Haberer, Soren Pirk, Olaf Landsiedel
Title: ThinkingViT: Matryoshka Thinking Vision Transformer for Elastic Inference
Abstract:
Vision Transformers deliver state-of-the-art performance, yet their fixed computational budget prevents scalable deployment across heterogeneous hardware. Recent nested Transformer architectures mitigate this by embedding nested subnetworks within a single model to enable scalable inference. However, these models allocate the same amount of compute to all inputs, regardless of their complexity, which leads to inefficiencies. To address this, we introduce ThinkingViT, a nested ViT architecture that employs progressive thinking stages to dynamically adjust inference computation based on input difficulty. ThinkingViT initiates inference by activating a small subset of the most important attention heads and terminates early if predictions reach sufficient certainty. Otherwise, it activates additional attention heads and re-evaluates the input. At the core of ThinkingViT is our Token Recycling mechanism, which conditions each subsequent inference stage on the embeddings from the previous stage, enabling progressive improvement. Due to its backbone-preserving design, ThinkingViT also serves as a plugin upgrade for vanilla ViT. Experiments show that ThinkingViT surpasses nested baselines by up to 2.0 percentage points (p.p.) in accuracy at the same throughput and by up to 2.9 p.p. at equal GMACs on ImageNet-1K. The source code is available at https://github.com/ds-kiel/ThinkingViT.

Authors:Yuchen Wang, Hongjue Zhao, Haohong Lin, Enze Xu, Lifang He, Huajie Shao
Title: A Generalizable Physics-Enhanced State Space Model for Long-Term Dynamics Forecasting in Complex Environments
Abstract:
This work aims to address the problem of long-term dynamic forecasting in complex environments where data are noisy and irregularly sampled. While recent studies have introduced some methods to improve prediction performance, these approaches still face a significant challenge in handling long-term extrapolation tasks under such complex scenarios. To overcome this challenge, we propose Phy-SSM, a generalizable method that integrates partial physics knowledge into state space models (SSMs) for long-term dynamics forecasting in complex environments. Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems, while the incorporation of physics knowledge improves generalization ability. The key challenge lies in how to seamlessly incorporate partially known physics into SSMs. To achieve this, we decompose partially known system dynamics into known and unknown state matrices, which are integrated into a Phy-SSM unit. To further enhance long-term prediction performance, we introduce a physics state regularization term to make the estimated latent states align with system dynamics. Besides, we theoretically analyze the uniqueness of the solutions for our method. Extensive experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM over the baselines in both long-term interpolation and extrapolation tasks. The code is available at https://github.com/511205787/Phy_SSM-ICML2025.

Authors:Kristóf Müller, Janka Hatvani, Márton Áron Goda, Miklós Koller
Title: Standardized Evaluation of Fetal Phonocardiography Processing Methods
Abstract:
Motivation. Phonocardiography can give access to the fetal heart rate as well as direct heart sound data, and is entirely passive, using no radiation of any kind. Approach. We discuss the currently available methods for fetal heart sound detection and heart rate estimation and compare them using a common benchmarking platform and a pre-selected testing dataset. Compared to previous reviews, we evaluated the discussed methods in a standardized manner for a fair comparison. Our tests included tolerance-based detection accuracy, error rates for label insertions, deletions, and substitutions, and statistical measures for heart rate mean square error. Results. Based on our results, there is no definite best method that can achieve the highest scores in all of the tests, and simpler methods could perform comparably to more complex ones. The best model for first heart sound detection achieved 97.6% F1-score, 97.4% positive predictive value, and 12.2+-8.0 ms mean absolute error. In terms of second heart sound detection the best model had 91.4% F1-score, 91.3% positive predictive value, and 17.3+-12.2 ms mean absolute error. For fetal heart rate a 0.644 mean square error was achieved by the best method. Significance. Our main conclusion is that further standardization is required in fetal heart rate and heart sound detection method evaluation. The tests and algorithm implementations are openly available at: https://github.com/mulkr/standard-fpcg-evaluation.

Authors:Hsiang-Wei Huang, Jen-Hao Cheng, Kuang-Ming Chen, Cheng-Yen Yang, Bahaa Alattar, Yi-Ru Lin, Pyongkun Kim, Sangwon Kim, Kwangju Kim, Chung-I Huang, Jenq-Neng Hwang
Title: Warehouse Spatial Question Answering with LLM Agent
Abstract:
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent

Authors:Jeffrey Joan Sam, Janhavi Sathe, Nikhil Chigali, Naman Gupta, Radhey Ruparel, Yicheng Jiang, Janmajay Singh, James W. Berck, Arko Barman
Title: A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Abstract:
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.

Authors:Ryan Zarick, Isaac Zhang, Daniel Wong, Thomas Kim, Bryan Pellegrino, Mignon Li, Kelvin Wong
Title: FAFO: Over 1 million TPS on a single node running EVM while still Merkleizing every block
Abstract:
Current blockchain execution throughput is limited by data contention, reducing execution layer parallelism. Fast Ahead-of-Formation Optimization (FAFO) is the first blockchain transaction scheduler to address this problem by reordering transactions before block formation for maximum concurrency. FAFO uses CPU-optimized cache-friendly Bloom filters to efficiently detect conflicts and schedule parallel transaction execution at high throughput and low overhead. We integrate the Rust EVM client (REVM) into FAFO and achieve over 1.1 million native ETH transfers per second and over half a million ERC20 transfers per second on a single node (Table 1), with 91% lower cost compared to state-of-the-art sharded execution. Unlike many other existing high throughput blockchain execution clients, FAFO uses QMDB to Merkleize world state after every block, enabling light clients and stateless validation for ZK-based vApps. FAFO scales with minimal synchronization overhead, scaling linearly with additional CPU resources until it fully exploits the maximum parallelism of the underlying transaction flow. FAFO proves that the high throughput necessary to support future decentralized applications can be achieved with a streamlined execution layer and innovations in blockchain transaction scheduler design. FAFO is open-sourced at https://github.com/LayerZero-Labs/fafo.

Authors:Bright Kwaku Manu, Trevor Reckell, Beckett Sterner, Petar Jevtic
Title: A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models
Abstract:
Stochastic Petri Nets (SPNs) are an increasingly popular tool of choice for modeling discrete-event dynamics in areas such as epidemiology and systems biology, yet their parameter estimation remains challenging in general and in particular when transition rates depend on external covariates and explicit likelihoods are unavailable. We introduce a neural-surrogate (neural-network--based approximation of the posterior distribution) framework that predicts the coefficients of known covariate-dependent rate functions directly from noisy, partially observed token trajectories. Our model employs a lightweight 1D Convolutional Residual Network trained end-to-end on Gillespie-simulated SPN realizations, learning to invert system dynamics under realistic conditions of event dropout. During inference, Monte Carlo dropout provides calibrated uncertainty bounds together with point estimates. On synthetic SPNs with 20% missing events, our surrogate recovers rate-function coefficients with an RMSE = 0.108 and substantially runs faster than traditional Bayesian approaches. These results demonstrate that data-driven, likelihood-free surrogates can enable accurate, robust, and real-time parameter recovery in complex, partially observed discrete-event systems.

Authors:Tongshun Zhang, Pingping Liu, Yubing Lu, Mengen Cai, Zijian Zhang, Zhe Zhang, Qiuzhan Zhou
Title: CWNet: Causal Wavelet Network for Low-Light Image Enhancement
Abstract:
Traditional Low-Light Image Enhancement (LLIE) methods primarily focus on uniform brightness adjustment, often neglecting instance-level semantic information and the inherent characteristics of different features. To address these limitations, we propose CWNet (Causal Wavelet Network), a novel architecture that leverages wavelet transforms for causal reasoning. Specifically, our approach comprises two key components: 1) Inspired by the concept of intervention in causality, we adopt a causal reasoning perspective to reveal the underlying causal relationships in low-light enhancement. From a global perspective, we employ a metric learning strategy to ensure causal embeddings adhere to causal principles, separating them from non-causal confounding factors while focusing on the invariance of causal factors. At the local level, we introduce an instance-level CLIP semantic loss to precisely maintain causal factor consistency. 2) Based on our causal analysis, we present a wavelet transform-based backbone network that effectively optimizes the recovery of frequency information, ensuring precise enhancement tailored to the specific attributes of wavelet transforms. Extensive experiments demonstrate that CWNet significantly outperforms current state-of-the-art methods across multiple datasets, showcasing its robust performance across diverse scenes. Code is available at https://github.com/bywlzts/CWNet-Causal-Wavelet-Network.

Authors:Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu, Qingfu Zhang, Dandan Tu
Title: GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.

Authors:Ruixi Zheng, Wei Zhang, Yijie Li, Xi Zhu, Zhou Lan, Jarrett Rushmore, Yogesh Rathi, Nikos Makris, Lauren J. O'Donnell, Fan Zhang
Title: AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Abstract:
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.

Authors:Peng Ding
Title: ToolRegistry: A Protocol-Agnostic Tool Management Library for Function-Calling LLMs
Abstract:
Large Language Model (LLM) applications are increasingly relying on external tools to extend their capabilities beyond text generation. However, current tool integration approaches suffer from fragmentation, protocol limitations, and implementation complexity, leading to substantial development overhead. This paper presents Toolregistry, a protocol-agnostic tool management library that simplifies tool registration, representation, execution, and lifecycle management via a unified interface. Our evaluation demonstrates that \toolregistry achieves 60-80% reduction in tool integration code, up to 3.1x performance improvements through concurrent execution, and 100% compatibility with OpenAI function calling standards. Real-world case studies show significant improvements in development efficiency and code maintainability across diverse integration scenarios. \toolregistry is open-source and available at https://github.com/Oaklight/ToolRegistry, with comprehensive documentation at https://toolregistry.readthedocs.io/.

Authors:Mingxian Lin, Wei Huang, Yitang Li, Chengjie Jiang, Kui Wu, Fangwei Zhong, Shengju Qian, Xin Wang, Xiaojuan Qi
Title: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
Abstract:
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

Authors:Kexin Gu Baugh, Vincent Perreault, Matthew Baugh, Luke Dickens, Katsumi Inoue, Alessandra Russo
Title: Disentangling Neural Disjunctive Normal Form Models
Abstract:
Neural Disjunctive Normal Form (DNF) based models are powerful and interpretable approaches to neuro-symbolic learning and have shown promising results in classification and reinforcement learning settings without prior knowledge of the tasks. However, their performance is degraded by the thresholding of the post-training symbolic translation process. We show here that part of the performance degradation during translation is due to its failure to disentangle the learned knowledge represented in the form of the networks' weights. We address this issue by proposing a new disentanglement method; by splitting nodes that encode nested rules into smaller independent nodes, we are able to better preserve the models' performance. Through experiments on binary, multiclass, and multilabel classification tasks (including those requiring predicate invention), we demonstrate that our disentanglement method provides compact and interpretable logical representations for the neural DNF-based models, with performance closer to that of their pre-translation counterparts. Our code is available at https://github.com/kittykg/disentangling-ndnf-classification.

Authors:Juyi Sheng, Ziyi Wang, Peiming Li, Mengyuan Liu
Title: MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation
Abstract:
In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.

Authors:Shivangi Aneja, Sebastian Weiss, Irene Baeza, Prashanth Chandran, Gaspard Zoss, Matthias Nießner, Derek Bradley
Title: ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
Abstract:
Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.

Authors:Zhuoshi Pan, Qizhi Pei, Yu Li, Qiyao Sun, Zinan Tang, H. Vicky Zhao, Conghui He, Lijun Wu
Title: REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
Abstract:
Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation. Code and results are available at https://opendatalab.github.io/REST.

Authors:Tao Feng, Yexin Wu, Guanyu Lin, Jiaxuan You
Title: Graph World Model
Abstract:
World models (WMs) demonstrate strong capabilities in prediction, generation, and planning tasks. Existing WMs primarily focus on unstructured data and cannot leverage the ubiquitous structured data, often represented as graphs, in the digital world. While multiple graph foundation models have been proposed, they focus on graph learning tasks and cannot extend to diverse multi-modal data and interdisciplinary tasks. To address these challenges, we propose the Graph World Model (GWM), a world model that supports both unstructured and graph-structured states with multi-modal information and represents diverse tasks as actions. The core of a GWM is a generic message-passing algorithm to aggregate structured information, either over a unified multi-modal token space by converting multi-modal data into text (GWM-T) or a unified multi-modal embedding space by modality-specific encoders (GWM-E). Notably, GWM introduces action nodes to support diverse tasks, where action nodes are linked to other nodes via direct reference or similarity computation. Extensive experiments on six tasks from diverse domains, including multi-modal generation and matching, recommendation, graph prediction, multi-agent, retrieval-augmented generation, and planning and optimization, show that the same GWM outperforms or matches domain-specific baselines' performance, benefits from multi-hop structures, and demonstrates strong zero-shot/few-shot capabilities on unseen new tasks. Our code for GWM is released at https://github.com/ulab-uiuc/GWM.

Authors:Qihui Yang, Taylor Berg-Kirkpatrick, Julian McAuley, Zachary Novack
Title: WildFX: A DAW-Powered Pipeline for In-the-Wild Audio FX Graph Modeling
Abstract:
Despite rapid progress in end-to-end AI music generation, AI-driven modeling of professional Digital Signal Processing (DSP) workflows remains challenging. In particular, while there is growing interest in neural black-box modeling of audio effect graphs (e.g. reverb, compression, equalization), AI-based approaches struggle to replicate the nuanced signal flow and parameter interactions used in professional workflows. Existing differentiable plugin approaches often diverge from real-world tools, exhibiting inferior performance relative to simplified neural controllers under equivalent computational constraints. We introduce WildFX, a pipeline containerized with Docker for generating multi-track audio mixing datasets with rich effect graphs, powered by a professional Digital Audio Workstation (DAW) backend. WildFX supports seamless integration of cross-platform commercial plugins or any plugins in the wild, in VST/VST3/LV2/CLAP formats, enabling structural complexity (e.g., sidechains, crossovers) and achieving efficient parallelized processing. A minimalist metadata interface simplifies project/plugin configuration. Experiments demonstrate the pipeline's validity through blind estimation of mixing graphs, plugin/gain parameters, and its ability to bridge AI research with practical DSP demands. The code is available on: https://github.com/IsaacYQH/WildFX.

Authors:Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron Courville, Se-Young Yun
Title: Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
Abstract:
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deployment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assigning different recursion depths to individual tokens. This allows MoR to focus quadratic attention computation only among tokens still active at a given recursion depth, further improving memory access efficiency by selectively caching only their key-value pairs. Beyond these core mechanisms, we also propose a KV sharing variant that reuses KV pairs from the first recursion, specifically designed to decrease prefill latency and memory footprint. Across model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.

Authors:Jennifer D'Souza, Endres Keno Sander, Andrei Aioanei
Title: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
Abstract:
We introduce DeepResearch$^{\text{Eco}}$, a novel agentic LLM-based system for automated scientific synthesis that supports recursive, depth- and breadth-controlled exploration of original research questions -- enhancing search diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield expert-level analytical depth and contextual diversity. Source code available at: https://github.com/sciknoworg/deep-research.

Authors:Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
Title: BenchReAD: A systematic benchmark for retinal anomaly detection
Abstract:
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.

Authors:İsmail Tarım, Aytuğ Onan
Title: Can You Detect the Difference?
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns about reliably detecting AI-generated text. Stylometric metrics work well on autoregressive (AR) outputs, but their effectiveness on diffusion-based models is unknown. We present the first systematic comparison of diffusion-generated text (LLaDA) and AR-generated text (LLaMA) using 2 000 samples. Perplexity, burstiness, lexical diversity, readability, and BLEU/ROUGE scores show that LLaDA closely mimics human text in perplexity and burstiness, yielding high false-negative rates for AR-oriented detectors. LLaMA shows much lower perplexity but reduced lexical fidelity. Relying on any single metric fails to separate diffusion outputs from human writing. We highlight the need for diffusion-aware detectors and outline directions such as hybrid models, diffusion-specific stylometric signatures, and robust watermarking.

Authors:Zhicun Yin, Junjie Chen, Ming Liu, Zhixin Wang, Fan Li, Renjing Pei, Xiaoming Li, Rynson W. H. Lau, Wangmeng Zuo
Title: RefSTAR: Blind Facial Image Restoration with Reference Selection, Transfer, and Reconstruction
Abstract:
Blind facial image restoration is highly challenging due to unknown complex degradations and the sensitivity of humans to faces. Although existing methods introduce auxiliary information from generative priors or high-quality reference images, they still struggle with identity preservation problems, mainly due to improper feature introduction on detailed textures. In this paper, we focus on effectively incorporating appropriate features from high-quality reference images, presenting a novel blind facial image restoration method that considers reference selection, transfer, and reconstruction (RefSTAR). In terms of selection, we construct a reference selection (RefSel) module. For training the RefSel module, we construct a RefSel-HQ dataset through a mask generation pipeline, which contains annotating masks for 10,000 ground truth-reference pairs. As for the transfer, due to the trivial solution in vanilla cross-attention operations, a feature fusion paradigm is designed to force the features from the reference to be integrated. Finally, we propose a reference image reconstruction mechanism that further ensures the presence of reference image features in the output image. The cycle consistency loss is also redesigned in conjunction with the mask. Extensive experiments on various backbone models demonstrate superior performance, showing better identity preservation ability and reference feature transfer quality. Source code, dataset, and pre-trained models are available at https://github.com/yinzhicun/RefSTAR.

Authors:Yingqian Wu, Qiushi Wang, Zefei Long, Rong Ye, Zhongtian Lu, Xianyin Zhang, Bingxuan Li, Wei Chen, Liwen Zhang, Zhongyu Wei
Title: FinTeam: A Multi-Agent Collaborative Intelligence System for Comprehensive Financial Scenarios
Abstract:
Financial report generation tasks range from macro- to micro-economics analysis, also requiring extensive data analysis. Existing LLM models are usually fine-tuned on simple QA tasks and cannot comprehensively analyze real financial scenarios. Given the complexity, financial companies often distribute tasks among departments. Inspired by this, we propose FinTeam, a financial multi-agent collaborative system, with a workflow with four LLM agents: document analyzer, analyst, accountant, and consultant. We train these agents with specific financial expertise using constructed datasets. We evaluate FinTeam on comprehensive financial tasks constructed from real online investment forums, including macroeconomic, industry, and company analysis. The human evaluation shows that by combining agents, the financial reports generate from FinTeam achieved a 62.00% acceptance rate, outperforming baseline models like GPT-4o and Xuanyuan. Additionally, FinTeam's agents demonstrate a 7.43% average improvement on FinCUGE and a 2.06% accuracy boost on FinEval. Project is available at https://github.com/FudanDISC/DISC-FinLLM/.

Authors:Shanshan Zhong, Jiawei Peng, Zehan Zheng, Zhongzhan Huang, Wufei Ma, Guofeng Zhang, Qihao Liu, Alan Yuille, Jieneng Chen
Title: 4D-Animal: Freely Reconstructing Animatable 3D Animals from Videos
Abstract:
Existing methods for reconstructing animatable 3D animals from videos typically rely on sparse semantic keypoints to fit parametric models. However, obtaining such keypoints is labor-intensive, and keypoint detectors trained on limited animal data are often unreliable. To address this, we propose 4D-Animal, a novel framework that reconstructs animatable 3D animals from videos without requiring sparse keypoint annotations. Our approach introduces a dense feature network that maps 2D representations to SMAL parameters, enhancing both the efficiency and stability of the fitting process. Furthermore, we develop a hierarchical alignment strategy that integrates silhouette, part-level, pixel-level, and temporal cues from pre-trained 2D visual models to produce accurate and temporally coherent reconstructions across frames. Extensive experiments demonstrate that 4D-Animal outperforms both model-based and model-free baselines. Moreover, the high-quality 3D assets generated by our method can benefit other 3D tasks, underscoring its potential for large-scale applications. The code is released at https://github.com/zhongshsh/4D-Animal.

Authors:Qiang Li, Qingsen Yan, Haojian Huang, Peng Wu, Haokui Zhang, Yanning Zhang
Title: Text-Visual Semantic Constrained AI-Generated Image Quality Assessment
Abstract:
With the rapid advancements in Artificial Intelligence Generated Image (AGI) technology, the accurate assessment of their quality has become an increasingly vital requirement. Prevailing methods typically rely on cross-modal models like CLIP or BLIP to evaluate text-image alignment and visual quality. However, when applied to AGIs, these methods encounter two primary challenges: semantic misalignment and details perception missing. To address these limitations, we propose Text-Visual Semantic Constrained AI-Generated Image Quality Assessment (SC-AGIQA), a unified framework that leverages text-visual semantic constraints to significantly enhance the comprehensive evaluation of both text-image consistency and perceptual distortion in AI-generated images. Our approach integrates key capabilities from multiple models and tackles the aforementioned challenges by introducing two core modules: the Text-assisted Semantic Alignment Module (TSAM), which leverages Multimodal Large Language Models (MLLMs) to bridge the semantic gap by generating an image description and comparing it against the original prompt for a refined consistency check, and the Frequency-domain Fine-Grained Degradation Perception Module (FFDPM), which draws inspiration from Human Visual System (HVS) properties by employing frequency domain analysis combined with perceptual sensitivity weighting to better quantify subtle visual distortions and enhance the capture of fine-grained visual quality details in images. Extensive experiments conducted on multiple benchmark datasets demonstrate that SC-AGIQA outperforms existing state-of-the-art methods. The code is publicly available at https://github.com/mozhu1/SC-AGIQA.

Authors:Utkarsh Singhal, Ryan Feng, Stella X. Yu, Atul Prakash
Title: Test-Time Canonicalization by Foundation Models for Robust Perception
Abstract:
Perception in the real world requires robustness to diverse viewing conditions. Existing approaches often rely on specialized architectures or training with predefined data augmentations, limiting adaptability. Taking inspiration from mental rotation in human vision, we propose FOCAL, a test-time robustness framework that transforms the input into the most typical view. At inference time, FOCAL explores a set of transformed images and chooses the one with the highest likelihood under foundation model priors. This test-time optimization boosts robustness while requiring no retraining or architectural changes. Applied to models like CLIP and SAM, it significantly boosts robustness across a wide range of transformations, including 2D and 3D rotations, contrast and lighting shifts, and day-night changes. We also explore potential applications in active vision. By reframing invariance as a test-time optimization problem, FOCAL offers a general and scalable approach to robustness. Our code is available at: https://github.com/sutkarsh/focal.

Authors:Mohammed Bouri, Adnane Saoud
Title: Bridging Robustness and Generalization Against Word Substitution Attacks in NLP via the Growth Bound Matrix Approach
Abstract:
Despite advancements in Natural Language Processing (NLP), models remain vulnerable to adversarial attacks, such as synonym substitutions. While prior work has focused on improving robustness for feed-forward and convolutional architectures, the robustness of recurrent networks and modern state space models (SSMs), such as S4, remains understudied. These architectures pose unique challenges due to their sequential processing and complex parameter dynamics. In this paper, we introduce a novel regularization technique based on Growth Bound Matrices (GBM) to improve NLP model robustness by reducing the impact of input perturbations on model outputs. We focus on computing the GBM for three architectures: Long Short-Term Memory (LSTM), State Space models (S4), and Convolutional Neural Networks (CNN). Our method aims to (1) enhance resilience against word substitution attacks, (2) improve generalization on clean text, and (3) providing the first systematic analysis of SSM (S4) robustness. Extensive experiments across multiple architectures and benchmark datasets demonstrate that our method improves adversarial robustness by up to 8.8% over existing baselines. These results highlight the effectiveness of our approach, outperforming several state-of-the-art methods in adversarial defense. Codes are available at https://github.com/BouriMohammed/GBM

Authors:Jiahe Zhao, Rongkun Zheng, Yi Wang, Helin Wang, Hengshuang Zhao
Title: DisCo: Towards Distinct and Coherent Visual Encapsulation in Video MLLMs
Abstract:
In video Multimodal Large Language Models (video MLLMs), the visual encapsulation process plays a pivotal role in converting video contents into representative tokens for LLM input. While linear projectors are widely employed for encapsulation, they introduce semantic indistinctness and temporal incoherence when applied to videos. Conversely, the structure of resamplers shows promise in tackling these challenges, but an effective solution remains unexplored. Drawing inspiration from resampler structures, we introduce DisCo, a novel visual encapsulation method designed to yield semantically distinct and temporally coherent visual tokens for video MLLMs. DisCo integrates two key components: (1) A Visual Concept Discriminator (VCD) module, assigning unique semantics for visual tokens by associating them in pair with discriminative concepts in the video. (2) A Temporal Focus Calibrator (TFC) module, ensuring consistent temporal focus of visual tokens to video elements across every video frame. Through extensive experiments on multiple video MLLM frameworks, we demonstrate that DisCo remarkably outperforms previous state-of-the-art methods across a variety of video understanding benchmarks, while also achieving higher token efficiency thanks to the reduction of semantic indistinctness. The code: https://github.com/ZJHTerry18/DisCo.

Authors:Muyi Bao, Changyu Zeng, Yifan Wang, Zhengni Yang, Zimu Wang, Guangliang Cheng, Jun Qi, Wei Wang
Title: FTCFormer: Fuzzy Token Clustering Transformer for Image Classification
Abstract:
Transformer-based deep neural networks have achieved remarkable success across various computer vision tasks, largely attributed to their long-range self-attention mechanism and scalability. However, most transformer architectures embed images into uniform, grid-based vision tokens, neglecting the underlying semantic meanings of image regions, resulting in suboptimal feature representations. To address this issue, we propose Fuzzy Token Clustering Transformer (FTCFormer), which incorporates a novel clustering-based downsampling module to dynamically generate vision tokens based on the semantic meanings instead of spatial positions. It allocates fewer tokens to less informative regions and more to represent semantically important regions, regardless of their spatial adjacency or shape irregularity. To further enhance feature extraction and representation, we propose a Density Peak Clustering-Fuzzy K-Nearest Neighbor (DPC-FKNN) mechanism for clustering center determination, a Spatial Connectivity Score (SCS) for token assignment, and a channel-wise merging (Cmerge) strategy for token merging. Extensive experiments on 32 datasets across diverse domains validate the effectiveness of FTCFormer on image classification, showing consistent improvements over the TCFormer baseline, achieving gains of improving 1.43% on five fine-grained datasets, 1.09% on six natural image datasets, 0.97% on three medical datasets and 0.55% on four remote sensing datasets. The code is available at: https://github.com/BaoBao0926/FTCFormer/tree/main.

Authors:Xinlong Ding, Hongwei Yu, Jiawei Li, Feifan Li, Yu Shang, Bochao Zou, Huimin Ma, Jiansheng Chen
Title: Kaleidoscopic Background Attack: Disrupting Pose Estimation with Multi-Fold Radial Symmetry Textures
Abstract:
Camera pose estimation is a fundamental computer vision task that is essential for applications like visual localization and multi-view stereo reconstruction. In the object-centric scenarios with sparse inputs, the accuracy of pose estimation can be significantly influenced by background textures that occupy major portions of the images across different viewpoints. In light of this, we introduce the Kaleidoscopic Background Attack (KBA), which uses identical segments to form discs with multi-fold radial symmetry. These discs maintain high similarity across different viewpoints, enabling effective attacks on pose estimation models even with natural texture segments. Additionally, a projected orientation consistency loss is proposed to optimize the kaleidoscopic segments, leading to significant enhancement in the attack effectiveness. Experimental results show that optimized adversarial kaleidoscopic backgrounds can effectively attack various camera pose estimation models.

Authors:Jinglun Li, Kaixun Jiang, Zhaoyu Chen, Bo Lin, Yao Tang, Weifeng Ge, Wenqiang Zhang
Title: Synthesizing Near-Boundary OOD Samples for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models have exhibited remarkable abilities in detecting out-of-distribution (OOD) samples. However, some challenging OOD samples, which lie close to in-distribution (InD) data in image feature space, can still lead to misclassification. The emergence of foundation models like diffusion models and multimodal large language models (MLLMs) offers a potential solution to this issue. In this work, we propose SynOOD, a novel approach that harnesses foundation models to generate synthetic, challenging OOD data for fine-tuning CLIP models, thereby enhancing boundary-level discrimination between InD and OOD samples. Our method uses an iterative in-painting process guided by contextual prompts from MLLMs to produce nuanced, boundary-aligned OOD samples. These samples are refined through noise adjustments based on gradients from OOD scores like the energy score, effectively sampling from the InD/OOD boundary. With these carefully synthesized images, we fine-tune the CLIP image encoder and negative label features derived from the text encoder to strengthen connections between near-boundary OOD samples and a set of negative labels. Finally, SynOOD achieves state-of-the-art performance on the large-scale ImageNet benchmark, with minimal increases in parameters and runtime. Our approach significantly surpasses existing methods, and the code is available at https://github.com/Jarvisgivemeasuit/SynOOD.

Authors:Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiyao Xue, Abrar Alamri, Goeran Fiedler, Wei Gao
Title: ProGait: A Multi-Purpose Video Dataset and Benchmark for Transfemoral Prosthesis Users
Abstract:
Prosthetic legs play a pivotal role in clinical rehabilitation, allowing individuals with lower-limb amputations the ability to regain mobility and improve their quality of life. Gait analysis is fundamental for optimizing prosthesis design and alignment, directly impacting the mobility and life quality of individuals with lower-limb amputations. Vision-based machine learning (ML) methods offer a scalable and non-invasive solution to gait analysis, but face challenges in correctly detecting and analyzing prosthesis, due to their unique appearances and new movement patterns. In this paper, we aim to bridge this gap by introducing a multi-purpose dataset, namely ProGait, to support multiple vision tasks including Video Object Segmentation, 2D Human Pose Estimation, and Gait Analysis (GA). ProGait provides 412 video clips from four above-knee amputees when testing multiple newly-fitted prosthetic legs through walking trials, and depicts the presence, contours, poses, and gait patterns of human subjects with transfemoral prosthetic legs. Alongside the dataset itself, we also present benchmark tasks and fine-tuned baseline models to illustrate the practical application and performance of the ProGait dataset. We compared our baseline models against pre-trained vision models, demonstrating improved generalizability when applying the ProGait dataset for prosthesis-specific tasks. Our code is available at https://github.com/pittisl/ProGait and dataset at https://huggingface.co/datasets/ericyxy98/ProGait.

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Boosting Multimodal Learning via Disentangled Gradient Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may have worse performance than unimodal learning. Existing methods attribute this problem to the imbalanced learning between modalities and rebalance them through gradient modulation. However, they fail to explain why the dominant modality in multimodal models also underperforms that in unimodal learning. In this work, we reveal the optimization conflict between the modality encoder and modality fusion module in multimodal models. Specifically, we prove that the cross-modal fusion in multimodal models decreases the gradient passed back to each modality encoder compared with unimodal models. Consequently, the performance of each modality in the multimodal model is inferior to that in the unimodal model. To this end, we propose a disentangled gradient learning (DGL) framework to decouple the optimization of the modality encoder and modality fusion module in the multimodal model. DGL truncates the gradient back-propagated from the multimodal loss to the modality encoder and replaces it with the gradient from unimodal loss. Besides, DGL removes the gradient back-propagated from the unimodal loss to the modality fusion module. This helps eliminate the gradient interference between the modality encoder and modality fusion module while ensuring their respective optimization processes. Finally, extensive experiments on multiple types of modalities, tasks, and frameworks with dense cross-modal interaction demonstrate the effectiveness and versatility of the proposed DGL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-GDL}{https://github.com/shicaiwei123/ICCV2025-GDL}

Authors:Huai-Qian Khor, Yante Li, Xingxun Jiang, Guoying Zhao
Title: Is Micro-expression Ethnic Leaning?
Abstract:
How much does ethnicity play its part in emotional expression? Emotional expression and micro-expression research probe into understanding human psychological responses to emotional stimuli, thereby revealing substantial hidden yet authentic emotions that can be useful in the event of diagnosis and interviews. While increased attention had been provided to micro-expression analysis, the studies were done under Ekman's assumption of emotion universality, where emotional expressions are identical across cultures and social contexts. Our computational study uncovers some of the influences of ethnic background in expression analysis, leading to an argument that the emotional universality hypothesis is an overgeneralization from the perspective of manual psychological analysis. In this research, we propose to investigate the level of influence of ethnicity in a simulated micro-expression scenario. We construct a cross-cultural micro-expression database and algorithmically annotate the ethnic labels to facilitate the investigation. With the ethnically annotated dataset, we perform a prima facie study to compare mono-ethnicity and stereo-ethnicity in a controlled environment, which uncovers a certain influence of ethnic bias via an experimental way. Building on this finding, we propose a framework that integrates ethnic context into the emotional feature learning process, yielding an ethnically aware framework that recognises ethnicity differences in micro-expression recognition. For improved understanding, qualitative analyses have been done to solidify the preliminary investigation into this new realm of research. Code is publicly available at https://github.com/IcedDoggie/ICMEW2025_EthnicMER

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Improving Multimodal Learning via Imbalanced Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may perform worse than unimodal learning. Existing approaches attribute this issue to imbalanced learning across modalities and tend to address it through gradient balancing. However, this paper argues that balanced learning is not the optimal setting for multimodal learning. With bias-variance analysis, we prove that imbalanced dependency on each modality obeying the inverse ratio of their variances contributes to optimal performance. To this end, we propose the Asymmetric Representation Learning(ARL) strategy to assist multimodal learning via imbalanced optimization. ARL introduces auxiliary regularizers for each modality encoder to calculate their prediction variance. ARL then calculates coefficients via the unimodal variance to re-weight the optimization of each modality, forcing the modality dependence ratio to be inversely proportional to the modality variance ratio. Moreover, to minimize the generalization error, ARL further introduces the prediction bias of each modality and jointly optimizes them with multimodal loss. Notably, all auxiliary regularizers share parameters with the multimodal model and rely only on the modality representation. Thus the proposed ARL strategy introduces no extra parameters and is independent of the structures and fusion methods of the multimodal model. Finally, extensive experiments on various datasets validate the effectiveness and versatility of ARL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-ARL}{https://github.com/shicaiwei123/ICCV2025-ARL}

Authors:Jaeseong Lee, Yeeun Choi, Heechan Choi, Hanjung Kim, Seonjoo Kim
Title: A Training-Free, Task-Agnostic Framework for Enhancing MLLM Performance on High-Resolution Images
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding, reasoning, and generation. However, they struggle with tasks requiring fine-grained localization and reasoning in high-resolution images. This constraint stems from the fact that MLLMs are fine-tuned with fixed image resolution to align with the pre-trained image encoder used in MLLM. Consequently, feeding high-resolution images directly into MLLMs leads to poor generalization due to a train-test resolution discrepancy, while downsampling these images-although ensuring consistency-compromises fine-grained visual details and ultimately degrades performance. To address this challenge, we propose Extract Candidate then Predict (ECP), a novel training-free, task-agnostic two-stage framework designed to enhance MLLM performance on high-resolution images. The key intuition behind ECP is that while MLLMs struggle with high-resolution images, their predictions on downsampled images still contain implicit localization cues. By first identifying candidate region using the coarse prediction and then predicting the final output based on candidate region, ECP effectively preserves fine-grained details while mitigating the challenges posed by high-resolution data. We validate our framework on 4K GUI grounding and 4K, 8K MLLM perception, achieving +21.3%, +5.8%, +5.2% absolute improvement compared to baseline respectively, demonstrating its effectiveness. Code is available at https://github.com/yenncye/ECP.

Authors:Shuyu Yang, Yaxiong Wang, Yongrui Li, Li Zhu, Zhedong Zheng
Title: Minimizing the Pretraining Gap: Domain-aligned Text-Based Person Retrieval
Abstract:
In this work, we focus on text-based person retrieval, which aims to identify individuals based on textual descriptions. Given the significant privacy issues and the high cost associated with manual annotation, synthetic data has become a popular choice for pretraining models, leading to notable advancements. However, the considerable domain gap between synthetic pretraining datasets and real-world target datasets, characterized by differences in lighting, color, and viewpoint, remains a critical obstacle that hinders the effectiveness of the pretrain-finetune paradigm. To bridge this gap, we introduce a unified text-based person retrieval pipeline considering domain adaptation at both image and region levels. In particular, it contains two primary components, i.e., Domain-aware Diffusion (DaD) for image-level adaptation and Multi-granularity Relation Alignment (MRA) for region-level adaptation. As the name implies, Domain-aware Diffusion is to migrate the distribution of images from the pretraining dataset domain to the target real-world dataset domain, e.g., CUHK-PEDES. Subsequently, MRA performs a meticulous region-level alignment by establishing correspondences between visual regions and their descriptive sentences, thereby addressing disparities at a finer granularity. Extensive experiments show that our dual-level adaptation method has achieved state-of-the-art results on the CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets, outperforming existing methodologies. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/MRA.

Authors:Alireza Dizaji, Benedict Aaron Tjandra, Mehrab Hamidi, Shenyang Huang, Guillaume Rabusseau
Title: T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
Abstract:
Dynamic graph learning methods have recently emerged as powerful tools for modelling relational data evolving through time. However, despite extensive benchmarking efforts, it remains unclear whether current Temporal Graph Neural Networks (TGNNs) effectively capture core temporal patterns such as periodicity, cause-and-effect, and long-range dependencies. In this work, we introduce the Temporal Graph Reasoning Benchmark (T-GRAB), a comprehensive set of synthetic tasks designed to systematically probe the capabilities of TGNNs to reason across time. T-GRAB provides controlled, interpretable tasks that isolate key temporal skills: counting/memorizing periodic repetitions, inferring delayed causal effects, and capturing long-range dependencies over both spatial and temporal dimensions. We evaluate 11 temporal graph learning methods on these tasks, revealing fundamental shortcomings in their ability to generalize temporal patterns. Our findings offer actionable insights into the limitations of current models, highlight challenges hidden by traditional real-world benchmarks, and motivate the development of architectures with stronger temporal reasoning abilities. The code for T-GRAB can be found at: https://github.com/alirezadizaji/T-GRAB.

Authors:Ruihao Gong, Shihao Bai, Siyu Wu, Yunqian Fan, Zaijun Wang, Xiuhong Li, Hailong Yang, Xianglong Liu
Title: Past-Future Scheduler for LLM Serving under SLA Guarantees
Abstract:
The exploration and application of Large Language Models (LLMs) is thriving. To reduce deployment costs, continuous batching has become an essential feature in current service frameworks. The effectiveness of continuous batching relies on an accurate estimate of the memory requirements of requests. However, due to the diversity in request output lengths, existing frameworks tend to adopt aggressive or conservative schedulers, which often result in significant overestimation or underestimation of memory consumption. Consequently, they suffer from harmful request evictions or prolonged queuing times, failing to achieve satisfactory throughput under strict Service Level Agreement (SLA) guarantees (a.k.a. goodput), across various LLM application scenarios with differing input-output length distributions. To address this issue, we propose a novel Past-Future scheduler that precisely estimates the peak memory resources required by the running batch via considering the historical distribution of request output lengths and calculating memory occupancy at each future time point. It adapts to applications with all types of input-output length distributions, balancing the trade-off between request queuing and harmful evictions, thereby consistently achieving better goodput. Furthermore, to validate the effectiveness of the proposed scheduler, we developed a high-performance LLM serving framework, LightLLM, that implements the Past-Future scheduler. Compared to existing aggressive or conservative schedulers, LightLLM demonstrates superior goodput, achieving up to 2-3$\times$ higher goodput than other schedulers under heavy loads. LightLLM is open source to boost the research in such direction (https://github.com/ModelTC/lightllm).

Authors:Zhonglin Liu
Title: A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Abstract:
Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.

Authors:Ivan Martinović, Josip Šarić, Marin Oršić, Matej Kristan, Siniša Šegvić
Title: DEARLi: Decoupled Enhancement of Recognition and Localization for Semi-supervised Panoptic Segmentation
Abstract:
Pixel-level annotation is expensive and time-consuming. Semi-supervised segmentation methods address this challenge by learning models on few labeled images alongside a large corpus of unlabeled images. Although foundation models could further account for label scarcity, effective mechanisms for their exploitation remain underexplored. We address this by devising a novel semi-supervised panoptic approach fueled by two dedicated foundation models. We enhance recognition by complementing unsupervised mask-transformer consistency with zero-shot classification of CLIP features. We enhance localization by class-agnostic decoder warm-up with respect to SAM pseudo-labels. The resulting decoupled enhancement of recognition and localization (DEARLi) particularly excels in the most challenging semi-supervised scenarios with large taxonomies and limited labeled data. Moreover, DEARLi outperforms the state of the art in semi-supervised semantic segmentation by a large margin while requiring 8x less GPU memory, in spite of being trained only for the panoptic objective. We observe 29.9 PQ and 38.9 mIoU on ADE20K with only 158 labeled images. The source code is available at https://github.com/helen1c/DEARLi.

Authors:Bingchao Wang, Zhiwei Ning, Jianyu Ding, Xuanang Gao, Yin Li, Dongsheng Jiang, Jie Yang, Wei Liu
Title: FIX-CLIP: Dual-Branch Hierarchical Contrastive Learning via Synthetic Captions for Better Understanding of Long Text
Abstract:
CLIP has shown promising performance across many short-text tasks in a zero-shot manner. However, limited by the input length of the text encoder, CLIP struggles on under-stream tasks with long-text inputs ($>77$ tokens). To remedy this issue, we propose FIX-CLIP, which includes three novel modules: (1) A dual-branch training pipeline that aligns short and long texts with masked and raw images, respectively, which boosts the long-text representation while preserving the short-text ability. (2) Multiple learnable regional prompts with unidirectional masks in Transformer layers for regional information extraction. (3) A hierarchical feature alignment module in the intermediate encoder layers to promote the consistency of multi-scale features. Furthermore, we collect 30M images and utilize existing MLLMs to synthesize long-text captions for training. Extensive experiments show that FIX-CLIP achieves state-of-the-art performance on both long-text and short-text retrieval benchmarks. For downstream applications, we reveal that FIX-CLIP's text encoder delivers promising performance in a plug-and-play manner for diffusion models with long-text input. The code is available at https://github.com/bcwang-sjtu/Fix-CLIP.

Authors:Meng Yu, Kun Zhan
Title: Frequency Regulation for Exposure Bias Mitigation in Diffusion Models
Abstract:
Diffusion models exhibit impressive generative capabilities but are significantly impacted by exposure bias. In this paper, we make a key observation: the energy of predicted noisy samples in the reverse process continuously declines compared to perturbed samples in the forward process. Building on this, we identify two important findings: 1) The reduction in energy follows distinct patterns in the low-frequency and high-frequency subbands; 2) The subband energy of reverse-process reconstructed samples is consistently lower than that of forward-process ones, and both are lower than the original data samples. Based on the first finding, we introduce a dynamic frequency regulation mechanism utilizing wavelet transforms, which separately adjusts the low- and high-frequency subbands. Leveraging the second insight, we derive the rigorous mathematical form of exposure bias. It is worth noting that, our method is training-free and plug-and-play, significantly improving the generative quality of various diffusion models and frameworks with negligible computational cost. The source code is available at https://github.com/kunzhan/wpp.

Authors:Chenguo Lin, Yuchen Lin, Panwang Pan, Yifan Yu, Honglei Yan, Katerina Fragkiadaki, Yadong Mu
Title: MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second
Abstract:
We present MoVieS, a novel feed-forward model that synthesizes 4D dynamic novel views from monocular videos in one second. MoVieS represents dynamic 3D scenes using pixel-aligned grids of Gaussian primitives, explicitly supervising their time-varying motion. This allows, for the first time, the unified modeling of appearance, geometry and motion, and enables view synthesis, reconstruction and 3D point tracking within a single learning-based framework. By bridging novel view synthesis with dynamic geometry reconstruction, MoVieS enables large-scale training on diverse datasets with minimal dependence on task-specific supervision. As a result, it also naturally supports a wide range of zero-shot applications, such as scene flow estimation and moving object segmentation. Extensive experiments validate the effectiveness and efficiency of MoVieS across multiple tasks, achieving competitive performance while offering several orders of magnitude speedups.

Authors:Marc Kaufeld, Mattia Piccinini, Johannes Betz
Title: MP-RBFN: Learning-based Vehicle Motion Primitives using Radial Basis Function Networks
Abstract:
This research introduces MP-RBFN, a novel formulation leveraging Radial Basis Function Networks for efficiently learning Motion Primitives derived from optimal control problems for autonomous driving. While traditional motion planning approaches based on optimization are highly accurate, they are often computationally prohibitive. In contrast, sampling-based methods demonstrate high performance but impose constraints on the geometric shape of trajectories. MP-RBFN combines the strengths of both by coupling the high-fidelity trajectory generation of sampling-based methods with an accurate description of vehicle dynamics. Empirical results show compelling performance compared to previous methods, achieving a precise description of motion primitives at low inference times. MP-RBFN yields a seven times higher accuracy in generating optimized motion primitives compared to existing semi-analytic approaches. We demonstrate the practical applicability of MP-RBFN for motion planning by integrating the method into a sampling-based trajectory planner. MP-RBFN is available as open-source software at https://github.com/TUM-AVS/RBFN-Motion-Primitives.

Authors:Xianghong Zou, Jianping Li, Zhe Chen, Zhen Cao, Zhen Dong, Qiegen Liu, Bisheng Yang
Title: LifelongPR: Lifelong point cloud place recognition based on sample replay and prompt learning
Abstract:
Point cloud place recognition (PCPR) determines the geo-location within a prebuilt map and plays a crucial role in geoscience and robotics applications such as autonomous driving, intelligent transportation, and augmented reality. In real-world large-scale deployments of a geographic positioning system, PCPR models must continuously acquire, update, and accumulate knowledge to adapt to diverse and dynamic environments, i.e., the ability known as continual learning (CL). However, existing PCPR models often suffer from catastrophic forgetting, leading to significant performance degradation in previously learned scenes when adapting to new environments or sensor types. This results in poor model scalability, increased maintenance costs, and system deployment difficulties, undermining the practicality of PCPR. To address these issues, we propose LifelongPR, a novel continual learning framework for PCPR, which effectively extracts and fuses knowledge from sequential point cloud data. First, to alleviate the knowledge loss, we propose a replay sample selection method that dynamically allocates sample sizes according to each dataset's information quantity and selects spatially diverse samples for maximal representativeness. Second, to handle domain shifts, we design a prompt learning-based CL framework with a lightweight prompt module and a two-stage training strategy, enabling domain-specific feature adaptation while minimizing forgetting. Comprehensive experiments on large-scale public and self-collected datasets are conducted to validate the effectiveness of the proposed method. Compared with state-of-the-art (SOTA) methods, our method achieves 6.50% improvement in mIR@1, 7.96% improvement in mR@1, and an 8.95% reduction in F. The code and pre-trained models are publicly available at https://github.com/zouxianghong/LifelongPR.

Authors:Zhifei Xu, Zhiqing Tang, Jiong Lou, Zhi Yao, Xuan Xie, Tian Wang, Yinglong Wang, Weijia Jia
Title: EAT: QoS-Aware Edge-Collaborative AIGC Task Scheduling via Attention-Guided Diffusion Reinforcement Learning
Abstract:
The growth of Artificial Intelligence (AI) and large language models has enabled the use of Generative AI (GenAI) in cloud data centers for diverse AI-Generated Content (AIGC) tasks. Models like Stable Diffusion introduce unavoidable delays and substantial resource overhead, which are unsuitable for users at the network edge with high QoS demands. Deploying AIGC services on edge servers reduces transmission times but often leads to underutilized resources and fails to optimally balance inference latency and quality. To address these issues, this paper introduces a QoS-aware \underline{E}dge-collaborative \underline{A}IGC \underline{T}ask scheduling (EAT) algorithm. Specifically: 1) We segment AIGC tasks and schedule patches to various edge servers, formulating it as a gang scheduling problem that balances inference latency and quality while considering server heterogeneity, such as differing model distributions and cold start issues. 2) We propose a reinforcement learning-based EAT algorithm that uses an attention layer to extract load and task queue information from edge servers and employs a diffusion-based policy network for scheduling, efficiently enabling model reuse. 3) We develop an AIGC task scheduling system that uses our EAT algorithm to divide tasks and distribute them across multiple edge servers for processing. Experimental results based on our system and large-scale simulations show that our EAT algorithm can reduce inference latency by up to 56\% compared to baselines. We release our open-source code at https://github.com/zzf1955/EAT.

Authors:Samson Yu, Kelvin Lin, Harold Soh
Title: Demonstrating the Octopi-1.5 Visual-Tactile-Language Model
Abstract:
Touch is recognized as a vital sense for humans and an equally important modality for robots, especially for dexterous manipulation, material identification, and scenarios involving visual occlusion. Building upon very recent work in touch foundation models, this demonstration will feature Octopi-1.5, our latest visual-tactile-language model. Compared to its predecessor, Octopi-1.5 introduces the ability to process tactile signals from multiple object parts and employs a simple retrieval-augmented generation (RAG) module to improve performance on tasks and potentially learn new objects on-the-fly. The system can be experienced live through a new handheld tactile-enabled interface, the TMI, equipped with GelSight and TAC-02 tactile sensors. This convenient and accessible setup allows users to interact with Octopi-1.5 without requiring a robot. During the demonstration, we will showcase Octopi-1.5 solving tactile inference tasks by leveraging tactile inputs and commonsense knowledge. For example, in a Guessing Game, Octopi-1.5 will identify objects being grasped and respond to follow-up queries about how to handle it (e.g., recommending careful handling for soft fruits). We also plan to demonstrate Octopi-1.5's RAG capabilities by teaching it new items. With live interactions, this demonstration aims to highlight both the progress and limitations of VTLMs such as Octopi-1.5 and to foster further interest in this exciting field. Code for Octopi-1.5 and design files for the TMI gripper are available at https://github.com/clear-nus/octopi-1.5.

Authors:Hang Yuan, Chen Li, Wenjun Ma, Yuncheng Jiang
Title: TextOmics-Guided Diffusion for Hit-like Molecular Generation
Abstract:
Hit-like molecular generation with therapeutic potential is essential for target-specific drug discovery. However, the field lacks heterogeneous data and unified frameworks for integrating diverse molecular representations. To bridge this gap, we introduce TextOmics, a pioneering benchmark that establishes one-to-one correspondences between omics expressions and molecular textual descriptions. TextOmics provides a heterogeneous dataset that facilitates molecular generation through representations alignment. Built upon this foundation, we propose ToDi, a generative framework that jointly conditions on omics expressions and molecular textual descriptions to produce biologically relevant, chemically valid, hit-like molecules. ToDi leverages two encoders (OmicsEn and TextEn) to capture multi-level biological and semantic associations, and develops conditional diffusion (DiffGen) for controllable generation. Extensive experiments confirm the effectiveness of TextOmics and demonstrate ToDi outperforms existing state-of-the-art approaches, while also showcasing remarkable potential in zero-shot therapeutic molecular generation. Sources are available at: https://github.com/hala-ToDi.

Authors:Zhongyu Ouyang, Mingxuan Ju, Soroush Vosoughi, Yanfang Ye
Title: Non-parametric Graph Convolution for Re-ranking in Recommendation Systems
Abstract:
Graph knowledge has been proven effective in enhancing item rankings in recommender systems (RecSys), particularly during the retrieval stage. However, its application in the ranking stage, especially when richer contextual information in user-item interactions is available, remains underexplored. A major challenge lies in the substantial computational cost associated with repeatedly retrieving neighborhood information from billions of items stored in distributed systems. This resource-intensive requirement makes it difficult to scale graph-based methods in practical RecSys. To bridge this gap, we first demonstrate that incorporating graphs in the ranking stage improves ranking qualities. Notably, while the improvement is evident, we show that the substantial computational overheads entailed by graphs are prohibitively expensive for real-world recommendations. In light of this, we propose a non-parametric strategy that utilizes graph convolution for re-ranking only during test time. Our strategy circumvents the notorious computational overheads from graph convolution during training, and utilizes structural knowledge hidden in graphs on-the-fly during testing. It can be used as a plug-and-play module and easily employed to enhance the ranking ability of various ranking layers of a real-world RecSys with significantly reduced computational overhead. Through comprehensive experiments across four benchmark datasets with varying levels of sparsity, we demonstrate that our strategy yields noticeable improvements (i.e., 8.1% on average) during testing time with little to no additional computational overheads (i.e., 0.5 on average). Code: https://github.com/zyouyang/RecSys2025_NonParamGC.git

Authors:Shubham Shukla, Kunal Sonalkar
Title: Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
Abstract:
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.

Authors:Zijian Ding, Tung Nguyen, Weikai Li, Aditya Grover, Yizhou Sun, Jason Cong
Title: Iceberg: Enhancing HLS Modeling with Synthetic Data
Abstract:
Deep learning-based prediction models for High-Level Synthesis (HLS) of hardware designs often struggle to generalize. In this paper, we study how to close the generalizability gap of these models through pretraining on synthetic data and introduce Iceberg, a synthetic data augmentation approach that expands both large language model (LLM)-generated programs and weak labels of unseen design configurations. Our weak label generation method is integrated with an in-context model architecture, enabling meta-learning from actual and proximate labels. Iceberg improves the geometric mean modeling accuracy by $86.4\%$ when adapt to six real-world applications with few-shot examples and achieves a $2.47\times$ and a $1.12\times$ better offline DSE performance when adapting to two different test datasets. Our open-sourced code is here: https://github.com/UCLA-VAST/iceberg

Authors:Huilai Li, Yonghao Dang, Ying Xing, Yiming Wang, Jianqin Yin
Title: ESG-Net: Event-Aware Semantic Guided Network for Dense Audio-Visual Event Localization
Abstract:
Dense audio-visual event localization (DAVE) aims to identify event categories and locate the temporal boundaries in untrimmed videos. Most studies only employ event-related semantic constraints on the final outputs, lacking cross-modal semantic bridging in intermediate layers. This causes modality semantic gap for further fusion, making it difficult to distinguish between event-related content and irrelevant background content. Moreover, they rarely consider the correlations between events, which limits the model to infer concurrent events among complex scenarios. In this paper, we incorporate multi-stage semantic guidance and multi-event relationship modeling, which respectively enable hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies, thereby better focusing on event-related information. Specifically, our eventaware semantic guided network (ESG-Net) includes a early semantics interaction (ESI) module and a mixture of dependency experts (MoDE) module. ESI applys multi-stage semantic guidance to explicitly constrain the model in learning semantic information through multi-modal early fusion and several classification loss functions, ensuring hierarchical understanding of event-related content. MoDE promotes the extraction of multi-event dependencies through multiple serial mixture of experts with adaptive weight allocation. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load. Our code will be released on https://github.com/uchiha99999/ESG-Net.

Authors:Gaurav R. Ghosal, Pratyush Maini, Aditi Raghunathan
Title: Memorization Sinks: Isolating Memorization during LLM Training
Abstract:
Large language models are susceptible to memorizing repeated sequences, posing privacy and copyright concerns. A popular mitigation strategy is to remove memorized information from specific neurons post-hoc. However, such approaches have shown limited success so far. In a controlled setting, we show that the memorization of natural sequences (those that resemble linguistically plausible text) become mechanistically entangled with general language abilities, thereby becoming challenging to remove post-hoc. In this work, we put forward a new paradigm of MemSinks that promotes isolation of memorization by design. We leverage a sequence identifier that activates a unique set of memorization neurons for each sequence across repetitions. By analyzing the dynamics of learning and forgetting, we argue that MemSinks facilitates isolation of memorized content, making it easier to remove without compromising general language capabilities. We implement MemSinks at the billion-parameter and billion-token scale, and observe both effective isolation and strong generalization. To our knowledge, this is the first proof-of-concept on real data demonstrating that simultaneous generalization and isolation is achievable. We open-source our code at http://github.com/grghosal/MemSinks.

Authors:Zhanjiang Yang, Lijun Sun, Jiawei Dong, Xiaoxin An, Yang Liu, Meng Li
Title: MCGA: Mixture of Codebooks Hyperspectral Reconstruction via Grayscale-Aware Attention
Abstract:
Reconstructing hyperspectral images (HSIs) from RGB inputs provides a cost-effective alternative to hyperspectral cameras, but reconstructing high-dimensional spectra from three channels is inherently ill-posed. Existing methods typically directly regress RGB-to-HSI mappings using large attention networks, which are computationally expensive and handle ill-posedness only implicitly. We propose MCGA, a Mixture-of-Codebooks with Grayscale-aware Attention framework that explicitly addresses these challenges using spectral priors and photometric consistency. MCGA first learns transferable spectral priors via a mixture-of-codebooks (MoC) from heterogeneous HSI datasets, then aligns RGB features with these priors through grayscale-aware photometric attention (GANet). Efficiency and robustness are further improved via top-K attention design and test-time adaptation (TTA). Experiments on benchmarks and real-world data demonstrate the state-of-the-art accuracy, strong cross-dataset generalization, and 4-5x faster inference. Codes will be available once acceptance at https://github.com/Fibonaccirabbit/MCGA.

Authors:Qinyuan Ye, Robin Jia, Xiang Ren
Title: Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
Abstract:
Large language models demonstrate the intriguing ability to perform unseen tasks via in-context learning. However, it remains unclear what mechanisms inside the model drive such task-level generalization. In this work, we approach this question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step, counterfactual task with an unexpected +1 function as a second step. Leveraging circuit-style interpretability techniques such as path patching, we analyze the models' internal computations behind their notable performance and present three key findings. First, we uncover a function induction mechanism that explains the model's generalization from standard addition to off-by-one addition. This mechanism resembles the structure of the induction head mechanism found in prior work and elevates it to a higher level of abstraction. Second, we show that the induction of the +1 function is governed by multiple attention heads in parallel, each of which emits a distinct piece of the +1 function. Finally, we find that this function induction mechanism is reused in a broader range of tasks, including synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as base-8 addition. Overall, our findings offer deeper insights into how reusable and composable structures within language models enable task-level generalization.

Authors:Youliang Zhang, Zhaoyang Li, Duomin Wang, Jiahe Zhang, Deyu Zhou, Zixin Yin, Xili Dai, Gang Yu, Xiu Li
Title: SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation
Abstract:
The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/

Authors:Shuaikang Wang, Tiecheng Guo, Meng Guo
Title: Customize Harmonic Potential Fields via Hybrid Optimization over Homotopic Paths
Abstract:
Safe navigation within a workspace is a fundamental skill for autonomous robots to accomplish more complex tasks. Harmonic potentials are artificial potential fields that are analytical, globally convergent and provably free of local minima. Thus, it has been widely used for generating safe and reliable robot navigation control policies. However, most existing methods do not allow customization of the harmonic potential fields nor the resulting paths, particularly regarding their topological properties. In this paper, we propose a novel method that automatically finds homotopy classes of paths that can be generated by valid harmonic potential fields. The considered complex workspaces can be as general as forest worlds consisting of numerous overlapping star-obstacles. The method is based on a hybrid optimization algorithm that searches over homotopy classes, selects the structure of each tree-of-stars within the forest, and optimizes over the continuous weight parameters for each purged tree via the projected gradient descent. The key insight is to transform the forest world to the unbounded point world via proper diffeomorphic transformations. It not only facilitates a simpler design of the multi-directional D-signature between non-homotopic paths, but also retain the safety and convergence properties. Extensive simulations and hardware experiments are conducted for non-trivial scenarios, where the navigation potentials are customized for desired homotopic properties. Project page: https://shuaikang-wang.github.io/CustFields.

Authors:Jiatong Li, Qi Liu, Mengxiao Zhu
Title: Generative Cognitive Diagnosis
Abstract:
Cognitive diagnosis (CD) models latent cognitive states of human learners by analyzing their response patterns on diagnostic tests, serving as a crucial machine learning technique for educational assessment and evaluation. Traditional cognitive diagnosis models typically follow a transductive prediction paradigm that optimizes parameters to fit response scores and extract learner abilities. These approaches face significant limitations as they cannot perform instant diagnosis for new learners without computationally expensive retraining and produce diagnostic outputs with limited reliability. In this study, we introduces a novel generative diagnosis paradigm that fundamentally shifts CD from predictive to generative modeling, enabling inductive inference of cognitive states without parameter re-optimization. We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM), which achieve excellent performance improvements over traditional methods. The generative approach disentangles cognitive state inference from response prediction through a well-designed generation process that incorporates identifiability and monotonicity conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of our methodology in addressing scalability and reliability challenges, especially $\times 100$ speedup for the diagnosis of new learners. Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence, particularly for intelligent model evaluation and intelligent education systems. The code is available at https://github.com/CSLiJT/Generative-CD.git.

Authors:Darshan Gadginmath, Farhad Nawaz, Minjun Sung, Faizan M Tariq, Sangjae Bae, David Isele, Fabio Pasqualetti, Jovin D'sa
Title: Active Probing with Multimodal Predictions for Motion Planning
Abstract:
Navigation in dynamic environments requires autonomous systems to reason about uncertainties in the behavior of other agents. In this paper, we introduce a unified framework that combines trajectory planning with multimodal predictions and active probing to enhance decision-making under uncertainty. We develop a novel risk metric that seamlessly integrates multimodal prediction uncertainties through mixture models. When these uncertainties follow a Gaussian mixture distribution, we prove that our risk metric admits a closed-form solution, and is always finite, thus ensuring analytical tractability. To reduce prediction ambiguity, we incorporate an active probing mechanism that strategically selects actions to improve its estimates of behavioral parameters of other agents, while simultaneously handling multimodal uncertainties. We extensively evaluate our framework in autonomous navigation scenarios using the MetaDrive simulation environment. Results demonstrate that our active probing approach successfully navigates complex traffic scenarios with uncertain predictions. Additionally, our framework shows robust performance across diverse traffic agent behavior models, indicating its broad applicability to real-world autonomous navigation challenges. Code and videos are available at https://darshangm.github.io/papers/active-probing-multimodal-predictions/.

Authors:Amirhossein Ansari, Ke Wang, Pulei Xiong
Title: NegRefine: Refining Negative Label-Based Zero-Shot OOD Detection
Abstract:
Recent advancements in Vision-Language Models like CLIP have enabled zero-shot OOD detection by leveraging both image and textual label information. Among these, negative label-based methods such as NegLabel and CSP have shown promising results by utilizing a lexicon of words to define negative labels for distinguishing OOD samples. However, these methods suffer from detecting in-distribution samples as OOD due to negative labels that are subcategories of in-distribution labels or proper nouns. They also face limitations in handling images that match multiple in-distribution and negative labels. We propose NegRefine, a novel negative label refinement framework for zero-shot OOD detection. By introducing a filtering mechanism to exclude subcategory labels and proper nouns from the negative label set and incorporating a multi-matching-aware scoring function that dynamically adjusts the contributions of multiple labels matching an image, NegRefine ensures a more robust separation between in-distribution and OOD samples. We evaluate NegRefine on large-scale benchmarks, including ImageNet-1K. The code is available at https://github.com/ah-ansari/NegRefine.

Authors:Paulo Salem, Robert Sim, Christopher Olsen, Prerit Saxena, Rafael Barcelos, Yi Ding
Title: TinyTroupe: An LLM-powered Multiagent Persona Simulation Toolkit
Abstract:
Recent advances in Large Language Models (LLM) have led to a new class of autonomous agents, renewing and expanding interest in the area. LLM-powered Multiagent Systems (MAS) have thus emerged, both for assistive and simulation purposes, yet tools for realistic human behavior simulation -- with its distinctive challenges and opportunities -- remain underdeveloped. Existing MAS libraries and tools lack fine-grained persona specifications, population sampling facilities, experimentation support, and integrated validation, among other key capabilities, limiting their utility for behavioral studies, social simulation, and related applications. To address these deficiencies, in this work we introduce TinyTroupe, a simulation toolkit enabling detailed persona definitions (e.g., nationality, age, occupation, personality, beliefs, behaviors) and programmatic control via numerous LLM-driven mechanisms. This allows for the concise formulation of behavioral problems of practical interest, either at the individual or group level, and provides effective means for their solution. TinyTroupe's components are presented using representative working examples, such as brainstorming and market research sessions, thereby simultaneously clarifying their purpose and demonstrating their usefulness. Quantitative and qualitative evaluations of selected aspects are also provided, highlighting possibilities, limitations, and trade-offs. The approach, though realized as a specific Python implementation, is meant as a novel conceptual contribution, which can be partially or fully incorporated in other contexts. The library is available as open source at https://github.com/microsoft/tinytroupe.

Authors:Junaid Iqbal Khan
Title: Leveraging Distribution Matching to Make Approximate Machine Unlearning Faster
Abstract:
Approximate machine unlearning (AMU) enables models to `forget' specific training data through specialized fine-tuning on a retained (and forget) subset of training set. However, processing this large retained subset still dominates computational runtime, while reductions of unlearning epochs also remain a challenge. In this paper, we propose two complementary methods to accelerate arbitrary classification-oriented AMU method. First, \textbf{Blend}, a novel distribution-matching dataset condensation (DC), merges visually similar images with shared blend-weights to significantly reduce the retained set size. It operates with minimal pre-processing overhead and is orders of magnitude faster than state-of-the-art DC methods. Second, our loss-centric method, \textbf{Accelerated-AMU (A-AMU)}, augments the AMU objective to quicken convergence. A-AMU achieves this by combining a steepened primary loss to expedite forgetting with a differentiable regularizer that matches the loss distributions of forgotten and in-distribution unseen data. Our extensive experiments demonstrate that this dual approach of data and loss-centric optimization dramatically reduces end-to-end unlearning latency across both single and multi-round scenarios, all while preserving model utility and privacy. To our knowledge, this is the first work to systematically tackle unlearning efficiency by jointly designing a specialized dataset condensation technique with a dedicated accelerated loss function. Code is available at https://github.com/algebraicdianuj/DC_Unlearning.

Authors:Mihir Kavishwar, Naresh Shanbhag
Title: Compute SNR-Optimal Analog-to-Digital Converters for Analog In-Memory Computing
Abstract:
Analog in-memory computing (AIMC) is an energy-efficient alternative to digital architectures for accelerating machine learning and signal processing workloads. However, its energy efficiency is limited by the high energy cost of the column analog-to-digital converters (ADCs). Reducing the ADC precision is an effective approach to lowering its energy cost. However, doing so also reduces the AIMC's computational accuracy thereby making it critical to identify the minimum precision required to meet a target accuracy. Prior works overestimate the ADC precision requirements by modeling quantization error as input-independent noise, maximizing the signal-to-quantization-noise ratio (SQNR), and ignoring the discrete nature of ideal pre-ADC signal. We address these limitations by developing analytical expressions for estimating the compute signal-to-noise ratio (CSNR), a true metric of accuracy for AIMCs, and propose CACTUS, an algorithm to obtain CSNR-optimal ADC parameters. Using a circuit-aware behavioral model of an SRAM-based AIMC in a 28nm CMOS process, we show that for a 256-dimensional binary dot product, CACTUS reduces the ADC precision requirements by 3b while achieving 6dB higher CSNR over prior methods. We also delineate operating conditions under which our proposed CSNR-optimal ADCs outperform conventional SQNR-optimal ADCs.

Authors:Abdul Manaf, Nimra Mughal
Title: AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)
Abstract:
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Authors:Dongyang Li, Haoyang Qin, Mingyang Wu, Chen Wei, Quanying Liu
Title: BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings
Abstract:
Understanding how the brain represents visual information is a fundamental challenge in neuroscience and artificial intelligence. While AI-driven decoding of neural data has provided insights into the human visual system, integrating multimodal neuroimaging signals, such as EEG, MEG, and fMRI, remains a critical hurdle due to their inherent spatiotemporal misalignment. Current approaches often analyze these modalities in isolation, limiting a holistic view of neural representation. In this study, we introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation. Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval task and has the potential to extend multitasking. Combining neuroimaging analysis methods, we further reveal how visual concept representations align across neural modalities and with real world object perception. We demonstrate that the brain's structured visual concept representations exhibit an implicit mapping to physical-world stimuli, bridging neuroscience and machine learning from different modalities of neural imaging. Beyond methodological advancements, BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs). Our code is available at https://github.com/ncclab-sustech/BrainFLORA.

Authors:Osher Rafaeli, Tal Svoray, Ariel Nahlieli
Title: Prompt2DEM: High-Resolution DEMs for Urban and Open Environments from Global Prompts Using a Monocular Foundation Model
Abstract:
High-resolution elevation estimations are essential to understand catchment and hillslope hydrology, study urban morphology and dynamics, and monitor the growth, decline, and mortality of terrestrial ecosystems. Various deep learning approaches (e.g., super-resolution techniques, monocular depth estimation) have been developed to create high-resolution Digital Elevation Models (DEMs). However, super-resolution techniques are limited by the upscaling factor, and monocular depth estimation lacks global elevation context, making its conversion to a seamless DEM restricted. The recently introduced technique of prompt-based monocular depth estimation has opened new opportunities to extract estimates of absolute elevation in a global context. We present here a framework for the estimation of high-resolution DEMs as a new paradigm for absolute global elevation mapping. It is exemplified using low-resolution Shuttle Radar Topography Mission (SRTM) elevation data as prompts and high-resolution RGB imagery from the National Agriculture Imagery Program (NAIP). The approach fine-tunes a vision transformer encoder with LiDAR-derived DEMs and employs a versatile prompting strategy, enabling tasks such as DEM estimation, void filling, and updating. Our framework achieves a 100x resolution gain (from 30-m to 30-cm), surpassing prior methods by an order of magnitude. Evaluations across three diverse U.S. landscapes show robust generalization, capturing urban structures and fine-scale terrain features with < 5 m MAE relative to LiDAR, improving over SRTM by up to 18%. Hydrological analysis confirms suitability for hazard and environmental studies. We demonstrate scalability by applying the framework to large regions in the U.S. and Israel. All code and pretrained models are publicly available at: https://osherr1996.github.io/prompt2dem_propage/.

Authors:Xinyu Zhang, Zhonghao Ye, Jingwei Zhang, Xiang Tian, Zhisheng Liang, Shipeng Yu
Title: VST-Pose: A Velocity-Integrated Spatiotem-poral Attention Network for Human WiFi Pose Estimation
Abstract:
WiFi-based human pose estimation has emerged as a promising non-visual alternative approaches due to its pene-trability and privacy advantages. This paper presents VST-Pose, a novel deep learning framework for accurate and continuous pose estimation using WiFi channel state information. The proposed method introduces ViSTA-Former, a spatiotemporal attention backbone with dual-stream architecture that adopts a dual-stream architecture to separately capture temporal dependencies and structural relationships among body joints. To enhance sensitivity to subtle human motions, a velocity modeling branch is integrated into the framework, which learns short-term keypoint dis-placement patterns and improves fine-grained motion representation. We construct a 2D pose dataset specifically designed for smart home care scenarios and demonstrate that our method achieves 92.2% accuracy on the PCK@50 metric, outperforming existing methods by 8.3% in PCK@50 on the self-collected dataset. Further evaluation on the public MMFi dataset confirms the model's robustness and effectiveness in 3D pose estimation tasks. The proposed system provides a reliable and privacy-aware solution for continuous human motion analysis in indoor environments. Our codes are available in https://github.com/CarmenQing/VST-Pose.

Authors:Zhengyuan Peng, Jianqing Xu, Shen Li, Jiazhen Ji, Yuge Huang, Jingyun Zhang, Jinmin Li, Shouhong Ding, Rizen Guo, Xin Tan, Lizhuang Ma
Title: EyeSeg: An Uncertainty-Aware Eye Segmentation Framework for AR/VR
Abstract:
Human-machine interaction through augmented reality (AR) and virtual reality (VR) is increasingly prevalent, requiring accurate and efficient gaze estimation which hinges on the accuracy of eye segmentation to enable smooth user experiences. We introduce EyeSeg, a novel eye segmentation framework designed to overcome key challenges that existing approaches struggle with: motion blur, eyelid occlusion, and train-test domain gaps. In these situations, existing models struggle to extract robust features, leading to suboptimal performance. Noting that these challenges can be generally quantified by uncertainty, we design EyeSeg as an uncertainty-aware eye segmentation framework for AR/VR wherein we explicitly model the uncertainties by performing Bayesian uncertainty learning of a posterior under the closed set prior. Theoretically, we prove that a statistic of the learned posterior indicates segmentation uncertainty levels and empirically outperforms existing methods in downstream tasks, such as gaze estimation. EyeSeg outputs an uncertainty score and the segmentation result, weighting and fusing multiple gaze estimates for robustness, which proves to be effective especially under motion blur, eyelid occlusion and cross-domain challenges. Moreover, empirical results suggest that EyeSeg achieves segmentation improvements of MIoU, E1, F1, and ACC surpassing previous approaches. The code is publicly available at https://github.com/JethroPeng/EyeSeg.

Authors:Taniv Ashraf
Title: A Serverless Architecture for Real-Time Stock Analysis using Large Language Models: An Iterative Development and Debugging Case Study
Abstract:
The advent of powerful, accessible Large Language Models (LLMs) like Google's Gemini presents new opportunities for democratizing financial data analysis. This paper documents the design, implementation, and iterative debugging of a novel, serverless system for real-time stock analysis. The system leverages the Gemini API for qualitative assessment, automates data ingestion and processing via GitHub Actions, and presents the findings through a decoupled, static frontend. We detail the architectural evolution of the system, from initial concepts to a robust, event-driven pipeline, highlighting the practical challenges encountered during deployment. A significant portion of this paper is dedicated to a case study on the debugging process, covering common software errors, platform-specific permission issues, and rare, environment-level platform bugs. The final architecture operates at a near-zero cost, demonstrating a viable model for individuals to build sophisticated AI-powered financial tools. The operational application is publicly accessible, and the complete source code is available for review. We conclude by discussing the role of LLMs in financial analysis, the importance of robust debugging methodologies, and the emerging paradigm of human-AI collaboration in software development.

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Jiuxiang Gu, Wen Xiao, Junjie Hu
Title: MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Abstract:
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR

Authors:Bolun Zheng, Xinjie Liu, Qianyu Zhang, Canjin Wang, Fangni Chen, Mingen Xu
Title: EHPE: A Segmented Architecture for Enhanced Hand Pose Estimation
Abstract:
3D hand pose estimation has garnered great attention in recent years due to its critical applications in human-computer interaction, virtual reality, and related fields. The accurate estimation of hand joints is essential for high-quality hand pose estimation. However, existing methods neglect the importance of Distal Phalanx Tip (TIP) and Wrist in predicting hand joints overall and often fail to account for the phenomenon of error accumulation for distal joints in gesture estimation, which can cause certain joints to incur larger errors, resulting in misalignments and artifacts in the pose estimation and degrading the overall reconstruction quality. To address this challenge, we propose a novel segmented architecture for enhanced hand pose estimation (EHPE). We perform local extraction of TIP and wrist, thus alleviating the effect of error accumulation on TIP prediction and further reduce the predictive errors for all joints on this basis. EHPE consists of two key stages: In the TIP and Wrist Joints Extraction stage (TW-stage), the positions of the TIP and wrist joints are estimated to provide an initial accurate joint configuration; In the Prior Guided Joints Estimation stage (PG-stage), a dual-branch interaction network is employed to refine the positions of the remaining joints. Extensive experiments on two widely used benchmarks demonstrate that EHPE achieves state-of-the-arts performance. Code is available at https://github.com/SereinNout/EHPE.

Authors:Ximeng Zhai, Bohan Xu, Yaohong Chen, Hao Wang, Kehua Guo, Yimian Dai
Title: SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing
Abstract:
Due to the limitation of the optical lens focal length and the resolution of the infrared detector, distant Closely-Spaced Infrared Small Target (CSIST) groups typically appear as mixing spots in the infrared image. In this paper, we propose a novel task, Sequential CSIST Unmixing, namely detecting all targets in the form of sub-pixel localization from a highly dense CSIST group. However, achieving such precise detection is an extremely difficult challenge. In addition, the lack of high-quality public datasets has also restricted the research progress. To this end, firstly, we contribute an open-source ecosystem, including SeqCSIST, a sequential benchmark dataset, and a toolkit that provides objective evaluation metrics for this special task, along with the implementation of 23 relevant methods. Furthermore, we propose the Deformable Refinement Network (DeRefNet), a model-driven deep learning framework that introduces a Temporal Deformable Feature Alignment (TDFA) module enabling adaptive inter-frame information aggregation. To the best of our knowledge, this work is the first endeavor to address the CSIST Unmixing task within a multi-frame paradigm. Experiments on the SeqCSIST dataset demonstrate that our method outperforms the state-of-the-art approaches with mean Average Precision (mAP) metric improved by 5.3\%. Our dataset and toolkit are available from https://github.com/GrokCV/SeqCSIST.

Authors:Zihao Xiong, Fei Zhou, Fengyi Wu, Shuai Yuan, Maixia Fu, Zhenming Peng, Jian Yang, Yimian Dai
Title: DRPCA-Net: Make Robust PCA Great Again for Infrared Small Target Detection
Abstract:
Infrared small target detection plays a vital role in remote sensing, industrial monitoring, and various civilian applications. Despite recent progress powered by deep learning, many end-to-end convolutional models tend to pursue performance by stacking increasingly complex architectures, often at the expense of interpretability, parameter efficiency, and generalization. These models typically overlook the intrinsic sparsity prior of infrared small targets--an essential cue that can be explicitly modeled for both performance and efficiency gains. To address this, we revisit the model-based paradigm of Robust Principal Component Analysis (RPCA) and propose Dynamic RPCA Network (DRPCA-Net), a novel deep unfolding network that integrates the sparsity-aware prior into a learnable architecture. Unlike conventional deep unfolding methods that rely on static, globally learned parameters, DRPCA-Net introduces a dynamic unfolding mechanism via a lightweight hypernetwork. This design enables the model to adaptively generate iteration-wise parameters conditioned on the input scene, thereby enhancing its robustness and generalization across diverse backgrounds. Furthermore, we design a Dynamic Residual Group (DRG) module to better capture contextual variations within the background, leading to more accurate low-rank estimation and improved separation of small targets. Extensive experiments on multiple public infrared datasets demonstrate that DRPCA-Net significantly outperforms existing state-of-the-art methods in detection accuracy. Code is available at https://github.com/GrokCV/DRPCA-Net.

Authors:Yunwei Lan, Zhigao Cui, Xin Luo, Chang Liu, Nian Wang, Menglin Zhang, Yanzhao Su, Dong Liu
Title: When Schrödinger Bridge Meets Real-World Image Dehazing with Unpaired Training
Abstract:
Recent advancements in unpaired dehazing, particularly those using GANs, show promising performance in processing real-world hazy images. However, these methods tend to face limitations due to the generator's limited transport mapping capability, which hinders the full exploitation of their effectiveness in unpaired training paradigms. To address these challenges, we propose DehazeSB, a novel unpaired dehazing framework based on the Schrödinger Bridge. By leveraging optimal transport (OT) theory, DehazeSB directly bridges the distributions between hazy and clear images. This enables optimal transport mappings from hazy to clear images in fewer steps, thereby generating high-quality results. To ensure the consistency of structural information and details in the restored images, we introduce detail-preserving regularization, which enforces pixel-level alignment between hazy inputs and dehazed outputs. Furthermore, we propose a novel prompt learning to leverage pre-trained CLIP models in distinguishing hazy images and clear ones, by learning a haze-aware vision-language alignment. Extensive experiments on multiple real-world datasets demonstrate our method's superiority. Code: https://github.com/ywxjm/DehazeSB.

Authors:Junjie Wu, Gefei Gu, Yanan Zheng, Dit-Yan Yeung, Arman Cohan
Title: Ref-Long: Benchmarking the Long-context Referencing Capability of Long-context Language Models
Abstract:
Long-context language models (LCLMs) have exhibited impressive capabilities in long-context understanding tasks. Among these, long-context referencing -- a crucial task that requires LCLMs to attribute items of interest to specific parts of long-context data -- remains underexplored. To bridge this gap, this paper proposes Referencing Evaluation for Long-context Language Models (Ref-Long), a novel benchmark designed to assess the long-context referencing capability of LCLMs. Specifically, Ref-Long requires LCLMs to identify the indexes of documents that reference a specific key, emphasizing contextual relationships between the key and the documents over simple retrieval. Based on the task design, we construct three subsets ranging from synthetic to realistic scenarios to form the Ref-Long benchmark. Experimental results of 13 LCLMs reveal significant shortcomings in long-context referencing, even among advanced models like GPT-4o. To further investigate these challenges, we conduct comprehensive analyses, including human evaluations, task format adjustments, fine-tuning experiments, and error analyses, leading to several key insights. Our data and code can be found in https://github. com/wujunjie1998/Ref-Long.

Authors:Yiwen Liang, Hui Chen, Yizhe Xiong, Zihan Zhou, Mengyao Lyu, Zijia Lin, Shuaicheng Niu, Sicheng Zhao, Jungong Han, Guiguang Ding
Title: Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations
Abstract:
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable, which has motivated the development of Test-Time Adaptation (TTA) to improve VLMs' performance during inference without annotations. Among various TTA approaches, cache-based methods show promise by preserving historical knowledge from low-entropy samples in a dynamic cache and fostering efficient adaptation. However, these methods face two critical reliability challenges: (1) entropy often becomes unreliable under distribution shifts, causing error accumulation in the cache and degradation in adaptation performance; (2) the final predictions may be unreliable due to inflexible decision boundaries that fail to accommodate large downstream shifts. To address these challenges, we propose a Reliable Test-time Adaptation (ReTA) method that integrates two complementary strategies to enhance reliability from two perspectives. First, to mitigate the unreliability of entropy as a sample selection criterion for cache construction, we introduce Consistency-aware Entropy Reweighting (CER), which incorporates consistency constraints to weight entropy during cache updating. While conventional approaches rely solely on low entropy for cache prioritization and risk introducing noise, our method leverages predictive consistency to maintain a high-quality cache and facilitate more robust adaptation. Second, we present Diversity-driven Distribution Calibration (DDC), which models class-wise text embeddings as multivariate Gaussian distributions, enabling adaptive decision boundaries for more accurate predictions across visually diverse content. Extensive experiments demonstrate that ReTA consistently outperforms state-of-the-art methods, particularly under real-world distribution shifts. Code: https://github.com/Evelyn1ywliang/ReTA.

Authors:Changli Wang, Rui Wu, Fang Yin
Title: ViSP: A PPO-Driven Framework for Sarcasm Generation with Contrastive Learning
Abstract:
Human emotions are complex, with sarcasm being a subtle and distinctive form. Despite progress in sarcasm research, sarcasm generation remains underexplored, primarily due to the overreliance on textual modalities and the neglect of visual cues, as well as the mismatch between image content and sarcastic intent in existing datasets. In this paper, we introduce M2SaG, a multimodal sarcasm generation dataset with 4,970 samples, each containing an image, a sarcastic text, and a sarcasm target. To benchmark M2SaG, we propose ViSP, a generation framework that integrates Proximal Policy Optimization (PPO) and contrastive learning. PPO utilizes reward scores from DIP to steer the generation of sarcastic texts, while contrastive learning encourages the model to favor outputs with higher reward scores. These strategies improve overall generation quality and produce texts with more pronounced sarcastic intent. We evaluate ViSP across five metric sets and find it surpasses all baselines, including large language models, underscoring their limitations in sarcasm generation. Furthermore, we analyze the distributions of Sarcasm Scores and Factual Incongruity for both M2SaG and the texts generated by ViSP. The generated texts exhibit higher mean Sarcasm Scores (0.898 vs. 0.770) and Factual Incongruity (0.768 vs. 0.739), demonstrating that ViSP produces higher-quality sarcastic content than the original dataset. % The dataset and code will be publicly available. Our dataset and code will be released at \textit{https://github.com/wclapply/ViSP}.

