arXiv Papers with Code in Computer Science (September 2025)

Paperid: 1, https://arxiv.org/pdf/2509.26645.pdf   GitHub GitHub
Authors:Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, Anpei Chen
Title: TTT3R: 3D Reconstruction as Test-Time Training
Abstract:
Modern Recurrent Neural Networks have become a competitive architecture for 3D reconstruction due to their linear-time complexity. However, their performance degrades significantly when applied beyond the training context length, revealing limited length generalization. In this work, we revisit the 3D reconstruction foundation models from a Test-Time Training perspective, framing their designs as an online learning problem. Building on this perspective, we leverage the alignment confidence between the memory state and incoming observations to derive a closed-form learning rate for memory updates, to balance between retaining historical information and adapting to new observations. This training-free intervention, termed TTT3R, substantially improves length generalization, achieving a $2\times$ improvement in global pose estimation over baselines, while operating at 20 FPS with just 6 GB of GPU memory to process thousands of images. Code available in https://rover-xingyu.github.io/TTT3R

Authors:Jessica Bader, Mateusz Pach, Maria A. Bravo, Serge Belongie, Zeynep Akata
Title: Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Abstract:
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.

Authors:Shangding Gu, Xiaohan Wang, Donghao Ying, Haoyu Zhao, Runing Yang, Ming Jin, Boyi Li, Marco Pavone, Serena Yeung-Levy, Jun Wang, Dawn Song, Costas Spanos
Title: AccidentBench: Benchmarking Multimodal Understanding and Reasoning in Vehicle Accidents and Beyond
Abstract:
Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multi-vehicle motion). The benchmark contains approximately 2000 videos and over 19000 human-annotated question--answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: https://github.com/SafeRL-Lab/AccidentBench

Authors:Siddarth Venkatraman, Vineet Jain, Sarthak Mittal, Vedant Shah, Johan Obando-Ceron, Yoshua Bengio, Brian R. Bartoldson, Bhavya Kailkhura, Guillaume Lajoie, Glen Berseth, Nikolay Malkin, Moksh Jain
Title: Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Abstract:
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.

Authors:Junlin Han, Shengbang Tong, David Fan, Yufan Ren, Koustuv Sinha, Philip Torr, Filippos Kokkinos
Title: Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Abstract:
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.

Authors:Xiyi Chen, Shaofei Wang, Marko Mihajlovic, Taewon Kang, Sergey Prokudin, Ming Lin
Title: HART: Human Aligned Reconstruction Transformer
Abstract:
We introduce HART, a unified framework for sparse-view human reconstruction. Given a small set of uncalibrated RGB images of a person as input, it outputs a watertight clothed mesh, the aligned SMPL-X body mesh, and a Gaussian-splat representation for photorealistic novel-view rendering. Prior methods for clothed human reconstruction either optimize parametric templates, which overlook loose garments and human-object interactions, or train implicit functions under simplified camera assumptions, limiting applicability in real scenes. In contrast, HART predicts per-pixel 3D point maps, normals, and body correspondences, and employs an occlusion-aware Poisson reconstruction to recover complete geometry, even in self-occluded regions. These predictions also align with a parametric SMPL-X body model, ensuring that reconstructed geometry remains consistent with human structure while capturing loose clothing and interactions. These human-aligned meshes initialize Gaussian splats to further enable sparse-view rendering. While trained on only 2.3K synthetic scans, HART achieves state-of-the-art results: Chamfer Distance improves by 18-23 percent for clothed-mesh reconstruction, PA-V2V drops by 6-27 percent for SMPL-X estimation, LPIPS decreases by 15-27 percent for novel-view synthesis on a wide range of datasets. These results suggest that feed-forward transformers can serve as a scalable model for robust human reconstruction in real-world settings. Code and models will be released.

Authors:Haodong Li, Wangguangdong Zheng, Jing He, Yuhao Liu, Xin Lin, Xin Yang, Ying-Cong Chen, Chunchao Guo
Title: DA$^2$: Depth Anything in Any Direction
Abstract:
Panorama has a full FoV (360$^\circ\times$180$^\circ$), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose $\textbf{DA}$$^{\textbf{2}}$: $\textbf{D}$epth $\textbf{A}$nything in $\textbf{A}$ny $\textbf{D}$irection, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create $\sim$543K panoramic RGB-depth pairs, bringing the total to $\sim$607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA$^{2}$'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA$^{2}$ even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA$^{2}$ exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.

Authors:Yixuan Weng, Minjun Zhu, Qiujie Xie, Qiyao Sun, Zhen Lin, Sifan Liu, Yue Zhang
Title: DeepScientist: Advancing Frontier-Pushing Scientific Findings Progressively
Abstract:
While previous AI Scientist systems can generate novel findings, they often lack the focus to produce scientifically valuable contributions that address pressing human-defined challenges. We introduce DeepScientist, a system designed to overcome this by conducting goal-oriented, fully autonomous scientific discovery over month-long timelines. It formalizes discovery as a Bayesian Optimization problem, operationalized through a hierarchical evaluation process consisting of "hypothesize, verify, and analyze". Leveraging a cumulative Findings Memory, this loop intelligently balances the exploration of novel hypotheses with exploitation, selectively promoting the most promising findings to higher-fidelity levels of validation. Consuming over 20,000 GPU hours, the system generated about 5,000 unique scientific ideas and experimentally validated approximately 1100 of them, ultimately surpassing human-designed state-of-the-art (SOTA) methods on three frontier AI tasks by 183.7\%, 1.9\%, and 7.9\%. This work provides the first large-scale evidence of an AI achieving discoveries that progressively surpass human SOTA on scientific tasks, producing valuable findings that genuinely push the frontier of scientific discovery. To facilitate further research into this process, we will open-source all experimental logs and system code at https://github.com/ResearAI/DeepScientist/.

Authors:Jian Guo Pan, Lin Wang, Xia Cai
Title: Automated and Scalable SEM Image Analysis of Perovskite Solar Cell Materials via a Deep Segmentation Framework
Abstract:
Scanning Electron Microscopy (SEM) is indispensable for characterizing the microstructure of thin films during perovskite solar cell fabrication. Accurate identification and quantification of lead iodide and perovskite phases are critical because residual lead iodide strongly influences crystallization pathways and defect formation, while the morphology of perovskite grains governs carrier transport and device stability. Yet current SEM image analysis is still largely manual, limiting throughput and consistency. Here, we present an automated deep learning-based framework for SEM image segmentation that enables precise and efficient identification of lead iodide, perovskite and defect domains across diverse morphologies. Built upon an improved YOLOv8x architecture, our model named PerovSegNet incorporates two novel modules: (i) Adaptive Shuffle Dilated Convolution Block, which enhances multi-scale and fine-grained feature extraction through group convolutions and channel mixing; and (ii) Separable Adaptive Downsampling module, which jointly preserves fine-scale textures and large-scale structures for more robust boundary recognition. Trained on an augmented dataset of 10,994 SEM images, PerovSegNet achieves a mean Average Precision of 87.25% with 265.4 Giga Floating Point Operations, outperforming the baseline YOLOv8x-seg by 4.08%, while reducing model size and computational load by 24.43% and 25.22%, respectively. Beyond segmentation, the framework provides quantitative grain-level metrics, such as lead iodide/perovskite area and count, which can serve as reliable indicators of crystallization efficiency and microstructural quality. These capabilities establish PerovSegNet as a scalable tool for real-time process monitoring and data-driven optimization of perovskite thin-film fabrication.The source code is available at:https://github.com/wlyyj/PerovSegNet/tree/master.

Authors:Yueqian Lin, Zhengmian Hu, Qinsi Wang, Yudong Liu, Hengfan Zhang, Jayakumar Subramanian, Nikos Vlassis, Hai Helen Li, Yiran Chen
Title: Voice Evaluation of Reasoning Ability: Diagnosing the Modality-Induced Performance Gap
Abstract:
We present Voice Evaluation of Reasoning Ability (VERA), a benchmark for evaluating reasoning ability in voice-interactive systems under real-time conversational constraints. VERA comprises 2,931 voice-native episodes derived from established text benchmarks and organized into five tracks (Math, Web, Science, Long-Context, Factual). Each item is adapted for speech interaction while preserving reasoning difficulty. VERA enables direct text-voice comparison within model families and supports analysis of how architectural choices affect reliability. We assess 12 contemporary voice systems alongside strong text baselines and observe large, consistent modality gaps: on competition mathematics a leading text model attains 74.8% accuracy while its voice counterpart reaches 6.1%; macro-averaged across tracks the best text models achieve 54.0% versus 11.3% for voice. Latency-accuracy analyses reveal a low-latency plateau, where fast voice systems cluster around ~10% accuracy, while approaching text performance requires sacrificing real-time interaction. Diagnostic experiments indicate that common mitigations are insufficient. Increasing "thinking time" yields negligible gains; a decoupled cascade that separates reasoning from narration improves accuracy but still falls well short of text and introduces characteristic grounding/consistency errors. Failure analyses further show distinct error signatures across native streaming, end-to-end, and cascade designs. VERA provides a reproducible testbed and targeted diagnostics for architectures that decouple thinking from speaking, offering a principled way to measure progress toward real-time voice assistants that are both fluent and reliably reasoned.