Authors:Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei, Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, Philip S. Yu
Title: Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Abstract:
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.

Authors:Yuanhong Zheng, Ruixuan Yu, Jian Sun
Title: Efficient Multi-Person Motion Prediction by Lightweight Spatial and Temporal Interactions
Abstract:
3D multi-person motion prediction is a highly complex task, primarily due to the dependencies on both individual past movements and the interactions between agents. Moreover, effectively modeling these interactions often incurs substantial computational costs. In this work, we propose a computationally efficient model for multi-person motion prediction by simplifying spatial and temporal interactions. Our approach begins with the design of lightweight dual branches that learn local and global representations for individual and multiple persons separately. Additionally, we introduce a novel cross-level interaction block to integrate the spatial and temporal representations from both branches. To further enhance interaction modeling, we explicitly incorporate the spatial inter-person distance embedding. With above efficient temporal and spatial design, we achieve state-of-the-art performance for multiple metrics on standard datasets of CMU-Mocap, MuPoTS-3D, and 3DPW, while significantly reducing the computational cost. Code is available at https://github.com/Yuanhong-Zheng/EMPMP.

Authors:Ankit Sanjyal
Title: RectifiedHR: High-Resolution Diffusion via Energy Profiling and Adaptive Guidance Scheduling
Abstract:
High-resolution image synthesis with diffusion models often suffers from energy instabilities and guidance artifacts that degrade visual quality. We analyze the latent energy landscape during sampling and propose adaptive classifier-free guidance (CFG) schedules that maintain stable energy trajectories. Our approach introduces energy-aware scheduling strategies that modulate guidance strength over time, achieving superior stability scores (0.9998) and consistency metrics (0.9873) compared to fixed-guidance approaches. We demonstrate that DPM++ 2M with linear-decreasing CFG scheduling yields optimal performance, providing sharper, more faithful images while reducing artifacts. Our energy profiling framework serves as a powerful diagnostic tool for understanding and improving diffusion model behavior.

Authors:Timothy Chase, Karthik Dantu
Title: Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
Abstract:
The detection and tracking of celestial surface terrain features are crucial for autonomous spaceflight applications, including Terrain Relative Navigation (TRN), Entry, Descent, and Landing (EDL), hazard analysis, and scientific data collection. Traditional photoclinometry-based pipelines often rely on extensive a priori imaging and offline processing, constrained by the computational limitations of radiation-hardened systems. While historically effective, these approaches typically increase mission costs and duration, operate at low processing rates, and have limited generalization. Recently, learning-based computer vision has gained popularity to enhance spacecraft autonomy and overcome these limitations. While promising, emerging techniques frequently impose computational demands exceeding the capabilities of typical spacecraft hardware for real-time operation and are further challenged by the scarcity of labeled training data for diverse extraterrestrial environments. In this work, we present novel formulations for in-situ landmark tracking via detection and description. We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors. For landmark detection, we propose improved domain adaptation methods that enable the identification of celestial terrain features with distinct, cheaply acquired training data. Concurrently, for landmark description, we introduce a novel attention alignment formulation that learns robust feature representations that maintain correspondence despite significant landmark viewpoint variations. Together, these contributions form a unified system for landmark tracking that demonstrates superior performance compared to existing state-of-the-art techniques.

Authors:Peter Pao-Huang, Mitchell Black, Xiaojie Qiu
Title: Geometric Generative Modeling with Noise-Conditioned Graph Networks
Abstract:
Generative modeling of graphs with spatial structure is essential across many applications from computer graphics to spatial genomics. Recent flow-based generative models have achieved impressive results by gradually adding and then learning to remove noise from these graphs. Existing models, however, use graph neural network architectures that are independent of the noise level, limiting their expressiveness. To address this issue, we introduce \textit{Noise-Conditioned Graph Networks} (NCGNs), a class of graph neural networks that dynamically modify their architecture according to the noise level during generation. Our theoretical and empirical analysis reveals that as noise increases, (1) graphs require information from increasingly distant neighbors and (2) graphs can be effectively represented at lower resolutions. Based on these insights, we develop Dynamic Message Passing (DMP), a specific instantiation of NCGNs that adapts both the range and resolution of message passing to the noise level. DMP consistently outperforms noise-independent architectures on a variety of domains including $3$D point clouds, spatiotemporal transcriptomics, and images. Code is available at https://github.com/peterpaohuang/ncgn.

Authors:Sourish Suri, Yifei Shao
Title: Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture
Abstract:
Crop diseases present a significant barrier to agricultural productivity and global food security, especially in large-scale farming where early identification is often delayed or inaccurate. This research introduces a Convolutional Neural Network (CNN)-based image classification system designed to automate the detection and classification of eight common crop diseases using leaf imagery. The methodology involves a complete deep learning pipeline: image acquisition from a large, labeled dataset, preprocessing via resizing, normalization, and augmentation, and model training using TensorFlow with Keras' Sequential API. The CNN architecture comprises three convolutional layers with increasing filter sizes and ReLU activations, followed by max pooling, flattening, and fully connected layers, concluding with a softmax output for multi-class classification. The system achieves high training accuracy (~90%) and demonstrates reliable performance on unseen data, although a validation accuracy of ~60% suggests minor overfitting. Notably, the model integrates a treatment recommendation module, providing actionable guidance by mapping each detected disease to suitable pesticide or fungicide interventions. Furthermore, the solution is deployed on an open-source, mobile-compatible platform, enabling real-time image-based diagnostics for farmers in remote areas. This research contributes a scalable and accessible tool to the field of precision agriculture, reducing reliance on manual inspection and promoting sustainable disease management practices. By merging deep learning with practical agronomic support, this work underscores the potential of CNNs to transform crop health monitoring and enhance food production resilience on a global scale.

Authors:Svetlana Orlova, Tommie Kerssies, Brunó B. Englert, Gijs Dubbelman
Title: Simplifying Traffic Anomaly Detection with Video Foundation Models
Abstract:
Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) advanced pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.

Authors:Wencan Huang, Daizong Liu, Wei Hu
Title: Fast3D: Accelerating 3D Multi-modal Large Language Models for Efficient 3D Scene Understanding
Abstract:
While 3D Multi-modal Large Language Models (MLLMs) demonstrate remarkable scene understanding capabilities, their practical deployment faces critical challenges due to computational inefficiency. The key bottleneck stems from processing excessive object-centric visual tokens required for comprehensive 3D scene representation. Although visual token pruning has shown promise in accelerating 2D MLLMs, its applicability to 3D domains remains largely unexplored due to fundamental disparities in token structures. In this paper, we reveal two critical insights: (1) Significant redundancy exists in object-level 3D token representations, analogous to patch-level redundancy in 2D systems; (2) Global attention patterns exhibit strong predictive power for identifying non-essential tokens in 3D contexts. Building on these observations, we propose Fast3D, a plug-and-play visual token pruning framework for 3D MLLMs featuring two technical innovations: (1) Global Attention Prediction (GAP), where a lightweight neural network learns to predict the global attention distributions of the target model, enabling efficient token importance estimation for precise pruning guidance; (2) Sample-Adaptive visual token Pruning (SAP), which introduces dynamic token budgets through attention-based complexity assessment, automatically adjusting layer-wise pruning ratios based on input characteristics. Both of these two techniques operate without modifying the parameters of the target model. Extensive evaluations across five benchmarks validate the effectiveness of Fast3D, particularly under high visual token pruning ratios. Code is available at https://github.com/wencan25/Fast3D

Authors:Linus Walter, Qingkai Kong, Sara Hanson-Hedgecock, Víctor Vilarrasa
Title: WellPINN: Accurate Well Representation for Transient Fluid Pressure Diffusion in Subsurface Reservoirs with Physics-Informed Neural Networks
Abstract:
Accurate representation of wells is essential for reliable reservoir characterization and simulation of operational scenarios in subsurface flow models. Physics-informed neural networks (PINNs) have recently emerged as a promising method for reservoir modeling, offering seamless integration of monitoring data and governing physical equations. However, existing PINN-based studies face major challenges in capturing fluid pressure near wells, particularly during the early stage after injection begins. To address this, we propose WellPINN, a modeling workflow that combines the outputs of multiple sequentially trained PINN models to accurately represent wells. This workflow iteratively approximates the radius of the equivalent well to match the actual well dimensions by decomposing the domain into stepwise shrinking subdomains with a simultaneously reducing equivalent well radius. Our results demonstrate that sequential training of superimposing networks around the pumping well is the first workflow that focuses on accurate inference of fluid pressure from pumping rates throughout the entire injection period, significantly advancing the potential of PINNs for inverse modeling and operational scenario simulations. All data and code for this paper will be made openly available at https://github.com/linuswalter/WellPINN.

Authors:Han Zhu, Wei Kang, Liyong Guo, Zengwei Yao, Fangjun Kuang, Weiji Zhuang, Zhaoqing Li, Zhifeng Han, Dong Zhang, Xin Zhang, Xingchen Song, Long Lin, Daniel Povey
Title: ZipVoice-Dialog: Non-Autoregressive Spoken Dialogue Generation with Flow Matching
Abstract:
Generating spoken dialogue is more challenging than monologue text-to-speech (TTS) due to the need for realistic turn-taking and distinct speaker timbres. Existing spoken dialogue generation models, being auto-regressive, suffer from slow and unstable inference. To overcome these limitations, we introduce ZipVoice-Dialog, a non-autoregressive zero-shot spoken dialogue generation model built upon flow matching. Key designs include: 1) speaker-turn embeddings for precise speaker turn-taking; 2) a curriculum learning strategy for stable speech-text alignment; 3) specialized strategies to enable stereo dialogue generation. Additionally, recognizing the lack of open-source large-scale spoken dialogue datasets, we curated OpenDialog, a 6.8k-hour spoken dialogue dataset from in-the-wild speech data. Furthermore, we established a benchmark to comprehensively evaluate various models. Experimental results demonstrate that ZipVoice-Dialog achieves superior performance in intelligibility, speaker turn-taking accuracy, speaker similarity, and inference speed. Our codes, model checkpoints, demo samples, and the OpenDialog dataset are all publicly available at https://github.com/k2-fsa/ZipVoice.

Authors:Yueqian Wang, Xiaojun Meng, Yifan Wang, Huishuai Zhang, Dongyan Zhao
Title: ProactiveVideoQA: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models
Abstract:
With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveVideoQA, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveVideoQA and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveVideoQA

Authors:Zile Wang, Hao Yu, Jiabo Zhan, Chun Yuan
Title: AlphaVAE: Unified End-to-End RGBA Image Reconstruction and Generation with Alpha-Aware Representation Learning
Abstract:
Recent advances in latent diffusion models have achieved remarkable results in high-fidelity RGB image synthesis by leveraging pretrained VAEs to compress and reconstruct pixel data at low computational cost. However, the generation of transparent or layered content (RGBA image) remains largely unexplored, due to the lack of large-scale benchmarks. In this work, we propose ALPHA, the first comprehensive RGBA benchmark that adapts standard RGB metrics to four-channel images via alpha blending over canonical backgrounds. We further introduce ALPHAVAE, a unified end-to-end RGBA VAE that extends a pretrained RGB VAE by incorporating a dedicated alpha channel. The model is trained with a composite objective that combines alpha-blended pixel reconstruction, patch-level fidelity, perceptual consistency, and dual KL divergence constraints to ensure latent fidelity across both RGB and alpha representations. Our RGBA VAE, trained on only 8K images in contrast to 1M used by prior methods, achieves a +4.9 dB improvement in PSNR and a +3.2% increase in SSIM over LayerDiffuse in reconstruction. It also enables superior transparent image generation when fine-tuned within a latent diffusion framework. Our code, data, and models are released on https://github.com/o0o0o00o0/AlphaVAE for reproducibility.

Authors:Zhiwei Xu
Title: DAA*: Deep Angular A Star for Image-based Path Planning
Abstract:
Path smoothness is often overlooked in path imitation learning from expert demonstrations. In this paper, we introduce a novel learning method, termed deep angular A* (DAA*), by incorporating the proposed path angular freedom (PAF) into A* to improve path similarity through adaptive path smoothness. The PAF aims to explore the effect of move angles on path node expansion by finding the trade-off between their minimum and maximum values, allowing for high adaptiveness for imitation learning. DAA* improves path optimality by closely aligning with the reference path through joint optimization of path shortening and smoothing, which correspond to heuristic distance and PAF, respectively. Throughout comprehensive evaluations on 7 datasets, including 4 maze datasets, 2 video-game datasets, and a real-world drone-view dataset containing 2 scenarios, we demonstrate remarkable improvements of our DAA* over neural A* in path similarity between the predicted and reference paths with a shorter path length when the shortest path is plausible, improving by 9.0% SPR, 6.9% ASIM, and 3.9% PSIM. Furthermore, when jointly learning pathfinding with both path loss and path probability map loss, DAA* significantly outperforms the state-of-the-art TransPath by 6.3% SPR, 6.0% PSIM, and 3.7% ASIM. We also discuss the minor trade-off between path optimality and search efficiency where applicable. Our code and model weights are available at https://github.com/zwxu064/DAAStar.git.

Authors:Abdulvahap Mutlu, Şengül Doğan, Türker Tuncer
Title: ViT-ProtoNet for Few-Shot Image Classification: A Multi-Benchmark Evaluation
Abstract:
The remarkable representational power of Vision Transformers (ViTs) remains underutilized in few-shot image classification. In this work, we introduce ViT-ProtoNet, which integrates a ViT-Small backbone into the Prototypical Network framework. By averaging class conditional token embeddings from a handful of support examples, ViT-ProtoNet constructs robust prototypes that generalize to novel categories under 5-shot settings. We conduct an extensive empirical evaluation on four standard benchmarks: Mini-ImageNet, FC100, CUB-200, and CIFAR-FS, including overlapped support variants to assess robustness. Across all splits, ViT-ProtoNet consistently outperforms CNN-based prototypical counterparts, achieving up to a 3.2\% improvement in 5-shot accuracy and demonstrating superior feature separability in latent space. Furthermore, it outperforms or is competitive with transformer-based competitors using a more lightweight backbone. Comprehensive ablations examine the impact of transformer depth, patch size, and fine-tuning strategy. To foster reproducibility, we release code and pretrained weights. Our results establish ViT-ProtoNet as a powerful, flexible approach for few-shot classification and set a new baseline for transformer-based meta-learners.

Authors:Yuval Grader, Hadar Averbuch-Elor
Title: Supercharging Floorplan Localization with Semantic Rays
Abstract:
Floorplans provide a compact representation of the building's structure, revealing not only layout information but also detailed semantics such as the locations of windows and doors. However, contemporary floorplan localization techniques mostly focus on matching depth-based structural cues, ignoring the rich semantics communicated within floorplans. In this work, we introduce a semantic-aware localization framework that jointly estimates depth and semantic rays, consolidating over both for predicting a structural-semantic probability volume. Our probability volume is constructed in a coarse-to-fine manner: We first sample a small set of rays to obtain an initial low-resolution probability volume. We then refine these probabilities by performing a denser sampling only in high-probability regions and process the refined values for predicting a 2D location and orientation angle. We conduct an evaluation on two standard floorplan localization benchmarks. Our experiments demonstrate that our approach substantially outperforms state-of-the-art methods, achieving significant improvements in recall metrics compared to prior works. Moreover, we show that our framework can easily incorporate additional metadata such as room labels, enabling additional gains in both accuracy and efficiency.

Authors:Chenhao Ding, Jiangtao Zhang, Zongsheng Yue, Hui Wang, Qian Zhao, Deyu Meng
Title: Generative Latent Kernel Modeling for Blind Motion Deblurring
Abstract:
Deep prior-based approaches have demonstrated remarkable success in blind motion deblurring (BMD) recently. These methods, however, are often limited by the high non-convexity of the underlying optimization process in BMD, which leads to extreme sensitivity to the initial blur kernel. To address this issue, we propose a novel framework for BMD that leverages a deep generative model to encode the kernel prior and induce a better initialization for the blur kernel. Specifically, we pre-train a kernel generator based on a generative adversarial network (GAN) to aptly characterize the kernel's prior distribution, as well as a kernel initializer to provide a well-informed and high-quality starting point for kernel estimation. By combining these two components, we constrain the BMD solution within a compact latent kernel manifold, thus alleviating the aforementioned sensitivity for kernel initialization. Notably, the kernel generator and initializer are designed to be easily integrated with existing BMD methods in a plug-and-play manner, enhancing their overall performance. Furthermore, we extend our approach to tackle blind non-uniform motion deblurring without the need for additional priors, achieving state-of-the-art performance on challenging benchmark datasets. The source code is available at https://github.com/dch0319/GLKM-Deblur.

Authors:Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel
Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Authors:Shuhan Ye, Yuanbin Qian, Chong Wang, Sunqi Lin, Jiazhen Xu, Jiangbo Qian, Yuqi Li
Title: Cross Knowledge Distillation between Artificial and Spiking Neural Networks
Abstract:
Recently, Spiking Neural Networks (SNNs) have demonstrated rich potential in computer vision domain due to their high biological plausibility, event-driven characteristic and energy-saving efficiency. Still, limited annotated event-based datasets and immature SNN architectures result in their performance inferior to that of Artificial Neural Networks (ANNs). To enhance the performance of SNNs on their optimal data format, DVS data, we explore using RGB data and well-performing ANNs to implement knowledge distillation. In this case, solving cross-modality and cross-architecture challenges is necessary. In this paper, we propose cross knowledge distillation (CKD), which not only leverages semantic similarity and sliding replacement to mitigate the cross-modality challenge, but also uses an indirect phased knowledge distillation to mitigate the cross-architecture challenge. We validated our method on main-stream neuromorphic datasets, including N-Caltech101 and CEP-DVS. The experimental results show that our method outperforms current State-of-the-Art methods. The code will be available at https://github.com/ShawnYE618/CKD

Authors:Junyu Chen, Yihua Gao, Mingyuan Ge, Mingyong Li
Title: Ambiguity-Aware and High-Order Relation Learning for Multi-Grained Image-Text Matching
Abstract:
Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic ambiguities among similar instances. These ambiguities arise from subtle differences between soft positive samples (semantically similar but incorrectly labeled) and soft negative samples (locally matched but globally inconsistent), creating matching uncertainties. Furthermore, current methods fail to fully utilize the neighborhood relationships among semantically similar instances within training batches, limiting the model's ability to learn high-order shared knowledge. This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues. AAHR constructs a unified representation space through dynamic clustering prototype contrastive learning, effectively mitigating the soft positive sample problem. The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities. Additionally, AAHR employs intra-modal and inter-modal correlation matrices to investigate neighborhood relationships among sample instances thoroughly. It incorporates GNN to enhance semantic interactions between instances. Furthermore, AAHR integrates momentum contrastive learning to expand the negative sample set. These combined strategies significantly improve the model's ability to discriminate between features. Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets, considerably improving the accuracy and efficiency of image-text matching. The code and model checkpoints for this research are available at https://github.com/Image-Text-Matching/AAHR .

Authors:Behraj Khan, Tahir Qasim Syed, Nouman M. Durrani, Bilal Naseem, Shabir Ahmad, Rizwan Qureshi
Title: Calibrated and Robust Foundation Models for Vision-Language and Medical Image Tasks Under Distribution Shift
Abstract:
Foundation models like CLIP and SAM have advanced computer vision and medical imaging via low-shot transfer learning, aiding CADD with limited data. However, their deployment faces two key challenges. \textit{distribution shift} where pre-training and post-training data distributions differ (e.g., due to inter-center image acquisition) and \textit{confidence misalignment}, which leads to overconfident errors. These issues surface differently, vision-language models (e.g., CLIP) suffer from 2D embedding shift (image-text misalignment), while medical models (e.g., SAM) encounter 3D domain shifts (e.g., scanner variation) and voxel-wise calibration need. Existing solutions are domain-specific. We propose \textbf{StaRFM}, a fusion of Fisher information penalty (FIP) and confidence misalignment penalty (CMP) tackling both challenges. It applies FIP, extended to 3D via patch-wise regularization, to reduce embedding shift, and CMP, reformulated for voxel-level predictions, to calibrate segmentation uncertainty. We derive PAC-Bayes bounds. FIP controls generalization via the Fisher-Rao norm, and CMP reduces calibration error via Brier score minimization. StaRFM surpasses baselines by \texttt{+}3.5\% accuracy and 28\% lower ECE on 19 vision datasets (e.g., ImageNet, Office-Home), achieves +4.2\% DSC over SAM-FT and 4.8mm HD95 on medical benchmarks (e.g., BraTS, ATLAS), and reduces cross-domain gaps by up to 20\%. The framework is plug-and-play, requiring minimal architectural changes. Code and models are available at: \href{https://anonymous.4open.science/r/StaRFM-C0CD/}{\textcolor{blue}{\underline{StaRFM}}}

Authors:Shiyi Mu, Zichong Gu, Hanqi Lyu, Yilin Gao, Shugong Xu
Title: Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline
Abstract:
3D detection technology is widely used in the field of autonomous driving, with its application scenarios gradually expanding from enclosed highways to open conventional roads. For rare anomaly categories that appear on the road, 3D detection models trained on closed sets often misdetect or fail to detect anomaly objects. To address this risk, it is necessary to enhance the generalization ability of 3D detection models for targets of arbitrary shapes and to possess the capability to filter out anomalies. The generalization of 3D detection is limited by two factors: the coupled training of 2D and 3D, and the insufficient diversity in the scale distribution of training samples. This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm, which decouples the training strategy of 3D and 2D to release the generalization ability for arbitrary 3D foreground detection, and proposes an anomaly scoring algorithm based on foreground confidence prediction, achieving target-level anomaly scoring. In order to further verify and enhance the generalization of anomaly detection, we use a 3D rendering method to synthesize two augmented reality binocular stereo 3D detection datasets which named KITTI-AR. KITTI-AR extends upon KITTI by adding 97 new categories, totaling 6k pairs of stereo images. The KITTI-AR-ExD subset includes 39 common categories as extra training data to address the sparse sample distribution issue. Additionally, 58 rare categories form the KITTI-AR-OoD subset, which are not used in training to simulate zero-shot scenarios in real-world settings, solely for evaluating 3D anomaly detection. Finally, the performance of the algorithm and the dataset is verified in the experiments. (Code and dataset can be obtained at https://github.com/shiyi-mu/S3AD-Code).

Authors:Dunsheng Huang, Dong Shen, Lei Lu, Ying Tan
Title: Optimizing Basis Function Selection in Constructive Wavelet Neural Networks and Its Applications
Abstract:
Wavelet neural network (WNN), which learns an unknown nonlinear mapping from the data, has been widely used in signal processing, and time-series analysis. However, challenges in constructing accurate wavelet bases and high computational costs limit their application. This study introduces a constructive WNN that selects initial bases and trains functions by introducing new bases for predefined accuracy while reducing computational costs. For the first time, we analyze the frequency of unknown nonlinear functions and select appropriate initial wavelets based on their primary frequency components by estimating the energy of the spatial frequency component. This leads to a novel constructive framework consisting of a frequency estimator and a wavelet-basis increase mechanism to prioritize high-energy bases, significantly improving computational efficiency. The theoretical foundation defines the necessary time-frequency range for high-dimensional wavelets at a given accuracy. The framework's versatility is demonstrated through four examples: estimating unknown static mappings from offline data, combining two offline datasets, identifying time-varying mappings from time-series data, and capturing nonlinear dependencies in real time-series data. These examples showcase the framework's broad applicability and practicality. All the code will be released at https://github.com/dshuangdd/CWNN.

Authors:Jonas Scholz, Richard E. Turner
Title: Warm Starts Accelerate Generative Modelling
Abstract:
Iterative generative models, like diffusion and flow-matching, create high-fidelity samples by progressively refining a noise vector into data. However, this process is notoriously slow, often requiring hundreds of function evaluations. We introduce the warm-start model, a simple, deterministic model that dramatically accelerates conditional generation by providing a better starting point. Instead of starting generation from an uninformed N(0, I) prior, our warm-start model predicts an informed prior N(mu, sigma), whose moments are conditioned on the input context. This "warm start" substantially reduces the distance the generative process must traverse, particularly when the conditioning information is strongly informative. On tasks like image inpainting, our method achieves results competitive with a 1000-step DDPM baseline using only 11 total function evaluations (1 for the warm start, 10 for generation). A simple conditional normalization trick makes our method compatible with any standard generative model and sampler without modification, allowing it to be combined with other efficient sampling techniques for further acceleration. Our implementation is available at https://github.com/jonas-scholz123/warm-start-model.

Authors:Minhaj Uddin Ahmad, Akid Abrar, Sagar Dasgupta, Mizanur Rahman
Title: OpenCAMS: An Open-Source Connected and Automated Mobility Co-Simulation Platform for Advancing Next-Generation Intelligent Transportation Systems Research
Abstract:
We introduce OpenCAMS (Open-Source Connected and Automated Mobility Co-Simulation Platform), an open-source, synchronized, and extensible co-simulation framework that tightly couples three best-in-class simulation tools: (i) SUMO, (ii) CARLA, and (iii) OMNeT++. OpenCAMS is designed to support advanced research in transportation safety, mobility, and cybersecurity by combining the strengths of each simulation domain. Specifically, SUMO provides large-scale, microscopic traffic modeling; CARLA offers high-fidelity 3D perception, vehicle dynamics, and control simulation; and OMNeT++ enables modular, event-driven network communication, such as cellular vehicle-to-everything (C-V2X). OpenCAMS employs a time-synchronized, bidirectional coupling architecture that ensures coherent simulation progression across traffic, perception, and communication domains while preserving modularity and reproducibility. For example, CARLA can simulate and render a subset of vehicles that require detailed sensor emulation and control logic; SUMO orchestrates network-wide traffic flow, vehicle routing, and traffic signal management; and OMNeT++ dynamically maps communication nodes to both mobile entities (e.g., vehicles) and static entities (e.g., roadside units) to enable C-V2X communication. While these three simulators form the foundational core of OpenCAMS, the platform is designed to be expandable and future-proof, allowing additional simulators to be integrated on top of this core without requiring fundamental changes to the system architecture. The OpenCAMS platform is fully open-source and publicly available through its GitHub repository https://github.com/minhaj6/carla-sumo-omnetpp-cosim, providing the research community with an accessible, flexible, and collaborative environment for advancing next-generation intelligent transportation systems.

Authors:Qiyan Zhao, Xiaofeng Zhang, Yiheng Li, Yun Xing, Xiaosong Yuan, Feilong Tang, Sinan Fan, Xuhang Chen, Xuyao Zhang, Dahan Wang
Title: MCA-LLaVA: Manhattan Causal Attention for Reducing Hallucination in Large Vision-Language Models
Abstract:
Hallucinations pose a significant challenge in Large Vision Language Models (LVLMs), with misalignment between multimodal features identified as a key contributing factor. This paper reveals the negative impact of the long-term decay in Rotary Position Encoding (RoPE), used for positional modeling in LVLMs, on multimodal alignment. Concretely, under long-term decay, instruction tokens exhibit uneven perception of image tokens located at different positions within the two-dimensional space: prioritizing image tokens from the bottom-right region since in the one-dimensional sequence, these tokens are positionally closer to the instruction tokens. This biased perception leads to insufficient image-instruction interaction and suboptimal multimodal alignment. We refer to this phenomenon as image alignment bias. To enhance instruction's perception of image tokens at different spatial locations, we propose MCA-LLaVA, based on Manhattan distance, which extends the long-term decay to a two-dimensional, multi-directional spatial decay. MCA-LLaVA integrates the one-dimensional sequence order and two-dimensional spatial position of image tokens for positional modeling, mitigating hallucinations by alleviating image alignment bias. Experimental results of MCA-LLaVA across various hallucination and general benchmarks demonstrate its effectiveness and generality. The code can be accessed in https://github.com/ErikZ719/MCA-LLaVA.

Authors:Yongwei Jiang, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Revisiting Pool-based Prompt Learning for Few-shot Class-incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces dual challenges of data scarcity and incremental learning in real-world scenarios. While pool-based prompting methods have demonstrated success in traditional incremental learning, their effectiveness in FSCIL settings remains unexplored. This paper presents the first study of current prompt pool methods in FSCIL tasks, revealing an unanticipated performance degradation in incremental sessions. Through comprehensive analysis, we identify that this phenomenon stems from token-dimension saturation: with limited data, excessive prompts compete for task-relevant information, leading to model overfitting. Based on this finding, we propose LGSP-Prompt (Local-Global Spatial Prompting), which innovatively shifts pool-based prompt learning from the token dimension to the spatial dimension. LGSP-Prompt generates spatial prompts by synergistically combining local spatial features and global frequency-domain representations to highlight key patterns in input images. We construct two spatial prompt pools enabling dynamic prompt selection to maintain acquired knowledge while effectively learning novel sessions. Extensive experiments demonstrate that our approach achieves state-of-the-art performance across multiple FSCIL benchmarks, showing significant advantages in both base knowledge preservation and incremental learning. Our implementation is available at https://github.com/Jywsuperman/LGSP.

Authors:Han Ye, Yuqiang Jin, Jinyuan Liu, Tao Li, Wen-An Zhang, Minglei Fu
Title: DLBAcalib: Robust Extrinsic Calibration for Non-Overlapping LiDARs Based on Dual LBA
Abstract:
Accurate extrinsic calibration of multiple LiDARs is crucial for improving the foundational performance of three-dimensional (3D) map reconstruction systems. This paper presents a novel targetless extrinsic calibration framework for multi-LiDAR systems that does not rely on overlapping fields of view or precise initial parameter estimates. Unlike conventional calibration methods that require manual annotations or specific reference patterns, our approach introduces a unified optimization framework by integrating LiDAR bundle adjustment (LBA) optimization with robust iterative refinement. The proposed method constructs an accurate reference point cloud map via continuous scanning from the target LiDAR and sliding-window LiDAR bundle adjustment, while formulating extrinsic calibration as a joint LBA optimization problem. This method effectively mitigates cumulative mapping errors and achieves outlier-resistant parameter estimation through an adaptive weighting mechanism. Extensive evaluations in both the CARLA simulation environment and real-world scenarios demonstrate that our method outperforms state-of-the-art calibration techniques in both accuracy and robustness. Experimental results show that for non-overlapping sensor configurations, our framework achieves an average translational error of 5 mm and a rotational error of 0.2°, with an initial error tolerance of up to 0.4 m/30°. Moreover, the calibration process operates without specialized infrastructure or manual parameter tuning. The code is open source and available on GitHub (\underline{https://github.com/Silentbarber/DLBAcalib})

Authors:Shuo Yang, Zijian Yu, Zhenzhe Ying, Yuqin Dai, Guoqing Wang, Jun Lan, Jinfeng Xu, Jinze Li, Edith C. H. Ngai
Title: RAMA: Retrieval-Augmented Multi-Agent Framework for Misinformation Detection in Multimodal Fact-Checking
Abstract:
The rapid proliferation of multimodal misinformation presents significant challenges for automated fact-checking systems, especially when claims are ambiguous or lack sufficient context. We introduce RAMA, a novel retrieval-augmented multi-agent framework designed for verifying multimedia misinformation. RAMA incorporates three core innovations: (1) strategic query formulation that transforms multimodal claims into precise web search queries; (2) cross-verification evidence aggregation from diverse, authoritative sources; and (3) a multi-agent ensemble architecture that leverages the complementary strengths of multiple multimodal large language models and prompt variants. Extensive experiments demonstrate that RAMA achieves superior performance on benchmark datasets, particularly excelling in resolving ambiguous or improbable claims by grounding verification in retrieved factual evidence. Our findings underscore the necessity of integrating web-based evidence and multi-agent reasoning for trustworthy multimedia verification, paving the way for more reliable and scalable fact-checking solutions. RAMA will be publicly available at https://github.com/kalendsyang/RAMA.git.

Authors:Ali Vosoughi, Ayoub Shahnazari, Yufeng Xi, Zeliang Zhang, Griffin Hess, Chenliang Xu, Niaz Abdolrahim
Title: OPENXRD: A Comprehensive Benchmark and Enhancement Framework for LLM/MLLM XRD Question Answering
Abstract:
This work presents OPENXRD, an open-book pipeline designed for crystallography question answering, which integrates textual prompts with concise supporting content generated by GPT-4.5. Instead of using scanned textbooks, which may lead to copyright issues, OPENXRD generates compact, domain-specific references that help smaller models understand key concepts in X-ray diffraction (XRD). We evaluate OPENXRD on a well-defined set of 217 expert-level XRD questions by comparing different vision-language models, including GPT-4 and LLaVA-based frameworks such as Mistral, LLaMA, and QWEN, under both closed-book (without supporting material) and open-book (with supporting material) conditions. Our experimental results show significant accuracy improvements in models that use the GPT-4.5-generated summaries, particularly those with limited prior training in crystallography. OPENXRD uses knowledge from larger models to fill knowledge gaps in crystallography and shows that AI-generated texts can help smaller models reason more effectively in scientific tasks. While the current version of OPENXRD focuses on text-based inputs, we also explore future extensions such as adding real crystal diagrams or diffraction patterns to improve interpretation in specialized materials science contexts. Overall, OPENXRD shows that specialized open-book systems can be useful in materials science and provides a foundation for broader natural language processing (NLP) tools in critical scientific fields.

Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Title: $I^{2}$-World: Intra-Inter Tokenization for Efficient Dynamic 4D Scene Forecasting
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.

Authors:Dewen Zhang, Tahir Hussain, Wangpeng An, Hayaru Shouno
Title: PoseLLM: Enhancing Language-Guided Human Pose Estimation with MLP Alignment
Abstract:
Human pose estimation traditionally relies on architectures that encode keypoint priors, limiting their generalization to novel poses or unseen keypoints. Recent language-guided approaches like LocLLM reformulate keypoint localization as a vision-language task, enabling zero-shot generalization through textual descriptions. However, LocLLM's linear projector fails to capture complex spatial-textual interactions critical for high-precision localization. To address this, we propose PoseLLM, the first Large Language Model (LLM)-based pose estimation framework that replaces the linear projector with a nonlinear MLP vision-language connector. This lightweight two-layer MLP with GELU activation enables hierarchical cross-modal feature transformation, enhancing the fusion of visual patches and textual keypoint descriptions. Trained exclusively on COCO data, PoseLLM achieves 77.8 AP on the COCO validation set, outperforming LocLLM by +0.4 AP, while maintaining strong zero-shot generalization on Human-Art and MPII. Our work demonstrates that a simple yet powerful nonlinear connector significantly boosts localization accuracy without sacrificing generalization, advancing the state-of-the-art in language-guided pose estimation. Code is available at https://github.com/Ody-trek/PoseLLM.

Authors:Chuan Guo, Inwoo Hwang, Jian Wang, Bing Zhou
Title: SnapMoGen: Human Motion Generation from Expressive Texts
Abstract:
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/

Authors:Linlan Huang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu
Title: Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
Abstract:
Continual learning aims to enable models to learn sequentially from continuously incoming data while retaining performance on previously learned tasks. With the Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks, there has been growing interest in leveraging CLIP for continual learning in such scenarios. Most existing works overlook the inherent modality gap in CLIP, a key factor in its generalization and adaptability. In this paper, we analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models. Our observations reveal that the modality gap effectively reflects the extent to which pre-trained knowledge is preserved. Based on these insights, we propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning. Our approach leverages modality gap preservation to mitigate forgetting and modality gap compensation to enhance the capacity for new data, introducing a novel modality-gap-based perspective for continual learning. Extensive experiments on multiple benchmarks demonstrate that our method outperforms existing approaches without requiring additional replay data. Our code is available at https://github.com/linlany/MindtheGap.

Authors:Di Wen, Kunyu Peng, Kailun Yang, Yufan Chen, Ruiping Liu, Junwei Zheng, Alina Roitberg, Danda Pani Paudel, Luc Van Gool, Rainer Stiefelhagen
Title: RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate prediction. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI.

Authors:Gianluigi Silvestri, Luca Ambrogioni
Title: CoVAE: Consistency Training of Variational Autoencoders
Abstract:
Current state-of-the-art generative approaches frequently rely on a two-stage training procedure, where an autoencoder (often a VAE) first performs dimensionality reduction, followed by training a generative model on the learned latent space. While effective, this introduces computational overhead and increased sampling times. We challenge this paradigm by proposing Consistency Training of Variational AutoEncoders (CoVAE), a novel single-stage generative autoencoding framework that adopts techniques from consistency models to train a VAE architecture. The CoVAE encoder learns a progressive series of latent representations with increasing encoding noise levels, mirroring the forward processes of diffusion and flow matching models. This sequence of representations is regulated by a time dependent $β$ parameter that scales the KL loss. The decoder is trained using a consistency loss with variational regularization, which reduces to a conventional VAE loss at the earliest latent time. We show that CoVAE can generate high-quality samples in one or few steps without the use of a learned prior, significantly outperforming equivalent VAEs and other single-stage VAEs methods. Our approach provides a unified framework for autoencoding and diffusion-style generative modeling and provides a viable route for one-step generative high-performance autoencoding. Our code is publicly available at https://github.com/gisilvs/covae.

Authors:Yiyang Chen, Shanshan Zhao, Lunhao Duan, Changxing Ding, Dacheng Tao
Title: Harnessing Text-to-Image Diffusion Models for Point Cloud Self-Supervised Learning
Abstract:
Diffusion-based models, widely used in text-to-image generation, have proven effective in 2D representation learning. Recently, this framework has been extended to 3D self-supervised learning by constructing a conditional point generator for enhancing 3D representations. However, its performance remains constrained by the 3D diffusion model, which is trained on the available 3D datasets with limited size. We hypothesize that the robust capabilities of text-to-image diffusion models, particularly Stable Diffusion (SD), which is trained on large-scale datasets, can help overcome these limitations. To investigate this hypothesis, we propose PointSD, a framework that leverages the SD model for 3D self-supervised learning. By replacing the SD model's text encoder with a 3D encoder, we train a point-to-image diffusion model that allows point clouds to guide the denoising of rendered noisy images. With the trained point-to-image diffusion model, we use noise-free images as the input and point clouds as the condition to extract SD features. Next, we train a 3D backbone by aligning its features with these SD features, thereby facilitating direct semantic learning. Comprehensive experiments on downstream point cloud tasks and ablation studies demonstrate that the SD model can enhance point cloud self-supervised learning. Code is publicly available at https://github.com/wdttt/PointSD.

Authors:Anthony Miyaguchi, Conor Johnston, Aaryan Potdar
Title: DS@GT at Touché: Large Language Models for Retrieval-Augmented Debate
Abstract:
Large Language Models (LLMs) demonstrate strong conversational abilities. In this Working Paper, we study them in the context of debating in two ways: their ability to perform in a structured debate along with a dataset of arguments to use and their ability to evaluate utterances throughout the debate. We deploy six leading publicly available models from three providers for the Retrieval-Augmented Debate and Evaluation. The evaluation is performed by measuring four key metrics: Quality, Quantity, Manner, and Relation. Throughout this task, we found that although LLMs perform well in debates when given related arguments, they tend to be verbose in responses yet consistent in evaluation. The accompanying source code for this paper is located at https://github.com/dsgt-arc/touche-2025-rad.

Authors:Esraa Elelimy, Brett Daley, Andrew Patterson, Marlos C. Machado, Adam White, Martha White
Title: Deep Reinforcement Learning with Gradient Eligibility Traces
Abstract:
Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is challenging. Most existing methods rely on semi-gradient temporal-difference (TD) methods for their simplicity and efficiency, but are consequently susceptible to divergence. While more principled approaches like Gradient TD (GTD) methods have strong convergence guarantees, they have rarely been used in deep RL. Recent work introduced the generalized Projected Bellman Error ($\overline{\text{PBE}}$), enabling GTD methods to work efficiently with nonlinear function approximation. However, this work is limited to one-step methods, which are slow at credit assignment and require a large number of samples. In this paper, we extend the generalized $\overline{\text{PBE}}$ objective to support multistep credit assignment based on the $λ$-return and derive three gradient-based methods that optimize this new objective. We provide both a forward-view formulation compatible with experience replay and a backward-view formulation compatible with streaming algorithms. Finally, we evaluate the proposed algorithms and show that they outperform both PPO and StreamQ in MuJoCo and MinAtar environments, respectively. Code available at https://github.com/esraaelelimy/gtd\_algos

Authors:Seungwoo Kim, Khai Loong Aw, Klemen Kotar, Cristobal Eyzaguirre, Wanhee Lee, Yunong Liu, Jared Watrous, Stefan Stojanov, Juan Carlos Niebles, Jiajun Wu, Daniel L. K. Yamins
Title: Taming generative video models for zero-shot optical flow extraction
Abstract:
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.

Authors:Shivam Mehta, Yingru Liu, Zhenyu Tang, Kainan Peng, Vimal Manohar, Shun Zhang, Mike Seltzer, Qing He, Mingbo Ma
Title: SemAlignVC: Enhancing zero-shot timbre conversion using semantic alignment
Abstract:
Zero-shot voice conversion (VC) synthesizes speech in a target speaker's voice while preserving linguistic and paralinguistic content. However, timbre leakage-where source speaker traits persist-remains a challenge, especially in neural codec and LLM-based VC, where quantized representations entangle speaker identity with content. We introduce SemAlignVC, an architecture designed to prevent timbre leakage using SemAlign, a novel method that aligns text and audio representations to ensure speaker-independent semantic encoding. This disentangled representation conditions an autoregressive transformer for high-fidelity conversion without explicit speaker embeddings. Experiments show SemAlignVC significantly reduces timbre leakage, outperforming baselines in speaker timbre similarity, intelligibility, and naturalness, making it a robust, privacy-preserving, and generalizable VC solution. Audio samples can be accessed at https://shivammehta25.github.io/SemAlignVC/

Authors:Frédéric A. Dreyer, Jan Ludwiczak, Karolis Martinkus, Brennan Abanades, Robert G. Alberstein, Pan Kessel, Pranav Rao, Jae Hyeon Lee, Richard Bonneau, Andrew M. Watkins, Franziska Seeger
Title: Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins
Abstract:
We introduce Ibex, a pan-immunoglobulin structure prediction model that achieves state-of-the-art accuracy in modeling the variable domains of antibodies, nanobodies, and T-cell receptors. Unlike previous approaches, Ibex explicitly distinguishes between bound and unbound protein conformations by training on labeled apo and holo structural pairs, enabling accurate prediction of both states at inference time. Using a comprehensive private dataset of high-resolution antibody structures, we demonstrate superior out-of-distribution performance compared to existing specialized and general protein structure prediction tools. Ibex combines the accuracy of cutting-edge models with significantly reduced computational requirements, providing a robust foundation for accelerating large molecule design and therapeutic development.

Authors:Zhengxiao He, Huayu Li, Geng Yuan, William D. S. Killgore, Stuart F. Quan, Chen X. Chen, Ao Li
Title: Multimodal Cardiovascular Risk Profiling Using Self-Supervised Learning of Polysomnography
Abstract:
Methods: We developed a self-supervised deep learning model that extracts meaningful patterns from multi-modal signals (Electroencephalography (EEG), Electrocardiography (ECG), and respiratory signals). The model was trained on data from 4,398 participants. Projection scores were derived by contrasting embeddings from individuals with and without CVD outcomes. External validation was conducted in an independent cohort with 1,093 participants. The source code is available on https://github.com/miraclehetech/sleep-ssl. Results: The projection scores revealed distinct and clinically meaningful patterns across modalities. ECG-derived features were predictive of both prevalent and incident cardiac conditions, particularly CVD mortality. EEG-derived features were predictive of incident hypertension and CVD mortality. Respiratory signals added complementary predictive value. Combining these projection scores with the Framingham Risk Score consistently improved predictive performance, achieving area under the curve values ranging from 0.607 to 0.965 across different outcomes. Findings were robustly replicated and validated in the external testing cohort. Conclusion: Our findings demonstrate that the proposed framework can generate individualized CVD risk scores directly from PSG data. The resulting projection scores have the potential to be integrated into clinical practice, enhancing risk assessment and supporting personalized care.

Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges
Title: VIP: Visual Information Protection through Adversarial Attacks on Vision-Language Models
Abstract:
Recent years have witnessed remarkable progress in developing Vision-Language Models (VLMs) capable of processing both textual and visual inputs. These models have demonstrated impressive performance, leading to their widespread adoption in various applications. However, this widespread raises serious concerns regarding user privacy, particularly when models inadvertently process or expose private visual information. In this work, we frame the preservation of privacy in VLMs as an adversarial attack problem. We propose a novel attack strategy that selectively conceals information within designated Region Of Interests (ROIs) in an image, effectively preventing VLMs from accessing sensitive content while preserving the semantic integrity of the remaining image. Unlike conventional adversarial attacks that often disrupt the entire image, our method maintains high coherence in unmasked areas. Experimental results across three state-of-the-art VLMs namely LLaVA, Instruct-BLIP, and BLIP2-T5 demonstrate up to 98% reduction in detecting targeted ROIs, while maintaining global image semantics intact, as confirmed by high similarity scores between clean and adversarial outputs. We believe that this work contributes to a more privacy conscious use of multimodal models and offers a practical tool for further research, with the source code publicly available at: https://github.com/hbrachemi/Vlm_defense-attack.

Authors:Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola
Title: Learning Diffusion Models with Flexible Representation Guidance
Abstract:
Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.

Authors:Mahdiyar Molahasani, Azadeh Motamedi, Michael Greenspan, Il-Min Kim, Ali Etemad
Title: PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
Abstract:
We introduce Projection-based Reduction of Implicit Spurious bias in vision-language Models (PRISM), a new data-free and task-agnostic solution for bias mitigation in VLMs like CLIP. VLMs often inherit and amplify biases in their training data, leading to skewed predictions. PRISM is designed to debias VLMs without relying on predefined bias categories or additional external data. It operates in two stages: first, an LLM is prompted with simple class prompts to generate scene descriptions that contain spurious correlations. Next, PRISM uses our novel contrastive-style debiasing loss to learn a projection that maps the embeddings onto a latent space that minimizes spurious correlations while preserving the alignment between image and text embeddings.Extensive experiments demonstrate that PRISM outperforms current debiasing methods on the commonly used Waterbirds and CelebA datasets We make our code public at: https://github.com/MahdiyarMM/PRISM.

Authors:Xiaowen Zhang, Zhenyu Bi, Patrick Lachance, Xuan Wang, Tiziana Di Matteo, Rupert A. C. Croft
Title: Bridging Literature and the Universe Via A Multi-Agent Large Language Model System
Abstract:
As cosmological simulations and their associated software become increasingly complex, physicists face the challenge of searching through vast amounts of literature and user manuals to extract simulation parameters from dense academic papers, each using different models and formats. Translating these parameters into executable scripts remains a time-consuming and error-prone process. To improve efficiency in physics research and accelerate the cosmological simulation process, we introduce SimAgents, a multi-agent system designed to automate both parameter configuration from the literature and preliminary analysis for cosmology research. SimAgents is powered by specialized LLM agents capable of physics reasoning, simulation software validation, and tool execution. These agents collaborate through structured communication, ensuring that extracted parameters are physically meaningful, internally consistent, and software-compliant. We also construct a cosmological parameter extraction evaluation dataset by collecting over 40 simulations in published papers from Arxiv and leading journals that cover diverse simulation types. Experiments on the dataset demonstrate a strong performance of SimAgents, highlighting its effectiveness and potential to accelerate scientific research for physicists. Our demonstration video is available at: https://youtu.be/w1zLpm_CaWA. The complete system and dataset are publicly available at https://github.com/xwzhang98/SimAgents.

Authors:Tomasz Szandala, Fatima Ezzeddine, Natalia Rusin, Silvia Giordano, Omran Ayoub
Title: Fair-FLIP: Fair Deepfake Detection with Fairness-Oriented Final Layer Input Prioritising
Abstract:
Artificial Intelligence-generated content has become increasingly popular, yet its malicious use, particularly the deepfakes, poses a serious threat to public trust and discourse. While deepfake detection methods achieve high predictive performance, they often exhibit biases across demographic attributes such as ethnicity and gender. In this work, we tackle the challenge of fair deepfake detection, aiming to mitigate these biases while maintaining robust detection capabilities. To this end, we propose a novel post-processing approach, referred to as Fairness-Oriented Final Layer Input Prioritising (Fair-FLIP), that reweights a trained model's final-layer inputs to reduce subgroup disparities, prioritising those with low variability while demoting highly variable ones. Experimental results comparing Fair-FLIP to both the baseline (without fairness-oriented de-biasing) and state-of-the-art approaches show that Fair-FLIP can enhance fairness metrics by up to 30% while maintaining baseline accuracy, with only a negligible reduction of 0.25%. Code is available on Github: https://github.com/szandala/fair-deepfake-detection-toolbox

Authors:Sergio Mares, Ariel Espinoza Weinberger, Nilah M. Ioannidis
Title: Generation of structure-guided pMHC-I libraries using Diffusion Models
Abstract:
Personalized vaccines and T-cell immunotherapies depend critically on identifying peptide-MHC class I (pMHC-I) interactions capable of eliciting potent immune responses. However, current benchmarks and models inherit biases present in mass-spectrometry and binding-assay datasets, limiting discovery of novel peptide ligands. To address this issue, we introduce a structure-guided benchmark of pMHC-I peptides designed using diffusion models conditioned on crystal structure interaction distances. Spanning twenty high-priority HLA alleles, this benchmark is independent of previously characterized peptides yet reproduces canonical anchor residue preferences, indicating structural generalization without experimental dataset bias. Using this resource, we demonstrate that state-of-the-art sequence-based predictors perform poorly at recognizing the binding potential of these structurally stable designs, indicating allele-specific limitations invisible in conventional evaluations. Our geometry-aware design pipeline yields peptides with high predicted structural integrity and higher residue diversity than existing datasets, representing a key resource for unbiased model training and evaluation. Our code, and data are available at: https://github.com/sermare/struct-mhc-dev.

Authors:Wenliang Shan, Michael Fu, Rui Yang, Chakkrit Tantithamthavorn
Title: SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems
Abstract:
Safety alignment is critical for LLM-powered systems. While recent LLM-powered guardrail approaches such as LlamaGuard achieve high detection accuracy of unsafe inputs written in English (e.g., ``How to create a bomb?''), they struggle with multilingual unsafe inputs. This limitation leaves LLM systems vulnerable to unsafe and jailbreak prompts written in low-resource languages such as those in Southeast Asia. This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages. It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts in LLM-powered systems. We adapt a general-purpose multilingual language model into a multilingual guardrail using low-rank adaptation (LoRA). We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages, including safe, unsafe, and jailbreak cases. We evaluate SEALGuard against state-of-the-art guardrails such as LlamaGuard on this benchmark. Our findings show that multilingual unsafe and jailbreak prompts substantially degrade the performance of the state-of-the-art LlamaGuard, which experiences a drop in Defense Success Rate (DSR) by 9% and 18%, respectively, compared to its performance on English-only prompts. In contrast, SEALGuard outperforms existing guardrails in detecting multilingual unsafe and jailbreak prompts, improving DSR by 48% over LlamaGuard and achieving the best DSR, precision, and F1-score. Our ablation study further reveals the contributions of adaptation strategies and model size to the overall performance of SEALGuard. We release our pre-trained model and benchmark at https://github.com/awsm-research/SEALGuard to support further research.

Authors:Yaowenqi Liu, BingXu Meng, Rui Pan, Jerry Huang, Tong Zhang
Title: GUIDE: Towards Scalable Advising for Research Ideas
Abstract:
The field of AI research is advancing at an unprecedented pace, enabling automated hypothesis generation and experimental design across diverse domains such as biology, mathematics, and artificial intelligence. Despite these advancements, there remains a significant gap in the availability of scalable advising systems capable of providing high-quality, well-reasoned feedback to refine proposed hypotheses and experimental designs. To address this challenge, we explore key factors that underlie the development of robust advising systems, including model size, context length, confidence estimation, and structured reasoning processes. Our findings reveal that a relatively small model, when equipped with a well-compressed literature database and a structured reasoning framework, can outperform powerful general-purpose language models such as Deepseek-R1 in terms of acceptance rates for self-ranked top-30% submissions to ICLR 2025. Moreover, when limited to high-confidence predictions, our system achieves an acceptance rate exceeding 90% on the ICLR 2025 test set, underscoring its potential to significantly enhance the quality and efficiency of hypothesis generation and experimental design. The code is released at https://github.com/HowardLiu0830/GUIDE-Research-Idea-Evaluation.

Authors:Awais Manzoor, M. Atif Qureshi, Etain Kidney, Luca Longo
Title: e-Profits: A Business-Aligned Evaluation Metric for Profit-Sensitive Customer Churn Prediction
Abstract:
Retention campaigns in customer relationship management often rely on churn prediction models evaluated using traditional metrics such as AUC and F1-score. However, these metrics fail to reflect financial outcomes and may mislead strategic decisions. We introduce e-Profits, a novel business-aligned evaluation metric that quantifies model performance based on customer-specific value, retention probability, and intervention costs. Unlike existing profit-based metrics such as Expected Maximum Profit, which assume fixed population-level parameters, e-Profits uses Kaplan-Meier survival analysis to estimate personalised retention rates and supports granular, per customer evaluation. We benchmark six classifiers across two telecom datasets (IBM Telco and Maven Telecom) and demonstrate that e-Profits reshapes model rankings compared to traditional metrics, revealing financial advantages in models previously overlooked by AUC or F1-score. The metric also enables segment-level insight into which models maximise return on investment for high-value customers. e-Profits is designed as an understandable, post hoc tool to support model evaluation in business contexts, particularly for marketing and analytics teams prioritising profit-driven decisions. All source code is available at: https://github.com/matifq/eprofits.

Authors:Simon Schwaiger, Stefan Thalhammer, Wilfried Wöber, Gerald Steinbauer-Wagner
Title: OTAS: Open-vocabulary Token Alignment for Outdoor Segmentation
Abstract:
Understanding open-world semantics is critical for robotic planning and control, particularly in unstructured outdoor environments. Existing vision-language mapping approaches typically rely on object-centric segmentation priors, which often fail outdoors due to semantic ambiguities and indistinct class boundaries. We propose OTAS - an Open-vocabulary Token Alignment method for outdoor Segmentation. OTAS addresses the limitations of open-vocabulary segmentation models by extracting semantic structure directly from the output tokens of pre-trained vision models. By clustering semantically similar structures across single and multiple views and grounding them in language, OTAS reconstructs a geometrically consistent feature field that supports open-vocabulary segmentation queries. Our method operates in a zero-shot manner, without scene-specific fine-tuning, and achieves real-time performance of up to ~17 fps. On the Off-Road Freespace Detection dataset, OTAS yields a modest IoU improvement over fine-tuned and open-vocabulary 2D segmentation baselines. In 3D segmentation on TartanAir, it achieves up to a 151% relative IoU improvement compared to existing open-vocabulary mapping methods. Real-world reconstructions further demonstrate OTAS' applicability to robotic deployment. Code and a ROS 2 node are available at https://otas-segmentation.github.io/.

Authors:Zhufeng Lu, Chentao Jia, Ming Hu, Xiaofei Xie, Mingsong Chen
Title: Gradients as an Action: Towards Communication-Efficient Federated Recommender Systems via Adaptive Action Sharing
Abstract:
As a promising privacy-aware collaborative model training paradigm, Federated Learning (FL) is becoming popular in the design of distributed recommender systems. However, Federated Recommender Systems (FedRecs) greatly suffer from two major problems: i) extremely high communication overhead due to massive item embeddings involved in recommendation systems, and ii) intolerably low training efficiency caused by the entanglement of both heterogeneous network environments and client devices. Although existing methods attempt to employ various compression techniques to reduce communication overhead, due to the parameter errors introduced by model compression, they inevitably suffer from model performance degradation. To simultaneously address the above problems, this paper presents a communication-efficient FedRec framework named FedRAS, which adopts an action-sharing strategy to cluster the gradients of item embedding into a specific number of model updating actions for communication rather than directly compressing the item embeddings. In this way, the cloud server can use the limited actions from clients to update all the items. Since gradient values are significantly smaller than item embeddings, constraining the directions of gradients (i.e., the action space) introduces smaller errors compared to compressing the entire item embedding matrix into a reduced space. To accommodate heterogeneous devices and network environments, FedRAS incorporates an adaptive clustering mechanism that dynamically adjusts the number of actions. Comprehensive experiments on well-known datasets demonstrate that FedRAS can reduce the size of communication payloads by up to 96.88%, while not sacrificing recommendation performance within various heterogeneous scenarios. We have open-sourced FedRAS at https://github.com/mastlab-T3S/FedRAS.

Authors:Kun Jing, Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li
Title: Zero-Shot Neural Architecture Search with Weighted Response Correlation
Abstract:
Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.

Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Title: Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.

Authors:Shaocong Dong, Lihe Ding, Xiao Chen, Yaokun Li, Yuxin Wang, Yucheng Wang, Qi Wang, Jaehyeok Kim, Chenjian Gao, Zhanpeng Huang, Zibin Wang, Tianfan Xue, Dan Xu
Title: From One to More: Contextual Part Latents for 3D Generation
Abstract:
Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

Authors:Chenyang Song, Weilin Zhao, Xu Han, Chaojun Xiao, Yingfa Chen, Yuxuan Li, Zhiyuan Liu, Maosong Sun
Title: BlockFFN: Towards End-Side Acceleration-Friendly Mixture-of-Experts with Chunk-Level Activation Sparsity
Abstract:
To alleviate the computational burden of large language models (LLMs), architectures with activation sparsity, represented by mixture-of-experts (MoE), have attracted increasing attention. However, the non-differentiable and inflexible routing of vanilla MoE hurts model performance. Moreover, while each token activates only a few parameters, these sparsely-activated architectures exhibit low chunk-level sparsity, indicating that the union of multiple consecutive tokens activates a large ratio of parameters. Such a sparsity pattern is unfriendly for acceleration under low-resource conditions (e.g., end-side devices) and incompatible with mainstream acceleration techniques (e.g., speculative decoding). To address these challenges, we introduce a novel MoE architecture, BlockFFN, as well as its efficient training and deployment techniques. Specifically, we use a router integrating ReLU activation and RMSNorm for differentiable and flexible routing. Next, to promote both token-level sparsity (TLS) and chunk-level sparsity (CLS), CLS-aware training objectives are designed, making BlockFFN more acceleration-friendly. Finally, we implement efficient acceleration kernels, combining activation sparsity and speculative decoding for the first time. The experimental results demonstrate the superior performance of BlockFFN over other MoE baselines, achieving over 80% TLS and 70% 8-token CLS. Our kernels achieve up to 3.67$\times$ speedup on real end-side devices than dense models. All codes and checkpoints are available publicly (https://github.com/thunlp/BlockFFN).

Authors:Rei Tamaru, Pei Li, Bin Ran
Title: Geo-ORBIT: A Federated Digital Twin Framework for Scene-Adaptive Lane Geometry Detection
Abstract:
Digital Twins (DT) have the potential to transform traffic management and operations by creating dynamic, virtual representations of transportation systems that sense conditions, analyze operations, and support decision-making. A key component for DT of the transportation system is dynamic roadway geometry sensing. However, existing approaches often rely on static maps or costly sensors, limiting scalability and adaptability. Additionally, large-scale DTs that collect and analyze data from multiple sources face challenges in privacy, communication, and computational efficiency. To address these challenges, we introduce Geo-ORBIT (Geometrical Operational Roadway Blueprint with Integrated Twin), a unified framework that combines real-time lane detection, DT synchronization, and federated meta-learning. At the core of Geo-ORBIT is GeoLane, a lightweight lane detection model that learns lane geometries from vehicle trajectory data using roadside cameras. We extend this model through Meta-GeoLane, which learns to personalize detection parameters for local entities, and FedMeta-GeoLane, a federated learning strategy that ensures scalable and privacy-preserving adaptation across roadside deployments. Our system is integrated with CARLA and SUMO to create a high-fidelity DT that renders highway scenarios and captures traffic flows in real-time. Extensive experiments across diverse urban scenes show that FedMeta-GeoLane consistently outperforms baseline and meta-learning approaches, achieving lower geometric error and stronger generalization to unseen locations while drastically reducing communication overhead. This work lays the foundation for flexible, context-aware infrastructure modeling in DTs. The framework is publicly available at https://github.com/raynbowy23/FedMeta-GeoLane.git.

Authors:Tianlong Ai, Tianzhu Liu, Haochen Jiang, Yanfeng Gu
Title: HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
Abstract:
Hierarchical land cover and land use (LCLU) classification aims to assign pixel-wise labels with multiple levels of semantic granularity to remote sensing (RS) imagery. However, existing deep learning-based methods face two major challenges: 1) They predominantly adopt a flat classification paradigm, which limits their ability to generate end-to-end multi-granularity hierarchical predictions aligned with tree-structured hierarchies used in practice. 2) Most cross-domain studies focus on performance degradation caused by sensor or scene variations, with limited attention to transferring LCLU models to cross-domain tasks with heterogeneous hierarchies (e.g., LCLU to crop classification). These limitations hinder the flexibility and generalization of LCLU models in practical applications. To address these challenges, we propose HieraRS, a novel hierarchical interpretation paradigm that enables multi-granularity predictions and supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies. We introduce the Bidirectional Hierarchical Consistency Constraint Mechanism (BHCCM), which can be seamlessly integrated into mainstream flat classification models to generate hierarchical predictions, while improving both semantic consistency and classification accuracy. Furthermore, we present TransLU, a dual-branch cross-domain transfer framework comprising two key components: Cross-Domain Knowledge Sharing (CDKS) and Cross-Domain Semantic Alignment (CDSA). TransLU supports dynamic category expansion and facilitates the effective adaptation of LCLU models to heterogeneous hierarchies. In addition, we construct MM-5B, a large-scale multi-modal hierarchical land use dataset featuring pixel-wise annotations. The code and MM-5B dataset will be released at: https://github.com/AI-Tianlong/HieraRS.

Authors:Yuqiang Lin, Sam Lockyer, Mingxuan Sui, Li Gan, Florian Stanek, Markus Zarbock, Wenbin Li, Adrian Evans, Nic Zhang
Title: RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
Abstract:
The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git

Authors:Dominik Schweisgut, Anne Benoit, Yves Robert, Henning Meyerhenke
Title: Carbon-Aware Workflow Scheduling with Fixed Mapping and Deadline Constraint
Abstract:
Large data and computing centers consume a significant share of the world's energy consumption. A prominent subset of the workloads in such centers are workflows with interdependent tasks, usually represented as directed acyclic graphs (DAGs). To reduce the carbon emissions resulting from executing such workflows in centers with a mixed (renewable and non-renewable) energy supply, it is advisable to move task executions to time intervals with sufficient green energy when possible. To this end, we formalize the above problem as a scheduling problem with a given mapping and ordering of the tasks. We show that this problem can be solved in polynomial time in the uniprocessor case. For at least two processors, however, the problem becomes NP-hard. Hence, we propose a heuristic framework called CaWoSched that combines several greedy approaches with local search. To assess the 16 heuristics resulting from different combinations, we also devise a simple baseline algorithm and an exact ILP-based solution. Our experimental results show that our heuristics provide significant savings in carbon emissions compared to the baseline.

Authors:Kongwu Huang, Shiyi Mu, Jun Jiang, Yuan Gao, Shugong Xu
Title: Unreal is all you need: Multimodal ISAC Data Simulation with Only One Engine
Abstract:
Scaling laws have achieved success in LLM and foundation models. To explore their potential in ISAC research, we propose Great-X. This single-engine multimodal data twin platform reconstructs the ray-tracing computation of Sionna within Unreal Engine and is deeply integrated with autonomous driving tools. This enables efficient and synchronized simulation of multimodal data, including CSI, RGB, Radar, and LiDAR. Based on this platform, we construct an open-source, large-scale, low-altitude UAV multimodal synaesthesia dataset named Great-MSD, and propose a baseline CSI-based UAV 3D localization algorithm, demonstrating its feasibility and generalizability across different CSI simulation engines. The related code and dataset will be made available at: https://github.com/hkw-xg/Great-MCD.

Authors:Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: Leanabell-Prover-V2: Verifier-integrated Reasoning for Formal Theorem Proving via Reinforcement Learning
Abstract:
We introduce our Leanabell-Prover-V2, a 7B large language models (LLMs) that can produce formal theorem proofs in Lean 4, with verifier-integrated Long Chain-of-Thoughts (CoT). Following our previous work Leanabell-Prover-V1, we continual to choose to posttrain existing strong prover models for further performance improvement. In our V2 version, we mainly upgrade the Reinforcement Learning (RL) with feedback provided by the Lean 4 verifier. Crucially, verifier feedback, such as indicating success or detailing specific errors, allows the LLM to become ``self-aware'' of the correctness of its own reasoning process and learn to reflexively correct errors. Leanabell-Prover-V2 directly optimizes LLM reasoning trajectories with multi-turn verifier interactions, together with feedback token masking for stable RL training and a simple reward strategy. Experiments show that Leanabell-Prover-V2 improves performance by 3.2% (pass@128) with Kimina-Prover-Preview-Distill-7B and 2.0% (pass@128) with DeepSeek-Prover-V2-7B on the MiniF2F test set. The source codes, curated data and models are available at: https://github.com/Leanabell-LM/Leanabell-Prover-V2.

Authors:Shuang Cui, Jinglin Xu, Yi Li, Xiongxin Tang, Jiangmeng Li, Jiahuan Zhou, Fanjiang Xu, Fuchun Sun, Hui Xiong
Title: BayesTTA: Continual-Temporal Test-Time Adaptation for Vision-Language Models via Gaussian Discriminant Analysis
Abstract:
Vision-language models (VLMs) such as CLIP achieve strong zero-shot recognition but degrade significantly under \textit{temporally evolving distribution shifts} common in real-world scenarios (e.g., gradual illumination or seasonal changes). Existing continual test-time adaptation (CTTA) methods are typically built around sudden and severe distribution shifts and neglect temporal continuity, leading to three core defects: limited memory cache restricts long-range distribution modeling, causing catastrophic forgetting; entropy-based confidence becomes unreliable under temporal drift, worsening error accumulation; and static visual representations misalign with evolving inputs. We formalize this practical problem as \textit{Continual-Temporal Test-Time Adaptation (CT-TTA)}, where test distributions evolve gradually over time. To address it, we propose \textit{BayesTTA}, a Bayesian adaptation framework that enforces temporally consistent predictions and dynamically aligns visual representations. Specifically, BayesTTA incrementally estimates class-conditional Gaussian mixture distributions without storing raw data, adaptively selects covariance structures through statistical hypothesis testing, and performs calibrated inference using Gaussian discriminant analysis (GDA). These calibrated predictions supervise self-paced adaptation of normalization layers, ensuring efficient and stable representation alignment. We establish a comprehensive CT-TTA benchmark across four temporally evolving datasets and further evaluate generalization on ten standard TTA datasets. Extensive experiments show that BayesTTA consistently outperforms state-of-the-art methods, achieving significant gains while maintaining efficiency. Code is available at \href{https://github.com/cuishuang99/BayesTTA}{https://github.com/cuishuang99/BayesTTA}.

Authors:Junyu Chen, Yihua Gao, Mingyong Li
Title: Visual Semantic Description Generation with MLLMs for Image-Text Matching
Abstract:
Image-text matching (ITM) aims to address the fundamental challenge of aligning visual and textual modalities, which inherently differ in their representations, continuous, high-dimensional image features vs. discrete, structured text. We propose a novel framework that bridges the modality gap by leveraging multimodal large language models (MLLMs) as visual semantic parsers. By generating rich Visual Semantic Descriptions (VSD), MLLMs provide semantic anchor that facilitate cross-modal alignment. Our approach combines: (1) Instance-level alignment by fusing visual features with VSD to enhance the linguistic expressiveness of image representations, and (2) Prototype-level alignment through VSD clustering to ensure category-level consistency. These modules can be seamlessly integrated into existing ITM models. Extensive experiments on Flickr30K and MSCOCO demonstrate substantial performance improvements. The approach also exhibits remarkable zero-shot generalization to cross-domain tasks, including news and remote sensing ITM. The code and model checkpoints are available at https://github.com/Image-Text-Matching/VSD.

Authors:Yuxuan Jiang, Zehua Chen, Zeqian Ju, Chang Li, Weibei Dou, Jun Zhu
Title: FreeAudio: Training-Free Timing Planning for Controllable Long-Form Text-to-Audio Generation
Abstract:
Text-to-audio (T2A) generation has achieved promising results with the recent advances in generative models. However, because of the limited quality and quantity of temporally-aligned audio-text pairs, existing T2A methods struggle to handle the complex text prompts that contain precise timing control, e.g., "owl hooted at 2.4s-5.2s". Recent works have explored data augmentation techniques or introduced timing conditions as model inputs to enable timing-conditioned 10-second T2A generation, while their synthesis quality is still limited. In this work, we propose a novel training-free timing-controlled T2A framework, FreeAudio, making the first attempt to enable timing-controlled long-form T2A generation, e.g., "owl hooted at 2.4s-5.2s and crickets chirping at 0s-24s". Specifically, we first employ an LLM to plan non-overlapping time windows and recaption each with a refined natural language description, based on the input text and timing prompts. Then we introduce: 1) Decoupling and Aggregating Attention Control for precise timing control; 2) Contextual Latent Composition for local smoothness and Reference Guidance for global consistency. Extensive experiments show that: 1) FreeAudio achieves state-of-the-art timing-conditioned T2A synthesis quality among training-free methods and is comparable to leading training-based methods; 2) FreeAudio demonstrates comparable long-form generation quality with training-based Stable Audio and paves the way for timing-controlled long-form T2A synthesis. Demo samples are available at: https://freeaudio.github.io/FreeAudio/

Authors:Enyu Liu, En Yu, Sijia Chen, Wenbing Tao
Title: Disentangling Instance and Scene Contexts for 3D Semantic Scene Completion
Abstract:
3D Semantic Scene Completion (SSC) has gained increasing attention due to its pivotal role in 3D perception. Recent advancements have primarily focused on refining voxel-level features to construct 3D scenes. However, treating voxels as the basic interaction units inherently limits the utilization of class-level information, which is proven critical for enhancing the granularity of completion results. To address this, we propose \textbf{D}isentangling Instance and Scene Contexts (DISC), a novel dual-stream paradigm that enhances learning for both instance and scene categories through separated optimization. Specifically, we replace voxel queries with discriminative class queries, which incorporate class-specific geometric and semantic priors. Additionally, we exploit the intrinsic properties of classes to design specialized decoding modules, facilitating targeted interactions and efficient class-level information flow. Experimental results demonstrate that DISC achieves state-of-the-art (SOTA) performance on both SemanticKITTI and SSCBench-KITTI-360 benchmarks, with mIoU scores of 17.35 and 20.55, respectively. Remarkably, DISC even outperforms multi-frame SOTA methods using only single-frame input and significantly improves instance category performance, surpassing both single-frame and multi-frame SOTA instance mIoU by 17.9\% and 11.9\%, respectively, on the SemanticKITTI hidden test. The code is available at https://github.com/Enyu-Liu/DISC.

Authors:Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park
Title: RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
Abstract:
Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.

Authors:Shibo Sun, Xue Li, Donglin Di, Mingjie Wei, Lanshun Nie, Wei-Nan Zhang, Dechen Zhan, Yang Song, Lei Fan
Title: LLaPa: A Vision-Language Model Framework for Counterfactual-Aware Procedural Planning
Abstract:
While large language models (LLMs) have advanced procedural planning for embodied AI systems through strong reasoning abilities, the integration of multimodal inputs and counterfactual reasoning remains underexplored. To tackle these challenges, we introduce LLaPa, a vision-language model framework designed for multimodal procedural planning. LLaPa generates executable action sequences from textual task descriptions and visual environmental images using vision-language models (VLMs). Furthermore, we enhance LLaPa with two auxiliary modules to improve procedural planning. The first module, the Task-Environment Reranker (TER), leverages task-oriented segmentation to create a task-sensitive feature space, aligning textual descriptions with visual environments and emphasizing critical regions for procedural execution. The second module, the Counterfactual Activities Retriever (CAR), identifies and emphasizes potential counterfactual conditions, enhancing the model's reasoning capability in counterfactual scenarios. Extensive experiments on ActPlan-1K and ALFRED benchmarks demonstrate that LLaPa generates higher-quality plans with superior LCS and correctness, outperforming advanced models. The code and models are available https://github.com/sunshibo1234/LLaPa.

Authors:Heng Li, Qingcai Chen, Xiangping Wu
Title: Dual Dimensions Geometric Representation Learning Based Document Dewarping
Abstract:
Document image dewarping remains a challenging task in the deep learning era. While existing methods have improved by leveraging text line awareness, they typically focus only on a single horizontal dimension. In this paper, we propose a fine-grained deformation perception model that focuses on Dual Dimensions of document horizontal-vertical-lines to improve document Dewarping called D2Dewarp. It can perceive distortion trends in different directions across document details. To combine the horizontal and vertical granularity features, an effective fusion module based on X and Y coordinate is designed to facilitate interaction and constraint between the two dimensions for feature complementarity. Due to the lack of annotated line features in current public dewarping datasets, we also propose an automatic fine-grained annotation method using public document texture images and an automatic rendering engine to build a new large-scale distortion training dataset. The code and dataset will be publicly released. On public Chinese and English benchmarks, both quantitative and qualitative results show that our method achieves better rectification results compared with the state-of-the-art methods. The dataset will be publicly available at https://github.com/xiaomore/DocDewarpHV

Authors:David Schlangen, Sherzod Hakimov, Jonathan Jordan, Philipp Sadler
Title: A Third Paradigm for LLM Evaluation: Dialogue Game-Based Evaluation using clembench
Abstract:
There are currently two main paradigms for evaluating large language models (LLMs), reference-based evaluation and preference-based evaluation. The first, carried over from the evaluation of machine learning models in general, relies on pre-defined task instances, for which reference task executions are available. The second, best exemplified by the LM-arena, relies on (often self-selected) users bringing their own intents to a site that routes these to several models in parallel, among whose responses the user then selects their most preferred one. The former paradigm hence excels at control over what is tested, while the latter comes with higher ecological validity, testing actual use cases interactively. Recently, a third complementary paradigm has emerged that combines some of the strengths of these approaches, offering control over multi-turn, reference-free, repeatable interactions, while stressing goal-directedness: dialogue game based evaluation. While the utility of this approach has been shown by several projects, its adoption has been held back by the lack of a mature, easily re-usable implementation. In this paper, we present clembench, which has been in continuous development since 2023 and has in its latest release been optimized for ease of general use. We describe how it can be used to benchmark one's own models (using a provided set of benchmark game instances in English), as well as how easily the benchmark itself can be extended with new, tailor-made targeted tests.

Authors:Zesong Yang, Bangbang Yang, Wenqi Dong, Chenxuan Cao, Liyuan Cui, Yuewen Ma, Zhaopeng Cui, Hujun Bao
Title: InstaScene: Towards Complete 3D Instance Decomposition and Reconstruction from Cluttered Scenes
Abstract:
Humans can naturally identify and mentally complete occluded objects in cluttered environments. However, imparting similar cognitive ability to robotics remains challenging even with advanced reconstruction techniques, which models scenes as undifferentiated wholes and fails to recognize complete object from partial observations. In this paper, we propose InstaScene, a new paradigm towards holistic 3D perception of complex scenes with a primary goal: decomposing arbitrary instances while ensuring complete reconstruction. To achieve precise decomposition, we develop a novel spatial contrastive learning by tracing rasterization of each instance across views, significantly enhancing semantic supervision in cluttered scenes. To overcome incompleteness from limited observations, we introduce in-situ generation that harnesses valuable observations and geometric cues, effectively guiding 3D generative models to reconstruct complete instances that seamlessly align with the real world. Experiments on scene decomposition and object completion across complex real-world and synthetic scenes demonstrate that our method achieves superior decomposition accuracy while producing geometrically faithful and visually intact objects.

Authors:Zhanxin Gao, Beier Zhu, Liang Yao, Jian Yang, Ying Tai
Title: Subject-Consistent and Pose-Diverse Text-to-Image Generation
Abstract:
Subject-consistent generation (SCG)-aiming to maintain a consistent subject identity across diverse scenes-remains a challenge for text-to-image (T2I) models. Existing training-free SCG methods often achieve consistency at the cost of layout and pose diversity, hindering expressive visual storytelling. To address the limitation, we propose subject-Consistent and pose-Diverse T2I framework, dubbed as CoDi, that enables consistent subject generation with diverse pose and layout. Motivated by the progressive nature of diffusion, where coarse structures emerge early and fine details are refined later, CoDi adopts a two-stage strategy: Identity Transport (IT) and Identity Refinement (IR). IT operates in the early denoising steps, using optimal transport to transfer identity features to each target image in a pose-aware manner. This promotes subject consistency while preserving pose diversity. IR is applied in the later denoising steps, selecting the most salient identity features to further refine subject details. Extensive qualitative and quantitative results on subject consistency, pose diversity, and prompt fidelity demonstrate that CoDi achieves both better visual perception and stronger performance across all metrics. The code is provided in https://github.com/NJU-PCALab/CoDi.

Authors:Anthony Miyaguchi, Imran Afrulbasha, Aleksandar Pramov
Title: DS@GT at LongEval: Evaluating Temporal Performance in Web Search Systems and Topics with Two-Stage Retrieval
Abstract:
Information Retrieval (IR) models are often trained on static datasets, making them vulnerable to performance degradation as web content evolves. The DS@GT competition team participated in the Longitudinal Evaluation of Model Performance (LongEval) lab at CLEF 2025, which evaluates IR systems across temporally distributed web snapshots. Our analysis of the Qwant web dataset includes exploratory data analysis with topic modeling over time. The two-phase retrieval system employs sparse keyword searches, utilizing query expansion and document reranking. Our best system achieves an average NDCG@10 of 0.296 across the entire training and test dataset, with an overall best score of 0.395 on 2023-05. The accompanying source code for this paper is at https://github.com/dsgt-arc/longeval-2025

Authors:Shishuai Hu, Zehui Liao, Liangli Zhen, Huazhu Fu, Yong Xia
Title: Cycle Context Verification for In-Context Medical Image Segmentation
Abstract:
In-context learning (ICL) is emerging as a promising technique for achieving universal medical image segmentation, where a variety of objects of interest across imaging modalities can be segmented using a single model. Nevertheless, its performance is highly sensitive to the alignment between the query image and in-context image-mask pairs. In a clinical scenario, the scarcity of annotated medical images makes it challenging to select optimal in-context pairs, and fine-tuning foundation ICL models on contextual data is infeasible due to computational costs and the risk of catastrophic forgetting. To address this challenge, we propose Cycle Context Verification (CCV), a novel framework that enhances ICL-based medical image segmentation by enabling self-verification of predictions and accordingly enhancing contextual alignment. Specifically, CCV employs a cyclic pipeline in which the model initially generates a segmentation mask for the query image. Subsequently, the roles of the query and an in-context pair are swapped, allowing the model to validate its prediction by predicting the mask of the original in-context image. The accuracy of this secondary prediction serves as an implicit measure of the initial query segmentation. A query-specific prompt is introduced to alter the query image and updated to improve the measure, thereby enhancing the alignment between the query and in-context pairs. We evaluated CCV on seven medical image segmentation datasets using two ICL foundation models, demonstrating its superiority over existing methods. Our results highlight CCV's ability to enhance ICL-based segmentation, making it a robust solution for universal medical image segmentation. The code will be available at https://github.com/ShishuaiHu/CCV.

Authors:Keisuke Ueda, Wataru Hirota, Takuto Asakura, Takahiro Omi, Kosuke Takahashi, Kosuke Arima, Tatsuya Ishigaki
Title: Exploring Design of Multi-Agent LLM Dialogues for Research Ideation
Abstract:
Large language models (LLMs) are increasingly used to support creative tasks such as research idea generation. While recent work has shown that structured dialogues between LLMs can improve the novelty and feasibility of generated ideas, the optimal design of such interactions remains unclear. In this study, we conduct a comprehensive analysis of multi-agent LLM dialogues for scientific ideation. We compare different configurations of agent roles, number of agents, and dialogue depth to understand how these factors influence the novelty and feasibility of generated ideas. Our experimental setup includes settings where one agent generates ideas and another critiques them, enabling iterative improvement. Our results show that enlarging the agent cohort, deepening the interaction depth, and broadening agent persona heterogeneity each enrich the diversity of generated ideas. Moreover, specifically increasing critic-side diversity within the ideation-critique-revision loop further boosts the feasibility of the final proposals. Our findings offer practical guidelines for building effective multi-agent LLM systems for scientific ideation. Our code is available at https://github.com/g6000/MultiAgent-Research-Ideator.

Authors:Jihao Gu, Fei Wang, Kun Li, Yanyan Wei, Zhiliang Wu, Dan Guo
Title: MM-Gesture: Towards Precise Micro-Gesture Recognition through Multimodal Fusion
Abstract:
In this paper, we present MM-Gesture, the solution developed by our team HFUT-VUT, which ranked 1st in the micro-gesture classification track of the 3rd MiGA Challenge at IJCAI 2025, achieving superior performance compared to previous state-of-the-art methods. MM-Gesture is a multimodal fusion framework designed specifically for recognizing subtle and short-duration micro-gestures (MGs), integrating complementary cues from joint, limb, RGB video, Taylor-series video, optical-flow video, and depth video modalities. Utilizing PoseConv3D and Video Swin Transformer architectures with a novel modality-weighted ensemble strategy, our method further enhances RGB modality performance through transfer learning pre-trained on the larger MA-52 dataset. Extensive experiments on the iMiGUE benchmark, including ablation studies across different modalities, validate the effectiveness of our proposed approach, achieving a top-1 accuracy of 73.213%. Code is available at: https://github.com/momiji-bit/MM-Gesture.