Authors:Yida Wang, Ke Hong, Xiuhong Li, Yuanchao Xu, Wenxun Wang, Guohao Dai, Yu Wang
Title: TASP: Topology-aware Sequence Parallelism
Abstract:
Long-context large language models (LLMs) face constraints due to the quadratic complexity of the self-attention mechanism. The mainstream sequence parallelism (SP) method, Ring Attention, attempts to solve this by distributing the query into multiple query chunks across accelerators and enable each Q tensor to access all KV tensors from other accelerators via the Ring AllGather communication primitive. However, it exhibits low communication efficiency, restricting its practical applicability. This inefficiency stems from the mismatch between the Ring AllGather communication primitive it adopts and the AlltoAll topology of modern accelerators. A Ring AllGather primitive is composed of iterations of ring-styled data transfer, which can only utilize a very limited fraction of an AlltoAll topology. Inspired by the Hamiltonian decomposition of complete directed graphs, we identify that modern accelerator topology can be decomposed into multiple orthogonal ring datapaths which can concurrently transfer data without interference. Based on this, we further observe that the Ring AllGather primitive can also be decomposed into the same number of concurrent ring-styled data transfer at every iteration. Based on these insights, we propose TASP, a topology-aware SP method for long-context LLMs that fully utilizes the communication capacity of modern accelerators via topology decomposition and primitive decomposition. Experimental results on both single-node and multi-node NVIDIA H100 systems and a single-node AMD MI300X system demonstrate that TASP achieves higher communication efficiency than Ring Attention on these modern accelerator topologies and achieves up to 3.58 speedup than Ring Attention and its variant Zigzag-Ring Attention. The code is available at https://github.com/infinigence/HamiltonAttention.

Authors:Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen
Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents
Abstract:
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

Authors:Seohyun Lee, Wenzhi Fang, Dong-Jun Han, Seyyedali Hosseinalipour, Christopher G. Brinton
Title: TAP: Two-Stage Adaptive Personalization of Multi-task and Multi-Modal Foundation Models in Federated Learning
Abstract:
Federated Learning (FL), despite demonstrating impressive capabilities in the training of multiple models in a decentralized manner, has been shown to produce a final model not necessarily well-suited to the needs of each client. While extensive work has been conducted on how to create tailored personalized models, called Personalized Federated Learning (PFL), less attention has been given to personalization via fine-tuning of foundation models with multi-task and multi-modal properties. Moreover, there exists a lack of understanding in the literature on how to fine-tune and personalize such models in a setting that is heterogeneous across clients not only in data, but also in tasks and modalities. To address this gap in the literature, we propose TAP (Two-Stage Adaptive Personalization), which (i) leverages mismatched model architectures between the clients and server to selectively conduct replacement operations when it benefits a client's local tasks and (ii) engages in post-FL knowledge distillation for capturing beneficial general knowledge without compromising personalization. We also introduce the first convergence analysis of the server model under its modality-task pair architecture, and demonstrate that as the number of modality-task pairs increases, its ability to cater to all tasks suffers. Through extensive experiments, we demonstrate the effectiveness of our proposed algorithm across a variety of datasets and tasks in comparison to a multitude of baselines. Implementation code is publicly available at https://github.com/lee3296/TAP.

Authors:Adrian Kosowski, Przemysław Uznański, Jan Chorowski, Zuzanna Stamirowska, Michał Bartoszkiewicz
Title: The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain
Abstract:
The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.

Authors:Zigeng Chen, Gongfan Fang, Xinyin Ma, Ruonan Yu, Xinchao Wang
Title: dParallel: Learnable Parallel Decoding for dLLMs
Abstract:
Diffusion large language models (dLLMs) have recently drawn considerable attention within the research community as a promising alternative to autoregressive generation, offering parallel token prediction and lower inference latency. Yet, their parallel decoding potential remains largely underexplored, as existing open-source models still require nearly token-length decoding steps to ensure performance. To address this, we introduce dParallel, a simple and effective method that unlocks the inherent parallelism of dLLMs for fast sampling. We identify that the key bottleneck to parallel decoding arises from the sequential certainty convergence for masked tokens. Building on this insight, we introduce the core of our approach: certainty-forcing distillation, a novel training strategy that distills the model to follow its original sampling trajectories while enforcing it to achieve high certainty on masked tokens more rapidly and in parallel. Extensive experiments across various benchmarks demonstrate that our method can dramatically reduce the number of decoding steps while maintaining performance. When applied to the LLaDA-8B-Instruct model, dParallel reduces decoding steps from 256 to 30 on GSM8K, achieving an 8.5x speedup without performance degradation. On the MBPP benchmark, it cuts decoding steps from 256 to 24, resulting in a 10.5x speedup while maintaining accuracy. Our code is available at https://github.com/czg1225/dParallel

Authors:Héctor Delgado, Giorgio Ramondetti, Emanuele Dalmasso, Gennady Karvitsky, Daniele Colibro, Haydar Talib
Title: On Deepfake Voice Detection -- It's All in the Presentation
Abstract:
While the technologies empowering malicious audio deepfakes have dramatically evolved in recent years due to generative AI advances, the same cannot be said of global research into spoofing (deepfake) countermeasures. This paper highlights how current deepfake datasets and research methodologies led to systems that failed to generalize to real world application. The main reason is due to the difference between raw deepfake audio, and deepfake audio that has been presented through a communication channel, e.g. by phone. We propose a new framework for data creation and research methodology, allowing for the development of spoofing countermeasures that would be more effective in real-world scenarios. By following the guidelines outlined here we improved deepfake detection accuracy by 39% in more robust and realistic lab setups, and by 57% on a real-world benchmark. We also demonstrate how improvement in datasets would have a bigger impact on deepfake detection accuracy than the choice of larger SOTA models would over smaller models; that is, it would be more important for the scientific community to make greater investment on comprehensive data collection programs than to simply train larger models with higher computational demands.

Authors:Alessio Masano, Matteo Pennisi, Federica Proietto Salanitri, Concetto Spampinato, Giovanni Bellitto
Title: Zero-Shot Decentralized Federated Learning
Abstract:
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.

Authors:Artur Barros, Carlos Caetano, João Macedo, Jefersson A. dos Santos, Sandra Avila
Title: Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification
Abstract:
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.

Authors:Benno Kaech, Luis Wyss, Karsten Borgwardt, Gianvito Grasso
Title: Refine Drugs, Don't Complete Them: Uniform-Source Discrete Flows for Fragment-Based Drug Discovery
Abstract:
We introduce InVirtuoGen, a discrete flow generative model for fragmented SMILES for de novo and fragment-constrained generation, and target-property/lead optimization of small molecules. The model learns to transform a uniform source over all possible tokens into the data distribution. Unlike masked models, its training loss accounts for predictions on all sequence positions at every denoising step, shifting the generation paradigm from completion to refinement, and decoupling the number of sampling steps from the sequence length. For \textit{de novo} generation, InVirtuoGen achieves a stronger quality-diversity pareto frontier than prior fragment-based models and competitive performance on fragment-constrained tasks. For property and lead optimization, we propose a hybrid scheme that combines a genetic algorithm with a Proximal Property Optimization fine-tuning strategy adapted to discrete flows. Our approach sets a new state-of-the-art on the Practical Molecular Optimization benchmark, measured by top-10 AUC across tasks, and yields higher docking scores in lead optimization than previous baselines. InVirtuoGen thus establishes a versatile generative foundation for drug discovery, from early hit finding to multi-objective lead optimization. We further contribute to open science by releasing pretrained checkpoints and code, making our results fully reproducible\footnote{https://github.com/invirtuolabs/InVirtuoGen_results}.

Authors:Kai-Wei Chang, En-Pei Hu, Chun-Yi Kuan, Wenze Ren, Wei-Chih Chen, Guan-Ting Lin, Yu Tsao, Shao-Hua Sun, Hung-yi Lee, James Glass
Title: Game-Time: Evaluating Temporal Dynamics in Spoken Language Models
Abstract:
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.

Authors:Zhiwei Yang, Chen Gao, Mike Zheng Shou
Title: PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer
Abstract:
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, i.e., automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.

Authors:Jinyeop Song, Song Wang, Julian Shun, Yada Zhu
Title: Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Abstract:
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.

Authors:Junjie Zhou, Ze Liu, Lei Xiong, Jin-Ge Yao, Yueze Wang, Shitao Xiao, Fenfen Lin, Miguel Hu Chen, Zhicheng Dou, Siqi Bao, Defu Lian, Yongping Xiong, Zheng Liu
Title: MR$^2$-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval
Abstract:
Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR$^2$-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR$^2$-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR$^2$-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR$^2$-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.

Authors:Harold Haodong Chen, Xianfeng Wu, Wen-Jie Shu, Rongjin Guo, Disen Lan, Harry Yang, Ying-Cong Chen
Title: Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Abstract:
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.

Authors:Kirill Tamogashev, Nikolay Malkin
Title: Data-to-Energy Stochastic Dynamics
Abstract:
The Schrödinger bridge problem is concerned with finding a stochastic dynamical system bridging two marginal distributions that minimises a certain transportation cost. This problem, which represents a generalisation of optimal transport to the stochastic case, has received attention due to its connections to diffusion models and flow matching, as well as its applications in the natural sciences. However, all existing algorithms allow to infer such dynamics only for cases where samples from both distributions are available. In this paper, we propose the first general method for modelling Schrödinger bridges when one (or both) distributions are given by their unnormalised densities, with no access to data samples. Our algorithm relies on a generalisation of the iterative proportional fitting (IPF) procedure to the data-free case, inspired by recent developments in off-policy reinforcement learning for training of diffusion samplers. We demonstrate the efficacy of the proposed data-to-energy IPF on synthetic problems, finding that it can successfully learn transports between multimodal distributions. As a secondary consequence of our reinforcement learning formulation, which assumes a fixed time discretisation scheme for the dynamics, we find that existing data-to-data Schrödinger bridge algorithms can be substantially improved by learning the diffusion coefficient of the dynamics. Finally, we apply the newly developed algorithm to the problem of sampling posterior distributions in latent spaces of generative models, thus creating a data-free image-to-image translation method. Code: https://github.com/mmacosha/d2e-stochastic-dynamics

Authors:Shuai Shao, Qihan Ren, Chen Qian, Boyi Wei, Dadi Guo, Jingyi Yang, Xinhao Song, Linfeng Zhang, Weinan Zhang, Dongrui Liu, Jing Shao
Title: Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Abstract:
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.