Authors:Jia-Xuan Jiang, Jiashuai Liu, Hongtao Wu, Yifeng Wu, Zhong Wang, Qi Bi, Yefeng Zheng
Title: Single Domain Generalization for Multimodal Cross-Cancer Prognosis via Dirac Rebalancer and Distribution Entanglement
Abstract:
Deep learning has shown remarkable performance in integrating multimodal data for survival prediction. However, existing multimodal methods mainly focus on single cancer types and overlook the challenge of generalization across cancers. In this work, we are the first to reveal that multimodal prognosis models often generalize worse than unimodal ones in cross-cancer scenarios, despite the critical need for such robustness in clinical practice. To address this, we propose a new task: Cross-Cancer Single Domain Generalization for Multimodal Prognosis, which evaluates whether models trained on a single cancer type can generalize to unseen cancers. We identify two key challenges: degraded features from weaker modalities and ineffective multimodal integration. To tackle these, we introduce two plug-and-play modules: Sparse Dirac Information Rebalancer (SDIR) and Cancer-aware Distribution Entanglement (CADE). SDIR mitigates the dominance of strong features by applying Bernoulli-based sparsification and Dirac-inspired stabilization to enhance weaker modality signals. CADE, designed to synthesize the target domain distribution, fuses local morphological cues and global gene expression in latent space. Experiments on a four-cancer-type benchmark demonstrate superior generalization, laying the foundation for practical, robust cross-cancer multimodal prognosis. Code is available at https://github.com/HopkinsKwong/MCCSDG

Authors:Jesus Lopez, Viviana Cadena, Mohammad Saidur Rahman
Title: Evaluating Post-Quantum Cryptographic Algorithms on Resource-Constrained Devices
Abstract:
The rapid advancement of quantum computing poses a critical threat to classical cryptographic algorithms such as RSA and ECC, particularly in Internet of Things (IoT) devices, where secure communication is essential but often constrained by limited computational resources. This paper investigates the feasibility of deploying post-quantum cryptography (PQC) algorithms on resource-constrained devices. In particular, we implement three PQC algorithms -- BIKE, CRYSTALS-Kyber, and HQC -- on a lightweight IoT platform built with Raspberry Pi devices. Leveraging the Open Quantum Safe (\texttt{liboqs}) library in conjunction with \texttt{mbedTLS}, we develop quantum-secure key exchange protocols, and evaluate their performance in terms of computational overhead, memory usage, and energy consumption for quantum secure communication. Experimental results demonstrate that the integration of PQC algorithms on constrained hardware is practical, reinforcing the urgent need for quantum-resilient cryptographic frameworks in next-generation IoT devices. The implementation of this paper is available at https://iqsec-lab.github.io/PQC-IoT/.

Authors:Kui Jiang, Shiyu Liu, Junjun Jiang, Hongxun Yao, Xiaopeng Fan
Title: M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation
Abstract:
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.

Authors:J. D. Peiffer, Kunal Shah, Irina Djuraskovic, Shawana Anarwala, Kayan Abdou, Rujvee Patel, Prakash Jayabalan, Brenton Pennicooke, R. James Cotton
Title: Portable Biomechanics Laboratory: Clinically Accessible Movement Analysis from a Handheld Smartphone
Abstract:
The way a person moves is a direct reflection of their neurological and musculoskeletal health, yet it remains one of the most underutilized vital signs in clinical practice. Although clinicians visually observe movement impairments, they lack accessible and validated methods to objectively measure movement in routine care. This gap prevents wider use of biomechanical measurements in practice, which could enable more sensitive outcome measures or earlier identification of impairment. We present our Portable Biomechanics Laboratory (PBL), which includes a secure, cloud-enabled smartphone app for data collection and a novel algorithm for fitting biomechanical models to this data. We extensively validated PBL's biomechanical measures using a large, clinically representative dataset. Next, we tested the usability and utility of our system in neurosurgery and sports medicine clinics. We found joint angle errors within 3 degrees across participants with neurological injury, lower-limb prosthesis users, pediatric inpatients, and controls. In addition to being easy to use, gait metrics computed from the PBL showed high reliability and were sensitive to clinical differences. For example, in individuals undergoing decompression surgery for cervical myelopathy, the mJOA score is a common patient-reported outcome measure; we found that PBL gait metrics correlated with mJOA scores and demonstrated greater responsiveness to surgical intervention than the patient-reported outcomes. These findings support the use of handheld smartphone video as a scalable, low-burden tool for capturing clinically meaningful biomechanical data, offering a promising path toward accessible monitoring of mobility impairments. We release the first clinically validated method for measuring whole-body kinematics from handheld smartphone video at https://intelligentsensingandrehabilitation.github.io/MonocularBiomechanics/ .

Authors:Hiroshi Yoshihara, Taiki Yamaguchi, Yuichi Inoue
Title: A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning
Abstract:
Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.

Authors:Jason Kahei Tam, Murilo Gustineli, Anthony Miyaguchi
Title: Transfer Learning and Mixup for Fine-Grained Few-Shot Fungi Classification
Abstract:
Accurate identification of fungi species presents a unique challenge in computer vision due to fine-grained inter-species variation and high intra-species variation. This paper presents our approach for the FungiCLEF 2025 competition, which focuses on few-shot fine-grained visual categorization (FGVC) using the FungiTastic Few-Shot dataset. Our team (DS@GT) experimented with multiple vision transformer models, data augmentation, weighted sampling, and incorporating textual information. We also explored generative AI models for zero-shot classification using structured prompting but found them to significantly underperform relative to vision-based models. Our final model outperformed both competition baselines and highlighted the effectiveness of domain specific pretraining and balanced sampling strategies. Our approach ranked 35/74 on the private test set in post-completion evaluation, this suggests additional work can be done on metadata selection and domain-adapted multi-modal learning. Our code is available at https://github.com/dsgt-arc/fungiclef-2025.

Authors:Anthony Miyaguchi, Murilo Gustineli, Adrian Cheung
Title: Distilling Spectrograms into Tokens: Fast and Lightweight Bioacoustic Classification for BirdCLEF+ 2025
Abstract:
The BirdCLEF+ 2025 challenge requires classifying 206 species, including birds, mammals, insects, and amphibians, from soundscape recordings under a strict 90-minute CPU-only inference deadline, making many state-of-the-art deep learning approaches impractical. To address this constraint, the DS@GT BirdCLEF team explored two strategies. First, we establish competitive baselines by optimizing pre-trained models from the Bioacoustics Model Zoo for CPU inference. Using TFLite, we achieved a nearly 10x inference speedup for the Perch model, enabling it to run in approximately 16 minutes and achieve a final ROC-AUC score of 0.729 on the public leaderboard post-competition and 0.711 on the private leaderboard. The best model from the zoo was BirdSetEfficientNetB1, with a public score of 0.810 and a private score of 0.778. Second, we introduce a novel, lightweight pipeline named Spectrogram Token Skip-Gram (STSG) that treats bioacoustics as a sequence modeling task. This method converts audio into discrete "spectrogram tokens" by clustering Mel-spectrograms using Faiss K-means and then learns high-quality contextual embeddings for these tokens in an unsupervised manner with a Word2Vec skip-gram model. For classification, embeddings within a 5-second window are averaged and passed to a linear model. With a projected inference time of 6 minutes for a 700-minute test set, the STSG approach achieved a final ROC-AUC public score of 0.559 and a private score of 0.520, demonstrating the viability of fast tokenization approaches with static embeddings for bioacoustic classification. Supporting code for this paper can be found at https://github.com/dsgt-arc/birdclef-2025.

Authors:Chan Young Park, Jillian Fisher, Marius Memmel, Dipika Khullar, Seoho Yun, Abhishek Gupta, Yejin Choi
Title: Making VLMs More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning
Abstract:
Large language models (LLMs) have shown promise in robotic procedural planning, yet their human-centric reasoning often omits the low-level, grounded details needed for robotic execution. Vision-language models (VLMs) offer a path toward more perceptually grounded plans, but current methods either rely on expensive, large-scale models or are constrained to narrow simulation settings. We introduce SelfReVision, a lightweight and scalable self-improvement framework for vision-language procedural planning. SelfReVision enables small VLMs to iteratively critique, revise, and verify their own plans-without external supervision or teacher models-drawing inspiration from chain-of-thought prompting and self-instruct paradigms. Through this self-distillation loop, models generate higher-quality, execution-ready plans that can be used both at inference and for continued fine-tuning. Using models varying from 3B to 72B, our results show that SelfReVision not only boosts performance over weak base VLMs but also outperforms models 100X the size, yielding improved control in downstream embodied tasks.

Authors:Duygu Nur Yaldiz, Yavuz Faruk Bakman, Sungmin Kang, Alperen Öziş, Hayrettin Eren Yildiz, Mitash Ashish Shah, Zhiqi Huang, Anoop Kumar, Alfy Samuel, Daben Liu, Sai Praneeth Karimireddy, Salman Avestimehr
Title: TruthTorchLM: A Comprehensive Library for Predicting Truthfulness in LLM Outputs
Abstract:
Generative Large Language Models (LLMs)inevitably produce untruthful responses. Accurately predicting the truthfulness of these outputs is critical, especially in high-stakes settings. To accelerate research in this domain and make truthfulness prediction methods more accessible, we introduce TruthTorchLM an open-source, comprehensive Python library featuring over 30 truthfulness prediction methods, which we refer to as Truth Methods. Unlike existing toolkits such as Guardrails, which focus solely on document-grounded verification, or LM-Polygraph, which is limited to uncertainty-based methods, TruthTorchLM offers a broad and extensible collection of techniques. These methods span diverse tradeoffs in computational cost, access level (e.g., black-box vs white-box), grounding document requirements, and supervision type (self-supervised or supervised). TruthTorchLM is seamlessly compatible with both HuggingFace and LiteLLM, enabling support for locally hosted and API-based models. It also provides a unified interface for generation, evaluation, calibration, and long-form truthfulness prediction, along with a flexible framework for extending the library with new methods. We conduct an evaluation of representative truth methods on three datasets, TriviaQA, GSM8K, and FactScore-Bio. The code is available at https://github.com/Ybakman/TruthTorchLM

Authors:Xiwen Chen, Peijie Qiu, Wenhui Zhu, Hao Wang, Huayu Li, Xuanzhao Dong, Xiaotong Sun, Xiaobing Yu, Yalin Wang, Abolfazl Razi, Aristeidis Sotiras
Title: Cracking Instance Jigsaw Puzzles: An Alternative to Multiple Instance Learning for Whole Slide Image Analysis
Abstract:
While multiple instance learning (MIL) has shown to be a promising approach for histopathological whole slide image (WSI) analysis, its reliance on permutation invariance significantly limits its capacity to effectively uncover semantic correlations between instances within WSIs. Based on our empirical and theoretical investigations, we argue that approaches that are not permutation-invariant but better capture spatial correlations between instances can offer more effective solutions. In light of these findings, we propose a novel alternative to existing MIL for WSI analysis by learning to restore the order of instances from their randomly shuffled arrangement. We term this task as cracking an instance jigsaw puzzle problem, where semantic correlations between instances are uncovered. To tackle the instance jigsaw puzzles, we propose a novel Siamese network solution, which is theoretically justified by optimal transport theory. We validate the proposed method on WSI classification and survival prediction tasks, where the proposed method outperforms the recent state-of-the-art MIL competitors. The code is available at https://github.com/xiwenc1/MIL-JigsawPuzzles.

Authors:Pinaki Prasad Guha Neogi, Ahmad Mohammadshirazi, Rajiv Ramnath
Title: ALCo-FM: Adaptive Long-Context Foundation Model for Accident Prediction
Abstract:
Traffic accidents are rare, yet high-impact events that require long-context multimodal reasoning for accurate risk forecasting. In this paper, we introduce ALCo-FM, a unified adaptive long-context foundation model that computes a volatility pre-score to dynamically select context windows for input data and encodes and fuses these multimodal data via shallow cross attention. Following a local GAT layer and a BigBird-style sparse global transformer over H3 hexagonal grids, coupled with Monte Carlo dropout for confidence, the model yields superior, well-calibrated predictions. Trained on data from 15 US cities with a class-weighted loss to counter label imbalance, and fine-tuned with minimal data on held-out cities, ALCo-FM achieves 0.94 accuracy, 0.92 F1, and an ECE of 0.04, outperforming more than 20 state-of-the-art baselines in large-scale urban risk prediction. Code and dataset are available at: https://github.com/PinakiPrasad12/ALCo-FM

Authors:Ilia Azizi, Juraj Bodik, Jakob Heiss, Bin Yu
Title: CLEAR: Calibrated Learning for Epistemic and Aleatoric Risk
Abstract:
Accurate uncertainty quantification is critical for reliable predictive modeling, especially in regression tasks. Existing methods typically address either aleatoric uncertainty from measurement noise or epistemic uncertainty from limited data, but not necessarily both in a balanced way. We propose CLEAR, a calibration method with two distinct parameters, $γ_1$ and $γ_2$, to combine the two uncertainty components for improved conditional coverage. CLEAR is compatible with any pair of aleatoric and epistemic estimators; we show how it can be used with (i) quantile regression for aleatoric uncertainty and (ii) ensembles drawn from the Predictability-Computability-Stability (PCS) framework for epistemic uncertainty. Across 17 diverse real-world datasets, CLEAR achieves an average improvement of 28.2% and 17.4% in the interval width compared to the two individually calibrated baselines while maintaining nominal coverage. This improvement can be particularly evident in scenarios dominated by either high epistemic or high aleatoric uncertainty.

Authors:Chong Cheng, Yu Hu, Sicheng Yu, Beizhen Zhao, Zijian Wang, Hao Wang
Title: RegGS: Unposed Sparse Views Gaussian Splatting with 3DGS Registration
Abstract:
3D Gaussian Splatting (3DGS) has demonstrated its potential in reconstructing scenes from unposed images. However, optimization-based 3DGS methods struggle with sparse views due to limited prior knowledge. Meanwhile, feed-forward Gaussian approaches are constrained by input formats, making it challenging to incorporate more input views. To address these challenges, we propose RegGS, a 3D Gaussian registration-based framework for reconstructing unposed sparse views. RegGS aligns local 3D Gaussians generated by a feed-forward network into a globally consistent 3D Gaussian representation. Technically, we implement an entropy-regularized Sinkhorn algorithm to efficiently solve the optimal transport Mixture 2-Wasserstein $(\text{MW}_2)$ distance, which serves as an alignment metric for Gaussian mixture models (GMMs) in $\mathrm{Sim}(3)$ space. Furthermore, we design a joint 3DGS registration module that integrates the $\text{MW}_2$ distance, photometric consistency, and depth geometry. This enables a coarse-to-fine registration process while accurately estimating camera poses and aligning the scene. Experiments on the RE10K and ACID datasets demonstrate that RegGS effectively registers local Gaussians with high fidelity, achieving precise pose estimation and high-quality novel-view synthesis. Project page: https://3dagentworld.github.io/reggs/.

Authors:Pouria Mahdavinia, Mehrdad Mahdavi
Title: Low-rank Momentum Factorization for Memory Efficient Training
Abstract:
Fine-tuning large foundation models presents significant memory challenges due to stateful optimizers like AdamW, often requiring several times more GPU memory than inference. While memory-efficient methods like parameter-efficient fine-tuning (e.g., LoRA) and optimizer state compression exist, recent approaches like GaLore bridge these by using low-rank gradient projections and subspace moment accumulation. However, such methods may struggle with fixed subspaces or computationally costly offline resampling (e.g., requiring full-matrix SVDs). We propose Momentum Factorized SGD (MoFaSGD), which maintains a dynamically updated low-rank SVD representation of the first-order momentum, closely approximating its full-rank counterpart throughout training. This factorization enables a memory-efficient fine-tuning method that adaptively updates the optimization subspace at each iteration. Crucially, MoFaSGD leverages the computed low-rank momentum factors to perform efficient spectrally normalized updates, offering an alternative to subspace moment accumulation. We establish theoretical convergence guarantees for MoFaSGD, proving it achieves an optimal rate for non-convex stochastic optimization under standard assumptions. Empirically, we demonstrate MoFaSGD's effectiveness on large language model alignment benchmarks, achieving a competitive trade-off between memory reduction (comparable to LoRA) and performance compared to state-of-the-art low-rank optimization methods. Our implementation is available at https://github.com/pmahdavi/MoFaSGD.

Authors:Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
Title: SSSUMO: Real-Time Semi-Supervised Submovement Decomposition
Abstract:
This paper introduces a SSSUMO, semi-supervised deep learning approach for submovement decomposition that achieves state-of-the-art accuracy and speed. While submovement analysis offers valuable insights into motor control, existing methods struggle with reconstruction accuracy, computational cost, and validation, due to the difficulty of obtaining hand-labeled data. We address these challenges using a semi-supervised learning framework. This framework learns from synthetic data, initially generated from minimum-jerk principles and then iteratively refined through adaptation to unlabeled human movement data. Our fully convolutional architecture with differentiable reconstruction significantly surpasses existing methods on both synthetic and diverse human motion datasets, demonstrating robustness even in high-noise conditions. Crucially, the model operates in real-time (less than a millisecond per input second), a substantial improvement over optimization-based techniques. This enhanced performance facilitates new applications in human-computer interaction, rehabilitation medicine, and motor control studies. We demonstrate the model's effectiveness across diverse human-performed tasks such as steering, rotation, pointing, object moving, handwriting, and mouse-controlled gaming, showing notable improvements particularly on challenging datasets where traditional methods largely fail. Training and benchmarking source code, along with pre-trained model weights, are made publicly available at https://github.com/dolphin-in-a-coma/sssumo.

Authors:Aldan Creo, Raul Castro Fernandez, Manuel Cebrian
Title: Mass-Scale Analysis of In-the-Wild Conversations Reveals Complexity Bounds on LLM Jailbreaking
Abstract:
As large language models (LLMs) become increasingly deployed, understanding the complexity and evolution of jailbreaking strategies is critical for AI safety. We present a mass-scale empirical analysis of jailbreak complexity across over 2 million real-world conversations from diverse platforms, including dedicated jailbreaking communities and general-purpose chatbots. Using a range of complexity metrics spanning probabilistic measures, lexical diversity, compression ratios, and cognitive load indicators, we find that jailbreak attempts do not exhibit significantly higher complexity than normal conversations. This pattern holds consistently across specialized jailbreaking communities and general user populations, suggesting practical bounds on attack sophistication. Temporal analysis reveals that while user attack toxicity and complexity remains stable over time, assistant response toxicity has decreased, indicating improving safety mechanisms. The absence of power-law scaling in complexity distributions further points to natural limits on jailbreak development. Our findings challenge the prevailing narrative of an escalating arms race between attackers and defenders, instead suggesting that LLM safety evolution is bounded by human ingenuity constraints while defensive measures continue advancing. Our results highlight critical information hazards in academic jailbreak disclosure, as sophisticated attacks exceeding current complexity baselines could disrupt the observed equilibrium and enable widespread harm before defensive adaptation.

Authors:Helen Qu, Sang Michael Xie
Title: Impact of Pretraining Word Co-occurrence on Compositional Generalization in Multimodal Models
Abstract:
CLIP and large multimodal models (LMMs) have better accuracy on examples involving concepts that are highly represented in the training data. However, the role of concept combinations in the training data on compositional generalization is largely unclear -- for instance, how does accuracy vary when a common object appears in an uncommon pairing with another object? In this paper, we investigate how word co-occurrence statistics in the pretraining dataset (a proxy for co-occurrence of visual concepts) impacts CLIP/LMM performance. To disentangle the effects of word co-occurrence frequencies from single-word frequencies, we measure co-occurrence with pointwise mutual information (PMI), which normalizes the joint probability of two words co-occurring by the probability of co-occurring independently. Using synthetically generated images with a variety of concept pairs, we show a strong correlation between PMI in the CLIP pretraining data and zero-shot accuracy in CLIP models trained on LAION-400M (r=0.97 and 14% accuracy gap between images in the top and bottom 5% of PMI values), demonstrating that even accuracy on common concepts is affected by the combination of concepts in the image. Leveraging this finding, we reproduce this effect in natural images by editing them to contain pairs with varying PMI, resulting in a correlation of r=0.75. Finally, we demonstrate that this behavior in CLIP transfers to LMMs built on top of CLIP (r=0.70 for TextVQA, r=0.62 for VQAv2). Our findings highlight the need for algorithms and architectures that improve compositional generalization in multimodal models without scaling the training data combinatorially. Our code is available at https://github.com/helenqu/multimodal-pretraining-pmi.

Authors:Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai, Zijian Kang, Jiashi Feng, Zhuochen Wang, Zhaoxiang Zhang
Title: Traceable Evidence Enhanced Visual Grounded Reasoning: Evaluation and Methodology
Abstract:
Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically referencing visual regions, just like human "thinking with images". However, no benchmark exists to evaluate these capabilities holistically. To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic benchmark built on three principles: (1) focused visual perception of subtle targets in complex scenes, (2) traceable evidence via bounding box evaluation, and (3) second-order reasoning to test object interactions and spatial hierarchies beyond simple object localization. Prioritizing images with dense objects, we initially sample 1K high-quality images from SA-1B, and incorporate eight LMM experts to manually annotate questions, candidate options, and answers for each image. After three stages of quality control, TreeBench consists of 405 challenging visual question-answering pairs, even the most advanced models struggle with this benchmark, where none of them reach 60% accuracy, e.g., OpenAI-o3 scores only 54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual Grounded Reasoning), a training paradigm to supervise localization and reasoning jointly with reinforcement learning, enabling accurate localizations and explainable reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench (+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is key to advancing vision-grounded reasoning. The code is available at https://github.com/Haochen-Wang409/TreeVGR.

Authors:Mingkai Jia, Wei Yin, Xiaotao Hu, Jiaxin Guo, Xiaoyang Guo, Qian Zhang, Xiao-Xiao Long, Ping Tan
Title: MGVQ: Could VQ-VAE Beat VAE? A Generalizable Tokenizer with Multi-group Quantization
Abstract:
Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental models that compress continuous visual data into discrete tokens. Existing methods have tried to improve the quantization strategy for better reconstruction quality, however, there still exists a large gap between VQ-VAEs and VAEs. To narrow this gap, we propose MGVQ, a novel method to augment the representation capability of discrete codebooks, facilitating easier optimization for codebooks and minimizing information loss, thereby enhancing reconstruction quality. Specifically, we propose to retain the latent dimension to preserve encoded features and incorporate a set of sub-codebooks for quantization. Furthermore, we construct comprehensive zero-shot benchmarks featuring resolutions of 512p and 2k to evaluate the reconstruction performance of existing methods rigorously. MGVQ achieves the state-of-the-art performance on both ImageNet and 8 zero-shot benchmarks across all VQ-VAEs. Notably, compared with SD-VAE, we outperform them on ImageNet significantly, with rFID 0.49 v.s. 0.91, and achieve superior PSNR on all zero-shot benchmarks. These results highlight the superiority of MGVQ in reconstruction and pave the way for preserving fidelity in HD image processing tasks. Code will be publicly available at https://github.com/MKJia/MGVQ.

Authors:Shivam Duggal, Sanghyun Byun, William T. Freeman, Antonio Torralba, Phillip Isola
Title: Single-pass Adaptive Image Tokenization for Minimum Program Search
Abstract:
According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.

Authors:Weihao Xia, Cengiz Oztireli
Title: Multigranular Evaluation for Brain Visual Decoding
Abstract:
Existing evaluation protocols for brain visual decoding predominantly rely on coarse metrics that obscure inter-model differences, lack neuroscientific foundation, and fail to capture fine-grained visual distinctions. To address these limitations, we introduce BASIC, a unified, multigranular evaluation framework that jointly quantifies structural fidelity, inferential alignment, and contextual coherence between decoded and ground truth images. For the structural level, we introduce a hierarchical suite of segmentation-based metrics, including foreground, semantic, instance, and component masks, anchored in granularity-aware correspondence across mask structures. For the semantic level, we extract structured scene representations encompassing objects, attributes, and relationships using multimodal large language models, enabling detailed, scalable, and context-rich comparisons with ground-truth stimuli. We benchmark a diverse set of visual decoding methods across multiple stimulus-neuroimaging datasets within this unified evaluation framework. Together, these criteria provide a more discriminative, interpretable, and comprehensive foundation for measuring brain visual decoding methods.

Authors:JingLi Lin, Chenming Zhu, Runsen Xu, Xiaohan Mao, Xihui Liu, Tai Wang, Jiangmiao Pang
Title: OST-Bench: Evaluating the Capabilities of MLLMs in Online Spatio-temporal Scene Understanding
Abstract:
Recent advances in multimodal large language models (MLLMs) have shown remarkable capabilities in integrating vision and language for complex reasoning. While most existing benchmarks evaluate models under offline settings with a fixed set of pre-recorded inputs, we introduce OST-Bench, a benchmark designed to evaluate Online Spatio-Temporal understanding from the perspective of an agent actively exploring a scene. The Online aspect emphasizes the need to process and reason over incrementally acquired observations, while the Spatio-Temporal component requires integrating current visual inputs with historical memory to support dynamic spatial reasoning. OST-Bench better reflects the challenges of real-world embodied perception. Built on an efficient data collection pipeline, OST-Bench consists of 1.4k scenes and 10k question-answer pairs collected from ScanNet, Matterport3D, and ARKitScenes. We evaluate several leading MLLMs on OST-Bench and observe that they fall short on tasks requiring complex spatio-temporal reasoning. Under the online setting, their accuracy declines as the exploration horizon extends and the memory grows. Through further experimental analysis, we identify common error patterns across models and find that both complex clue-based spatial reasoning demands and long-term memory retrieval requirements significantly drop model performance along two separate axes, highlighting the core challenges that must be addressed to improve online embodied reasoning. To foster further research and development in the field, our codes, dataset, and benchmark are available. Our project page is: https://rbler1234.github.io/OSTBench.github.io/

Authors:Sizhe Chen, Yizhu Wang, Nicholas Carlini, Chawin Sitawarin, David Wagner
Title: Defending Against Prompt Injection With a Few DefensiveTokens
Abstract:
When large language model (LLM) systems interact with external data to perform complex tasks, a new attack, namely prompt injection, becomes a significant threat. By injecting instructions into the data accessed by the system, the attacker is able to override the initial user task with an arbitrary task directed by the attacker. To secure the system, test-time defenses, e.g., defensive prompting, have been proposed for system developers to attain security only when needed in a flexible manner. However, they are much less effective than training-time defenses that change the model parameters. Motivated by this, we propose DefensiveToken, a test-time defense with prompt injection robustness comparable to training-time alternatives. DefensiveTokens are newly inserted as special tokens, whose embeddings are optimized for security. In security-sensitive cases, system developers can append a few DefensiveTokens before the LLM input to achieve security with a minimal utility drop. In scenarios where security is less of a concern, developers can simply skip DefensiveTokens; the LLM system remains the same as there is no defense, generating high-quality responses. Thus, DefensiveTokens, if released alongside the model, allow a flexible switch between the state-of-the-art (SOTA) utility and almost-SOTA security at test time. The code is available at https://github.com/Sizhe-Chen/DefensiveToken.

Authors:Karthik Garimella, Austin Ebel, Brandon Reagen
Title: EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors
Abstract:
Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Yuxin Bai, Cecelia Shuai, Ashwin De Silva, Siyu Yu, Pratik Chaudhari, Joshua T. Vogelstein
Title: Prospective Learning in Retrospect
Abstract:
In most real-world applications of artificial intelligence, the distributions of the data and the goals of the learners tend to change over time. The Probably Approximately Correct (PAC) learning framework, which underpins most machine learning algorithms, fails to account for dynamic data distributions and evolving objectives, often resulting in suboptimal performance. Prospective learning is a recently introduced mathematical framework that overcomes some of these limitations. We build on this framework to present preliminary results that improve the algorithm and numerical results, and extend prospective learning to sequential decision-making scenarios, specifically foraging. Code is available at: https://github.com/neurodata/prolearn2.

Authors:Sizhen Bian, Mengxi Liu, Vitor Fortes Rey, Daniel Geissler, Paul Lukowicz
Title: TinierHAR: Towards Ultra-Lightweight Deep Learning Models for Efficient Human Activity Recognition on Edge Devices
Abstract:
Human Activity Recognition (HAR) on resource-constrained wearable devices demands inference models that harmonize accuracy with computational efficiency. This paper introduces TinierHAR, an ultra-lightweight deep learning architecture that synergizes residual depthwise separable convolutions, gated recurrent units (GRUs), and temporal aggregation to achieve SOTA efficiency without compromising performance. Evaluated across 14 public HAR datasets, TinierHAR reduces Parameters by 2.7x (vs. TinyHAR) and 43.3x (vs. DeepConvLSTM), and MACs by 6.4x and 58.6x, respectively, while maintaining the averaged F1-scores. Beyond quantitative gains, this work provides the first systematic ablation study dissecting the contributions of spatial-temporal components across proposed TinierHAR, prior SOTA TinyHAR, and the classical DeepConvLSTM, offering actionable insights for designing efficient HAR systems. We finally discussed the findings and suggested principled design guidelines for future efficient HAR. To catalyze edge-HAR research, we open-source all materials in this work for future benchmarking\footnote{https://github.com/zhaxidele/TinierHAR}

Authors:Guoxin Zang, Xue Li, Donglin Di, Lanshun Nie, Dechen Zhan, Yang Song, Lei Fan
Title: SAGE: A Visual Language Model for Anomaly Detection via Fact Enhancement and Entropy-aware Alignment
Abstract:
While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.

Authors:Suman Adhya, Debarshi Kumar Sanyal
Title: DTECT: Dynamic Topic Explorer & Context Tracker
Abstract:
The explosive growth of textual data over time presents a significant challenge in uncovering evolving themes and trends. Existing dynamic topic modeling techniques, while powerful, often exist in fragmented pipelines that lack robust support for interpretation and user-friendly exploration. We introduce DTECT (Dynamic Topic Explorer & Context Tracker), an end-to-end system that bridges the gap between raw textual data and meaningful temporal insights. DTECT provides a unified workflow that supports data preprocessing, multiple model architectures, and dedicated evaluation metrics to analyze the topic quality of temporal topic models. It significantly enhances interpretability by introducing LLM-driven automatic topic labeling, trend analysis via temporally salient words, interactive visualizations with document-level summarization, and a natural language chat interface for intuitive data querying. By integrating these features into a single, cohesive platform, DTECT empowers users to more effectively track and understand thematic dynamics. DTECT is open-source and available at https://github.com/AdhyaSuman/DTECT.

Authors:Jinhong Wang, Tajamul Ashraf, Zongyan Han, Jorma Laaksonen, Rao Mohammad Anwer
Title: MIRA: A Novel Framework for Fusing Modalities in Medical RAG
Abstract:
Multimodal Large Language Models (MLLMs) have significantly advanced AI-assisted medical diagnosis, but they often generate factually inconsistent responses that deviate from established medical knowledge. Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external sources, but it presents two key challenges. First, insufficient retrieval can miss critical information, whereas excessive retrieval can introduce irrelevant or misleading content, disrupting model output. Second, even when the model initially provides correct answers, over-reliance on retrieved data can lead to factual errors. To address these issues, we introduce the Multimodal Intelligent Retrieval and Augmentation (MIRA) framework, designed to optimize factual accuracy in MLLM. MIRA consists of two key components: (1) a calibrated Rethinking and Rearrangement module that dynamically adjusts the number of retrieved contexts to manage factual risk, and (2) A medical RAG framework integrating image embeddings and a medical knowledge base with a query-rewrite module for efficient multimodal reasoning. This enables the model to effectively integrate both its inherent knowledge and external references. Our evaluation of publicly available medical VQA and report generation benchmarks demonstrates that MIRA substantially enhances factual accuracy and overall performance, achieving new state-of-the-art results. Code is released at https://github.com/mbzuai-oryx/MIRA.

Authors:Hao Ban, Gokul Ram Subramani, Kaiyi Ji
Title: SAMO: A Lightweight Sharpness-Aware Approach for Multi-Task Optimization with Joint Global-Local Perturbation
Abstract:
Multi-task learning (MTL) enables a joint model to capture commonalities across multiple tasks, reducing computation costs and improving data efficiency. However, a major challenge in MTL optimization is task conflicts, where the task gradients differ in direction or magnitude, limiting model performance compared to single-task counterparts. Sharpness-aware minimization (SAM) minimizes task loss while simultaneously reducing the sharpness of the loss landscape. Our empirical observations show that SAM effectively mitigates task conflicts in MTL. Motivated by these findings, we explore integrating SAM into MTL but face two key challenges. While both the average loss gradient and individual task gradients-referred to as global and local information-contribute to SAM, how to combine them remains unclear. Moreover, directly computing each task gradient introduces significant computational and memory overheads. To address these challenges, we propose SAMO, a lightweight \textbf{S}harpness-\textbf{A}ware \textbf{M}ulti-task \textbf{O}ptimization approach, that leverages a joint global-local perturbation. The local perturbations are approximated using only forward passes and are layerwise normalized to improve efficiency. Extensive experiments on a suite of multi-task benchmarks demonstrate both the effectiveness and efficiency of our method. Code is available at https://github.com/OptMN-Lab/SAMO.

Authors:Jiayi Wu, Tianfu Wang, Md Abu Bakr Siddique, Md Jahidul Islam, Cornelia Fermuller, Yiannis Aloimonos, Christopher A. Metzler
Title: Single-Step Latent Diffusion for Underwater Image Restoration
Abstract:
Underwater image restoration algorithms seek to restore the color, contrast, and appearance of a scene that is imaged underwater. They are a critical tool in applications ranging from marine ecology and aquaculture to underwater construction and archaeology. While existing pixel-domain diffusion-based image restoration approaches are effective at restoring simple scenes with limited depth variation, they are computationally intensive and often generate unrealistic artifacts when applied to scenes with complex geometry and significant depth variation. In this work we overcome these limitations by combining a novel network architecture (SLURPP) with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models -- which encode strong priors on the geometry and depth of scenes -- with an explicit scene decomposition -- which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. This approach enables the generation of diverse training data with dense medium/degradation annotations. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance. Notably, SLURPP is over 200X faster than existing diffusion-based methods while offering ~ 3 dB improvement in PSNR on synthetic benchmarks. It also offers compelling qualitative improvements on real-world data. Project website https://tianfwang.github.io/slurpp/.

Authors:Pierre Marza, Leo Fillioux, Sofiène Boutaj, Kunal Mahatha, Christian Desrosiers, Pablo Piantanida, Jose Dolz, Stergios Christodoulidis, Maria Vakalopoulou
Title: THUNDER: Tile-level Histopathology image UNDERstanding benchmark
Abstract:
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.

Authors:Yuchen Zhu, Cheng Shi, Dingyou Wang, Jiajin Tang, Zhengxuan Wei, Yu Wu, Guanbin Li, Sibei Yang
Title: Rethinking Query-based Transformer for Continual Image Segmentation
Abstract:
Class-incremental/Continual image segmentation (CIS) aims to train an image segmenter in stages, where the set of available categories differs at each stage. To leverage the built-in objectness of query-based transformers, which mitigates catastrophic forgetting of mask proposals, current methods often decouple mask generation from the continual learning process. This study, however, identifies two key issues with decoupled frameworks: loss of plasticity and heavy reliance on input data order. To address these, we conduct an in-depth investigation of the built-in objectness and find that highly aggregated image features provide a shortcut for queries to generate masks through simple feature alignment. Based on this, we propose SimCIS, a simple yet powerful baseline for CIS. Its core idea is to directly select image features for query assignment, ensuring "perfect alignment" to preserve objectness, while simultaneously allowing queries to select new classes to promote plasticity. To further combat catastrophic forgetting of categories, we introduce cross-stage consistency in selection and an innovative "visual query"-based replay mechanism. Experiments demonstrate that SimCIS consistently outperforms state-of-the-art methods across various segmentation tasks, settings, splits, and input data orders. All models and codes will be made publicly available at https://github.com/SooLab/SimCIS.

Authors:Leixin Chang, Yuxuan Nai, Hua Chen, Liangjing Yang
Title: Beyond Robustness: Learning Unknown Dynamic Load Adaptation for Quadruped Locomotion on Rough Terrain
Abstract:
Unknown dynamic load carrying is one important practical application for quadruped robots. Such a problem is non-trivial, posing three major challenges in quadruped locomotion control. First, how to model or represent the dynamics of the load in a generic manner. Second, how to make the robot capture the dynamics without any external sensing. Third, how to enable the robot to interact with load handling the mutual effect and stabilizing the load. In this work, we propose a general load modeling approach called load characteristics modeling to capture the dynamics of the load. We integrate this proposed modeling technique and leverage recent advances in Reinforcement Learning (RL) based locomotion control to enable the robot to infer the dynamics of load movement and interact with the load indirectly to stabilize it and realize the sim-to-real deployment to verify its effectiveness in real scenarios. We conduct extensive comparative simulation experiments to validate the effectiveness and superiority of our proposed method. Results show that our method outperforms other methods in sudden load resistance, load stabilizing and locomotion with heavy load on rough terrain. \href{https://leixinjonaschang.github.io/leggedloadadapt.github.io/}{Project Page}.

Authors:Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, Tanmoy Chakraborty
Title: On the Effect of Instruction Tuning Loss on Generalization
Abstract:
Instruction Tuning has emerged as a pivotal post-training paradigm that enables pre-trained language models to better follow user instructions. Despite its significance, little attention has been given to optimizing the loss function used. A fundamental, yet often overlooked, question is whether the conventional auto-regressive objective - where loss is computed only on response tokens, excluding prompt tokens - is truly optimal for instruction tuning. In this work, we systematically investigate the impact of differentially weighting prompt and response tokens in instruction tuning loss, and propose Weighted Instruction Tuning (WIT) as a better alternative to conventional instruction tuning. Through extensive experiments on five language models of different families and scale, three finetuning datasets of different sizes, and five diverse evaluation benchmarks, we show that the standard instruction tuning loss often yields suboptimal performance and limited robustness to input prompt variations. We find that a low-to-moderate weight for prompt tokens coupled with a moderate-to-high weight for response tokens yields the best-performing models across settings and also serve as better starting points for the subsequent preference alignment training. These findings highlight the need to reconsider instruction tuning loss and offer actionable insights for developing more robust and generalizable models. Our code is open-sourced at https://github.com/kowndinya-renduchintala/WIT.

Authors:Shoutao Guo, Xiang Li, Mengge Liu, Wei Chen, Yang Feng
Title: StreamUni: Achieving Streaming Speech Translation with a Unified Large Speech-Language Model
Abstract:
Streaming speech translation (StreamST) requires determining appropriate timing, known as policy, to generate translations while continuously receiving source speech inputs, balancing low latency with high translation quality. However, existing StreamST methods typically operate on sentence-level speech segments, referred to as simultaneous speech translation (SimulST). In practice, they require collaboration with segmentation models to accomplish StreamST, where the truncated speech segments constrain SimulST models to make policy decisions and generate translations based on limited contextual information. Moreover, SimulST models struggle to learn effective policies due to the complexity of speech inputs and cross-lingual generation. To address these challenges, we propose StreamUni, which achieves StreamST through a unified Large Speech-Language Model (LSLM). Specifically, StreamUni incorporates speech Chain-of-Thought (CoT) in guiding the LSLM to generate multi-stage outputs. Leveraging these multi-stage outputs, StreamUni simultaneously accomplishes speech segmentation, policy decision, and translation generation, completing StreamST without requiring massive policy-specific training. Additionally, we propose a streaming CoT training method that enhances low-latency policy decisions and generation capabilities using limited CoT data. Experiments demonstrate that our approach achieves state-of-the-art performance on StreamST tasks.

Authors:Jiaxin Huang, Ziwen Li, Hanlve Zhang, Runnan Chen, Xiao He, Yandong Guo, Wenping Wang, Tongliang Liu, Mingming Gong
Title: SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes
Abstract:
The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce S\textsc{urprise}3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. S\textsc{urprise}3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. S\textsc{urprise}3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.

Authors:Mélanie Roschewitz, Raghav Mehta, Fabio de Sousa Ribeiro, Ben Glocker
Title: Where are we with calibration under dataset shift in image classification?
Abstract:
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.

Authors:Dren Fazlija, Monty-Maximilian Zühlke, Johanna Schrader, Arkadij Orlov, Clara Stein, Iyiola E. Olatunji, Daniel Kudenko
Title: SCOOTER: A Human Evaluation Framework for Unrestricted Adversarial Examples
Abstract:
Unrestricted adversarial attacks aim to fool computer vision models without being constrained by $\ell_p$-norm bounds to remain imperceptible to humans, for example, by changing an object's color. This allows attackers to circumvent traditional, norm-bounded defense strategies such as adversarial training or certified defense strategies. However, due to their unrestricted nature, there are also no guarantees of norm-based imperceptibility, necessitating human evaluations to verify just how authentic these adversarial examples look. While some related work assesses this vital quality of adversarial attacks, none provide statistically significant insights. This issue necessitates a unified framework that supports and streamlines such an assessment for evaluating and comparing unrestricted attacks. To close this gap, we introduce SCOOTER - an open-source, statistically powered framework for evaluating unrestricted adversarial examples. Our contributions are: $(i)$ best-practice guidelines for crowd-study power, compensation, and Likert equivalence bounds to measure imperceptibility; $(ii)$ the first large-scale human vs. model comparison across 346 human participants showing that three color-space attacks and three diffusion-based attacks fail to produce imperceptible images. Furthermore, we found that GPT-4o can serve as a preliminary test for imperceptibility, but it only consistently detects adversarial examples for four out of six tested attacks; $(iii)$ open-source software tools, including a browser-based task template to collect annotations and analysis scripts in Python and R; $(iv)$ an ImageNet-derived benchmark dataset containing 3K real images, 7K adversarial examples, and over 34K human ratings. Our findings demonstrate that automated vision systems do not align with human perception, reinforcing the need for a ground-truth SCOOTER benchmark.

Authors:Peizhang Shao, Linrui Xu, Jinxi Wang, Wei Zhou, Xingyu Wu
Title: When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
Abstract:
This paper establishes the first comprehensive review of Large Language Models (LLMs) applied within the legal domain. It pioneers an innovative dual lens taxonomy that integrates legal reasoning frameworks and professional ontologies to systematically unify historical research and contemporary breakthroughs. Transformer-based LLMs, which exhibit emergent capabilities such as contextual reasoning and generative argumentation, surmount traditional limitations by dynamically capturing legal semantics and unifying evidence reasoning. Significant progress is documented in task generalization, reasoning formalization, workflow integration, and addressing core challenges in text processing, knowledge integration, and evaluation rigor via technical innovations like sparse attention mechanisms and mixture-of-experts architectures. However, widespread adoption of LLM introduces critical challenges: hallucination, explainability deficits, jurisdictional adaptation difficulties, and ethical asymmetry. This review proposes a novel taxonomy that maps legal roles to NLP subtasks and computationally implements the Toulmin argumentation framework, thus systematizing advances in reasoning, retrieval, prediction, and dispute resolution. It identifies key frontiers including low-resource systems, multimodal evidence integration, and dynamic rebuttal handling. Ultimately, this work provides both a technical roadmap for researchers and a conceptual framework for practitioners navigating the algorithmic future, laying a robust foundation for the next era of legal artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/Kilimajaro/LLMs_Meet_Law.

Authors:David Pujol-Perich, Sergio Escalera, Albert Clapés
Title: Sparse-Dense Side-Tuner for efficient Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) involves Moment Retrieval (MR) and Highlight Detection (HD) based on textual queries. For this, most methods rely solely on final-layer features of frozen large pre-trained backbones, limiting their adaptability to new domains. While full fine-tuning is often impractical, parameter-efficient fine-tuning -- and particularly side-tuning (ST) -- has emerged as an effective alternative. However, prior ST approaches this problem from a frame-level refinement perspective, overlooking the inherent sparse nature of MR. To address this, we propose the Sparse-Dense Side-Tuner (SDST), the first anchor-free ST architecture for VTG. We also introduce the Reference-based Deformable Self-Attention, a novel mechanism that enhances the context modeling of the deformable attention -- a key limitation of existing anchor-free methods. Additionally, we present the first effective integration of InternVideo2 backbone into an ST framework, showing its profound implications in performance. Overall, our method significantly improves existing ST methods, achieving highly competitive or SOTA results on QVHighlights, TACoS, and Charades-STA, while reducing up to a 73% the parameter count w.r.t. the existing SOTA methods. The code is publicly accessible at https://github.com/davidpujol/SDST.

Authors:Zhijin Dong
Title: Not All Preferences are What You Need for Post-Training: Selective Alignment Strategy for Preference Optimization
Abstract:
Post-training alignment of large language models (LLMs) is a critical challenge, as not all tokens contribute equally to model performance. This paper introduces a selective alignment strategy that prioritizes high-impact tokens within preference pairs, leveraging token-level log-probability differences between the current policy and a reference model. By focusing on these informative tokens, our approach reduces computational overhead and enhances alignment fidelity. We further explore the role of reference model quality, demonstrating that stronger reference models significantly improve token selection accuracy and overall optimization effectiveness. Comprehensive experiments on benchmarks such as Arena-Hard and MT-Bench validate the superiority of our Selective-DPO method over standard DPO and distillation-based baselines. Our findings highlight the importance of token-level optimization and reference model selection in advancing preference alignment for LLMs. The code is available at https://github.com/Dongzhijin/SDPO.

Authors:Ethan Dack, Chengliang Dai
Title: Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays
Abstract:
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

Authors:Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo
Title: Motion-Aware Adaptive Pixel Pruning for Efficient Local Motion Deblurring
Abstract:
Local motion blur in digital images originates from the relative motion between dynamic objects and static imaging systems during exposure. Existing deblurring methods face significant challenges in addressing this problem due to their inefficient allocation of computational resources and inadequate handling of spatially varying blur patterns. To overcome these limitations, we first propose a trainable mask predictor that identifies blurred regions in the image. During training, we employ blur masks to exclude sharp regions. For inference optimization, we implement structural reparameterization by converting $3\times 3$ convolutions to computationally efficient $1\times 1$ convolutions, enabling pixel-level pruning of sharp areas to reduce computation. Second, we develop an intra-frame motion analyzer that translates relative pixel displacements into motion trajectories, establishing adaptive guidance for region-specific blur restoration. Our method is trained end-to-end using a combination of reconstruction loss, reblur loss, and mask loss guided by annotated blur masks. Extensive experiments demonstrate superior performance over state-of-the-art methods on both local and global blur datasets while reducing FLOPs by 49\% compared to SOTA models (e.g., LMD-ViT). The source code is available at https://github.com/shangwei5/M2AENet.

Authors:Peixian Zhuang, Yijian Wang, Zhenqi Fu, Hongliang Zhang, Sam Kwong, Chongyi Li
Title: Tree-Mamba: A Tree-Aware Mamba for Underwater Monocular Depth Estimation
Abstract:
Underwater Monocular Depth Estimation (UMDE) is a critical task that aims to estimate high-precision depth maps from underwater degraded images caused by light absorption and scattering effects in marine environments. Recently, Mamba-based methods have achieved promising performance across various vision tasks; however, they struggle with the UMDE task because their inflexible state scanning strategies fail to model the structural features of underwater images effectively. Meanwhile, existing UMDE datasets usually contain unreliable depth labels, leading to incorrect object-depth relationships between underwater images and their corresponding depth maps. To overcome these limitations, we develop a novel tree-aware Mamba method, dubbed Tree-Mamba, for estimating accurate monocular depth maps from underwater degraded images. Specifically, we propose a tree-aware scanning strategy that adaptively constructs a minimum spanning tree based on feature similarity. The spatial topological features among the tree nodes are then flexibly aggregated through bottom-up and top-down traversals, enabling stronger multi-scale feature representation capabilities. Moreover, we construct an underwater depth estimation benchmark (called BlueDepth), which consists of 38,162 underwater image pairs with reliable depth labels. This benchmark serves as a foundational dataset for training existing deep learning-based UMDE methods to learn accurate object-depth relationships. Extensive experiments demonstrate the superiority of the proposed Tree-Mamba over several leading methods in both qualitative results and quantitative evaluations with competitive computational efficiency. Code and dataset will be available at https://wyjgr.github.io/Tree-Mamba.html.

Authors:Feng Liu, Lingna Gu, Chen Shi, Xiaolan Fu
Title: Action Unit Enhance Dynamic Facial Expression Recognition
Abstract:
Dynamic Facial Expression Recognition(DFER) is a rapidly evolving field of research that focuses on the recognition of time-series facial expressions. While previous research on DFER has concentrated on feature learning from a deep learning perspective, we put forward an AU-enhanced Dynamic Facial Expression Recognition architecture, namely AU-DFER, that incorporates AU-expression knowledge to enhance the effectiveness of deep learning modeling. In particular, the contribution of the Action Units(AUs) to different expressions is quantified, and a weight matrix is designed to incorporate a priori knowledge. Subsequently, the knowledge is integrated with the learning outcomes of a conventional deep learning network through the introduction of AU loss. The design is incorporated into the existing optimal model for dynamic expression recognition for the purpose of validation. Experiments are conducted on three recent mainstream open-source approaches to DFER on the principal datasets in this field. The results demonstrate that the proposed architecture outperforms the state-of-the-art(SOTA) methods without the need for additional arithmetic and generally produces improved results. Furthermore, we investigate the potential of AU loss function redesign to address data label imbalance issues in established dynamic expression datasets. To the best of our knowledge, this is the first attempt to integrate quantified AU-expression knowledge into various DFER models. We also devise strategies to tackle label imbalance, or minor class problems. Our findings suggest that employing a diverse strategy of loss function design can enhance the effectiveness of DFER. This underscores the criticality of addressing data imbalance challenges in mainstream datasets within this domain. The source code is available at https://github.com/Cross-Innovation-Lab/AU-DFER.

Authors:Domenik Eichhorn, Nick Poser, Maximilian Schweikart, Ina Schaefer
Title: ProvideQ: A Quantum Optimization Toolbox
Abstract:
Hybrid solvers for combinatorial optimization problems combine the advantages of classical and quantum computing to overcome difficult computational challenges. Although their theoretical performance seems promising, their practical applicability is challenging due to the lack of a technological stack that can seamlessly integrate quantum solutions with existing classical optimization frameworks. We tackle this challenge by introducing the ProvideQ toolbox, a software tool that enables users to easily adapt and configure hybrid solvers via Meta-Solver strategies. A Meta-Solver strategy implements decomposition techniques, which splits problems into classical and quantum subroutines. The ProvideQ toolbox enables the interactive creation of such decompositions via a Meta-Solver configuration tool. It combines well-established classical optimization techniques with quantum circuits that are seamlessly executable on multiple backends. This paper introduces the technical details of the ProvideQ toolbox, explains its architecture, and demonstrates possible applications for several real-world use cases. Our proof of concept shows that Meta-Solver strategies already enable the application of quantum subroutines today, however, more sophisticated hardware is required to make their performance competitive.

Authors:Fedor Rodionov, Abdelrahman Eldesokey, Michael Birsak, John Femiani, Bernard Ghanem, Peter Wonka
Title: PlanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
Abstract:
We introduce PlanQA, a diagnostic benchmark for evaluating geometric and spatial reasoning in large-language models (LLMs). PlanQA is grounded in structured representations of indoor scenes, such as kitchens, living rooms, and bedrooms, encoded in a symbolic format (e.g., JSON, XML layouts). The benchmark includes diverse question types that test not only metric and topological reasoning (e.g., distance, visibility, shortest paths) but also interior design constraints such as affordance, clearance, balance, and usability. Our results across a variety of frontier open-source and commercial LLMs show that while models may succeed in shallow queries, they often fail to simulate physical constraints, preserve spatial coherence, or generalize under layout perturbation. PlanQA uncovers a clear blind spot in today's LLMs: they do not consistently reason about real-world layouts. We hope that this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.

Authors:Federico Del Pup, Riccardo Brun, Filippo Iotti, Edoardo Paccagnella, Mattia Pezzato, Sabrina Bertozzo, Andrea Zanola, Louis Fabrice Tshimanga, Henning Müller, Manfredo Atzori
Title: TransformEEG: Towards Improving Model Generalizability in Deep Learning-based EEG Parkinson's Disease Detection
Abstract:
Electroencephalography (EEG) is establishing itself as an important, low-cost, noninvasive diagnostic tool for the early detection of Parkinson's Disease (PD). In this context, EEG-based Deep Learning (DL) models have shown promising results due to their ability to discover highly nonlinear patterns within the signal. However, current state-of-the-art DL models suffer from poor generalizability caused by high inter-subject variability. This high variability underscores the need for enhancing model generalizability by developing new architectures better tailored to EEG data. This paper introduces TransformEEG, a hybrid Convolutional-Transformer designed for Parkinson's disease detection using EEG data. Unlike transformer models based on the EEGNet structure, TransformEEG incorporates a depthwise convolutional tokenizer. This tokenizer is specialized in generating tokens composed by channel-specific features, which enables more effective feature mixing within the self-attention layers of the transformer encoder. To evaluate the proposed model, four public datasets comprising 290 subjects (140 PD patients, 150 healthy controls) were harmonized and aggregated. A 10-outer, 10-inner Nested-Leave-N-Subjects-Out (N-LNSO) cross-validation was performed to provide an unbiased comparison against seven other consolidated EEG deep learning models. TransformEEG achieved the highest balanced accuracy's median (78.45%) as well as the lowest interquartile range (6.37%) across all the N-LNSO partitions. When combined with data augmentation and threshold correction, median accuracy increased to 80.10%, with an interquartile range of 5.74%. In conclusion, TransformEEG produces more consistent and less skewed results. It demonstrates a substantial reduction in variability and more reliable PD detection using EEG data compared to the other investigated models.

Authors:Marc Lafon, Yannis Karmim, Julio Silva-Rodríguez, Paul Couairon, Clément Rambour, Raphaël Fournier-Sniehotta, Ismail Ben Ayed, Jose Dolz, Nicolas Thome
Title: ViLU: Learning Vision-Language Uncertainties for Failure Prediction
Abstract:
Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.

Authors:Ruixiang Chen, Guolei Sun, Yawei Li, Jie Qin, Luca Benini
Title: HiM2SAM: Enhancing SAM2 with Hierarchical Motion Estimation and Memory Optimization towards Long-term Tracking
Abstract:
This paper presents enhancements to the SAM2 framework for video object tracking task, addressing challenges such as occlusions, background clutter, and target reappearance. We introduce a hierarchical motion estimation strategy, combining lightweight linear prediction with selective non-linear refinement to improve tracking accuracy without requiring additional training. In addition, we optimize the memory bank by distinguishing long-term and short-term memory frames, enabling more reliable tracking under long-term occlusions and appearance changes. Experimental results show consistent improvements across different model scales. Our method achieves state-of-the-art performance on LaSOT and LaSOText with the large model, achieving 9.6% and 7.2% relative improvements in AUC over the original SAM2, and demonstrates even larger relative gains on smaller models, highlighting the effectiveness of our trainless, low-overhead improvements for boosting long-term tracking performance. The code is available at https://github.com/LouisFinner/HiM2SAM.

Authors:Kuiyuan Sun, Yuxuan Zhang, Jichao Zhang, Jiaming Liu, Wei Wang, Niculae Sebe, Yao Zhao
Title: Stable-Hair v2: Real-World Hair Transfer via Multiple-View Diffusion Model
Abstract:
While diffusion-based methods have shown impressive capabilities in capturing diverse and complex hairstyles, their ability to generate consistent and high-quality multi-view outputs -- crucial for real-world applications such as digital humans and virtual avatars -- remains underexplored. In this paper, we propose Stable-Hair v2, a novel diffusion-based multi-view hair transfer framework. To the best of our knowledge, this is the first work to leverage multi-view diffusion models for robust, high-fidelity, and view-consistent hair transfer across multiple perspectives. We introduce a comprehensive multi-view training data generation pipeline comprising a diffusion-based Bald Converter, a data-augment inpainting model, and a face-finetuned multi-view diffusion model to generate high-quality triplet data, including bald images, reference hairstyles, and view-aligned source-bald pairs. Our multi-view hair transfer model integrates polar-azimuth embeddings for pose conditioning and temporal attention layers to ensure smooth transitions between views. To optimize this model, we design a novel multi-stage training strategy consisting of pose-controllable latent IdentityNet training, hair extractor training, and temporal attention training. Extensive experiments demonstrate that our method accurately transfers detailed and realistic hairstyles to source subjects while achieving seamless and consistent results across views, significantly outperforming existing methods and establishing a new benchmark in multi-view hair transfer. Code is publicly available at https://github.com/sunkymepro/StableHairV2.

Authors:Chunyan Wang, Dong Zhang, Jinhui Tang
Title: Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-Light Semantic Segmentation
Abstract:
Weakly-supervised semantic segmentation aims to assign category labels to each pixel using weak annotations, significantly reducing manual annotation costs. Although existing methods have achieved remarkable progress in well-lit scenarios, their performance significantly degrades in low-light environments due to two fundamental limitations: severe image quality degradation (e.g., low contrast, noise, and color distortion) and the inherent constraints of weak supervision. These factors collectively lead to unreliable class activation maps and semantically ambiguous pseudo-labels, ultimately compromising the model's ability to learn discriminative feature representations. To address these problems, we propose Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-light Semantic Segmentation (DGKD-WLSS), a novel framework that synergistically combines Diffusion-Guided Knowledge Distillation (DGKD) with Depth-Guided Feature Fusion (DGF2). DGKD aligns normal-light and low-light features via diffusion-based denoising and knowledge distillation, while DGF2 integrates depth maps as illumination-invariant geometric priors to enhance structural feature learning. Extensive experiments demonstrate the effectiveness of DGKD-WLSS, which achieves state-of-the-art performance in weakly supervised semantic segmentation tasks under low-light conditions. The source codes have been released at:https://github.com/ChunyanWang1/DGKD-WLSS.

Authors:Joelle Hanna, Linus Scheibenreif, Damian Borth
Title: MAPEX: Modality-Aware Pruning of Experts for Remote Sensing Foundation Models
Abstract:
Remote sensing data is commonly used for tasks such as flood mapping, wildfire detection, or land-use studies. For each task, scientists carefully choose appropriate modalities or leverage data from purpose-built instruments. Recent work on remote sensing foundation models pre-trains computer vision models on large amounts of remote sensing data. These large-scale models tend to focus on specific modalities, often optical RGB or multispectral data. For many important applications, this introduces a mismatch between the application modalities and the pre-training data. Moreover, the large size of foundation models makes them expensive and difficult to fine-tune on typically small datasets for each task. We address this mismatch with MAPEX, a remote sensing foundation model based on mixture-of-modality experts. MAPEX is pre-trained on multi-modal remote sensing data with a novel modality-conditioned token routing mechanism that elicits modality-specific experts. To apply the model on a specific task, we propose a modality aware pruning technique, which only retains experts specialized for the task modalities. This yields efficient modality-specific models while simplifying fine-tuning and deployment for the modalities of interest. We experimentally validate MAPEX on diverse remote sensing datasets and show strong performance compared to fully supervised training and state-of-the-art remote sensing foundation models. Code is available at https://github.com/HSG-AIML/MAPEX.

Authors:Cunhang Fan, Sheng Zhang, Jingjing Zhang, Enrui Liu, Xinhui Li, Gangming Zhao, Zhao Lv
Title: DMF2Mel: A Dynamic Multiscale Fusion Network for EEG-Driven Mel Spectrogram Reconstruction
Abstract:
Decoding speech from brain signals is a challenging research problem. Although existing technologies have made progress in reconstructing the mel spectrograms of auditory stimuli at the word or letter level, there remain core challenges in the precise reconstruction of minute-level continuous imagined speech: traditional models struggle to balance the efficiency of temporal dependency modeling and information retention in long-sequence decoding. To address this issue, this paper proposes the Dynamic Multiscale Fusion Network (DMF2Mel), which consists of four core components: the Dynamic Contrastive Feature Aggregation Module (DC-FAM), the Hierarchical Attention-Guided Multi-Scale Network (HAMS-Net), the SplineMap attention mechanism, and the bidirectional state space module (convMamba). Specifically, the DC-FAM separates speech-related "foreground features" from noisy "background features" through local convolution and global attention mechanisms, effectively suppressing interference and enhancing the representation of transient signals. HAMS-Net, based on the U-Net framework,achieves cross-scale fusion of high-level semantics and low-level details. The SplineMap attention mechanism integrates the Adaptive Gated Kolmogorov-Arnold Network (AGKAN) to combine global context modeling with spline-based local fitting. The convMamba captures long-range temporal dependencies with linear complexity and enhances nonlinear dynamic modeling capabilities. Results on the SparrKULee dataset show that DMF2Mel achieves a Pearson correlation coefficient of 0.074 in mel spectrogram reconstruction for known subjects (a 48% improvement over the baseline) and 0.048 for unknown subjects (a 35% improvement over the baseline).Code is available at: https://github.com/fchest/DMF2Mel.

Authors:Shuaijin Wan
Title: GGMotion: Group Graph Dynamics-Kinematics Networks for Human Motion Prediction
Abstract:
Human motion is a continuous physical process in 3D space, governed by complex dynamic and kinematic constraints. Existing methods typically represent the human pose as an abstract graph structure, neglecting the intrinsic physical dependencies between joints, which increases learning difficulty and makes the model prone to generating unrealistic motions. In this paper, we propose GGMotion, a group graph dynamics-kinematics network that models human topology in groups to better leverage dynamics and kinematics priors. To preserve the geometric equivariance in 3D space, we propose a novel radial field for the graph network that captures more comprehensive spatio-temporal dependencies by aggregating joint features through spatial and temporal edges. Inter-group and intra-group interaction modules are employed to capture the dependencies of joints at different scales. Combined with equivariant multilayer perceptrons (MLP), joint position features are updated in each group through parallelized dynamics-kinematics propagation to improve physical plausibility. Meanwhile, we introduce an auxiliary loss to supervise motion priors during training. Extensive experiments on three standard benchmarks, including Human3.6M, CMU-Mocap, and 3DPW, demonstrate the effectiveness and superiority of our approach, achieving a significant performance margin in short-term motion prediction. The code is available at https://github.com/inkcat520/GGMotion.git.

Authors:Jiaxu Wan, Xu Wang, Mengwei Xie, Xinyuan Chang, Xinran Liu, Zheng Pan, Mu Xu, Ding Yuan
Title: Driving by Hybrid Navigation: An Online HD-SD Map Association Framework and Benchmark for Autonomous Vehicles
Abstract:
Autonomous vehicles rely on global standard-definition (SD) maps for road-level route planning and online local high-definition (HD) maps for lane-level navigation. However, recent work concentrates on construct online HD maps, often overlooking the association of global SD maps with online HD maps for hybrid navigation, making challenges in utilizing online HD maps in the real world. Observing the lack of the capability of autonomous vehicles in navigation, we introduce \textbf{O}nline \textbf{M}ap \textbf{A}ssociation, the first benchmark for the association of hybrid navigation-oriented online maps, which enhances the planning capabilities of autonomous vehicles. Based on existing datasets, the OMA contains 480k of roads and 260k of lane paths and provides the corresponding metrics to evaluate the performance of the model. Additionally, we propose a novel framework, named Map Association Transformer, as the baseline method, using path-aware attention and spatial attention mechanisms to enable the understanding of geometric and topological correspondences. The code and dataset can be accessed at https://github.com/WallelWan/OMA-MAT.

Authors:Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Abstract:
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present \emph{RLEP}\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.

Authors:Weihao Tan, Changjiu Jiang, Yu Duan, Mingcong Lei, Jiageng Li, Yitian Hong, Xinrun Wang, Bo An
Title: StarDojo: Benchmarking Open-Ended Behaviors of Agentic Multimodal LLMs in Production-Living Simulations with Stardew Valley
Abstract:
Autonomous agents navigating human society must master both production activities and social interactions, yet existing benchmarks rarely evaluate these skills simultaneously. To bridge this gap, we introduce StarDojo, a novel benchmark based on Stardew Valley, designed to assess AI agents in open-ended production-living simulations. In StarDojo, agents are tasked to perform essential livelihood activities such as farming and crafting, while simultaneously engaging in social interactions to establish relationships within a vibrant community. StarDojo features 1,000 meticulously curated tasks across five key domains: farming, crafting, exploration, combat, and social interactions. Additionally, we provide a compact subset of 100 representative tasks for efficient model evaluation. The benchmark offers a unified, user-friendly interface that eliminates the need for keyboard and mouse control, supports all major operating systems, and enables the parallel execution of multiple environment instances, making it particularly well-suited for evaluating the most capable foundation agents, powered by multimodal large language models (MLLMs). Extensive evaluations of state-of-the-art MLLMs agents demonstrate substantial limitations, with the best-performing model, GPT-4.1, achieving only a 12.7% success rate, primarily due to challenges in visual understanding, multimodal reasoning and low-level manipulation. As a user-friendly environment and benchmark, StarDojo aims to facilitate further research towards robust, open-ended agents in complex production-living environments.

Authors:Korbinian Moller, Rafael Neher, Marvin Seegert, Johannes Betz
Title: Towards Safe Autonomous Driving: A Real-Time Safeguarding Concept for Motion Planning Algorithms
Abstract:
Ensuring the functional safety of motion planning modules in autonomous vehicles remains a critical challenge, especially when dealing with complex or learning-based software. Online verification has emerged as a promising approach to monitor such systems at runtime, yet its integration into embedded real-time environments remains limited. This work presents a safeguarding concept for motion planning that extends prior approaches by introducing a time safeguard. While existing methods focus on geometric and dynamic feasibility, our approach additionally monitors the temporal consistency of planning outputs to ensure timely system response. A prototypical implementation on a real-time operating system evaluates trajectory candidates using constraint-based feasibility checks and cost-based plausibility metrics. Preliminary results show that the safeguarding module operates within real-time bounds and effectively detects unsafe trajectories. However, the full integration of the time safeguard logic and fallback strategies is ongoing. This study contributes a modular and extensible framework for runtime trajectory verification and highlights key aspects for deployment on automotive-grade hardware. Future work includes completing the safeguarding logic and validating its effectiveness through hardware-in-the-loop simulations and vehicle-based testing. The code is available at: https://github.com/TUM-AVS/motion-planning-supervisor

Authors:Ling Zhou, Runtian Yuan, Yi Liu, Yuejie Zhang, Rui Feng, Shang Gao
Title: Dual Semantic-Aware Network for Noise Suppressed Ultrasound Video Segmentation
Abstract:
Ultrasound imaging is a prevalent diagnostic tool known for its simplicity and non-invasiveness. However, its inherent characteristics often introduce substantial noise, posing considerable challenges for automated lesion or organ segmentation in ultrasound video sequences. To address these limitations, we propose the Dual Semantic-Aware Network (DSANet), a novel framework designed to enhance noise robustness in ultrasound video segmentation by fostering mutual semantic awareness between local and global features. Specifically, we introduce an Adjacent-Frame Semantic-Aware (AFSA) module, which constructs a channel-wise similarity matrix to guide feature fusion across adjacent frames, effectively mitigating the impact of random noise without relying on pixel-level relationships. Additionally, we propose a Local-and-Global Semantic-Aware (LGSA) module that reorganizes and fuses temporal unconditional local features, which capture spatial details independently at each frame, with conditional global features that incorporate temporal context from adjacent frames. This integration facilitates multi-level semantic representation, significantly improving the model's resilience to noise interference. Extensive evaluations on four benchmark datasets demonstrate that DSANet substantially outperforms state-of-the-art methods in segmentation accuracy. Moreover, since our model avoids pixel-level feature dependencies, it achieves significantly higher inference FPS than video-based methods, and even surpasses some image-based models. Code can be found in \href{https://github.com/ZhouL2001/DSANet}{DSANet}

Authors:Jingjing Jiang, Chao Ma, Xurui Song, Hanwang Zhang, Jun Luo
Title: Corvid: Improving Multimodal Large Language Models Towards Chain-of-Thought Reasoning
Abstract:
Recent advancements in multimodal large language models (MLLMs) have demonstrated exceptional performance in multimodal perception and understanding. However, leading open-source MLLMs exhibit significant limitations in complex and structured reasoning, particularly in tasks requiring deep reasoning for decision-making and problem-solving. In this work, we present Corvid, an MLLM with enhanced chain-of-thought (CoT) reasoning capabilities. Architecturally, Corvid incorporates a hybrid vision encoder for informative visual representation and a meticulously designed connector (GateMixer) to facilitate cross-modal alignment. To enhance Corvid's CoT reasoning capabilities, we introduce MCoT-Instruct-287K, a high-quality multimodal CoT instruction-following dataset, refined and standardized from diverse public reasoning sources. Leveraging this dataset, we fine-tune Corvid with a two-stage CoT-formatted training approach to progressively enhance its step-by-step reasoning abilities. Furthermore, we propose an effective inference-time scaling strategy that enables Corvid to mitigate over-reasoning and under-reasoning through self-verification. Extensive experiments demonstrate that Corvid outperforms existing o1-like MLLMs and state-of-the-art MLLMs with similar parameter scales, with notable strengths in mathematical reasoning and science problem-solving. Project page: https://mm-vl.github.io/corvid.

Authors:Nishit V. Pandya, Andrey Labunets, Sicun Gao, Earlence Fernandes
Title: May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
Abstract:
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning the model to separate instructions and data, so that the LLM does not follow instructions that might be present with data. There are several academic systems and production-level implementations of this idea. We evaluate the robustness of this class of prompt injection defenses in the whitebox setting by constructing strong optimization-based attacks and showing that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for text-based LLMs and apply it to two recent whitebox defenses SecAlign (CCS 2025) and StruQ (USENIX Security 2025), showing attacks with success rates of up to 70% with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks

Authors:Yuntian Liu, Tao Zhu, Xiaoyang Liu, Yu Chen, Zhaoxuan Liu, Qingfeng Guo, Jiashuo Zhang, Kangjie Bao, Tao Luo
Title: Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization
Abstract:
Statement autoformalization, the automated translation of statements from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. Across the miniF2F and ProofNet benchmarks, GTED consistently ranks as a top-performing metric, achieving the highest accuracy and Kappa on miniF2F and the joint-highest accuracy on ProofNet. This strong overall performance provides the community with a computationally lightweight and more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.

Authors:Yongtang Bao, Chengjie Tang, Yuze Wang, Haojie Li
Title: Seg-Wild: Interactive Segmentation based on 3D Gaussian Splatting for Unconstrained Image Collections
Abstract:
Reconstructing and segmenting scenes from unconstrained photo collections obtained from the Internet is a novel but challenging task. Unconstrained photo collections are easier to get than well-captured photo collections. These unconstrained images suffer from inconsistent lighting and transient occlusions, which makes segmentation challenging. Previous segmentation methods cannot address transient occlusions or accurately restore the scene's lighting conditions. Therefore, we propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections, suitable for in-the-wild scenes. We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target to achieve interactive segmentation in the 3D scene. Additionally, we introduce the Spiky 3D Gaussian Cutter (SGC) to smooth abnormal 3D Gaussians. We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask. We also designed a benchmark to evaluate segmentation quality in in-the-wild scenes. Experimental results demonstrate that compared to previous methods, Seg-Wild achieves better segmentation results and reconstruction quality. Our code will be available at https://github.com/Sugar0725/Seg-Wild.

Authors:Chengan He, Jorge Alejandro Amador Herrera, Zhixin Shu, Xin Sun, Yao Feng, Sören Pirk, Dominik L. Michels, Meng Zhang, Tuanfeng Y. Wang, Julie Dorsey, Holly Rushmeier, Yi Zhou
Title: Digital Salon: An AI and Physics-Driven Tool for 3D Hair Grooming and Simulation
Abstract:
We introduce Digital Salon, a comprehensive hair authoring system that supports real-time 3D hair generation, simulation, and rendering. Unlike existing methods that focus on isolated parts of 3D hair modeling and involve a heavy computation process or network training, Digital Salon offers a holistic and interactive system that lowers the technical barriers of 3D hair modeling through natural language-based interaction. The system guides users through four key stages: text-guided hair retrieval, real-time hair simulation, interactive hair refinement, and hair-conditioned image generation. This cohesive workflow makes advanced hair design accessible to users of varying skill levels and dramatically streamlines the creative process in digital media with an intuitive, versatile, and efficient solution for hair modeling. User studies show that our system can outperform traditional hair modeling workflows for rapid prototyping. Furthermore, we provide insights into the benefits of our system with future potential of deploying our system in real salon environments. More details can be found on our project page: https://digital-salon.github.io/.

Authors:Haotian Wang, Aoran Xiao, Xiaoqin Zhang, Meng Yang, Shijian Lu
Title: PacGDC: Label-Efficient Generalizable Depth Completion with Projection Ambiguity and Consistency
Abstract:
Generalizable depth completion enables the acquisition of dense metric depth maps for unseen environments, offering robust perception capabilities for various downstream tasks. However, training such models typically requires large-scale datasets with metric depth labels, which are often labor-intensive to collect. This paper presents PacGDC, a label-efficient technique that enhances data diversity with minimal annotation effort for generalizable depth completion. PacGDC builds on novel insights into inherent ambiguities and consistencies in object shapes and positions during 2D-to-3D projection, allowing the synthesis of numerous pseudo geometries for the same visual scene. This process greatly broadens available geometries by manipulating scene scales of the corresponding depth maps. To leverage this property, we propose a new data synthesis pipeline that uses multiple depth foundation models as scale manipulators. These models robustly provide pseudo depth labels with varied scene scales, affecting both local objects and global layouts, while ensuring projection consistency that supports generalization. To further diversify geometries, we incorporate interpolation and relocation strategies, as well as unlabeled images, extending the data coverage beyond the individual use of foundation models. Extensive experiments show that PacGDC achieves remarkable generalizability across multiple benchmarks, excelling in diverse scene semantics/scales and depth sparsity/patterns under both zero-shot and few-shot settings. Code: https://github.com/Wang-xjtu/PacGDC.

Authors:Toby Handfield, Kevin Zollman
Title: The Evolution of Scientific Credit: When Authorship Norms Impede Collaboration
Abstract:
Scientific authorship norms vary dramatically across disciplines, from contribution-sensitive systems where first author is the greatest contributor and subsequent author order reflects relative input, to contribution-insensitive conventions like alphabetical ordering or senior-author-last. We develop evolutionary game-theoretic models to examine both how these divergent norms emerge and their subsequent effects on collaborative behavior. Our first model reveals that contribution-insensitive norms evolve when researchers who sacrifice positional advantage face the strongest adaptive pressure -- for example senior authors managing larger collaboration portfolios or bearing heavier reputational stakes. This "Red King" dynamic potentially explains why fields in which senior researchers command large labs, major grants, and extensive collaboration portfolios may paradoxically evolve conventions that favour junior-author positioning. Our second model demonstrates that established norms influence researchers' willingness to collaborate, with contribution-sensitive norms consistently outperforming insensitive alternatives in fostering successful partnerships. Contribution-insensitive norms create systematic coordination failures through two mechanisms: "main contributor resentment" when exceptional work goes unrecognized, and "second contributor resentment" when comparable efforts receive unequal credit. These findings suggest that widely adopted practices like senior-last positioning and alphabetical ordering may function as institutional frictions that impede valuable scientific collaborations rather than neutral organizational conventions, potentially reducing overall scientific productivity across affected disciplines.

Authors:Sherry X. Chen, Yi Wei, Luowei Zhou, Suren Kumar
Title: ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Abstract:
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.

Authors:Yichen Lu, Wei Dai, Jiaen Liu, Ching Wing Kwok, Zongheng Wu, Xudong Xiao, Ao Sun, Sheng Fu, Jianyuan Zhan, Yian Wang, Takatomo Saito, Sicheng Lai
Title: ViDove: A Translation Agent System with Multimodal Context and Memory-Augmented Reasoning
Abstract:
LLM-based translation agents have achieved highly human-like translation results and are capable of handling longer and more complex contexts with greater efficiency. However, they are typically limited to text-only inputs. In this paper, we introduce ViDove, a translation agent system designed for multimodal input. Inspired by the workflow of human translators, ViDove leverages visual and contextual background information to enhance the translation process. Additionally, we integrate a multimodal memory system and long-short term memory modules enriched with domain-specific knowledge, enabling the agent to perform more accurately and adaptively in real-world scenarios. As a result, ViDove achieves significantly higher translation quality in both subtitle generation and general translation tasks, with a 28% improvement in BLEU scores and a 15% improvement in SubER compared to previous state-of-the-art baselines. Moreover, we introduce DoveBench, a new benchmark for long-form automatic video subtitling and translation, featuring 17 hours of high-quality, human-annotated data. Our code is available here: https://github.com/pigeonai-org/ViDove

Authors:Andrew Fan, Simon D. Levy
Title: A Robust, Open-Source Framework for Spiking Neural Networks on Low-End FPGAs
Abstract:
As the demand for compute power in traditional neural networks has increased significantly, spiking neural networks (SNNs) have emerged as a potential solution to increasingly power-hungry neural networks. By operating on 0/1 spikes emitted by neurons instead of arithmetic multiply-and-accumulate operations, SNNs propagate information temporally and spatially, allowing for more efficient compute power. To this end, many architectures for accelerating and simulating SNNs have been developed, including Loihi, TrueNorth, and SpiNNaker. However, these chips are largely inaccessible to the wider community. Field programmable gate arrays (FPGAs) have been explored to serve as a middle ground between neuromorphic and non-neuromorphic hardware, but many proposed architectures require expensive high-end FPGAs or target a single SNN topology. This paper presents a framework consisting of a robust SNN acceleration architecture and a Pytorch-based SNN model compiler. Targeting any-to-any and/or fully connected SNNs, the FPGA architecture features a synaptic array that tiles across the SNN to propagate spikes. The architecture targets low-end FPGAs and requires very little (6358 LUT, 40.5 BRAM) resources. The framework, tested on a low-end Xilinx Artix-7 FPGA at 100 MHz, achieves competitive speed in recognizing MNIST digits (0.52 ms/img). Further experiments also show accurate simulation of hand coded any-to-any spiking neural networks on toy problems. All code and setup instructions are available at https://github.com/im-afan/snn-fpga}{\texttt{https://github.com/im-afan/snn-fpga.

Authors:Licong Xu, Milind Sarkar, Anto I. Lonappan, Íñigo Zubeldia, Pablo Villanueva-Domingo, Santiago Casas, Christian Fidler, Chetana Amancharla, Ujjwal Tiwari, Adrian Bayer, Chadi Ait Ekioui, Miles Cranmer, Adrian Dimitrov, James Fergusson, Kahaan Gandhi, Sven Krippendorf, Andrew Laverick, Julien Lesgourgues, Antony Lewis, Thomas Meier, Blake Sherwin, Kristen Surrao, Francisco Villaescusa-Navarro, Chi Wang, Xueqing Xu, Boris Bolliet
Title: Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery
Abstract:
We present a multi-agent system for automation of scientific research tasks, cmbagent (https://github.com/CMBAgents/cmbagent). The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

Authors:Heet Nitinkumar Dalsania
Title: Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation
Abstract:
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.

Authors:Maya Kruse, Majid Afshar, Saksham Khatwani, Anoop Mayampurath, Guanhua Chen, Yanjun Gao
Title: Simple Yet Effective: An Information-Theoretic Approach to Multi-LLM Uncertainty Quantification
Abstract:
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings. Prior work on calibration and uncertainty quantification often focuses on individual models, overlooking the potential of model diversity. We hypothesize that LLMs make complementary predictions due to differences in training and the Zipfian nature of language, and that aggregating their outputs leads to more reliable uncertainty estimates. To leverage this, we propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs. Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naïve ensemble baselines. In addition, we explore using MUSE as guided signals with chain-of-thought distillation to fine-tune LLMs for calibration. MUSE is available at:https://github.com/LARK-NLP-Lab/MUSE.

Authors:Priyank Pathak, Yogesh S. Rawat
Title: Colors See Colors Ignore: Clothes Changing ReID with Color Disentanglement
Abstract:
Clothes-Changing Re-Identification (CC-ReID) aims to recognize individuals across different locations and times, irrespective of clothing. Existing methods often rely on additional models or annotations to learn robust, clothing-invariant features, making them resource-intensive. In contrast, we explore the use of color - specifically foreground and background colors - as a lightweight, annotation-free proxy for mitigating appearance bias in ReID models. We propose Colors See, Colors Ignore (CSCI), an RGB-only method that leverages color information directly from raw images or video frames. CSCI efficiently captures color-related appearance bias ('Color See') while disentangling it from identity-relevant ReID features ('Color Ignore'). To achieve this, we introduce S2A self-attention, a novel self-attention to prevent information leak between color and identity cues within the feature space. Our analysis shows a strong correspondence between learned color embeddings and clothing attributes, validating color as an effective proxy when explicit clothing labels are unavailable. We demonstrate the effectiveness of CSCI on both image and video ReID with extensive experiments on four CC-ReID datasets. We improve the baseline by Top-1 2.9% on LTCC and 5.0% on PRCC for image-based ReID, and 1.0% on CCVID and 2.5% on MeVID for video-based ReID without relying on additional supervision. Our results highlight the potential of color as a cost-effective solution for addressing appearance bias in CC-ReID. Github: https://github.com/ppriyank/ICCV-CSCI-Person-ReID.

Authors:Florian Redhardt, Yassir Akram, Simon Schug
Title: Scale leads to compositional generalization
Abstract:
Can neural networks systematically capture discrete, compositional task structure despite their continuous, distributed nature? The impressive capabilities of large-scale neural networks suggest that the answer to this question is yes. However, even for the most capable models, there are still frequent failure cases that raise doubts about their compositionality. Here, we seek to understand what it takes for a standard neural network to generalize over tasks that share compositional structure. We find that simply scaling data and model size leads to compositional generalization. We show that this holds across different task encodings as long as the training distribution sufficiently covers the task space. In line with this finding, we prove that standard multilayer perceptrons can approximate a general class of compositional task families to arbitrary precision using only a linear number of neurons with respect to the number of task modules. Finally, we uncover that if networks successfully compositionally generalize, the constituents of a task can be linearly decoded from their hidden activations. We show that this metric correlates with failures of text-to-image generation models to compose known concepts.

Authors:Xueqing Xu, Boris Bolliet, Adrian Dimitrov, Andrew Laverick, Francisco Villaescusa-Navarro, Licong Xu, Íñigo Zubeldia
Title: Evaluating Retrieval-Augmented Generation Agents for Autonomous Scientific Discovery in Astrophysics
Abstract:
We evaluate 9 Retrieval Augmented Generation (RAG) agent configurations on 105 Cosmology Question-Answer (QA) pairs that we built specifically for this purpose.The RAG configurations are manually evaluated by a human expert, that is, a total of 945 generated answers were assessed. We find that currently the best RAG agent configuration is with OpenAI embedding and generative model, yielding 91.4\% accuracy. Using our human evaluation results we calibrate LLM-as-a-Judge (LLMaaJ) system which can be used as a robust proxy for human evaluation. These results allow us to systematically select the best RAG agent configuration for multi-agent system for autonomous scientific discovery in astrophysics (e.g., cmbagent presented in a companion paper) and provide us with an LLMaaJ system that can be scaled to thousands of cosmology QA pairs. We make our QA dataset, human evaluation results, RAG pipelines, and LLMaaJ system publicly available for further use by the astrophysics community.