Authors:Keming Wu, Sicong Jiang, Max Ku, Ping Nie, Minghao Liu, Wenhu Chen
Title: EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Abstract:
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.

Authors:Hehai Lin, Shilei Cao, Sudong Wang, Haotian Wu, Minzhi Li, Linyi Yang, Juepeng Zheng, Chengwei Qin
Title: Interactive Learning for LLM Reasoning
Abstract:
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.

Authors:Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Robert Mullins
Title: Feedback Forensics: A Toolkit to Measure AI Personality
Abstract:
Some traits making a "good" AI model are hard to describe upfront. For example, should responses be more polite or more casual? Such traits are sometimes summarized as model character or personality. Without a clear objective, conventional benchmarks based on automatic validation struggle to measure such traits. Evaluation methods using human feedback such as Chatbot Arena have emerged as a popular alternative. These methods infer "better" personality and other desirable traits implicitly by ranking multiple model responses relative to each other. Recent issues with model releases highlight limitations of these existing opaque evaluation approaches: a major model was rolled back over sycophantic personality issues, models were observed overfitting to such feedback-based leaderboards. Despite these known issues, limited public tooling exists to explicitly evaluate model personality. We introduce Feedback Forensics: an open-source toolkit to track AI personality changes, both those encouraged by human (or AI) feedback, and those exhibited across AI models trained and evaluated on such feedback. Leveraging AI annotators, our toolkit enables investigating personality via Python API and browser app. We demonstrate the toolkit's usefulness in two steps: (A) first we analyse the personality traits encouraged in popular human feedback datasets including Chatbot Arena, MultiPref and PRISM; and (B) then use our toolkit to analyse how much popular models exhibit such traits. We release (1) our Feedback Forensics toolkit alongside (2) a web app tracking AI personality in popular models and feedback datasets as well as (3) the underlying annotation data at https://github.com/rdnfn/feedback-forensics.

Authors:Suli Wang, Yangshen Deng, Zhenghua Bao, Xinyu Zhan, Yiqun Duan
Title: NeuroTTT: Bridging Pretraining-Downstream Task Misalignment in EEG Foundation Models via Test-Time Training
Abstract:
Large-scale foundation models for EEG signals offer a promising path to generalizable brain-computer interface (BCI) applications, but they often suffer from misalignment between pretraining objectives and downstream tasks, as well as significant cross-subject distribution shifts. This paper addresses these challenges by introducing a two-stage alignment strategy that bridges the gap between generic pretraining and specific EEG decoding tasks. First, we propose NeuroTTT: a domain-specific self-supervised fine-tuning paradigm that augments the foundation model with task-relevant self-supervised objectives, aligning latent representations to important spectral, spatial, and temporal EEG features without requiring additional labeled data. Second, we incorporate test-time training (TTT) at inference, we perform (i) self-supervised test-time training on individual unlabeled test samples and (ii) prediction entropy minimization (Tent), which updates only normalization statistics to continually calibrate the model to each new input on the fly. Our approach, which, to our knowledge, is the first to unify domain-tuned self-supervision with test-time training in large-scale EEG foundation models, yields substantially improved robustness and accuracy across diverse BCI tasks (imagined speech, stress detection, motor imagery). Using CBraMod and LaBraM as backbones, our method pushes their performance to a markedly higher level. Results on three diverse tasks demonstrate that the proposed alignment strategy achieves state-of-the-art performance, outperforming conventional fine-tuning and adaptation methods. Our code is available at https://github.com/wsl2000/NeuroTTT.

Authors:Lionel Blondé, Joao A. Candido Ramos, Alexandros Kalousis
Title: Noise-Guided Transport for Imitation Learning
Abstract:
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.

Authors:Anthony Zhou, Alexander Wikner, Amaury Lancelin, Pedram Hassanzadeh, Amir Barati Farimani
Title: Reframing Generative Models for Physical Systems using Stochastic Interpolants
Abstract:
Generative models have recently emerged as powerful surrogates for physical systems, demonstrating increased accuracy, stability, and/or statistical fidelity. Most approaches rely on iteratively denoising a Gaussian, a choice that may not be the most effective for autoregressive prediction tasks in PDEs and dynamical systems such as climate. In this work, we benchmark generative models across diverse physical domains and tasks, and highlight the role of stochastic interpolants. By directly learning a stochastic process between current and future states, stochastic interpolants can leverage the proximity of successive physical distributions. This allows for generative models that can use fewer sampling steps and produce more accurate predictions than models relying on transporting Gaussian noise. Our experiments suggest that generative models need to balance deterministic accuracy, spectral consistency, and probabilistic calibration, and that stochastic interpolants can potentially fulfill these requirements by adjusting their sampling. This study establishes stochastic interpolants as a competitive baseline for physical emulation and gives insight into the abilities of different generative modeling frameworks.

Authors:James Oldfield, Philip Torr, Ioannis Patras, Adel Bibi, Fazl Barez
Title: Beyond Linear Probes: Dynamic Safety Monitoring for Language Models
Abstract:
Monitoring large language models' (LLMs) activations is an effective way to detect harmful requests before they lead to unsafe outputs. However, traditional safety monitors often require the same amount of compute for every query. This creates a trade-off: expensive monitors waste resources on easy inputs, while cheap ones risk missing subtle cases. We argue that safety monitors should be flexible--costs should rise only when inputs are difficult to assess, or when more compute is available. To achieve this, we introduce Truncated Polynomial Classifiers (TPCs), a natural extension of linear probes for dynamic activation monitoring. Our key insight is that polynomials can be trained and evaluated progressively, term-by-term. At test-time, one can early-stop for lightweight monitoring, or use more terms for stronger guardrails when needed. TPCs provide two modes of use. First, as a safety dial: by evaluating more terms, developers and regulators can "buy" stronger guardrails from the same model. Second, as an adaptive cascade: clear cases exit early after low-order checks, and higher-order guardrails are evaluated only for ambiguous inputs, reducing overall monitoring costs. On two large-scale safety datasets (WildGuardMix and BeaverTails), for 4 models with up to 30B parameters, we show that TPCs compete with or outperform MLP-based probe baselines of the same size, all the while being more interpretable than their black-box counterparts. Our code is available at http://github.com/james-oldfield/tpc.

Authors:Balamurugan Thambiraja, Malte Prinzler, Sadegh Aliakbarian, Darren Cosker, Justus Thies
Title: 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Abstract:
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE

Authors:Jiayi Guo, Chuanhao Yan, Xingqian Xu, Yulin Wang, Kai Wang, Gao Huang, Humphrey Shi
Title: IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance
Abstract:
Ensuring precise multimodal alignment between diffusion-generated images and input prompts has been a long-standing challenge. Earlier works finetune diffusion weight using high-quality preference data, which tends to be limited and difficult to scale up. Recent editing-based methods further refine local regions of generated images but may compromise overall image quality. In this work, we propose Implicit Multimodal Guidance (IMG), a novel re-generation-based multimodal alignment framework that requires no extra data or editing operations. Specifically, given a generated image and its prompt, IMG a) utilizes a multimodal large language model (MLLM) to identify misalignments; b) introduces an Implicit Aligner that manipulates diffusion conditioning features to reduce misalignments and enable re-generation; and c) formulates the re-alignment goal into a trainable objective, namely Iteratively Updated Preference Objective. Extensive qualitative and quantitative evaluations on SDXL, SDXL-DPO, and FLUX show that IMG outperforms existing alignment methods. Furthermore, IMG acts as a flexible plug-and-play adapter, seamlessly enhancing prior finetuning-based alignment methods. Our code will be available at https://github.com/SHI-Labs/IMG-Multimodal-Diffusion-Alignment.

Authors:Haiyang Zheng, Nan Pu, Wenjing Li, Nicu Sebe, Zhun Zhong
Title: Generalized Fine-Grained Category Discovery with Multi-Granularity Conceptual Experts
Abstract:
Generalized Category Discovery (GCD) is an open-world problem that clusters unlabeled data by leveraging knowledge from partially labeled categories. A key challenge is that unlabeled data may contain both known and novel categories. Existing approaches suffer from two main limitations. First, they fail to exploit multi-granularity conceptual information in visual data, which limits representation quality. Second, most assume that the number of unlabeled categories is known during training, which is impractical in real-world scenarios. To address these issues, we propose a Multi-Granularity Conceptual Experts (MGCE) framework that adaptively mines visual concepts and integrates multi-granularity knowledge for accurate category discovery. MGCE consists of two modules: (1) Dynamic Conceptual Contrastive Learning (DCCL), which alternates between concept mining and dual-level representation learning to jointly optimize feature learning and category discovery; and (2) Multi-Granularity Experts Collaborative Learning (MECL), which extends the single-expert paradigm by introducing additional experts at different granularities and by employing a concept alignment matrix for effective cross-expert collaboration. Importantly, MGCE can automatically estimate the number of categories in unlabeled data, making it suitable for practical open-world settings. Extensive experiments on nine fine-grained visual recognition benchmarks demonstrate that MGCE achieves state-of-the-art results, particularly in novel-class accuracy. Notably, even without prior knowledge of category numbers, MGCE outperforms parametric approaches that require knowing the exact number of categories, with an average improvement of 3.6\%. Code is available at https://github.com/HaiyangZheng/MGCE.