Authors:Hongyi Xie, Min Zhou, Qiao Yu, Jialiang Yu, Zhenli Sheng, Hong Xie, Defu Lian
Title: M$^2$-MFP: A Multi-Scale and Multi-Level Memory Failure Prediction Framework for Reliable Cloud Infrastructure
Abstract:
As cloud services become increasingly integral to modern IT infrastructure, ensuring hardware reliability is essential to sustain high-quality service. Memory failures pose a significant threat to overall system stability, making accurate failure prediction through the analysis of memory error logs (i.e., Correctable Errors) imperative. Existing memory failure prediction approaches have notable limitations: rule-based expert models suffer from limited generalizability and low recall rates, while automated feature extraction methods exhibit suboptimal performance. To address these limitations, we propose M$^2$-MFP: a Multi-scale and hierarchical memory failure prediction framework designed to enhance the reliability and availability of cloud infrastructure. M$^2$-MFP converts Correctable Errors (CEs) into multi-level binary matrix representations and introduces a Binary Spatial Feature Extractor (BSFE) to automatically extract high-order features at both DIMM-level and bit-level. Building upon the BSFE outputs, we develop a dual-path temporal modeling architecture: 1) a time-patch module that aggregates multi-level features within observation windows, and 2) a time-point module that employs interpretable rule-generation trees trained on bit-level patterns. Experiments on both benchmark datasets and real-world deployment show the superiority of M$^2$-MFP as it outperforms existing state-of-the-art methods by significant margins. Code and data are available at this repository: https://github.com/hwcloud-RAS/M2-MFP.

Authors:Renyang Liu, Guanlin Li, Tianwei Zhang, See-Kiong Ng
Title: Image Can Bring Your Memory Back: A Novel Multi-Modal Guided Attack against Image Generation Model Unlearning
Abstract:
Recent advances in image generation models (IGMs), particularly diffusion-based architectures such as Stable Diffusion (SD), have markedly enhanced the quality and diversity of AI-generated visual content. However, their generative capability has also raised significant ethical, legal, and societal concerns, including the potential to produce harmful, misleading, or copyright-infringing content. To mitigate these concerns, machine unlearning (MU) emerges as a promising solution by selectively removing undesirable concepts from pretrained models. Nevertheless, the robustness and effectiveness of existing unlearning techniques remain largely unexplored, particularly in the presence of multi-modal adversarial inputs. To bridge this gap, we propose Recall, a novel adversarial framework explicitly designed to compromise the robustness of unlearned IGMs. Unlike existing approaches that predominantly rely on adversarial text prompts, Recall exploits the intrinsic multi-modal conditioning capabilities of diffusion models by efficiently optimizing adversarial image prompts with guidance from a single semantically relevant reference image. Extensive experiments across ten state-of-the-art unlearning methods and diverse tasks show that Recall consistently outperforms existing baselines in terms of adversarial effectiveness, computational efficiency, and semantic fidelity with the original textual prompt. These findings reveal critical vulnerabilities in current unlearning mechanisms and underscore the need for more robust solutions to ensure the safety and reliability of generative models. Code and data are publicly available at \textcolor{blue}{https://github.com/ryliu68/RECALL}.

Authors:François Gardères, Shizhe Chen, Camille-Sovanneary Gauthier, Jean Ponce
Title: FACap: A Large-scale Fashion Dataset for Fine-grained Composed Image Retrieval
Abstract:
The composed image retrieval (CIR) task is to retrieve target images given a reference image and a modification text. Recent methods for CIR leverage large pretrained vision-language models (VLMs) and achieve good performance on general-domain concepts like color and texture. However, they still struggle with application domains like fashion, because the rich and diverse vocabulary used in fashion requires specific fine-grained vision and language understanding. An additional difficulty is the lack of large-scale fashion datasets with detailed and relevant annotations, due to the expensive cost of manual annotation by specialists. To address these challenges, we introduce FACap, a large-scale, automatically constructed fashion-domain CIR dataset. It leverages web-sourced fashion images and a two-stage annotation pipeline powered by a VLM and a large language model (LLM) to generate accurate and detailed modification texts. Then, we propose a new CIR model FashionBLIP-2, which fine-tunes the general-domain BLIP-2 model on FACap with lightweight adapters and multi-head query-candidate matching to better account for fine-grained fashion-specific information. FashionBLIP-2 is evaluated with and without additional fine-tuning on the Fashion IQ benchmark and the enhanced evaluation dataset enhFashionIQ, leveraging our pipeline to obtain higher-quality annotations. Experimental results show that the combination of FashionBLIP-2 and pretraining with FACap significantly improves the model's performance in fashion CIR especially for retrieval with fine-grained modification texts, demonstrating the value of our dataset and approach in a highly demanding environment such as e-commerce websites. Code is available at https://fgxaos.github.io/facap-paper-website/.

Authors:Xinglong Liang, Jiaju Huang, Luyi Han, Tianyu Zhang, Xin Wang, Yuan Gao, Chunyao Lu, Lishan Cai, Tao Tan, Ritse Mann
Title: DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation
Abstract:
PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals. Current mainstream approaches follow the practice of one network solving the segmentation of multiple cancer lesions by treating all cancers as a single task. However, this overlooks the unique characteristics of different cancer types. Considering the specificity and similarity of different cancers in terms of metastatic patterns, organ preferences, and FDG uptake intensity, we propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge. Additionally, to mitigate information forgetting caused by the early introduction of prompts, prompt-aware heads are employed after the decoder to adaptively handle multiple segmentation tasks. Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models. Finally, based on the segmentation results, we calculated MTV, TLG, and SUVmax for breast cancer survival analysis. The results suggest that DpDNet has the potential to serve as a valuable tool for personalized risk stratification, supporting clinicians in optimizing treatment strategies and improving outcomes. Code is available at https://github.com/XinglongLiang08/DpDNet.

Authors:Cristina Mata, Kanchana Ranasinghe, Michael S. Ryoo
Title: CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings
Abstract:
Unsupervised domain adaptation (UDA) involves learning class semantics from labeled data within a source domain that generalize to an unseen target domain. UDA methods are particularly impactful for semantic segmentation, where annotations are more difficult to collect than in image classification. Despite recent advances in large-scale vision-language representation learning, UDA methods for segmentation have not taken advantage of the domain-agnostic properties of text. To address this, we present a novel Covariance-based Pixel-Text loss, CoPT, that uses domain-agnostic text embeddings to learn domain-invariant features in an image segmentation encoder. The text embeddings are generated through our LLM Domain Template process, where an LLM is used to generate source and target domain descriptions that are fed to a frozen CLIP model and combined. In experiments on four benchmarks we show that a model trained using CoPT achieves the new state of the art performance on UDA for segmentation. The code can be found at https://github.com/cfmata/CoPT.

Authors:Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan
Title: Multi-level Mixture of Experts for Multimodal Entity Linking
Abstract:
Multimodal Entity Linking (MEL) aims to link ambiguous mentions within multimodal contexts to associated entities in a multimodal knowledge base. Existing approaches to MEL introduce multimodal interaction and fusion mechanisms to bridge the modality gap and enable multi-grained semantic matching. However, they do not address two important problems: (i) mention ambiguity, i.e., the lack of semantic content caused by the brevity and omission of key information in the mention's textual context; (ii) dynamic selection of modal content, i.e., to dynamically distinguish the importance of different parts of modal information. To mitigate these issues, we propose a Multi-level Mixture of Experts (MMoE) model for MEL. MMoE has four components: (i) the description-aware mention enhancement module leverages large language models to identify the WikiData descriptions that best match a mention, considering the mention's textual context; (ii) the multimodal feature extraction module adopts multimodal feature encoders to obtain textual and visual embeddings for both mentions and entities; (iii)-(iv) the intra-level mixture of experts and inter-level mixture of experts modules apply a switch mixture of experts mechanism to dynamically and adaptively select features from relevant regions of information. Extensive experiments demonstrate the outstanding performance of MMoE compared to the state-of-the-art. MMoE's code is available at: https://github.com/zhiweihu1103/MEL-MMoE.

Authors:Yimin Du
Title: Machine Learning Enhanced Multi-Factor Quantitative Trading: A Cross-Sectional Portfolio Optimization Approach with Bias Correction
Abstract:
This paper presents a comprehensive machine learning framework for quantitative trading that achieves superior risk-adjusted returns through systematic factor engineering, real-time computation optimization, and cross-sectional portfolio construction. Our approach integrates multi-factor alpha discovery with bias correction techniques, leveraging PyTorch-accelerated factor computation and advanced portfolio optimization. The system processes 500-1000 factors derived from open-source alpha101 extensions and proprietary market microstructure signals. Key innovations include tensor-based factor computation acceleration, geometric Brownian motion data augmentation, and cross-sectional neutralization strategies. Empirical validation on Chinese A-share markets (2010-2024) demonstrates annualized returns of $20\%$ with Sharpe ratios exceeding 2.0, significantly outperforming traditional approaches. Our analysis reveals the critical importance of bias correction in factor construction and the substantial impact of cross-sectional portfolio optimization on strategy performance. Code and experimental implementations are available at: https://github.com/initial-d/ml-quant-trading

Authors:Vatsal Agarwal, Matthew Gwilliam, Gefen Kohavi, Eshan Verma, Daniel Ulbricht, Abhinav Shrivastava
Title: Towards Multimodal Understanding via Stable Diffusion as a Task-Aware Feature Extractor
Abstract:
Recent advances in multimodal large language models (MLLMs) have enabled image-based question-answering capabilities. However, a key limitation is the use of CLIP as the visual encoder; while it can capture coarse global information, it often can miss fine-grained details that are relevant to the input query. To address these shortcomings, this work studies whether pre-trained text-to-image diffusion models can serve as instruction-aware visual encoders. Through an analysis of their internal representations, we find diffusion features are both rich in semantics and can encode strong image-text alignment. Moreover, we find that we can leverage text conditioning to focus the model on regions relevant to the input question. We then investigate how to align these features with large language models and uncover a leakage phenomenon, where the LLM can inadvertently recover information from the original diffusion prompt. We analyze the causes of this leakage and propose a mitigation strategy. Based on these insights, we explore a simple fusion strategy that utilizes both CLIP and conditional diffusion features. We evaluate our approach on both general VQA and specialized MLLM benchmarks, demonstrating the promise of diffusion models for visual understanding, particularly in vision-centric tasks that require spatial and compositional reasoning. Our project page can be found https://vatsalag99.github.io/mustafar/.

Authors:Tiezheng Zhang, Yitong Li, Yu-cheng Chou, Jieneng Chen, Alan Yuille, Chen Wei, Junfei Xiao
Title: Vision-Language-Vision Auto-Encoder: Scalable Knowledge Distillation from Diffusion Models
Abstract:
Building state-of-the-art Vision-Language Models (VLMs) with strong captioning capabilities typically necessitates training on billions of high-quality image-text pairs, requiring millions of GPU hours. This paper introduces the Vision-Language-Vision (VLV) auto-encoder framework, which strategically leverages key pretrained components: a vision encoder, the decoder of a Text-to-Image (T2I) diffusion model, and subsequently, a Large Language Model (LLM). Specifically, we establish an information bottleneck by regularizing the language representation space, achieved through freezing the pretrained T2I diffusion decoder. Our VLV pipeline effectively distills knowledge from the text-conditioned diffusion model using continuous embeddings, demonstrating comprehensive semantic understanding via high-quality reconstructions. Furthermore, by fine-tuning a pretrained LLM to decode the intermediate language representations into detailed descriptions, we construct a state-of-the-art (SoTA) captioner comparable to leading models like GPT-4o and Gemini 2.0 Flash. Our method demonstrates exceptional cost-efficiency and significantly reduces data requirements; by primarily utilizing single-modal images for training and maximizing the utility of existing pretrained models (image encoder, T2I diffusion model, and LLM), it circumvents the need for massive paired image-text datasets, keeping the total training expenditure under $1,000 USD.

Authors:Arnas Uselis, Andrea Dittadi, Seong Joon Oh
Title: Does Data Scaling Lead to Visual Compositional Generalization?
Abstract:
Compositional understanding is crucial for human intelligence, yet it remains unclear whether contemporary vision models exhibit it. The dominant machine learning paradigm is built on the premise that scaling data and model sizes will improve out-of-distribution performance, including compositional generalization. We test this premise through controlled experiments that systematically vary data scale, concept diversity, and combination coverage. We find that compositional generalization is driven by data diversity, not mere data scale. Increased combinatorial coverage forces models to discover a linearly factored representational structure, where concepts decompose into additive components. We prove this structure is key to efficiency, enabling perfect generalization from few observed combinations. Evaluating pretrained models (DINO, CLIP), we find above-random yet imperfect performance, suggesting partial presence of this structure. Our work motivates stronger emphasis on constructing diverse datasets for compositional generalization, and considering the importance of representational structure that enables efficient compositional learning. Code available at https://github.com/oshapio/visual-compositional-generalization.

Authors:Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, Micah Goldblum
Title: Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful
Abstract:
Conventional wisdom dictates that small batch sizes make language model pretraining and fine-tuning unstable, motivating gradient accumulation, which trades off the number of optimizer steps for a proportional increase in batch size. While it is common to decrease the learning rate for smaller batch sizes, other hyperparameters are often held fixed. In this work, we revisit small batch sizes all the way down to batch size one, and we propose a rule for scaling Adam hyperparameters to small batch sizes. In particular, rather than holding the decay rate of the second moment fixed across batch sizes, we propose to hold its half-life fixed in terms of tokens. We find that small batch sizes (1) train stably, (2) are consistently more robust to hyperparameter choices, (3) achieve equal or better per-FLOP performance than larger batch sizes, and (4) notably enable stable language model training with vanilla SGD, even without momentum, despite storing no optimizer state. Building on these results, we provide practical recommendations for selecting a batch size and setting optimizer hyperparameters. We further recommend against gradient accumulation unless training on multiple devices with multiple model replicas. Finally, we show that a small batch size combined with an optimizer with a small state size can provide the performance benefits of full fine-tuning while maintaining a similar memory footprint to LoRA.

Authors:Ke Fan, Shunlin Lu, Minyue Dai, Runyi Yu, Lixing Xiao, Zhiyang Dou, Junting Dong, Lizhuang Ma, Jingbo Wang
Title: Go to Zero: Towards Zero-shot Motion Generation with Million-scale Data
Abstract:
Generating diverse and natural human motion sequences based on textual descriptions constitutes a fundamental and challenging research area within the domains of computer vision, graphics, and robotics. Despite significant advancements in this field, current methodologies often face challenges regarding zero-shot generalization capabilities, largely attributable to the limited size of training datasets. Moreover, the lack of a comprehensive evaluation framework impedes the advancement of this task by failing to identify directions for improvement. In this work, we aim to push text-to-motion into a new era, that is, to achieve the generalization ability of zero-shot. To this end, firstly, we develop an efficient annotation pipeline and introduce MotionMillion-the largest human motion dataset to date, featuring over 2,000 hours and 2 million high-quality motion sequences. Additionally, we propose MotionMillion-Eval, the most comprehensive benchmark for evaluating zero-shot motion generation. Leveraging a scalable architecture, we scale our model to 7B parameters and validate its performance on MotionMillion-Eval. Our results demonstrate strong generalization to out-of-domain and complex compositional motions, marking a significant step toward zero-shot human motion generation. The code is available at https://github.com/VankouF/MotionMillion-Codes.

Authors:Ziyue Liu, Federico Girella, Yiming Wang, Davide Talon
Title: Evaluating Attribute Confusion in Fashion Text-to-Image Generation
Abstract:
Despite the rapid advances in Text-to-Image (T2I) generation models, their evaluation remains challenging in domains like fashion, involving complex compositional generation. Recent automated T2I evaluation methods leverage pre-trained vision-language models to measure cross-modal alignment. However, our preliminary study reveals that they are still limited in assessing rich entity-attribute semantics, facing challenges in attribute confusion, i.e., when attributes are correctly depicted but associated to the wrong entities. To address this, we build on a Visual Question Answering (VQA) localization strategy targeting one single entity at a time across both visual and textual modalities. We propose a localized human evaluation protocol and introduce a novel automatic metric, Localized VQAScore (L-VQAScore), that combines visual localization with VQA probing both correct (reflection) and miss-localized (leakage) attribute generation. On a newly curated dataset featuring challenging compositional alignment scenarios, L-VQAScore outperforms state-of-the-art T2I evaluation methods in terms of correlation with human judgments, demonstrating its strength in capturing fine-grained entity-attribute associations. We believe L-VQAScore can be a reliable and scalable alternative to subjective evaluations.

Authors:Shanle Zheng, Keqin Bao, Jizhi Zhang, Yang Zhang, Fuli Feng, Xiangnan He
Title: Boosting Parameter Efficiency in LLM-Based Recommendation through Sophisticated Pruning
Abstract:
LLM-based recommender systems have made significant progress; however, the deployment cost associated with the large parameter volume of LLMs still hinders their real-world applications. This work explores parameter pruning to improve parameter efficiency while maintaining recommendation quality, thereby enabling easier deployment. Unlike existing approaches that focus primarily on inter-layer redundancy, we uncover intra-layer redundancy within components such as self-attention and MLP modules. Building on this analysis, we propose a more fine-grained pruning approach that integrates both intra-layer and layer-wise pruning. Specifically, we introduce a three-stage pruning strategy that progressively prunes parameters at different levels and parts of the model, moving from intra-layer to layer-wise pruning, or from width to depth. Each stage also includes a performance restoration step using distillation techniques, helping to strike a balance between performance and parameter efficiency. Empirical results demonstrate the effectiveness of our approach: across three datasets, our models achieve an average of 88% of the original model's performance while pruning more than 95% of the non-embedding parameters. This underscores the potential of our method to significantly reduce resource requirements without greatly compromising recommendation quality. Our code will be available at: https://github.com/zheng-sl/PruneRec

Authors:Hui Li, Pengfei Yang, Juanyang Chen, Le Dong, Yanxin Chen, Quan Wang
Title: MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Abstract:
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.

Authors:Eunbyeol Cho, Jiyoun Kim, Minjae Lee, Sungjin Park, Edward Choi
Title: Generating Multi-Table Time Series EHR from Latent Space with Minimal Preprocessing
Abstract:
Electronic Health Records (EHR) are time-series relational databases that record patient interactions and medical events over time, serving as a critical resource for healthcare research and applications. However, privacy concerns and regulatory restrictions limit the sharing and utilization of such sensitive data, necessitating the generation of synthetic EHR datasets. Unlike previous EHR synthesis methods, which typically generate medical records consisting of expert-chosen features (e.g. a few vital signs or structured codes only), we introduce RawMed, the first framework to synthesize multi-table, time-series EHR data that closely resembles raw EHRs. Using text-based representation and compression techniques, RawMed captures complex structures and temporal dynamics with minimal preprocessing. We also propose a new evaluation framework for multi-table time-series synthetic EHRs, assessing distributional similarity, inter-table relationships, temporal dynamics, and privacy. Validated on two open-source EHR datasets, RawMed outperforms baseline models in fidelity and utility. The code is available at https://github.com/eunbyeol-cho/RawMed.

Authors:Fei Teng, Kai Luo, Sheng Wu, Siyu Li, Pujun Guo, Jiale Wei, Kunyu Peng, Jiaming Zhang, Kailun Yang
Title: Hallucinating 360°: Panoramic Street-View Generation via Local Scenes Diffusion and Probabilistic Prompting
Abstract:
Panoramic perception holds significant potential for autonomous driving, enabling vehicles to acquire a comprehensive 360° surround view in a single shot. However, autonomous driving is a data-driven task. Complete panoramic data acquisition requires complex sampling systems and annotation pipelines, which are time-consuming and labor-intensive. Although existing street view generation models have demonstrated strong data regeneration capabilities, they can only learn from the fixed data distribution of existing datasets and cannot achieve high-quality, controllable panoramic generation. In this paper, we propose the first panoramic generation method Percep360 for autonomous driving. Percep360 enables coherent generation of panoramic data with control signals based on the stitched panoramic data. Percep360 focuses on two key aspects: coherence and controllability. Specifically, to overcome the inherent information loss caused by the pinhole sampling process, we propose the Local Scenes Diffusion Method (LSDM). LSDM reformulates the panorama generation as a spatially continuous diffusion process, bridging the gaps between different data distributions. Additionally, to achieve the controllable generation of panoramic images, we propose a Probabilistic Prompting Method (PPM). PPM dynamically selects the most relevant control cues, enabling controllable panoramic image generation. We evaluate the effectiveness of the generated images from three perspectives: image quality assessment (i.e., no-reference and with reference), controllability, and their utility in real-world Bird's Eye View (BEV) segmentation. Notably, the generated data consistently outperforms the original stitched images in no-reference quality metrics and enhances downstream perception models. The source code will be publicly available at https://github.com/Bryant-Teng/Percep360.

Authors:Yixin Zhao, Yuyi Zhang, Lianwen Jin
Title: MCCD: A Multi-Attribute Chinese Calligraphy Character Dataset Annotated with Script Styles, Dynasties, and Calligraphers
Abstract:
Research on the attribute information of calligraphy, such as styles, dynasties, and calligraphers, holds significant cultural and historical value. However, the styles of Chinese calligraphy characters have evolved dramatically through different dynasties and the unique touches of calligraphers, making it highly challenging to accurately recognize these different characters and their attributes. Furthermore, existing calligraphic datasets are extremely scarce, and most provide only character-level annotations without additional attribute information. This limitation has significantly hindered the in-depth study of Chinese calligraphy. To fill this gap, we present a novel Multi-Attribute Chinese Calligraphy Character Dataset (MCCD). The dataset encompasses 7,765 categories with a total of 329,715 isolated image samples of Chinese calligraphy characters, and three additional subsets were extracted based on the attribute labeling of the three types of script styles (10 types), dynasties (15 periods) and calligraphers (142 individuals). The rich multi-attribute annotations render MCCD well-suited diverse research tasks, including calligraphic character recognition, writer identification, and evolutionary studies of Chinese characters. We establish benchmark performance through single-task and multi-task recognition experiments across MCCD and all of its subsets. The experimental results demonstrate that the complexity of the stroke structure of the calligraphic characters, and the interplay between their different attributes, leading to a substantial increase in the difficulty of accurate recognition. MCCD not only fills a void in the availability of detailed calligraphy datasets but also provides valuable resources for advancing research in Chinese calligraphy and fostering advancements in multiple fields. The dataset is available at https://github.com/SCUT-DLVCLab/MCCD.

Authors:Tongtian Zhu, Wenhao Li, Can Wang, Fengxiang He
Title: DICE: Data Influence Cascade in Decentralized Learning
Abstract:
Decentralized learning offers a promising approach to crowdsource data consumptions and computational workloads across geographically distributed compute interconnected through peer-to-peer networks, accommodating the exponentially increasing demands. However, proper incentives are still in absence, considerably discouraging participation. Our vision is that a fair incentive mechanism relies on fair attribution of contributions to participating nodes, which faces non-trivial challenges arising from the localized connections making influence ``cascade'' in a decentralized network. To overcome this, we design the first method to estimate \textbf{D}ata \textbf{I}nfluence \textbf{C}ascad\textbf{E} (DICE) in a decentralized environment. Theoretically, the framework derives tractable approximations of influence cascade over arbitrary neighbor hops, suggesting the influence cascade is determined by an interplay of data, communication topology, and the curvature of loss landscape. DICE also lays the foundations for applications including selecting suitable collaborators and identifying malicious behaviors. Project page is available at https://raiden-zhu.github.io/blog/2025/DICE/.

Authors:Xiao Wang, Jiahuan Pei, Diancheng Shui, Zhiguang Han, Xin Sun, Dawei Zhu, Xiaoyu Shen
Title: MultiJustice: A Chinese Dataset for Multi-Party, Multi-Charge Legal Prediction
Abstract:
Legal judgment prediction offers a compelling method to aid legal practitioners and researchers. However, the research question remains relatively under-explored: Should multiple defendants and charges be treated separately in LJP? To address this, we introduce a new dataset namely multi-person multi-charge prediction (MPMCP), and seek the answer by evaluating the performance of several prevailing legal large language models (LLMs) on four practical legal judgment scenarios: (S1) single defendant with a single charge, (S2) single defendant with multiple charges, (S3) multiple defendants with a single charge, and (S4) multiple defendants with multiple charges. We evaluate the dataset across two LJP tasks, i.e., charge prediction and penalty term prediction. We have conducted extensive experiments and found that the scenario involving multiple defendants and multiple charges (S4) poses the greatest challenges, followed by S2, S3, and S1. The impact varies significantly depending on the model. For example, in S4 compared to S1, InternLM2 achieves approximately 4.5% lower F1-score and 2.8% higher LogD, while Lawformer demonstrates around 19.7% lower F1-score and 19.0% higher LogD. Our dataset and code are available at https://github.com/lololo-xiao/MultiJustice-MPMCP.

Authors:Ziyan Liu, Chunxiao Fan, Haoran Lou, Yuexin Wu, Kaiwei Deng
Title: MIND: A Multi-agent Framework for Zero-shot Harmful Meme Detection
Abstract:
The rapid expansion of memes on social media has highlighted the urgent need for effective approaches to detect harmful content. However, traditional data-driven approaches struggle to detect new memes due to their evolving nature and the lack of up-to-date annotated data. To address this issue, we propose MIND, a multi-agent framework for zero-shot harmful meme detection that does not rely on annotated data. MIND implements three key strategies: 1) We retrieve similar memes from an unannotated reference set to provide contextual information. 2) We propose a bi-directional insight derivation mechanism to extract a comprehensive understanding of similar memes. 3) We then employ a multi-agent debate mechanism to ensure robust decision-making through reasoned arbitration. Extensive experiments on three meme datasets demonstrate that our proposed framework not only outperforms existing zero-shot approaches but also shows strong generalization across different model architectures and parameter scales, providing a scalable solution for harmful meme detection. The code is available at https://github.com/destroy-lonely/MIND.

Authors:Jing Liang, Hongyao Tang, Yi Ma, Jinyi Liu, Yan Zheng, Shuyue Hu, Lei Bai, Jianye Hao
Title: Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model
Abstract:
Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

Authors:Huishi Luo, Yiqing Wu, Yiwen Chen, Fuzhen Zhuang, Deqing Wang
Title: CDC: Causal Domain Clustering for Multi-Domain Recommendation
Abstract:
Multi-domain recommendation leverages domain-general knowledge to improve recommendations across several domains. However, as platforms expand to dozens or hundreds of scenarios, training all domains in a unified model leads to performance degradation due to significant inter-domain differences. Existing domain grouping methods, based on business logic or data similarities, often fail to capture the true transfer relationships required for optimal grouping. To effectively cluster domains, we propose Causal Domain Clustering (CDC). CDC models domain transfer patterns within a large number of domains using two distinct effects: the Isolated Domain Affinity Matrix for modeling non-interactive domain transfers, and the Hybrid Domain Affinity Matrix for considering dynamic domain synergy or interference under joint training. To integrate these two transfer effects, we introduce causal discovery to calculate a cohesion-based coefficient that adaptively balances their contributions. A Co-Optimized Dynamic Clustering algorithm iteratively optimizes target domain clustering and source domain selection for training. CDC significantly enhances performance across over 50 domains on public datasets and in industrial settings, achieving a 4.9% increase in online eCPM. Code is available at https://github.com/Chrissie-Law/Causal-Domain-Clustering-for-Multi-Domain-Recommendation

Authors:Yizhuo Wu, Ang Li, Chang Gao
Title: OpenDPDv2: A Unified Learning and Optimization Framework for Neural Network Digital Predistortion
Abstract:
Neural network (NN)-based Digital Predistortion (DPD) stands out in improving signal quality in wideband radio frequency (RF) power amplifiers (PAs) employing complex modulation. However, NN DPDs usually rely on a large number of parameters for effective linearization and can significantly contribute to the energy consumption of the digital back-end in RF systems. This paper presents OpenDPDv2, a unified framework for PA modeling, DPD learning, and model optimization to reduce power consumption while maintaining high linearization performance. The optimization techniques feature a novel DPD algorithm, TRes-DeltaGRU, alongside two energy-efficient methods. The top-performing 32-bit floating-point (FP32) TRes-DeltaGRU-DPD model achieves an Adjacent Channel Power Ratio (ACPR) of -59.4 dBc and Error Vector Magnitude (EVM) of -42.1 dBc. By exploiting fixed-point quantization and dynamic temporal sparsity of input signals and hidden neurons, the inference energy of our model can be reduced by 4.5X while still maintaining -50.3 dBc ACPR and -35.2 dB EVM with 56% temporal sparsity. This was evaluated using a TM3.1a 200 MHz bandwidth 256-QAM OFDM signal applied to a 3.5 GHz GaN Doherty RF PA. OpenDPDv2 code, datasets, and documentation are publicly accessible at: https://github.com/lab-emi/OpenDPD.

Authors:Dahyun Lee, Yongrae Jo, Haeju Park, Moontae Lee
Title: Shifting from Ranking to Set Selection for Retrieval Augmented Generation
Abstract:
Retrieval in Retrieval-Augmented Generation(RAG) must ensure that retrieved passages are not only individually relevant but also collectively form a comprehensive set. Existing approaches primarily rerank top-k passages based on their individual relevance, often failing to meet the information needs of complex queries in multi-hop question answering. In this work, we propose a set-wise passage selection approach and introduce SETR, which explicitly identifies the information requirements of a query through Chain-of-Thought reasoning and selects an optimal set of passages that collectively satisfy those requirements. Experiments on multi-hop RAG benchmarks show that SETR outperforms both proprietary LLM-based rerankers and open-source baselines in terms of answer correctness and retrieval quality, providing an effective and efficient alternative to traditional rerankers in RAG systems. The code is available at https://github.com/LGAI-Research/SetR

Authors:Xuesong Li, Nassir Navab, Zhongliang Jiang
Title: Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data
Abstract:
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. Project page: https://noseefood.github.io/us-speckle2self/

Authors:Matej Straka, Martin Schmid
Title: Artificial Generals Intelligence: Mastering Generals.io with Reinforcement Learning
Abstract:
We introduce a real-time strategy game environment based on Generals.io, a game with thousands of weekly active players. Our environment is fully compatible with Gymnasium and PettingZoo and is capable of running thousands of frames per second on commodity hardware. We also present a reference agent, trained with supervised pre-training and self-play, which reached the top 0.003% of the 1v1 human leaderboard after only 36 hours on a single H100 GPU. To accelerate learning, we incorporate potential-based reward shaping and memory features. Our contributions of a modular RTS benchmark and a competitive baseline agent provide an accessible yet challenging platform for advancing multi-agent reinforcement learning research. The documented code, together with examples and tutorials, is available at https://github.com/strakam/generals-bots.

Authors:Philipp Schlinge, Steffen Meinert, Martin Atzmueller
Title: Comprehensive Evaluation of Prototype Neural Networks
Abstract:
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.

Authors:Cosimo Fiorini, Matteo Mosconi, Pietro Buzzega, Riccardo Salami, Simone Calderara
Title: Intrinsic Training Signals for Federated Learning Aggregation
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.

Authors:Xu Yang, Shaoli Huang, Shenbo Xie, Xuelin Chen, Yifei Liu, Changxing Ding
Title: Democratizing High-Fidelity Co-Speech Gesture Video Generation
Abstract:
Co-speech gesture video generation aims to synthesize realistic, audio-aligned videos of speakers, complete with synchronized facial expressions and body gestures. This task presents challenges due to the significant one-to-many mapping between audio and visual content, further complicated by the scarcity of large-scale public datasets and high computational demands. We propose a lightweight framework that utilizes 2D full-body skeletons as an efficient auxiliary condition to bridge audio signals with visual outputs. Our approach introduces a diffusion model conditioned on fine-grained audio segments and a skeleton extracted from the speaker's reference image, predicting skeletal motions through skeleton-audio feature fusion to ensure strict audio coordination and body shape consistency. The generated skeletons are then fed into an off-the-shelf human video generation model with the speaker's reference image to synthesize high-fidelity videos. To democratize research, we present CSG-405-the first public dataset with 405 hours of high-resolution videos across 71 speech types, annotated with 2D skeletons and diverse speaker demographics. Experiments show that our method exceeds state-of-the-art approaches in visual quality and synchronization while generalizing across speakers and contexts. Code, models, and CSG-405 are publicly released at https://mpi-lab.github.io/Democratizing-CSG/

Authors:Eya Cherif, Arthur Ouaknine, Luke A. Brown, Phuong D. Dao, Kyle R. Kovach, Bing Lu, Daniel Mederer, Hannes Feilhauer, Teja Kattenborn, David Rolnick
Title: GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Abstract:
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.

Authors:Antonella Barisic Kulas, Andreja Jurasovic, Stjepan Bogdan
Title: Unlocking Thermal Aerial Imaging: Synthetic Enhancement of UAV Datasets
Abstract:
Thermal imaging from unmanned aerial vehicles (UAVs) holds significant potential for applications in search and rescue, wildlife monitoring, and emergency response, especially under low-light or obscured conditions. However, the scarcity of large-scale, diverse thermal aerial datasets limits the advancement of deep learning models in this domain, primarily due to the high cost and logistical challenges of collecting thermal data. In this work, we introduce a novel procedural pipeline for generating synthetic thermal images from an aerial perspective. Our method integrates arbitrary object classes into existing thermal backgrounds by providing control over the position, scale, and orientation of the new objects, while aligning them with the viewpoints of the background. We enhance existing thermal datasets by introducing new object categories, specifically adding a drone class in urban environments to the HIT-UAV dataset and an animal category to the MONET dataset. In evaluating these datasets for object detection task, we showcase strong performance across both new and existing classes, validating the successful expansion into new applications. Through comparative analysis, we show that thermal detectors outperform their visible-light-trained counterparts and highlight the importance of replicating aerial viewing angles. Project page: https://github.com/larics/thermal_aerial_synthetic.

Authors:SeungYoon Han, Taeho Hwang, Sukmin Cho, Soyeong Jeong, Hoyun Song, Huije Lee, Jong C. Park
Title: Temporal Information Retrieval via Time-Specifier Model Merging
Abstract:
The rapid expansion of digital information and knowledge across structured and unstructured sources has heightened the importance of Information Retrieval (IR). While dense retrieval methods have substantially improved semantic matching for general queries, they consistently underperform on queries with explicit temporal constraints--often those containing numerical expressions and time specifiers such as ``in 2015.'' Existing approaches to Temporal Information Retrieval (TIR) improve temporal reasoning but often suffer from catastrophic forgetting, leading to reduced performance on non-temporal queries. To address this, we propose Time-Specifier Model Merging (TSM), a novel method that enhances temporal retrieval while preserving accuracy on non-temporal queries. TSM trains specialized retrievers for individual time specifiers and merges them in to a unified model, enabling precise handling of temporal constraints without compromising non-temporal retrieval. Extensive experiments on both temporal and non-temporal datasets demonstrate that TSM significantly improves performance on temporally constrained queries while maintaining strong results on non-temporal queries, consistently outperforming other baseline methods. Our code is available at https://github.com/seungyoonee/TSM .

Authors:Yan Hon Michael Chung, Donghyeok Choi
Title: Finetuning Vision-Language Models as OCR Systems for Low-Resource Languages: A Case Study of Manchu
Abstract:
Manchu, a critically endangered language essential for understanding early modern Eastern Eurasian history, lacks effective OCR systems that can handle real-world historical documents. This study develops high-performing OCR systems by fine-tuning three open-source vision-language models (LLaMA-3.2-11B, Qwen2.5-VL-7B, Qwen2.5-VL-3B) on 60,000 synthetic Manchu word images using parameter-efficient training. LLaMA-3.2-11B achieved exceptional performance with 98.3\% word accuracy and 0.0024 character error rate on synthetic data, while crucially maintaining 93.1\% accuracy on real-world handwritten documents. Comparative evaluation reveals substantial advantages over traditional approaches: while a CRNN baseline achieved 99.8\% synthetic accuracy, it suffered severe degradation to 72.5\% on real documents. Our approach demonstrates effective synthetic-to-real domain transfer, providing a cost-effective solution deployable on accessible infrastructure. This work establishes a transferable framework for endangered language OCR that removes technical and financial barriers in digital humanities, enabling historians and linguists to process historical archives without specialized computing resources. Code and model weights are available at https://github.com/mic7ch1/ManchuAI-OCR.

Authors:Daojie Peng, Jiahang Cao, Qiang Zhang, Jun Ma
Title: LOVON: Legged Open-Vocabulary Object Navigator
Abstract:
Object navigation in open-world environments remains a formidable and pervasive challenge for robotic systems, particularly when it comes to executing long-horizon tasks that require both open-world object detection and high-level task planning. Traditional methods often struggle to integrate these components effectively, and this limits their capability to deal with complex, long-range navigation missions. In this paper, we propose LOVON, a novel framework that integrates large language models (LLMs) for hierarchical task planning with open-vocabulary visual detection models, tailored for effective long-range object navigation in dynamic, unstructured environments. To tackle real-world challenges including visual jittering, blind zones, and temporary target loss, we design dedicated solutions such as Laplacian Variance Filtering for visual stabilization. We also develop a functional execution logic for the robot that guarantees LOVON's capabilities in autonomous navigation, task adaptation, and robust task completion. Extensive evaluations demonstrate the successful completion of long-sequence tasks involving real-time detection, search, and navigation toward open-vocabulary dynamic targets. Furthermore, real-world experiments across different legged robots (Unitree Go2, B2, and H1-2) showcase the compatibility and appealing plug-and-play feature of LOVON.

Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MADPOT: Medical Anomaly Detection with CLIP Adaptation and Partial Optimal Transport
Abstract:
Medical anomaly detection (AD) is challenging due to diverse imaging modalities, anatomical variations, and limited labeled data. We propose a novel approach combining visual adapters and prompt learning with Partial Optimal Transport (POT) and contrastive learning (CL) to improve CLIP's adaptability to medical images, particularly for AD. Unlike standard prompt learning, which often yields a single representation, our method employs multiple prompts aligned with local features via POT to capture subtle abnormalities. CL further enforces intra-class cohesion and inter-class separation. Our method achieves state-of-the-art results in few-shot, zero-shot, and cross-dataset scenarios without synthetic data or memory banks. The code is available at https://github.com/mahshid1998/MADPOT.

Authors:Guobin Zhu, Rui Zhou, Wenkang Ji, Hongyin Zhang, Donglin Wang, Shiyu Zhao
Title: Multi-Task Multi-Agent Reinforcement Learning via Skill Graphs
Abstract:
Multi-task multi-agent reinforcement learning (MT-MARL) has recently gained attention for its potential to enhance MARL's adaptability across multiple tasks. However, it is challenging for existing multi-task learning methods to handle complex problems, as they are unable to handle unrelated tasks and possess limited knowledge transfer capabilities. In this paper, we propose a hierarchical approach that efficiently addresses these challenges. The high-level module utilizes a skill graph, while the low-level module employs a standard MARL algorithm. Our approach offers two contributions. First, we consider the MT-MARL problem in the context of unrelated tasks, expanding the scope of MTRL. Second, the skill graph is used as the upper layer of the standard hierarchical approach, with training independent of the lower layer, effectively handling unrelated tasks and enhancing knowledge transfer capabilities. Extensive experiments are conducted to validate these advantages and demonstrate that the proposed method outperforms the latest hierarchical MAPPO algorithms. Videos and code are available at https://github.com/WindyLab/MT-MARL-SG

Authors:Miaojing Shi, Xiaowen Zhang, Zijie Yue, Yong Luo, Cairong Zhao, Li Li
Title: Text-promptable Object Counting via Quantity Awareness Enhancement
Abstract:
Recent advances in large vision-language models (VLMs) have shown remarkable progress in solving the text-promptable object counting problem. Representative methods typically specify text prompts with object category information in images. This however is insufficient for training the model to accurately distinguish the number of objects in the counting task. To this end, we propose QUANet, which introduces novel quantity-oriented text prompts with a vision-text quantity alignment loss to enhance the model's quantity awareness. Moreover, we propose a dual-stream adaptive counting decoder consisting of a Transformer stream, a CNN stream, and a number of Transformer-to-CNN enhancement adapters (T2C-adapters) for density map prediction. The T2C-adapters facilitate the effective knowledge communication and aggregation between the Transformer and CNN streams. A cross-stream quantity ranking loss is proposed in the end to optimize the ranking orders of predictions from the two streams. Extensive experiments on standard benchmarks such as FSC-147, CARPK, PUCPR+, and ShanghaiTech demonstrate our model's strong generalizability for zero-shot class-agnostic counting. Code is available at https://github.com/viscom-tongji/QUANet

Authors:Boyuan Tian, Qizhe Gao, Siran Xianyu, Xiaotong Cui, Minjia Zhang
Title: FlexGaussian: Flexible and Cost-Effective Training-Free Compression for 3D Gaussian Splatting
Abstract:
3D Gaussian splatting has become a prominent technique for representing and rendering complex 3D scenes, due to its high fidelity and speed advantages. However, the growing demand for large-scale models calls for effective compression to reduce memory and computation costs, especially on mobile and edge devices with limited resources. Existing compression methods effectively reduce 3D Gaussian parameters but often require extensive retraining or fine-tuning, lacking flexibility under varying compression constraints. In this paper, we introduce FlexGaussian, a flexible and cost-effective method that combines mixed-precision quantization with attribute-discriminative pruning for training-free 3D Gaussian compression. FlexGaussian eliminates the need for retraining and adapts easily to diverse compression targets. Evaluation results show that FlexGaussian achieves up to 96.4% compression while maintaining high rendering quality (<1 dB drop in PSNR), and is deployable on mobile devices. FlexGaussian delivers high compression ratios within seconds, being 1.7-2.1x faster than state-of-the-art training-free methods and 10-100x faster than training-involved approaches. The code is being prepared and will be released soon at: https://github.com/Supercomputing-System-AI-Lab/FlexGaussian

Authors:Wenxiang Guo, Yu Zhang, Changhao Pan, Zhiyuan Zhu, Ruiqi Li, Zhetao Chen, Wenhao Xu, Fei Wu, Zhou Zhao
Title: STARS: A Unified Framework for Singing Transcription, Alignment, and Refined Style Annotation
Abstract:
Recent breakthroughs in singing voice synthesis (SVS) have heightened the demand for high-quality annotated datasets, yet manual annotation remains prohibitively labor-intensive and resource-intensive. Existing automatic singing annotation (ASA) methods, however, primarily tackle isolated aspects of the annotation pipeline. To address this fundamental challenge, we present STARS, which is, to our knowledge, the first unified framework that simultaneously addresses singing transcription, alignment, and refined style annotation. Our framework delivers comprehensive multi-level annotations encompassing: (1) precise phoneme-audio alignment, (2) robust note transcription and temporal localization, (3) expressive vocal technique identification, and (4) global stylistic characterization including emotion and pace. The proposed architecture employs hierarchical acoustic feature processing across frame, word, phoneme, note, and sentence levels. The novel non-autoregressive local acoustic encoders enable structured hierarchical representation learning. Experimental validation confirms the framework's superior performance across multiple evaluation dimensions compared to existing annotation approaches. Furthermore, applications in SVS training demonstrate that models utilizing STARS-annotated data achieve significantly enhanced perceptual naturalness and precise style control. This work not only overcomes critical scalability challenges in the creation of singing datasets but also pioneers new methodologies for controllable singing voice synthesis. Audio samples are available at https://gwx314.github.io/stars-demo/.

Authors:Yifan Yang, Peili Song, Enfan Lan, Dong Liu, Jingtai Liu
Title: MK-Pose: Category-Level Object Pose Estimation via Multimodal-Based Keypoint Learning
Abstract:
Category-level object pose estimation, which predicts the pose of objects within a known category without prior knowledge of individual instances, is essential in applications like warehouse automation and manufacturing. Existing methods relying on RGB images or point cloud data often struggle with object occlusion and generalization across different instances and categories. This paper proposes a multimodal-based keypoint learning framework (MK-Pose) that integrates RGB images, point clouds, and category-level textual descriptions. The model uses a self-supervised keypoint detection module enhanced with attention-based query generation, soft heatmap matching and graph-based relational modeling. Additionally, a graph-enhanced feature fusion module is designed to integrate local geometric information and global context. MK-Pose is evaluated on CAMERA25 and REAL275 dataset, and is further tested for cross-dataset capability on HouseCat6D dataset. The results demonstrate that MK-Pose outperforms existing state-of-the-art methods in both IoU and average precision without shape priors. Codes will be released at \href{https://github.com/yangyifanYYF/MK-Pose}{https://github.com/yangyifanYYF/MK-Pose}.

Authors:Hongjie Wu, Mingqin Zhang, Linchao He, Ji-Zhe Zhou, Jiancheng Lv
Title: Enhancing Diffusion Model Stability for Image Restoration via Gradient Management
Abstract:
Diffusion models have shown remarkable promise for image restoration by leveraging powerful priors. Prominent methods typically frame the restoration problem within a Bayesian inference framework, which iteratively combines a denoising step with a likelihood guidance step. However, the interactions between these two components in the generation process remain underexplored. In this paper, we analyze the underlying gradient dynamics of these components and identify significant instabilities. Specifically, we demonstrate conflicts between the prior and likelihood gradient directions, alongside temporal fluctuations in the likelihood gradient itself. We show that these instabilities disrupt the generative process and compromise restoration performance. To address these issues, we propose Stabilized Progressive Gradient Diffusion (SPGD), a novel gradient management technique. SPGD integrates two synergistic components: (1) a progressive likelihood warm-up strategy to mitigate gradient conflicts; and (2) adaptive directional momentum (ADM) smoothing to reduce fluctuations in the likelihood gradient. Extensive experiments across diverse restoration tasks demonstrate that SPGD significantly enhances generation stability, leading to state-of-the-art performance in quantitative metrics and visually superior results. Code is available at https://github.com/74587887/SPGD.

Authors:Naoya Sogi, Takashi Shibata, Makoto Terao, Masanori Suganuma, Takayuki Okatani
Title: MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Abstract:
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.

Authors:Chengkun Li, Yuqi Tong, Kai Chen, Zhenya Yang, Ruiyang Li, Shi Qiu, Jason Ying-Kuen Chan, Pheng-Ann Heng, Qi Dou
Title: ClipGS: Clippable Gaussian Splatting for Interactive Cinematic Visualization of Volumetric Medical Data
Abstract:
The visualization of volumetric medical data is crucial for enhancing diagnostic accuracy and improving surgical planning and education. Cinematic rendering techniques significantly enrich this process by providing high-quality visualizations that convey intricate anatomical details, thereby facilitating better understanding and decision-making in medical contexts. However, the high computing cost and low rendering speed limit the requirement of interactive visualization in practical applications. In this paper, we introduce ClipGS, an innovative Gaussian splatting framework with the clipping plane supported, for interactive cinematic visualization of volumetric medical data. To address the challenges posed by dynamic interactions, we propose a learnable truncation scheme that automatically adjusts the visibility of Gaussian primitives in response to the clipping plane. Besides, we also design an adaptive adjustment model to dynamically adjust the deformation of Gaussians and refine the rendering performance. We validate our method on five volumetric medical data (including CT and anatomical slice data), and reach an average 36.635 PSNR rendering quality with 156 FPS and 16.1 MB model size, outperforming state-of-the-art methods in rendering quality and efficiency.

Authors:Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, Yelong Shen
Title: Decoder-Hybrid-Decoder Architecture for Efficient Reasoning with Long Generation
Abstract:
Recent advances in language modeling have demonstrated the effectiveness of State Space Models (SSMs) for efficient sequence modeling. While hybrid architectures such as Samba and the decoder-decoder architecture, YOCO, have shown promising performance gains over Transformers, prior works have not investigated the efficiency potential of representation sharing between SSM layers. In this paper, we introduce the Gated Memory Unit (GMU), a simple yet effective mechanism for efficient memory sharing across layers. We apply it to create SambaY, a decoder-hybrid-decoder architecture that incorporates GMUs in the cross-decoder to share memory readout states from a Samba-based self-decoder. SambaY significantly enhances decoding efficiency, preserves linear pre-filling time complexity, and boosts long-context performance, all while eliminating the need for explicit positional encoding. Through extensive scaling experiments, we demonstrate that our model exhibits a significantly lower irreducible loss compared to a strong YOCO baseline, indicating superior performance scalability under large-scale compute regimes. Our largest model enhanced with Differential Attention, Phi4-mini-Flash-Reasoning, achieves significantly better performance than Phi4-mini-Reasoning on reasoning tasks such as Math500, AIME24/25, and GPQA Diamond without any reinforcement learning, while delivering up to 10x higher decoding throughput on 2K-length prompts with 32K generation length under the vLLM inference framework. We release our training codebase on open-source data at https://github.com/microsoft/ArchScale.

Authors:Qing Zhang, Guoquan Pei, Yan Wang
Title: Omni-Fusion of Spatial and Spectral for Hyperspectral Image Segmentation
Abstract:
Medical Hyperspectral Imaging (MHSI) has emerged as a promising tool for enhanced disease diagnosis, particularly in computational pathology, offering rich spectral information that aids in identifying subtle biochemical properties of tissues. Despite these advantages, effectively fusing both spatial-dimensional and spectral-dimensional information from MHSIs remains challenging due to its high dimensionality and spectral redundancy inherent characteristics. To solve the above challenges, we propose a novel spatial-spectral omni-fusion network for hyperspectral image segmentation, named as Omni-Fuse. Here, we introduce abundant cross-dimensional feature fusion operations, including a cross-dimensional enhancement module that refines both spatial and spectral features through bidirectional attention mechanisms, a spectral-guided spatial query selection to select the most spectral-related spatial feature as the query, and a two-stage cross-dimensional decoder which dynamically guide the model to focus on the selected spatial query. Despite of numerous attention blocks, Omni-Fuse remains efficient in execution. Experiments on two microscopic hyperspectral image datasets show that our approach can significantly improve the segmentation performance compared with the state-of-the-art methods, with over 5.73 percent improvement in DSC. Code available at: https://github.com/DeepMed-Lab-ECNU/Omni-Fuse.

Authors:Xinyu Wu
Title: Growing Trees with an Agent: Accelerating RRTs with Learned, Multi-Step Episodic Exploration
Abstract:
Classical sampling-based motion planners like the RRTs suffer from inefficiencies, particularly in cluttered or high-dimensional spaces, due to their reliance on undirected, random sampling. This paper introduces the Episodic RRT, a novel hybrid planning framework that replaces the primitive of a random point with a learned, multi-step "exploratory episode" generated by a Deep Reinforcement Learning agent. By making the DRL agent the engine of exploration, ERRT transforms the search process from a diffuse, volumetric expansion into a directed, branch-like growth. This paradigm shift yields key advantages: it counters the curse of dimensionality with focused exploration, minimizes expensive collision checks by proactively proposing locally valid paths, and improves connectivity by generating inherently connected path segments. We demonstrate through extensive empirical evaluation across 2D, 3D, and 6D environments that ERRT and its variants consistently and significantly outperform their classical counterparts without any GPU acceleration. In a challenging 6D robotic arm scenario, ERRT achieves a 98% success rate compared to 19% for RRT, is up to 107x faster, reduces collision checks by over 99.6%, and finds initial paths that are nearly 50% shorter. Furthermore, its asymptotically optimal variant, ERRT*, demonstrates vastly superior anytime performance, refining solutions to near-optimality up to 29x faster than standard RRT* in 3D environments. Code: https://xinyuwuu.github.io/Episodic_RRT/.

Authors:Xu Shaowu, Jia Xibin, Gao Junyu, Sun Qianmei, Chang Jing, Fan Chao
Title: Cross-Modal Dual-Causal Learning for Long-Term Action Recognition
Abstract:
Long-term action recognition (LTAR) is challenging due to extended temporal spans with complex atomic action correlations and visual confounders. Although vision-language models (VLMs) have shown promise, they often rely on statistical correlations instead of causal mechanisms. Moreover, existing causality-based methods address modal-specific biases but lack cross-modal causal modeling, limiting their utility in VLM-based LTAR. This paper proposes \textbf{C}ross-\textbf{M}odal \textbf{D}ual-\textbf{C}ausal \textbf{L}earning (CMDCL), which introduces a structural causal model to uncover causal relationships between videos and label texts. CMDCL addresses cross-modal biases in text embeddings via textual causal intervention and removes confounders inherent in the visual modality through visual causal intervention guided by the debiased text. These dual-causal interventions enable robust action representations to address LTAR challenges. Experimental results on three benchmarks including Charades, Breakfast and COIN, demonstrate the effectiveness of the proposed model. Our code is available at https://github.com/xushaowu/CMDCL.

Authors:Qianyu Zhang, Bolun Zheng, Lingyu Zhu, Hangjia Pan, Zunjie Zhu, Zongpeng Li, Shiqi Wang
Title: Capturing Stable HDR Videos Using a Dual-Camera System
Abstract:
High Dynamic Range (HDR) video acquisition using the alternating exposure (AE) paradigm has garnered significant attention due to its cost-effectiveness with a single consumer camera. However, despite progress driven by deep neural networks, these methods remain prone to temporal flicker in real-world applications due to inter-frame exposure inconsistencies. To address this challenge while maintaining the cost-effectiveness of the AE paradigm, we propose a novel learning-based HDR video generation solution. Specifically, we propose a dual-stream HDR video generation paradigm that decouples temporal luminance anchoring from exposure-variant detail reconstruction, overcoming the inherent limitations of the AE paradigm. To support this, we design an asynchronous dual-camera system (DCS), which enables independent exposure control across two cameras, eliminating the need for synchronization typically required in traditional multi-camera setups. Furthermore, an exposure-adaptive fusion network (EAFNet) is formulated for the DCS system. EAFNet integrates a pre-alignment subnetwork that aligns features across varying exposures, ensuring robust feature extraction for subsequent fusion, an asymmetric cross-feature fusion subnetwork that emphasizes reference-based attention to effectively merge these features across exposures, and a reconstruction subnetwork to mitigate ghosting artifacts and preserve fine details. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance across various datasets, showing the remarkable potential of our solution in HDR video reconstruction. The codes and data captured by DCS will be available at https://zqqqyu.github.io/DCS-HDR/.

Authors:Yang Chen, Yueqi Duan, Haowen Sun, Jiwen Lu, Yap-Peng Tan
Title: Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning
Abstract:
This paper proposes an adaptive margin contrastive learning method for 3D semantic segmentation on point clouds. Most existing methods use equally penalized objectives, which ignore the per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework, tailored to adaptive objectives for individual points based on ambiguity levels. As a result, our method promotes model training, which ensures the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. As ambiguities are formulated based on position discrepancies across labels, optimization during inference is constrained by the assumption that all unlabeled points are uniformly unambiguous, lacking ambiguity awareness. Inspired by the insight of joint training, we further propose AMContrast3D++ integrating with two branches trained in parallel, where a novel ambiguity prediction module concurrently learns point ambiguities from generated embeddings. To this end, we design a masked refinement mechanism that leverages predicted ambiguities to enable the ambiguous embeddings to be more reliable, thereby boosting segmentation performance and enhancing robustness. Experimental results on 3D indoor scene datasets, S3DIS and ScanNet, demonstrate the effectiveness of the proposed method. Code is available at https://github.com/YangChenApril/AMContrast3D.

Authors:Qibiao Wu, Yagang Wang, Qian Zhang
Title: Airway Segmentation Network for Enhanced Tubular Feature Extraction
Abstract:
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Authors:Jeanette Schofield, Shuyu Tian, Hoang Thanh Thanh Truong, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Exploring Retrieval and Reranking Pipelines for Scientific Claim Source Retrieval on Social Media Discourse
Abstract:
Social media users often make scientific claims without citing where these claims come from, generating a need to verify these claims. This paper details work done by the DS@GT team for CLEF 2025 CheckThat! Lab Task 4b Scientific Claim Source Retrieval which seeks to find relevant scientific papers based on implicit references in tweets. Our team explored 6 different data augmentation techniques, 7 different retrieval and reranking pipelines, and finetuned a bi-encoder. Achieving an MRR@5 of 0.58, our team ranked 16th out of 30 teams for the CLEF 2025 CheckThat! Lab Task 4b, and improvement of 0.15 over the BM25 baseline of 0.43. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4b.

Authors:Keita Yoneda, Kento Kawaharazuka, Temma Suzuki, Takahiro Hattori, Kei Okada
Title: KLEIYN : A Quadruped Robot with an Active Waist for Both Locomotion and Wall Climbing
Abstract:
In recent years, advancements in hardware have enabled quadruped robots to operate with high power and speed, while robust locomotion control using reinforcement learning (RL) has also been realized. As a result, expectations are rising for the automation of tasks such as material transport and exploration in unknown environments. However, autonomous locomotion in rough terrains with significant height variations requires vertical movement, and robots capable of performing such movements stably, along with their control methods, have not yet been fully established. In this study, we developed the quadruped robot KLEIYN, which features a waist joint, and aimed to expand quadruped locomotion by enabling chimney climbing through RL. To facilitate the learning of vertical motion, we introduced Contact-Guided Curriculum Learning (CGCL). As a result, KLEIYN successfully climbed walls ranging from 800 mm to 1000 mm in width at an average speed of 150 mm/s, 50 times faster than conventional robots. Furthermore, we demonstrated that the introduction of a waist joint improves climbing performance, particularly enhancing tracking ability on narrow walls.

Authors:Taekyung Kim, Dongyoon Han, Byeongho Heo, Jeongeun Park, Sangdoo Yun
Title: Token Bottleneck: One Token to Remember Dynamics
Abstract:
Deriving compact and temporally aware visual representations from dynamic scenes is essential for successful execution of sequential scene understanding tasks such as visual tracking and robotic manipulation. In this paper, we introduce Token Bottleneck (ToBo), a simple yet intuitive self-supervised learning pipeline that squeezes a scene into a bottleneck token and predicts the subsequent scene using minimal patches as hints. The ToBo pipeline facilitates the learning of sequential scene representations by conservatively encoding the reference scene into a compact bottleneck token during the squeeze step. In the expansion step, we guide the model to capture temporal dynamics by predicting the target scene using the bottleneck token along with few target patches as hints. This design encourages the vision backbone to embed temporal dependencies, thereby enabling understanding of dynamic transitions across scenes. Extensive experiments in diverse sequential tasks, including video label propagation and robot manipulation in simulated environments demonstrate the superiority of ToBo over baselines. Moreover, deploying our pre-trained model on physical robots confirms its robustness and effectiveness in real-world environments. We further validate the scalability of ToBo across different model scales.

Authors:Shan Shen, Shenglu Hua, Jiajun Zou, Jiawei Liu, Jianwang Zhai, Chuan Shi, Wenjian Yu
Title: Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Abstract:
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the $R^2$ improvement of $33.64\% \sim 44.20\%$ for edge regression and F1-score gain of $0.9\times \sim 2.1\times$ for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.

Authors:Themistoklis Vargiemezis, Catherine Gorlé
Title: From large-eddy simulations to deep learning: A U-net model for fast urban canopy flow predictions
Abstract:
Accurate prediction of wind flow fields in urban canopies is crucial for ensuring pedestrian comfort, safety, and sustainable urban design. Traditional methods using wind tunnels and Computational Fluid Dynamics, such as Large-Eddy Simulations (LES), are limited by high costs, computational demands, and time requirements. This study presents a deep neural network (DNN) approach for fast and accurate predictions of urban wind flow fields, reducing computation time from an order of 10 hours on 32 CPUs for one LES evaluation to an order of 1 second on a single GPU using the DNN model. We employ a U-Net architecture trained on LES data including 252 synthetic urban configurations at seven wind directions ($0^{o}$ to $90^{o}$ in $15^{o}$ increments). The model predicts two key quantities of interest: mean velocity magnitude and streamwise turbulence intensity, at multiple heights within the urban canopy. The U-net uses 2D building representations augmented with signed distance functions and their gradients as inputs, forming a $256\times256\times9$ tensor. In addition, a Spatial Attention Module is used for feature transfer through skip connections. The loss function combines the root-mean-square error of predictions, their gradient magnitudes, and L2 regularization. Model evaluation on 50 test cases demonstrates high accuracy with an overall mean relative error of 9.3% for velocity magnitude and 5.2% for turbulence intensity. This research shows the potential of deep learning approaches to provide fast, accurate urban wind assessments essential for creating comfortable and safe urban environments. Code is available at https://github.com/tvarg/Urban-FlowUnet.git

Authors:Mingjin Zeng, Nan Ouyang, Wenkang Wan, Lei Ao, Qing Cai, Kai Sheng
Title: ILNet: Trajectory Prediction with Inverse Learning Attention for Enhancing Intention Capture
Abstract:
Trajectory prediction for multi-agent interaction scenarios is a crucial challenge. Most advanced methods model agent interactions by efficiently factorized attention based on the temporal and agent axes. However, this static and foward modeling lacks explicit interactive spatio-temporal coordination, capturing only obvious and immediate behavioral intentions. Alternatively, the modern trajectory prediction framework refines the successive predictions by a fixed-anchor selection strategy, which is difficult to adapt in different future environments. It is acknowledged that human drivers dynamically adjust initial driving decisions based on further assumptions about the intentions of surrounding vehicles. Motivated by human driving behaviors, this paper proposes ILNet, a multi-agent trajectory prediction method with Inverse Learning (IL) attention and Dynamic Anchor Selection (DAS) module. IL Attention employs an inverse learning paradigm to model interactions at neighboring moments, introducing proposed intentions to dynamically encode the spatio-temporal coordination of interactions, thereby enhancing the model's ability to capture complex interaction patterns. Then, the learnable DAS module is proposed to extract multiple trajectory change keypoints as anchors in parallel with almost no increase in parameters. Experimental results show that the ILNet achieves state-of-the-art performance on the INTERACTION and Argoverse motion forecasting datasets. Particularly, in challenged interaction scenarios, ILNet achieves higher accuracy and more multimodal distributions of trajectories over fewer parameters. Our codes are available at https://github.com/mjZeng11/ILNet.

Authors:Huisheng Wang, Zhuoshi Pan, Hangjing Zhang, Mingxiao Liu, Hanqing Gao, H. Vicky Zhao
Title: InvestAlign: Overcoming Data Scarcity in Aligning Large Language Models with Investor Decision-Making Processes under Herd Behavior
Abstract:
Aligning Large Language Models (LLMs) with investor decision-making processes under herd behavior is a critical challenge in behavioral finance, which grapples with a fundamental limitation: the scarcity of real-user data needed for Supervised Fine-Tuning (SFT). While SFT can bridge the gap between LLM outputs and human behavioral patterns, its reliance on massive authentic data imposes substantial collection costs and privacy risks. We propose InvestAlign, a novel framework that constructs high-quality SFT datasets by leveraging theoretical solutions to similar and simple optimal investment problems rather than complex scenarios. Our theoretical analysis demonstrates that training LLMs with InvestAlign-generated data achieves faster parameter convergence than using real-user data, suggesting superior learning efficiency. Furthermore, we develop InvestAgent, an LLM agent fine-tuned with InvestAlign, which demonstrates significantly closer alignment to real-user data than pre-SFT models in both simple and complex investment problems. This highlights our proposed InvestAlign as a promising approach with the potential to address complex optimal investment problems and align LLMs with investor decision-making processes under herd behavior. Our code is publicly available at https://github.com/thu-social-network-research-group/InvestAlign.

Authors:Yuhan Liu, Xinyu Zhang, Haonan Chang, Abdeslam Boularias
Title: Failure Forecasting Boosts Robustness of Sim2Real Rhythmic Insertion Policies
Abstract:
This paper addresses the challenges of Rhythmic Insertion Tasks (RIT), where a robot must repeatedly perform high-precision insertions, such as screwing a nut into a bolt with a wrench. The inherent difficulty of RIT lies in achieving millimeter-level accuracy and maintaining consistent performance over multiple repetitions, particularly when factors like nut rotation and friction introduce additional complexity. We propose a sim-to-real framework that integrates a reinforcement learning-based insertion policy with a failure forecasting module. By representing the wrench's pose in the nut's coordinate frame rather than the robot's frame, our approach significantly enhances sim-to-real transferability. The insertion policy, trained in simulation, leverages real-time 6D pose tracking to execute precise alignment, insertion, and rotation maneuvers. Simultaneously, a neural network predicts potential execution failures, triggering a simple recovery mechanism that lifts the wrench and retries the insertion. Extensive experiments in both simulated and real-world environments demonstrate that our method not only achieves a high one-time success rate but also robustly maintains performance over long-horizon repetitive tasks.

Authors:Yunrui Zhang, Gustavo Batista, Salil S. Kanhere
Title: Instance-Wise Monotonic Calibration by Constrained Transformation
Abstract:
Deep neural networks often produce miscalibrated probability estimates, leading to overconfident predictions. A common approach for calibration is fitting a post-hoc calibration map on unseen validation data that transforms predicted probabilities. A key desirable property of the calibration map is instance-wise monotonicity (i.e., preserving the ranking of probability outputs). However, most existing post-hoc calibration methods do not guarantee monotonicity. Previous monotonic approaches either use an under-parameterized calibration map with limited expressive ability or rely on black-box neural networks, which lack interpretability and robustness. In this paper, we propose a family of novel monotonic post-hoc calibration methods, which employs a constrained calibration map parameterized linearly with respect to the number of classes. Our proposed approach ensures expressiveness, robustness, and interpretability while preserving the relative ordering of the probability output by formulating the proposed calibration map as a constrained optimization problem. Our proposed methods achieve state-of-the-art performance across datasets with different deep neural network models, outperforming existing calibration methods while being data and computation-efficient. Our code is available at https://github.com/YunruiZhang/Calibration-by-Constrained-Transformation

Authors:Fuhuan Li, Zhihui Du, David A. Bader
Title: Designing Parallel Algorithms for Community Detection using Arachne
Abstract:
The rise of graph data in various fields calls for efficient and scalable community detection algorithms. In this paper, we present parallel implementations of two widely used algorithms: Label Propagation and Louvain, specifically designed to leverage the capabilities of Arachne, which is a Python-accessible open-source framework for large-scale graph analysis. Our implementations achieve substantial speedups over existing Python-based tools like NetworkX and igraph, which lack efficient parallelization, and are competitive with parallel frameworks such as NetworKit. Experimental results show that Arachne-based methods outperform these baselines, achieving speedups of up to 710x over NetworkX, 75x over igraph, and 12x over NetworKit. Additionally, we analyze the scalability of our implementation under varying thread counts, demonstrating how different phases contribute to overall performance gains of the parallel Louvain algorithm. Arachne, including our community detection implementation, is open-source and available at https://github.com/Bears-R-Us/arkouda-njit .

Authors:Atieh Barati Nia, Mohammad Dindoost, David A. Bader
Title: Evaluating Efficiency and Novelty of LLM-Generated Code for Graph Analysis
Abstract:
Large Language Models (LLMs) are increasingly used to automate software development, yet most prior evaluations focus on functional correctness or high-level languages such as Python. As one of the first systematic explorations of LLM-assisted software performance engineering, we present a comprehensive study of LLMs' ability to generate efficient C implementations of graph-analysis routines -- code that must satisfy stringent runtime and memory constraints. This emerging field of LLM-assisted algorithm engineering holds significant promise, as these models may possess the capability to design novel approaches that improve existing algorithms and their implementations. Eight state-of-the-art models (OpenAI ChatGPT o3 and o4-mini-high, Anthropic Claude 4 Sonnet and Sonnet Extended, Google Gemini 2.5 Flash and Pro, xAI Grok 3-Think, and DeepSeek DeepThink R1) are benchmarked using two distinct approaches. The first approach evaluates the ability of LLMs to generate algorithms that outperform existing benchmarks. The second approach assesses their capability to generate graph algorithms for integration into performance-critical systems. The results show that Claude Sonnet 4 Extended achieves superior performance in ready-to-use code generation and efficiency, outperforming human-written baselines in triangle counting. Although our findings demonstrate that contemporary LLMs excel in optimizing and integrating established algorithms, the potential for these models to eventually invent transformative algorithmic techniques represents a compelling frontier for future research. We provide prompts, generated code, and measurement scripts to promote reproducible research in this rapidly evolving domain. All of the source code is available on GitHub at https://github.com/Bader-Research/LLM-triangle-counting/.

Authors:Zhenhailong Wang, Xuehang Guo, Sofia Stoica, Haiyang Xu, Hongru Wang, Hyeonjeong Ha, Xiusi Chen, Yangyi Chen, Ming Yan, Fei Huang, Heng Ji
Title: Perception-Aware Policy Optimization for Multimodal Reasoning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose PAPO, a novel policy gradient algorithm that encourages the model to learn to perceive while learning to reason. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term, which can be seamlessly plugged into mainstream RLVR algorithms such as GRPO and DAPO. Notably, PAPO does not rely on additional data curation, reward models, or stronger teacher models. To further enhance the training stability of PAPO, we introduce the Double Entropy Loss, which effectively regularizes the new KL objective without compromising performance. Despite its simplicity, PAPO yields significant overall improvements of 4.4%-17.5% on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%-19.1%, on tasks with high vision dependency. We also observe a substantial reduction of 30.5% in perception errors, indicating improved perceptual capabilities with PAPO. Overall, our work introduces a deeper integration of perception-aware supervision into core learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Code and data will be made publicly available for research purposes. Project page: https://mikewangwzhl.github.io/PAPO.

Authors:Rafiu Adekoya Badekale, Adewale Akinfaderin
Title: Temporal Analysis of Climate Policy Discourse: Insights from Dynamic Embedded Topic Modeling
Abstract:
Understanding how policy language evolves over time is critical for assessing global responses to complex challenges such as climate change. Temporal analysis helps stakeholders, including policymakers and researchers, to evaluate past priorities, identify emerging themes, design governance strategies, and develop mitigation measures. Traditional approaches, such as manual thematic coding, are time-consuming and limited in capturing the complex, interconnected nature of global policy discourse. With the increasing relevance of unsupervised machine learning, these limitations can be addressed, particularly under high-volume, complex, and high-dimensional data conditions. In this work, we explore a novel approach that applies the dynamic embedded topic model (DETM) to analyze the evolution of global climate policy discourse. A probabilistic model designed to capture the temporal dynamics of topics over time. We collected a corpus of United Nations Framework Convention on Climate Change (UNFCCC) policy decisions from 1995 to 2023, excluding 2020 due to the postponement of COP26 as a result of the COVID-19 pandemic. The model reveals shifts from early emphases on greenhouse gases and international conventions to recent focuses on implementation, technical collaboration, capacity building, finance, and global agreements. Section 3 presents the modeling pipeline, including preprocessing, model training, and visualization of temporal word distributions. Our results show that DETM is a scalable and effective tool for analyzing the evolution of global policy discourse. Section 4 discusses the implications of these findings and we concluded with future directions and refinements to extend this approach to other policy domains.

Authors:Niloy Sikder, Paul Zerr, Mahdad Jafarzadeh Esfahani, Martin Dresler, Matthias Krauledat
Title: eegFloss: A Python package for refining sleep EEG recordings using machine learning models
Abstract:
Electroencephalography (EEG) allows monitoring of brain activity, providing insights into the functional dynamics of various brain regions and their roles in cognitive processes. EEG is a cornerstone in sleep research, serving as the primary modality of polysomnography, the gold standard in the field. However, EEG signals are prone to artifacts caused by both internal (device-specific) factors and external (environmental) interferences. As sleep studies are becoming larger, most rely on automatic sleep staging, a process highly susceptible to artifacts, leading to erroneous sleep scores. This paper addresses this challenge by introducing eegFloss, an open-source Python package to utilize eegUsability, a novel machine learning (ML) model designed to detect segments with artifacts in sleep EEG recordings. eegUsability has been trained and evaluated on manually artifact-labeled EEG data collected from 15 participants over 127 nights using the Zmax headband. It demonstrates solid overall classification performance (F1-score is approximately 0.85, Cohens kappa is 0.78), achieving a high recall rate of approximately 94% in identifying channel-wise usable EEG data, and extends beyond Zmax. Additionally, eegFloss offers features such as automatic time-in-bed detection using another ML model named eegMobility, filtering out certain artifacts, and generating hypnograms and sleep statistics. By addressing a fundamental challenge faced by most sleep studies, eegFloss can enhance the precision and rigor of their analysis as well as the accuracy and reliability of their outcomes.

Authors:Yize Chen, Baosen Zhang
Title: Voltage Regulation in Distribution Systems with Data Center Loads
Abstract:
Recent boom in foundation models and AI computing have raised growing concerns on the power and energy trajectories of large-scale data centers. This paper focuses on the voltage issues caused by volatile and intensity of data center power demand, which also aligns with recent observations of more frequent voltage disturbances in power grids. To address these data center integration challenges, we propose a dynamic voltage control scheme by harnessing data center's load regulation capabilities. By taking local voltage measurements and adjusting power injections at each data center buses through the dynamic voltage and frequency scaling (DVFS) scheme, we are able to maintain safe voltage magnitude in a distributed fashion with higher data center computing load. Simulations using real large language model (LLM) inference load validate the effectiveness of our proposed mechanism. Both the LLM power data and proposed control scheme are open sourced.

Authors:Weiran Li, Yeqiang Liu, Qiannan Guo, Yijie Wei, Hwa Liang Leo, Zhenbo Li
Title: When Trackers Date Fish: A Benchmark and Framework for Underwater Multiple Fish Tracking
Abstract:
Multiple object tracking (MOT) technology has made significant progress in terrestrial applications, but underwater tracking scenarios remain underexplored despite their importance to marine ecology and aquaculture. In this paper, we present Multiple Fish Tracking Dataset 2025 (MFT25), a comprehensive dataset specifically designed for underwater multiple fish tracking, featuring 15 diverse video sequences with 408,578 meticulously annotated bounding boxes across 48,066 frames. Our dataset captures various underwater environments, fish species, and challenging conditions including occlusions, similar appearances, and erratic motion patterns. Additionally, we introduce Scale-aware and Unscented Tracker (SU-T), a specialized tracking framework featuring an Unscented Kalman Filter (UKF) optimized for non-linear swimming patterns of fish and a novel Fish-Intersection-over-Union (FishIoU) matching that accounts for the unique morphological characteristics of aquatic species. Extensive experiments demonstrate that our SU-T baseline achieves state-of-the-art performance on MFT25, with 34.1 HOTA and 44.6 IDF1, while revealing fundamental differences between fish tracking and terrestrial object tracking scenarios. The dataset and codes are released at https://vranlee.github.io/SU-T/.

Authors:Emerson P. Grabke, Babak Taati, Masoom A. Haider
Title: Mitigating Multi-Sequence 3D Prostate MRI Data Scarcity through Domain Adaptation using Locally-Trained Latent Diffusion Models for Prostate Cancer Detection
Abstract:
Objective: Latent diffusion models (LDMs) could mitigate data scarcity challenges affecting machine learning development for medical image interpretation. The recent CCELLA LDM improved prostate cancer detection performance using synthetic MRI for classifier training but was limited to the axial T2-weighted (AxT2) sequence, did not investigate inter-institutional domain shift, and prioritized radiology over histopathology outcomes. We propose CCELLA++ to address these limitations and improve clinical utility. Methods: CCELLA++ expands CCELLA for simultaneous biparametric prostate MRI (bpMRI) generation, including the AxT2, high b-value diffusion series (HighB) and apparent diffusion coefficient map (ADC). Domain adaptation was investigated by pretraining classifiers on real or LDM-generated synthetic data from an internal institution, followed with fine-tuning on progressively smaller fractions of an out-of-distribution, external dataset. Results: CCELLA++ improved 3D FID for HighB and ADC but not AxT2 (0.013, 0.012, 0.063 respectively) sequences compared to CCELLA (0.060). Classifier pretraining with CCELLA++ bpMRI outperformed real bpMRI in AP and AUC for all domain adaptation scenarios. CCELLA++ pretraining achieved highest classifier performance below 50% (n=665) external dataset volume. Conclusion: Synthetic bpMRI generated by our method can improve downstream classifier generalization and performance beyond real bpMRI or CCELLA-generated AxT2-only images. Future work should seek to quantify medical image sample quality, balance multi-sequence LDM training, and condition the LDM with additional information. Significance: The proposed CCELLA++ LDM can generate synthetic bpMRI that outperforms real data for domain adaptation with a limited target institution dataset. Our code is available at https://github.com/grabkeem/CCELLA-plus-plus

Authors:Kenneth Odoh
Title: An Architecture for Privacy-Preserving Telemetry Scheme
Abstract:
We present a privacy-preserving telemetry aggregation scheme. Our underlying frequency estimation routine works within the framework of differential privacy. The design philosophy follows a client-server architecture. Furthermore, the system uses a local differential privacy scheme where data gets randomized on the client before submitting the request to the resource server. This scheme allows for data analysis on de-identified data by carefully adding noise to prevent re-identification attacks, thereby facilitating public data release without compromising the identifiability of the individual record. This work further enhances privacy guarantees by leveraging Oblivious HTTP (OHTTP) to achieve increased privacy protection for data in transit that addresses pre-existing privacy vulnerabilities in raw HTTP. We provide an implementation that focuses on frequency estimation with a histogram of a known dictionary. Our resulting formulation based on OHTTP has provided stricter privacy safeguards when compared to trusting an organization to manually delete identifying information from the client's request in the ingestor as deployed in reference work~\cite{apple2017}. Code available at https://github.com/kenluck2001/miscellaneous/tree/master/src/Privacy-Preserving-Telemetry.

Authors:Michael Clemens, Ana Marasović
Title: MixAssist: An Audio-Language Dataset for Co-Creative AI Assistance in Music Mixing
Abstract:
While AI presents significant potential for enhancing music mixing and mastering workflows, current research predominantly emphasizes end-to-end automation or generation, often overlooking the collaborative and instructional dimensions vital for co-creative processes. This gap leaves artists, particularly amateurs seeking to develop expertise, underserved. To bridge this, we introduce MixAssist, a novel audio-language dataset capturing the situated, multi-turn dialogue between expert and amateur music producers during collaborative mixing sessions. Comprising 431 audio-grounded conversational turns derived from 7 in-depth sessions involving 12 producers, MixAssist provides a unique resource for training and evaluating audio-language models that can comprehend and respond to the complexities of real-world music production dialogues. Our evaluations, including automated LLM-as-a-judge assessments and human expert comparisons, demonstrate that fine-tuning models such as Qwen-Audio on MixAssist can yield promising results, with Qwen significantly outperforming other tested models in generating helpful, contextually relevant mixing advice. By focusing on co-creative instruction grounded in audio context, MixAssist enables the development of intelligent AI assistants designed to support and augment the creative process in music mixing.

Authors:Zhang Li, Biao Yang, Qiang Liu, Shuo Zhang, Zhiyin Ma, Liang Yin, Linger Deng, Yabo Sun, Yuliang Liu, Xiang Bai
Title: LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance
Abstract:
While large multi-modal models (LMMs) demonstrate promising capabilities in segmentation and comprehension, they still struggle with two limitations: inaccurate segmentation and hallucinated comprehension. These challenges stem primarily from constraints in weak visual comprehension and a lack of fine-grained perception. To alleviate these limitations, we propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation via two key components: (1) Semantic-Enhanced Feature Extractor (SEFE) improves object attribute inference by fusing semantic and pixel-level features, leading to more accurate segmentation; (2) Interleaved Local Visual Coupling (ILVC) autoregressively generates local descriptions after extracting local features based on segmentation masks, offering fine-grained supervision to mitigate hallucinations. Furthermore, we find that the precision of object segmentation is positively correlated with the latent related semantics of the token. To quantify this relationship and the model's potential semantic inferring ability, we introduce the Attributes Evaluation (AttrEval) dataset. Our experiments show that LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks. Code will be available at https://github.com/echo840/LIRA.

Authors:Ali Nasiri-Sarvi, Hassan Rivaz, Mahdi S. Hosseini
Title: SPARC: Concept-Aligned Sparse Autoencoders for Cross-Model and Cross-Modal Interpretability
Abstract:
Understanding how different AI models encode the same high-level concepts, such as objects or attributes, remains challenging because each model typically produces its own isolated representation. Existing interpretability methods like Sparse Autoencoders (SAEs) produce latent concepts individually for each model, resulting in incompatible concept spaces and limiting cross-model interpretability. To address this, we introduce SPARC (Sparse Autoencoders for Aligned Representation of Concepts), a new framework that learns a single, unified latent space shared across diverse architectures and modalities (e.g., vision models like DINO, and multimodal models like CLIP). SPARC's alignment is enforced through two key innovations: (1) a Global TopK sparsity mechanism, ensuring all input streams activate identical latent dimensions for a given concept; and (2) a Cross-Reconstruction Loss, which explicitly encourages semantic consistency between models. On Open Images, SPARC dramatically improves concept alignment, achieving a Jaccard similarity of 0.80, more than tripling the alignment compared to previous methods. SPARC creates a shared sparse latent space where individual dimensions often correspond to similar high-level concepts across models and modalities, enabling direct comparison of how different architectures represent identical concepts without requiring manual alignment or model-specific analysis. As a consequence of this aligned representation, SPARC also enables practical applications such as text-guided spatial localization in vision-only models and cross-model/cross-modal retrieval. Code and models are available at https://github.com/AtlasAnalyticsLab/SPARC.

Authors:Jiangzhong Cao, Zekai Zeng, Xu Zhang, Huan Zhang, Chunling Fan, Gangyi Jiang, Weisi Lin
Title: Unveiling the Underwater World: CLIP Perception Model-Guided Underwater Image Enhancement
Abstract:
High-quality underwater images are essential for both machine vision tasks and viewers with their aesthetic appeal.However, the quality of underwater images is severely affected by light absorption and scattering. Deep learning-based methods for Underwater Image Enhancement (UIE) have achieved good performance. However, these methods often overlook considering human perception and lack sufficient constraints within the solution space. Consequently, the enhanced images often suffer from diminished perceptual quality or poor content restoration.To address these issues, we propose a UIE method with a Contrastive Language-Image Pre-Training (CLIP) perception loss module and curriculum contrastive regularization. Above all, to develop a perception model for underwater images that more aligns with human visual perception, the visual semantic feature extraction capability of the CLIP model is leveraged to learn an appropriate prompt pair to map and evaluate the quality of underwater images. This CLIP perception model is then incorporated as a perception loss module into the enhancement network to improve the perceptual quality of enhanced images. Furthermore, the CLIP perception model is integrated with the curriculum contrastive regularization to enhance the constraints imposed on the enhanced images within the CLIP perceptual space, mitigating the risk of both under-enhancement and over-enhancement. Specifically, the CLIP perception model is employed to assess and categorize the learning difficulty level of negatives in the regularization process, ensuring comprehensive and nuanced utilization of distorted images and negatives with varied quality levels. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability.

Authors:Inès Hyeonsu Kim, Seokju Cho, Jahyeok Koo, Junghyun Park, Jiahui Huang, Joon-Young Lee, Seungryong Kim
Title: Learning to Track Any Points from Human Motion
Abstract:
Human motion, with its inherent complexities, such as non-rigid deformations, articulated movements, clothing distortions, and frequent occlusions caused by limbs or other individuals, provides a rich and challenging source of supervision that is crucial for training robust and generalizable point trackers. Despite the suitability of human motion, acquiring extensive training data for point tracking remains difficult due to laborious manual annotation. Our proposed pipeline, AnthroTAP, addresses this by proposing an automated pipeline to generate pseudo-labeled training data, leveraging the Skinned Multi-Person Linear (SMPL) model. We first fit the SMPL model to detected humans in video frames, project the resulting 3D mesh vertices onto 2D image planes to generate pseudo-trajectories, handle occlusions using ray-casting, and filter out unreliable tracks based on optical flow consistency. A point tracking model trained on AnthroTAP annotated dataset achieves state-of-the-art performance on the TAP-Vid benchmark, surpassing other models trained on real videos while using 10,000 times less data and only 1 day in 4 GPUs, compared to 256 GPUs used in recent state-of-the-art.

Authors:Keyan Chen, Chenyang Liu, Bowen Chen, Jiafan Zhang, Zhengxia Zou, Zhenwei Shi
Title: RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models
Abstract:
Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.

Authors:Aleksandar Jevtić, Christoph Reich, Felix Wimbauer, Oliver Hahn, Christian Rupprecht, Stefan Roth, Daniel Cremers
Title: Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion
Abstract:
Semantic scene completion (SSC) aims to infer both the 3D geometry and semantics of a scene from single images. In contrast to prior work on SSC that heavily relies on expensive ground-truth annotations, we approach SSC in an unsupervised setting. Our novel method, SceneDINO, adapts techniques from self-supervised representation learning and 2D unsupervised scene understanding to SSC. Our training exclusively utilizes multi-view consistency self-supervision without any form of semantic or geometric ground truth. Given a single input image, SceneDINO infers the 3D geometry and expressive 3D DINO features in a feed-forward manner. Through a novel 3D feature distillation approach, we obtain unsupervised 3D semantics. In both 3D and 2D unsupervised scene understanding, SceneDINO reaches state-of-the-art segmentation accuracy. Linear probing our 3D features matches the segmentation accuracy of a current supervised SSC approach. Additionally, we showcase the domain generalization and multi-view consistency of SceneDINO, taking the first steps towards a strong foundation for single image 3D scene understanding.

Authors:Modi Shi, Li Chen, Jin Chen, Yuxiang Lu, Chiming Liu, Guanghui Ren, Ping Luo, Di Huang, Maoqing Yao, Hongyang Li
Title: Is Diversity All You Need for Scalable Robotic Manipulation?
Abstract:
Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.

Authors:Ayush Parikh, Hoang Thanh Thanh Truong, Jeanette Schofield, Maximilian Heil
Title: DS@GT at CheckThat! 2025: Ensemble Methods for Detection of Scientific Discourse on Social Media
Abstract:
In this paper, we, as the DS@GT team for CLEF 2025 CheckThat! Task 4a Scientific Web Discourse Detection, present the methods we explored for this task. For this multiclass classification task, we determined if a tweet contained a scientific claim, a reference to a scientific study or publication, and/or mentions of scientific entities, such as a university or a scientist. We present 3 modeling approaches for this task: transformer finetuning, few-shot prompting of LLMs, and a combined ensemble model whose design was informed by earlier experiments. Our team placed 7th in the competition, achieving a macro-averaged F1 score of 0.8611, an improvement over the DeBERTaV3 baseline of 0.8375. Our code is available on Github at https://github.com/dsgt-arc/checkthat-2025-swd/tree/main/subtask-4a.

Authors:Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang, Kaiwen Xue, Xuanliang Zhang, Yong Shan, Tianle Cai, Taylor Kergan, Assel Kembay, Andrew Smith, Chenghua Lin, Binh Nguyen, Yuqi Pan, Yuhong Chou, Zefan Cai, Zhenhe Wu, Yongchi Zhao, Tianyu Liu, Jian Yang, Wangchunshu Zhou, Chujie Zheng, Chongxuan Li, Yuyin Zhou, Zhoujun Li, Zhaoxiang Zhang, Jiaheng Liu, Ge Zhang, Wenhao Huang, Jason Eshraghian
Title: A Survey on Latent Reasoning
Abstract:
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.

Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Ho-Kyeong Ra, Viren Bajaj, Zeya Ahmad
Title: UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Abstract:
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.

Authors:Maximilian Heil, Aleksandar Pramov
Title: DS@GT at CheckThat! 2025: Evaluating Context and Tokenization Strategies for Numerical Fact Verification
Abstract:
Numerical claims, statements involving quantities, comparisons, and temporal references, pose unique challenges for automated fact-checking systems. In this study, we evaluate modeling strategies for veracity prediction of such claims using the QuanTemp dataset and building our own evidence retrieval pipeline. We investigate three key factors: (1) the impact of more evidences with longer input context windows using ModernBERT, (2) the effect of right-to-left (R2L) tokenization, and (3) their combined influence on classification performance. Contrary to prior findings in arithmetic reasoning tasks, R2L tokenization does not boost natural language inference (NLI) of numerical tasks. A longer context window does also not enhance veracity performance either, highlighting evidence quality as the dominant bottleneck. Our best-performing system achieves competitive macro-average F1 score of 0.57 and places us among the Top-4 submissions in Task 3 of CheckThat! 2025. Our code is available at https://github.com/dsgt-arc/checkthat-2025-numerical.

Authors:Maximilian Heil, Dionne Bang
Title: DS@GT at CheckThat! 2025: Detecting Subjectivity via Transfer-Learning and Corrective Data Augmentation
Abstract:
This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.

Authors:Haoyu Wang, Lei Zhang, Wei Wei, Chen Ding, Yanning Zhang
Title: Prompt-Free Conditional Diffusion for Multi-object Image Augmentation
Abstract:
Diffusion models has underpinned much recent advances of dataset augmentation in various computer vision tasks. However, when involving generating multi-object images as real scenarios, most existing methods either rely entirely on text condition, resulting in a deviation between the generated objects and the original data, or rely too much on the original images, resulting in a lack of diversity in the generated images, which is of limited help to downstream tasks. To mitigate both problems with one stone, we propose a prompt-free conditional diffusion framework for multi-object image augmentation. Specifically, we introduce a local-global semantic fusion strategy to extract semantics from images to replace text, and inject knowledge into the diffusion model through LoRA to alleviate the category deviation between the original model and the target dataset. In addition, we design a reward model based counting loss to assist the traditional reconstruction loss for model training. By constraining the object counts of each category instead of pixel-by-pixel constraints, bridging the quantity deviation between the generated data and the original data while improving the diversity of the generated data. Experimental results demonstrate the superiority of the proposed method over several representative state-of-the-art baselines and showcase strong downstream task gain and out-of-domain generalization capabilities. Code is available at \href{https://github.com/00why00/PFCD}{here}.

Authors:Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan
Title: LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models
Abstract:
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.

Authors:Yimeng Bai, Yang Zhang, Sihao Ding, Shaohui Ruan, Han Yao, Danhui Guan, Fuli Feng, Tat-Seng Chua
Title: Unconditional Diffusion for Generative Sequential Recommendation
Abstract:
Diffusion models, known for their generative ability to simulate data creation through noise-adding and denoising processes, have emerged as a promising approach for building generative recommenders. To incorporate user history for personalization, existing methods typically adopt a conditional diffusion framework, where the reverse denoising process of reconstructing items from noise is modified to be conditioned on the user history. However, this design may fail to fully utilize historical information, as it gets distracted by the need to model the "item $\leftrightarrow$ noise" translation. This motivates us to reformulate the diffusion process for sequential recommendation in an unconditional manner, treating user history (instead of noise) as the endpoint of the forward diffusion process (i.e., the starting point of the reverse process), rather than as a conditional input. This formulation allows for exclusive focus on modeling the "item $\leftrightarrow$ history" translation. To this end, we introduce Brownian Bridge Diffusion Recommendation (BBDRec). By leveraging a Brownian bridge process, BBDRec enforces a structured noise addition and denoising mechanism, ensuring that the trajectories are constrained towards a specific endpoint -- user history, rather than noise. Extensive experiments demonstrate BBDRec's effectiveness in enhancing sequential recommendation performance. The source code is available at https://github.com/baiyimeng/BBDRec.

Authors:Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, Hao Li
Title: Omni-Video: Democratizing Unified Video Understanding and Generation
Abstract:
Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.

Authors:Jiayi Song, Zihan Ye, Qingyuan Zhou, Weidong Yang, Ben Fei, Jingyi Xu, Ying He, Wanli Ouyang
Title: Reflections Unlock: Geometry-Aware Reflection Disentanglement in 3D Gaussian Splatting for Photorealistic Scenes Rendering
Abstract:
Accurately rendering scenes with reflective surfaces remains a significant challenge in novel view synthesis, as existing methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) often misinterpret reflections as physical geometry, resulting in degraded reconstructions. Previous methods rely on incomplete and non-generalizable geometric constraints, leading to misalignment between the positions of Gaussian splats and the actual scene geometry. When dealing with real-world scenes containing complex geometry, the accumulation of Gaussians further exacerbates surface artifacts and results in blurred reconstructions. To address these limitations, in this work, we propose Ref-Unlock, a novel geometry-aware reflection modeling framework based on 3D Gaussian Splatting, which explicitly disentangles transmitted and reflected components to better capture complex reflections and enhance geometric consistency in real-world scenes. Our approach employs a dual-branch representation with high-order spherical harmonics to capture high-frequency reflective details, alongside a reflection removal module providing pseudo reflection-free supervision to guide clean decomposition. Additionally, we incorporate pseudo-depth maps and a geometry-aware bilateral smoothness constraint to enhance 3D geometric consistency and stability in decomposition. Extensive experiments demonstrate that Ref-Unlock significantly outperforms classical GS-based reflection methods and achieves competitive results with NeRF-based models, while enabling flexible vision foundation models (VFMs) driven reflection editing. Our method thus offers an efficient and generalizable solution for realistic rendering of reflective scenes. Our code is available at https://ref-unlock.github.io/.

Authors:Murilo Gustineli, Anthony Miyaguchi, Adrian Cheung, Divyansh Khattak
Title: Tile-Based ViT Inference with Visual-Cluster Priors for Zero-Shot Multi-Species Plant Identification
Abstract:
We describe DS@GT's second-place solution to the PlantCLEF 2025 challenge on multi-species plant identification in vegetation quadrat images. Our pipeline combines (i) a fine-tuned Vision Transformer ViTD2PC24All for patch-level inference, (ii) a 4x4 tiling strategy that aligns patch size with the network's 518x518 receptive field, and (iii) domain-prior adaptation through PaCMAP + K-Means visual clustering and geolocation filtering. Tile predictions are aggregated by majority vote and re-weighted with cluster-specific Bayesian priors, yielding a macro-averaged F1 of 0.348 (private leaderboard) while requiring no additional training. All code, configuration files, and reproducibility scripts are publicly available at https://github.com/dsgt-arc/plantclef-2025.

Authors:Tongtong Cheng, Rongzhen Li, Yixin Xiong, Tao Zhang, Jing Wang, Kai Liu
Title: MCAM: Multimodal Causal Analysis Model for Ego-Vehicle-Level Driving Video Understanding
Abstract:
Accurate driving behavior recognition and reasoning are critical for autonomous driving video understanding. However, existing methods often tend to dig out the shallow causal, fail to address spurious correlations across modalities, and ignore the ego-vehicle level causality modeling. To overcome these limitations, we propose a novel Multimodal Causal Analysis Model (MCAM) that constructs latent causal structures between visual and language modalities. Firstly, we design a multi-level feature extractor to capture long-range dependencies. Secondly, we design a causal analysis module that dynamically models driving scenarios using a directed acyclic graph (DAG) of driving states. Thirdly, we utilize a vision-language transformer to align critical visual features with their corresponding linguistic expressions. Extensive experiments on the BDD-X, and CoVLA datasets demonstrate that MCAM achieves SOTA performance in visual-language causal relationship learning. Furthermore, the model exhibits superior capability in capturing causal characteristics within video sequences, showcasing its effectiveness for autonomous driving applications. The code is available at https://github.com/SixCorePeach/MCAM.

Authors:Chang Liu, Ye Pan, Chenyang Ding, Susanto Rahardja, Xiaokang Yang
Title: MEDTalk: Multimodal Controlled 3D Facial Animation with Dynamic Emotions by Disentangled Embedding
Abstract:
Audio-driven emotional 3D facial animation aims to generate synchronized lip movements and vivid facial expressions. However, most existing approaches focus on static and predefined emotion labels, limiting their diversity and naturalness. To address these challenges, we propose MEDTalk, a novel framework for fine-grained and dynamic emotional talking head generation. Our approach first disentangles content and emotion embedding spaces from motion sequences using a carefully designed cross-reconstruction process, enabling independent control over lip movements and facial expressions. Beyond conventional audio-driven lip synchronization, we integrate audio and speech text, predicting frame-wise intensity variations and dynamically adjusting static emotion features to generate realistic emotional expressions. Furthermore, to enhance control and personalization, we incorporate multimodal inputs-including text descriptions and reference expression images-to guide the generation of user-specified facial expressions. With MetaHuman as the priority, our generated results can be conveniently integrated into the industrial production pipeline. The code is available at: https://github.com/SJTU-Lucy/MEDTalk.

Authors:Xiaohu Li, Yunfeng Ning, Zepeng Bao, Mayi Xu, Jianhao Chen, Tieyun Qian
Title: CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations
Abstract:
Security alignment enables the Large Language Model (LLM) to gain the protection against malicious queries, but various jailbreak attack methods reveal the vulnerability of this security mechanism. Previous studies have isolated LLM jailbreak attacks and defenses. We analyze the security protection mechanism of the LLM, and propose a framework that combines attack and defense. Our method is based on the linearly separable property of LLM intermediate layer embedding, as well as the essence of jailbreak attack, which aims to embed harmful problems and transfer them to the safe area. We utilize generative adversarial network (GAN) to learn the security judgment boundary inside the LLM to achieve efficient jailbreak attack and defense. The experimental results indicate that our method achieves an average jailbreak success rate of 88.85\% across three popular LLMs, while the defense success rate on the state-of-the-art jailbreak dataset reaches an average of 84.17\%. This not only validates the effectiveness of our approach but also sheds light on the internal security mechanisms of LLMs, offering new insights for enhancing model security The code and data are available at https://github.com/NLPGM/CAVGAN.

Authors:George Barrowclough, Marian Andrecki, James Shinner, Daniele Donghi
Title: Kamae: Bridging Spark and Keras for Seamless ML Preprocessing
Abstract:
In production recommender systems, feature preprocessing must be faithfully replicated across training and inference environments. This often requires duplicating logic between offline and online environments, increasing engineering effort and introducing risks of dataset shift. We present Kamae, an open-source Python library that bridges this gap by translating PySpark preprocessing pipelines into equivalent Keras models. Kamae provides a suite of configurable Spark transformers and estimators, each mapped to a corresponding Keras layer, enabling consistent, end-to-end preprocessing across the ML lifecycle. Framework's utility is illustrated on real-world use cases, including MovieLens dataset and Expedia's Learning-to-Rank pipelines. The code is available at https://github.com/ExpediaGroup/kamae.

Authors:Bo Zhou, Kaijie Xu, Yinghui Quan, Mengdao Xing
Title: A Differential Evolution Algorithm with Neighbor-hood Mutation for DOA Estimation
Abstract:
Two-dimensional (2D) Multiple Signal Classification algorithm is a powerful technique for high-resolution direction-of-arrival (DOA) estimation in array signal processing. However, the exhaustive search over the 2D an-gular domain leads to high computa-tional cost, limiting its applicability in real-time scenarios. In this work, we reformulate the peak-finding process as a multimodal optimization prob-lem, and propose a Differential Evolu-tion algorithm with Neighborhood Mutation (DE-NM) to efficiently lo-cate multiple spectral peaks without requiring dense grid sampling. Simu-lation results demonstrate that the proposed method achieves comparable estimation accuracy to the traditional grid search, while significantly reduc-ing computation time. This strategy presents a promising solution for real-time, high-resolution DOA estimation in practical applications. The imple-mentation code is available at https://github.com/zzb-nice/DOA_multimodel_optimize.

Authors:M. W. Theunissen, R. Rabe, M. H. Davel
Title: KnowIt: Deep Time Series Modeling and Interpretation
Abstract:
KnowIt (Knowledge discovery in time series data) is a flexible framework for building deep time series models and interpreting them. It is implemented as a Python toolkit, with source code and documentation available from https://must-deep-learning.github.io/KnowIt. It imposes minimal assumptions about task specifications and decouples the definition of dataset, deep neural network architecture, and interpretability technique through well defined interfaces. This ensures the ease of importing new datasets, custom architectures, and the definition of different interpretability paradigms while maintaining on-the-fly modeling and interpretation of different aspects of a user's own time series data. KnowIt aims to provide an environment where users can perform knowledge discovery on their own complex time series data through building powerful deep learning models and explaining their behavior. With ongoing development, collaboration and application our goal is to make this a platform to progress this underexplored field and produce a trusted tool for deep time series modeling.

Authors:Lucas Fonseca Lage, Simon Ostermann
Title: OpenFActScore: Open-Source Atomic Evaluation of Factuality in Text Generation
Abstract:
We introduce OpenFActScore, an open-source implementation of the FActScore framework for evaluating the factuality of text generated by large language models (LLMs). FActScore evaluates the factual accuracy of long-form text by using Atomic Fact Generation (AFG) to extract individual factual claims and Atomic Fact Validation (AFV) to verify each claim against a trusted knowledge source. While the original FActScore relies on closed-source and commercial models such as InstructGPT and ChatGPT, OpenFActScore enables the use of any Hugging Face-compatible model for both AFG and AFV. We provide a detailed technical overview of our implementation, highlighting design choices and modifications made to support open models. We evaluate multiple open-source LLMs on both AFG and AFV using the original FActScore benchmark, reporting BERTScore-F1 for AFG and Error Rate relative to human annotations for AFV. Our results show that open models can approximate the performance of closed-source systems, with Gemma achieving the best overall performance, and our final setup obtains a 0.99 Pearson correlation with the original FActScore experiments. OpenFActScore promotes transparency, reproducibility, and cost-effective evaluation, and is available at: https://github.com/lflage/OpenFActScore.

Authors:Vera Soboleva, Aibek Alanov, Andrey Kuznetsov, Konstantin Sobolev
Title: T-LoRA: Single Image Diffusion Model Customization Without Overfitting
Abstract:
While diffusion model fine-tuning offers a powerful approach for customizing pre-trained models to generate specific objects, it frequently suffers from overfitting when training samples are limited, compromising both generalization capability and output diversity. This paper tackles the challenging yet most impactful task of adapting a diffusion model using just a single concept image, as single-image customization holds the greatest practical potential. We introduce T-LoRA, a Timestep-Dependent Low-Rank Adaptation framework specifically designed for diffusion model personalization. In our work we show that higher diffusion timesteps are more prone to overfitting than lower ones, necessitating a timestep-sensitive fine-tuning strategy. T-LoRA incorporates two key innovations: (1) a dynamic fine-tuning strategy that adjusts rank-constrained updates based on diffusion timesteps, and (2) a weight parametrization technique that ensures independence between adapter components through orthogonal initialization. Extensive experiments show that T-LoRA and its individual components outperform standard LoRA and other diffusion model personalization techniques. They achieve a superior balance between concept fidelity and text alignment, highlighting the potential of T-LoRA in data-limited and resource-constrained scenarios. Code is available at https://github.com/ControlGenAI/T-LoRA.

Authors:Zhenghao Zhang, Junchao Liao, Xiangyu Meng, Long Qin, Weizhi Wang
Title: Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation
Abstract:
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://ali-videoai.github.io/Tora2_page/.

Authors:Bing Wang, Ximing Li, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu
Title: Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors
Abstract:
Nowadays, misinformation articles, especially multimodal ones, are widely spread on social media platforms and cause serious negative effects. To control their propagation, Multimodal Misinformation Detection (MMD) becomes an active topic in the community to automatically identify misinformation. Previous MMD methods focus on supervising detectors by collecting offline data. However, in real-world scenarios, new events always continually emerge, making MMD models trained on offline data consistently outdated and ineffective. To address this issue, training MMD models under online data streams is an alternative, inducing an emerging task named continual MMD. Unfortunately, it is hindered by two major challenges. First, training on new data consistently decreases the detection performance on past data, named past knowledge forgetting. Second, the social environment constantly evolves over time, affecting the generalization on future data. To alleviate these challenges, we propose to remember past knowledge by isolating interference between event-specific parameters with a Dirichlet process-based mixture-of-expert structure, and anticipate future environmental distributions by learning a continuous-time dynamics model. Accordingly, we induce a new continual MMD method DAEDCMD. Extensive experiments demonstrate that DAEDCMD can consistently and significantly outperform the compared methods, including six MMD baselines and three continual learning methods.

Authors:Xinyu Huang, Yuhao Dong, Weiwei Tian, Bo Li, Rui Feng, Ziwei Liu
Title: High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning
Abstract:
State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.

Authors:Yuedong Tan, Jiawei Shao, Eduard Zamfir, Ruanjun Li, Zhaochong An, Chao Ma, Danda Paudel, Luc Van Gool, Radu Timofte, Zongwei Wu
Title: What You Have is What You Track: Adaptive and Robust Multimodal Tracking
Abstract:
Multimodal data is known to be helpful for visual tracking by improving robustness to appearance variations. However, sensor synchronization challenges often compromise data availability, particularly in video settings where shortages can be temporal. Despite its importance, this area remains underexplored. In this paper, we present the first comprehensive study on tracker performance with temporally incomplete multimodal data. Unsurprisingly, under such a circumstance, existing trackers exhibit significant performance degradation, as their rigid architectures lack the adaptability needed to effectively handle missing modalities. To address these limitations, we propose a flexible framework for robust multimodal tracking. We venture that a tracker should dynamically activate computational units based on missing data rates. This is achieved through a novel Heterogeneous Mixture-of-Experts fusion mechanism with adaptive complexity, coupled with a video-level masking strategy that ensures both temporal consistency and spatial completeness which is critical for effective video tracking. Surprisingly, our model not only adapts to varying missing rates but also adjusts to scene complexity. Extensive experiments show that our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings. The code and benchmark will be publicly available at https://github.com/supertyd/FlexTrack/tree/main.

Authors:Robert Leppich, Michael Stenger, André Bauer, Samuel Kounev
Title: Decomposing the Time Series Forecasting Pipeline: A Modular Approach for Time Series Representation, Information Extraction, and Projection
Abstract:
With the advent of Transformers, time series forecasting has seen significant advances, yet it remains challenging due to the need for effective sequence representation, memory construction, and accurate target projection. Time series forecasting remains a challenging task, demanding effective sequence representation, meaningful information extraction, and precise future projection. Each dataset and forecasting configuration constitutes a distinct task, each posing unique challenges the model must overcome to produce accurate predictions. To systematically address these task-specific difficulties, this work decomposes the time series forecasting pipeline into three core stages: input sequence representation, information extraction and memory construction, and final target projection. Within each stage, we investigate a range of architectural configurations to assess the effectiveness of various modules, such as convolutional layers for feature extraction and self-attention mechanisms for information extraction, across diverse forecasting tasks, including evaluations on seven benchmark datasets. Our models achieve state-of-the-art forecasting accuracy while greatly enhancing computational efficiency, with reduced training and inference times and a lower parameter count. The source code is available at https://github.com/RobertLeppich/REP-Net.

Authors:Jian Kai, Tianwei Zhang, Zihan Ling, Yang Cao, Can Shen
Title: Robust Bandwidth Estimation for Real-Time Communication with Offline Reinforcement Learning
Abstract:
Accurate bandwidth estimation (BWE) is critical for real-time communication (RTC) systems. Traditional heuristic approaches offer limited adaptability under dynamic networks, while online reinforcement learning (RL) suffers from high exploration costs and potential service disruptions. Offline RL, which leverages high-quality data collected from real-world environments, offers a promising alternative. However, challenges such as out-of-distribution (OOD) actions, policy extraction from behaviorally diverse datasets, and reliable deployment in production systems remain unsolved. We propose RBWE, a robust bandwidth estimation framework based on offline RL that integrates Q-ensemble (an ensemble of Q-functions) with a Gaussian mixture policy to mitigate OOD risks and enhance policy learning. A fallback mechanism ensures deployment stability by switching to heuristic methods under high uncertainty. Experimental results show that RBWE reduces overestimation errors by 18% and improves the 10th percentile Quality of Experience (QoE) by 18.6%, demonstrating its practical effectiveness in real-world RTC applications. The implementation is publicly available at https://github.com/jiu2021/RBWE_offline.

Authors:Tristan Kirscher, Sylvain Faisan, Xavier Coubez, Loris Barrier, Philippe Meyer
Title: PSAT: Pediatric Segmentation Approaches via Adult Augmentations and Transfer Learning
Abstract:
Pediatric medical imaging presents unique challenges due to significant anatomical and developmental differences compared to adults. Direct application of segmentation models trained on adult data often yields suboptimal performance, particularly for small or rapidly evolving structures. To address these challenges, several strategies leveraging the nnU-Net framework have been proposed, differing along four key axes: (i) the fingerprint dataset (adult, pediatric, or a combination thereof) from which the Training Plan -including the network architecture-is derived; (ii) the Learning Set (adult, pediatric, or mixed), (iii) Data Augmentation parameters, and (iv) the Transfer learning method (finetuning versus continual learning). In this work, we introduce PSAT (Pediatric Segmentation Approaches via Adult Augmentations and Transfer learning), a systematic study that investigates the impact of these axes on segmentation performance. We benchmark the derived strategies on two pediatric CT datasets and compare them with state-of-theart methods, including a commercial radiotherapy solution. PSAT highlights key pitfalls and provides actionable insights for improving pediatric segmentation. Our experiments reveal that a training plan based on an adult fingerprint dataset is misaligned with pediatric anatomy-resulting in significant performance degradation, especially when segmenting fine structures-and that continual learning strategies mitigate institutional shifts, thus enhancing generalization across diverse pediatric datasets. The code is available at https://github.com/ICANS-Strasbourg/PSAT.

Authors:Ruijie Lu, Yu Liu, Jiaxiang Tang, Junfeng Ni, Yuxiang Wang, Diwen Wan, Gang Zeng, Yixin Chen, Siyuan Huang
Title: DreamArt: Generating Interactable Articulated Objects from a Single Image
Abstract:
Generating articulated objects, such as laptops and microwaves, is a crucial yet challenging task with extensive applications in Embodied AI and AR/VR. Current image-to-3D methods primarily focus on surface geometry and texture, neglecting part decomposition and articulation modeling. Meanwhile, neural reconstruction approaches (e.g., NeRF or Gaussian Splatting) rely on dense multi-view or interaction data, limiting their scalability. In this paper, we introduce DreamArt, a novel framework for generating high-fidelity, interactable articulated assets from single-view images. DreamArt employs a three-stage pipeline: firstly, it reconstructs part-segmented and complete 3D object meshes through a combination of image-to-3D generation, mask-prompted 3D segmentation, and part amodal completion. Second, we fine-tune a video diffusion model to capture part-level articulation priors, leveraging movable part masks as prompt and amodal images to mitigate ambiguities caused by occlusion. Finally, DreamArt optimizes the articulation motion, represented by a dual quaternion, and conducts global texture refinement and repainting to ensure coherent, high-quality textures across all parts. Experimental results demonstrate that DreamArt effectively generates high-quality articulated objects, possessing accurate part shape, high appearance fidelity, and plausible articulation, thereby providing a scalable solution for articulated asset generation. Our project page is available at https://dream-art-0.github.io/DreamArt/.

Authors:Kechen Liu
Title: When Transformers Meet Recommenders: Integrating Self-Attentive Sequential Recommendation with Fine-Tuned LLMs
Abstract:
Self-Attentive Sequential Recommendation (SASRec) effectively captures long-term user preferences by applying attention mechanisms to historical interactions. Concurrently, the rise of Large Language Models (LLMs) has motivated research into LLM-based recommendation, which leverages their powerful generalization and language understanding capabilities. However, LLMs often lack the domain-specific knowledge and collaborative signals essential for high-quality recommendations when relying solely on textual prompts. To address this limitation, this study proposes SASRecLLM, a novel framework that integrates SASRec as a collaborative encoder with an LLM fine-tuned using Low-Rank Adaptation (LoRA). The components are connected via a mapping layer to align their dimensional spaces, and three targeted training strategies are designed to optimize the hybrid architecture. Extensive experiments on multiple datasets demonstrate that SASRecLLM achieves robust and consistent improvements over strong baselines in both cold-start and warm-start scenarios. This work advances the field of LLM-based recommendation by presenting a modular and effective paradigm for fusing structured collaborative filtering with the semantic power of fine-tuned LLMs. The implementation is available on GitHub: https://github.com/kechenkristin/RecLLM

Authors:Ruofei Wang, Peiqi Duan, Boxin Shi, Renjie Wan
Title: Asynchronous Event Error-Minimizing Noise for Safeguarding Event Dataset
Abstract:
With more event datasets being released online, safeguarding the event dataset against unauthorized usage has become a serious concern for data owners. Unlearnable Examples are proposed to prevent the unauthorized exploitation of image datasets. However, it's unclear how to create unlearnable asynchronous event streams to prevent event misuse. In this work, we propose the first unlearnable event stream generation method to prevent unauthorized training from event datasets. A new form of asynchronous event error-minimizing noise is proposed to perturb event streams, tricking the unauthorized model into learning embedded noise instead of realistic features. To be compatible with the sparse event, a projection strategy is presented to sparsify the noise to render our unlearnable event streams (UEvs). Extensive experiments demonstrate that our method effectively protects event data from unauthorized exploitation, while preserving their utility for legitimate use. We hope our UEvs contribute to the advancement of secure and trustworthy event dataset sharing. Code is available at: https://github.com/rfww/uevs.

Authors:Guohao Li, Li Jing, Jia Wu, Xuefei Li, Kai Zhu, Yue He
Title: From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Abstract:
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.

Authors:Weihua Du, Pranjal Aggarwal, Sean Welleck, Yiming Yang
Title: Agentic-R1: Distilled Dual-Strategy Reasoning
Abstract:
Current long chain-of-thought (long-CoT) models excel at mathematical reasoning but rely on slow and error-prone natural language traces. Tool-augmented agents address arithmetic via code execution, but often falter on complex logical tasks. We introduce a fine-tuning framework, DualDistill, that distills complementary reasoning strategies from multiple teachers into a unified student model. Using this approach, we train Agentic-R1, which dynamically selects the optimal strategy for each query, invoking tools for arithmetic and algorithmic problems, and using text-based reasoning for abstract ones. Our method improves accuracy across a range of tasks, including both computation-intensive and standard benchmarks, demonstrating the effectiveness of multi-strategy distillation in achieving robust and efficient reasoning. Our project is available at https://github.com/StigLidu/DualDistill

Authors:Shangzhan Li, Zefan Wang, Ye He, Yuxuan Li, Qi Shi, Jianling Li, Yonggang Hu, Wanxiang Che, Xu Han, Zhiyuan Liu, Maosong Sun
Title: AutoTriton: Automatic Triton Programming with Reinforcement Learning in LLMs
Abstract:
Kernel development in deep learning requires optimizing computational units across hardware while balancing memory management, parallelism, and hardware-specific optimizations through extensive empirical tuning. Although domain-specific languages like Triton simplify GPU programming by abstracting low-level details, developers must still manually tune critical parameters such as tile sizes and memory access patterns through iterative experimentation, creating substantial barriers to optimal performance and wider adoption. In this work, we introduce AutoTriton, the first model dedicated to Triton programming powered by reinforcement learning (RL). AutoTriton performs supervised fine-tuning (SFT) to be equipped with essential Triton programming expertise using a high-quality data gathering pipeline, and conducts RL with Group Relative Policy Optimization (GRPO) algorithm, combining a rule-based reward and an execution-based reward to further improve Triton programming ability, sequentially. Experiments across five evaluation channels of TritonBench and KernelBench illustrate that our 8B model AutoTriton achieves performance comparable to mainstream large models, including Claude-4-Sonnet and DeepSeek-R1-0528. Further experimental analysis demonstrates the crucial role of each module within AutoTriton, including the SFT stage, the RL stage, and the reward design strategy. These findings underscore the promise of RL for automatically generating high-performance kernels, and since high-performance kernels are core components of AI systems, this breakthrough establishes an important foundation for building more efficient AI systems. The model and code will be available at https://github.com/AI9Stars/AutoTriton.

Authors:Yisu Zhang, Chenjie Cao, Chaohui Yu, Jianke Zhu
Title: LiON-LoRA: Rethinking LoRA Fusion to Unify Controllable Spatial and Temporal Generation for Video Diffusion
Abstract:
Video Diffusion Models (VDMs) have demonstrated remarkable capabilities in synthesizing realistic videos by learning from large-scale data. Although vanilla Low-Rank Adaptation (LoRA) can learn specific spatial or temporal movement to driven VDMs with constrained data, achieving precise control over both camera trajectories and object motion remains challenging due to the unstable fusion and non-linear scalability. To address these issues, we propose LiON-LoRA, a novel framework that rethinks LoRA fusion through three core principles: Linear scalability, Orthogonality, and Norm consistency. First, we analyze the orthogonality of LoRA features in shallow VDM layers, enabling decoupled low-level controllability. Second, norm consistency is enforced across layers to stabilize fusion during complex camera motion combinations. Third, a controllable token is integrated into the diffusion transformer (DiT) to linearly adjust motion amplitudes for both cameras and objects with a modified self-attention mechanism to ensure decoupled control. Additionally, we extend LiON-LoRA to temporal generation by leveraging static-camera videos, unifying spatial and temporal controllability. Experiments demonstrate that LiON-LoRA outperforms state-of-the-art methods in trajectory control accuracy and motion strength adjustment, achieving superior generalization with minimal training data. Project Page: https://fuchengsu.github.io/lionlora.github.io/

Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Title: MedGen: Unlocking Medical Video Generation by Scaling Granularly-annotated Medical Videos
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen

Authors:Alexandre Friou
Title: MCNP-GO: A python package for assembling MCNP input files with a systems engineering approach
Abstract:
This article introduces MCNP-GO (https://github.com/afriou/mcnpgo), a Python package designed to manipulate and assemble MCNP input files, allowing users to assemble a set of independent objects, each described by a valid MCNP file, into a single cohesive file. This tool is particularly useful for applications where precise modeling and positioning of equipment are crucial. The package addresses the challenges of managing large databases of MCNP input files, ensuring reliability and traceability through configuration management systems. MCNP-GO provides functionalities such as renumbering, extracting subsets of files, transforming files, and assembling files while managing collisions and materials. It also keeps track of the operations performed on files, enhancing traceability and ease of modification. The article demonstrates the package's capabilities through a practical example of assembling an MCNP input file for a tomographic experiment, highlighting its efficiency and user-friendliness. MCNP-GO is designed for users with minimal Python knowledge.

Authors:Kaixiang Zhao, Joseph Yousry Attalla, Qian Lou, Yushun Dong
Title: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
Abstract:
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various graph-based learning tasks. However, enabling privacy-preserving GNNs in encrypted domains, such as under Fully Homomorphic Encryption (FHE), typically incurs substantial computational overhead, rendering real-time and privacy-preserving inference impractical. In this work, we propose DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a novel framework for efficient encrypted GNN inference. DESIGN tackles the critical efficiency limitations of existing FHE GNN approaches, which often overlook input data redundancy and apply uniform computational strategies. Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server: first, FHE-compatible node importance scores (based on encrypted degree statistics) are computed from the encrypted graph. These scores then guide a homomorphic partitioning process, generating multi-level importance masks directly under FHE. This dynamically generated mask facilitates both input graph pruning (by logically removing unimportant elements) and a novel adaptive polynomial activation scheme, where activation complexity is tailored to node importance levels. Empirical evaluations demonstrate that DESIGN substantially accelerates FHE GNN inference compared to state-of-the-art methods while maintaining competitive model accuracy, presenting a robust solution for secure graph analytics. Our implementation is publicly available at https://github.com/LabRAI/DESIGN.

Authors:Ammar Daskin
Title: Learnable quantum spectral filters for hybrid graph neural networks
Abstract:
In this paper, we describe a parameterized quantum circuit that can be considered as convolutional and pooling layers for graph neural networks. The circuit incorporates the parameterized quantum Fourier circuit where the qubit connections for the controlled gates derived from the Laplacian operator. Specifically, we show that the eigenspace of the Laplacian operator of a graph can be approximated by using QFT based circuit whose connections are determined from the adjacency matrix. For an $N\times N$ Laplacian, this approach yields an approximate polynomial-depth circuit requiring only $n=log(N)$ qubits. These types of circuits can eliminate the expensive classical computations for approximating the learnable functions of the Laplacian through Chebyshev polynomial or Taylor expansions. Using this circuit as a convolutional layer provides an $n-$ dimensional probability vector that can be considered as the filtered and compressed graph signal. Therefore, the circuit along with the measurement can be considered a very efficient convolution plus pooling layer that transforms an $N$-dimensional signal input into $n-$dimensional signal with an exponential compression. We then apply a classical neural network prediction head to the output of the circuit to construct a complete graph neural network. Since the circuit incorporates geometric structure through its graph connection-based approach, we present graph classification results for the benchmark datasets listed in TUDataset library. Using only [1-100] learnable parameters for the quantum circuit and minimal classical layers (1000-5000 parameters) in a generic setting, the obtained results are comparable to and in some cases better than many of the baseline results, particularly for the cases when geometric structure plays a significant role.

Authors:Zhiwei Chen, Yupeng Hu, Zixu Li, Zhiheng Fu, Xuemeng Song, Liqiang Nie
Title: OFFSET: Segmentation-based Focus Shift Revision for Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) represents a novel retrieval paradigm that is capable of expressing users' intricate retrieval requirements flexibly. It enables the user to give a multimodal query, comprising a reference image and a modification text, and subsequently retrieve the target image. Notwithstanding the considerable advances made by prevailing methodologies, CIR remains in its nascent stages due to two limitations: 1) inhomogeneity between dominant and noisy portions in visual data is ignored, leading to query feature degradation, and 2) the priority of textual data in the image modification process is overlooked, which leads to a visual focus bias. To address these two limitations, this work presents a focus mapping-based feature extractor, which consists of two modules: dominant portion segmentation and dual focus mapping. It is designed to identify significant dominant portions in images and guide the extraction of visual and textual data features, thereby reducing the impact of noise interference. Subsequently, we propose a textually guided focus revision module, which can utilize the modification requirements implied in the text to perform adaptive focus revision on the reference image, thereby enhancing the perception of the modification focus on the composed features. The aforementioned modules collectively constitute the segmentatiOn-based Focus shiFt reviSion nETwork (\mbox{OFFSET}), and comprehensive experiments on four benchmark datasets substantiate the superiority of our proposed method. The codes and data are available on https://zivchen-ty.github.io/OFFSET.github.io/

Authors:Shuo Shao, Yiming Li, Mengren Zheng, Zhiyang Hu, Yukun Chen, Boheng Li, Yu He, Junfeng Guo, Dacheng Tao, Zhan Qin
Title: DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
Abstract:
The widespread application of Deep Learning across diverse domains hinges critically on the quality and composition of training datasets. However, the common lack of disclosure regarding their usage raises significant privacy and copyright concerns. Dataset auditing techniques, which aim to determine if a specific dataset was used to train a given suspicious model, provide promising solutions to addressing these transparency gaps. While prior work has developed various auditing methods, their resilience against dedicated adversarial attacks remains largely unexplored. To bridge the gap, this paper initiates a comprehensive study evaluating dataset auditing from an adversarial perspective. We start with introducing a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing). Subsequently, we formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset. Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery. These formulations and strategies lead to our new benchmark, DATABench, comprising 17 evasion attacks, 5 forgery attacks, and 9 representative auditing methods. Extensive evaluations using DATABench reveal that none of the evaluated auditing methods are sufficiently robust or distinctive under adversarial settings. These findings underscore the urgent need for developing a more secure and reliable dataset auditing method capable of withstanding sophisticated adversarial manipulation. Code is available at https://github.com/shaoshuo-ss/DATABench.

Authors:Shuai Li, Shihan Chen, Wanru Geng, Zhaohua Xu, Xiaolu Liu, Can Dong, Zhen Tian, Changlin Chen
Title: Semi-Supervised Defect Detection via Conditional Diffusion and CLIP-Guided Noise Filtering
Abstract:
In the realm of industrial quality inspection, defect detection stands as a critical component, particularly in high-precision, safety-critical sectors such as automotive components aerospace, and medical devices. Traditional methods, reliant on manual inspection or early image processing algorithms, suffer from inefficiencies, high costs, and limited robustness. This paper introduces a semi-supervised defect detection framework based on conditional diffusion (DSYM), leveraging a two-stage collaborative training mechanism and a staged joint optimization strategy. The framework utilizes labeled data for initial training and subsequently incorporates unlabeled data through the generation of pseudo-labels. A conditional diffusion model synthesizes multi-scale pseudo-defect samples, while a CLIP cross-modal feature-based noise filtering mechanism mitigates label contamination. Experimental results on the NEU-DET dataset demonstrate a 78.4% mAP@0.5 with the same amount of labeled data as traditional supervised methods, and 75.1% mAP@0.5 with only 40% of the labeled data required by the original supervised model, showcasing significant advantages in data efficiency. This research provides a high-precision, low-labeling-dependent solution for defect detection in industrial quality inspection scenarios. The work of this article has been open-sourced at https://github.com/cLin-c/Semisupervised-DSYM.

Authors:Pedro R. A. S. Bassi, Wenxuan Li, Jieneng Chen, Zheren Zhu, Tianyu Lin, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Learning Segmentation from Radiology Reports
Abstract:
Tumor segmentation in CT scans is key for diagnosis, surgery, and prognosis, yet segmentation masks are scarce because their creation requires time and expertise. Public abdominal CT datasets have from dozens to a couple thousand tumor masks, but hospitals have hundreds of thousands of tumor CTs with radiology reports. Thus, leveraging reports to improve segmentation is key for scaling. In this paper, we propose a report-supervision loss (R-Super) that converts radiology reports into voxel-wise supervision for tumor segmentation AI. We created a dataset with 6,718 CT-Report pairs (from the UCSF Hospital), and merged it with public CT-Mask datasets (from AbdomenAtlas 2.0). We used our R-Super to train with these masks and reports, and strongly improved tumor segmentation in internal and external validation--F1 Score increased by up to 16% with respect to training with masks only. By leveraging readily available radiology reports to supplement scarce segmentation masks, R-Super strongly improves AI performance both when very few training masks are available (e.g., 50), and when many masks were available (e.g., 1.7K). Project: https://github.com/MrGiovanni/R-Super

Authors:Obin Kwon, Sankalp Yamsani, Noboru Myers, Sean Taylor, Jooyoung Hong, Kyungseo Park, Alex Alspach, Joohyung Kim
Title: PAPRLE (Plug-And-Play Robotic Limb Environment): A Modular Ecosystem for Robotic Limbs
Abstract:
We introduce PAPRLE (Plug-And-Play Robotic Limb Environment), a modular ecosystem that enables flexible placement and control of robotic limbs. With PAPRLE, a user can change the arrangement of the robotic limbs, and control them using a variety of input devices, including puppeteers, gaming controllers, and VR-based interfaces. This versatility supports a wide range of teleoperation scenarios and promotes adaptability to different task requirements. To further enhance configurability, we introduce a pluggable puppeteer device that can be easily mounted and adapted to match the target robot configurations. PAPRLE supports bilateral teleoperation through these puppeteer devices, agnostic to the type or configuration of the follower robot. By supporting both joint-space and task-space control, the system provides real-time force feedback, improving user fidelity and physical interaction awareness. The modular design of PAPRLE facilitates novel spatial arrangements of the limbs and enables scalable data collection, thereby advancing research in embodied AI and learning-based control. We validate PAPRLE in various real-world settings, demonstrating its versatility across diverse combinations of leader devices and follower robots. The system will be released as open source, including both hardware and software components, to support broader adoption and community-driven extension. Additional resources and demonstrations are available at the project website: https://uiuckimlab.github.io/paprle-pages

Authors:Jie Huang, Daiheng Zhang
Title: MolFORM: Multi-modal Flow Matching for Structure-Based Drug Design
Abstract:
Structure-based drug design (SBDD) seeks to generate molecules that bind effectively to protein targets by leveraging their 3D structural information. While diffusion-based generative models have become the predominant approach for SBDD, alternative non-autoregressive frameworks remain relatively underexplored. In this work, we introduce MolFORM, a novel generative framework that jointly models discrete (atom types) and continuous (3D coordinates) molecular modalities using multi-flow matching. To further enhance generation quality, we incorporate a preference-guided fine-tuning stage based on Direct Preference Optimization (DPO), using Vina score as a reward signal. We propose a multi-modal flow DPO co-modeling strategy that simultaneously aligns discrete and continuous modalities, leading to consistent improvements across multiple evaluation metrics. The code is provided at: https://github.com/huang3170/MolForm.

Authors:Arthur Deng, Karsten Householder, Fang Wu, Sebastian Thrun, K. Christopher Garcia, Brian Trippe
Title: Predicting mutational effects on protein binding from folding energy
Abstract:
Accurate estimation of mutational effects on protein-protein binding energies is an open problem with applications in structural biology and therapeutic design. Several deep learning predictors for this task have been proposed, but, presumably due to the scarcity of binding data, these methods underperform computationally expensive estimates based on empirical force fields. In response, we propose a transfer-learning approach that leverages advances in protein sequence modeling and folding stability prediction for this task. The key idea is to parameterize the binding energy as the difference between the folding energy of the protein complex and the sum of the folding energies of its binding partners. We show that using a pre-trained inverse-folding model as a proxy for folding energy provides strong zero-shot performance, and can be fine-tuned with (1) copious folding energy measurements and (2) more limited binding energy measurements. The resulting predictor, StaB-ddG, is the first deep learning predictor to match the accuracy of the state-of-the-art empirical force-field method FoldX, while offering an over 1,000x speed-up.

Authors:Andrew Randono
Title: Cloud Diffusion Part 1: Theory and Motivation
Abstract:
Diffusion models for image generation function by progressively adding noise to an image set and training a model to separate out the signal from the noise. The noise profile used by these models is white noise -- that is, noise based on independent normal distributions at each point whose mean and variance is independent of the scale. By contrast, most natural image sets exhibit a type of scale invariance in their low-order statistical properties characterized by a power-law scaling. Consequently, natural images are closer (in a quantifiable sense) to a different probability distribution that emphasizes large scale correlations and de-emphasizes small scale correlations. These scale invariant noise profiles can be incorporated into diffusion models in place of white noise to form what we will call a ``Cloud Diffusion Model". We argue that these models can lead to faster inference, improved high-frequency details, and greater controllability. In a follow-up paper, we will build and train a Cloud Diffusion Model that uses scale invariance at a fundamental level and compare it to classic, white noise diffusion models.

Authors:Ashima Suvarna, Christina Chance, Karolina Naranjo, Hamid Palangi, Sophie Hao, Thomas Hartvigsen, Saadia Gabriel
Title: ModelCitizens: Representing Community Voices in Online Safety
Abstract:
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.

Authors:Jaedong Hwang, Kumar Tanmay, Seok-Jin Lee, Ayush Agrawal, Hamid Palangi, Kumar Ayush, Ila Fiete, Paul Pu Liang
Title: Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning
Abstract:
Large Language Models (LLMs) have achieved strong performance in domains like mathematics, factual QA, and code generation, yet their multilingual reasoning capabilities in these tasks remain underdeveloped. Especially for low-resource languages such as Swahili or Thai, LLMs can often misinterpret prompts or default to reasoning in English. This implicit bias toward high-resource languages undermines factual accuracy, interpretability, and trust. Current multilingual benchmarks focus only on final answers, overlooking whether models actually reason in the target language. To address this gap, we introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages: English, Hindi, Japanese, Swahili, and Thai. We further propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning with a language-consistency reward to align reasoning with the input language. Finally, we develop an automatic evaluation protocol using LLM-as-a-judge to assess answer correctness and the quality and language consistency of reasoning traces, enabling nuanced and scalable analysis beyond surface-level metrics. Our results show that BRIDGE significantly enhances multilingual reasoning fidelity, demonstrating that reasoning-aware multilingual reinforcement learning is crucial for robust cross-lingual generalization. https://jd730.github.io/projects/GeoFact-X_BRIDGE

Authors:Sajjad Ghiasvand, Mahnoosh Alizadeh, Ramtin Pedarsani
Title: pFedMMA: Personalized Federated Fine-Tuning with Multi-Modal Adapter for Vision-Language Models
Abstract:
Vision-Language Models (VLMs) like CLIP have demonstrated remarkable generalization in zero- and few-shot settings, but adapting them efficiently to decentralized, heterogeneous data remains a challenge. While prompt tuning has emerged as a popular parameter-efficient approach in personalized federated learning, existing methods often sacrifice generalization in favor of personalization, struggling particularly on unseen classes or domains. In this work, we propose pFedMMA, the first personalized federated learning framework that leverages multi-modal adapters for vision-language tasks. Each adapter contains modality-specific up- and down-projection layers alongside a globally shared projection that aligns cross-modal features. Our asymmetric optimization strategy allows clients to locally adapt to personalized data distributions while collaboratively training the shared projection to improve global generalization. This design is also communication-efficient, as only the shared component is exchanged during rounds. Through extensive experiments across eleven datasets, including domain- and label-shift scenarios, we show that pFedMMA achieves state-of-the-art trade-offs between personalization and generalization, outperforming recent federated prompt tuning methods. The code is available at https://github.com/sajjad-ucsb/pFedMMA.

Authors:TRI LBM Team, Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-Hsin Fang, Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha Itkina, Naveen Kuppuswamy, Kuan-Hui Lee, Katherine Liu, Dale McConachie, Ian McMahon, Haruki Nishimura, Calder Phillips-Grafflin, Charles Richter, Paarth Shah, Krishnan Srinivasan, Blake Wulfe, Chen Xu, Mengchao Zhang, Alex Alspach, Maya Angeles, Kushal Arora, Vitor Campagnolo Guizilini, Alejandro Castro, Dian Chen, Ting-Sheng Chu, Sam Creasey, Sean Curtis, Richard Denitto, Emma Dixon, Eric Dusel, Matthew Ferreira, Aimee Goncalves, Grant Gould, Damrong Guoy, Swati Gupta, Xuchen Han, Kyle Hatch, Brendan Hathaway, Allison Henry, Hillel Hochsztein, Phoebe Horgan, Shun Iwase, Donovon Jackson, Siddharth Karamcheti, Sedrick Keh, Joseph Masterjohn, Jean Mercat, Patrick Miller, Paul Mitiguy, Tony Nguyen, Jeremy Nimmer, Yuki Noguchi, Reko Ong, Aykut Onol, Owen Pfannenstiehl, Richard Poyner, Leticia Priebe Mendes Rocha, Gordon Richardson, Christopher Rodriguez, Derick Seale, Michael Sherman, Mariah Smith-Jones, David Tago, Pavel Tokmakov, Matthew Tran, Basile Van Hoorick, Igor Vasiljevic, Sergey Zakharov, Mark Zolotas, Rares Ambrus, Kerri Fetzer-Borelli, Benjamin Burchfiel, Hadas Kress-Gazit, Siyuan Feng, Stacie Ford, Russ Tedrake
Title: A Careful Examination of Large Behavior Models for Multitask Dexterous Manipulation
Abstract:
Robot manipulation has seen tremendous progress in recent years, with imitation learning policies enabling successful performance of dexterous and hard-to-model tasks. Concurrently, scaling data and model size has led to the development of capable language and vision foundation models, motivating large-scale efforts to create general-purpose robot foundation models. While these models have garnered significant enthusiasm and investment, meaningful evaluation of real-world performance remains a challenge, limiting both the pace of development and inhibiting a nuanced understanding of current capabilities. In this paper, we rigorously evaluate multitask robot manipulation policies, referred to as Large Behavior Models (LBMs), by extending the Diffusion Policy paradigm across a corpus of simulated and real-world robot data. We propose and validate an evaluation pipeline to rigorously analyze the capabilities of these models with statistical confidence. We compare against single-task baselines through blind, randomized trials in a controlled setting, using both simulation and real-world experiments. We find that multi-task pretraining makes the policies more successful and robust, and enables teaching complex new tasks more quickly, using a fraction of the data when compared to single-task baselines. Moreover, performance predictably increases as pretraining scale and diversity grows. Project page: https://toyotaresearchinstitute.github.io/lbm1/

Authors:Chi-Chang Lee, Zhang-Wei Hong, Pulkit Agrawal
Title: Going Beyond Heuristics by Imposing Policy Improvement as a Constraint
Abstract:
In many reinforcement learning (RL) applications, augmenting the task rewards with heuristic rewards that encode human priors about how a task should be solved is crucial for achieving desirable performance. However, because such heuristics are usually not optimal, much human effort and computational resources are wasted in carefully balancing tasks and heuristic rewards. Theoretically rigorous ways of incorporating heuristics rely on the idea of \textit{policy invariance}, which guarantees that the performance of a policy obtained by maximizing heuristic rewards is the same as the optimal policy with respect to the task reward. However, in practice, policy invariance doesn't result in policy improvement, and such methods are known to empirically perform poorly. We propose a new paradigm to mitigate reward hacking and effectively use heuristics based on the practical goal of maximizing policy improvement instead of policy improvement. Our framework, Heuristic Enhanced Policy Optimization (HEPO), effectively leverages heuristics while avoiding the pitfall of prior methods for mitigating reward hacking. HEPO achieves superior performance on standard benchmarks with well-engineered reward functions. More surprisingly, HEPO allows policy optimization to achieve good performance even when heuristics are not well-engineered and designed by non-expert humans, showcasing HEPO's ability to reduce human effort in reward design. % HEPO is a plug-and-play optimization method for leveraging heuristics in reinforcement learning. Code is available at https://github.com/Improbable-AI/hepo.

Authors:Cheng Yuan, Xinkai Rui, Yongqi Fan, Yawei Fan, Boyang Zhong, Jiacheng Wang, Weiyan Zhang, Tong Ruan
Title: LCDS: A Logic-Controlled Discharge Summary Generation System Supporting Source Attribution and Expert Review
Abstract:
Despite the remarkable performance of Large Language Models (LLMs) in automated discharge summary generation, they still suffer from hallucination issues, such as generating inaccurate content or fabricating information without valid sources. In addition, electronic medical records (EMRs) typically consist of long-form data, making it challenging for LLMs to attribute the generated content to the sources. To address these challenges, we propose LCDS, a Logic-Controlled Discharge Summary generation system. LCDS constructs a source mapping table by calculating textual similarity between EMRs and discharge summaries to constrain the scope of summarized content. Moreover, LCDS incorporates a comprehensive set of logical rules, enabling it to generate more reliable silver discharge summaries tailored to different clinical fields. Furthermore, LCDS supports source attribution for generated content, allowing experts to efficiently review, provide feedback, and rectify errors. The resulting golden discharge summaries are subsequently recorded for incremental fine-tuning of LLMs. Our project and demo video are in the GitHub repository https://github.com/ycycyc02/LCDS.

Authors:Yue Wang, Miao Zhou, Guijing Huang, Rui Zhuo, Chao Yi, Zhenliang Ma
Title: Chat2SPaT: A Large Language Model Based Tool for Automating Traffic Signal Control Plan Management
Abstract:
Pre-timed traffic signal control, commonly used for operating signalized intersections and coordinated arterials, requires tedious manual work for signaling plan creating and updating. When the time-of-day or day-of-week plans are utilized, one intersection is often associated with multiple plans, leading to further repetitive manual plan parameter inputting. To enable a user-friendly traffic signal control plan management process, this study proposes Chat2SPaT, a method to convert users' semi-structured and ambiguous descriptions on the signal control plan to exact signal phase and timing (SPaT) results, which could further be transformed into structured stage-based or ring-based plans to interact with intelligent transportation system (ITS) software and traffic signal controllers. With curated prompts, Chat2SPaT first leverages large language models' (LLMs) capability of understanding users' plan descriptions and reformulate the plan as a combination of phase sequence and phase attribute results in the json format. Based on LLM outputs, python scripts are designed to locate phases in a cycle, address nuances of traffic signal control, and finally assemble the complete traffic signal control plan. Within a chat, the pipeline can be utilized iteratively to conduct further plan editing. Experiments show that Chat2SPaT can generate plans with an accuracy of over 94% for both English and Chinese cases, using a test dataset with over 300 plan descriptions. As the first benchmark for evaluating LLMs' capability of understanding traffic signal control plan descriptions, Chat2SPaT provides an easy-to-use plan management pipeline for traffic practitioners and researchers, serving as a potential new building block for a more accurate and versatile application of LLMs in the field of ITS. The source codes, prompts and test dataset are openly accessible at https://github.com/yuewangits/Chat2SPaT.

Authors:Lingyue Fu, Hao Guan, Bolun Zhang, Haowei Yuan, Yaoming Zhu, Jun Xu, Zongyu Wang, Lin Qiu, Xunliang Cai, Xuezhi Cao, Weiwen Liu, Weinan Zhang, Yong Yu
Title: CoreCodeBench: A Configurable Multi-Scenario Repository-Level Benchmark
Abstract:
As Large Language Models (LLMs) demonstrate increasingly sophisticated code processing capabilities, evaluating their performance on engineering-level code remains challenging. Existing repository-level benchmarks primarily focus on single scenarios, such as code generation or bug fixing, without adequately capturing the diversity and complexity of real-world software or project engineering workflows. Furthermore, these benchmarks suffer from limited controllability in question positioning and reliability issues in their generated test cases. To address these limitations, we present CorePipe, a fully automated pipeline that converts repositories into comprehensive test cases, and introduce CoreCodeBench, a configurable multi-scenario repository-level benchmark. To simulate real engineering scenarios, CorePipe generates three types of atomic questions (Development, BugFix, and Test-Driven Development) specifically targeting core code segments. These atomic questions are further combined into three types of composite questions, with difficulty levels flexibly adjusted through hyperparameter tuning. CoreCodeBench provides a comprehensive and extensive repository-level benchmark to investigate the applicability of LLMs in real-world engineering projects. Experiments with 16 LLMs across diverse scenarios reveal varying capabilities and offer multi-dimensional insights into LLM performance in engineering contexts. The code for CorePipe is available at https://github.com/AGI-Eval-Official/CoreCodeBench, and the data for CoreCodeBench can be accessed at https://huggingface.co/collections/tubehhh/corecodebench-68256d2faabf4b1610a08caa.

Authors:Weibing Zheng, Laurah Turner, Jess Kropczynski, Murat Ozer, Seth Overla, Shane Halse
Title: A Fuzzy Supervisor Agent Design for Clinical Reasoning Assistance in a Multi-Agent Educational Clinical Scenario Simulation
Abstract:
Assisting medical students with clinical reasoning (CR) during clinical scenario training remains a persistent challenge in medical education. This paper presents the design and architecture of the Fuzzy Supervisor Agent (FSA), a novel component for the Multi-Agent Educational Clinical Scenario Simulation (MAECSS) platform. The FSA leverages a Fuzzy Inference System (FIS) to continuously interpret student interactions with specialized clinical agents (e.g., patient, physical exam, diagnostic, intervention) using pre-defined fuzzy rule bases for professionalism, medical relevance, ethical behavior, and contextual distraction. By analyzing student decision-making processes in real-time, the FSA is designed to deliver adaptive, context-aware feedback and provides assistance precisely when students encounter difficulties. This work focuses on the technical framework and rationale of the FSA, highlighting its potential to provide scalable, flexible, and human-like supervision in simulation-based medical education. Future work will include empirical evaluation and integration into broader educational settings. More detailed design and implementation is~\href{https://github.com/2sigmaEdTech/MAS/}{open sourced here}.

Authors:Hongyang Li, Sanjoy Dey, Bum Chul Kwon, Michael Danziger, Michal Rosen-Tzvi, Jianying Hu, James Kozloski, Ching-Huei Tsou, Bharath Dandala, Pablo Meyer
Title: BMFM-DNA: A SNP-aware DNA foundation model to capture variant effects
Abstract:
Large language models (LLMs) trained on text demonstrated remarkable results on natural language processing (NLP) tasks. These models have been adapted to decipher the language of DNA, where sequences of nucleotides act as "words" that encode genomic functions. However, the genome differs fundamentally from natural language, as it lacks clearly defined words or a consistent grammar. Although DNA language models (DNALMs) such as DNABERT, GENA-LM have achieved high level of performance on genome-related biological tasks, these models do not encode biological functions in the presence of sequence variations. To address this problem, we pre-train foundation models that effectively integrate sequence variations, in particular Single Nucleotide Polymorphisms (SNPs), as they underlie important biological functions. Specifically, we use ModernBERT to pre-train two different Biomedical Foundation Models (BMFM), namely, BMFM-DNA-REF in which the model is trained with sequences of varying lengths along with their reverse complements derived from the reference genome and BMFM-DNA-SNP in which the model is trained with sequences created using a novel representation scheme that encodes sequence variations. Our findings indicate that integrating sequence variations into DNALMs helps capture the biological functions as seen in improvements on all fine-tuning tasks. To explore the model's practical utility, we experimented with various strategies for SNP imputation on promoter detection task introduced in DNABERT-2. However, we acknowledge that the current benchmarks are limited in their ability to fully evaluate these models. To enable more comprehensive assessment in the future and encourage community contributions, we release our models through HuggingFace and the code to reproduce the results at https://github.com/BiomedSciAI/biomed-multi-omic

Authors:Xiang Xu, Lingdong Kong, Song Wang, Chuanwei Zhou, Qingshan Liu
Title: Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations
Abstract:
LiDAR representation learning aims to extract rich structural and semantic information from large-scale, readily available datasets, reducing reliance on costly human annotations. However, existing LiDAR representation strategies often overlook the inherent spatiotemporal cues in LiDAR sequences, limiting their effectiveness. In this work, we propose LiMA, a novel long-term image-to-LiDAR Memory Aggregation framework that explicitly captures longer range temporal correlations to enhance LiDAR representation learning. LiMA comprises three key components: 1) a Cross-View Aggregation module that aligns and fuses overlapping regions across neighboring camera views, constructing a more unified and redundancy-free memory bank; 2) a Long-Term Feature Propagation mechanism that efficiently aligns and integrates multi-frame image features, reinforcing temporal coherence during LiDAR representation learning; and 3) a Cross-Sequence Memory Alignment strategy that enforces consistency across driving sequences, improving generalization to unseen environments. LiMA maintains high pretraining efficiency and incurs no additional computational overhead during downstream tasks. Extensive experiments on mainstream LiDAR-based perception benchmarks demonstrate that LiMA significantly improves both LiDAR semantic segmentation and 3D object detection. We hope this work inspires more effective pretraining paradigms for autonomous driving. The code has be made publicly accessible for future research.

Authors:Chun-Hsiao Yeh, Yilin Wang, Nanxuan Zhao, Richard Zhang, Yuheng Li, Yi Ma, Krishna Kumar Singh
Title: Beyond Simple Edits: X-Planner for Complex Instruction-Based Image Editing
Abstract:
Recent diffusion-based image editing methods have significantly advanced text-guided tasks but often struggle to interpret complex, indirect instructions. Moreover, current models frequently suffer from poor identity preservation, unintended edits, or rely heavily on manual masks. To address these challenges, we introduce X-Planner, a Multimodal Large Language Model (MLLM)-based planning system that effectively bridges user intent with editing model capabilities. X-Planner employs chain-of-thought reasoning to systematically decompose complex instructions into simpler, clear sub-instructions. For each sub-instruction, X-Planner automatically generates precise edit types and segmentation masks, eliminating manual intervention and ensuring localized, identity-preserving edits. Additionally, we propose a novel automated pipeline for generating large-scale data to train X-Planner which achieves state-of-the-art results on both existing benchmarks and our newly introduced complex editing benchmark.

Authors:Haozhen Zheng, Beitong Tian, Mingyuan Wu, Zhenggang Tang, Klara Nahrstedt, Alex Schwing
Title: Spatio-Temporal LLM: Reasoning about Environments and Actions
Abstract:
Despite the significant recent progress of Multimodal Large Language Models (MLLMs), MLLMs still struggle to correctly answer prompts that require a holistic spatio-temporal understanding. Specifically, it is challenging to address prompts that refer to 1) the entirety of an environment that an agent equipped with an MLLM can operate in; and simultaneously also refer to 2) recent actions that just happened and are encoded in a video clip. However, such a holistic spatio-temporal understanding is important for agents operating in the real world. To address this issue, we first develop a framework to collect a large-scale dataset. Using the collected "Reasoning about Environments and Actions" (REA) dataset, we show that recent methods indeed struggle to correctly answer the prompts. To improve, we develop a "spatio-temporal LLM" (ST-LLM), a model equipped with projectors to improve both spatial understanding of an environment and temporal understanding of recent observations. On the collected REA data, we show that the proposed method significantly improves results compared to prior work. Code and data are available at https://zoezheng126.github.io/STLLM-website/.

Authors:Jiahao Zhu, Zixuan Chen, Guangcong Wang, Xiaohua Xie, Yi Zhou
Title: SegmentDreamer: Towards High-fidelity Text-to-3D Synthesis with Segmented Consistency Trajectory Distillation
Abstract:
Recent advancements in text-to-3D generation improve the visual quality of Score Distillation Sampling (SDS) and its variants by directly connecting Consistency Distillation (CD) to score distillation. However, due to the imbalance between self-consistency and cross-consistency, these CD-based methods inherently suffer from improper conditional guidance, leading to sub-optimal generation results. To address this issue, we present SegmentDreamer, a novel framework designed to fully unleash the potential of consistency models for high-fidelity text-to-3D generation. Specifically, we reformulate SDS through the proposed Segmented Consistency Trajectory Distillation (SCTD), effectively mitigating the imbalance issues by explicitly defining the relationship between self- and cross-consistency. Moreover, SCTD partitions the Probability Flow Ordinary Differential Equation (PF-ODE) trajectory into multiple sub-trajectories and ensures consistency within each segment, which can theoretically provide a significantly tighter upper bound on distillation error. Additionally, we propose a distillation pipeline for a more swift and stable generation. Extensive experiments demonstrate that our SegmentDreamer outperforms state-of-the-art methods in visual quality, enabling high-fidelity 3D asset creation through 3D Gaussian Splatting (3DGS).

Authors:Fabian Konstantinidis, Ariel Dallari Guerreiro, Raphael Trumpp, Moritz Sackmann, Ulrich Hofmann, Marco Caccamo, Christoph Stiller
Title: From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving
Abstract:
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.

Authors:Ziqi Miao, Lijun Li, Yuan Xiong, Zhenhua Liu, Pengyu Zhu, Jing Shao
Title: Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Abstract:
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. Building on this insight, we propose Response Attack, which uses an auxiliary LLM to generate a mildly harmful response to a paraphrased version of the original malicious query. They are then formatted into the dialogue and followed by a succinct trigger prompt, thereby priming the target model to generate harmful content. Across eight open-source and proprietary LLMs, RA consistently outperforms seven state-of-the-art jailbreak techniques, achieving higher attack success rates. To mitigate this threat, we construct and release a context-aware safety fine-tuning dataset, which significantly reduces the attack success rate while preserving model capabilities. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.

Authors:Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu, Wenzhe Cai, Hanqing Wang, Yilun Chen, Xihui Liu, Jiangmiao Pang
Title: StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
Abstract:
Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.

Authors:Zongyan Han, Mohamed El Amine Boudjoghra, Jiahua Dong, Jinhong Wang, Rao Muhammad Anwer
Title: All in One: Visual-Description-Guided Unified Point Cloud Segmentation
Abstract:
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.

Authors:Chen Wang, Tianyu Peng, Wen Yang, Yinan Bai, Guangfu Wang, Jun Lin, Lanpeng Jia, Lingxiang Wu, Jinqiao Wang, Chengqing Zong, Jiajun Zhang
Title: OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Abstract:
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S

Authors:Yijia Hong, Jiangning Zhang, Ran Yi, Yuji Wang, Weijian Cao, Xiaobin Hu, Zhucun Xue, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: Semantic Frame Interpolation
Abstract:
Generating intermediate video content of varying lengths based on given first and last frames, along with text prompt information, offers significant research and application potential. However, traditional frame interpolation tasks primarily focus on scenarios with a small number of frames, no text control, and minimal differences between the first and last frames. Recent community developers have utilized large video models represented by Wan to endow frame-to-frame capabilities. However, these models can only generate a fixed number of frames and often fail to produce satisfactory results for certain frame lengths, while this setting lacks a clear official definition and a well-established benchmark. In this paper, we first propose a new practical Semantic Frame Interpolation (SFI) task from the perspective of academic definition, which covers the above two settings and supports inference at multiple frame rates. To achieve this goal, we propose a novel SemFi model building upon Wan2.1, which incorporates a Mixture-of-LoRA module to ensure the generation of high-consistency content that aligns with control conditions across various frame length limitations. Furthermore, we propose SFI-300K, the first general-purpose dataset and benchmark specifically designed for SFI. To support this, we collect and process data from the perspective of SFI, carefully designing evaluation metrics and methods to assess the model's performance across multiple dimensions, encompassing image and video, and various aspects, including consistency and diversity. Through extensive experiments on SFI-300K, we demonstrate that our method is particularly well-suited to meet the requirements of the SFI task.

Authors:Benjamin R. Toaz, Shaunak D. Bopardikar
Title: Vector Cost Bimatrix Games with Applications to Autonomous Racing
Abstract:
We formulate a vector cost alternative to the scalarization method for weighting and combining multi-objective costs. The algorithm produces solutions to bimatrix games that are simultaneously pure, unique Nash equilibria and Pareto optimal with guarantees for avoiding worst case outcomes. We achieve this by enforcing exact potential game constraints to guide cost adjustments towards equilibrium, while minimizing the deviation from the original cost structure. The magnitude of this adjustment serves as a metric for differentiating between Pareto optimal solutions. We implement this approach in a racing competition between agents with heterogeneous cost structures, resulting in fewer collision incidents with a minimal decrease in performance. Code is available at https://github.com/toazbenj/race_simulation.

Authors:Nusrat Munia, Junfeng Zhu, Olfa Nasraoui, Abdullah-Al-Zubaer Imran
Title: Differential Attention for Multimodal Crisis Event Analysis
Abstract:
Social networks can be a valuable source of information during crisis events. In particular, users can post a stream of multimodal data that can be critical for real-time humanitarian response. However, effectively extracting meaningful information from this large and noisy data stream and effectively integrating heterogeneous data remains a formidable challenge. In this work, we explore vision language models (VLMs) and advanced fusion strategies to enhance the classification of crisis data in three different tasks. We incorporate LLaVA-generated text to improve text-image alignment. Additionally, we leverage Contrastive Language-Image Pretraining (CLIP)-based vision and text embeddings, which, without task-specific fine-tuning, outperform traditional models. To further refine multimodal fusion, we employ Guided Cross Attention (Guided CA) and combine it with the Differential Attention mechanism to enhance feature alignment by emphasizing critical information while filtering out irrelevant content. Our results show that while Differential Attention improves classification performance, Guided CA remains highly effective in aligning multimodal features. Extensive experiments on the CrisisMMD benchmark data set demonstrate that the combination of pretrained VLMs, enriched textual descriptions, and adaptive fusion strategies consistently outperforms state-of-the-art models in classification accuracy, contributing to more reliable and interpretable models for three different tasks that are crucial for disaster response. Our code is available at https://github.com/Munia03/Multimodal_Crisis_Event.

Authors:Yutian Chen, Shi Guo, Tianshuo Yang, Lihe Ding, Xiuyuan Yu, Jinwei Gu, Tianfan Xue
Title: 4DSloMo: 4D Reconstruction for High Speed Scene with Asynchronous Capture
Abstract:
Reconstructing fast-dynamic scenes from multi-view videos is crucial for high-speed motion analysis and realistic 4D reconstruction. However, the majority of 4D capture systems are limited to frame rates below 30 FPS (frames per second), and a direct 4D reconstruction of high-speed motion from low FPS input may lead to undesirable results. In this work, we propose a high-speed 4D capturing system only using low FPS cameras, through novel capturing and processing modules. On the capturing side, we propose an asynchronous capture scheme that increases the effective frame rate by staggering the start times of cameras. By grouping cameras and leveraging a base frame rate of 25 FPS, our method achieves an equivalent frame rate of 100-200 FPS without requiring specialized high-speed cameras. On processing side, we also propose a novel generative model to fix artifacts caused by 4D sparse-view reconstruction, as asynchrony reduces the number of viewpoints at each timestamp. Specifically, we propose to train a video-diffusion-based artifact-fix model for sparse 4D reconstruction, which refines missing details, maintains temporal consistency, and improves overall reconstruction quality. Experimental results demonstrate that our method significantly enhances high-speed 4D reconstruction compared to synchronous capture.

Authors:Nicholas Chivaran, Jianbing Ni
Title: LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
Abstract:
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.

Authors:Yingyu Yang, Qianye Yang, Kangning Cui, Can Peng, Elena D'Alberti, Netzahualcoyotl Hernandez-Cruz, Olga Patey, Aris T. Papageorghiou, J. Alison Noble
Title: Latent Motion Profiling for Annotation-free Cardiac Phase Detection in Adult and Fetal Echocardiography Videos
Abstract:
The identification of cardiac phase is an essential step for analysis and diagnosis of cardiac function. Automatic methods, especially data-driven methods for cardiac phase detection, typically require extensive annotations, which is time-consuming and labor-intensive. In this paper, we present an unsupervised framework for end-diastole (ED) and end-systole (ES) detection through self-supervised learning of latent cardiac motion trajectories from 4-chamber-view echocardiography videos. Our method eliminates the need for manual annotations, including ED and ES indices, segmentation, or volumetric measurements, by training a reconstruction model to encode interpretable spatiotemporal motion patterns. Evaluated on the EchoNet-Dynamic benchmark, the approach achieves mean absolute error (MAE) of 3 frames (58.3 ms) for ED and 2 frames (38.8 ms) for ES detection, matching state-of-the-art supervised methods. Extended to fetal echocardiography, the model demonstrates robust performance with MAE 1.46 frames (20.7 ms) for ED and 1.74 frames (25.3 ms) for ES, despite the fact that the fetal heart model is built using non-standardized heart views due to fetal heart positioning variability. Our results demonstrate the potential of the proposed latent motion trajectory strategy for cardiac phase detection in adult and fetal echocardiography. This work advances unsupervised cardiac motion analysis, offering a scalable solution for clinical populations lacking annotated data. Code will be released at https://github.com/YingyuYyy/CardiacPhase.

Authors:Aadi Srivastava, Vignesh Natarajkumar, Utkarsh Bheemanaboyna, Devisree Akashapu, Nagraj Gaonkar, Archit Joshi
Title: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
Abstract:
The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .

Authors:Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang
Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Abstract:
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.

Authors:Binyan Xu, Fan Yang, Xilin Dai, Di Tang, Kehuan Zhang
Title: CLIP-Guided Backdoor Defense through Entropy-Based Poisoned Dataset Separation
Abstract:
Deep Neural Networks (DNNs) are susceptible to backdoor attacks, where adversaries poison training data to implant backdoor into the victim model. Current backdoor defenses on poisoned data often suffer from high computational costs or low effectiveness against advanced attacks like clean-label and clean-image backdoors. To address them, we introduce CLIP-Guided backdoor Defense (CGD), an efficient and effective method that mitigates various backdoor attacks. CGD utilizes a publicly accessible CLIP model to identify inputs that are likely to be clean or poisoned. It then retrains the model with these inputs, using CLIP's logits as a guidance to effectively neutralize the backdoor. Experiments on 4 datasets and 11 attack types demonstrate that CGD reduces attack success rates (ASRs) to below 1% while maintaining clean accuracy (CA) with a maximum drop of only 0.3%, outperforming existing defenses. Additionally, we show that clean-data-based defenses can be adapted to poisoned data using CGD. Also, CGD exhibits strong robustness, maintaining low ASRs even when employing a weaker CLIP model or when CLIP itself is compromised by a backdoor. These findings underscore CGD's exceptional efficiency, effectiveness, and applicability for real-world backdoor defense scenarios. Code: https://github.com/binyxu/CGD.

Authors:Yuyi Zhang, Peirong Zhang, Zhenhua Yang, Pengyu Yan, Yongxin Shi, Pengwei Liu, Fengjun Guo, Lianwen Jin
Title: Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Abstract:
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83% to 84.05%, with further enhancement to 94.25% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

Authors:Xinzhe Zheng, Hao Du, Fanding Xu, Jinzhe Li, Zhiyuan Liu, Wenkang Wang, Tao Chen, Wanli Ouyang, Stan Z. Li, Yan Lu, Nanqing Dong, Yang Zhang
Title: PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Abstract:
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.

Authors:Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao Wu, Shu-Tao Xia
Title: ICAS: Detecting Training Data from Autoregressive Image Generative Models
Abstract:
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.

Authors:Jan Carreras Boada, Rao Muhammad Umer, Carsten Marr
Title: CytoDiff: AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics
Abstract:
Biomedical datasets are often constrained by stringent privacy requirements and frequently suffer from severe class imbalance. These two aspects hinder the development of accurate machine learning models. While generative AI offers a promising solution, producing synthetic images of sufficient quality for training robust classifiers remains challenging. This work addresses the classification of individual white blood cells, a critical task in diagnosing hematological malignancies such as acute myeloid leukemia (AML). We introduce CytoDiff, a stable diffusion model fine-tuned with LoRA weights and guided by few-shot samples that generates high-fidelity synthetic white blood cell images. Our approach demonstrates substantial improvements in classifier performance when training data is limited. Using a small, highly imbalanced real dataset, the addition of 5,000 synthetic images per class improved ResNet classifier accuracy from 27\% to 78\% (+51\%). Similarly, CLIP-based classification accuracy increased from 62\% to 77\% (+15\%). These results establish synthetic image generation as a valuable tool for biomedical machine learning, enhancing data coverage and facilitating secure data sharing while preserving patient privacy. Paper code is publicly available at https://github.com/JanCarreras24/CytoDiff.

Authors:Katarina C. Poole, Julie Meyer, Vincent Martin, Rapolas Daugintis, Nils Marggraf-Turley, Jack Webb, Ludovic Pirard, Nicola La Magna, Oliver Turvey, Lorenzo Picinali
Title: The Extended SONICOM HRTF Dataset and Spatial Audio Metrics Toolbox
Abstract:
Headphone-based spatial audio uses head-related transfer functions (HRTFs) to simulate real-world acoustic environments. HRTFs are unique to everyone, due to personal morphology, shaping how sound waves interact with the body before reaching the eardrums. Here we present the extended SONICOM HRTF dataset which expands on the previous version released in 2023. The total number of measured subjects has now been increased to 300, with demographic information for a subset of the participants, providing context for the dataset's population and relevance. The dataset incorporates synthesised HRTFs for 200 of the 300 subjects, generated using Mesh2HRTF, alongside pre-processed 3D scans of the head and ears, optimised for HRTF synthesis. This rich dataset facilitates rapid and iterative optimisation of HRTF synthesis algorithms, allowing the automatic generation of large data. The optimised scans enable seamless morphological modifications, providing insights into how anatomical changes impact HRTFs, and the larger sample size enhances the effectiveness of machine learning approaches. To support analysis, we also introduce the Spatial Audio Metrics (SAM) Toolbox, a Python package designed for efficient analysis and visualisation of HRTF data, offering customisable tools for advanced research. Together, the extended dataset and toolbox offer a comprehensive resource for advancing personalised spatial audio research and development.

Authors:Ricardo Cardoso, Plinio Moreno
Title: Estimating Object Physical Properties from RGB-D Vision and Depth Robot Sensors Using Deep Learning
Abstract:
Inertial mass plays a crucial role in robotic applications such as object grasping, manipulation, and simulation, providing a strong prior for planning and control. Accurately estimating an object's mass before interaction can significantly enhance the performance of various robotic tasks. However, mass estimation using only vision sensors is a relatively underexplored area. This paper proposes a novel approach combining sparse point-cloud data from depth images with RGB images to estimate the mass of objects. We evaluate a range of point-cloud processing architectures, alongside RGB-only methods. To overcome the limited availability of training data, we create a synthetic dataset using ShapeNetSem 3D models, simulating RGBD images via a Kinect camera. This synthetic data is used to train an image generation model for estimating dense depth maps, which we then use to augment an existing dataset of images paired with mass values. Our approach significantly outperforms existing benchmarks across all evaluated metrics. The data generation (https://github.com/RavineWindteer/ShapenetSem-to-RGBD) as well as the training of the depth estimator (https://github.com/RavineWindteer/GLPDepth-Edited) and the mass estimator (https://github.com/RavineWindteer/Depth-mass-estimator) are available online.

Authors:Soham Walimbe, Britty Baby, Vinkle Srivastav, Nicolas Padoy
Title: Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Abstract:
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt

Authors:Britty Baby, Vinkle Srivastav, Pooja P. Jain, Kun Yuan, Pietro Mascagni, Nicolas Padoy
Title: Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
Abstract:
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet

Authors:Qinkai Yu, Jianyang Xie, Yitian Zhao, Cheng Chen, Lijun Zhang, Liming Chen, Jun Cheng, Lu Liu, Yalin Zheng, Yanda Meng
Title: Robust Incomplete-Modality Alignment for Ophthalmic Disease Grading and Diagnosis via Labeled Optimal Transport
Abstract:
Multimodal ophthalmic imaging-based diagnosis integrates color fundus image with optical coherence tomography (OCT) to provide a comprehensive view of ocular pathologies. However, the uneven global distribution of healthcare resources often results in real-world clinical scenarios encountering incomplete multimodal data, which significantly compromises diagnostic accuracy. Existing commonly used pipelines, such as modality imputation and distillation methods, face notable limitations: 1)Imputation methods struggle with accurately reconstructing key lesion features, since OCT lesions are localized, while fundus images vary in style. 2)distillation methods rely heavily on fully paired multimodal training data. To address these challenges, we propose a novel multimodal alignment and fusion framework capable of robustly handling missing modalities in the task of ophthalmic diagnostics. By considering the distinctive feature characteristics of OCT and fundus images, we emphasize the alignment of semantic features within the same category and explicitly learn soft matching between modalities, allowing the missing modality to utilize existing modality information, achieving robust cross-modal feature alignment under the missing modality. Specifically, we leverage the Optimal Transport for multi-scale modality feature alignment: class-wise alignment through predicted class prototypes and feature-wise alignment via cross-modal shared feature transport. Furthermore, we propose an asymmetric fusion strategy that effectively exploits the distinct characteristics of OCT and fundus modalities. Extensive evaluations on three large ophthalmic multimodal datasets demonstrate our model's superior performance under various modality-incomplete scenarios, achieving Sota performance in both complete modality and inter-modality incompleteness conditions. Code is available at https://github.com/Qinkaiyu/RIMA

Authors:Zonglin Lyu, Chen Chen
Title: TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation
Abstract:
Video Frame Interpolation (VFI) aims to predict the intermediate frame $I_n$ (we use n to denote time in videos to avoid notation overload with the timestep $t$ in diffusion models) based on two consecutive neighboring frames $I_0$ and $I_1$. Recent approaches apply diffusion models (both image-based and video-based) in this task and achieve strong performance. However, image-based diffusion models are unable to extract temporal information and are relatively inefficient compared to non-diffusion methods. Video-based diffusion models can extract temporal information, but they are too large in terms of training scale, model size, and inference time. To mitigate the above issues, we propose Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation (TLB-VFI), an efficient video-based diffusion model. By extracting rich temporal information from video inputs through our proposed 3D-wavelet gating and temporal-aware autoencoder, our method achieves 20% improvement in FID on the most challenging datasets over recent SOTA of image-based diffusion models. Meanwhile, due to the existence of rich temporal information, our method achieves strong performance while having 3times fewer parameters. Such a parameter reduction results in 2.3x speed up. By incorporating optical flow guidance, our method requires 9000x less training data and achieves over 20x fewer parameters than video-based diffusion models. Codes and results are available at our project page: https://zonglinl.github.io/tlbvfi_page.