Authors:Alessandro De Bellis, Salvatore Bufi, Giovanni Servedio, Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio
Title: Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models
Abstract:
Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .

Authors:Chenyang Jiang, Zhengcen Li, Hang Zhao, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Abstract:
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.

Authors:Zican Hu, Shilin Zhang, Yafu Li, Jianhao Yan, Xuyang Hu, Leyang Cui, Xiaoye Qu, Chunlin Chen, Yu Cheng, Zhi Wang
Title: Diversity-Incentivized Exploration for Versatile Reasoning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose \textbf{DIVER} (\textbf{D}iversity-\textbf{I}ncentivized Exploration for \textbf{V}ersatil\textbf{E} \textbf{R}easoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.

Authors:Hatim Chergui, Miguel Catalan Cid, Pouria Sayyad Khodashenas, Daniel Camps Mur, Christos Verikoukis
Title: Toward an Unbiased Collective Memory for Efficient LLM-Based Agentic 6G Cross-Domain Management
Abstract:
This paper introduces a novel framework for proactive cross-domain resource orchestration in 6G RAN-Edge networks, featuring large language model (LLM)-augmented agents. The system comprises specialized RAN (energy efficiency) and Edge (latency assurance) agents that engage in iterative negotiation, supported by advanced reasoning and planning capabilities. Agents dynamically interact with a digital twin (DT) to test their proposals and leverage a long-term collective memory where their joint successful and failed agreements along with the related network contexts are distilled into strategies to either follow or avoid and subsequently stored. Given that agents are subject to a plethora of cognitive distortions when retrieving those past experiences -- such as primacy, recency, confirmation and availability biases -- we propose in this work a novel unbiased memory design (A reusable mockup version of the unbiased memory source code is available for non-commercial use at https://github.com/HatimChergui/unbiased-collective-memory). featuring (i) semantic retrieval of past strategies via Jaccard similarity; (ii) learning from failures through amplified weighting of SLA violations and mandatory inclusion of failed negotiation cases to mitigate confirmation bias; (iii) diversity enforcement to minimize availability bias and (iv) recency and primacy weighting with slow decay to counteract temporal biases. Evaluation results showcase the impact of existing biases and how the unbiased memory allows to tackle them by learning from both successful and failed strategies, either present or old, resulting in $\times 4.5$ and $\times 3.5$ reductions of unresolved negotiations compared to non-memory and vanilla memory baselines, respectively, while totally mitigating SLA violations as well as improving latency and energy saving distributions.

Authors:Chris Tong, Youhe Jiang, Gufeng Chen, Tianyi Zhao, Sibian Lu, Wenjie Qu, Eric Yang, Lynn Ai, Binhang Yuan
Title: Parallax: Efficient LLM Inference Service over Decentralized Environment
Abstract:
Deploying a large language model (LLM) inference service remains costly because centralized serving depends on specialized GPU clusters and high-bandwidth interconnects in datacenters. An appealing alternative is to leverage collaborative decentralized GPU pools. However, heterogeneity in GPU and limited interconnected network bandwidth, along with potentially dynamic availability, make efficient scheduling the central challenge in this scenario. In this paper, we present Parallax, a decentralized LLM serving system that turns a pool of heterogeneous GPUs into an efficient inference platform via a two-phase scheduler. Parallax decomposes planning into (i) model allocation, which places layers of each replica across diverse GPUs to jointly optimize latency and throughput under memory and link-bandwidth constraints, and (ii) request-time GPU pipeline selection, which stitches layers from different replicas into end-to-end execution chains that balance load and adapt to current conditions. We implement Parallax and evaluate it on open-source LLMs deployed over real volunteer nodes. Parallax consistently reduces latency and increases throughput relative to decentralized baselines, demonstrating that principled scheduling can make volunteer compute a practical, affordable substrate for LLM inference. Github Repo at: https://github.com/GradientHQ/parallax.

Authors:Yuansen Liu, Haiming Tang, Jinlong Peng, Jiangning Zhang, Xiaozhong Ji, Qingdong He, Donghao Luo, Zhenye Gan, Junwei Zhu, Yunhang Shen, Chaoyou Fu, Chengjie Wang, Xiaobin Hu, Shuicheng Yan
Title: Human-MME: A Holistic Evaluation Benchmark for Human-Centric Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks. However, their capacity to comprehend human-centric scenes has rarely been explored, primarily due to the absence of comprehensive evaluation benchmarks that take into account both the human-oriented granular level and higher-dimensional causal reasoning ability. Such high-quality evaluation benchmarks face tough obstacles, given the physical complexity of the human body and the difficulty of annotating granular structures. In this paper, we propose Human-MME, a curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric scene understanding. Compared with other existing benchmarks, our work provides three key features: 1. Diversity in human scene, spanning 4 primary visual domains with 15 secondary domains and 43 sub-fields to ensure broad scenario coverage. 2. Progressive and diverse evaluation dimensions, evaluating the human-based activities progressively from the human-oriented granular perception to the higher-dimensional reasoning, consisting of eight dimensions with 19,945 real-world image question pairs and an evaluation suite. 3. High-quality annotations with rich data paradigms, constructing the automated annotation pipeline and human-annotation platform, supporting rigorous manual labeling to facilitate precise and reliable model assessment. Our benchmark extends the single-target understanding to the multi-person and multi-image mutual understanding by constructing the choice, short-answer, grounding, ranking and judgment question components, and complex questions of their combination. The extensive experiments on 17 state-of-the-art MLLMs effectively expose the limitations and guide future MLLMs research toward better human-centric image understanding. All data and code are available at https://github.com/Yuan-Hou/Human-MME.

Authors:Runxin Yang, Yuxuan Wan, Shuqing Li, Michael R. Lyu
Title: 90% Faster, 100% Code-Free: MLLM-Driven Zero-Code 3D Game Development
Abstract:
Developing 3D games requires specialized expertise across multiple domains, including programming, 3D modeling, and engine configuration, which limits access to millions of potential creators. Recently, researchers have begun to explore automated game development. However, existing approaches face three primary challenges: (1) limited scope to 2D content generation or isolated code snippets; (2) requirement for manual integration of generated components into game engines; and (3) poor performance on handling interactive game logic and state management. While Multimodal Large Language Models (MLLMs) demonstrate potential capabilities to ease the game generation task, a critical gap still remains in translating these outputs into production-ready, executable game projects based on game engines such as Unity and Unreal Engine. To bridge the gap, this paper introduces UniGen, the first end-to-end coordinated multi-agent framework that automates zero-coding development of runnable 3D games from natural language requirements. Specifically, UniGen uses a Planning Agent that interprets user requirements into structured blueprints and engineered logic descriptions; after which a Generation Agent produces executable C# scripts; then an Automation Agent handles engine-specific component binding and scene construction; and lastly a Debugging Agent provides real-time error correction through conversational interaction. We evaluated UniGen on three distinct game prototypes. Results demonstrate that UniGen not only democratizes game creation by requiring no coding from the user, but also reduces development time by 91.4%. We release UniGen at https://github.com/yxwan123/UniGen. A video demonstration is available at https://www.youtube.com/watch?v=xyJjFfnxUx0.

Authors:Kyeongryeol Go
Title: Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
Abstract:
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.

Authors:Sachith Abeywickrama, Emadeldeen Eldele, Min Wu, Xiaoli Li, Chau Yuen
Title: EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Abstract:
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

Authors:Asmita Sengupta, David Antony Selby, Sebastian Josef Vollmer, Gerrit Großmann
Title: MEDAKA: Construction of Biomedical Knowledge Graphs Using Large Language Models
Abstract:
Knowledge graphs (KGs) are increasingly used to represent biomedical information in structured, interpretable formats. However, existing biomedical KGs often focus narrowly on molecular interactions or adverse events, overlooking the rich data found in drug leaflets. In this work, we present (1) a hackable, end-to-end pipeline to create KGs from unstructured online content using a web scraper and an LLM; and (2) a curated dataset, MEDAKA, generated by applying this method to publicly available drug leaflets. The dataset captures clinically relevant attributes such as side effects, warnings, contraindications, ingredients, dosage guidelines, storage instructions and physical characteristics. We evaluate it through manual inspection and with an LLM-as-a-Judge framework, and compare its coverage with existing biomedical KGs and databases. We expect MEDAKA to support tasks such as patient safety monitoring and drug recommendation. The pipeline can also be used for constructing KGs from unstructured texts in other domains. Code and dataset are available at https://github.com/medakakg/medaka.

Authors:Julian Valdez, Ignacio Torroba, John Folkesson, Ivan Stenius
Title: Side Scan Sonar-based SLAM for Autonomous Algae Farm Monitoring
Abstract:
The transition of seaweed farming to an alternative food source on an industrial scale relies on automating its processes through smart farming, equivalent to land agriculture. Key to this process are autonomous underwater vehicles (AUVs) via their capacity to automate crop and structural inspections. However, the current bottleneck for their deployment is ensuring safe navigation within farms, which requires an accurate, online estimate of the AUV pose and map of the infrastructure. To enable this, we propose an efficient side scan sonar-based (SSS) simultaneous localization and mapping (SLAM) framework that exploits the geometry of kelp farms via modeling structural ropes in the back-end as sequences of individual landmarks from each SSS ping detection, instead of combining detections into elongated representations. Our method outperforms state of the art solutions in hardware in the loop (HIL) experiments on a real AUV survey in a kelp farm. The framework and dataset can be found at https://github.com/julRusVal/sss_farm_slam.