Authors:Qinkai Yu, Wei Zhou, Hantao Liu, Yanyu Xu, Meng Wang, Yitian Zhao, Huazhu Fu, Xujiong Ye, Yalin Zheng, Yanda Meng
Title: Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading
Abstract:
As a long-term complication of diabetes, diabetic retinopathy (DR) progresses slowly, potentially taking years to threaten vision. An accurate and robust evaluation of its severity is vital to ensure prompt management and care. Ordinal regression leverages the underlying inherent order between categories to achieve superior performance beyond traditional classification. However, there exist challenges leading to lower DR classification performance: 1) The uneven distribution of DR severity levels, characterized by a long-tailed pattern, adds complexity to the grading process. 2)The ambiguity in defining category boundaries introduces additional challenges, making the classification process more complex and prone to inconsistencies. This work proposes a novel autoregressive ordinal regression method called AOR-DR to address the above challenges by leveraging the clinical knowledge of inherent ordinal information in DR grading dataset settings. Specifically, we decompose the DR grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features as conditions for the current prediction step. Additionally, we exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression without relearning contextual information from patch-level features. This ensures the effectiveness of the autoregressive process and leverages the capabilities of pre-trained large-scale foundation models. Extensive experiments were conducted on four large-scale publicly available color fundus datasets, demonstrating our model's effectiveness and superior performance over six recent state-of-the-art ordinal regression methods. The implementation code is available at https://github.com/Qinkaiyu/AOR-DR.

Authors:Yingshan Liang, Keyu Fan, Zhicheng Du, Yiran Wang, Qingyang Shi, Xinyu Zhang, Jiasheng Lu, Peiwu Qin
Title: Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
Abstract:
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods relying on global video information struggle with complex scenes and generating audio tailored to specific objects. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with audio. Furthermore, we tailor two data augmentation strategies, Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), to enhance the model's sensitivity to segmented objects. To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score. Extensive experiments demonstrate that our framework offers more precise control and improves generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click

Authors:Kefan Tang, Lihuo He, Jisheng Dang, Xinbo Gao
Title: Boosting Temporal Sentence Grounding via Causal Inference
Abstract:
Temporal Sentence Grounding (TSG) aims to identify relevant moments in an untrimmed video that semantically correspond to a given textual query. Despite existing studies having made substantial progress, they often overlook the issue of spurious correlations between video and textual queries. These spurious correlations arise from two primary factors: (1) inherent biases in the textual data, such as frequent co-occurrences of specific verbs or phrases, and (2) the model's tendency to overfit to salient or repetitive patterns in video content. Such biases mislead the model into associating textual cues with incorrect visual moments, resulting in unreliable predictions and poor generalization to out-of-distribution examples. To overcome these limitations, we propose a novel TSG framework, causal intervention and counterfactual reasoning that utilizes causal inference to eliminate spurious correlations and enhance the model's robustness. Specifically, we first formulate the TSG task from a causal perspective with a structural causal model. Then, to address unobserved confounders reflecting textual biases toward specific verbs or phrases, a textual causal intervention is proposed, utilizing do-calculus to estimate the causal effects. Furthermore, visual counterfactual reasoning is performed by constructing a counterfactual scenario that focuses solely on video features, excluding the query and fused multi-modal features. This allows us to debias the model by isolating and removing the influence of the video from the overall effect. Experiments on public datasets demonstrate the superiority of the proposed method. The code is available at https://github.com/Tangkfan/CICR.

Authors:Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang, Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo, Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou, Chayse Zhou, Fengzong Lian
Title: ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
Abstract:
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.

Authors:Thinh Dao, Dung Thuy Nguyen, Khoa D Doan, Kok-Seng Wong
Title: BackFed: An Efficient & Standardized Benchmark Suite for Backdoor Attacks in Federated Learning
Abstract:
Federated Learning (FL) systems are vulnerable to backdoor attacks, where adversaries train their local models on poisoned data and submit poisoned model updates to compromise the global model. Despite numerous proposed attacks and defenses, divergent experimental settings, implementation errors, and unrealistic assumptions hinder fair comparisons and valid conclusions about their effectiveness in real-world scenarios. To address this, we introduce BackFed - a comprehensive benchmark suite designed to standardize, streamline, and reliably evaluate backdoor attacks and defenses in FL, with a focus on practical constraints. Our benchmark offers key advantages through its multi-processing implementation that significantly accelerates experimentation and the modular design that enables seamless integration of new methods via well-defined APIs. With a standardized evaluation pipeline, we envision BackFed as a plug-and-play environment for researchers to comprehensively and reliably evaluate new attacks and defenses. Using BackFed, we conduct large-scale studies of representative backdoor attacks and defenses across both Computer Vision and Natural Language Processing tasks with diverse model architectures and experimental settings. Our experiments critically assess the performance of proposed attacks and defenses, revealing unknown limitations and modes of failures under practical conditions. These empirical insights provide valuable guidance for the development of new methods and for enhancing the security of FL systems. Our framework is openly available at https://github.com/thinh-dao/BackFed.

Authors:Alexander Fichtinger, Jan Schlüter, Gerhard Widmer
Title: Music Boomerang: Reusing Diffusion Models for Data Augmentation and Audio Manipulation
Abstract:
Generative models of music audio are typically used to generate output based solely on a text prompt or melody. Boomerang sampling, recently proposed for the image domain, allows generating output close to an existing example, using any pretrained diffusion model. In this work, we explore its application in the audio domain as a tool for data augmentation or content manipulation. Specifically, implementing Boomerang sampling for Stable Audio Open, we augment training data for a state-of-the-art beat tracker, and attempt to replace musical instruments in recordings. Our results show that the rhythmic structure of existing examples is mostly preserved, that it improves performance of the beat tracker, but only in scenarios of limited training data, and that it can accomplish text-based instrument replacement on monophonic inputs. We publish our implementation to invite experiments on data augmentation in other tasks and explore further applications.

Authors:Johannes Künzel, Anna Hilsmann, Peter Eisert
Title: RIPE: Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction
Abstract:
We introduce RIPE, an innovative reinforcement learning-based framework for weakly-supervised training of a keypoint extractor that excels in both detection and description tasks. In contrast to conventional training regimes that depend heavily on artificial transformations, pre-generated models, or 3D data, RIPE requires only a binary label indicating whether paired images represent the same scene. This minimal supervision significantly expands the pool of training data, enabling the creation of a highly generalized and robust keypoint extractor. RIPE utilizes the encoder's intermediate layers for the description of the keypoints with a hyper-column approach to integrate information from different scales. Additionally, we propose an auxiliary loss to enhance the discriminative capability of the learned descriptors. Comprehensive evaluations on standard benchmarks demonstrate that RIPE simplifies data preparation while achieving competitive performance compared to state-of-the-art techniques, marking a significant advancement in robust keypoint extraction and description. To support further research, we have made our code publicly available at https://github.com/fraunhoferhhi/RIPE.

Authors:Abiao Li, Chenlei Lv, Yuming Fang, Yifan Zuo, Jian Zhang, Guofeng Mei
Title: PointGAC: Geometric-Aware Codebook for Masked Point Cloud Modeling
Abstract:
Most masked point cloud modeling (MPM) methods follow a regression paradigm to reconstruct the coordinate or feature of masked regions. However, they tend to over-constrain the model to learn the details of the masked region, resulting in failure to capture generalized features. To address this limitation, we propose \textbf{\textit{PointGAC}}, a novel clustering-based MPM method that aims to align the feature distribution of masked regions. Specially, it features an online codebook-guided teacher-student framework. Firstly, it presents a geometry-aware partitioning strategy to extract initial patches. Then, the teacher model updates a codebook via online k-means based on features extracted from the complete patches. This procedure facilitates codebook vectors to become cluster centers. Afterward, we assigns the unmasked features to their corresponding cluster centers, and the student model aligns the assignment for the reconstructed masked features. This strategy focuses on identifying the cluster centers to which the masked features belong, enabling the model to learn more generalized feature representations. Benefiting from a proposed codebook maintenance mechanism, codebook vectors are actively updated, which further increases the efficiency of semantic feature learning. Experiments validate the effectiveness of the proposed method on various downstream tasks. Code is available at https://github.com/LAB123-tech/PointGAC

Authors:Yinuo Zhao, Jiale Yuan, Zhiyuan Xu, Xiaoshuai Hao, Xinyi Zhang, Kun Wu, Zhengping Che, Chi Harold Liu, Jian Tang
Title: Training-free Generation of Temporally Consistent Rewards from VLMs
Abstract:
Recent advances in vision-language models (VLMs) have significantly improved performance in embodied tasks such as goal decomposition and visual comprehension. However, providing accurate rewards for robotic manipulation without fine-tuning VLMs remains challenging due to the absence of domain-specific robotic knowledge in pre-trained datasets and high computational costs that hinder real-time applicability. To address this, we propose $\mathrm{T}^2$-VLM, a novel training-free, temporally consistent framework that generates accurate rewards through tracking the status changes in VLM-derived subgoals. Specifically, our method first queries the VLM to establish spatially aware subgoals and an initial completion estimate before each round of interaction. We then employ a Bayesian tracking algorithm to update the goal completion status dynamically, using subgoal hidden states to generate structured rewards for reinforcement learning (RL) agents. This approach enhances long-horizon decision-making and improves failure recovery capabilities with RL. Extensive experiments indicate that $\mathrm{T}^2$-VLM achieves state-of-the-art performance in two robot manipulation benchmarks, demonstrating superior reward accuracy with reduced computation consumption. We believe our approach not only advances reward generation techniques but also contributes to the broader field of embodied AI. Project website: https://t2-vlm.github.io/.

Authors:Josep Domingo-Ferrer, Najeeb Jebreel, David Sánchez
Title: Efficient Unlearning with Privacy Guarantees
Abstract:
Privacy protection laws, such as the GDPR, grant individuals the right to request the forgetting of their personal data not only from databases but also from machine learning (ML) models trained on them. Machine unlearning has emerged as a practical means to facilitate model forgetting of data instances seen during training. Although some existing machine unlearning methods guarantee exact forgetting, they are typically costly in computational terms. On the other hand, more affordable methods do not offer forgetting guarantees and are applicable only to specific ML models. In this paper, we present \emph{efficient unlearning with privacy guarantees} (EUPG), a novel machine unlearning framework that offers formal privacy guarantees to individuals whose data are being unlearned. EUPG involves pre-training ML models on data protected using privacy models, and it enables {\em efficient unlearning with the privacy guarantees offered by the privacy models in use}. Through empirical evaluation on four heterogeneous data sets protected with $k$-anonymity and $ε$-differential privacy as privacy models, our approach demonstrates utility and forgetting effectiveness comparable to those of exact unlearning methods, while significantly reducing computational and storage costs. Our code is available at https://github.com/najeebjebreel/EUPG.

Authors:Seyedarmin Azizi, Erfan Baghaei Potraghloo, Massoud Pedram
Title: Activation Steering for Chain-of-Thought Compression
Abstract:
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC

Authors:Anbang Wang, Marawan Elbatel, Keyuan Liu, Lizhuo Lin, Meng Lan, Yanqi Yang, Xiaomeng Li
Title: Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model
Abstract:
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.

Authors:Wanchang Yu, Qing Zhang, Rongjia Zheng, Wei-Shi Zheng
Title: Structure-Guided Diffusion Models for High-Fidelity Portrait Shadow Removal
Abstract:
We present a diffusion-based portrait shadow removal approach that can robustly produce high-fidelity results. Unlike previous methods, we cast shadow removal as diffusion-based inpainting. To this end, we first train a shadow-independent structure extraction network on a real-world portrait dataset with various synthetic lighting conditions, which allows to generate a shadow-independent structure map including facial details while excluding the unwanted shadow boundaries. The structure map is then used as condition to train a structure-guided inpainting diffusion model for removing shadows in a generative manner. Finally, to restore the fine-scale details (e.g., eyelashes, moles and spots) that may not be captured by the structure map, we take the gradients inside the shadow regions as guidance and train a detail restoration diffusion model to refine the shadow removal result. Extensive experiments on the benchmark datasets show that our method clearly outperforms existing methods, and is effective to avoid previously common issues such as facial identity tampering, shadow residual, color distortion, structure blurring, and loss of details. Our code is available at https://github.com/wanchang-yu/Structure-Guided-Diffusion-for-Portrait-Shadow-Removal.

Authors:Changsong Lei, Yaqian Liang, Shaofeng Wang, Jiajia Dai, Yong-Jin Liu
Title: TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation
Abstract:
Digital orthodontics represents a prominent and critical application of computer vision technology in the medical field. So far, the labor-intensive process of collecting clinical data, particularly in acquiring paired 3D orthodontic teeth models, constitutes a crucial bottleneck for developing tooth arrangement neural networks. Although numerous general 3D shape generation methods have been proposed, most of them focus on single-object generation and are insufficient for generating anatomically structured teeth models, each comprising 24-32 segmented teeth. In this paper, we propose TeethGenerator, a novel two-stage framework designed to synthesize paired 3D teeth models pre- and post-orthodontic, aiming to facilitate the training of downstream tooth arrangement networks. Specifically, our approach consists of two key modules: (1) a teeth shape generation module that leverages a diffusion model to learn the distribution of morphological characteristics of teeth, enabling the generation of diverse post-orthodontic teeth models; and (2) a teeth style generation module that synthesizes corresponding pre-orthodontic teeth models by incorporating desired styles as conditional inputs. Extensive qualitative and quantitative experiments demonstrate that our synthetic dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training. The code and dataset are available at https://github.com/lcshhh/teeth_generator.

Authors:Maolin Wang, Tianshuo Wei, Sheng Zhang, Ruocheng Guo, Wanyu Wang, Shanshan Ye, Lixin Zou, Xuetao Wei, Xiangyu Zhao
Title: DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation
Abstract:
Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.

Authors:Hahyeon Choi, Junhoo Lee, Nojun Kwak
Title: What's Making That Sound Right Now? Video-centric Audio-Visual Localization
Abstract:
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.

Authors:Maolin Wang, Yutian Xiao, Binhao Wang, Sheng Zhang, Shanshan Ye, Wanyu Wang, Hongzhi Yin, Ruocheng Guo, Zenglin Xu
Title: FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation
Abstract:
Modern recommendation systems face significant challenges in processing multimodal sequential data, particularly in temporal dynamics modeling and information flow coordination. Traditional approaches struggle with distribution discrepancies between heterogeneous features and noise interference in multimodal signals. We propose \textbf{FindRec}~ (\textbf{F}lexible unified \textbf{in}formation \textbf{d}isentanglement for multi-modal sequential \textbf{Rec}ommendation), introducing a novel "information flow-control-output" paradigm. The framework features two key innovations: (1) A Stein kernel-based Integrated Information Coordination Module (IICM) that theoretically guarantees distribution consistency between multimodal features and ID streams, and (2) A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance. Our approach leverages multi-head subspace decomposition for routing stability and RBF-Stein gradient for unbiased distribution alignment, enhanced by linear-complexity Mamba layers for efficient temporal modeling. Extensive experiments on three real-world datasets demonstrate FindRec's superior performance over state-of-the-art baselines, particularly in handling long sequences and noisy multimodal inputs. Our framework achieves both improved recommendation accuracy and enhanced model interpretability through its modular design. The implementation code is available anonymously online for easy reproducibility~\footnote{https://github.com/Applied-Machine-Learning-Lab/FindRec}.

Authors:Tuan Dang, Manfred Huber
Title: Bio-Inspired Hybrid Map: Spatial Implicit Local Frames and Topological Map for Mobile Cobot Navigation
Abstract:
Navigation is a fundamental capacity for mobile robots, enabling them to operate autonomously in complex and dynamic environments. Conventional approaches use probabilistic models to localize robots and build maps simultaneously using sensor observations. Recent approaches employ human-inspired learning, such as imitation and reinforcement learning, to navigate robots more effectively. However, these methods suffer from high computational costs, global map inconsistency, and poor generalization to unseen environments. This paper presents a novel method inspired by how humans perceive and navigate themselves effectively in novel environments. Specifically, we first build local frames that mimic how humans represent essential spatial information in the short term. Points in local frames are hybrid representations, including spatial information and learned features, so-called spatial-implicit local frames. Then, we integrate spatial-implicit local frames into the global topological map represented as a factor graph. Lastly, we developed a novel navigation algorithm based on Rapid-Exploring Random Tree Star (RRT*) that leverages spatial-implicit local frames and the topological map to navigate effectively in environments. To validate our approach, we conduct extensive experiments in real-world datasets and in-lab environments. We open our source code at https://github.com/tuantdang/simn}{https://github.com/tuantdang/simn.

Authors:Daqi Huang, Zhehao Cai, Yuzhi Hao, Zechen Li, Chee-Meng Chew
Title: PRISM: Pointcloud Reintegrated Inference via Segmentation and Cross-attention for Manipulation
Abstract:
Robust imitation learning for robot manipulation requires comprehensive 3D perception, yet many existing methods struggle in cluttered environments. Fixed camera view approaches are vulnerable to perspective changes, and 3D point cloud techniques often limit themselves to keyframes predictions, reducing their efficacy in dynamic, contact-intensive tasks. To address these challenges, we propose PRISM, designed as an end-to-end framework that directly learns from raw point cloud observations and robot states, eliminating the need for pretrained models or external datasets. PRISM comprises three main components: a segmentation embedding unit that partitions the raw point cloud into distinct object clusters and encodes local geometric details; a cross-attention component that merges these visual features with processed robot joint states to highlight relevant targets; and a diffusion module that translates the fused representation into smooth robot actions. With training on 100 demonstrations per task, PRISM surpasses both 2D and 3D baseline policies in accuracy and efficiency within our simulated environments, demonstrating strong robustness in complex, object-dense scenarios. Code and some demos are available on https://github.com/czknuaa/PRISM.

Authors:Yun Wang, Longguang Wang, Chenghao Zhang, Yongjian Zhang, Zhanjie Zhang, Ao Ma, Chenyou Fan, Tin Lun Lam, Junjie Hu
Title: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
Abstract:
Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.

Authors:Shengli Zhou, Yang Liu, Feng Zheng
Title: Learn 3D VQA Better with Active Selection and Reannotation
Abstract:
3D Visual Question Answering (3D VQA) is crucial for enabling models to perceive the physical world and perform spatial reasoning. In 3D VQA, the free-form nature of answers often leads to improper annotations that can confuse or mislead models when training on the entire dataset. While other text generation tasks can mitigate this issue by learning on large-scale datasets, the scarcity of 3D scene data enlarges the negative effect of misleading annotations. Although active learning strategies can select valuable instances for training, they fail to identify and resolve misleading labels, which the oracle inevitably provides in practice. To address this issue, we propose a multi-turn interactive active learning strategy. This strategy selects data based on models' semantic uncertainty to form a solid knowledge foundation more effectively and actively requests reannotation from an oracle to resolve potentially misleading labels. For uncertainty assessment, we utilize a variance-based metric that takes semantic relationships between terms into consideration, thus avoiding the uniform inter-class similarity assumption of previous assessment metrics. Extensive experiments exhibit better model performance and a substantial reduction in training costs, with a halving of training costs for achieving relatively high accuracy. The code is available at https://github.com/fz-zsl/AQuA.

Authors:Jinpeng Chen, Jianxiang He, Huan Li, Senzhang Wang, Yuan Cao, Kaimin Wei, Zhenye Yang, Ye Ji
Title: Hierarchical Intent-guided Optimization with Pluggable LLM-Driven Semantics for Session-based Recommendation
Abstract:
Session-based Recommendation (SBR) aims to predict the next item a user will likely engage with, using their interaction sequence within an anonymous session. Existing SBR models often focus only on single-session information, ignoring inter-session relationships and valuable cross-session insights. Some methods try to include inter-session data but struggle with noise and irrelevant information, reducing performance. Additionally, most models rely on item ID co-occurrence and overlook rich semantic details, limiting their ability to capture fine-grained item features. To address these challenges, we propose a novel hierarchical intent-guided optimization approach with pluggable LLM-driven semantic learning for session-based recommendations, called HIPHOP. First, we introduce a pluggable embedding module based on large language models (LLMs) to generate high-quality semantic representations, enhancing item embeddings. Second, HIPHOP utilizes graph neural networks (GNNs) to model item transition relationships and incorporates a dynamic multi-intent capturing module to address users' diverse interests within a session. Additionally, we design a hierarchical inter-session similarity learning module, guided by user intent, to capture global and local session relationships, effectively exploring users' long-term and short-term interests. To mitigate noise, an intent-guided denoising strategy is applied during inter-session learning. Finally, we enhance the model's discriminative capability by using contrastive learning to optimize session representations. Experiments on multiple datasets show that HIPHOP significantly outperforms existing methods, demonstrating its effectiveness in improving recommendation quality. Our code is available: https://github.com/hjx159/HIPHOP.

Authors:Mostafa Elhoushi, Jeff Johnson
Title: any4: Learned 4-bit Numeric Representation for LLMs
Abstract:
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .

Authors:Jiahui Yang, Yongjia Ma, Donglin Di, Hao Li, Wei Chen, Yan Xie, Jianxun Cui, Xun Yang, Wangmeng Zuo
Title: QR-LoRA: Efficient and Disentangled Fine-tuning via QR Decomposition for Customized Generation
Abstract:
Existing text-to-image models often rely on parameter fine-tuning techniques such as Low-Rank Adaptation (LoRA) to customize visual attributes. However, when combining multiple LoRA models for content-style fusion tasks, unstructured modifications of weight matrices often lead to undesired feature entanglement between content and style attributes. We propose QR-LoRA, a novel fine-tuning framework leveraging QR decomposition for structured parameter updates that effectively separate visual attributes. Our key insight is that the orthogonal Q matrix naturally minimizes interference between different visual features, while the upper triangular R matrix efficiently encodes attribute-specific transformations. Our approach fixes both Q and R matrices while only training an additional task-specific $ΔR$ matrix. This structured design reduces trainable parameters to half of conventional LoRA methods and supports effective merging of multiple adaptations without cross-contamination due to the strong disentanglement properties between $ΔR$ matrices. Experiments demonstrate that QR-LoRA achieves superior disentanglement in content-style fusion tasks, establishing a new paradigm for parameter-efficient, disentangled fine-tuning in generative models. The project page is available at: https://luna-ai-lab.github.io/QR-LoRA/.

Authors:Zien Wang, Xiucheng Wang, Nan Cheng, Wenchao Xu, Wei Quan, Ruijin Sun, Conghao Zhou
Title: On-Demand Multimedia Delivery in 6G: An Optimal-Cost Steiner Tree Approach
Abstract:
The exponential growth of multimedia data traffic in 6G networks poses unprecedented challenges for immersive communication, where ultra-high-definition, multi-quality streaming must be delivered on demand while minimizing network operational costs. Traditional routing approaches, such as shortest-path algorithms, fail to optimize flow multiplexing across multiple destinations, while conventional Steiner tree methods cannot accommodate heterogeneous quality-of-service (QoS) requirements-a critical need for 6G's personalized services. In this paper, we address a fundamental but unsolved challenge: the minimum flow problem (MFP) with multi-destination, heterogeneous outflow demands, which is pivotal for efficient multimedia distribution such as adaptive-resolution video streaming. To overcome the limitations of existing methods, we propose a two-stage dynamic programming-enhanced On-demand Steiner Tree (OST) algorithm, the first approach that jointly optimizes flow aggregation and QoS-aware path selection for arbitrary outflow requirements. We rigorously prove the optimality of OST using mathematical induction, demonstrating that it guarantees the minimum-cost multicast flow under differentiated service constraints. Extensive experiments in 6G-like multimedia transmission scenarios show that OST reduces total network flow by over 10% compared to state-of-the-art methods while ensuring on-demand QoS fulfillment. The complete code is available at https://github.com/UNIC-Lab/OST.

Authors:Rushil Thareja, Preslav Nakov, Praneeth Vepakomma, Nils Lukas
Title: DP-Fusion: Token-Level Differentially Private Inference for Large Language Models
Abstract:
Large language models (LLMs) can leak sensitive information from their context through generated outputs, either accidentally or when prompted adversarially. Existing defenses that aim to preserve context privacy during inference either lack formal guarantees or suffer from a poor utility/privacy trade-off. We propose DP-Fusion, a token-level Differentially Private Inference (DPI) mechanism that provably bounds how much an LLM's outputs reveal about sensitive tokens in its context. We demonstrate DPI through the task of document privatization, where the goal is to paraphrase documents so that sensitive content (e.g., Personally Identifiable Information, PII) cannot be reliably inferred, while still preserving the overall utility of the text. This is controlled by a parameter $ε$: $ε=0$ hides PII entirely, while higher values trade off privacy for improved paraphrase quality. DP-Fusion works as follows: (i) partition sensitive tokens into disjoint privacy groups, (ii) run the LLM once per group, and (iii) blend the output distributions so that the final output remains within a fixed statistical distance of the baseline distribution produced when no privacy group is revealed. This approach allows fine-grained control over the privacy/utility trade-off but requires multiple LLM forward passes.

Authors:Xinhua Lu, Runhe Lai, Yanqi Wu, Kanghao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: FA: Forced Prompt Learning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models (VLMs) have advanced out-of-distribution (OOD) detection recently. However, existing CLIP-based methods often focus on learning OOD-related knowledge to improve OOD detection, showing limited generalization or reliance on external large-scale auxiliary datasets. In this study, instead of delving into the intricate OOD-related knowledge, we propose an innovative CLIP-based framework based on Forced prompt leArning (FA), designed to make full use of the In-Distribution (ID) knowledge and ultimately boost the effectiveness of OOD detection. Our key insight is to learn a prompt (i.e., forced prompt) that contains more diversified and richer descriptions of the ID classes beyond the textual semantics of class labels. Specifically, it promotes better discernment for ID images, by forcing more notable semantic similarity between ID images and the learnable forced prompt. Moreover, we introduce a forced coefficient, encouraging the forced prompt to learn more comprehensive and nuanced descriptions of the ID classes. In this way, FA is capable of achieving notable improvements in OOD detection, even when trained without any external auxiliary datasets, while maintaining an identical number of trainable parameters as CoOp. Extensive empirical evaluations confirm our method consistently outperforms current state-of-the-art methods. Code is available at https://github.com/0xFAFA/FA.

Authors:Yikang Zhao, Feng Gao, Xuepeng Jin, Junyu Dong, Qian Du
Title: Dynamic Frequency Feature Fusion Network for Multi-Source Remote Sensing Data Classification
Abstract:
Multi-source data classification is a critical yet challenging task for remote sensing image interpretation. Existing methods lack adaptability to diverse land cover types when modeling frequency domain features. To this end, we propose a Dynamic Frequency Feature Fusion Network (DFFNet) for hyperspectral image (HSI) and Synthetic Aperture Radar (SAR) / Light Detection and Ranging (LiDAR) data joint classification. Specifically, we design a dynamic filter block to dynamically learn the filter kernels in the frequency domain by aggregating the input features. The frequency contextual knowledge is injected into frequency filter kernels. Additionally, we propose spectral-spatial adaptive fusion block for cross-modal feature fusion. It enhances the spectral and spatial attention weight interactions via channel shuffle operation, thereby providing comprehensive cross-modal feature fusion. Experiments on two benchmark datasets show that our DFFNet outperforms state-of-the-art methods in multi-source data classification. The codes will be made publicly available at https://github.com/oucailab/DFFNet.

Authors:Xujia Wang, Yunjia Qi, Bin Xu
Title: LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA(Low-Resources Subnet Integration Adaptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27\%$ compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training. The source code is available at https://github.com/KlozeWang/LoSiA.

Authors:Ashish Bastola, Mert D. Pesé, Long Cheng, Jonathon Smereka, Abolfazl Razi
Title: Anomalous Decision Discovery using Inverse Reinforcement Learning
Abstract:
Anomaly detection plays a critical role in Autonomous Vehicles (AVs) by identifying unusual behaviors through perception systems that could compromise safety and lead to hazardous situations. Current approaches, which often rely on predefined thresholds or supervised learning paradigms, exhibit reduced efficacy when confronted with unseen scenarios, sensor noise, and occlusions, leading to potential safety-critical failures. Moreover, supervised methods require large annotated datasets, limiting their real-world feasibility. To address these gaps, we propose an anomaly detection framework based on Inverse Reinforcement Learning (IRL) to infer latent driving intentions from sequential perception data, thus enabling robust identification. Specifically, we present Trajectory-Reward Guided Adaptive Pre-training (TRAP), a novel IRL framework for anomaly detection, to address two critical limitations of existing methods: noise robustness and generalization to unseen scenarios. Our core innovation is implicitly learning temporal credit assignments via reward and worst-case supervision. We leverage pre-training with variable-horizon sampling to maximize time-to-consequence, resulting in early detection of behavior deviation. Experiments on 14,000+ simulated trajectories demonstrate state-of-the-art performance, achieving 0.90 AUC and 82.2\% F1-score - outperforming similarly trained supervised and unsupervised baselines by 39\% on Recall and 12\% on F1-score, respectively. Similar performance is achieved while exhibiting robustness to various noise types and generalization to unseen anomaly types. Our code will be available at: https://github.com/abastola0/TRAP.git

Authors:Ziqin Wang, Jinyu Chen, Xiangyi Zheng, Qinan Liao, Linjiang Huang, Si Liu
Title: "Hi AirStar, Guide Me to the Badminton Court."
Abstract:
Unmanned Aerial Vehicles, operating in environments with relatively few obstacles, offer high maneuverability and full three-dimensional mobility. This allows them to rapidly approach objects and perform a wide range of tasks often challenging for ground robots, making them ideal for exploration, inspection, aerial imaging, and everyday assistance. In this paper, we introduce AirStar, a UAV-centric embodied platform that turns a UAV into an intelligent aerial assistant: a large language model acts as the cognitive core for environmental understanding, contextual reasoning, and task planning. AirStar accepts natural interaction through voice commands and gestures, removing the need for a remote controller and significantly broadening its user base. It combines geospatial knowledge-driven long-distance navigation with contextual reasoning for fine-grained short-range control, resulting in an efficient and accurate vision-and-language navigation (VLN) capability.Furthermore, the system also offers built-in capabilities such as cross-modal question answering, intelligent filming, and target tracking. With a highly extensible framework, it supports seamless integration of new functionalities, paving the way toward a general-purpose, instruction-driven intelligent UAV agent. The supplementary PPT is available at \href{https://buaa-colalab.github.io/airstar.github.io}{https://buaa-colalab.github.io/airstar.github.io}.

Authors:Feiyue Wu, Tianxing Wu, Shenqi Jing
Title: ARMR: Adaptively Responsive Network for Medication Recommendation
Abstract:
Medication recommendation is a crucial task in healthcare, especially for patients with complex medical conditions. However, existing methods often struggle to effectively balance the reuse of historical medications with the introduction of new drugs in response to the changing patient conditions. In order to address this challenge, we propose an Adaptively Responsive network for Medication Recommendation (ARMR), a new method which incorporates 1) a piecewise temporal learning component that distinguishes between recent and distant patient history, enabling more nuanced temporal understanding, and 2) an adaptively responsive mechanism that dynamically adjusts attention to new and existing drugs based on the patient's current health state and medication history. Experiments on the MIMIC-III and MIMIC-IV datasets indicate that ARMR has better performance compared with the state-of-the-art baselines in different evaluation metrics, which contributes to more personalized and accurate medication recommendations. The source code is publicly avaiable at: https://github.com/seucoin/armr2.

Authors:Zexin Deng, Zhenhui Yuan, Longhao Zou
Title: TeleSim: A Network-Aware Testbed and Benchmark Dataset for Telerobotic Applications
Abstract:
Telerobotic technologies are becoming increasingly essential in fields such as remote surgery, nuclear decommissioning, and space exploration. Reliable datasets and testbeds are essential for evaluating telerobotic system performance prior to real-world deployment. However, there is a notable lack of datasets that capture the impact of network delays, as well as testbeds that realistically model the communication link between the operator and the robot. This paper introduces TeleSim, a network-aware teleoperation dataset and testbed designed to assess the performance of telerobotic applications under diverse network conditions. TeleSim systematically collects performance data from fine manipulation tasks executed under three predefined network quality tiers: High, Medium, and Low. Each tier is characterized through controlled settings of bandwidth, latency, jitter, and packet loss. Using OMNeT++ for precise network simulation, we record a wide range of metrics, including completion time, success rates, video quality indicators (Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)), and quality of service (QoS) parameters. TeleSim comprises 300 experimental trials, providing a robust benchmark for evaluating teleoperation systems across heterogeneous network scenarios. In the worst network condition, completion time increases by 221.8% and success rate drops by 64%. Our findings reveal that network degradation leads to compounding negative impacts, notably reduced video quality and prolonged task execution, highlighting the need for adaptive, resilient teleoperation protocols. The full dataset and testbed software are publicly available on our GitHub repository: https://github.com/ConnectedRoboticsLab and YouTube channel: https://youtu.be/Fz_1iOYe104.

Authors:Xiuying Wei, Anunay Yadav, Razvan Pascanu, Caglar Gulcehre
Title: RAT: Bridging RNN Efficiency and Attention Accuracy via Chunk-based Sequence Modeling
Abstract:
Transformers have become the cornerstone of modern large-scale language models, but their reliance on softmax attention poses a computational bottleneck at both training and inference. Recurrent models offer high efficiency, but compressing the full sequence into a fixed-size and holistic representation suffers from memory degradation in long contexts and limits fine-grained retrieval. To address this, we propose RAT, an intermediate design that bridges the efficiency of RNNs and capacity of attention. RAT partitions the input into chunks, applies recurrence within each chunk for local dependencies, and softmax-based attention across chunks for long-range interactions. This design mitigates memory degradation and enables direct access to distant tokens, while retaining computational efficiency. Empirically, with a chunk size of 16, the RAT block achieves a 7x improvement in training speed with 100K token sequences and 9x in generation at the 4K position, while maintaining similar performance compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves RAT with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage, but also consistently enhances performance and shows the overall best results. Code is available at https://github.com/CLAIRE-Labo/RAT.

Authors:Wule Mao, Zhouheng Li, Yunhao Luo, Yilun Du, Lei Xie
Title: Rapid and Safe Trajectory Planning over Diverse Scenes through Diffusion Composition
Abstract:
Safe trajectory planning in complex environments must balance stringent collision avoidance with real-time efficiency, which is a long-standing challenge in robotics. In this work, we present a diffusion-based trajectory planning framework that is both rapid and safe. First, we introduce a scene-agnostic, MPC-based data generation pipeline that efficiently produces large volumes of kinematically feasible trajectories. Building on this dataset, our integrated diffusion planner maps raw onboard sensor inputs directly to kinematically feasible trajectories, enabling efficient inference while maintaining strong collision avoidance. To generalize to diverse, previously unseen scenarios, we compose diffusion models at test time, enabling safe behavior without additional training. We further propose a lightweight, rule-based safety filter that, from the candidate set, selects the trajectory meeting safety and kinematic-feasibility requirements. Across seen and unseen settings, the proposed method delivers real-time-capable inference with high safety and stability. Experiments on an F1TENTH vehicle demonstrate practicality on real hardware. Project page: https://rstp-comp-diffuser.github.io/.

Authors:You Zhou, Lijiang Chen, Guangxia Cui, Wenpei Bai, Yu Guo, Shuchang Lyu, Guangliang Cheng, Qi Zhao
Title: ViTaL: A Multimodality Dataset and Benchmark for Multi-pathological Ovarian Tumor Recognition
Abstract:
Ovarian tumor, as a common gynecological disease, can rapidly deteriorate into serious health crises when undetected early, thus posing significant threats to the health of women. Deep neural networks have the potential to identify ovarian tumors, thereby reducing mortality rates, but limited public datasets hinder its progress. To address this gap, we introduce a vital ovarian tumor pathological recognition dataset called \textbf{ViTaL} that contains \textbf{V}isual, \textbf{T}abular and \textbf{L}inguistic modality data of 496 patients across six pathological categories. The ViTaL dataset comprises three subsets corresponding to different patient data modalities: visual data from 2216 two-dimensional ultrasound images, tabular data from medical examinations of 496 patients, and linguistic data from ultrasound reports of 496 patients. It is insufficient to merely distinguish between benign and malignant ovarian tumors in clinical practice. To enable multi-pathology classification of ovarian tumor, we propose a ViTaL-Net based on the Triplet Hierarchical Offset Attention Mechanism (THOAM) to minimize the loss incurred during feature fusion of multi-modal data. This mechanism could effectively enhance the relevance and complementarity between information from different modalities. ViTaL-Net serves as a benchmark for the task of multi-pathology, multi-modality classification of ovarian tumors. In our comprehensive experiments, the proposed method exhibited satisfactory performance, achieving accuracies exceeding 90\% on the two most common pathological types of ovarian tumor and an overall performance of 85\%. Our dataset and code are available at https://github.com/GGbond-study/vitalnet.

Authors:Jaeseok Jeong, Yuna Lee, Mingi Kwon, Youngjung Uh
Title: TTS-CtrlNet: Time varying emotion aligned text-to-speech generation with ControlNet
Abstract:
Recent advances in text-to-speech (TTS) have enabled natural speech synthesis, but fine-grained, time-varying emotion control remains challenging. Existing methods often allow only utterance-level control and require full model fine-tuning with a large emotion speech dataset, which can degrade performance. Inspired by adding conditional control to the existing model in ControlNet (Zhang et al, 2023), we propose the first ControlNet-based approach for controllable flow-matching TTS (TTS-CtrlNet), which freezes the original model and introduces a trainable copy of it to process additional conditions. We show that TTS-CtrlNet can boost the pretrained large TTS model by adding intuitive, scalable, and time-varying emotion control while inheriting the ability of the original model (e.g., zero-shot voice cloning & naturalness). Furthermore, we provide practical recipes for adding emotion control: 1) optimal architecture design choice with block analysis, 2) emotion-specific flow step, and 3) flexible control scale. Experiments show that ours can effectively add an emotion controller to existing TTS, and achieves state-of-the-art performance with emotion similarity scores: Emo-SIM and Aro-Val SIM. The project page is available at: https://curryjung.github.io/ttsctrlnet_project_page

Authors:Zhipeng Li, Kegang Wang, Hanguang Xiao, Xingyue Liu, Feizhong Zhou, Jiaxin Jiang, Tianqi Liu
Title: Exploring Remote Physiological Signal Measurement under Dynamic Lighting Conditions at Night: Dataset, Experiment, and Analysis
Abstract:
Remote photoplethysmography (rPPG) is a non-contact technique for measuring human physiological signals. Due to its convenience and non-invasiveness, it has demonstrated broad application potential in areas such as health monitoring and emotion recognition. In recent years, the release of numerous public datasets has significantly advanced the performance of rPPG algorithms under ideal lighting conditions. However, the effectiveness of current rPPG methods in realistic nighttime scenarios with dynamic lighting variations remains largely unknown. Moreover, there is a severe lack of datasets specifically designed for such challenging environments, which has substantially hindered progress in this area of research. To address this gap, we present and release a large-scale rPPG dataset collected under dynamic lighting conditions at night, named DLCN. The dataset comprises approximately 13 hours of video data and corresponding synchronized physiological signals from 98 participants, covering four representative nighttime lighting scenarios. DLCN offers high diversity and realism, making it a valuable resource for evaluating algorithm robustness in complex conditions. Built upon the proposed Happy-rPPG Toolkit, we conduct extensive experiments and provide a comprehensive analysis of the challenges faced by state-of-the-art rPPG methods when applied to DLCN. The dataset and code are publicly available at https://github.com/dalaoplan/Happp-rPPG-Toolkit.

Authors:Roy Uziel, Irit Chelly, Oren Freifeld, Ari Pakman
Title: Clustering via Self-Supervised Diffusion
Abstract:
Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher-student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions. Our code is available at https://github.com/BGU-CS-VIL/CLUDI.

Authors:Gwok-Waa Wan, Shengchu Su, Ruihu Wang, Qixiang Chen, Sam-Zaak Wong, Mengnv Xing, Hefei Feng, Yubo Wang, Yinan Zhu, Jingyi Zhang, Jianmin Ye, Xinlai Wan, Tao Ni, Qiang Xu, Nan Guan, Zhe Jiang, Xi Wang, Yang Jun
Title: FIXME: Towards End-to-End Benchmarking of LLM-Aided Design Verification
Abstract:
Despite the transformative potential of Large Language Models (LLMs) in hardware design, a comprehensive evaluation of their capabilities in design verification remains underexplored. Current efforts predominantly focus on RTL generation and basic debugging, overlooking the critical domain of functional verification, which is the primary bottleneck in modern design methodologies due to the rapid escalation of hardware complexity. We present FIXME, the first end-to-end, multi-model, and open-source evaluation framework for assessing LLM performance in hardware functional verification (FV) to address this crucial gap. FIXME introduces a structured three-level difficulty hierarchy spanning six verification sub-domains and 180 diverse tasks, enabling in-depth analysis across the design lifecycle. Leveraging a collaborative AI-human approach, we construct a high-quality dataset using 100% silicon-proven designs, ensuring comprehensive coverage of real-world challenges. Furthermore, we enhance the functional coverage by 45.57% through expert-guided optimization. By rigorously evaluating state-of-the-art LLMs such as GPT-4, Claude3, and LlaMA3, we identify key areas for improvement and outline promising research directions to unlock the full potential of LLM-driven automation in hardware design verification. The benchmark is available at https://github.com/ChatDesignVerification/FIXME.

Authors:Mohammadreza Sharifi, Ahad Harati
Title: Efficient Training of Deep Networks using Guided Spectral Data Selection: A Step Toward Learning What You Need
Abstract:
Effective data curation is essential for optimizing neural network training. In this paper, we present the Guided Spectrally Tuned Data Selection (GSTDS) algorithm, which dynamically adjusts the subset of data points used for training using an off-the-shelf pre-trained reference model. Based on a pre-scheduled filtering ratio, GSTDS effectively reduces the number of data points processed per batch. The proposed method ensures an efficient selection of the most informative data points for training while avoiding redundant or less beneficial computations. Preserving data points in each batch is performed based on spectral analysis. A Fiedler vector-based scoring mechanism removes the filtered portion of the batch, lightening the resource requirements of the learning. The proposed data selection approach not only streamlines the training process but also promotes improved generalization and accuracy. Extensive experiments on standard image classification benchmarks, including CIFAR-10, Oxford-IIIT Pet, and Oxford-Flowers, demonstrate that GSTDS outperforms standard training scenarios and JEST, a recent state-of-the-art data curation method, on several key factors. It is shown that GSTDS achieves notable reductions in computational requirements, up to four times, without compromising performance. GSTDS exhibits a considerable growth in terms of accuracy under the limited computational resource usage, in contrast to other methodologies. These promising results underscore the potential of spectral-based data selection as a scalable solution for resource-efficient deep learning and motivate further exploration into adaptive data curation strategies. You can find the code at https://github.com/rezasharifi82/GSTDS.

Authors:Liwen Xiao, Zhiyu Pan, Zhicheng Wang, Zhiguo Cao, Wei Li
Title: SRefiner: Soft-Braid Attention for Multi-Agent Trajectory Refinement
Abstract:
Accurate prediction of multi-agent future trajectories is crucial for autonomous driving systems to make safe and efficient decisions. Trajectory refinement has emerged as a key strategy to enhance prediction accuracy. However, existing refinement methods often overlook the topological relationships between trajectories, which are vital for improving prediction precision. Inspired by braid theory, we propose a novel trajectory refinement approach, Soft-Braid Refiner (SRefiner), guided by the soft-braid topological structure of trajectories using Soft-Braid Attention. Soft-Braid Attention captures spatio-temporal topological relationships between trajectories by considering both spatial proximity and vehicle motion states at ``soft intersection points". Additionally, we extend this approach to model interactions between trajectories and lanes, further improving the prediction accuracy. SRefiner is a multi-iteration, multi-agent framework that iteratively refines trajectories, incorporating topological information to enhance interactions within traffic scenarios. SRefiner achieves significant performance improvements over four baseline methods across two datasets, establishing a new state-of-the-art in trajectory refinement. Code is here https://github.com/Liwen-Xiao/SRefiner.

Authors:Yuan Zhong, Jingxiang Sun, Liang An, Yebin Liu
Title: MoReMouse: Monocular Reconstruction of Laboratory Mouse
Abstract:
Laboratory mice play a crucial role in biomedical research, yet accurate 3D mouse surface motion reconstruction remains challenging due to their complex non-rigid geometric deformations and textureless appearance. Moreover, the absence of structured 3D datasets severely hinders the progress beyond sparse keypoint tracking. To narrow the gap, we present MoReMouse, the first monocular dense 3D reconstruction network tailored for laboratory mice. To achieve this goal, we highlight three key designs. First, we construct the first high-fidelity dense-view synthetic dataset for mice, by rendering our self-designed realistic Gaussian mouse avatar. Second, MoReMouse adopts a transformer-based feedforward architecture with triplane representation, achieving high-quality 3D surface generation from a single image. Third, we create geodesic-based continuous correspondence embeddings on mouse surface, which serve as strong semantic priors to improve reconstruction stability and surface consistency. Extensive quantitative and qualitative experiments demonstrate that MoReMouse significantly outperforms existing open-source methods in accuracy and robustness. Video results are available at https://zyyw-eric.github.io/MoreMouse-webpage/.

Authors:Qiang Heng, Caixing Wang
Title: Inertial Quadratic Majorization Minimization with Application to Kernel Regularized Learning
Abstract:
First-order methods in convex optimization offer low per-iteration cost but often suffer from slow convergence, while second-order methods achieve fast local convergence at the expense of costly Hessian inversions. In this paper, we highlight a middle ground: minimizing a quadratic majorant with fixed curvature at each iteration. This strategy strikes a balance between per-iteration cost and convergence speed, and crucially allows the reuse of matrix decompositions, such as Cholesky or spectral decompositions, across iterations and varying regularization parameters. We introduce the Quadratic Majorization Minimization with Extrapolation (QMME) framework and establish its sequential convergence properties under standard assumptions. The new perspective of our analysis is to center the arguments around the induced norm of the curvature matrix $H$. To demonstrate practical advantages, we apply QMME to large-scale kernel regularized learning problems. In particular, we propose a novel Sylvester equation modelling technique for kernel multinomial regression. In Julia-based experiments, QMME compares favorably against various established first- and second-order methods. Furthermore, we demonstrate that our algorithms complement existing kernel approximation techniques through more efficiently handling sketching matrices with large projection dimensions. Our numerical experiments and real data analysis are available and fully reproducible at https://github.com/qhengncsu/QMME.jl.

Authors:Xinbo Wang, Wenju Xu, Qing Zhang, Wei-Shi Zheng
Title: Domain Generalizable Portrait Style Transfer
Abstract:
This paper presents a portrait style transfer method that generalizes well to various different domains while enabling high-quality semantic-aligned stylization on regions including hair, eyes, eyelashes, skins, lips, and background. To this end, we propose to establish dense semantic correspondence between the given input and reference portraits based on a pre-trained model and a semantic adapter, with which we obtain a warped reference semantically aligned with the input. To ensure effective yet controllable style transfer, we devise an AdaIN-Wavelet transform to balance content preservation and stylization by blending low-frequency information of the warped reference with high-frequency information of the input in the latent space. A style adapter is also designed to provide style guidance from the warped reference. With the stylized latent from AdaIN-Wavelet transform, we employ a dual-conditional diffusion model that integrates a ControlNet recording high-frequency information and the style guidance to generate the final result. Extensive experiments demonstrate the superiority of our method. Our code and trained model are available at https://github.com/wangxb29/DGPST.

Authors:Kento Kawaharazuka, Shintaro Inoue, Yuta Sahara, Keita Yoneda, Temma Suzuki, Kei Okada
Title: Design Optimization of Three-Dimensional Wire Arrangement Considering Wire Crossings for Tendon-driven Robots
Abstract:
Tendon-driven mechanisms are useful from the perspectives of variable stiffness, redundant actuation, and lightweight design, and they are widely used, particularly in hands, wrists, and waists of robots. The design of these wire arrangements has traditionally been done empirically, but it becomes extremely challenging when dealing with complex structures. Various studies have attempted to optimize wire arrangement, but many of them have oversimplified the problem by imposing conditions such as restricting movements to a 2D plane, keeping the moment arm constant, or neglecting wire crossings. Therefore, this study proposes a three-dimensional wire arrangement optimization that takes wire crossings into account. We explore wire arrangements through a multi-objective black-box optimization method that ensures wires do not cross while providing sufficient joint torque along a defined target trajectory. For a 3D link structure, we optimize the wire arrangement under various conditions, demonstrate its effectiveness, and discuss the obtained design solutions.

Authors:Md Rashidunnabi, Fahmida Faiza Ananna, Kailash Hambarde, Bruno Gabriel Nascimento Andrade, Dean Venables, Hugo Proenca
Title: Predicting Air Pollution in Cork, Ireland Using Machine Learning
Abstract:
Air pollution poses a critical health threat in cities worldwide, with nitrogen dioxide levels in Cork, Ireland exceeding World Health Organization safety standards by up to $278\%$. This study leverages artificial intelligence to predict air pollution with unprecedented accuracy, analyzing nearly ten years of data from five monitoring stations combined with 30 years of weather records. We evaluated 17 machine learning algorithms, with Extra Trees emerging as the optimal solution, achieving $77\%$ prediction accuracy and significantly outperforming traditional forecasting methods. Our analysis reveals that meteorological conditions particularly temperature, wind speed, and humidity are the primary drivers of pollution levels, while traffic patterns and seasonal changes create predictable pollution cycles. Pollution exhibits dramatic seasonal variations, with winter levels nearly double those of summer, and daily rush-hour peaks reaching $120\%$ above normal levels. While Cork's air quality shows concerning violations of global health standards, our models detected an encouraging $31\%$ improvement from 2014 to 2022. This research demonstrates that intelligent forecasting systems can provide city planners and environmental officials with powerful prediction tools, enabling life-saving early warning systems and informed urban planning decisions. The technology exists today to transform urban air quality management. All research materials and code are freely available at: https://github.com/MdRashidunnabi/Air-Pollution-Analysis.git

Authors:Fengrui Tian, Tianjiao Ding, Jinqi Luo, Hancheng Min, René Vidal
Title: Voyaging into Perpetual Dynamic Scenes from a Single View
Abstract:
The problem of generating a perpetual dynamic scene from a single view is an important problem with widespread applications in augmented and virtual reality, and robotics. However, since dynamic scenes regularly change over time, a key challenge is to ensure that different generated views be consistent with the underlying 3D motions. Prior work learns such consistency by training on multiple views, but the generated scene regions often interpolate between training views and fail to generate perpetual views. To address this issue, we propose DynamicVoyager, which reformulates dynamic scene generation as a scene outpainting problem with new dynamic content. As 2D outpainting models struggle at generating 3D consistent motions from a single 2D view, we enrich 2D pixels with information from their 3D rays that facilitates learning of 3D motion consistency. More specifically, we first map the single-view video input to a dynamic point cloud using the estimated video depths. We then render a partial video of the point cloud from a novel view and outpaint the missing regions using ray information (e.g., the distance from a ray to the point cloud) to generate 3D consistent motions. Next, we use the outpainted video to update the point cloud, which is used for outpainting the scene from future novel views. Moreover, we can control the generated content with the input text prompt. Experiments show that our model can generate perpetual scenes with consistent motions along fly-through cameras. Project page: https://tianfr.github.io/DynamicVoyager.

Authors:Costas Mavromatis, Soji Adeshina, Vassilis N. Ioannidis, Zhen Han, Qi Zhu, Ian Robinson, Bryan Thompson, Huzefa Rangwala, George Karypis
Title: BYOKG-RAG: Multi-Strategy Graph Retrieval for Knowledge Graph Question Answering
Abstract:
Knowledge graph question answering (KGQA) presents significant challenges due to the structural and semantic variations across input graphs. Existing works rely on Large Language Model (LLM) agents for graph traversal and retrieval; an approach that is sensitive to traversal initialization, as it is prone to entity linking errors and may not generalize well to custom ("bring-your-own") KGs. We introduce BYOKG-RAG, a framework that enhances KGQA by synergistically combining LLMs with specialized graph retrieval tools. In BYOKG-RAG, LLMs generate critical graph artifacts (question entities, candidate answers, reasoning paths, and OpenCypher queries), and graph tools link these artifacts to the KG and retrieve relevant graph context. The retrieved context enables the LLM to iteratively refine its graph linking and retrieval, before final answer generation. By retrieving context from different graph tools, BYOKG-RAG offers a more general and robust solution for QA over custom KGs. Through experiments on five benchmarks spanning diverse KG types, we demonstrate that BYOKG-RAG outperforms the second-best graph retrieval method by 4.5% points while showing better generalization to custom KGs. BYOKG-RAG framework is open-sourced at https://github.com/awslabs/graphrag-toolkit.

Authors:Linshen Liu, Boyan Su, Junyue Jiang, Guanlin Wu, Cong Guo, Ceyu Xu, Hao Frank Yang
Title: Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
Abstract:
This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike conventional approaches, EMC2 incorporates a scenario-aware MoE architecture specifically optimized for edge platforms. By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations. To enable this, EMC2 employs an adaptive multimodal data bridge that performs multi-scale preprocessing on sensor inputs, followed by a scenario-aware routing mechanism that dynamically dispatches features to dedicated expert models based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs. The official implementation is available at https://github.com/LinshenLiu622/EMC2.

Authors:Ziming Hong, Runnan Chen, Zengmao Wang, Bo Han, Bo Du, Tongliang Liu
Title: When Data-Free Knowledge Distillation Meets Non-Transferable Teacher: Escaping Out-of-Distribution Trap is All You Need
Abstract:
Data-free knowledge distillation (DFKD) transfers knowledge from a teacher to a student without access the real in-distribution (ID) data. Its common solution is to use a generator to synthesize fake data and use them as a substitute for real ID data. However, existing works typically assume teachers are trustworthy, leaving the robustness and security of DFKD from untrusted teachers largely unexplored. In this work, we conduct the first investigation into distilling non-transferable learning (NTL) teachers using DFKD, where the transferability from an ID domain to an out-of-distribution (OOD) domain is prohibited. We find that NTL teachers fool DFKD through divert the generator's attention from the useful ID knowledge to the misleading OOD knowledge. This hinders ID knowledge transfer but prioritizes OOD knowledge transfer. To mitigate this issue, we propose Adversarial Trap Escaping (ATEsc) to benefit DFKD by identifying and filtering out OOD-like synthetic samples. Specifically, inspired by the evidence that NTL teachers show stronger adversarial robustness on OOD samples than ID samples, we split synthetic samples into two groups according to their robustness. The fragile group is treated as ID-like data and used for normal knowledge distillation, while the robust group is seen as OOD-like data and utilized for forgetting OOD knowledge. Extensive experiments demonstrate the effectiveness of ATEsc for improving DFKD against NTL teachers. Code is released at https://github.com/tmllab/2025_ICML_ATEsc.

Authors:Wenyang Liu, Chen Cai, Jianjun Gao, Kejun Wu, Yi Wang, Kim-Hui Yap, Lap-Pui Chau
Title: PromptSR: Cascade Prompting for Lightweight Image Super-Resolution
Abstract:
Although the lightweight Vision Transformer has significantly advanced image super-resolution (SR), it faces the inherent challenge of a limited receptive field due to the window-based self-attention modeling. The quadratic computational complexity relative to window size restricts its ability to use a large window size for expanding the receptive field while maintaining low computational costs. To address this challenge, we propose PromptSR, a novel prompt-empowered lightweight image SR method. The core component is the proposed cascade prompting block (CPB), which enhances global information access and local refinement via three cascaded prompting layers: a global anchor prompting layer (GAPL) and two local prompting layers (LPLs). The GAPL leverages downscaled features as anchors to construct low-dimensional anchor prompts (APs) through cross-scale attention, significantly reducing computational costs. These APs, with enhanced global perception, are then used to provide global prompts, efficiently facilitating long-range token connections. The two LPLs subsequently combine category-based self-attention and window-based self-attention to refine the representation in a coarse-to-fine manner. They leverage attention maps from the GAPL as additional global prompts, enabling them to perceive features globally at different granularities for adaptive local refinement. In this way, the proposed CPB effectively combines global priors and local details, significantly enlarging the receptive field while maintaining the low computational costs of our PromptSR. The experimental results demonstrate the superiority of our method, which outperforms state-of-the-art lightweight SR methods in quantitative, qualitative, and complexity evaluations. Our code will be released at https://github.com/wenyang001/PromptSR.

Authors:Xiaohan Zhang, Tavis Shore, Chen Chen, Oscar Mendez, Simon Hadfield, Safwan Wshah
Title: VICI: VLM-Instructed Cross-view Image-localisation
Abstract:
In this paper, we present a high-performing solution to the UAVM 2025 Challenge, which focuses on matching narrow FOV street-level images to corresponding satellite imagery using the University-1652 dataset. As panoramic Cross-View Geo-Localisation nears peak performance, it becomes increasingly important to explore more practical problem formulations. Real-world scenarios rarely offer panoramic street-level queries; instead, queries typically consist of limited-FOV images captured with unknown camera parameters. Our work prioritises discovering the highest achievable performance under these constraints, pushing the limits of existing architectures. Our method begins by retrieving candidate satellite image embeddings for a given query, followed by a re-ranking stage that selectively enhances retrieval accuracy within the top candidates. This two-stage approach enables more precise matching, even under the significant viewpoint and scale variations inherent in the task. Through experimentation, we demonstrate that our approach achieves competitive results -specifically attaining R@1 and R@10 retrieval rates of \topone\% and \topten\% respectively. This underscores the potential of optimised retrieval and re-ranking strategies in advancing practical geo-localisation performance. Code is available at https://github.com/tavisshore/VICI.

Authors:Stanisław Pawlak, Bartłomiej Twardowski, Tomasz Trzciński, Joost van de Weijer
Title: Addressing The Devastating Effects Of Single-Task Data Poisoning In Exemplar-Free Continual Learning
Abstract:
Our research addresses the overlooked security concerns related to data poisoning in continual learning (CL). Data poisoning - the intentional manipulation of training data to affect the predictions of machine learning models - was recently shown to be a threat to CL training stability. While existing literature predominantly addresses scenario-dependent attacks, we propose to focus on a more simple and realistic single-task poison (STP) threats. In contrast to previously proposed poisoning settings, in STP adversaries lack knowledge and access to the model, as well as to both previous and future tasks. During an attack, they only have access to the current task within the data stream. Our study demonstrates that even within these stringent conditions, adversaries can compromise model performance using standard image corruptions. We show that STP attacks are able to strongly disrupt the whole continual training process: decreasing both the stability (its performance on past tasks) and plasticity (capacity to adapt to new tasks) of the algorithm. Finally, we propose a high-level defense framework for CL along with a poison task detection method based on task vectors. The code is available at https://github.com/stapaw/STP.git .

Authors:Jianwei Tang, Hong Yang, Tengyue Chen, Jian-Fang Hu
Title: Stochastic Human Motion Prediction with Memory of Action Transition and Action Characteristic
Abstract:
Action-driven stochastic human motion prediction aims to generate future motion sequences of a pre-defined target action based on given past observed sequences performing non-target actions. This task primarily presents two challenges. Firstly, generating smooth transition motions is hard due to the varying transition speeds of different actions. Secondly, the action characteristic is difficult to be learned because of the similarity of some actions. These issues cause the predicted results to be unreasonable and inconsistent. As a result, we propose two memory banks, the Soft-transition Action Bank (STAB) and Action Characteristic Bank (ACB), to tackle the problems above. The STAB stores the action transition information. It is equipped with the novel soft searching approach, which encourages the model to focus on multiple possible action categories of observed motions. The ACB records action characteristic, which produces more prior information for predicting certain actions. To fuse the features retrieved from the two banks better, we further propose the Adaptive Attention Adjustment (AAA) strategy. Extensive experiments on four motion prediction datasets demonstrate that our approach consistently outperforms the previous state-of-the-art. The demo and code are available at https://hyqlat.github.io/STABACB.github.io/.

Authors:Hanghui Guo, Weijie Shi, Mengze Li, Juncheng Li, Hao Chen, Yue Cui, Jiajie Xu, Jia Zhu, Jiawei Shen, Zhangze Chen, Sirui Han
Title: Consistent and Invariant Generalization Learning for Short-video Misinformation Detection
Abstract:
Short-video misinformation detection has attracted wide attention in the multi-modal domain, aiming to accurately identify the misinformation in the video format accompanied by the corresponding audio. Despite significant advancements, current models in this field, trained on particular domains (source domains), often exhibit unsatisfactory performance on unseen domains (target domains) due to domain gaps. To effectively realize such domain generalization on the short-video misinformation detection task, we propose deep insights into the characteristics of different domains: (1) The detection on various domains may mainly rely on different modalities (i.e., mainly focusing on videos or audios). To enhance domain generalization, it is crucial to achieve optimal model performance on all modalities simultaneously. (2) For some domains focusing on cross-modal joint fraud, a comprehensive analysis relying on cross-modal fusion is necessary. However, domain biases located in each modality (especially in each frame of videos) will be accumulated in this fusion process, which may seriously damage the final identification of misinformation. To address these issues, we propose a new DOmain generalization model via ConsisTency and invariance learning for shORt-video misinformation detection (named DOCTOR), which contains two characteristic modules: (1) We involve the cross-modal feature interpolation to map multiple modalities into a shared space and the interpolation distillation to synchronize multi-modal learning; (2) We design the diffusion model to add noise to retain core features of multi modal and enhance domain invariant features through cross-modal guided denoising. Extensive experiments demonstrate the effectiveness of our proposed DOCTOR model. Our code is public available at https://github.com/ghh1125/DOCTOR.

Authors:Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Title: Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.

Authors:Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana G. Delfino, Aldo Badano
Title: T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
Abstract:
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may address some of these data limitations. We propose the use of physics simulations to generate synthetic images with pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and code are publicly available at https://github.com/DIDSR/tsynth-release.

Authors:Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, Yang Zhao
Title: PresentAgent: Multimodal Agent for Presentation Video Generation
Abstract:
We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

Authors:Andrii Kliachkin, Jana Lepšová, Gilles Bareilles, Jakub Mareček
Title: Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
Abstract:
The ability to train Deep Neural Networks (DNNs) with constraints is instrumental in improving the fairness of modern machine-learning models. Many algorithms have been analysed in recent years, and yet there is no standard, widely accepted method for the constrained training of DNNs. In this paper, we provide a challenging benchmark of real-world large-scale fairness-constrained learning tasks, built on top of the US Census (Folktables). We point out the theoretical challenges of such tasks and review the main approaches in stochastic approximation algorithms. Finally, we demonstrate the use of the benchmark by implementing and comparing three recently proposed, but as-of-yet unimplemented, algorithms both in terms of optimization performance, and fairness improvement. We release the code of the benchmark as a Python package at https://github.com/humancompatible/train.

Authors:Nayeon Kim, Eojin Jeon, Jun-Hyung Park, SangKeun Lee
Title: Handling Korean Out-of-Vocabulary Words with Phoneme Representation Learning
Abstract:
In this study, we introduce KOPL, a novel framework for handling Korean OOV words with Phoneme representation Learning. Our work is based on the linguistic property of Korean as a phonemic script, the high correlation between phonemes and letters. KOPL incorporates phoneme and word representations for Korean OOV words, facilitating Korean OOV word representations to capture both text and phoneme information of words. We empirically demonstrate that KOPL significantly improves the performance on Korean Natural Language Processing (NLP) tasks, while being readily integrated into existing static and contextual Korean embedding models in a plug-and-play manner. Notably, we show that KOPL outperforms the state-of-the-art model by an average of 1.9%. Our code is available at https://github.com/jej127/KOPL.git.

Authors:Ziyang Miao, Qiyu Sun, Jingyuan Wang, Yuchen Gong, Yaowei Zheng, Shiqi Li, Richong Zhang
Title: Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents
Abstract:
Large language models (LLMs) have shown impressive performance on general-purpose tasks, yet adapting them to specific domains remains challenging due to the scarcity of high-quality domain data. Existing data synthesis tools often struggle to extract reliable fine-tuning data from heterogeneous documents effectively. To address this limitation, we propose Easy Dataset, a unified framework for synthesizing fine-tuning data from unstructured documents via an intuitive graphical user interface (GUI). Specifically, Easy Dataset allows users to easily configure text extraction models and chunking strategies to transform raw documents into coherent text chunks. It then leverages a persona-driven prompting approach to generate diverse question-answer pairs using public-available LLMs. Throughout the pipeline, a human-in-the-loop visual interface facilitates the review and refinement of intermediate outputs to ensure data quality. Experiments on a financial question-answering task show that fine-tuning LLMs on the synthesized dataset significantly improves domain-specific performance while preserving general knowledge. The source code and installable package are available at https://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub stars.

Authors:Seungjin Jung, Kanghee Lee, Yonghyun Jeong, Haeun Noh, Jungmin Lee, Jongwon Choi
Title: Group-wise Scaling and Orthogonal Decomposition for Domain-Invariant Feature Extraction in Face Anti-Spoofing
Abstract:
Domain Generalizable Face Anti-Spoofing (DGFAS) methods effectively capture domain-invariant features by aligning the directions (weights) of local decision boundaries across domains. However, the bias terms associated with these boundaries remain misaligned, leading to inconsistent classification thresholds and degraded performance on unseen target domains. To address this issue, we propose a novel DGFAS framework that jointly aligns weights and biases through Feature Orthogonal Decomposition (FOD) and Group-wise Scaling Risk Minimization (GS-RM). Specifically, GS-RM facilitates bias alignment by balancing group-wise losses across multiple domains. FOD employs the Gram-Schmidt orthogonalization process to decompose the feature space explicitly into domain-invariant and domain-specific subspaces. By enforcing orthogonality between domain-specific and domain-invariant features during training using domain labels, FOD ensures effective weight alignment across domains without negatively impacting bias alignment. Additionally, we introduce Expected Calibration Error (ECE) as a novel evaluation metric for quantitatively assessing the effectiveness of our method in aligning bias terms across domains. Extensive experiments on benchmark datasets demonstrate that our approach achieves state-of-the-art performance, consistently improving accuracy, reducing bias misalignment, and enhancing generalization stability on unseen target domains.

Authors:Xiaolei Lang, Jiajun Lv, Kai Tang, Laijian Li, Jianxin Huang, Lina Liu, Yong Liu, Xingxing Zuo
Title: Gaussian-LIC2: LiDAR-Inertial-Camera Gaussian Splatting SLAM
Abstract:
This paper presents the first photo-realistic LiDAR-Inertial-Camera Gaussian Splatting SLAM system that simultaneously addresses visual quality, geometric accuracy, and real-time performance. The proposed method performs robust and accurate pose estimation within a continuous-time trajectory optimization framework, while incrementally reconstructing a 3D Gaussian map using camera and LiDAR data, all in real time. The resulting map enables high-quality, real-time novel view rendering of both RGB images and depth maps. To effectively address under-reconstruction in regions not covered by the LiDAR, we employ a lightweight zero-shot depth model that synergistically combines RGB appearance cues with sparse LiDAR measurements to generate dense depth maps. The depth completion enables reliable Gaussian initialization in LiDAR-blind areas, significantly improving system applicability for sparse LiDAR sensors. To enhance geometric accuracy, we use sparse but precise LiDAR depths to supervise Gaussian map optimization and accelerate it with carefully designed CUDA-accelerated strategies. Furthermore, we explore how the incrementally reconstructed Gaussian map can improve the robustness of odometry. By tightly incorporating photometric constraints from the Gaussian map into the continuous-time factor graph optimization, we demonstrate improved pose estimation under LiDAR degradation scenarios. We also showcase downstream applications via extending our elaborate system, including video frame interpolation and fast 3D mesh extraction. To support rigorous evaluation, we construct a dedicated LiDAR-Inertial-Camera dataset featuring ground-truth poses, depth maps, and extrapolated trajectories for assessing out-of-sequence novel view synthesis. Both the dataset and code will be made publicly available on project page https://xingxingzuo.github.io/gaussian_lic2.

Authors:Siyu Li, Fei Teng, Yihong Cao, Kailun Yang, Zhiyong Li, Yaonan Wang
Title: NRSeg: Noise-Resilient Learning for BEV Semantic Segmentation via Driving World Models
Abstract:
Birds' Eye View (BEV) semantic segmentation is an indispensable perception task in end-to-end autonomous driving systems. Unsupervised and semi-supervised learning for BEV tasks, as pivotal for real-world applications, underperform due to the homogeneous distribution of the labeled data. In this work, we explore the potential of synthetic data from driving world models to enhance the diversity of labeled data for robustifying BEV segmentation. Yet, our preliminary findings reveal that generation noise in synthetic data compromises efficient BEV model learning. To fully harness the potential of synthetic data from world models, this paper proposes NRSeg, a noise-resilient learning framework for BEV semantic segmentation. Specifically, a Perspective-Geometry Consistency Metric (PGCM) is proposed to quantitatively evaluate the guidance capability of generated data for model learning. This metric originates from the alignment measure between the perspective road mask of generated data and the mask projected from the BEV labels. Moreover, a Bi-Distribution Parallel Prediction (BiDPP) is designed to enhance the inherent robustness of the model, where the learning process is constrained through parallel prediction of multinomial and Dirichlet distributions. The former efficiently predicts semantic probabilities, whereas the latter adopts evidential deep learning to realize uncertainty quantification. Furthermore, a Hierarchical Local Semantic Exclusion (HLSE) module is designed to address the non-mutual exclusivity inherent in BEV semantic segmentation tasks. Experimental results demonstrate that NRSeg achieves state-of-the-art performance, yielding the highest improvements in mIoU of 13.8% and 11.4% in unsupervised and semi-supervised BEV segmentation tasks, respectively. The source code will be made publicly available at https://github.com/lynn-yu/NRSeg.

Authors:Aleksandr Gushchin, Maksim Smirnov, Dmitriy Vatolin, Anastasia Antsiferova
Title: LEHA-CVQAD: Dataset To Enable Generalized Video Quality Assessment of Compression Artifacts
Abstract:
We propose the LEHA-CVQAD (Large-scale Enriched Human-Annotated Compressed Video Quality Assessment) dataset, which comprises 6,240 clips for compression-oriented video quality assessment. 59 source videos are encoded with 186 codec-preset variants, 1.8M pairwise, and 1.5k MOS ratings are fused into a single quality scale; part of the videos remains hidden for blind evaluation. We also propose Rate-Distortion Alignment Error (RDAE), a novel evaluation metric that quantifies how well VQA models preserve bitrate-quality ordering, directly supporting codec parameter tuning. Testing IQA/VQA methods reveals that popular VQA metrics exhibit high RDAE and lower correlations, underscoring the dataset challenges and utility. The open part and the results of LEHA-CVQAD are available at https://aleksandrgushchin.github.io/lcvqad/

Authors:Tianyao He, Runqi Wang, Yang Chen, Dejia Song, Nemo Chen, Xu Tang, Yao Hu
Title: Flux-Sculptor: Text-Driven Rich-Attribute Portrait Editing through Decomposed Spatial Flow Control
Abstract:
Text-driven portrait editing holds significant potential for various applications but also presents considerable challenges. An ideal text-driven portrait editing approach should achieve precise localization and appropriate content modification, yet existing methods struggle to balance reconstruction fidelity and editing flexibility. To address this issue, we propose Flux-Sculptor, a flux-based framework designed for precise text-driven portrait editing. Our framework introduces a Prompt-Aligned Spatial Locator (PASL) to accurately identify relevant editing regions and a Structure-to-Detail Edit Control (S2D-EC) strategy to spatially guide the denoising process through sequential mask-guided fusion of latent representations and attention values. Extensive experiments demonstrate that Flux-Sculptor surpasses existing methods in rich-attribute editing and facial information preservation, making it a strong candidate for practical portrait editing applications. Project page is available at https://flux-sculptor.github.io/.

Authors:Ze Li, Feng Zhang, Xiatian Zhu, Meng Zhang, Yanghong Zhou, P. Y. Mok
Title: Robust Low-light Scene Restoration via Illumination Transition
Abstract:
Synthesizing normal-light novel views from low-light multiview images is an important yet challenging task, given the low visibility and high ISO noise present in the input images. Existing low-light enhancement methods often struggle to effectively preprocess such low-light inputs, as they fail to consider correlations among multiple views. Although other state-of-the-art methods have introduced illumination-related components offering alternative solutions to the problem, they often result in drawbacks such as color distortions and artifacts, and they provide limited denoising effectiveness. In this paper, we propose a novel Robust Low-light Scene Restoration framework (RoSe), which enables effective synthesis of novel views in normal lighting conditions from low-light multiview image inputs, by formulating the task as an illuminance transition estimation problem in 3D space, conceptualizing it as a specialized rendering task. This multiview-consistent illuminance transition field establishes a robust connection between low-light and normal-light conditions. By further exploiting the inherent low-rank property of illumination to constrain the transition representation, we achieve more effective denoising without complex 2D techniques or explicit noise modeling. To implement RoSe, we design a concise dual-branch architecture and introduce a low-rank denoising module. Experiments demonstrate that RoSe significantly outperforms state-of-the-art models in both rendering quality and multiview consistency on standard benchmarks. The codes and data are available at https://pegasus2004.github.io/RoSe.

Authors:Kai Ye, Tianyi Chen, Zhen Wang
Title: Evaluating Adversarial Protections for Diffusion Personalization: A Comprehensive Study
Abstract:
With the increasing adoption of diffusion models for image generation and personalization, concerns regarding privacy breaches and content misuse have become more pressing. In this study, we conduct a comprehensive comparison of eight perturbation based protection methods: AdvDM, ASPL, FSGM, MetaCloak, Mist, PhotoGuard, SDS, and SimAC--across both portrait and artwork domains. These methods are evaluated under varying perturbation budgets, using a range of metrics to assess visual imperceptibility and protective efficacy. Our results offer practical guidance for method selection. Code is available at: https://github.com/vkeilo/DiffAdvPerturbationBench.

Authors:Elian Neppel, Ashutosh Mishra, Shamistan Karimov, Kentaro Uno, Shreya Santra, Kazuya Yoshida
Title: Robust and Modular Multi-Limb Synchronization in Motion Stack for Space Robots with Trajectory Clamping via Hypersphere
Abstract:
Modular robotics holds immense potential for space exploration, where reliability, repairability, and reusability are critical for cost-effective missions. Coordination between heterogeneous units is paramount for precision tasks -- whether in manipulation, legged locomotion, or multi-robot interaction. Such modular systems introduce challenges far exceeding those in monolithic robot architectures. This study presents a robust method for synchronizing the trajectories of multiple heterogeneous actuators, adapting dynamically to system variations with minimal system knowledge. This design makes it inherently robot-agnostic, thus highly suited for modularity. To ensure smooth trajectory adherence, the multidimensional state is constrained within a hypersphere representing the allowable deviation. The distance metric can be adapted hence, depending on the task and system under control, deformation of the constraint region is possible. This approach is compatible with a wide range of robotic platforms and serves as a core interface for Motion-Stack, our new open-source universal framework for limb coordination (available at https://github.com/2lian/Motion-Stack ). The method is validated by synchronizing the end-effectors of six highly heterogeneous robotic limbs, evaluating both trajectory adherence and recovery from significant external disturbances.

Authors:Ha-Hieu Pham, Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Ulas Bagci, Min Xu, Trung-Nghia Le, Huy-Hieu Pham
Title: Learning Disentangled Stain and Structural Representations for Semi-Supervised Histopathology Segmentation
Abstract:
Accurate gland segmentation in histopathology images is essential for cancer diagnosis and prognosis. However, significant variability in Hematoxylin and Eosin (H&E) staining and tissue morphology, combined with limited annotated data, poses major challenges for automated segmentation. To address this, we propose Color-Structure Dual-Student (CSDS), a novel semi-supervised segmentation framework designed to learn disentangled representations of stain appearance and tissue structure. CSDS comprises two specialized student networks: one trained on stain-augmented inputs to model chromatic variation, and the other on structure-augmented inputs to capture morphological cues. A shared teacher network, updated via Exponential Moving Average (EMA), supervises both students through pseudo-labels. To further improve label reliability, we introduce stain-aware and structure-aware uncertainty estimation modules that adaptively modulate the contribution of each student during training. Experiments on the GlaS and CRAG datasets show that CSDS achieves state-of-the-art performance in low-label settings, with Dice score improvements of up to 1.2% on GlaS and 0.7% on CRAG at 5% labeled data, and 0.7% and 1.4% at 10%. Our code and pre-trained models are available at https://github.com/hieuphamha19/CSDS.

Authors:Ikuya Yamada, Ryokan Ri, Takeshi Kojima, Yusuke Iwasawa, Yutaka Matsuo
Title: Dynamic Injection of Entity Knowledge into Dense Retrievers
Abstract:
Dense retrievers often struggle with queries involving less-frequent entities due to their limited entity knowledge. We propose the Knowledgeable Passage Retriever (KPR), a BERT-based retriever enhanced with a context-entity attention layer and dynamically updatable entity embeddings. This design enables KPR to incorporate external entity knowledge without retraining. Experiments on three datasets demonstrate that KPR consistently improves retrieval accuracy, with particularly large gains on the EntityQuestions dataset. When built on the off-the-shelf bge-base retriever, KPR achieves state-of-the-art performance among similarly sized models on two datasets. Models and code are released at https://github.com/knowledgeable-embedding/knowledgeable-embedding.

Authors:Shubin Ma, Liang Zhao, Mingdong Lu, Yifan Guo, Bo Xu
Title: Consistency-Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search
Abstract:
Multimodal representation is faithful and highly effective in describing real-world data samples' characteristics by describing their complementary information. However, the collected data often exhibits incomplete and misaligned characteristics due to factors such as inconsistent sensor frequencies and device malfunctions. Existing research has not effectively addressed the issue of filling missing data in scenarios where multiview data are both imbalanced and misaligned. Instead, it relies on class-level alignment of the available data. Thus, it results in some data samples not being well-matched, thereby affecting the quality of data fusion. In this paper, we propose the Consistency-Aware Padding for Incomplete Multimodal Alignment Clustering Based on Self-Repellent Greedy Anchor Search(CAPIMAC) to tackle the problem of filling imbalanced and misaligned data in multimodal datasets. Specifically, we propose a self-repellent greedy anchor search module(SRGASM), which employs a self-repellent random walk combined with a greedy algorithm to identify anchor points for re-representing incomplete and misaligned multimodal data. Subsequently, based on noise-contrastive learning, we design a consistency-aware padding module (CAPM) to effectively interpolate and align imbalanced and misaligned data, thereby improving the quality of multimodal data fusion. Experimental results demonstrate the superiority of our method over benchmark datasets. The code will be publicly released at https://github.com/Autism-mm/CAPIMAC.git.

Authors:Yifan Jiang, Yibo Xue, Yukun Kang, Pin Zheng, Jian Peng, Feiran Wu, Changliang Xu
Title: Animation Needs Attention: A Holistic Approach to Slides Animation Comprehension with Visual-Language Models
Abstract:
Slide animations, such as fade-in, fly-in, and wipe, are critical for audience engagement, efficient information delivery, and vivid visual expression. However, most AI-driven slide-generation tools still lack native animation support, and existing vision-language models (VLMs) struggle with animation tasks due to the absence of public datasets and limited temporal-reasoning capabilities. To address this gap, we release the first public dataset for slide-animation modeling: 12,000 triplets of natural-language descriptions, animation JSON files, and rendered videos, collectively covering every built-in PowerPoint effect. Using this resource, we fine-tune Qwen-2.5-VL-7B with Low-Rank Adaptation (LoRA) and achieve consistent improvements over GPT-4.1 and Gemini-2.5-Pro in BLEU-4, ROUGE-L, SPICE, and our Coverage-Order-Detail Assessment (CODA) metric, which evaluates action coverage, temporal order, and detail fidelity. On a manually created test set of slides, the LoRA model increases BLEU-4 by around 60%, ROUGE-L by 30%, and shows significant improvements in CODA-detail. This demonstrates that low-rank adaptation enables reliable temporal reasoning and generalization beyond synthetic data. Overall, our dataset, LoRA-enhanced model, and CODA metric provide a rigorous benchmark and foundation for future research on VLM-based dynamic slide generation.

Authors:Ishan Khurjekar, Indrashish Saha, Lori Graham-Brady, Somdatta Goswami
Title: Enhanced accuracy through ensembling of randomly initialized auto-regressive models for time-dependent PDEs
Abstract:
Systems governed by partial differential equations (PDEs) require computationally intensive numerical solvers to predict spatiotemporal field evolution. While machine learning (ML) surrogates offer faster solutions, autoregressive inference with ML models suffer from error accumulation over successive predictions, limiting their long-term accuracy. We propose a deep ensemble framework to address this challenge, where multiple ML surrogate models with random weight initializations are trained in parallel and aggregated during inference. This approach leverages the diversity of model predictions to mitigate error propagation while retaining the autoregressive strategies ability to capture the system's time dependent relations. We validate the framework on three PDE-driven dynamical systems - stress evolution in heterogeneous microstructures, Gray-Scott reaction-diffusion, and planetary-scale shallow water system - demonstrating consistent reduction in error accumulation over time compared to individual models. Critically, the method requires only a few time steps as input, enabling full trajectory predictions with inference times significantly faster than numerical solvers. Our results highlight the robustness of ensemble methods in diverse physical systems and their potential as efficient and accurate alternatives to traditional solvers. The codes for this work are available on GitHub (https://github.com/Graham-Brady-Research-Group/AutoregressiveEnsemble_SpatioTemporal_Evolution).

Authors:Jiaqi Zhang, Juntuo Wang, Zhixin Sun, John Zou, Randall Balestriero
Title: FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed
Abstract:
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2

Authors:Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, Yue Zhao
Title: StreamDiT: Real-Time Streaming Text-to-Video Generation
Abstract:
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/

Authors:Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, Feng Wu
Title: Flow-Anchored Consistency Models
Abstract:
Continuous-time Consistency Models (CMs) promise efficient few-step generation but face significant challenges with training instability. We argue this instability stems from a fundamental conflict: by training a network to learn only a shortcut across a probability flow, the model loses its grasp on the instantaneous velocity field that defines the flow. Our solution is to explicitly anchor the model in the underlying flow during training. We introduce the Flow-Anchored Consistency Model (FACM), a simple but effective training strategy that uses a Flow Matching (FM) task as an anchor for the primary CM shortcut objective. This Flow-Anchoring approach requires no architectural modifications and is broadly compatible with standard model architectures. By distilling a pre-trained LightningDiT model, our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and 1.76 with just one step (NFE=1) on ImageNet 256x256, significantly outperforming previous methods. This provides a general and effective recipe for building high-performance, few-step generative models. Our code and pretrained models: https://github.com/ali-vilab/FACM.

Authors:Chong Cheng, Sicheng Yu, Zijian Wang, Yifan Zhou, Hao Wang
Title: Outdoor Monocular SLAM with Global Scale-Consistent 3D Gaussian Pointmaps
Abstract:
3D Gaussian Splatting (3DGS) has become a popular solution in SLAM due to its high-fidelity and real-time novel view synthesis performance. However, some previous 3DGS SLAM methods employ a differentiable rendering pipeline for tracking, lack geometric priors in outdoor scenes. Other approaches introduce separate tracking modules, but they accumulate errors with significant camera movement, leading to scale drift. To address these challenges, we propose a robust RGB-only outdoor 3DGS SLAM method: S3PO-GS. Technically, we establish a self-consistent tracking module anchored in the 3DGS pointmap, which avoids cumulative scale drift and achieves more precise and robust tracking with fewer iterations. Additionally, we design a patch-based pointmap dynamic mapping module, which introduces geometric priors while avoiding scale ambiguity. This significantly enhances tracking accuracy and the quality of scene reconstruction, making it particularly suitable for complex outdoor environments. Our experiments on the Waymo, KITTI, and DL3DV datasets demonstrate that S3PO-GS achieves state-of-the-art results in novel view synthesis and outperforms other 3DGS SLAM methods in tracking accuracy. Project page: https://3dagentworld.github.io/S3PO-GS/.

Authors:Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun
Title: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
Abstract:
Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.

Authors:Ankit Sonthalia, Arnas Uselis, Seong Joon Oh
Title: On the rankability of visual embeddings
Abstract:
We study whether visual embedding models capture continuous, ordinal attributes along linear directions, which we term _rank axes_. We define a model as _rankable_ for an attribute if projecting embeddings onto such an axis preserves the attribute's order. Across 7 popular encoders and 9 datasets with attributes like age, crowd count, head pose, aesthetics, and recency, we find that many embeddings are inherently rankable. Surprisingly, a small number of samples, or even just two extreme examples, often suffice to recover meaningful rank axes, without full-scale supervision. These findings open up new use cases for image ranking in vector databases and motivate further study into the structure and learning of rankable embeddings. Our code is available at https://github.com/aktsonthalia/rankable-vision-embeddings.

Authors:José A. Pardo, Tomás Bernal, Jaime Ñiguez, Ana Luisa Gil-Martínez, Laura Ibañez, José T. Palma, Juan A. Botía, Alicia Gómez-Pascual
Title: MLASDO: a software tool to detect and explain clinical and omics inconsistencies applied to the Parkinson's Progression Markers Initiative cohort
Abstract:
Inconsistencies between clinical and omics data may arise within medical cohorts. The identification, annotation and explanation of anomalous omics-based patients or individuals may become crucial to better reshape the disease, e.g., by detecting early onsets signaled by the omics and undetectable from observable symptoms. Here, we developed MLASDO (Machine Learning based Anomalous Sample Detection on Omics), a new method and software tool to identify, characterize and automatically describe anomalous samples based on omics data. Its workflow is based on three steps: (1) classification of healthy and cases individuals using a support vector machine algorithm; (2) detection of anomalous samples within groups; (3) explanation of anomalous individuals based on clinical data and expert knowledge. We showcase MLASDO using transcriptomics data of 317 healthy controls (HC) and 465 Parkinson's disease (PD) cases from the Parkinson's Progression Markers Initiative. In this cohort, MLASDO detected 15 anomalous HC with a PD-like transcriptomic signature and PD-like clinical features, including a lower proportion of CD4/CD8 naive T-cells and CD4 memory T-cells compared to HC (P<3.5*10^-3). MLASDO also identified 22 anomalous PD cases with a transcriptomic signature more similar to that of HC and some clinical features more similar to HC, including a lower proportion of mature neutrophils compared to PD cases (P<6*10^-3). In summary, MLASDO is a powerful tool that can help the clinician to detect and explain anomalous HC and cases of interest to be followed up. MLASDO is an open-source R package available at: https://github.com/JoseAdrian3/MLASDO.

Authors:Yingxu Wang, Siwei Liu, Jinyuan Fang, Zaiqiao Meng
Title: EvoAgentX: An Automated Framework for Evolving Agentic Workflows
Abstract:
Multi-agent systems (MAS) have emerged as a powerful paradigm for orchestrating large language models (LLMs) and specialized tools to collaboratively address complex tasks. However, existing MAS frameworks often require manual workflow configuration and lack native support for dynamic evolution and performance optimization. In addition, many MAS optimization algorithms are not integrated into a unified framework. In this paper, we present EvoAgentX, an open-source platform that automates the generation, execution, and evolutionary optimization of multi-agent workflows. EvoAgentX employs a modular architecture consisting of five core layers: the basic components, agent, workflow, evolving, and evaluation layers. Specifically, within the evolving layer, EvoAgentX integrates three MAS optimization algorithms, TextGrad, AFlow, and MIPRO, to iteratively refine agent prompts, tool configurations, and workflow topologies. We evaluate EvoAgentX on HotPotQA, MBPP, and MATH for multi-hop reasoning, code generation, and mathematical problem solving, respectively, and further assess it on real-world tasks using GAIA. Experimental results show that EvoAgentX consistently achieves significant performance improvements, including a 7.44% increase in HotPotQA F1, a 10.00% improvement in MBPP pass@1, a 10.00% gain in MATH solve accuracy, and an overall accuracy improvement of up to 20.00% on GAIA. The source code is available at: https://github.com/EvoAgentX/EvoAgentX

Authors:Yana Hasson, Pauline Luc, Liliane Momeni, Maks Ovsjanikov, Guillaume Le Moing, Alina Kuznetsova, Ira Ktena, Jennifer J. Sun, Skanda Koppula, Dilara Gokay, Joseph Heyward, Etienne Pot, Andrew Zisserman
Title: SciVid: Cross-Domain Evaluation of Video Models in Scientific Applications
Abstract:
In recent years, there has been a proliferation of spatiotemporal foundation models in different scientific disciplines. While promising, these models are often domain-specific and are only assessed within the particular applications for which they are designed. Given that many tasks can be represented as video modeling problems, video foundation models (ViFMs) hold considerable promise as general-purpose domain-agnostic approaches. However, it is not known whether the knowledge acquired on large-scale but potentially out-of-domain data can be effectively transferred across diverse scientific disciplines, and if a single, pretrained ViFM can be competitive with domain-specific baselines. To address this, we introduce SciVid, a comprehensive benchmark comprising five *Sci*entific *Vid*eo tasks, across medical computer vision, animal behavior, and weather forecasting. We adapt six leading ViFMs to SciVid using simple trainable readout modules, establishing strong baselines and demonstrating the potential for effective transfer learning. Specifically, we show that state-of-the-art results can be obtained in several applications by leveraging the general-purpose representations from ViFM backbones. Furthermore, our results reveal the limitations of existing ViFMs, and highlight opportunities for the development of generalizable models for high-impact scientific applications. We release our code at https://github.com/google-deepmind/scivid to facilitate further research in the development of ViFMs.

Authors:Eva Seidlmayer, Lukas Galke, Konrad U. Förstner
Title: Four Shades of Life Sciences: A Dataset for Disinformation Detection in the Life Sciences
Abstract:
Disseminators of disinformation often seek to attract attention or evoke emotions - typically to gain influence or generate revenue - resulting in distinctive rhetorical patterns that can be exploited by machine learning models. In this study, we explore linguistic and rhetorical features as proxies for distinguishing disinformative texts from other health and life-science text genres, applying both large language models and classical machine learning classifiers. Given the limitations of existing datasets, which mainly focus on fact checking misinformation, we introduce Four Shades of Life Sciences (FSoLS): a novel, labeled corpus of 2,603 texts on 14 life-science topics, retrieved from 17 diverse sources and classified into four categories of life science publications. The source code for replicating, and updating the dataset is available on GitHub: https://github.com/EvaSeidlmayer/FourShadesofLifeSciences

Authors:Gulcin Baykal, Abdullah Akgül, Manuel Haussmann, Bahareh Tasdighi, Nicklas Werge, Yi-Shan Wu, Melih Kandemir
Title: ObjectRL: An Object-Oriented Reinforcement Learning Codebase
Abstract:
ObjectRL is an open-source Python codebase for deep reinforcement learning (RL), designed for research-oriented prototyping with minimal programming effort. Unlike existing codebases, ObjectRL is built on Object-Oriented Programming (OOP) principles, providing a clear structure that simplifies the implementation, modification, and evaluation of new algorithms. ObjectRL lowers the entry barrier for deep RL research by organizing best practices into explicit, clearly separated components, making them easier to understand and adapt. Each algorithmic component is a class with attributes that describe key RL concepts and methods that intuitively reflect their interactions. The class hierarchy closely follows common ontological relationships, enabling data encapsulation, inheritance, and polymorphism, which are core features of OOP. We demonstrate the efficiency of ObjectRL's design through representative use cases that highlight its flexibility and suitability for rapid prototyping. The documentation and source code are available at https://objectrl.readthedocs.io and https://github.com/adinlab/objectrl .

Authors:Pablo Alonso-Jiménez, Pedro Ramoneda, R. Oguz Araz, Andrea Poltronieri, Dmitry Bogdanov
Title: OMAR-RQ: Open Music Audio Representation Model Trained with Multi-Feature Masked Token Prediction
Abstract:
Developing open-source foundation models is essential for advancing research in music audio understanding and ensuring access to powerful, multipurpose representations for music information retrieval. We present OMAR-RQ, a model trained with self-supervision via masked token classification methodologies using a large-scale dataset with over 330,000 hours of music audio. We experiment with different input features and quantization options, and achieve state-of-the-art performance in music tagging, pitch estimation, chord recognition, beat tracking, segmentation, and difficulty estimation among open self-supervised models. We open-source our training and evaluation pipelines and model weights, available at https://github.com/mtg/omar-rq.

Authors:Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang
Title: Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
Abstract:
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

Authors:Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu
Title: Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering
Abstract:
Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing, particularly for end-to-end oriented normal estimation. Existing methods generally address relatively clean data and rely on supervised priors to fit local surfaces within specific neighborhoods. In this paper, we propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering. Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients. We start by introducing a distance measurement operator for global surface fitting on noisy data, which integrates projected distances along normals. Following this, we develop an implicit field-based filtering approach for surface point construction, adding projection constraints on these points during filtering. To address issues of over-smoothing and gradient degradation, we further incorporate local gradient consistency constraints, as well as local gradient orientation and aggregation. Comprehensive experiments on normal estimation, surface reconstruction, and point cloud denoising demonstrate the state-of-the-art performance of our method. The source code and trained models are available at https://github.com/LeoQLi/LGSF.

Authors:Yufan Zhou, Zhaobo Qi, Lingshuai Lin, Junqi Jing, Tingting Chai, Beichen Zhang, Shuhui Wang, Weigang Zhang
Title: Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos
Abstract:
In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.

Authors:Blaž Rolih, Matic Fučka, Filip Wolf, Luka Čehovin Zajc
Title: Be the Change You Want to See: Revisiting Remote Sensing Change Detection Practices
Abstract:
Remote sensing change detection aims to localize semantic changes between images of the same location captured at different times. In the past few years, newer methods have attributed enhanced performance to the additions of new and complex components to existing architectures. Most fail to measure the performance contribution of fundamental design choices such as backbone selection, pre-training strategies, and training configurations. We claim that such fundamental design choices often improve performance even more significantly than the addition of new architectural components. Due to that, we systematically revisit the design space of change detection models and analyse the full potential of a well-optimised baseline. We identify a set of fundamental design choices that benefit both new and existing architectures. Leveraging this insight, we demonstrate that when carefully designed, even an architecturally simple model can match or surpass state-of-the-art performance on six challenging change detection datasets. Our best practices generalise beyond our architecture and also offer performance improvements when applied to related methods, indicating that the space of fundamental design choices has been underexplored. Our guidelines and architecture provide a strong foundation for future methods, emphasizing that optimizing core components is just as important as architectural novelty in advancing change detection performance. Code: https://github.com/blaz-r/BTC-change-detection

Authors:Mingzhuo Li, Guang Li, Jiafeng Mao, Linfeng Ye, Takahiro Ogawa, Miki Haseyama
Title: Task-Specific Generative Dataset Distillation with Difficulty-Guided Sampling
Abstract:
To alleviate the reliance of deep neural networks on large-scale datasets, dataset distillation aims to generate compact, high-quality synthetic datasets that can achieve comparable performance to the original dataset. The integration of generative models has significantly advanced this field. However, existing approaches primarily focus on aligning the distilled dataset with the original one, often overlooking task-specific information that can be critical for optimal downstream performance. In this paper, focusing on the downstream task of classification, we propose a task-specific sampling strategy for generative dataset distillation that incorporates the concept of difficulty to consider the requirements of the target task better. The final dataset is sampled from a larger image pool with a sampling distribution obtained by matching the difficulty distribution of the original dataset. A logarithmic transformation is applied as a pre-processing step to correct for distributional bias. The results of extensive experiments demonstrate the effectiveness of our method and suggest its potential for enhancing performance on other downstream tasks. The code is available at https://github.com/SumomoTaku/DiffGuideSamp.

Authors:S. Lee, C. Myers, A. Yang, T. Zhang, S. J. L. Billinge
Title: scikit-package -- software packaging standards and roadmap for sharing reproducible scientific software
Abstract:
Scientific advancement relies on the ability to share and reproduce results. When data analysis or calculations are carried out using software written by scientists there are special challenges around code versions, quality and code sharing. scikit-package provides a roadmap to facilitate code reuse and sharing with minimal effort through tutorials coupled with automated and centralized reusable workflows. The goal of the project is to provide pedagogical and practical tools for scientists who are not professionally trained software engineers to write more reusable and maintainable software code. Code reuse can occur at multiple levels of complexity-from turning a code block into a function within a single script, to publishing a publicly installable, fully tested, and documented software package scikit-package provides a community maintained set of tools, and a roadmap, to help scientists bring their software higher levels of reproducibility and shareability.

Authors:Peilin Tao, Hainan Cui, Diantao Tu, Shuhan Shen
Title: MGSfM: Multi-Camera Geometry Driven Global Structure-from-Motion
Abstract:
Multi-camera systems are increasingly vital in the environmental perception of autonomous vehicles and robotics. Their physical configuration offers inherent fixed relative pose constraints that benefit Structure-from-Motion (SfM). However, traditional global SfM systems struggle with robustness due to their optimization framework. We propose a novel global motion averaging framework for multi-camera systems, featuring two core components: a decoupled rotation averaging module and a hybrid translation averaging module. Our rotation averaging employs a hierarchical strategy by first estimating relative rotations within rigid camera units and then computing global rigid unit rotations. To enhance the robustness of translation averaging, we incorporate both camera-to-camera and camera-to-point constraints to initialize camera positions and 3D points with a convex distance-based objective function and refine them with an unbiased non-bilinear angle-based objective function. Experiments on large-scale datasets show that our system matches or exceeds incremental SfM accuracy while significantly improving efficiency. Our framework outperforms existing global SfM methods, establishing itself as a robust solution for real-world multi-camera SfM applications. The code is available at https://github.com/3dv-casia/MGSfM/.

Authors:Wooseok Shin, Jisu Kang, Hyeonki Jeong, Jin Sob Kim, Sung Won Han
Title: Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
Abstract:
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS

Authors:Deepan Adak, Yogesh Singh Rawat, Shruti Vyas
Title: MolVision: Molecular Property Prediction with Vision Language Models
Abstract:
Molecular property prediction is a fundamental task in computational chemistry with critical applications in drug discovery and materials science. While recent works have explored Large Language Models (LLMs) for this task, they primarily rely on textual molecular representations such as SMILES/SELFIES, which can be ambiguous and structurally less informative. In this work, we introduce MolVision, a novel approach that leverages Vision-Language Models (VLMs) by integrating both molecular structure as images and textual descriptions to enhance property prediction. We construct a benchmark spanning ten diverse datasets, covering classification, regression and description tasks. Evaluating nine different VLMs in zero-shot, few-shot, and fine-tuned settings, we find that visual information improves prediction performance, particularly when combined with efficient fine-tuning strategies such as LoRA. Our results reveal that while visual information alone is insufficient, multimodal fusion significantly enhances generalization across molecular properties. Adaptation of vision encoder for molecular images in conjunction with LoRA further improves the performance. The code and data is available at : $\href{https://molvision.github.io/MolVision/}{https://molvision.github.io/MolVision/}$.

Authors:Jie Peng, Jiarui Ji, Runlin Lei, Zhewei Wei, Yongchao Liu, Chuntao Hong
Title: GDGB: A Benchmark for Generative Dynamic Text-Attributed Graph Learning
Abstract:
Dynamic Text-Attributed Graphs (DyTAGs), which intricately integrate structural, temporal, and textual attributes, are crucial for modeling complex real-world systems. However, most of the existing DyTAG datasets exhibit poor textual quality, which severely limits their utility for DyTAG generation tasks requiring semantically rich inputs. Additionally, prior work mainly focuses on discriminative tasks on DyTAGs, resulting in a lack of standardized task formulations and evaluation protocols tailored for DyTAG generation. To address these critical issues, we propose Generative DyTAG Benchmark (GDGB), which comprises eight meticulously curated DyTAG datasets with high-quality textual features for both nodes and edges, overcoming limitations of prior datasets. Building on GDGB, we define two novel DyTAG generation tasks: Transductive Dynamic Graph Generation (TDGG) and Inductive Dynamic Graph Generation (IDGG). TDGG transductively generates a target DyTAG based on the given source and destination node sets, while the more challenging IDGG introduces new node generation to inductively model the dynamic expansion of real-world graph data. To enable holistic evaluation, we design multifaceted metrics that assess the structural, temporal, and textual quality of the generated DyTAGs. We further propose GAG-General, an LLM-based multi-agent generative framework tailored for reproducible and robust benchmarking of DyTAG generation. Experimental results demonstrate that GDGB enables rigorous evaluation of TDGG and IDGG, with key insights revealing the critical interplay of structural and textual features in DyTAG generation. These findings establish GDGB as a foundational resource for advancing generative DyTAG research and unlocking further practical applications in DyTAG generation. GDGB datasets, source codes, and leaderboards are available at \href{https://gdgb-algo.github.io/}{here}.

Authors:Xinyang Li, Gen Li, Zhihui Lin, Yichen Qian, GongXin Yao, Weinan Jia, Aowen Wang, Weihua Chen, Fan Wang
Title: MoDA: Multi-modal Diffusion Architecture for Talking Head Generation
Abstract:
Talking head generation with arbitrary identities and speech audio remains a crucial problem in the realm of the virtual metaverse. Recently, diffusion models have become a popular generative technique in this field with their strong generation capabilities. However, several challenges remain for diffusion-based methods: 1) inefficient inference and visual artifacts caused by the implicit latent space of Variational Auto-Encoders (VAE), which complicates the diffusion process; 2) a lack of authentic facial expressions and head movements due to inadequate multi-modal information fusion. In this paper, MoDA handles these challenges by: 1) defining a joint parameter space that bridges motion generation and neural rendering, and leveraging flow matching to simplify diffusion learning; 2) introducing a multi-modal diffusion architecture to model the interaction among noisy motion, audio, and auxiliary conditions, enhancing overall facial expressiveness. In addition, a coarse-to-fine fusion strategy is employed to progressively integrate different modalities, ensuring effective feature fusion. Experimental results demonstrate that MoDA improves video diversity, realism, and efficiency, making it suitable for real-world applications. Project Page: https://lixinyyang.github.io/MoDA.github.io/

Authors:Zedong Peng, Zeju Li, Mingzhe Gao, Qiang Xu, Chen Zhang, Jieru Zhao
Title: ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
Abstract:
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.

Authors:Liangyu Wang, Huanyi Xie, Di Wang
Title: DistZO2: High-Throughput and Memory-Efficient Zeroth-Order Fine-tuning LLMs with Distributed Parallel Computing
Abstract:
Fine-tuning large language models (LLMs) remains resource-intensive due to their sheer scale. While zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating backward passes, its application to multi-hundred-billion-parameter models is constrained by GPU memory and compute throughput. The ZO2 framework addresses the memory bottleneck by offloading model parameters to CPU memory and overlapping transformer block transfer with dual forward computation on a single GPU. However, ZO2 remains limited by its single-device execution and achieves modest throughput. In this work, we present DistZO2, a high-throughput, memory-efficient framework for distributed zeroth-order fine-tuning of LLMs. DistZO2 introduces three parallel strategies: (1) Perturbation Parallelism (PertP), which parallelizes the two perturbed forward passes across devices; (2) Distributed Data Parallelism (DDP), adapted to the scalar-gradient nature of ZO training; and (3) a unified 2D Parallelism design that combines PertP and DDP. To further mitigate communication bottlenecks introduced by parameter offloading, we propose a hardware-aware communication strategy that slices parameter blocks and redistributes them across GPUs via high-speed interconnects such as NVLink. DistZO2 scales zeroth-order fine-tuning to modern multi-GPU systems, preserving ZO2's memory efficiency while substantially improving training throughput. In our experiments on OPT-175B, DistZO2 achieves a 3x speedup over ZO2 with distributed computing. DistZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

Authors:Kureha Yamaguchi, Benjamin Etheridge, Andy Arditi
Title: Adversarial Manipulation of Reasoning Models using Internal Representations
Abstract:
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation.

Authors:Oscar Dowson, Robert B Parker, Russel Bent
Title: MathOptAI.jl: Embed trained machine learning predictors into JuMP models
Abstract:
We present \texttt{MathOptAI.jl}, an open-source Julia library for embedding trained machine learning predictors into a JuMP model. \texttt{MathOptAI.jl} can embed a wide variety of neural networks, decision trees, and Gaussian Processes into a larger mathematical optimization model. In addition to interfacing a range of Julia-based machine learning libraries such as \texttt{Lux.jl} and \texttt{Flux.jl}, \texttt{MathOptAI.jl} uses Julia's Python interface to provide support for PyTorch models. When the PyTorch support is combined with \texttt{MathOptAI.jl}'s gray-box formulation, the function, Jacobian, and Hessian evaluations associated with the PyTorch model are offloaded to the GPU in Python, while the rest of the nonlinear oracles are evaluated on the CPU in Julia. \MathOptAI is available at https://github.com/lanl-ansi/MathOptAI.jl under a BSD-3 license.

Authors:Asad Aali, Vasiliki Bikia, Maya Varma, Nicole Chiou, Sophie Ostmeier, Arnav Singhvi, Magdalini Paschali, Ashwin Kumar, Andrew Johnston, Karimar Amador-Martinez, Eduardo Juan Perez Guerrero, Paola Naovi Cruz Rivera, Sergios Gatidis, Christian Bluethgen, Eduardo Pontes Reis, Eddy D. Zandee van Rilland, Poonam Laxmappa Hosamani, Kevin R Keet, Minjoung Go, Evelyn Ling, David B. Larson, Curtis Langlotz, Roxana Daneshjou, Jason Hom, Sanmi Koyejo, Emily Alsentzer, Akshay S. Chaudhari
Title: MedVAL: Toward Expert-Level Medical Text Validation with Language Models
Abstract:
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a novel, self-supervised, data-efficient distillation method that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset of 840 physician-annotated outputs across 6 diverse medical tasks capturing real-world challenges. Across 10 state-of-the-art LMs spanning open-source and proprietary models, MedVAL distillation significantly improves (p < 0.001) alignment with physicians across seen and unseen tasks, increasing average F1 scores from 66% to 83%. Despite strong baseline performance, MedVAL improves the best-performing proprietary LM (GPT-4o) by 8% without training on physician-labeled data, demonstrating a performance statistically non-inferior to a single human expert (p < 0.001). To support a scalable, risk-aware pathway towards clinical integration, we open-source: 1) Codebase (https://github.com/StanfordMIMI/MedVAL), 2) MedVAL-Bench (https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench), 3) MedVAL-4B (https://huggingface.co/stanfordmimi/MedVAL-4B). Our benchmark provides evidence of LMs approaching expert-level ability in validating AI-generated medical text.

Authors:Xiangrui Liu, Man Luo, Agneet Chatterjee, Hua Wei, Yezhou Yang
Title: Towards a Psychoanalytic Perspective on VLM Behaviour: A First-step Interpretation with Intriguing Observations
Abstract:
Hallucination is a long-standing problem that has been actively investigated in Vision-Language Models (VLMs). Existing research commonly attributes hallucinations to technical limitations or sycophancy bias, where the latter means the models tend to generate incorrect answers to align with user expectations. However, these explanations primarily focus on technical or externally driven factors, may have neglected the possibility that hallucination behaviours might mirror cognitive biases observed in human psychology. In this work, we introduce a psychological taxonomy, categorizing VLMs' hallucination behaviours, including sycophancy, logical inconsistency, and a newly identified VLMs behaviour: authority bias. To systematically analyze these behaviours, we design AIpsych, a scalable benchmark that reveals psychological tendencies in model response patterns. Leveraging this benchmark, we investigate how variations in model architecture and parameter size influence model behaviour when responding to strategically manipulated questions. Our experiments reveal that as model size increases, VLMs exhibit stronger sycophantic tendencies but reduced authority bias, suggesting increasing competence but a potential erosion of response integrity. A human subject study further validates our hypotheses and highlights key behavioural differences between VLMs and human respondents. This work suggests a new perspective for understanding hallucination in VLMs and highlights the importance of integrating psychological principles into model evaluation.The benchmark is available at https://github.com/lxrswdd/AIpsych.

Authors:Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv, Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Title: RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents
Abstract:
Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.

Authors:Sergii Kavun
Title: Multiple data-driven missing imputation
Abstract:
This paper introduces KZImputer, a novel adaptive imputation method for univariate time series designed for short to medium-sized missed points (gaps) (1-5 points and beyond) with tailored strategies for segments at the start, middle, or end of the series. KZImputer employs a hybrid strategy to handle various missing data scenarios. Its core mechanism differentiates between gaps at the beginning, middle, or end of the series, applying tailored techniques at each position to optimize imputation accuracy. The method leverages linear interpolation and localized statistical measures, adapting to the characteristics of the surrounding data and the gap size. The performance of KZImputer has been systematically evaluated against established imputation techniques, demonstrating its potential to enhance data quality for subsequent time series analysis. This paper describes the KZImputer methodology in detail and discusses its effectiveness in improving the integrity of time series data. Empirical analysis demonstrates that KZImputer achieves particularly strong performance for datasets with high missingness rates (around 50% or more), maintaining stable and competitive results across statistical and signal-reconstruction metrics. The method proves especially effective in high-sparsity regimes, where traditional approaches typically experience accuracy degradation.

Authors:Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring
Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
Abstract:
The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This can erode trust in digital media, making it critical to develop generalizable detectors for generated images. Recent methods leverage diffusion denoising cues, but mainly focus on single-step reconstruction errors, ignoring the inherent sequential nature of the denoising process. In this work, we propose LATTE - Latent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across several denoising timesteps. By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images. Each latent is refined by employing our latent-visual feature refinement module and aggregated into a unified representation. Afterwards, it is fused with the visual features and finally passed into a lightweight classifier. Our experiments demonstrate that LATTE surpasses the baselines on several established benchmarks, such as GenImage and DiffusionFake. Moreover, it demonstrates strong performance in cross-generator and cross-datasets settings, highlighting the potential of using the trajectory of latent embeddings for generated image detection. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.

Authors:Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua Dong, Yu Yin, Sohrab Amirghodsi, Yun Fu
Title: Cautious Next Token Prediction
Abstract:
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.

Authors:Zipeng Qiu
Title: OpenTable-R1: A Reinforcement Learning Augmented Tool Agent for Open-Domain Table Question Answering
Abstract:
Open-domain table question answering traditionally relies on a two-stage pipeline: static table retrieval followed by a closed-domain answer. In contrast, we propose an end-to-end agentic framework that embeds multi-turn tool calls-using a BM25+-based search API and a SQLite SQL executor-directly into a large language model. To further adapt a compact 4B-parameter model, we introduce a two-stage fine-tuning process: supervised cold-start on easy questions, then Async GRPO reinforcement learning on harder cases with LoRA adapters and a rollout buffer. This unified approach enables the model to jointly retrieve, reason, and execute queries, yielding a dramatic accuracy improvement from single-digit zero-shot performance to over 0.86 exact match on a held-out test set. Our results underscore the effectiveness of integrating structured tool calls with targeted RL fine-tuning for scalable, accurate table QA. The code is available at https://github.com/TabibitoQZP/OpenTableR1.

Authors:Rongxin Ouyang, Chang Chu, Zhikuang Xin, Xiangyao Ma
Title: PDFMathTranslate: Scientific Document Translation Preserving Layouts
Abstract:
Language barriers in scientific documents hinder the diffusion and development of science and technologies. However, prior efforts in translating such documents largely overlooked the information in layouts. To bridge the gap, we introduce PDFMathTranslate, the world's first open-source software for translating scientific documents while preserving layouts. Leveraging the most recent advances in large language models and precise layout detection, we contribute to the community with key improvements in precision, flexibility, and efficiency. The work has been open-sourced at https://github.com/byaidu/pdfmathtranslate with more than 222k downloads.

Authors:Haiqing Li, Yuzhi Guo, Feng Jiang, Thao M. Dang, Hehuan Ma, Qifeng Zhou, Jean Gao, Junzhou Huang
Title: Text-Guided Multi-Instance Learning for Scoliosis Screening via Gait Video Analysis
Abstract:
Early-stage scoliosis is often difficult to detect, particularly in adolescents, where delayed diagnosis can lead to serious health issues. Traditional X-ray-based methods carry radiation risks and rely heavily on clinical expertise, limiting their use in large-scale screenings. To overcome these challenges, we propose a Text-Guided Multi-Instance Learning Network (TG-MILNet) for non-invasive scoliosis detection using gait videos. To handle temporal misalignment in gait sequences, we employ Dynamic Time Warping (DTW) clustering to segment videos into key gait phases. To focus on the most relevant diagnostic features, we introduce an Inter-Bag Temporal Attention (IBTA) mechanism that highlights critical gait phases. Recognizing the difficulty in identifying borderline cases, we design a Boundary-Aware Model (BAM) to improve sensitivity to subtle spinal deviations. Additionally, we incorporate textual guidance from domain experts and large language models (LLM) to enhance feature representation and improve model interpretability. Experiments on the large-scale Scoliosis1K gait dataset show that TG-MILNet achieves state-of-the-art performance, particularly excelling in handling class imbalance and accurately detecting challenging borderline cases. The code is available at https://github.com/lhqqq/TG-MILNet

Authors:Huihui Xu, Yuanpeng Nie, Hualiang Wang, Ying Chen, Wei Li, Junzhi Ning, Lihao Liu, Hongqiu Wang, Lei Zhu, Jiyao Liu, Xiaomeng Li, Junjun He
Title: MedGround-R1: Advancing Medical Image Grounding via Spatial-Semantic Rewarded Group Relative Policy Optimization
Abstract:
Medical Image Grounding (MIG), which involves localizing specific regions in medical images based on textual descriptions, requires models to not only perceive regions but also deduce spatial relationships of these regions. Existing Vision-Language Models (VLMs) for MIG often rely on Supervised Fine-Tuning (SFT) with large amounts of Chain-of-Thought (CoT) reasoning annotations, which are expensive and time-consuming to acquire. Recently, DeepSeek-R1 demonstrated that Large Language Models (LLMs) can acquire reasoning abilities through Group Relative Policy Optimization (GRPO) without requiring CoT annotations. In this paper, we adapt the GRPO reinforcement learning framework to VLMs for Medical Image Grounding. We propose the Spatial-Semantic Rewarded Group Relative Policy Optimization to train the model without CoT reasoning annotations. Specifically, we introduce Spatial-Semantic Rewards, which combine spatial accuracy reward and semantic consistency reward to provide nuanced feedback for both spatially positive and negative completions. Additionally, we propose to use the Chain-of-Box template, which integrates visual information of referring bounding boxes into the reasoning process, enabling the model to explicitly reason about spatial regions during intermediate steps. Experiments on three datasets MS-CXR, ChestX-ray8, and M3D-RefSeg demonstrate that our method achieves state-of-the-art performance in Medical Image Grounding. Ablation studies further validate the effectiveness of each component in our approach. Code, checkpoints, and datasets are available at https://github.com/bio-mlhui/MedGround-R1

Authors:Seshu Tirupathi, Dhaval Salwala, Elizabeth Daly, Inge Vejsbjerg
Title: GAF-Guard: An Agentic Framework for Risk Management and Governance in Large Language Models
Abstract:
As Large Language Models (LLMs) continue to be increasingly applied across various domains, their widespread adoption necessitates rigorous monitoring to prevent unintended negative consequences and ensure robustness. Furthermore, LLMs must be designed to align with human values, like preventing harmful content and ensuring responsible usage. The current automated systems and solutions for monitoring LLMs in production are primarily centered on LLM-specific concerns like hallucination etc, with little consideration given to the requirements of specific use-cases and user preferences. This paper introduces GAF-Guard, a novel agentic framework for LLM governance that places the user, the use-case, and the model itself at the center. The framework is designed to detect and monitor risks associated with the deployment of LLM based applications. The approach models autonomous agents that identify risks, activate risk detection tools, within specific use-cases and facilitate continuous monitoring and reporting to enhance AI safety, and user expectations. The code is available at https://github.com/IBM/risk-atlas-nexus-demos/tree/main/gaf-guard.

Authors:Wentao Tan, Qiong Cao, Yibing Zhan, Chao Xue, Changxing Ding
Title: From Answers to Rationales: Self-Aligning Multimodal Reasoning with Answer-Oriented Chain-of-Thought
Abstract:
Achieving human-like reasoning capabilities in Multimodal Large Language Models (MLLMs) has long been a goal. Current methods primarily focus on synthesizing positive rationales, typically relying on manual annotations or complex systems. Moreover, they often overlook negative reasoning, which limits the model's generalization ability and robustness in multimodal inference. To address this gap, we propose a novel framework: \textbf{S}elf-Aligning \textbf{M}ultimodal Reasoning with \textbf{A}nswer-O\textbf{r}iented Chain-of-\textbf{T}hought (SMART). SMART employs an answer-oriented chain-of-thought (AoT) prompt to automatically construct high-quality data. Drawing inspiration from human proof-based strategies, AoT leverages both correct and incorrect answers to extract key visual information that links questions and answers. When provided with correct answers, the model produces strong positive rationales. Conversely, when correct answers are replaced with incorrect alternatives, the model generates an erroneous yet compelling reasoning path, serving as a form of discriminative negative rationale. Models trained with AoT-generated data outperform those trained on manually annotated datasets, demonstrating superior reasoning capabilities. Consequently, SMART establishes an iterative generation-optimization method that continually enhances the model's reasoning skills. Experiments indicate that the SMART framework significantly improves various MLLMs, regardless of model architecture, parameter size, or pre-training dataset. The code is available at https://github.com/WentaoTan/SMART.

Authors:Zhiyi Hou, Enhui Ma, Fang Li, Zhiyi Lai, Kalok Ho, Zhanqian Wu, Lijun Zhou, Long Chen, Chitian Sun, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Kaicheng Yu
Title: DriveMRP: Enhancing Vision-Language Models with Synthetic Motion Data for Motion Risk Prediction
Abstract:
Autonomous driving has seen significant progress, driven by extensive real-world data. However, in long-tail scenarios, accurately predicting the safety of the ego vehicle's future motion remains a major challenge due to uncertainties in dynamic environments and limitations in data coverage. In this work, we aim to explore whether it is possible to enhance the motion risk prediction capabilities of Vision-Language Models (VLM) by synthesizing high-risk motion data. Specifically, we introduce a Bird's-Eye View (BEV) based motion simulation method to model risks from three aspects: the ego-vehicle, other vehicles, and the environment. This allows us to synthesize plug-and-play, high-risk motion data suitable for VLM training, which we call DriveMRP-10K. Furthermore, we design a VLM-agnostic motion risk estimation framework, named DriveMRP-Agent. This framework incorporates a novel information injection strategy for global context, ego-vehicle perspective, and trajectory projection, enabling VLMs to effectively reason about the spatial relationships between motion waypoints and the environment. Extensive experiments demonstrate that by fine-tuning with DriveMRP-10K, our DriveMRP-Agent framework can significantly improve the motion risk prediction performance of multiple VLM baselines, with the accident recognition accuracy soaring from 27.13% to 88.03%. Moreover, when tested via zero-shot evaluation on an in-house real-world high-risk motion dataset, DriveMRP-Agent achieves a significant performance leap, boosting the accuracy from base_model's 29.42% to 68.50%, which showcases the strong generalization capabilities of our method in real-world scenarios.

Authors:Yuqi Li, Chuanguang Yang, Hansheng Zeng, Zeyu Dong, Zhulin An, Yongjun Xu, Yingli Tian, Hao Wu
Title: Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Abstract:
Spatiotemporal forecasting tasks, such as traffic flow, combustion dynamics, and weather forecasting, often require complex models that suffer from low training efficiency and high memory consumption. This paper proposes a lightweight framework, Spectral Decoupled Knowledge Distillation (termed SDKD), which transfers the multi-scale spatiotemporal representations from a complex teacher model to a more efficient lightweight student network. The teacher model follows an encoder-latent evolution-decoder architecture, where its latent evolution module decouples high-frequency details and low-frequency trends using convolution and Transformer (global low-frequency modeler). However, the multi-layer convolution and deconvolution structures result in slow training and high memory usage. To address these issues, we propose a frequency-aligned knowledge distillation strategy, which extracts multi-scale spectral features from the teacher's latent space, including both high and low frequency components, to guide the lightweight student model in capturing both local fine-grained variations and global evolution patterns. Experimental results show that SDKD significantly improves performance, achieving reductions of up to 81.3% in MSE and in MAE 52.3% on the Navier-Stokes equation dataset. The framework effectively captures both high-frequency variations and long-term trends while reducing computational complexity. Our codes are available at https://github.com/itsnotacie/SDKD

Authors:Fardin Saad, Pradeep K. Murukannaiah, Munindar P. Singh
Title: Theory of Mind in Action: The Instruction Inference Task
Abstract:
The Theory of Mind (ToM) refers to an agent's capacity to infer the mental states of other agents. ToM is essential for effective collaboration. To assess ToM in a dynamic, goal-oriented, and collaborative environment, we introduce a novel task, Instruction Inference, in which an agent assists a principal in reaching a goal by interpreting indirect or ambiguous instructions. We present Tomcat, an LLM-based agent, designed to exhibit ToM reasoning in interpreting and responding to the principal's instructions. We implement two variants of Tomcat. One, dubbed Fs-CoT, is based on a small number of examples (i.e., few-shot or Fs) demonstrating the requisite structured reasoning (i.e., chain-of-thought or CoT). One, dubbed CP, relies on commonsense knowledge and information about the problem (i.e., commonsense prompt or CP). We realized both variants of Tomcat on three leading large language models (LLMs), namely, GPT-4o, DeepSeek-R1, and Gemma-3-27B. To evaluate the effectiveness of Tomcat, we conducted a study with 52 human participants in which we provided participants with the same information as the CP variant of Tomcat. We computed intent accuracy, action optimality, and planning optimality to measure the ToM capabilities of Tomcat and our study participants. We found that Tomcat with Fs-CoT, particularly with GPT-4o and DeepSeek-R1, achieves performance comparable to the human participants, underscoring its ToM potential for human-AI collaboration.

Authors:Jianping Zhao, Qiong Zhou, Tian Wang, Yusi Fan, Qian Yang, Li Jiao, Chang Liu, Zhehao Guo, Qi Lu, Fengfeng Zhou, Ruochi Zhang
Title: MolProphecy: Bridging Medicinal Chemists' Knowledge and Molecular Pre-Trained Models via a Multi-Modal Framework
Abstract:
MolProphecy is a human-in-the-loop (HITL) multi-modal framework designed to integrate chemists' domain knowledge into molecular property prediction models. While molecular pre-trained models have enabled significant gains in predictive accuracy, they often fail to capture the tacit, interpretive reasoning central to expert-driven molecular design. To address this, MolProphecy employs ChatGPT as a virtual chemist to simulate expert-level reasoning and decision-making. The generated chemist knowledge is embedded by the large language model (LLM) as a dedicated knowledge representation and then fused with graph-based molecular features through a gated cross-attention mechanism, enabling joint reasoning over human-derived and structural features. Evaluated on four benchmark datasets (FreeSolv, BACE, SIDER, and ClinTox), MolProphecy outperforms state-of-the-art (SOTA) models, achieving a 15.0 percent reduction in RMSE on FreeSolv and a 5.39 percent improvement in AUROC on BACE. Analysis reveals that chemist knowledge and structural features provide complementary contributions, improving both accuracy and interpretability. MolProphecy offers a practical and generalizable approach for collaborative drug discovery, with the flexibility to incorporate real chemist input in place of the current simulated proxy--without the need for model retraining. The implementation is publicly available at https://github.com/zhangruochi/MolProphecy.

Authors:Geonwoo Cho, Jaegyun Im, Doyoon Kim, Sundong Kim
Title: Causal-Paced Deep Reinforcement Learning
Abstract:
Designing effective task sequences is crucial for curriculum reinforcement learning (CRL), where agents must gradually acquire skills by training on intermediate tasks. A key challenge in CRL is to identify tasks that promote exploration, yet are similar enough to support effective transfer. While recent approach suggests comparing tasks via their Structural Causal Models (SCMs), the method requires access to ground-truth causal structures, an unrealistic assumption in most RL settings. In this work, we propose Causal-Paced Deep Reinforcement Learning (CP-DRL), a curriculum learning framework aware of SCM differences between tasks based on interaction data approximation. This signal captures task novelty, which we combine with the agent's learnability, measured by reward gain, to form a unified objective. Empirically, CP-DRL outperforms existing curriculum methods on the Point Mass benchmark, achieving faster convergence and higher returns. CP-DRL demonstrates reduced variance with comparable final returns in the Bipedal Walker-Trivial setting, and achieves the highest average performance in the Infeasible variant. These results indicate that leveraging causal relationships between tasks can improve the structure-awareness and sample efficiency of curriculum reinforcement learning. We provide the full implementation of CP-DRL to facilitate the reproduction of our main results at https://github.com/Cho-Geonwoo/CP-DRL.

Authors:Aoming Liu, Reuben Tan, Boqing Gong, Bryan A. Plummer
Title: Beyond Token Pruning: Operation Pruning in Vision-Language Models
Abstract:
Prior Vision Language Model (VLM) token pruning reduces computation by eliminating attention and feed-forward operations for pruned tokens while maintaining all operations for critical tokens. However, this binary approach conflates token/operation redundancy - critical operations may be removed along with discarded tokens, while preserved tokens retain all potentially redundant operations. To surgically eliminate redundant operations while preserving critical ones, we propose Greedily Sorted Operation Pruning (GSOP), a data-driven method that directly prunes operations rather than tokens. GSOP first decomposes a VLM decoder's computations into atomic operations along three dimensions: token groups, layer positions, and computation modules. GSOP determines the pruning order of operations through greedy sorting: GSOP iteratively selects the redundant operation that incurs minimal performance drop considering previously pruned operations. Different computational budgets can be accommodated without re-searching by simply pruning operations according to this order until the desired budget is met. GSOP enhances sorting efficiency through: a) leveraging historical operation rankings to avoid redundant evaluations; b) excluding the ``free-to-prune" and ``danger-to-prune" operations from sorting. GSOP achieves compelling efficiency-performance tradeoffs, reducing computation by 70% with only 4% performance loss while maintaining up to 18% higher performance than state-of-the-art methods when transferred across diverse VLMs and tasks. Real GPU efficiency evaluations confirm its practical value. The code is in https://github.com/zxcvfd13502/GSOP.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Research Pratim Maity, Sarbajit Pal, Amitabha Das, Tapas Samanta
Title: Advancing Talking Head Generation: A Comprehensive Survey of Multi-Modal Methodologies, Datasets, Evaluation Metrics, and Loss Functions
Abstract:
Talking Head Generation (THG) has emerged as a transformative technology in computer vision, enabling the synthesis of realistic human faces synchronized with image, audio, text, or video inputs. This paper provides a comprehensive review of methodologies and frameworks for talking head generation, categorizing approaches into 2D--based, 3D--based, Neural Radiance Fields (NeRF)--based, diffusion--based, parameter-driven techniques and many other techniques. It evaluates algorithms, datasets, and evaluation metrics while highlighting advancements in perceptual realism and technical efficiency critical for applications such as digital avatars, video dubbing, ultra-low bitrate video conferencing, and online education. The study identifies challenges such as reliance on pre--trained models, extreme pose handling, multilingual synthesis, and temporal consistency. Future directions include modular architectures, multilingual datasets, hybrid models blending pre--trained and task-specific layers, and innovative loss functions. By synthesizing existing research and exploring emerging trends, this paper aims to provide actionable insights for researchers and practitioners in the field of talking head generation. For the complete survey, code, and curated resource list, visit our GitHub repository: https://github.com/VineetKumarRakesh/thg.

Authors:Lindong Xie, Genghui Li, Zhenkun Wang, Edward Chung, Maoguo Gong
Title: Large Language Model-Driven Surrogate-Assisted Evolutionary Algorithm for Expensive Optimization
Abstract:
Surrogate-assisted evolutionary algorithms (SAEAs) are a key tool for addressing costly optimization tasks, with their efficiency being heavily dependent on the selection of surrogate models and infill sampling criteria. However, designing an effective dynamic selection strategy for SAEAs is labor-intensive and requires substantial domain knowledge. To address this challenge, this paper proposes LLM-SAEA, a novel approach that integrates large language models (LLMs) to configure both surrogate models and infill sampling criteria online. Specifically, LLM-SAEA develops a collaboration-of-experts framework, where one LLM serves as a scoring expert (LLM-SE), assigning scores to surrogate models and infill sampling criteria based on their optimization performance, while another LLM acts as a decision expert (LLM-DE), selecting the appropriate configurations by analyzing their scores along with the current optimization state. Experimental results demonstrate that LLM-SAEA outperforms several state-of-the-art algorithms across standard test cases. The source code is publicly available at https://github.com/ForrestXie9/LLM-SAEA.

Authors:Chi Zhang, Yu Dong, Yang Wang, Yuetong Han, Guihua Shan, Bixia Tang
Title: AuraGenome: An LLM-Powered Framework for On-the-Fly Reusable and Scalable Circular Genome Visualizations
Abstract:
Circular genome visualizations are essential for exploring structural variants and gene regulation. However, existing tools often require complex scripting and manual configuration, making the process time-consuming, error-prone, and difficult to learn. To address these challenges, we introduce AuraGenome, an LLM-powered framework for rapid, reusable, and scalable generation of multi-layered circular genome visualizations. AuraGenome combines a semantic-driven multi-agent workflow with an interactive visual analytics system. The workflow employs seven specialized LLM-driven agents, each assigned distinct roles such as intent recognition, layout planning, and code generation, to transform raw genomic data into tailored visualizations. The system supports multiple coordinated views tailored for genomic data, offering ring, radial, and chord-based layouts to represent multi-layered circular genome visualizations. In addition to enabling interactions and configuration reuse, the system supports real-time refinement and high-quality report export. We validate its effectiveness through two case studies and a comprehensive user study. AuraGenome is available at: https://github.com/Darius18/AuraGenome.

Authors:John Gideon, Kimimasa Tamura, Emily Sumner, Laporsha Dees, Patricio Reyes Gomez, Bassamul Haq, Todd Rowell, Avinash Balachandran, Simon Stent, Guy Rosman
Title: A Simulator Dataset to Support the Study of Impaired Driving
Abstract:
Despite recent advances in automated driving technology, impaired driving continues to incur a high cost to society. In this paper, we present a driving dataset designed to support the study of two common forms of driver impairment: alcohol intoxication and cognitive distraction. Our dataset spans 23.7 hours of simulated urban driving, with 52 human subjects under normal and impaired conditions, and includes both vehicle data (ground truth perception, vehicle pose, controls) and driver-facing data (gaze, audio, surveys). It supports analysis of changes in driver behavior due to alcohol intoxication (0.10\% blood alcohol content), two forms of cognitive distraction (audio n-back and sentence parsing tasks), and combinations thereof, as well as responses to a set of eight controlled road hazards, such as vehicle cut-ins. The dataset will be made available at https://toyotaresearchinstitute.github.io/IDD/.

Authors:Yuqi Wu, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Title: Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Abstract:
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.

Authors:Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Title: Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Abstract:
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.

Authors:Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz Hardt, Jonas Geiping
Title: Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Abstract:
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

Authors:Purbesh Mitra, Sennur Ulukus
Title: MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Abstract:
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.

Authors:Kunyu Zhang, Qiang Li, Shujian Yu
Title: MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis
Abstract:
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.

Authors:Ziqi Miao, Yi Ding, Lijun Li, Jing Shao
Title: Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
Abstract:
With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

Authors:Fangfu Liu, Hao Li, Jiawei Chi, Hanyang Wang, Minghui Yang, Fudong Wang, Yueqi Duan
Title: LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Abstract:
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.

Authors:Gent Serifi, Marcel C. Bühler
Title: HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
Abstract:
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.

Authors:Ke-Han Lu, Zhehuai Chen, Szu-Wei Fu, Chao-Han Huck Yang, Sung-Feng Huang, Chih-Kai Yang, Chee-En Yu, Chun-Wei Chen, Wei-Chih Chen, Chien-yu Huang, Yi-Cheng Lin, Yu-Xiang Lin, Chi-An Fu, Chun-Yi Kuan, Wenze Ren, Xuanjun Chen, Wei-Ping Huang, En-Pei Hu, Tzu-Quan Lin, Yuan-Kuei Wu, Kuan-Po Huang, Hsiao-Ying Huang, Huang-Cheng Chou, Kai-Wei Chang, Cheng-Han Chiang, Boris Ginsburg, Yu-Chiang Frank Wang, Hung-yi Lee
Title: DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
Abstract:
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.

Authors:Mingxin Liu, Peiyuan Zhang, Yuan Liu, Wei Zhang, Yue Zhou, Ning Liao, Ziyang Gong, Junwei Luo, Zhirui Wang, Yi Yu, Xue Yang
Title: Partial Weakly-Supervised Oriented Object Detection
Abstract:
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.

Authors:Alex Colagrande, Paul Caillon, Eva Feillet, Alexandre Allauzen
Title: Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
Abstract:
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.

Authors:Mélanie Gaillochet, Mehrdad Noori, Sahar Dastani, Christian Desrosiers, Hervé Lombaert
Title: Prompt learning with bounding box constraints for medical image segmentation
Abstract:
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git

Authors:Xiangyang Luo, Ye Zhu, Yunfei Liu, Lijian Lin, Cong Wan, Zijian Cai, Shao-Lun Huang, Yu Li
Title: CanonSwap: High-Fidelity and Consistent Video Face Swapping via Canonical Space Modulation
Abstract:
Video face swapping aims to address two primary challenges: effectively transferring the source identity to the target video and accurately preserving the dynamic attributes of the target face, such as head poses, facial expressions, lip-sync, \etc. Existing methods mainly focus on achieving high-quality identity transfer but often fall short in maintaining the dynamic attributes of the target face, leading to inconsistent results. We attribute this issue to the inherent coupling of facial appearance and motion in videos. To address this, we propose CanonSwap, a novel video face-swapping framework that decouples motion information from appearance information. Specifically, CanonSwap first eliminates motion-related information, enabling identity modification within a unified canonical space. Subsequently, the swapped feature is reintegrated into the original video space, ensuring the preservation of the target face's dynamic attributes. To further achieve precise identity transfer with minimal artifacts and enhanced realism, we design a Partial Identity Modulation module that adaptively integrates source identity features using a spatial mask to restrict modifications to facial regions. Additionally, we introduce several fine-grained synchronization metrics to comprehensively evaluate the performance of video face swapping methods. Extensive experiments demonstrate that our method significantly outperforms existing approaches in terms of visual quality, temporal consistency, and identity preservation. Our project page are publicly available at https://luoxyhappy.github.io/CanonSwap/.

Authors:Jiaxing Wang, Yifeng Yu, Jiahan Song, Bin Cao, Jing Fan, Ji Zhang
Title: RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Abstract:
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.

Authors:JungWoo Chae, Jiyoon Kim, JaeWoong Choi, Kyungyul Kim, Sangheum Hwang
Title: APT: Adaptive Personalized Training for Diffusion Models with Limited Data
Abstract:
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.

Authors:Qingyu Fan, Yinghao Cai, Chao Li, Chunting Jiao, Xudong Zheng, Tao Lu, Bin Liang, Shuo Wang
Title: MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping
Abstract:
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.

Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yang Zhao, Hongjin Qian, Zhicheng Dou
Title: Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Abstract:
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.

Authors:Xing Liu, Lizhuo Luo, Ming Tang, Chao Huang
Title: FlowSpec: Continuous Pipelined Speculative Decoding for Efficient Distributed LLM Inference
Abstract:
Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.28$\times$-1.79$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}

Authors:Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Rishi Hazra, Nicolas Baldwin, Alexis Audran-Reiss, Michael Kuchnik, Despoina Magka, Minqi Jiang, Alisia Maria Lupidi, Andrei Lupu, Roberta Raileanu, Kelvin Niu, Tatiana Shavrina, Jean-Christophe Gagnon-Audet, Michael Shvartsman, Shagun Sodhani, Alexander H. Miller, Abhishek Charnalia, Derek Dunfield, Carole-Jean Wu, Pontus Stenetorp, Nicola Cancedda, Jakob Nicolaus Foerster, Yoram Bachrach
Title: AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
Abstract:
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.

Authors:Abiam Remache González, Meriem Chagour, Timon Bijan Rüth, Raúl Trapiella Cañedo, Marina Martínez Soler, Álvaro Lorenzo Felipe, Hyun-Suk Shin, María-Jesús Zamorano Serrano, Ricardo Torres, Juan-Antonio Castillo Parra, Eduardo Reyes Abad, Miguel-Ángel Ferrer Ballester, Juan-Manuel Afonso López, Francisco-Mario Hernández Tejera, Adrian Penate-Sanchez
Title: IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
Abstract:
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public

Authors:Dimitrios Bouzoulas, Eerik Alamikkotervo, Risto Ojala
Title: Automatic Labelling for Low-Light Pedestrian Detection
Abstract:
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling

Authors:Chenxu Wang, Yilin Lyu, Zicheng Sun, Liping Jing
Title: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
Abstract:
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.

Authors:Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi
Title: Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy
Abstract:
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Abstract:
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is designed to explicitly attend to the most relevant content. Theoretical analysis demonstrates that MedFormer outperforms existing medical vision transformers in terms of generality and efficiency. Extensive experiments across various imaging modality datasets show that MedFormer consistently enhances performance in all three medical image recognition tasks mentioned above. MedFormer provides an efficient and versatile solution for medical image recognition, with strong potential for clinical application.

Authors:Teng Fu, Yuwen Chen, Zhuofan Chen, Mengyang Zhao, Bin Li, Xiangyang Xue
Title: CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Abstract:
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .

Authors:Wei Li, Jingyang Zhang, Lihao Liu, Guoan Wang, Junjun He, Yang Chen, Lixu Gu
Title: F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Abstract:
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.

Authors:Zihan Tan, Suyuan Huang, Guancheng Wan, Wenke Huang, He Li, Mang Ye
Title: S2FGL: Spatial Spectral Federated Graph Learning
Abstract:
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.

Authors:Mufhumudzi Muthivhi, Terence L. van Zyl
Title: Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Abstract:
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.

Authors:Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, Jongwon Choi
Title: Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
Abstract:
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.

Authors:Fangru Zhou, Jun Zhao, Guoxin Wang
Title: JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
Abstract:
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.

Authors:Jiahao Wu, Rui Peng, Jianbo Jiao, Jiayu Yang, Luyang Tang, Kaiqiang Xiong, Jie Liang, Jinbo Yan, Runling Liu, Ronggang Wang
Title: LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling
Abstract:
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.

Authors:Anlin Zheng, Haochen Wang, Yucheng Zhao, Weipeng Deng, Tiancai Wang, Xiangyu Zhang, Xiaojuan Qi
Title: Hita: Holistic Tokenizer for Autoregressive Image Generation
Abstract:
Vanilla autoregressive image generation models generate visual tokens step-by-step, limiting their ability to capture holistic relationships among token sequences. Moreover, because most visual tokenizers map local image patches into latent tokens, global information is limited. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Hita incorporates two key strategies to better align with the AR generation process: 1) {arranging} a sequential structure with holistic tokens at the beginning, followed by patch-level tokens, and using causal attention to maintain awareness of previous tokens; and 2) adopting a lightweight fusion module before feeding the de-quantized tokens into the decoder to control information flow and prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. Detailed analysis of the holistic representation highlights its ability to capture global image properties, such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}.

Authors:Changhun Kim, Yechan Mun, Sangchul Hahn, Eunho Yang
Title: DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values
Abstract:
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.

Authors:Nina Konovalova, Maxim Nikolaev, Andrey Kuznetsov, Aibek Alanov
Title: Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Abstract:
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).

Authors:Zecheng Zhao, Selena Song, Tong Chen, Zhi Chen, Shazia Sadiq, Yadan Luo
Title: Are Synthetic Videos Useful? A Benchmark for Retrieval-Centric Evaluation of Synthetic Videos
Abstract:
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.

Authors:JaeHyuck Choi, MinJun Kim, JeHyeong Hong
Title: MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Abstract:
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.

Authors:Dohoon Kim, Donghun Kang, Taesup Moon
Title: DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning
Abstract:
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.

Authors:Fanghai Yi, Zehong Zheng, Zexiao Liang, Yihang Dong, Xiyang Fang, Wangyu Wu, Xuhang Chen
Title: MAC-Lookup: Multi-Axis Conditional Lookup Model for Underwater Image Enhancement
Abstract:
Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.

Authors:Yuxiang Zhang, Wei Li, Wen Jia, Mengmeng Zhang, Ran Tao, Shunlin Liang
Title: Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation
Abstract:
Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%$\sim$5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.

Authors:Zihao Li, Chao Yang, Tong Zhang, Yakun Chen, Xianzhi Wang, Guandong Xu, Daoyi Dong
Title: Listwise Preference Alignment Optimization for Tail Item Recommendation
Abstract:
Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.

Authors:Minghao Ning, Yufeng Yang, Keqi Shu, Shucheng Huang, Jiaming Zhong, Maryam Salehi, Mahdi Rahmani, Yukun Lu, Chen Sun, Aladdin Saleh, Ehsan Hashemi, Amir Khajepour
Title: CoInfra: A Large-Scale Cooperative Infrastructure Perception System and Dataset in Adverse Weather
Abstract:
We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.

Authors:Steven Song, Anirudh Subramanyam, Zhenyu Zhang, Aarti Venkat, Robert L. Grossman
Title: GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Abstract:
The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. We implement and share GDC Cohort Copilot as a containerized Gradio app on HuggingFace Spaces, available at https://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds. All source code is available at https://github.com/uc-cdis/gdc-cohort-copilot.

Authors:Takuro Kawada, Shunsuke Kitada, Sota Nemoto, Hitoshi Iyatomi
Title: SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Abstract:
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.

Authors:Xiao Wang, Jingtao Jiang, Qiang Chen, Lan Chen, Lin Zhu, Yaowei Wang, Yonghong Tian, Jin Tang
Title: ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Abstract:
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.

Authors:Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu
Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Abstract:
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.

Authors:Tuo Wang, Jian Kang, Yujun Yan, Adithya Kulkarni, Dawei Zhou
Title: Non-exchangeable Conformal Prediction for Temporal Graph Neural Networks
Abstract:
Conformal prediction for graph neural networks (GNNs) offers a promising framework for quantifying uncertainty, enhancing GNN reliability in high-stakes applications. However, existing methods predominantly focus on static graphs, neglecting the evolving nature of real-world graphs. Temporal dependencies in graph structure, node attributes, and ground truth labels violate the fundamental exchangeability assumption of standard conformal prediction methods, limiting their applicability. To address these challenges, in this paper, we introduce NCPNET, a novel end-to-end conformal prediction framework tailored for temporal graphs. Our approach extends conformal prediction to dynamic settings, mitigating statistical coverage violations induced by temporal dependencies. To achieve this, we propose a diffusion-based non-conformity score that captures both topological and temporal uncertainties within evolving networks. Additionally, we develop an efficiency-aware optimization algorithm that improves the conformal prediction process, enhancing computational efficiency and reducing coverage violations. Extensive experiments on diverse real-world temporal graphs, including WIKI, REDDIT, DBLP, and IBM Anti-Money Laundering dataset, demonstrate NCPNET's capability to ensure guaranteed coverage in temporal graphs, achieving up to a 31% reduction in prediction set size on the WIKI dataset, significantly improving efficiency compared to state-of-the-art methods. Our data and code are available at https://github.com/ODYSSEYWT/NCPNET.

Authors:Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, Atish Agarwala
Title: Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
Abstract:
What scaling limits govern neural network training dynamics when model size and training time grow in tandem? We show that despite the complex interactions between architecture, training algorithms, and data, compute-optimally trained models exhibit a remarkably precise universality. Specifically, loss curves from models of varying sizes collapse onto a single universal curve when training compute and loss are normalized to unity at the end of training. With learning rate decay, the collapse becomes so tight that differences in the normalized curves across models fall below the noise floor of individual loss curves across random seeds, a phenomenon we term supercollapse. We observe supercollapse across learning rate schedules, datasets, and architectures, including transformers trained on next-token prediction, and find it breaks down when hyperparameters are scaled suboptimally, providing a precise and practical indicator of good scaling. We explain these phenomena by connecting collapse to the power-law structure in typical neural scaling laws, and analyzing a simple yet surprisingly effective model of SGD noise dynamics that accurately predicts loss curves across various learning rate schedules and quantitatively explains the origin of supercollapse.

Authors:Dan Vanderkam
Title: A Computational Proof of the Highest-Scoring Boggle Board
Abstract:
Finding all the words on a Boggle board is a classic computer programming problem. With a fast Boggle solver, local optimization techniques such as hillclimbing and simulated annealing can be used to find particularly high-scoring boards. The sheer number of possible Boggle boards has historically prevented an exhaustive search for the global optimum board. We apply Branch and Bound and a decision diagram-like data structure to perform the first such search. We find that the highest-scoring boards found via hillclimbing are, in fact, the global optima.

Authors:Kehinde Ajayi, Yi He, Jian Wu
Title: Uncertainty-Aware Complex Scientific Table Data Extraction
Abstract:
Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47% of extraction results, the data quality can be improved by 30%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.

Authors:Ziyi Yang, Guangyu Hu, Mingkai Miao, Changyuan Yu, Hongce Zhang
Title: SMT-Sweep: Word-Level Representation Unification for Hardware Verification
Abstract:
SAT sweeping has long been a cornerstone technique in logic simplification and equivalence checking at the bit level, leveraging structural hashing, simulation and SAT solving to prune redundant logic. However, with the growing adoption of word-level constructs in hardware verification, such as bit-vector operations, arithmetics and arrays, there lacks a counterpart of SAT sweeping at the word level. In this paper, we introduce SMT-Sweep, a novel extension of SAT sweeping into the word level, grounded in Satisfiability Modulo Theories (SMT). SMT-Sweep takes advantage of simulation and equivalence detection to handle SMT terms with rich bit-vector operations and array semantics. Our framework incorporates both randomized and constraint-driven word-level simulation tailored to symbolic expressions and operator semantics beyond pure Boolean logic. Experimental results show that SMT-Sweep achieves significant speed-up compared to state-of-the-art bit-level SAT sweeping and word-level monolithic SMT solving (averaging around 44x and 69x, respectively).To the best of our knowledge, this is the first work that brings sweeping techniques to SMT-based hardware verification. The implementation is open-sourced at: https://github.com/yangziyiiii/SMT-Sweep.

Authors:Yongsen Zheng, Zongxuan Xie, Guohua Wang, Ziyao Liu, Liang Lin, Kwok-Yan Lam
Title: Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Abstract:
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness. Our code is available at https://github.com/zysensmile/HyFairCRS.

Authors:Yukang Cao, Chenyang Si, Jinghao Wang, Ziwei Liu
Title: FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model
Abstract:
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.

Authors:Zixiao Wang, Yuxin Wang, Xiaorui Wang, Mengting Xing, Jie Gao, Jianjun Xu, Guangcan Liu, Chenhui Jin, Zhuo Wang, Shengzhuo Zhang, Hongtao Xie
Title: Test-Time Scaling with Reflective Generative Model
Abstract:
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3-mini's performance via the new Reflective Generative Form. The new form focuses on high-quality reasoning trajectory selection and contains two novelties: 1) A unified interface for policy and process reward model: we share the backbone network and use task-specific heads for reasoning trajectory predicting and scoring respectively, introducing only 53M extra parameters for trajectory scoring. 2) Eliminating the reliance on process-level annotation: we provide a self-supervised process reward model, which can directly learn the high-quality reasoning trajectory selection from the outcome reward. Equipped with the reflective generative form, MetaStone-S1 is naturally suitable for test-time scaling, and we provide three reasoning effort modes (low, medium, and high) based on the controllable thinking length. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.

Authors:Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Hao Peng, Haojie Ding, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Jin Ouyang, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yang Zhou, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zhenhua Wu, Zhenyu Li, Zhixin Ling, Ziming Li, Dehua Ma, Di Xu, Haixuan Gao, Hang Li, Jiawei Guo, Jing Wang, Lejian Ren, Muhao Wei, Qianqian Wang, Qigen Hu, Shiyao Wang, Tao Yu, Xinchen Luo, Yan Li, Yiming Liang, Yuhang Hu, Zeyi Lu, Zhuoran Yang, Zixing Zhang
Title: Kwai Keye-VL Technical Report
Abstract:
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.

Authors:Nan Chen, Mengqi Huang, Yihao Meng, Zhendong Mao
Title: LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Abstract:
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.

Authors:Yiming Ju, Jijin Hu, Zhengxiong Luo, Haoge Deng, hanyu Zhao, Li Du, Chengwei Wu, Donglin Hao, Xinlong Wang, Tengfei Pan
Title: CI-VID: A Coherent Interleaved Text-Video Dataset
Abstract:
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID

Authors:Zhentan Zheng
Title: evMLP: An Efficient Event-Driven MLP Architecture for Vision
Abstract:
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.

Authors:Yaowei Li, Xiaoyu Li, Zhaoyang Zhang, Yuxuan Bian, Gan Liu, Xinyuan Li, Jiale Xu, Wenbo Hu, Yating Liu, Lingen Li, Jing Cai, Yuexian Zou, Yancheng He, Ying Shan
Title: IC-Custom: Diverse Image Customization via In-Context Learning
Abstract:
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We propose the In-context Multi-Modal Attention (ICMA) mechanism, which employs learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to effectively handle diverse tasks and distinguish between inputs in polyptych configurations. To address the data gap, we curated a 12K identity-consistent dataset with 8K real-world and 4K high-quality synthetic samples, avoiding the overly glossy, oversaturated look typical of synthetic data. IC-Custom supports various industrial applications, including try-on, image insertion, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves about 73\% higher human preference across identity consistency, harmony, and text alignment metrics, while training only 0.4\% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom

Authors:Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen, Wanxiang Che
Title: AI4Research: A Survey of Artificial Intelligence for Scientific Research
Abstract:
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

Authors:Kunlun Xu, Fan Zhuo, Jiangmeng Li, Xu Zou, Jiahuan Zhou
Title: Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification
Abstract:
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED

Authors:Yuhao Lin, Yi-Lin Wei, Haoran Liao, Mu Lin, Chengyi Xing, Hao Li, Dandan Zhang, Mark Cutkosky, Wei-Shi Zheng
Title: TypeTele: Releasing Dexterity in Teleoperation by Dexterous Manipulation Types
Abstract:
Dexterous teleoperation plays a crucial role in robotic manipulation for real-world data collection and remote robot control. Previous dexterous teleoperation mostly relies on hand retargeting to closely mimic human hand postures. However, these approaches may fail to fully leverage the inherent dexterity of dexterous hands, which can execute unique actions through their structural advantages compared to human hands. To address this limitation, we propose TypeTele, a type-guided dexterous teleoperation system, which enables dexterous hands to perform actions that are not constrained by human motion patterns. This is achieved by introducing dexterous manipulation types into the teleoperation system, allowing operators to employ appropriate types to complete specific tasks. To support this system, we build an extensible dexterous manipulation type library to cover comprehensive dexterous postures used in manipulation tasks. During teleoperation, we employ a MLLM (Multi-modality Large Language Model)-assisted type retrieval module to identify the most suitable manipulation type based on the specific task and operator commands. Extensive experiments of real-world teleoperation and imitation learning demonstrate that the incorporation of manipulation types significantly takes full advantage of the dexterous robot's ability to perform diverse and complex tasks with higher success rates.

Authors:Samridhi Raj Sinha, Rajvee Sheth, Abhishek Upperwal, Mayank Singh
Title: Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
Abstract:
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that address the requirements of linguistically diverse regions, such as India, and go beyond English-centric benchmarks. We introduce EKA-EVAL, a unified evaluation framework that integrates over 35+ benchmarks (including 10 Indic benchmarks) across nine major evaluation categories. The framework provides broader coverage than existing Indian language evaluation tools, offering 11 core capabilities through a modular architecture, seamless integration with Hugging Face and proprietary models, and plug-and-play usability. As the first end-to-end suite for scalable, multilingual LLM benchmarking, the framework combines extensive benchmarks, modular workflows, and dedicated support for low-resource Indian languages to enable inclusive assessment of LLM capabilities across diverse domains. We conducted extensive comparisons against five existing baselines, demonstrating that EKA-EVAL achieves the highest participant ratings in four out of five categories. The framework is open-source and publicly available at: https://github.com/lingo-iitgn/eka-eval.

Authors:Hailong Yan, Ao Li, Xiangtao Zhang, Zhe Liu, Zenglin Shi, Ce Zhu, Le Zhang
Title: MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices
Abstract:
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.

Authors:Tyler Ward, Meredith K. Owen, O'Kira Coleman, Brian Noehren, Abdullah-Al-Zubaer Imran
Title: Autoadaptive Medical Segment Anything Model
Abstract:
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.

Authors:Dmytro Kuzmenko, Nadiya Shvai
Title: TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
Abstract:
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.

Authors:Shengli Zhou, Jianuo Zhu, Qilin Huang, Fangjing Wang, Yanfu Zhang, Feng Zheng
Title: HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision
Abstract:
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.

Authors:Tianze Hua, Tian Yun, Ellie Pavlick
Title: How Do Vision-Language Models Process Conflicting Information Across Modalities?
Abstract:
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.

Authors:Eric Vin, Kyle A. Miller, Daniel J. Fremont
Title: LeanLTL: A unifying framework for linear temporal logics in Lean
Abstract:
We propose LeanLTL, a unifying framework for linear temporal logics in Lean 4. LeanLTL supports reasoning about traces that represent either infinite or finite linear time. The library allows traditional LTL syntax to be combined with arbitrary Lean expressions, making it straightforward to define properties involving numerical or other types. We prove that standard flavors of LTL can be embedded in our framework. The library also provides automation for reasoning about LeanLTL formulas in a way that facilitates using Lean's existing tactics. Finally, we provide examples illustrating the utility of the library in reasoning about systems that come from applications.

Authors:Peng Zheng, Junke Wang, Yi Chang, Yizhou Yu, Rui Ma, Zuxuan Wu
Title: Rethinking Discrete Tokens: Treating Them as Conditions for Continuous Autoregressive Image Synthesis
Abstract:
Recent advances in large language models (LLMs) have spurred interests in encoding images as discrete tokens and leveraging autoregressive (AR) frameworks for visual generation. However, the quantization process in AR-based visual generation models inherently introduces information loss that degrades image fidelity. To mitigate this limitation, recent studies have explored to autoregressively predict continuous tokens. Unlike discrete tokens that reside in a structured and bounded space, continuous representations exist in an unbounded, high-dimensional space, making density estimation more challenging and increasing the risk of generating out-of-distribution artifacts. Based on the above findings, this work introduces DisCon (Discrete-Conditioned Continuous Autoregressive Model), a novel framework that reinterprets discrete tokens as conditional signals rather than generation targets. By modeling the conditional probability of continuous representations conditioned on discrete tokens, DisCon circumvents the optimization challenges of continuous token modeling while avoiding the information loss caused by quantization. DisCon achieves a gFID score of 1.38 on ImageNet 256$\times$256 generation, outperforming state-of-the-art autoregressive approaches by a clear margin. Project page: https://pengzheng0707.github.io/DisCon.

Authors:Ming Dai, Wenxuan Cheng, Jiang-jiang Liu, Sen Yang, Wenxiao Cai, Yanpeng Sun, Wankou Yang
Title: DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy
Abstract:
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.

Authors:Kai Chen, Ruiyuan Gao, Lanqing Hong, Hang Xu, Xu Jia, Holger Caesar, Dengxin Dai, Bingbing Liu, Dzmitry Tsishkou, Songcen Xu, Chunjing Xu, Qiang Xu, Huchuan Lu, Dit-Yan Yeung
Title: ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
Abstract:
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.

Authors:Xupeng Zhu, Fan Wang, Robin Walters, Jane Shi
Title: SE(3)-Equivariant Diffusion Policy in Spherical Fourier Space
Abstract:
Diffusion Policies are effective at learning closed-loop manipulation policies from human demonstrations but generalize poorly to novel arrangements of objects in 3D space, hurting real-world performance. To address this issue, we propose Spherical Diffusion Policy (SDP), an SE(3) equivariant diffusion policy that adapts trajectories according to 3D transformations of the scene. Such equivariance is achieved by embedding the states, actions, and the denoising process in spherical Fourier space. Additionally, we employ novel spherical FiLM layers to condition the action denoising process equivariantly on the scene embeddings. Lastly, we propose a spherical denoising temporal U-net that achieves spatiotemporal equivariance with computational efficiency. In the end, SDP is end-to-end SE(3) equivariant, allowing robust generalization across transformed 3D scenes. SDP demonstrates a large performance improvement over strong baselines in 20 simulation tasks and 5 physical robot tasks including single-arm and bi-manual embodiments. Code is available at https://github.com/amazon-science/Spherical_Diffusion_Policy.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Zhen Ye, Guang Chen, Zhiyong Huang, Jing Ma
Title: AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness
Abstract:
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.

Authors:Martine Hjelkrem-Tan, Marius Aasan, Gabriel Y. Arteaga, Adín Ramírez Rivera
Title: SPoT: Subpixel Placement of Tokens in Vision Transformers
Abstract:
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.

Authors:Ghasem Alipoor, Karl Skretting
Title: Kernel Recursive Least Squares Dictionary Learning Algorithm
Abstract:
We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.

Authors:Boyuan Sun, Modi Jin, Bowen Yin, Qibin Hou
Title: Depth Anything at Any Condition
Abstract:
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC

Authors:Georgii Levtsov, Dmitry Ustalov
Title: Confidence and Stability of Global and Pairwise Scores in NLP Evaluation
Abstract:
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.

Authors:Camille Billouard, Dawa Derksen, Alexandre Constantin, Bruno Vallet
Title: Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation
Abstract:
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.

Authors:Yuxiao Wang, Yu Lei, Zhenao Wei, Weiying Xue, Xinyu Jiang, Nan Zhuang, Qi Liu
Title: Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss
Abstract:
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. The sources code are available at https://github.com/YuxiaoWang-AI/P3HOT.

Authors:Xu Zhang, Ming Lu, Yan Chen, Zhan Ma
Title: Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
Abstract:
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.

Authors:Yue-Jiang Dong, Wang Zhao, Jiale Xu, Ying Shan, Song-Hai Zhang
Title: DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and Geometry-Consistent Video Depth Estimation
Abstract:
Diffusion-based video depth estimation methods have achieved remarkable success with strong generalization ability. However, predicting depth for long videos remains challenging. Existing methods typically split videos into overlapping sliding windows, leading to accumulated scale discrepancies across different windows, particularly as the number of windows increases. Additionally, these methods rely solely on 2D diffusion priors, overlooking the inherent 3D geometric structure of video depths, which results in geometrically inconsistent predictions. In this paper, we propose DepthSync, a novel, training-free framework using diffusion guidance to achieve scale- and geometry-consistent depth predictions for long videos. Specifically, we introduce scale guidance to synchronize the depth scale across windows and geometry guidance to enforce geometric alignment within windows based on the inherent 3D constraints in video depths. These two terms work synergistically, steering the denoising process toward consistent depth predictions. Experiments on various datasets validate the effectiveness of our method in producing depth estimates with improved scale and geometry consistency, particularly for long videos.

Authors:Youngjin Oh, Junhyeong Kwon, Keuntek Lee, Nam Ik Cho
Title: Towards Controllable Real Image Denoising with Camera Parameters
Abstract:
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.

Authors:Bryan Constantine Sadihin, Michael Hua Wang, Shei Pern Chua, Hang Su
Title: SketchColour: Channel Concat Guided DiT-based Sketch-to-Colour Pipeline for 2D Animation
Abstract:
The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .

Authors:Hao Wang, Keyan Hu, Xin Guo, Haifeng Li, Chao Tao
Title: A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Abstract:
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.

Authors:Benjamin Feuer, Lennart Purucker, Oussama Elachqar, Chinmay Hegde
Title: MARVIS: Modality Adaptive Reasoning over VISualizations
Abstract:
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis

Authors:Quang Minh Nguyen, Taegyoon Kim
Title: Is External Information Useful for Stance Detection with LLMs?
Abstract:
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.

Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Title: Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.

Authors:Jimyeong Kim, Jungwon Park, Yeji Song, Nojun Kwak, Wonjong Rhee
Title: ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
Abstract:
Rectified Flow text-to-image models surpass diffusion models in image quality and text alignment, but adapting ReFlow for real-image editing remains challenging. We propose a new real-image editing method for ReFlow by analyzing the intermediate representations of multimodal transformer blocks and identifying three key features. To extract these features from real images with sufficient structural preservation, we leverage mid-step latent, which is inverted only up to the mid-step. We then adapt attention during injection to improve editability and enhance alignment to the target text. Our method is training-free, requires no user-provided mask, and can be applied even without a source prompt. Extensive experiments on two benchmarks with nine baselines demonstrate its superior performance over prior methods, further validated by human evaluations confirming a strong user preference for our approach.

Authors:Chentao Shen, Ding Pan, Mingyu Mei, Zaixing He, Xinyue Zhao
Title: Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
Abstract:
Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.

Authors:Jonáš Herec, Vít Růžička, Rado Pitoňák
Title: Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Abstract:
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.

Authors:Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen, Hongcheng Gao, Yao Tang, Jian Yang, Ming-Ming Cheng, Xiang Li
Title: Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think
Abstract:
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.

Authors:Tianyu Liu, Qitan Lv, Hao Li, Xing Gao, Xiao Sun
Title: LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Abstract:
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.

Authors:Shaocheng Yan, Pengcheng Shi, Zhenjun Zhao, Kaixin Wang, Kuang Cao, Ji Wu, Jiayuan Li
Title: TurboReg: TurboClique for Robust and Efficient Point Cloud Registration
Abstract:
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.

Authors:Chen Sun, Haiyang Sun, Zhiqing Guo, Yunfeng Diao, Liejun Wang, Dan Ma, Gaobo Yang, Keqin Li
Title: DiffMark: Diffusion-based Robust Watermark Against Deepfakes
Abstract:
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.

Authors:Kuniaki Saito, Donghyun Kim, Kwanyong Park, Atsushi Hashimoto, Yoshitaka Ushiku
Title: CaptionSmiths: Flexibly Controlling Language Pattern in Image Captioning
Abstract:
An image captioning model flexibly switching its language pattern, e.g., descriptiveness and length, should be useful since it can be applied to diverse applications. However, despite the dramatic improvement in generative vision-language models, fine-grained control over the properties of generated captions is not easy due to two reasons: (i) existing models are not given the properties as a condition during training and (ii) existing models cannot smoothly transition its language pattern from one state to the other. Given this challenge, we propose a new approach, CaptionSmiths, to acquire a single captioning model that can handle diverse language patterns. First, our approach quantifies three properties of each caption, length, descriptiveness, and uniqueness of a word, as continuous scalar values, without human annotation. Given the values, we represent the conditioning via interpolation between two endpoint vectors corresponding to the extreme states, e.g., one for a very short caption and one for a very long caption. Empirical results demonstrate that the resulting model can smoothly change the properties of the output captions and show higher lexical alignment than baselines. For instance, CaptionSmiths reduces the error in controlling caption length by 506\% despite better lexical alignment. Code will be available on https://github.com/omron-sinicx/captionsmiths.

Authors:Huanwen Liang, Jingxian Xu, Yuanji Zhang, Yuhao Huang, Yuhan Zhang, Xin Yang, Ran Li, Xuedong Deng, Yanjun Liu, Guowei Tao, Yun Wu, Sheng Zhao, Xinru Gao, Dong Ni
Title: Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound
Abstract:
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.

Authors:Langyu Wang, Bingke Zhu, Yingying Chen, Yiyuan Zhang, Ming Tang, Jinqiao Wang
Title: MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing
Abstract:
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.

Authors:Tianrui Lou, Xiaojun Jia, Siyuan Liang, Jiawei Liang, Ming Zhang, Yanjun Xiao, Xiaochun Cao
Title: 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation
Abstract:
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.