Authors:Shuai Wang, Liang Ding, Li Shen, Yong Luo, Han Hu, Lefei Zhang, Fu Lin
Title: A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
Abstract:
Establishing fair and robust benchmarks is essential for evaluating intelligent code generation by large language models (LLMs). Our survey of 35 existing benchmarks uncovers three major imbalances: 85.7% focus on a single programming language; 94.3% target only function-level or statement-level tasks; and over 80% include fewer than ten test cases on average. To address these gaps, we propose MultiOOP, a multi-language object-oriented programming benchmark covering six popular languages (Python, PHP, C++, C#, Java, JavaScript) with 267 tasks per language. We design a translator that extends an existing single-language OOP benchmark and the pass@o metric to a multilingual setting. Moreover, we propose an automated framework for augmenting test cases to ensure the reliability of the evaluation results. We evaluate 14 mainstream LLMs under zero-shot prompting and report three key findings: 1) Substantial performance degradation: pass@1 scores on MultiOOP drop by up to 65.6 percentage points compared to function-level tasks (e.g., HumanEval). 2) Cross-language variability: GPT-4o mini achieves pass@1 of 48.06% in Python but only 0.12%-15.26% in other languages, indicating limited multilingual generalization. 3) Conceptual gaps: pass@o scores are consistently 1.1-19.2 points lower than pass@k, demonstrating that LLMs often generate executable code without fully capturing core OOP concepts. Our benchmark, metric extensions, and evaluation scripts will be publicly released to foster a more balanced and comprehensive assessment of LLMs in object-oriented code generation. Our code and data will be released at https://github.com/alphadl/OOP-eval and https://huggingface.co/datasets/codeai-dteam/MultiOOP respectively.

Authors:Shigui Li, Wei Chen, Delu Zeng
Title: EVODiff: Entropy-aware Variance Optimized Diffusion Inference
Abstract:
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.

Authors:Leitian Tao, Xuefeng Du, Yixuan Li
Title: Limited Preference Data? Learning Better Reward Model with Latent Space Synthesis
Abstract:
Reward modeling, crucial for aligning large language models (LLMs) with human preferences, is often bottlenecked by the high cost of preference data. Existing textual data synthesis methods are computationally expensive. We propose a novel framework LENS for synthesizing preference data directly in the LLM's latent embedding space. Our method employs a Variational Autoencoder (VAE) to learn a structured latent representation of response embeddings. By performing controlled perturbations in this latent space and decoding back to the embedding space, we efficiently generate diverse, semantically consistent synthetic preference pairs, bypassing costly text generation and annotation. We provide theoretical guarantees that our synthesized pairs approximately preserve original preference ordering and improve reward model generalization. Empirically, our latent-space synthesis significantly outperforms text-based augmentation on standard benchmarks, achieving superior results while being 18x faster in generation and using a 16,000x smaller model. Our work offers a scalable and effective alternative for enhancing reward modeling through efficient data augmentation. Code is publicly available at https://github.com/deeplearning-wisc/lens

Authors:Ioana Ciuclea, Giorgio Longari, Alice Barbara Tumpach
Title: Geometric Learning of Canonical Parameterizations of $2D$-curves
Abstract:
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$

Authors:Yanbo Wang, Zixiang Xu, Yue Huang, Xiangqi Wang, Zirui Song, Lang Gao, Chenxi Wang, Xiangru Tang, Yue Zhao, Arman Cohan, Xiangliang Zhang, Xiuying Chen
Title: DyFlow: Dynamic Workflow Framework for Agentic Reasoning
Abstract:
Agent systems based on large language models (LLMs) have shown great potential in complex reasoning tasks, but building efficient and generalizable workflows remains a major challenge. Most existing approaches rely on manually designed processes, which limits their adaptability across different tasks. While a few methods attempt automated workflow generation, they are often tied to specific datasets or query types and make limited use of intermediate feedback, reducing system robustness and reasoning depth. Moreover, their operations are typically predefined and inflexible. To address these limitations, we propose DyFlow, a dynamic workflow generation framework that adaptively constructs and adjusts reasoning procedures based on task requirements and real-time intermediate feedback, thereby enhancing cross-task generalization. DyFlow consists of two core components: a designer and an executor. The designer decomposes complex problems into a sequence of sub-goals defined by high-level objectives and dynamically plans the next steps based on intermediate outputs and feedback. These plans are then carried out by the executor, which executes each operation using dynamic operators with context-aware parameterization, enabling flexible and semantically grounded reasoning. We systematically evaluate DyFlow across diverse domains, including social reasoning, biomedical tasks, mathematical problem solving, and code generation. Results demonstrate that DyFlow significantly outperforms existing baselines, achieving substantial Pass@k improvements and exhibiting robust generalization across diverse domains. The code is publicly available at https://github.com/wyf23187/DyFlow.

Authors:Yang Zhou, Kunhao Yuan, Ye Wei, Jishizhan Chen
Title: Multi-modal Liver Segmentation and Fibrosis Staging Using Real-world MRI Images
Abstract:
Liver fibrosis represents the accumulation of excessive extracellular matrix caused by sustained hepatic injury. It disrupts normal lobular architecture and function, increasing the chances of cirrhosis and liver failure. Precise staging of fibrosis for early diagnosis and intervention is often invasive, which carries risks and complications. To address this challenge, recent advances in artificial intelligence-based liver segmentation and fibrosis staging offer a non-invasive alternative. As a result, the CARE 2025 Challenge aimed for automated methods to quantify and analyse liver fibrosis in real-world scenarios, using multi-centre, multi-modal, and multi-phase MRI data. This challenge included tasks of precise liver segmentation (LiSeg) and fibrosis staging (LiFS). In this study, we developed an automated pipeline for both tasks across all the provided MRI modalities. This pipeline integrates pseudo-labelling based on multi-modal co-registration, liver segmentation using deep neural networks, and liver fibrosis staging based on shape, textural, appearance, and directional (STAD) features derived from segmentation masks and MRI images. By solely using the released data with limited annotations, our proposed pipeline demonstrated excellent generalisability for all MRI modalities, achieving top-tier performance across all competition subtasks. This approach provides a rapid and reproducible framework for quantitative MRI-based liver fibrosis assessment, supporting early diagnosis and clinical decision-making. Code is available at https://github.com/YangForever/care2025_liver_biodreamer.

Authors:Gagandeep Singh, Samudi Amarsinghe, Priyanka Singh, Xue Li
Title: DGM4+: Dataset Extension for Global Scene Inconsistency
Abstract:
The rapid advances in generative models have significantly lowered the barrier to producing convincing multimodal disinformation. Fabricated images and manipulated captions increasingly co-occur to create persuasive false narratives. While the Detecting and Grounding Multi-Modal Media Manipulation (DGM4) dataset established a foundation for research in this area, it is restricted to local manipulations such as face swaps, attribute edits, and caption changes. This leaves a critical gap: global inconsistencies, such as mismatched foregrounds and backgrounds, which are now prevalent in real-world forgeries. To address this, we extend DGM4 with 5,000 high-quality samples that introduce Foreground-Background (FG-BG) mismatches and their hybrids with text manipulations. Using OpenAI's gpt-image-1 and carefully designed prompts, we generate human-centric news-style images where authentic figures are placed into absurd or impossible backdrops (e.g., a teacher calmly addressing students on the surface of Mars). Captions are produced under three conditions: literal, text attribute, and text split, yielding three new manipulation categories: FG-BG, FG-BG+TA, and FG-BG+TS. Quality control pipelines enforce one-to-three visible faces, perceptual hash deduplication, OCR-based text scrubbing, and realistic headline length. By introducing global manipulations, our extension complements existing datasets, creating a benchmark DGM4+ that tests detectors on both local and global reasoning. This resource is intended to strengthen evaluation of multimodal models such as HAMMER, which currently struggle with FG-BG inconsistencies. We release our DGM4+ dataset and generation script at https://github.com/Gaganx0/DGM4plus

Authors:Gagandeep Singh, Samudi Amarsinghe, Urawee Thani, Ki Fung Wong, Priyanka Singh, Xue Li
Title: SGS: Segmentation-Guided Scoring for Global Scene Inconsistencies
Abstract:
We extend HAMMER, a state-of-the-art model for multimodal manipulation detection, to handle global scene inconsistencies such as foreground-background (FG-BG) mismatch. While HAMMER achieves strong performance on the DGM4 dataset, it consistently fails when the main subject is contextually misplaced into an implausible background. We diagnose this limitation as a combination of label-space bias, local attention focus, and spurious text-foreground alignment. To remedy this without retraining, we propose a lightweight segmentation-guided scoring (SGS) pipeline. SGS uses person/face segmentation masks to separate foreground and background regions, extracts embeddings with a joint vision-language model, and computes region-aware coherence scores. These scores are fused with HAMMER's original prediction to improve binary detection, grounding, and token-level explanations. SGS is inference-only, incurs negligible computational overhead, and significantly enhances robustness to global manipulations. This work demonstrates the importance of region-aware reasoning in multimodal disinformation detection. We release scripts for segmentation and scoring at https://github.com/Gaganx0/HAMMER-sgs

Authors:Christoph Timmermann, Hyunse Lee, Woojin Lee
Title: SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP
Abstract:
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.