Authors:Cuong Le, Huy-Phuong Le, Duc Le, Minh-Thien Duong, Van-Binh Nguyen, My-Ha Le
Title: Physics-informed Ground Reaction Dynamics from Human Motion Capture
Abstract:
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD

Authors:Yutong Wen, Minje Kim, Paris Smaragdis
Title: User-guided Generative Source Separation
Abstract:
Music source separation (MSS) aims to extract individual instrument sources from their mixture. While most existing methods focus on the widely adopted four-stem separation setup (vocals, bass, drums, and other instruments), this approach lacks the flexibility needed for real-world applications. To address this, we propose GuideSep, a diffusion-based MSS model capable of instrument-agnostic separation beyond the four-stem setup. GuideSep is conditioned on multiple inputs: a waveform mimicry condition, which can be easily provided by humming or playing the target melody, and mel-spectrogram domain masks, which offer additional guidance for separation. Unlike prior approaches that relied on fixed class labels or sound queries, our conditioning scheme, coupled with the generative approach, provides greater flexibility and applicability. Additionally, we design a mask-prediction baseline using the same model architecture to systematically compare predictive and generative approaches. Our objective and subjective evaluations demonstrate that GuideSep achieves high-quality separation while enabling more versatile instrument extraction, highlighting the potential of user participation in the diffusion-based generative process for MSS. Our code and demo page are available at https://yutongwen.github.io/GuideSep/

Authors:Dong Liang, Xingyu Qiu, Yuzhen Li, Wei Wang, Kuanquan Wang, Suyu Dong, Gongning Luo
Title: Structure and Smoothness Constrained Dual Networks for MR Bias Field Correction
Abstract:
MR imaging techniques are of great benefit to disease diagnosis. However, due to the limitation of MR devices, significant intensity inhomogeneity often exists in imaging results, which impedes both qualitative and quantitative medical analysis. Recently, several unsupervised deep learning-based models have been proposed for MR image improvement. However, these models merely concentrate on global appearance learning, and neglect constraints from image structures and smoothness of bias field, leading to distorted corrected results. In this paper, novel structure and smoothness constrained dual networks, named S2DNets, are proposed aiming to self-supervised bias field correction. S2DNets introduce piece-wise structural constraints and smoothness of bias field for network training to effectively remove non-uniform intensity and retain much more structural details. Extensive experiments executed on both clinical and simulated MR datasets show that the proposed model outperforms other conventional and deep learning-based models. In addition to comparison on visual metrics, downstream MR image segmentation tasks are also used to evaluate the impact of the proposed model. The source code is available at: https://github.com/LeongDong/S2DNets}{https://github.com/LeongDong/S2DNets.

Authors:Worameth Chinchuthakun, Pakkapon Phongthawee, Amit Raj, Varun Jampani, Pramook Khungurn, Supasorn Suwajanakorn
Title: DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
Abstract:
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo

Authors:Ahmad Chaddad, Jihao Peng, Yihang Wu
Title: Classification based deep learning models for lung cancer and disease using medical images
Abstract:
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

Authors:Zhuo Su, Li Liu, Matthias Müller, Jiehua Zhang, Diana Wofk, Ming-Ming Cheng, Matti Pietikäinen
Title: Rapid Salient Object Detection with Difference Convolutional Neural Networks
Abstract:
This paper addresses the challenge of deploying salient object detection (SOD) on resource-constrained devices with real-time performance. While recent advances in deep neural networks have improved SOD, existing top-leading models are computationally expensive. We propose an efficient network design that combines traditional wisdom on SOD and the representation power of modern CNNs. Like biologically-inspired classical SOD methods relying on computing contrast cues to determine saliency of image regions, our model leverages Pixel Difference Convolutions (PDCs) to encode the feature contrasts. Differently, PDCs are incorporated in a CNN architecture so that the valuable contrast cues are extracted from rich feature maps. For efficiency, we introduce a difference convolution reparameterization (DCR) strategy that embeds PDCs into standard convolutions, eliminating computation and parameters at inference. Additionally, we introduce SpatioTemporal Difference Convolution (STDC) for video SOD, enhancing the standard 3D convolution with spatiotemporal contrast capture. Our models, SDNet for image SOD and STDNet for video SOD, achieve significant improvements in efficiency-accuracy trade-offs. On a Jetson Orin device, our models with $<$ 1M parameters operate at 46 FPS and 150 FPS on streamed images and videos, surpassing the second-best lightweight models in our experiments by more than $2\times$ and $3\times$ in speed with superior accuracy. Code will be available at https://github.com/hellozhuo/stdnet.git.

Authors:Simon Börjesson, Erik Ersmark, Pierre Nugues
Title: Matching and Linking Entries in Historical Swedish Encyclopedias
Abstract:
The \textit{Nordisk familjebok} is a Swedish encyclopedia from the 19th and 20th centuries. It was written by a team of experts and aimed to be an intellectual reference, stressing precision and accuracy. This encyclopedia had four main editions remarkable by their size, ranging from 20 to 38 volumes. As a consequence, the \textit{Nordisk familjebok} had a considerable influence in universities, schools, the media, and society overall. As new editions were released, the selection of entries and their content evolved, reflecting intellectual changes in Sweden. In this paper, we used digitized versions from \textit{Project Runeberg}. We first resegmented the raw text into entries and matched pairs of entries between the first and second editions using semantic sentence embeddings. We then extracted the geographical entries from both editions using a transformer-based classifier and linked them to Wikidata. This enabled us to identify geographic trends and possible shifts between the first and second editions, written between 1876-1899 and 1904-1926, respectively. Interpreting the results, we observe a small but significant shift in geographic focus away from Europe and towards North America, Africa, Asia, Australia, and northern Scandinavia from the first to the second edition, confirming the influence of the First World War and the rise of new powers. The code and data are available on GitHub at https://github.com/sibbo/nordisk-familjebok.

Authors:Liangyu Wang, Junxiao Wang, Jie Ren, Zihang Xiang, David E. Keyes, Di Wang
Title: FlashDP: Private Training Large Language Models with Efficient DP-SGD
Abstract:
As large language models (LLMs) increasingly underpin technological advancements, the privacy of their training data emerges as a critical concern. Differential Privacy (DP) serves as a rigorous mechanism to protect this data, yet its integration via Differentially Private Stochastic Gradient Descent (DP-SGD) introduces substantial challenges, primarily due to the complexities of per-sample gradient clipping. Current explicit methods, such as Opacus, necessitate extensive storage for per-sample gradients, significantly inflating memory requirements. Conversely, implicit methods like GhostClip reduce storage needs by recalculating gradients multiple times, which leads to inefficiencies due to redundant computations. This paper introduces FlashDP, an innovative cache-friendly per-layer DP-SGD that consolidates necessary operations into a single task, calculating gradients only once in a fused manner. This approach not only diminishes memory movement by up to \textbf{50\%} but also cuts down redundant computations by \textbf{20\%}, compared to previous methods. Consequently, FlashDP does not increase memory demands and achieves a \textbf{90\%} throughput compared to the Non-DP method on a four-A100 system during the pre-training of the Llama-13B model, while maintaining parity with standard per-layer clipped DP-SGD in terms of accuracy. These advancements establish FlashDP as a pivotal development for efficient and privacy-preserving training of LLMs. FlashDP's code has been open-sourced in https://github.com/kaustpradalab/flashdp.

Authors:Yunke Ao, Masoud Moghani, Mayank Mittal, Manish Prajapat, Luohong Wu, Frederic Giraud, Fabio Carrillo, Andreas Krause, Philipp Fürnstahl
Title: SonoGym: High Performance Simulation for Challenging Surgical Tasks with Robotic Ultrasound
Abstract:
Ultrasound (US) is a widely used medical imaging modality due to its real-time capabilities, non-invasive nature, and cost-effectiveness. Robotic ultrasound can further enhance its utility by reducing operator dependence and improving access to complex anatomical regions. For this, while deep reinforcement learning (DRL) and imitation learning (IL) have shown potential for autonomous navigation, their use in complex surgical tasks such as anatomy reconstruction and surgical guidance remains limited -- largely due to the lack of realistic and efficient simulation environments tailored to these tasks. We introduce SonoGym, a scalable simulation platform for complex robotic ultrasound tasks that enables parallel simulation across tens to hundreds of environments. Our framework supports realistic and real-time simulation of US data from CT-derived 3D models of the anatomy through both a physics-based and a generative modeling approach. Sonogym enables the training of DRL and recent IL agents (vision transformers and diffusion policies) for relevant tasks in robotic orthopedic surgery by integrating common robotic platforms and orthopedic end effectors. We further incorporate submodular DRL -- a recent method that handles history-dependent rewards -- for anatomy reconstruction and safe reinforcement learning for surgery. Our results demonstrate successful policy learning across a range of scenarios, while also highlighting the limitations of current methods in clinically relevant environments. We believe our simulation can facilitate research in robot learning approaches for such challenging robotic surgery applications. Dataset, codes, and videos are publicly available at https://sonogym.github.io/.

Authors:Brenda Nogueira, Gabe Gomes, Meng Jiang, Nitesh V. Chawla, Nuno Moniz
Title: Spectral Manifold Harmonization for Graph Imbalanced Regression
Abstract:
Graph-structured data is ubiquitous in scientific domains, where models often face imbalanced learning settings. In imbalanced regression, domain preferences focus on specific target value ranges that represent the most scientifically valuable cases; however, we observe a significant lack of research regarding this challenge. In this paper, we present Spectral Manifold Harmonization (SMH), a novel approach to address imbalanced regression challenges on graph-structured data by generating synthetic graph samples that preserve topological properties while focusing on the most relevant target distribution regions. Conventional methods fail in this context because they either ignore graph topology in case generation or do not target specific domain ranges, resulting in models biased toward average target values. Experimental results demonstrate the potential of SMH on chemistry and drug discovery benchmark datasets, showing consistent improvements in predictive performance for target domain ranges. Code is available at https://github.com/brendacnogueira/smh-graph-imbalance.git.

Authors:Jing Yu, Yibo Zhao, Jiapeng Zhu, Wenming Shao, Bo Pang, Zhao Zhang, Xiang Li
Title: Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
Abstract:
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.

Authors:Tianxiang Xia, Max Neuwinger, Lin Xiao
Title: Fast Clifford Neural Layers
Abstract:
Clifford Neural Layers improve PDE modeling by introducing Clifford Algebra into neural networks. In this project we focus on optimizing the inference of 2/3D Clifford convolutional layers and multivector activation layers for one core CPU performance. Overall, by testing on a real network block involving Clifford convolutional layers and multivector activation layers, we observe that our implementation is 30% faster than standard PyTorch implementation in relatively large data + network size (>L2 cache). We open source our code base at https://github.com/egretwAlker/c-opt-clifford-layers

Authors:Fanchen Bu, Kijung Shin
Title: PyTorch-based Geometric Learning with Non-CUDA Processing Units: Experiences from Intel Gaudi-v2 HPUs
Abstract:
Geometric learning has emerged as a powerful paradigm for modeling non-Euclidean data, especially graph-structured ones, with applications spanning social networks, molecular structures, knowledge graphs, and recommender systems. While Nvidia's CUDA-enabled graphics processing units (GPUs) largely dominate the hardware landscape, emerging accelerators such as Intel's Gaudi Habana Processing Units (HPUs) offer competitive performance and energy efficiency. However, the usage of such non-CUDA processing units requires significant engineering effort and novel software adaptations. In this work, we present our experiences porting PyTorch-based geometric learning frameworks to Gaudi-v2 HPUs. We introduce a collection of core utilities that restore essential operations (e.g., scatter, sparse indexing, k-nearest neighbors) on Gaudi-v2 HPUs, and we consolidate sixteen guided tutorials and eleven real-world examples with diagnostic analyses of encountered failures and detailed workarounds. We collect all our experiences into a publicly accessible GitHub repository. Our contributions lower the barrier for researchers to experiment with geometric-learning algorithms and models on non-CUDA hardware, providing a foundation for further optimization and cross-platform portability.

Authors:Yating Wang, Haoyi Zhu, Mingyu Liu, Jiange Yang, Hao-Shu Fang, Tong He
Title: VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers
Abstract:
In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io

Authors:Zhe Kong, Le Li, Yong Zhang, Feng Gao, Shaoshu Yang, Tao Wang, Kaihao Zhang, Zhuoliang Kang, Xiaoming Wei, Guanying Chen, Wenhan Luo
Title: DAM-VSR: Disentanglement of Appearance and Motion for Video Super-Resolution
Abstract:
Real-world video super-resolution (VSR) presents significant challenges due to complex and unpredictable degradations. Although some recent methods utilize image diffusion models for VSR and have shown improved detail generation capabilities, they still struggle to produce temporally consistent frames. We attempt to use Stable Video Diffusion (SVD) combined with ControlNet to address this issue. However, due to the intrinsic image-animation characteristics of SVD, it is challenging to generate fine details using only low-quality videos. To tackle this problem, we propose DAM-VSR, an appearance and motion disentanglement framework for VSR. This framework disentangles VSR into appearance enhancement and motion control problems. Specifically, appearance enhancement is achieved through reference image super-resolution, while motion control is achieved through video ControlNet. This disentanglement fully leverages the generative prior of video diffusion models and the detail generation capabilities of image super-resolution models. Furthermore, equipped with the proposed motion-aligned bidirectional sampling strategy, DAM-VSR can conduct VSR on longer input videos. DAM-VSR achieves state-of-the-art performance on real-world data and AIGC data, demonstrating its powerful detail generation capabilities.

Authors:V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, Jie Tang
Title: GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
Abstract:
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.

Authors:Jack Nugent, Siyang Wu, Zeyu Ma, Beining Han, Meenal Parakh, Abhishek Joshi, Lingjie Mei, Alexander Raistrick, Xinyuan Li, Jia Deng
Title: Evaluating Robustness of Monocular Depth Estimation with Procedural Scene Perturbations
Abstract:
Recent years have witnessed substantial progress on monocular depth estimation, particularly as measured by the success of large models on standard benchmarks. However, performance on standard benchmarks does not offer a complete assessment, because most evaluate accuracy but not robustness. In this work, we introduce PDE (Procedural Depth Evaluation), a new benchmark which enables systematic robustness evaluation. PDE uses procedural generation to create 3D scenes that test robustness to various controlled perturbations, including object, camera, material and lighting changes. Our analysis yields interesting findings on what perturbations are challenging for state-of-the-art depth models, which we hope will inform further research. Code and data are available at https://github.com/princeton-vl/proc-depth-eval.

Authors:Yuheng Du, Sheng Yang, Lingxuan Wang, Zhenghua Hou, Chengying Cai, Zhitao Tan, Mingxia Chen, Shi-Sheng Huang, Qiang Li
Title: RTMap: Real-Time Recursive Mapping with Change Detection and Localization
Abstract:
While recent online HD mapping methods relieve burdened offline pipelines and solve map freshness, they remain limited by perceptual inaccuracies, occlusion in dense traffic, and an inability to fuse multi-agent observations. We propose RTMap to enhance these single-traversal methods by persistently crowdsourcing a multi-traversal HD map as a self-evolutional memory. On onboard agents, RTMap simultaneously addresses three core challenges in an end-to-end fashion: (1) Uncertainty-aware positional modeling for HD map elements, (2) probabilistic-aware localization w.r.t. the crowdsourced prior-map, and (3) real-time detection for possible road structural changes. Experiments on several public autonomous driving datasets demonstrate our solid performance on both the prior-aided map quality and the localization accuracy, demonstrating our effectiveness of robustly serving downstream prediction and planning modules while gradually improving the accuracy and freshness of the crowdsourced prior-map asynchronously. Our source-code will be made publicly available at https://github.com/CN-ADLab/RTMap.

Authors:Dongyoon Hahm, Woogyeol Jin, June Suk Choi, Sungsoo Ahn, Kimin Lee
Title: Enhancing LLM Agent Safety via Causal Influence Prompting
Abstract:
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.

Authors:Ke Liu, Shuaike Shen, Hao Chen
Title: From Sentences to Sequences: Rethinking Languages in Biological System
Abstract:
The paradigm of large language models in natural language processing (NLP) has also shown promise in modeling biological languages, including proteins, RNA, and DNA. Both the auto-regressive generation paradigm and evaluation metrics have been transferred from NLP to biological sequence modeling. However, the intrinsic structural correlations in natural and biological languages differ fundamentally. Therefore, we revisit the notion of language in biological systems to better understand how NLP successes can be effectively translated to biological domains. By treating the 3D structure of biomolecules as the semantic content of a sentence and accounting for the strong correlations between residues or bases, we highlight the importance of structural evaluation and demonstrate the applicability of the auto-regressive paradigm in biological language modeling. Code can be found at \href{https://github.com/zjuKeLiu/RiFold}{github.com/zjuKeLiu/RiFold}

Authors:Xiaoxiao Long, Qingrui Zhao, Kaiwen Zhang, Zihao Zhang, Dingrui Wang, Yumeng Liu, Zhengjie Shu, Yi Lu, Shouzheng Wang, Xinzhe Wei, Wei Li, Wei Yin, Yao Yao, Jia Pan, Qiu Shen, Ruigang Yang, Xun Cao, Qionghai Dai
Title: A Survey: Learning Embodied Intelligence from Physical Simulators and World Models
Abstract:
The pursuit of artificial general intelligence (AGI) has placed embodied intelligence at the forefront of robotics research. Embodied intelligence focuses on agents capable of perceiving, reasoning, and acting within the physical world. Achieving robust embodied intelligence requires not only advanced perception and control, but also the ability to ground abstract cognition in real-world interactions. Two foundational technologies, physical simulators and world models, have emerged as critical enablers in this quest. Physical simulators provide controlled, high-fidelity environments for training and evaluating robotic agents, allowing safe and efficient development of complex behaviors. In contrast, world models empower robots with internal representations of their surroundings, enabling predictive planning and adaptive decision-making beyond direct sensory input. This survey systematically reviews recent advances in learning embodied AI through the integration of physical simulators and world models. We analyze their complementary roles in enhancing autonomy, adaptability, and generalization in intelligent robots, and discuss the interplay between external simulation and internal modeling in bridging the gap between simulated training and real-world deployment. By synthesizing current progress and identifying open challenges, this survey aims to provide a comprehensive perspective on the path toward more capable and generalizable embodied AI systems. We also maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/NJU3DV-LoongGroup/Embodied-World-Models-Survey.

Authors:Jindong Han, Yansong Ning, Zirui Yuan, Hang Ni, Fan Liu, Tengfei Lyu, Hao Liu
Title: Large Language Model Powered Intelligent Urban Agents: Concepts, Capabilities, and Applications
Abstract:
The long-standing vision of intelligent cities is to create efficient, livable, and sustainable urban environments using big data and artificial intelligence technologies. Recently, the advent of Large Language Models (LLMs) has opened new ways toward realizing this vision. With powerful semantic understanding and reasoning capabilities, LLMs can be deployed as intelligent agents capable of autonomously solving complex problems across domains. In this article, we focus on Urban LLM Agents, which are LLM-powered agents that are semi-embodied within the hybrid cyber-physical-social space of cities and used for system-level urban decision-making. First, we introduce the concept of urban LLM agents, discussing their unique capabilities and features. Second, we survey the current research landscape from the perspective of agent workflows, encompassing urban sensing, memory management, reasoning, execution, and learning. Third, we categorize the application domains of urban LLM agents into five groups: urban planning, transportation, environment, public safety, and urban society, presenting representative works in each group. Finally, we discuss trustworthiness and evaluation issues that are critical for real-world deployment, and identify several open problems for future research. This survey aims to establish a foundation for the emerging field of urban LLM agents and to provide a roadmap for advancing the intersection of LLMs and urban intelligence. A curated list of relevant papers and open-source resources is maintained and continuously updated at https://github.com/usail-hkust/Awesome-Urban-LLM-Agents.

Authors:Zifu Wan, Ce Zhang, Silong Yong, Martin Q. Ma, Simon Stepputtis, Louis-Philippe Morency, Deva Ramanan, Katia Sycara, Yaqi Xie
Title: ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models
Abstract:
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.

Authors:Ruihan Xu, Haokui Zhang, Yaowei Wang, Wei Zeng, Shiliang Zhang
Title: NN-Former: Rethinking Graph Structure in Neural Architecture Representation
Abstract:
The growing use of deep learning necessitates efficient network design and deployment, making neural predictors vital for estimating attributes such as accuracy and latency. Recently, Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures. However, each of both methods has its disadvantages. GNNs lack the capabilities to represent complicated features, while transformers face poor generalization when the depth of architecture grows. To mitigate the above issues, we rethink neural architecture topology and show that sibling nodes are pivotal while overlooked in previous research. We thus propose a novel predictor leveraging the strengths of GNNs and transformers to learn the enhanced topology. We introduce a novel token mixer that considers siblings, and a new channel mixer named bidirectional graph isomorphism feed-forward network. Our approach consistently achieves promising performance in both accuracy and latency prediction, providing valuable insights for learning Directed Acyclic Graph (DAG) topology. The code is available at https://github.com/XuRuihan/NNFormer.

Authors:Wei Li, Jiaman Tang, Yang Li, Beihao Xia, Ligang Tan, Hongmao Qin
Title: UAVD-Mamba: Deformable Token Fusion Vision Mamba for Multimodal UAV Detection
Abstract:
Unmanned Aerial Vehicle (UAV) object detection has been widely used in traffic management, agriculture, emergency rescue, etc. However, it faces significant challenges, including occlusions, small object sizes, and irregular shapes. These challenges highlight the necessity for a robust and efficient multimodal UAV object detection method. Mamba has demonstrated considerable potential in multimodal image fusion. Leveraging this, we propose UAVD-Mamba, a multimodal UAV object detection framework based on Mamba architectures. To improve geometric adaptability, we propose the Deformable Token Mamba Block (DTMB) to generate deformable tokens by incorporating adaptive patches from deformable convolutions alongside normal patches from normal convolutions, which serve as the inputs to the Mamba Block. To optimize the multimodal feature complementarity, we design two separate DTMBs for the RGB and infrared (IR) modalities, with the outputs from both DTMBs integrated into the Mamba Block for feature extraction and into the Fusion Mamba Block for feature fusion. Additionally, to improve multiscale object detection, especially for small objects, we stack four DTMBs at different scales to produce multiscale feature representations, which are then sent to the Detection Neck for Mamba (DNM). The DNM module, inspired by the YOLO series, includes modifications to the SPPF and C3K2 of YOLOv11 to better handle the multiscale features. In particular, we employ cross-enhanced spatial attention before the DTMB and cross-channel attention after the Fusion Mamba Block to extract more discriminative features. Experimental results on the DroneVehicle dataset show that our method outperforms the baseline OAFA method by 3.6% in the mAP metric. Codes will be released at https://github.com/GreatPlum-hnu/UAVD-Mamba.git.

Authors:Alexander Hoyle, Lorena Calvo-Bartolomé, Jordan Boyd-Graber, Philip Resnik
Title: ProxAnn: Use-Oriented Evaluations of Topic Models and Document Clustering
Abstract:
Topic model and document-clustering evaluations either use automated metrics that align poorly with human preferences or require expert labels that are intractable to scale. We design a scalable human evaluation protocol and a corresponding automated approximation that reflect practitioners' real-world usage of models. Annotators -- or an LLM-based proxy -- review text items assigned to a topic or cluster, infer a category for the group, then apply that category to other documents. Using this protocol, we collect extensive crowdworker annotations of outputs from a diverse set of topic models on two datasets. We then use these annotations to validate automated proxies, finding that the best LLM proxies are statistically indistinguishable from a human annotator and can therefore serve as a reasonable substitute in automated evaluations. Package, web interface, and data are at https://github.com/ahoho/proxann

Authors:Yasser El Jarida, Youssef Iraqi, Loubna Mekouar
Title: Instant Particle Size Distribution Measurement Using CNNs Trained on Synthetic Data
Abstract:
Accurate particle size distribution (PSD) measurement is important in industries such as mining, pharmaceuticals, and fertilizer manufacturing, significantly influencing product quality and operational efficiency. Traditional PSD methods like sieve analysis and laser diffraction are manual, time-consuming, and limited by particle overlap. Recent developments in convolutional neural networks (CNNs) enable automated, real-time PSD estimation directly from particle images. In this work, we present a CNN-based methodology trained on realistic synthetic particle imagery generated using Blender's advanced rendering capabilities. Synthetic data sets using this method can replicate various industrial scenarios by systematically varying particle shapes, textures, lighting, and spatial arrangements that closely resemble the actual configurations. We evaluated three CNN-based architectures, ResNet-50, InceptionV3, and EfficientNet-B0, for predicting critical PSD parameters (d10, d50, d90). Results demonstrated comparable accuracy across models, with EfficientNet-B0 achieving the best computational efficiency suitable for real-time industrial deployment. This approach shows the effectiveness of realistic synthetic data for robust CNN training, which offers significant potential for automated industrial PSD monitoring. The code is released at : https://github.com/YasserElj/Synthetic-Granular-Gen

Authors:Hiroki Kanagawa, Kenichi Fujita, Aya Watanabe, Yusuke Ijima
Title: Multi-interaction TTS toward professional recording reproduction
Abstract:
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/

Authors:Minye Shao, Xingyu Miao, Haoran Duan, Zeyu Wang, Jingkun Chen, Yawen Huang, Xian Wu, Jingjing Deng, Yang Long, Yefeng Zheng
Title: TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency
Abstract:
3D medical image generation is essential for data augmentation and patient privacy, calling for reliable and efficient models suited for clinical practice. However, current methods suffer from limited anatomical fidelity, restricted axial length, and substantial computational cost, placing them beyond reach for regions with limited resources and infrastructure. We introduce TRACE, a framework that generates 3D medical images with spatiotemporal alignment using a 2D multimodal-conditioned diffusion approach. TRACE models sequential 2D slices as video frame pairs, combining segmentation priors and radiology reports for anatomical alignment, incorporating optical flow to sustain temporal coherence. During inference, an overlapping-frame strategy links frame pairs into a flexible length sequence, reconstructed into a spatiotemporally and anatomically aligned 3D volume. Experimental results demonstrate that TRACE effectively balances computational efficiency with preserving anatomical fidelity and spatiotemporal consistency. Code is available at: https://github.com/VinyehShaw/TRACE.

Authors:Hendric Voss, Stefan Kopp
Title: JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Abstract:
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK

Authors:Huaqiu Li, Yong Wang, Tongwen Huang, Hailang Huang, Haoqian Wang, Xiangxiang Chu
Title: LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
Abstract:
Unified image restoration is a significantly challenging task in low-level vision. Existing methods either make tailored designs for specific tasks, limiting their generalizability across various types of degradation, or rely on training with paired datasets, thereby suffering from closed-set constraints. To address these issues, we propose a novel, dataset-free, and unified approach through recurrent posterior sampling utilizing a pretrained latent diffusion model. Our method incorporates the multimodal understanding model to provide sematic priors for the generative model under a task-blind condition. Furthermore, it utilizes a lightweight module to align the degraded input with the generated preference of the diffusion model, and employs recurrent refinement for posterior sampling. Extensive experiments demonstrate that our method outperforms state-of-the-art methods, validating its effectiveness and robustness. Our code and data are available at https://github.com/AMAP-ML/LD-RPS.

Authors:Dongyoon Hwang, Hojoon Lee, Jaegul Choo, Dongmin Park, Jongho Park
Title: Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Abstract:
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess-a deficit which RL alone may not be able to fully overcome. The code is available at https://github.com/krafton-ai/Chess-R1.

Authors:Xiao Zhang, Fei Wei, Yong Wang, Wenda Zhao, Feiyi Li, Xiangxiang Chu
Title: UPRE: Zero-Shot Domain Adaptation for Object Detection via Unified Prompt and Representation Enhancement
Abstract:
Zero-shot domain adaptation (ZSDA) presents substantial challenges due to the lack of images in the target domain. Previous approaches leverage Vision-Language Models (VLMs) to tackle this challenge, exploiting their zero-shot learning capabilities. However, these methods primarily address domain distribution shifts and overlook the misalignment between the detection task and VLMs, which rely on manually crafted prompts. To overcome these limitations, we propose the unified prompt and representation enhancement (UPRE) framework, which jointly optimizes both textual prompts and visual representations. Specifically, our approach introduces a multi-view domain prompt that combines linguistic domain priors with detection-specific knowledge, and a visual representation enhancement module that produces domain style variations. Furthermore, we introduce multi-level enhancement strategies, including relative domain distance and positive-negative separation, which align multi-modal representations at the image level and capture diverse visual representations at the instance level, respectively. Extensive experiments conducted on nine benchmark datasets demonstrate the superior performance of our framework in ZSDA detection scenarios. Code is available at https://github.com/AMAP-ML/UPRE.

Authors:Zeming Chen, Hang Zhao
Title: BEV-VAE: Multi-view Image Generation with Spatial Consistency for Autonomous Driving
Abstract:
Multi-view image generation in autonomous driving demands consistent 3D scene understanding across camera views. Most existing methods treat this problem as a 2D image set generation task, lacking explicit 3D modeling. However, we argue that a structured representation is crucial for scene generation, especially for autonomous driving applications. This paper proposes BEV-VAE for consistent and controllable view synthesis. BEV-VAE first trains a multi-view image variational autoencoder for a compact and unified BEV latent space and then generates the scene with a latent diffusion transformer. BEV-VAE supports arbitrary view generation given camera configurations, and optionally 3D layouts. Experiments on nuScenes and Argoverse 2 (AV2) show strong performance in both 3D consistent reconstruction and generation. The code is available at: https://github.com/Czm369/bev-vae.

Authors:Chong Zhang, Xichao Liu, Yibing Zhan, Dapeng Tao, Jun Ni, Jinwei Bu
Title: SCAWaveNet: A Spatial-Channel Attention-Based Network for Global Significant Wave Height Retrieval
Abstract:
Recent advancements in spaceborne GNSS missions have produced extensive global datasets, providing a robust basis for deep learning-based significant wave height (SWH) retrieval. While existing deep learning models predominantly utilize CYGNSS data with four-channel information, they often adopt single-channel inputs or simple channel concatenation without leveraging the benefits of cross-channel information interaction during training. To address this limitation, a novel spatial-channel attention-based network, namely SCAWaveNet, is proposed for SWH retrieval. Specifically, features from each channel of the DDMs are modeled as independent attention heads, enabling the fusion of spatial and channel-wise information. For auxiliary parameters, a lightweight attention mechanism is designed to assign weights along the spatial and channel dimensions. The final feature integrates both spatial and channel-level characteristics. Model performance is evaluated using four-channel CYGNSS data. When ERA5 is used as a reference, SCAWaveNet achieves an average RMSE of 0.438 m. When using buoy data from NDBC, the average RMSE reaches 0.432 m. Compared to state-of-the-art models, SCAWaveNet reduces the average RMSE by at least 3.52% on the ERA5 dataset and by 5.68% on the NDBC buoy observations. The code is available at https://github.com/Clifx9908/SCAWaveNet.

Authors:Guoliang Duan, Mingwei Liu, Yanlin Wang, Chong Wang, Xin Peng, Zibin Zheng
Title: A Hierarchical and Evolvable Benchmark for Fine-Grained Code Instruction Following with Multi-Turn Feedback
Abstract:
Large language models (LLMs) have advanced significantly in code generation, yet their ability to follow complex programming instructions with layered and diverse constraints remains underexplored. Existing benchmarks often prioritize functional correctness, overlooking the nuanced requirements found in real-world development. We introduce MultiCodeIF, a comprehensive benchmark designed to evaluate instruction-following in code generation across multiple dimensions: constraint type, hierarchical levels, and iterative refinement. Built upon a structured taxonomy of 9 categories and 27 constraint types, MultiCodeIF enables granular assessment of both functional and non-functional instruction adherence. Using an automated pipeline, ConstraGen, we synthesize and evolve 2,021 code tasks sourced from 14 programming languages, supporting multi-turn evaluation through feedback-driven task variants. Empirical evaluation of six state-of-the-art LLMs uncovers substantial performance disparities. The top-performing model, Claude-3-7-Sonnet, achieves 63.0% average constraint satisfaction, while smaller models like Qwen3-1.7B fall to 44.8%. Models perform well on explicit constraints, but struggle with implicit or abstract constraints. Tasks with multiple hierarchical constraints significantly reduce model success rates, from 54.5% in single-level to just 18.8% in multi-level scenarios. However, structured feedback enables progressive improvement: average constraint satisfaction rises from 63.0% to 83.4% over four iterative refinement rounds. MultiCodeIF provides a scalable, constraint-aware, and feedback-sensitive framework to benchmark LLMs under realistic code generation scenarios, bridging the gap between synthetic evaluations and real-world instruction complexity. The full benchmark dataset, evaluation pipeline, and source code are available at https://github.com/SYSUSELab/MultiCodeIF.

Authors:Qihang Fan, Huaibo Huang, Yuang Ai, Ran He
Title: Rectifying Magnitude Neglect in Linear Attention
Abstract:
As the core operator of Transformers, Softmax Attention exhibits excellent global modeling capabilities. However, its quadratic complexity limits its applicability to vision tasks. In contrast, Linear Attention shares a similar formulation with Softmax Attention while achieving linear complexity, enabling efficient global information modeling. Nevertheless, Linear Attention suffers from a significant performance degradation compared to standard Softmax Attention. In this paper, we analyze the underlying causes of this issue based on the formulation of Linear Attention. We find that, unlike Softmax Attention, Linear Attention entirely disregards the magnitude information of the Query. This prevents the attention score distribution from dynamically adapting as the Query scales. As a result, despite its structural similarity to Softmax Attention, Linear Attention exhibits a significantly different attention score distribution. Based on this observation, we propose Magnitude-Aware Linear Attention (MALA), which modifies the computation of Linear Attention to fully incorporate the Query's magnitude. This adjustment allows MALA to generate an attention score distribution that closely resembles Softmax Attention while exhibiting a more well-balanced structure. We evaluate the effectiveness of MALA on multiple tasks, including image classification, object detection, instance segmentation, semantic segmentation, natural language processing, speech recognition, and image generation. Our MALA achieves strong results on all of these tasks. Code will be available at https://github.com/qhfan/MALA

Authors:Jan Nikolas Morshuis, Christian Schlarmann, Thomas Küstner, Christian F. Baumgartner, Matthias Hein
Title: Mind the Detail: Uncovering Clinically Relevant Image Details in Accelerated MRI with Semantically Diverse Reconstructions
Abstract:
In recent years, accelerated MRI reconstruction based on deep learning has led to significant improvements in image quality with impressive results for high acceleration factors. However, from a clinical perspective image quality is only secondary; much more important is that all clinically relevant information is preserved in the reconstruction from heavily undersampled data. In this paper, we show that existing techniques, even when considering resampling for diffusion-based reconstruction, can fail to reconstruct small and rare pathologies, thus leading to potentially wrong diagnosis decisions (false negatives). To uncover the potentially missing clinical information we propose ``Semantically Diverse Reconstructions'' (\SDR), a method which, given an original reconstruction, generates novel reconstructions with enhanced semantic variability while all of them are fully consistent with the measured data. To evaluate \SDR automatically we train an object detector on the fastMRI+ dataset. We show that \SDR significantly reduces the chance of false-negative diagnoses (higher recall) and improves mean average precision compared to the original reconstructions. The code is available on https://github.com/NikolasMorshuis/SDR

Authors:Sihang Li, Wei Shi, Ziyuan Xie, Tao Liang, Guojun Ma, Xiang Wang
Title: SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Abstract:
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to large language model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}

Authors:Rusi Chen, Yuanting Yang, Jiezhi Yao, Hongning Song, Ji Zhang, Yongsong Zhou, Yuhao Huang, Ronghao Yang, Dan Jia, Yuhan Zhang, Xing Tao, Haoran Dou, Qing Zhou, Xin Yang, Dong Ni
Title: MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound
Abstract:
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.

Authors:Siyuan Yao, Rui Zhu, Ziqi Wang, Wenqi Ren, Yanyang Yan, Xiaochun Cao
Title: UMDATrack: Unified Multi-Domain Adaptive Tracking Under Adverse Weather Conditions
Abstract:
Visual object tracking has gained promising progress in past decades. Most of the existing approaches focus on learning target representation in well-conditioned daytime data, while for the unconstrained real-world scenarios with adverse weather conditions, e.g. nighttime or foggy environment, the tremendous domain shift leads to significant performance degradation. In this paper, we propose UMDATrack, which is capable of maintaining high-quality target state prediction under various adverse weather conditions within a unified domain adaptation framework. Specifically, we first use a controllable scenario generator to synthesize a small amount of unlabeled videos (less than 2% frames in source daytime datasets) in multiple weather conditions under the guidance of different text prompts. Afterwards, we design a simple yet effective domain-customized adapter (DCA), allowing the target objects' representation to rapidly adapt to various weather conditions without redundant model updating. Furthermore, to enhance the localization consistency between source and target domains, we propose a target-aware confidence alignment module (TCA) following optimal transport theorem. Extensive experiments demonstrate that UMDATrack can surpass existing advanced visual trackers and lead new state-of-the-art performance by a significant margin. Our code is available at https://github.com/Z-Z188/UMDATrack.

Authors:Chenyang Cao, Miguel Rogel-García, Mohamed Nabail, Xueqian Wang, Nicholas Rhinehart
Title: Residual Reward Models for Preference-based Reinforcement Learning
Abstract:
Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify, avoiding heuristic and time-consuming reward design. However, PbRL can suffer from slow convergence speed since it requires training in a reward model. Prior work has proposed learning a reward model from demonstrations and fine-tuning it using preferences. However, when the model is a neural network, using different loss functions for pre-training and fine-tuning can pose challenges to reliable optimization. In this paper, we propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM). An RRM assumes that the true reward of the environment can be split into a sum of two parts: a prior reward and a learned reward. The prior reward is a term available before training, for example, a user's ``best guess'' reward function, or a reward function learned from inverse reinforcement learning (IRL), and the learned reward is trained with preferences. We introduce state-based and image-based versions of RRM and evaluate them on several tasks in the Meta-World environment suite. Experimental results show that our method substantially improves the performance of a common PbRL method. Our method achieves performance improvements for a variety of different types of prior rewards, including proxy rewards, a reward obtained from IRL, and even a negated version of the proxy reward. We also conduct experiments with a Franka Panda to show that our method leads to superior performance on a real robot. It significantly accelerates policy learning for different tasks, achieving success in fewer steps than the baseline. The videos are presented at https://sunlighted.github.io/RRM-web/.

Authors:Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei Li, Teng Zhang, Zhongpu Xia, Peng Jia, Dongbin Zhao
Title: World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model
Abstract:
End-to-end autonomous driving directly generates planning trajectories from raw sensor data, yet it typically relies on costly perception supervision to extract scene information. A critical research challenge arises: constructing an informative driving world model to enable perception annotation-free, end-to-end planning via self-supervised learning. In this paper, we present World4Drive, an end-to-end autonomous driving framework that employs vision foundation models to build latent world models for generating and evaluating multi-modal planning trajectories. Specifically, World4Drive first extracts scene features, including driving intention and world latent representations enriched with spatial-semantic priors provided by vision foundation models. It then generates multi-modal planning trajectories based on current scene features and driving intentions and predicts multiple intention-driven future states within the latent space. Finally, it introduces a world model selector module to evaluate and select the best trajectory. We achieve perception annotation-free, end-to-end planning through self-supervised alignment between actual future observations and predicted observations reconstructed from the latent space. World4Drive achieves state-of-the-art performance without manual perception annotations on both the open-loop nuScenes and closed-loop NavSim benchmarks, demonstrating an 18.1\% relative reduction in L2 error, 46.7% lower collision rate, and 3.75 faster training convergence. Codes will be accessed at https://github.com/ucaszyp/World4Drive.

Authors:Luming Zhao, Jingwen Xuan, Jiamin Lou, Yonghui Yu, Wenwu Yang
Title: Context-Aware Academic Emotion Dataset and Benchmark
Abstract:
Academic emotion analysis plays a crucial role in evaluating students' engagement and cognitive states during the learning process. This paper addresses the challenge of automatically recognizing academic emotions through facial expressions in real-world learning environments. While significant progress has been made in facial expression recognition for basic emotions, academic emotion recognition remains underexplored, largely due to the scarcity of publicly available datasets. To bridge this gap, we introduce RAER, a novel dataset comprising approximately 2,700 video clips collected from around 140 students in diverse, natural learning contexts such as classrooms, libraries, laboratories, and dormitories, covering both classroom sessions and individual study. Each clip was annotated independently by approximately ten annotators using two distinct sets of academic emotion labels with varying granularity, enhancing annotation consistency and reliability. To our knowledge, RAER is the first dataset capturing diverse natural learning scenarios. Observing that annotators naturally consider context cues-such as whether a student is looking at a phone or reading a book-alongside facial expressions, we propose CLIP-CAER (CLIP-based Context-aware Academic Emotion Recognition). Our method utilizes learnable text prompts within the vision-language model CLIP to effectively integrate facial expression and context cues from videos. Experimental results demonstrate that CLIP-CAER substantially outperforms state-of-the-art video-based facial expression recognition methods, which are primarily designed for basic emotions, emphasizing the crucial role of context in accurately recognizing academic emotions. Project page: https://zgsfer.github.io/CAER

Authors:Hao Tang, Zhiqing Guo, Liejun Wang, Chao Liu
Title: Similarity Memory Prior is All You Need for Medical Image Segmentation
Abstract:
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.

Authors:Kai Zhou, Shuhai Zhang, Zeng You, Jinwu Hu, Mingkui Tan, Fei Liu
Title: Zero-Shot Skeleton-Based Action Recognition With Prototype-Guided Feature Alignment
Abstract:
Zero-shot skeleton-based action recognition aims to classify unseen skeleton-based human actions without prior exposure to such categories during training. This task is extremely challenging due to the difficulty in generalizing from known to unknown actions. Previous studies typically use two-stage training: pre-training skeleton encoders on seen action categories using cross-entropy loss and then aligning pre-extracted skeleton and text features, enabling knowledge transfer to unseen classes through skeleton-text alignment and language models' generalization. However, their efficacy is hindered by 1) insufficient discrimination for skeleton features, as the fixed skeleton encoder fails to capture necessary alignment information for effective skeleton-text alignment; 2) the neglect of alignment bias between skeleton and unseen text features during testing. To this end, we propose a prototype-guided feature alignment paradigm for zero-shot skeleton-based action recognition, termed PGFA. Specifically, we develop an end-to-end cross-modal contrastive training framework to improve skeleton-text alignment, ensuring sufficient discrimination for skeleton features. Additionally, we introduce a prototype-guided text feature alignment strategy to mitigate the adverse impact of the distribution discrepancy during testing. We provide a theoretical analysis to support our prototype-guided text feature alignment strategy and empirically evaluate our overall PGFA on three well-known datasets. Compared with the top competitor SMIE method, our PGFA achieves absolute accuracy improvements of 22.96%, 12.53%, and 18.54% on the NTU-60, NTU-120, and PKU-MMD datasets, respectively.

Authors:Jiajie Zhang, Shenrui Wu, Xu Ma, Sören Schwertfeger
Title: Generation of Indoor Open Street Maps for Robot Navigation from CAD Files
Abstract:
The deployment of autonomous mobile robots is predicated on the availability of environmental maps, yet conventional generation via SLAM (Simultaneous Localization and Mapping) suffers from significant limitations in time, labor, and robustness, particularly in dynamic, large-scale indoor environments where map obsolescence can lead to critical localization failures. To address these challenges, this paper presents a complete and automated system for converting architectural Computer-Aided Design (CAD) files into a hierarchical topometric OpenStreetMap (OSM) representation, tailored for robust life-long robot navigation. Our core methodology involves a multi-stage pipeline that first isolates key structural layers from the raw CAD data and then employs an AreaGraph-based topological segmentation to partition the building layout into a hierarchical graph of navigable spaces. This process yields a comprehensive and semantically rich map, further enhanced by automatically associating textual labels from the CAD source and cohesively merging multiple building floors into a unified, topologically-correct model. By leveraging the permanent structural information inherent in CAD files, our system circumvents the inefficiencies and fragility of SLAM, offering a practical and scalable solution for deploying robots in complex indoor spaces. The software is encapsulated within an intuitive Graphical User Interface (GUI) to facilitate practical use. The code and dataset are available at https://github.com/jiajiezhang7/osmAG-from-cad.

Authors:Djamahl Etchegaray, Yuxia Fu, Zi Huang, Yadan Luo
Title: Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving
Abstract:
Interpretable communication is essential for safe and trustworthy autonomous driving, yet current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios. Existing driving-oriented VQA datasets are limited to full-scene descriptions or waypoint prediction, preventing the assessment of whether VLMs can respond to localized user-driven queries. We introduce Box-QAymo, a box-referring dataset and benchmark designed to both evaluate and finetune VLMs on spatial and temporal reasoning over user-specified objects. Users express intent by drawing bounding boxes, offering a fast and intuitive interface for focused queries in complex scenes. Specifically, we propose a hierarchical evaluation protocol that begins with binary sanity-check questions to assess basic model capacities, and progresses to (1) attribute prediction for box-referred objects, (2) motion understanding of target instances, and (3) spatiotemporal motion reasoning over inter-object dynamics across frames. To support this, we crowd-sourced fine-grained object classes and visual attributes that reflect the complexity drivers encounter, and extract object trajectories to construct temporally grounded QA pairs. Rigorous quality control through negative sampling, temporal consistency checks, and difficulty-aware balancing guarantee dataset robustness and diversity. Our comprehensive evaluation reveals significant limitations in current VLMs when queried about perception questions, highlighting the gap in achieving real-world performance. This work provides a foundation for developing more robust and interpretable autonomous driving systems that can communicate effectively with users under real-world conditions. Project page and dataset are available at https://djamahl99.github.io/qaymo-pages/.

Authors:Ruize Cui, Jiaan Zhang, Jialun Pei, Kai Wang, Pheng-Ann Heng, Jing Qin
Title: Topology-Constrained Learning for Efficient Laparoscopic Liver Landmark Detection
Abstract:
Liver landmarks provide crucial anatomical guidance to the surgeon during laparoscopic liver surgery to minimize surgical risk. However, the tubular structural properties of landmarks and dynamic intraoperative deformations pose significant challenges for automatic landmark detection. In this study, we introduce TopoNet, a novel topology-constrained learning framework for laparoscopic liver landmark detection. Our framework adopts a snake-CNN dual-path encoder to simultaneously capture detailed RGB texture information and depth-informed topological structures. Meanwhile, we propose a boundary-aware topology fusion (BTF) module, which adaptively merges RGB-D features to enhance edge perception while preserving global topology. Additionally, a topological constraint loss function is embedded, which contains a center-line constraint loss and a topological persistence loss to ensure homotopy equivalence between predictions and labels. Extensive experiments on L3D and P2ILF datasets demonstrate that TopoNet achieves outstanding accuracy and computational complexity, highlighting the potential for clinical applications in laparoscopic liver surgery. Our code will be available at https://github.com/cuiruize/TopoNet.

Authors:Vincent Duchêne, Johanna Ulvedal Marstrander
Title: The Fourier spectral approach to the spatial discretization of quasilinear hyperbolic systems
Abstract:
We discuss the rigorous justification of the spatial discretization by means of Fourier spectral methods of quasilinear first-order hyperbolic systems. We provide uniform stability estimates that grant spectral convergence of the (spatially) semi-discretized solutions towards the corresponding continuous solution provided that the underlying system satisfies some suitable structural assumptions. We consider a setting with sharp low-pass filters and a setting with smooth low-pass filters and argue that - at least theoretically - smooth low-pass filters are operable on a larger class of systems. While our theoretical results are supported with numerical evidence, we also pinpoint some behavior of the numerical method that currently has no theoretical explanation.

Authors:Haoran Lou, Chunxiao Fan, Ziyan Liu, Yuexin Wu, Xinliang Wang
Title: LLaVA-SP: Enhancing Visual Representation with Visual Spatial Tokens for MLLMs
Abstract:
The architecture of multimodal large language models (MLLMs) commonly connects a vision encoder, often based on CLIP-ViT, to a large language model. While CLIP-ViT works well for capturing global image features, it struggles to model local relationships between adjacent patches, leading to weaker visual representation, which in turn affects the detailed understanding ability of MLLMs. To solve this, we propose LLaVA-SP, which only adds six spatial visual tokens to the original visual tokens to enhance the visual representation. Our approach offers three key advantages: 1) We propose a novel Projector, which uses convolutional kernels to derive visual spatial tokens from ViT patch features, simulating two visual spatial ordering approaches: "from central region to global" and "from abstract to specific". Then, a cross-attention mechanism is applied to fuse fine-grained visual information, enriching the overall visual representation. 2) We present two model variants: LLaVA-SP-Cropping, which focuses on detail features through progressive cropping, and LLaVA-SP-Pooling, which captures global semantics through adaptive pooling, enabling the model to handle diverse visual understanding tasks. 3) Extensive experiments show that LLaVA-SP, fine-tuned with LoRA, achieves significant performance improvements across various multimodal benchmarks, outperforming the state-of-the-art LLaVA-1.5 model in multiple tasks with nearly identical inference latency. The code and models are available at https://github.com/CnFaker/LLaVA-SP.

Authors:Yongzhen Wang, Liangliang Chen, Bingwen Hu, Heng Liu, Xiao-Ping Zhang, Mingqiang Wei
Title: Laplace-Mamba: Laplace Frequency Prior-Guided Mamba-CNN Fusion Network for Image Dehazing
Abstract:
Recent progress in image restoration has underscored Spatial State Models (SSMs) as powerful tools for modeling long-range dependencies, owing to their appealing linear complexity and computational efficiency. However, SSM-based approaches exhibit limitations in reconstructing localized structures and tend to be less effective when handling high-dimensional data, frequently resulting in suboptimal recovery of fine image features. To tackle these challenges, we introduce Laplace-Mamba, a novel framework that integrates Laplace frequency prior with a hybrid Mamba-CNN architecture for efficient image dehazing. Leveraging the Laplace decomposition, the image is disentangled into low-frequency components capturing global texture and high-frequency components representing edges and fine details. This decomposition enables specialized processing via dual parallel pathways: the low-frequency branch employs SSMs for global context modeling, while the high-frequency branch utilizes CNNs to refine local structural details, effectively addressing diverse haze scenarios. Notably, the Laplace transformation facilitates information-preserving downsampling of low-frequency components in accordance with the Nyquist theory, thereby significantly improving computational efficiency. Extensive evaluations across multiple benchmarks demonstrate that our method outperforms state-of-the-art approaches in both restoration quality and efficiency. The source code and pretrained models are available at https://github.com/yz-wang/Laplace-Mamba.

Authors:Zijian Chen, Yuan Tian, Yuze Sun, Wei Sun, Zicheng Zhang, Weisi Lin, Guangtao Zhai, Wenjun Zhang
Title: Just Noticeable Difference for Large Multimodal Models
Abstract:
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.

Authors:Jianghao Lin, Xinyuan Wang, Xinyi Dai, Menghui Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang
Title: MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Abstract:
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.

Authors:Weiran Guo, Guanjun Liu, Ziyuan Zhou, Ling Wang
Title: PNAct: Crafting Backdoor Attacks in Safe Reinforcement Learning
Abstract:
Reinforcement Learning (RL) is widely used in tasks where agents interact with an environment to maximize rewards. Building on this foundation, Safe Reinforcement Learning (Safe RL) incorporates a cost metric alongside the reward metric, ensuring that agents adhere to safety constraints during decision-making. In this paper, we identify that Safe RL is vulnerable to backdoor attacks, which can manipulate agents into performing unsafe actions. First, we introduce the relevant concepts and evaluation metrics for backdoor attacks in Safe RL. It is the first attack framework in the Safe RL field that involves both Positive and Negative Action sample (PNAct) is to implant backdoors, where positive action samples provide reference actions and negative action samples indicate actions to be avoided. We theoretically point out the properties of PNAct and design an attack algorithm. Finally, we conduct experiments to evaluate the effectiveness of our proposed backdoor attack framework, evaluating it with the established metrics. This paper highlights the potential risks associated with Safe RL and underscores the feasibility of such attacks. Our code and supplementary material are available at https://github.com/azure-123/PNAct.

Authors:Kiyoung Om, Kyuil Sim, Taeyoung Yun, Hyeongyu Kang, Jinkyoo Park
Title: Posterior Inference in Latent Space for Scalable Constrained Black-box Optimization
Abstract:
Optimizing high-dimensional black-box functions under black-box constraints is a pervasive task in a wide range of scientific and engineering problems. These problems are typically harder than unconstrained problems due to hard-to-find feasible regions. While Bayesian optimization (BO) methods have been developed to solve such problems, they often struggle with the curse of dimensionality. Recently, generative model-based approaches have emerged as a promising alternative for constrained optimization. However, they suffer from poor scalability and are vulnerable to mode collapse, particularly when the target distribution is highly multi-modal. In this paper, we propose a new framework to overcome these challenges. Our method iterates through two stages. First, we train flow-based models to capture the data distribution and surrogate models that predict both function values and constraint violations with uncertainty quantification. Second, we cast the candidate selection problem as a posterior inference problem to effectively search for promising candidates that have high objective values while not violating the constraints. During posterior inference, we find that the posterior distribution is highly multi-modal and has a large plateau due to constraints, especially when constraint feedback is given as binary indicators of feasibility. To mitigate this issue, we amortize the sampling from the posterior distribution in the latent space of flow-based models, which is much smoother than that in the data space. We empirically demonstrate that our method achieves superior performance on various synthetic and real-world constrained black-box optimization tasks. Our code is publicly available \href{https://github.com/umkiyoung/CiBO}{here}.

Authors:Yaofei Duan, Yuhao Huang, Xin Yang, Luyi Han, Xinyu Xie, Zhiyuan Zhu, Ping He, Ka-Hou Chan, Ligang Cui, Sio-Kei Im, Dong Ni, Tao Tan
Title: ADAptation: Reconstruction-based Unsupervised Active Learning for Breast Ultrasound Diagnosis
Abstract:
Deep learning-based diagnostic models often suffer performance drops due to distribution shifts between training (source) and test (target) domains. Collecting and labeling sufficient target domain data for model retraining represents an optimal solution, yet is limited by time and scarce resources. Active learning (AL) offers an efficient approach to reduce annotation costs while maintaining performance, but struggles to handle the challenge posed by distribution variations across different datasets. In this study, we propose a novel unsupervised Active learning framework for Domain Adaptation, named ADAptation, which efficiently selects informative samples from multi-domain data pools under limited annotation budget. As a fundamental step, our method first utilizes the distribution homogenization capabilities of diffusion models to bridge cross-dataset gaps by translating target images into source-domain style. We then introduce two key innovations: (a) a hypersphere-constrained contrastive learning network for compact feature clustering, and (b) a dual-scoring mechanism that quantifies and balances sample uncertainty and representativeness. Extensive experiments on four breast ultrasound datasets (three public and one in-house/multi-center) across five common deep classifiers demonstrate that our method surpasses existing strong AL-based competitors, validating its effectiveness and generalization for clinical domain adaptation. The code is available at the anonymized link: https://github.com/miccai25-966/ADAptation.

Authors:Ying Guo, Xi Liu, Cheng Zhen, Pengfei Yan, Xiaoming Wei
Title: ARIG: Autoregressive Interactive Head Generation for Real-time Conversations
Abstract:
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.

Authors:Xin Luo, Menglin Zhang, Yunwei Lan, Tianyu Zhang, Rui Li, Chang Liu, Dong Liu
Title: Latent Posterior-Mean Rectified Flow for Higher-Fidelity Perceptual Face Restoration
Abstract:
The Perception-Distortion tradeoff (PD-tradeoff) theory suggests that face restoration algorithms must balance perceptual quality and fidelity. To achieve minimal distortion while maintaining perfect perceptual quality, Posterior-Mean Rectified Flow (PMRF) proposes a flow based approach where source distribution is minimum distortion estimations. Although PMRF is shown to be effective, its pixel-space modeling approach limits its ability to align with human perception, where human perception is defined as how humans distinguish between two image distributions. In this work, we propose Latent-PMRF, which reformulates PMRF in the latent space of a variational autoencoder (VAE), facilitating better alignment with human perception during optimization. By defining the source distribution on latent representations of minimum distortion estimation, we bound the minimum distortion by the VAE's reconstruction error. Moreover, we reveal the design of VAE is crucial, and our proposed VAE significantly outperforms existing VAEs in both reconstruction and restoration. Extensive experiments on blind face restoration demonstrate the superiority of Latent-PMRF, offering an improved PD-tradeoff compared to existing methods, along with remarkable convergence efficiency, achieving a 5.79X speedup over PMRF in terms of FID. Our code will be available as open-source.

Authors:Chengjie Liu, Jiajia Li, Yabing Feng, Wenhao Huang, Weiyu Chen, Yuan Du, Jun Yang, Li Du
Title: DiffCkt: A Diffusion Model-Based Hybrid Neural Network Framework for Automatic Transistor-Level Generation of Analog Circuits
Abstract:
Analog circuit design consists of the pre-layout and layout phases. Among them, the pre-layout phase directly decides the final circuit performance, but heavily depends on experienced engineers to do manual design according to specific application scenarios. To overcome these challenges and automate the analog circuit pre-layout design phase, we introduce DiffCkt: a diffusion model-based hybrid neural network framework for the automatic transistor-level generation of analog circuits, which can directly generate corresponding circuit structures and device parameters tailored to specific performance requirements. To more accurately quantify the efficiency of circuits generated by DiffCkt, we introduce the Circuit Generation Efficiency Index (CGEI), which is determined by both the figure of merit (FOM) of a single generated circuit and the time consumed. Compared with relative research, DiffCkt has improved CGEI by a factor of $2.21 \sim 8365\times$, reaching a state-of-the-art (SOTA) level. In conclusion, this work shows that the diffusion model has the remarkable ability to learn and generate analog circuit structures and device parameters, providing a revolutionary method for automating the pre-layout design of analog circuits. The circuit dataset will be open source, its preview version is available at https://github.com/CjLiu-NJU/DiffCkt.

Authors:Yujia Yin, Tianyi Qu, Zihao Wang, Yifan Chen
Title: A Recipe for Causal Graph Regression: Confounding Effects Revisited
Abstract:
Through recognizing causal subgraphs, causal graph learning (CGL) has risen to be a promising approach for improving the generalizability of graph neural networks under out-of-distribution (OOD) scenarios. However, the empirical successes of CGL techniques are mostly exemplified in classification settings, while regression tasks, a more challenging setting in graph learning, are overlooked. We thus devote this work to tackling causal graph regression (CGR); to this end we reshape the processing of confounding effects in existing CGL studies, which mainly deal with classification. Specifically, we reflect on the predictive power of confounders in graph-level regression, and generalize classification-specific causal intervention techniques to regression through a lens of contrastive learning. Extensive experiments on graph OOD benchmarks validate the efficacy of our proposals for CGR. The model implementation and the code are provided on https://github.com/causal-graph/CGR.

Authors:Huanxin Yang, Qiwen Wang
Title: MFH: Marrying Frequency Domain with Handwritten Mathematical Expression Recognition
Abstract:
Handwritten mathematical expression recognition (HMER) suffers from complex formula structures and character layouts in sequence prediction. In this paper, we incorporate frequency domain analysis into HMER and propose a method that marries frequency domain with HMER (MFH), leveraging the discrete cosine transform (DCT). We emphasize the structural analysis assistance of frequency information for recognizing mathematical formulas. When implemented on various baseline models, our network exhibits a consistent performance enhancement, demonstrating the efficacy of frequency domain information. Experiments show that our MFH-CoMER achieves noteworthy accuracyrates of 61.66%/62.07%/63.72% on the CROHME 2014/2016/2019 test sets. The source code is available at https://github.com/Hryxyhe/MFH.

Authors:Jingyi Pan, Dan Xu, Qiong Luo
Title: DiGA3D: Coarse-to-Fine Diffusional Propagation of Geometry and Appearance for Versatile 3D Inpainting
Abstract:
Developing a unified pipeline that enables users to remove, re-texture, or replace objects in a versatile manner is crucial for text-guided 3D inpainting. However, there are still challenges in performing multiple 3D inpainting tasks within a unified framework: 1) Single reference inpainting methods lack robustness when dealing with views that are far from the reference view. 2) Appearance inconsistency arises when independently inpainting multi-view images with 2D diffusion priors; 3) Geometry inconsistency limits performance when there are significant geometric changes in the inpainting regions. To tackle these challenges, we introduce DiGA3D, a novel and versatile 3D inpainting pipeline that leverages diffusion models to propagate consistent appearance and geometry in a coarse-to-fine manner. First, DiGA3D develops a robust strategy for selecting multiple reference views to reduce errors during propagation. Next, DiGA3D designs an Attention Feature Propagation (AFP) mechanism that propagates attention features from the selected reference views to other views via diffusion models to maintain appearance consistency. Furthermore, DiGA3D introduces a Texture-Geometry Score Distillation Sampling (TG-SDS) loss to further improve the geometric consistency of inpainted 3D scenes. Extensive experiments on multiple 3D inpainting tasks demonstrate the effectiveness of our method. The project page is available at https://rorisis.github.io/DiGA3D/.

Authors:Yimin Dou, Xinming Wu, Nathan L Bangs, Harpreet Singh Sethi, Jintao Li, Hang Gao, Zhixiang Guo
Title: Geological Everything Model 3D: A Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding
Abstract:
Understanding Earth's subsurface is critical for energy transition, natural hazard mitigation, and planetary science. Yet subsurface analysis remains fragmented, with separate models required for structural interpretation, stratigraphic analysis, geobody segmentation, and property modeling-each tightly coupled to specific data distributions and task formulations. We introduce the Geological Everything Model 3D (GEM), a unified generative architecture that reformulates all these tasks as prompt-conditioned inference along latent structural frameworks derived from subsurface imaging. This formulation moves beyond task-specific models by enabling a shared inference mechanism, where GEM propagates human-provided prompts-such as well logs, masks, or structural sketches-along inferred structural frameworks to produce geologically coherent outputs. Through this mechanism, GEM achieves zero-shot generalization across tasks with heterogeneous prompt types, without retraining for new tasks or data sources. This capability emerges from a two-stage training process that combines self-supervised representation learning on large-scale field seismic data with adversarial fine-tuning using mixed prompts and labels across diverse subsurface tasks. GEM demonstrates broad applicability across surveys and tasks, including Martian radar stratigraphy analysis, structural interpretation in subduction zones, full seismic stratigraphic interpretation, geobody segmentation, and property modeling. By bridging expert knowledge with generative reasoning in a structurally aware manner, GEM lays the foundation for scalable, human-in-the-loop geophysical AI-transitioning from fragmented pipelines to a vertically integrated, promptable reasoning system. Project page: https://douyimin.github.io/GEM

Authors:Xin Xu, Eibe Frank, Geoffrey Holmes
Title: Few-shot Classification as Multi-instance Verification: Effective Backbone-agnostic Transfer across Domains
Abstract:
We investigate cross-domain few-shot learning under the constraint that fine-tuning of backbones (i.e., feature extractors) is impossible or infeasible -- a scenario that is increasingly common in practical use cases. Handling the low-quality and static embeddings produced by frozen, "black-box" backbones leads to a problem representation of few-shot classification as a series of multiple instance verification (MIV) tasks. Inspired by this representation, we introduce a novel approach to few-shot domain adaptation, named the "MIV-head", akin to a classification head that is agnostic to any pretrained backbone and computationally efficient. The core components designed for the MIV-head, when trained on few-shot data from a target domain, collectively yield strong performance on test data from that domain. Importantly, it does so without fine-tuning the backbone, and within the "meta-testing" phase. Experimenting under various settings and on an extension of the Meta-dataset benchmark for cross-domain few-shot image classification, using representative off-the-shelf convolutional neural network and vision transformer backbones pretrained on ImageNet1K, we show that the MIV-head achieves highly competitive accuracy when compared to state-of-the-art "adapter" (or partially fine-tuning) methods applied to the same backbones, while incurring substantially lower adaptation cost. We also find well-known "classification head" approaches lag far behind in terms of accuracy. Ablation study empirically justifies the core components of our approach. We share our code at https://github.com/xxweka/MIV-head.

Authors:Jian Wang, Qiongying Ni, Hongkui Yu, Ruixuan Yao, Jinqiao Ying, Bin Zhang, Xingyi Yang, Jin Peng, Jiongquan Chen, Junxuan Yu, Wenlong Shi, Chaoyu Chen, Zhongnuo Yan, Mingyuan Luo, Gaocheng Cai, Dong Ni, Jing Lu, Xin Yang
Title: Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound
Abstract:
Accurate fetal birth weight (FBW) estimation is essential for optimizing delivery decisions and reducing perinatal mortality. However, clinical methods for FBW estimation are inefficient, operator-dependent, and challenging to apply in cases of complex fetal anatomy. Existing deep learning methods are based on 2D standard ultrasound (US) images or videos that lack spatial information, limiting their prediction accuracy. In this study, we propose the first method for directly estimating FBW from 3D fetal US volumes. Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF). The MFFN effectively extracts and fuses multi-scale features under sparse supervision by incorporating channel attention, spatial attention, and a ranking-based loss function. SSLF generates synthetic samples by simply combining fetal head and abdomen data from different fetuses, utilizing semi-supervised learning to improve prediction performance. Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4\pm155.9$ $g$ and a mean absolute percentage error of $5.1\pm4.6$%, outperforming existing methods and approaching the accuracy of a senior doctor. Code is available at: https://github.com/Qioy-i/EFW.

Authors:Geng Zhang, Shenggan Cheng, Xuanlei Zhao, Ziming Liu, Yang You
Title: HelixPipe: Efficient Distributed Training of Long Sequence Transformers with Attention Parallel Pipeline Parallelism
Abstract:
As transformer sequence lengths grow, existing pipeline parallelisms incur suboptimal performance due to the quadratic attention computation and the substantial memory overhead. To relieve these challenges, we propose HelixPipe, a novel pipeline parallelism for long sequence transformer training. First, HelixPipe introduces attention parallel partition, which schedules attention computations of different micro batches across different pipeline stages in parallel, reducing pipeline bubbles. Second, it employs a two-fold first-in-last-out micro batch schedule to balance memory usage and overlap communication with computation. Additionally, HelixPipe utilizes recomputation without attention and chunked MLP to mitigate fragmentation and enable longer sequences. Experiments demonstrate that HelixPipe gains increasing advantages with longer sequence lengths, and outperforms existing methods in throughput and scalability across varying pipeline sizes, model sizes, and cluster configurations. Notably, it achieves a 26\% speedup over baseline methods when training a 7B model with 128k sequence length on 64 H20 GPUs. Code is available at https://github.com/code-tunnel/Megatron-LM/tree/dev.

Authors:Yingping Liang, Yutao Hu, Wenqi Shao, Ying Fu
Title: Learning Dense Feature Matching via Lifting Single 2D Image to 3D Space
Abstract:
Feature matching plays a fundamental role in many computer vision tasks, yet existing methods heavily rely on scarce and clean multi-view image collections, which constrains their generalization to diverse and challenging scenarios. Moreover, conventional feature encoders are typically trained on single-view 2D images, limiting their capacity to capture 3D-aware correspondences. In this paper, we propose a novel two-stage framework that lifts 2D images to 3D space, named as \textbf{Lift to Match (L2M)}, taking full advantage of large-scale and diverse single-view images. To be specific, in the first stage, we learn a 3D-aware feature encoder using a combination of multi-view image synthesis and 3D feature Gaussian representation, which injects 3D geometry knowledge into the encoder. In the second stage, a novel-view rendering strategy, combined with large-scale synthetic data generation from single-view images, is employed to learn a feature decoder for robust feature matching, thus achieving generalization across diverse domains. Extensive experiments demonstrate that our method achieves superior generalization across zero-shot evaluation benchmarks, highlighting the effectiveness of the proposed framework for robust feature matching.

Authors:Geng Zhang, Yuxuan Han, Yuxuan Lou, Wangbo Zhao, Yiqi Zhang, Yang You
Title: MoNE: Replacing Redundant Experts with Lightweight Novices for Structured Pruning of MoE
Abstract:
Mixture-of-Experts (MoE) enables efficient scaling of large language models by activating only a subset of experts per input token. However, deploying MoE-based models incurs significant memory overhead due to the need to retain all experts in memory. While structured pruning is promising to reduce memory costs, existing methods often show suboptimal performance and unstable degradation in three dimensions: model architectures, calibration data sources, and calibration sample sizes. This paper proposes Mixture-of-Novices-and-Experts (MoNE), a novel expert pruning method that replaces redundant experts with lightweight novices to achieve effective and robust model compression. MoNE evaluates expert redundancy based on two metrics: access frequency and output variance. Experts exhibiting low usage and stable outputs are pruned and replaced with lightweight novices-unbiased estimations of their original outputs-minimizing performance degradation. Extensive experiments demonstrate that MoNE consistently outperforms baseline methods with minimal accuracy degradation across the three dimensions, confirming its effectiveness and robustness. Notably, it improves the average zero shot accuracy across nine downstream tasks by up to 2.71 under 25\% pruning ratio and 3.61 under 50\% pruning. The code is available at https://github.com/zxgx/mode-pd.

Authors:Jing Ren, Wenhao Zhou, Bowen Li, Mujie Liu, Nguyen Linh Dan Le, Jiade Cen, Liping Chen, Ziqi Xu, Xiwei Xu, Xiaodong Li
Title: Causal Prompting for Implicit Sentiment Analysis with Large Language Models
Abstract:
Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated, requiring models to perform deeper reasoning over subtle contextual cues. While recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA, they often rely on majority voting over chain-of-thought (CoT) reasoning paths without evaluating their causal validity, making them susceptible to internal biases and spurious correlations. To address this challenge, we propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning. CAPITAL decomposes the overall causal effect into two components: the influence of the input prompt on the reasoning chains, and the impact of those chains on the final output. These components are estimated using encoder-based clustering and the NWGM approximation, with a contrastive learning objective used to better align the encoder's representation with the LLM's reasoning space. Experiments on benchmark ISA datasets with three LLMs demonstrate that CAPITAL consistently outperforms strong prompting baselines in both accuracy and robustness, particularly under adversarial conditions. This work offers a principled approach to integrating causal inference into LLM prompting and highlights its benefits for bias-aware sentiment reasoning. The source code and case study are available at: https://github.com/whZ62/CAPITAL.

Authors:Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo
Title: MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis
Abstract:
Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.

Authors:Mengyi Shan, Zecheng He, Haoyu Ma, Felix Juefei-Xu, Peizhao Zhang, Tingbo Hou, Ching-Yao Chuang
Title: Populate-A-Scene: Affordance-Aware Human Video Generation
Abstract:
Can a video generation model be repurposed as an interactive world simulator? We explore the affordance perception potential of text-to-video models by teaching them to predict human-environment interaction. Given a scene image and a prompt describing human actions, we fine-tune the model to insert a person into the scene, while ensuring coherent behavior, appearance, harmonization, and scene affordance. Unlike prior work, we infer human affordance for video generation (i.e., where to insert a person and how they should behave) from a single scene image, without explicit conditions like bounding boxes or body poses. An in-depth study of cross-attention heatmaps demonstrates that we can uncover the inherent affordance perception of a pre-trained video model without labeled affordance datasets.

Authors:Chuyan Zhang, Kefan Wang, Yun Gu
Title: Beyond Low-Rank Tuning: Model Prior-Guided Rank Allocation for Effective Transfer in Low-Data and Large-Gap Regimes
Abstract:
Low-Rank Adaptation (LoRA) has proven effective in reducing computational costs while maintaining performance comparable to fully fine-tuned foundation models across various tasks. However, its fixed low-rank structure restricts its adaptability in scenarios with substantial domain gaps, where higher ranks are often required to capture domain-specific complexities. Current adaptive LoRA methods attempt to overcome this limitation by dynamically expanding or selectively allocating ranks, but these approaches frequently depend on computationally intensive techniques such as iterative pruning, rank searches, or additional regularization. To address these challenges, we introduce Stable Rank-Guided Low-Rank Adaptation (SR-LoRA), a novel framework that utilizes the stable rank of pre-trained weight matrices as a natural prior for layer-wise rank allocation. By leveraging the stable rank, which reflects the intrinsic dimensionality of the weights, SR-LoRA enables a principled and efficient redistribution of ranks across layers, enhancing adaptability without incurring additional search costs. Empirical evaluations on few-shot tasks with significant domain gaps show that SR-LoRA consistently outperforms recent adaptive LoRA variants, achieving a superior trade-off between performance and efficiency. Our code is available at https://github.com/EndoluminalSurgicalVision-IMR/SR-LoRA.

Authors:Siyou Li, Pengyao Qin, Huanan Wu, Dong Nie, Arun J. Thirunavukarasu, Juntao Yu, Le Zhang
Title: $μ^2$Tokenizer: Differentiable Multi-Scale Multi-Modal Tokenizer for Radiology Report Generation
Abstract:
Automated radiology report generation (RRG) aims to produce detailed textual reports from clinical imaging, such as computed tomography (CT) scans, to improve the accuracy and efficiency of diagnosis and provision of management advice. RRG is complicated by two key challenges: (1) inherent complexity in extracting relevant information from imaging data under resource constraints, and (2) difficulty in objectively evaluating discrepancies between model-generated and expert-written reports. To address these challenges, we propose $μ^2$LLM, a $\underline{\textbf{mu}}$ltiscale $\underline{\textbf{mu}}$ltimodal large language models for RRG tasks. The novel $μ^2$Tokenizer, as an intermediate layer, integrates multi-modal features from the multiscale visual tokenizer and the text tokenizer, then enhances report generation quality through direct preference optimization (DPO), guided by GREEN-RedLlama. Experimental results on four large CT image-report medical datasets demonstrate that our method outperforms existing approaches, highlighting the potential of our fine-tuned $μ^2$LLMs on limited data for RRG tasks. At the same time, for prompt engineering, we introduce a five-stage, LLM-driven pipeline that converts routine CT reports into paired visual-question-answer triples and citation-linked reasoning narratives, creating a scalable, high-quality supervisory corpus for explainable multimodal radiology LLM. All code, datasets, and models will be publicly available in our official repository. https://github.com/Siyou-Li/u2Tokenizer

Authors:Yusuke Tanaka, Alvin Zhu, Quanyou Wang, Dennis Hong
Title: Mechanical Intelligence-Aware Curriculum Reinforcement Learning for Humanoids with Parallel Actuation
Abstract:
Reinforcement learning (RL) has enabled advances in humanoid robot locomotion, yet most learning frameworks do not account for mechanical intelligence embedded in parallel actuation mechanisms due to limitations in simulator support for closed kinematic chains. This omission can lead to inaccurate motion modeling and suboptimal policies, particularly for robots with high actuation complexity. This paper presents general formulations and simulation methods for three types of parallel mechanisms: a differential pulley, a five-bar linkage, and a four-bar linkage, and trains a parallel-mechanism aware policy through an end-to-end curriculum RL framework for BRUCE, a kid-sized humanoid robot. Unlike prior approaches that rely on simplified serial approximations, we simulate all closed-chain constraints natively using GPU-accelerated MuJoCo (MJX), preserving the hardware's mechanical nonlinear properties during training. We benchmark our RL approach against a model predictive controller (MPC), demonstrating better surface generalization and performance in real-world zero-shot deployment. This work highlights the computational approaches and performance benefits of fully simulating parallel mechanisms in end-to-end learning pipelines for legged humanoids. Project codes with parallel mechanisms: https://github.com/alvister88/og_bruce

Authors:Zhuangzhuang Dai, Vincent Gbouna Zakka, Luis J. Manso, Chen Li
Title: GazeTarget360: Towards Gaze Target Estimation in 360-Degree for Robot Perception
Abstract:
Enabling robots to understand human gaze target is a crucial step to allow capabilities in downstream tasks, for example, attention estimation and movement anticipation in real-world human-robot interactions. Prior works have addressed the in-frame target localization problem with data-driven approaches by carefully removing out-of-frame samples. Vision-based gaze estimation methods, such as OpenFace, do not effectively absorb background information in images and cannot predict gaze target in situations where subjects look away from the camera. In this work, we propose a system to address the problem of 360-degree gaze target estimation from an image in generalized visual scenes. The system, named GazeTarget360, integrates conditional inference engines of an eye-contact detector, a pre-trained vision encoder, and a multi-scale-fusion decoder. Cross validation results show that GazeTarget360 can produce accurate and reliable gaze target predictions in unseen scenarios. This makes a first-of-its-kind system to predict gaze targets from realistic camera footage which is highly efficient and deployable. Our source code is made publicly available at: https://github.com/zdai257/DisengageNet.

Authors:Sanchit Ahuja, Praneetha Vaddamanu, Barun Patra
Title: EfficientXLang: Towards Improving Token Efficiency Through Cross-Lingual Reasoning
Abstract:
Despite recent advances in Language Reasoning Models (LRMs), most research focuses solely on English, even though many models are pretrained on multilingual data. In this work, we investigate: Is English the most token-efficient language for reasoning? We evaluate three open-source RLMs: DeepSeek R1, Qwen 2.5 and Qwen 3, across four math datasets and seven typologically diverse languages. We find that reasoning in non-English languages not only reduces token usage, but also preserves accuracy. These gains persist even after translating the reasoning traces into English, suggesting genuine shifts in reasoning behavior rather than surface-level linguistic effects. The extent of improvement, however, depends on the models multilingual strength. Our findings motivate a broader view of reasoning in language models, highlighting the potential of multilingual reasoning and the importance of strong multilingual foundations. The code for our work can be found: https://github.com/microsoft/EfficientXLang.

Authors:Ethan Smyth, Alessandro Suglia
Title: VoyagerVision: Investigating the Role of Multi-modal Information for Open-ended Learning Systems
Abstract:
Open-endedness is an active field of research in the pursuit of capable Artificial General Intelligence (AGI), allowing models to pursue tasks of their own choosing. Simultaneously, recent advancements in Large Language Models (LLMs) such as GPT-4o [9] have allowed such models to be capable of interpreting image inputs. Implementations such as OMNI-EPIC [4] have made use of such features, providing an LLM with pixel data of an agent's POV to parse the environment and allow it to solve tasks. This paper proposes that providing these visual inputs to a model gives it greater ability to interpret spatial environments, and as such, can increase the number of tasks it can successfully perform, extending its open-ended potential. To this aim, this paper proposes VoyagerVision -- a multi-modal model capable of creating structures within Minecraft using screenshots as a form of visual feedback, building on the foundation of Voyager. VoyagerVision was capable of creating an average of 2.75 unique structures within fifty iterations of the system, as Voyager was incapable of this, it is an extension in an entirely new direction. Additionally, in a set of building unit tests VoyagerVision was successful in half of all attempts in flat worlds, with most failures arising in more complex structures. Project website is available at https://esmyth-dev.github.io/VoyagerVision.github.io/

Authors:Hoang-Dieu Vu, Duc-Nghia Tran, Quang-Tu Pham, Hieu H. Pham, Nicolas Vuillerme, Duc-Tan Tran
Title: Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data
Abstract:
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection using wearable sensor data. The proposed approach utilizes a unified CNN-based architecture, MTL-net, which processes accelerometer data and branches into two outputs for each respective task. Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher, significantly reducing training computational overhead while maintaining performance benefits. To support this research, we developed a comprehensive accelerometer-based dataset capturing 12 distinct sleep postures across three different wearing positions, complementing two existing public datasets (MHealth and WISDM). Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios, achieving notable improvements in both human activity recognition and device placement detection tasks. This method demonstrates enhanced stability in convergence patterns during training and exhibits reduced overfitting compared to traditional multitask learning baselines. This framework contributes to the practical implementation of knowledge distillation in human activity recognition systems, offering an effective solution for multitask learning with accelerometer data that balances accuracy and training efficiency. More broadly, it reduces the computational cost of model training, which is critical for scenarios requiring frequent model updates or training on resource-constrained platforms. The code and model are available at https://github.com/Kuan2vn/smooth\_distill.

Authors:Mehmet Yigit Avci, Pedro Borges, Paul Wright, Mehmet Yigitsoy, Sebastien Ourselin, Jorge Cardoso
Title: MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
Abstract:
Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.

Authors:Varun Mannam, Fang Wang, Chaochun Liu, Xin Chen
Title: TalentMine: LLM-Based Extraction and Question-Answering from Multimodal Talent Tables
Abstract:
In talent management systems, critical information often resides in complex tabular formats, presenting significant retrieval challenges for conventional language models. These challenges are pronounced when processing Talent documentation that requires precise interpretation of tabular relationships for accurate information retrieval and downstream decision-making. Current table extraction methods struggle with semantic understanding, resulting in poor performance when integrated into retrieval-augmented chat applications. This paper identifies a key bottleneck - while structural table information can be extracted, the semantic relationships between tabular elements are lost, causing downstream query failures. To address this, we introduce TalentMine, a novel LLM-enhanced framework that transforms extracted tables into semantically enriched representations. Unlike conventional approaches relying on CSV or text linearization, our method employs specialized multimodal reasoning to preserve both structural and semantic dimensions of tabular data. Experimental evaluation across employee benefits document collections demonstrates TalentMine's superior performance, achieving 100% accuracy in query answering tasks compared to 0% for standard AWS Textract extraction and 40% for AWS Textract Visual Q&A capabilities. Our comparative analysis also reveals that the Claude v3 Haiku model achieves optimal performance for talent management applications. The key contributions of this work include (1) a systematic analysis of semantic information loss in current table extraction pipelines, (2) a novel LLM-based method for semantically enriched table representation, (3) an efficient integration framework for retrieval-augmented systems as end-to-end systems, and (4) comprehensive benchmarks on talent analytics tasks showing substantial improvements across multiple categories.

Authors:Phoomraphee Luenam, Andreas Spanopoulos, Amit Sant, Thomas Hofmann, Sotiris Anagnostidis, Sidak Pal Singh
Title: Model Fusion via Neuron Interpolation
Abstract:
Model fusion aims to combine the knowledge of multiple models by creating one representative model that captures the strengths of all of its parents. However, this process is non-trivial due to differences in internal representations, which can stem from permutation invariance, random initialization, or differently distributed training data. We present a novel, neuron-centric family of model fusion algorithms designed to integrate multiple trained neural networks into a single network effectively regardless of training data distribution. Our algorithms group intermediate neurons of parent models to create target representations that the fused model approximates with its corresponding sub-network. Unlike prior approaches, our approach incorporates neuron attribution scores into the fusion process. Furthermore, our algorithms can generalize to arbitrary layer types. Experimental results on various benchmark datasets demonstrate that our algorithms consistently outperform previous fusion techniques, particularly in zero-shot and non-IID fusion scenarios. The code is available at https://github.com/AndrewSpano/neuron-interpolation-model-fusion.

Authors:Tiexin Qin, Hong Yan, Haoliang Li
Title: Generalizing to New Dynamical Systems via Frequency Domain Adaptation
Abstract:
Learning the underlying dynamics from data with deep neural networks has shown remarkable potential in modeling various complex physical dynamics. However, current approaches are constrained in their ability to make reliable predictions in a specific domain and struggle with generalizing to unseen systems that are governed by the same general dynamics but differ in environmental characteristics. In this work, we formulate a parameter-efficient method, Fourier Neural Simulator for Dynamical Adaptation (FNSDA), that can readily generalize to new dynamics via adaptation in the Fourier space. Specifically, FNSDA identifies the shareable dynamics based on the known environments using an automatic partition in Fourier modes and learns to adjust the modes specific for each new environment by conditioning on low-dimensional latent systematic parameters for efficient generalization. We evaluate our approach on four representative families of dynamic systems, and the results show that FNSDA can achieve superior or competitive generalization performance compared to existing methods with a significantly reduced parameter cost. Our code is available at https://github.com/WonderSeven/FNSDA.