Authors:Daphne Theodorakopoulos, Elisabeth Eberling, Miriam Bodenheimer, Sabine Loos, Frederic Stahl
Title: FITS: Towards an AI-Driven Fashion Information Tool for Sustainability
Abstract:
Access to credible sustainability information in the fashion industry remains limited and challenging to interpret, despite growing public and regulatory demands for transparency. General-purpose language models often lack domain-specific knowledge and tend to "hallucinate", which is particularly harmful for fields where factual correctness is crucial. This work explores how Natural Language Processing (NLP) techniques can be applied to classify sustainability data for fashion brands, thereby addressing the scarcity of credible and accessible information in this domain. We present a prototype Fashion Information Tool for Sustainability (FITS), a transformer-based system that extracts and classifies sustainability information from credible, unstructured text sources: NGO reports and scientific publications. Several BERT-based language models, including models pretrained on scientific and climate-specific data, are fine-tuned on our curated corpus using a domain-specific classification schema, with hyperparameters optimized via Bayesian optimization. FITS allows users to search for relevant data, analyze their own data, and explore the information via an interactive interface. We evaluated FITS in two focus groups of potential users concerning usability, visual design, content clarity, possible use cases, and desired features. Our results highlight the value of domain-adapted NLP in promoting informed decision-making and emphasize the broader potential of AI applications in addressing climate-related challenges. Finally, this work provides a valuable dataset, the SustainableTextileCorpus, along with a methodology for future updates. Code available at https://github.com/daphne12345/FITS

Authors:Lubian Bai, Xiuyuan Zhang, Siqi Zhang, Zepeng Zhang, Haoyu Wang, Wei Qin, Shihong Du
Title: GeoLink: Empowering Remote Sensing Foundation Model with OpenStreetMap Data
Abstract:
Integrating ground-level geospatial data with rich geographic context, like OpenStreetMap (OSM), into remote sensing (RS) foundation models (FMs) is essential for advancing geospatial intelligence and supporting a broad spectrum of tasks. However, modality gap between RS and OSM data, including differences in data structure, content, and spatial granularity, makes effective synergy highly challenging, and most existing RS FMs focus on imagery alone. To this end, this study presents GeoLink, a multimodal framework that leverages OSM data to enhance RS FM during both the pretraining and downstream task stages. Specifically, GeoLink enhances RS self-supervised pretraining using multi-granularity learning signals derived from OSM data, guided by cross-modal spatial correlations for information interaction and collaboration. It also introduces image mask-reconstruction to enable sparse input for efficient pretraining. For downstream tasks, GeoLink generates both unimodal and multimodal fine-grained encodings to support a wide range of applications, from common RS interpretation tasks like land cover classification to more comprehensive geographic tasks like urban function zone mapping. Extensive experiments show that incorporating OSM data during pretraining enhances the performance of the RS image encoder, while fusing RS and OSM data in downstream tasks improves the FM's adaptability to complex geographic scenarios. These results underscore the potential of multimodal synergy in advancing high-level geospatial artificial intelligence. Moreover, we find that spatial correlation plays a crucial role in enabling effective multimodal geospatial data integration. Code, checkpoints, and using examples are released at https://github.com/bailubin/GeoLink_NeurIPS2025

Authors:Christin Katharina Kreutz, Hermann Kroll
Title: First Workshop on Building Innovative Research Systems for Digital Libraries (BIRDS 2025)
Abstract:
We propose the first workshop on Building Innovative Research Systems for Digital Libraries (BIRDS) to take place at TPDL 2025 as a full-day workshop. BIRDS addresses practitioners working in digital libraries and GLAMs as well as researchers from computational domains such as data science, information retrieval, natural language processing, and data modelling. Our interdisciplinary workshop focuses on connecting members of both worlds. One of today's biggest challenges is the increasing information flood. Large language models like ChatGPT seem to offer good performance for answering questions on the web. So, shall we just build upon that idea and use chatbots in digital libraries? Or do we need to design and develop specialized and effective access paths? Answering these questions requires to connect different communities, practitioners from real digital libraries and researchers in the area of computer science. In brief, our workshop's goal is thus to support researchers and practitioners to build the next generation of innovative and effective digital library systems.

Authors:Subramanya Nagabhushanaradhya
Title: OpenID Connect for Agents (OIDC-A) 1.0: A Standard Extension for LLM-Based Agent Identity and Authorization
Abstract:
OpenID Connect for Agents (OIDC-A) 1.0 is an extension to OpenID Connect Core 1.0 that provides a comprehensive framework for representing, authenticating, and authorizing LLM-based agents within the OAuth 2.0 ecosystem. As autonomous AI agents become increasingly prevalent in digital systems, there is a critical need for standardized protocols to establish agent identity, verify agent attestation, represent delegation chains, and enable fine-grained authorization based on agent attributes. This specification defines standard claims, endpoints, and protocols that address these requirements while maintaining compatibility with existing OAuth 2.0 and OpenID Connect infrastructure. The proposed framework introduces mechanisms for agent identity representation, delegation chain validation, attestation verification, and capability-based authorization, providing a foundation for secure and trustworthy agent-to-service interactions in modern distributed systems.

Authors:Espen Uri Høgstedt, Christian Schellewald, Annette Stahl, Rudolf Mester
Title: A Multi-purpose Tracking Framework for Salmon Welfare Monitoring in Challenging Environments
Abstract:
Computer Vision (CV)-based continuous, automated and precise salmon welfare monitoring is a key step toward reduced salmon mortality and improved salmon welfare in industrial aquaculture net pens. Available CV methods for determining welfare indicators focus on single indicators and rely on object detectors and trackers from other application areas to aid their welfare indicator calculation algorithm. This comes with a high resource demand for real-world applications, since each indicator must be calculated separately. In addition, the methods are vulnerable to difficulties in underwater salmon scenes, such as object occlusion, similar object appearance, and similar object motion. To address these challenges, we propose a flexible tracking framework that uses a pose estimation network to extract bounding boxes around salmon and their corresponding body parts, and exploits information about the body parts, through specialized modules, to tackle challenges specific to underwater salmon scenes. Subsequently, the high-detail body part tracks are employed to calculate welfare indicators. We construct two novel datasets assessing two salmon tracking challenges: salmon ID transfers in crowded scenes and salmon ID switches during turning. Our method outperforms the current state-of-the-art pedestrian tracker, BoostTrack, for both salmon tracking challenges. Additionally, we create a dataset for calculating salmon tail beat wavelength, demonstrating that our body part tracking method is well-suited for automated welfare monitoring based on tail beat analysis. Datasets and code are available at https://github.com/espenbh/BoostCompTrack.

Authors:Yuan Zhao, Youwei Pang, Lihe Zhang, Hanqi Liu, Jiaming Zuo, Huchuan Lu, Xiaoqi Zhao
Title: UniMMAD: Unified Multi-Modal and Multi-Class Anomaly Detection via MoE-Driven Feature Decompression
Abstract:
Existing anomaly detection (AD) methods often treat the modality and class as independent factors. Although this paradigm has enriched the development of AD research branches and produced many specialized models, it has also led to fragmented solutions and excessive memory overhead. Moreover, reconstruction-based multi-class approaches typically rely on shared decoding paths, which struggle to handle large variations across domains, resulting in distorted normality boundaries, domain interference, and high false alarm rates. To address these limitations, we propose UniMMAD, a unified framework for multi-modal and multi-class anomaly detection. At the core of UniMMAD is a Mixture-of-Experts (MoE)-driven feature decompression mechanism, which enables adaptive and disentangled reconstruction tailored to specific domains. This process is guided by a ``general to specific'' paradigm. In the encoding stage, multi-modal inputs of varying combinations are compressed into compact, general-purpose features. The encoder incorporates a feature compression module to suppress latent anomalies, encourage cross-modal interaction, and avoid shortcut learning. In the decoding stage, the general features are decompressed into modality-specific and class-specific forms via a sparsely-gated cross MoE, which dynamically selects expert pathways based on input modality and class. To further improve efficiency, we design a grouped dynamic filtering mechanism and a MoE-in-MoE structure, reducing parameter usage by 75\% while maintaining sparse activation and fast inference. UniMMAD achieves state-of-the-art performance on 9 anomaly detection datasets, spanning 3 fields, 12 modalities, and 66 classes. The source code will be available at https://github.com/yuanzhao-CVLAB/UniMMAD.

Authors:Zhicheng Zhou, Jing Li, Suming Qiu, Junjie Huang, Linyuan Qiu, Zhijie Sun
Title: DeepJSONEval: Benchmarking Complex Nested JSON Data Mining for Large Language Models
Abstract:
The internet is saturated with low-density, high-redundancy information, such as social media comments, repetitive news, and lengthy discussions, making it difficult to extract valuable insights efficiently. Multi-layer nested JSON structures provide an effective solution by compressing such information into semantically rich, hierarchical representations, which organize data into key-value pairs, arrays, and nested objects, preserving contextual relationships and enabling efficient storage, retrieval, and semantic querying. For instance, in news aggregation, a JSON object can nest an article's metadata (title, author, date), content (text, multimedia), and multimedia information (multimedia type, caption) hierarchically. Large Language Models (LLMs) play a transformative role in web data mining by parsing unstructured text and outputting structured results directly into complex JSON schemas. However, current benchmarks for evaluating LLMs' JSON output capabilities overemphasize pure JSON generation rather than assessing data comprehension and extraction abilities, a limitation that lacks relevance to practical web data mining tasks. To address this, we introduce DeepJSONEval, a novel benchmark featuring 2100 multi-domain instances with deep nested structures, categorized by difficulty. Experiments show significant performance gaps among LLMs in handling such complexity. Our benchmark and datasets are open-sourced to advance research in structured JSON generation.(https://github.com/GTS-AI-Infra-Lab-SotaS/DeepJSONEval).

Authors:Yindong Wang, Martin Preiß, Margarita Bugueño, Jan Vincent Hoffbauer, Abdullatif Ghajar, Tolga Buz, Gerard de Melo
Title: ReFACT: A Benchmark for Scientific Confabulation Detection with Positional Error Annotations
Abstract:
Large Language Models (LLMs) frequently confabulate scientific facts, severely undermining their trustworthiness. Addressing this challenge requires benchmarks that go beyond binary factuality and enable fine-grained evaluation. We introduce ReFACT (Reddit False And Correct Texts), a benchmark of 1,001 expert-annotated question-answer pairs spanning diverse scientific domains for the detection of scientific confabulation. Each instance includes both a scientifically correct answer and a non-factual counterpart annotated with precise error spans and error types. ReFACT enables multi-stage evaluation: (1) confabulation detection, (2) fine-grained error localization, and (3) correction. We benchmark 9 state-of-the-art LLMs, revealing limited performance (about 50 percent accuracy). Even top models such as GPT-4o fail to distinguish factual from confabulated scientific answers, raising concerns about the reliability of LLM-as-judge evaluation paradigms. Our findings highlight the need for fine-grained, human-validated benchmarks to detect and correct scientific confabulation in domain-specific contexts. The dataset is available at: https://github.com/ddz5431/ReFACT

Authors:Olga Krestinskaya, Mohammed E. Fouda, Ahmed Eltawil, Khaled N. Salama
Title: CIMNAS: A Joint Framework for Compute-In-Memory-Aware Neural Architecture Search
Abstract:
To maximize hardware efficiency and performance accuracy in Compute-In-Memory (CIM)-based neural network accelerators for Artificial Intelligence (AI) applications, co-optimizing both software and hardware design parameters is essential. Manual tuning is impractical due to the vast number of parameters and their complex interdependencies. To effectively automate the design and optimization of CIM-based neural network accelerators, hardware-aware neural architecture search (HW-NAS) techniques can be applied. This work introduces CIMNAS, a joint model-quantization-hardware optimization framework for CIM architectures. CIMNAS simultaneously searches across software parameters, quantization policies, and a broad range of hardware parameters, incorporating device-, circuit-, and architecture-level co-optimizations. CIMNAS experiments were conducted over a search space of 9.9x10^85 potential parameter combinations with the MobileNet model as a baseline and RRAM-based CIM architecture. Evaluated on the ImageNet dataset, CIMNAS achieved a reduction in energy-delay-area product (EDAP) ranging from 90.1x to 104.5x, an improvement in TOPS/W between 4.68x and 4.82x, and an enhancement in TOPS/mm^2 from 11.3x to 12.78x relative to various baselines, all while maintaining an accuracy of 73.81%. The adaptability and robustness of CIMNAS are demonstrated by extending the framework to support the SRAM-based ResNet50 architecture, achieving up to an 819.5x reduction in EDAP. Unlike other state-of-the-art methods, CIMNAS achieves EDAP-focused optimization without any accuracy loss, generating diverse software-hardware parameter combinations for high-performance CIM-based neural network designs. The source code of CIMNAS is available at https://github.com/OlgaKrestinskaya/CIMNAS.

Authors:Jundong Xu, Hao Fei, Yuhui Zhang, Liangming Pan, Qijun Huang, Qian Liu, Preslav Nakov, Min-Yen Kan, William Yang Wang, Mong-Li Lee, Wynne Hsu
Title: MuSLR: Multimodal Symbolic Logical Reasoning
Abstract:
Multimodal symbolic logical reasoning, which aims to deduce new facts from multimodal input via formal logic, is critical in high-stakes applications such as autonomous driving and medical diagnosis, as its rigorous, deterministic reasoning helps prevent serious consequences. To evaluate such capabilities of current state-of-the-art vision language models (VLMs), we introduce the first benchmark MuSLR for multimodal symbolic logical reasoning grounded in formal logical rules. MuSLR comprises 1,093 instances across 7 domains, including 35 atomic symbolic logic and 976 logical combinations, with reasoning depths ranging from 2 to 9. We evaluate 7 state-of-the-art VLMs on MuSLR and find that they all struggle with multimodal symbolic reasoning, with the best model, GPT-4.1, achieving only 46.8%. Thus, we propose LogiCAM, a modular framework that applies formal logical rules to multimodal inputs, boosting GPT-4.1's Chain-of-Thought performance by 14.13%, and delivering even larger gains on complex logics such as first-order logic. We also conduct a comprehensive error analysis, showing that around 70% of failures stem from logical misalignment between modalities, offering key insights to guide future improvements. All data and code are publicly available at https://llm-symbol.github.io/MuSLR.

Authors:Xinyu Tian, Shu Zou, Zhaoyuan Yang, Mengqi He, Fabian Waschkowski, Lukas Wesemann, Peter Tu, Jing Zhang
Title: More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Abstract:
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/

Authors:Kun Feng, Shaocheng Lan, Yuchen Fang, Wenchao He, Lintao Ma, Xingyu Lu, Kan Ren
Title: Kairos: Towards Adaptive and Generalizable Time Series Foundation Models
Abstract:
Time series foundation models (TSFMs) have emerged as a powerful paradigm for time series analysis, driven by large-scale pretraining on diverse data corpora. However, time series inherently exhibit heterogeneous information density over time, influenced by system states and signal complexity, presenting significant modeling challenges especially in a zero-shot scenario. Current TSFMs rely on non-adaptive processing pipelines that fail to capture this dynamic nature. For example, common tokenization strategies such as fixed-size patching enforce rigid observational granularity, limiting their ability to adapt to varying information densities. Similarly, conventional positional encodings impose a uniform temporal scale, making it difficult to model diverse periodicities and trends across series. To overcome these limitations, we propose Kairos, a flexible TSFM framework that integrates a dynamic patching tokenizer and an instance-adaptive positional embedding. Kairos adaptively selects tokenization granularity and tailors positional encodings to the unique characteristics of each time series instance. Trained on a large-scale Predictability-Stratified Time Series (PreSTS) corpus comprising over 300 billion time points and adopting a multi-patch prediction strategy in the inference stage, Kairos achieves superior performance with much fewer parameters on two common zero-shot benchmarks, GIFT-Eval and the Time-Series-Library benchmark, consistently outperforming established methods across diverse tasks. The project page is at https://foundation-model-research.github.io/Kairos .

Authors:Boyoung Kim, Dosung Lee, Sumin An, Jinseong Jeong, Paul Hongsuck Seo
Title: ReTAG: Retrieval-Enhanced, Topic-Augmented Graph-Based Global Sensemaking
Abstract:
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking-answering questions by synthesizing information from an entire corpus remains a significant challenge. A prior graph-based approach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a Retrieval-Enhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.

Authors:Yuan Gao, Sangwook Kim, Chris McIntosh
Title: EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks
Abstract:
Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.

Authors:Amber Srivastava, Salar Basiri, Srinivasa Salapaka
Title: Autonomy-Aware Clustering: When Local Decisions Supersede Global Prescriptions
Abstract:
Clustering arises in a wide range of problem formulations, yet most existing approaches assume that the entities under clustering are passive and strictly conform to their assigned groups. In reality, entities often exhibit local autonomy, overriding prescribed associations in ways not fully captured by feature representations. Such autonomy can substantially reshape clustering outcomes -- altering cluster compositions, geometry, and cardinality -- with significant downstream effects on inference and decision-making. We introduce autonomy-aware clustering, a reinforcement learning (RL) framework that learns and accounts for the influence of local autonomy without requiring prior knowledge of its form. Our approach integrates RL with a Deterministic Annealing (DA) procedure, where, to determine underlying clusters, DA naturally promotes exploration in early stages of annealing and transitions to exploitation later. We also show that the annealing procedure exhibits phase transitions that enable design of efficient annealing schedules. To further enhance adaptability, we propose the Adaptive Distance Estimation Network (ADEN), a transformer-based attention model that learns dependencies between entities and cluster representatives within the RL loop, accommodates variable-sized inputs and outputs, and enables knowledge transfer across diverse problem instances. Empirical results show that our framework closely aligns with underlying data dynamics: even without explicit autonomy models, it achieves solutions close to the ground truth (gap ~3-4%), whereas ignoring autonomy leads to substantially larger gaps (~35-40%). The code and data are publicly available at https://github.com/salar96/AutonomyAwareClustering.

Authors:Jia Jun Cheng Xian, Muchen Li, Haotian Yang, Xin Tao, Pengfei Wan, Leonid Sigal, Renjie Liao
Title: Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Abstract:
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.

Authors:Xinyu Pu, Hongsong Wang, Jie Gui, Pan Zhou
Title: Dragging with Geometry: From Pixels to Geometry-Guided Image Editing
Abstract:
Interactive point-based image editing serves as a controllable editor, enabling precise and flexible manipulation of image content. However, most drag-based methods operate primarily on the 2D pixel plane with limited use of 3D cues. As a result, they often produce imprecise and inconsistent edits, particularly in geometry-intensive scenarios such as rotations and perspective transformations. To address these limitations, we propose a novel geometry-guided drag-based image editing method - GeoDrag, which addresses three key challenges: 1) incorporating 3D geometric cues into pixel-level editing, 2) mitigating discontinuities caused by geometry-only guidance, and 3) resolving conflicts arising from multi-point dragging. Built upon a unified displacement field that jointly encodes 3D geometry and 2D spatial priors, GeoDrag enables coherent, high-fidelity, and structure-consistent editing in a single forward pass. In addition, a conflict-free partitioning strategy is introduced to isolate editing regions, effectively preventing interference and ensuring consistency. Extensive experiments across various editing scenarios validate the effectiveness of our method, showing superior precision, structural consistency, and reliable multi-point editability. The code will be available on https://github.com/xinyu-pu/GeoDrag .

Authors:Huikang Su, Dengyun Peng, Zifeng Zhuang, YuHan Liu, Qiguang Chen, Donglin Wang, Qinghe Liu
Title: Boundary-to-Region Supervision for Offline Safe Reinforcement Learning
Abstract:
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.

Authors:Shunpeng Chen, Changwei Wang, Rongtao Xu, Xingtian Pei, Yukun Song, Jinzhou Lin, Wenhao Xu, Jingyi Zhang, Li Guo, Shibiao Xu
Title: SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and model will be available at: https://github.com/chenshunpeng/SAGE.

Authors:Dengming Zhang, Xiaowen Ma, Zhenliang Ni, Zhenkai Wu, Han Shu, Xin Jiang, Xinghao Chen
Title: Expert Merging: Model Merging with Unsupervised Expert Alignment and Importance-Guided Layer Chunking
Abstract:
Model merging, which combines multiple domain-specialized experts into a single model, offers a practical path to endow Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) with broad capabilities without the cost of joint training or serving many models. However, training-free methods rely on hand-tuned coefficients, whereas training-based methods primarily align parameters rather than downstream task behavior and typically treat all layers uniformly, ignoring inter-layer heterogeneity. We introduce Expert Merging, a training-light method that learns a small set of layer-wise coefficients using only unlabeled calibration data. The coefficients are optimized to explicitly align the merged model's hidden states and logits with those of the corresponding experts, with a coefficient regularizer for stability and task-weighted losses for controllable trade-offs. To capture inter-layer variation, Expert Merging++ augments this design with importance-guided chunking: a normalized layer-importance metric, derived from learned coefficients, task-vector magnitudes, and parameter counts, allocates more chunk-wise coefficients to high-importance layers while keeping low-importance layers lightweight. The result is a label-free, parameter-efficient, and scalable approach to multi-expert model merging across LLMs and MLLMs. Across MLLM backbones (InternVL and Qwen2-VL) and the LLM backbone (Mistral), our method surpasses strong training-free and training-based merging baselines, with Expert Merging++ delivering further gains and, in some cases, even exceeding supervised Mixture Training. The source code is available at https://github.com/Littleor/ExpertMerging.

Authors:Tingyu Shi, Fan Lyu, Shaoliang Peng
Title: Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Abstract:
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.

Authors:Kaiyu Li, Zixuan Jiang, Xiangyong Cao, Jiayu Wang, Yuchen Xiao, Deyu Meng, Zhi Wang
Title: DescribeEarth: Describe Anything for Remote Sensing Images
Abstract:
Automated textual description of remote sensing images is crucial for unlocking their full potential in diverse applications, from environmental monitoring to urban planning and disaster management. However, existing studies in remote sensing image captioning primarily focus on the image level, lacking object-level fine-grained interpretation, which prevents the full utilization and transformation of the rich semantic and structural information contained in remote sensing images. To address this limitation, we propose Geo-DLC, a novel task of object-level fine-grained image captioning for remote sensing. To support this task, we construct DE-Dataset, a large-scale dataset contains 25 categories and 261,806 annotated instances with detailed descriptions of object attributes, relationships, and contexts. Furthermore, we introduce DE-Benchmark, a LLM-assisted question-answering based evaluation suite designed to systematically measure model capabilities on the Geo-DLC task. We also present DescribeEarth, a Multi-modal Large Language Model (MLLM) architecture explicitly designed for Geo-DLC, which integrates a scale-adaptive focal strategy and a domain-guided fusion module leveraging remote sensing vision-language model features to encode high-resolution details and remote sensing category priors while maintaining global context. Our DescribeEarth model consistently outperforms state-of-the-art general MLLMs on DE-Benchmark, demonstrating superior factual accuracy, descriptive richness, and grammatical soundness, particularly in capturing intrinsic object features and surrounding environmental attributes across simple, complex, and even out-of-distribution remote sensing scenarios. All data, code and weights are released at https://github.com/earth-insights/DescribeEarth.

Authors:Gihan Panapitiya, Emily Saldanha, Heather Job, Olivia Hess
Title: AutoLabs: Cognitive Multi-Agent Systems with Self-Correction for Autonomous Chemical Experimentation
Abstract:
The automation of chemical research through self-driving laboratories (SDLs) promises to accelerate scientific discovery, yet the reliability and granular performance of the underlying AI agents remain critical, under-examined challenges. In this work, we introduce AutoLabs, a self-correcting, multi-agent architecture designed to autonomously translate natural-language instructions into executable protocols for a high-throughput liquid handler. The system engages users in dialogue, decomposes experimental goals into discrete tasks for specialized agents, performs tool-assisted stoichiometric calculations, and iteratively self-corrects its output before generating a hardware-ready file. We present a comprehensive evaluation framework featuring five benchmark experiments of increasing complexity, from simple sample preparation to multi-plate timed syntheses. Through a systematic ablation study of 20 agent configurations, we assess the impact of reasoning capacity, architectural design (single- vs. multi-agent), tool use, and self-correction mechanisms. Our results demonstrate that agent reasoning capacity is the most critical factor for success, reducing quantitative errors in chemical amounts (nRMSE) by over 85% in complex tasks. When combined with a multi-agent architecture and iterative self-correction, AutoLabs achieves near-expert procedural accuracy (F1-score > 0.89) on challenging multi-step syntheses. These findings establish a clear blueprint for developing robust and trustworthy AI partners for autonomous laboratories, highlighting the synergistic effects of modular design, advanced reasoning, and self-correction to ensure both performance and reliability in high-stakes scientific applications. Code: https://github.com/pnnl/autolabs

Authors:Shangqi Gao, Sihan Wang, Yibo Gao, Boming Wang, Xiahai Zhuang, Anne Warren, Grant Stewart, James Jones, Mireia Crispin-Ortuzar
Title: Evaluating Foundation Models with Pathological Concept Learning for Kidney Cancer
Abstract:
To evaluate the translational capabilities of foundation models, we develop a pathological concept learning approach focused on kidney cancer. By leveraging TNM staging guidelines and pathology reports, we build comprehensive pathological concepts for kidney cancer. Then, we extract deep features from whole slide images using foundation models, construct pathological graphs to capture spatial correlations, and trained graph neural networks to identify these concepts. Finally, we demonstrate the effectiveness of this approach in kidney cancer survival analysis, highlighting its explainability and fairness in identifying low- and high-risk patients. The source code has been released by https://github.com/shangqigao/RadioPath.

Authors:Dongsu Lee, Daehee Lee, Yaru Niu, Honguk Woo, Amy Zhang, Ding Zhao
Title: Learning to Interact in World Latent for Team Coordination
Abstract:
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.

Authors:Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan, Wentian Zhao
Title: Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play
Abstract:
Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

Authors:Victor Wang, Elias Stengel-Eskin
Title: Calibrating Verbalized Confidence with Self-Generated Distractors
Abstract:
Calibrated confidence estimates are necessary for large language model (LLM) outputs to be trusted by human users. While LLMs can express their confidence in human-interpretable ways, verbalized LLM-generated confidence scores have empirically been found to be miscalibrated, reporting high confidence on instances with low accuracy and thereby harming trust and safety. We hypothesize that this overconfidence often stems from a given LLM's heightened suggestibility when faced with claims that it encodes little information about; we empirically validate this hypothesis, finding more suggestibility on lower-accuracy claims. Building on this finding, we introduce Distractor-Normalized Coherence (DINCO), which estimates and accounts for an LLM's suggestibility bias by having the model verbalize its confidence independently across several self-generated distractors (i.e. alternative claims), and normalizes by the total verbalized confidence. To further improve calibration, we leverage generator-validator disagreement, augmenting normalized validator confidence with a consistency-based estimate of generator confidence. Here, we frame the popular approach of self-consistency as leveraging coherence across sampled generations, and normalized verbalized confidence as leveraging coherence across validations on incompatible claims, allowing us to integrate these complementary dimensions of coherence into DINCO. Moreover, our analysis shows that DINCO provides less saturated -- and therefore more usable -- confidence estimates, and that further sampling alone cannot close the gap between DINCO and baselines, with DINCO at 10 inference calls outperforming self-consistency at 100.

Authors:Huu Nguyen, Victor May, Harsh Raj, Marianna Nezhurina, Yishan Wang, Yanqi Luo, Minh Chien Vu, Taishi Nakamura, Ken Tsui, Van Khue Nguyen, David Salinas, Aleksandra Krasnodębska, Christoph Schuhmann, Mats Leon Richter, Xuan-Son, Vu, Jenia Jitsev
Title: MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
Abstract:
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae

Authors:Alexander Kovrigin, Aleksandra Eliseeva, Konstantin Grotov, Egor Bogomolov, Yaroslav Zharov
Title: PIPer: On-Device Environment Setup via Online Reinforcement Learning
Abstract:
Environment setup-the process of configuring the system to work with a specific software project-represents a persistent challenge in Software Engineering (SE). Automated environment setup methods could assist developers by providing fully configured environments for arbitrary repositories without manual effort. This also helps SE researchers to scale execution-based benchmarks. However, recent studies reveal that even state-of-the-art Large Language Models (LLMs) achieve limited success in automating this task. To address this limitation, we tune a specialized model for environment setup. We combine supervised fine-tuning for generating correct Bash scripts and Reinforcement Learning with Verifiable Rewards (RLVR) to adapt it to the task of environment setup. On EnvBench-Python, our method enables Qwen3-8B (a model runnable on consumer hardware) to perform on par with larger models-Qwen3-32B and GPT-4o. The training code and model checkpoints are available online: https://github.com/JetBrains-Research/PIPer.

Authors:Hanyuan Gao, Xiaoxuan Yang
Title: Norm-Q: Effective Compression Method for Hidden Markov Models in Neuro-Symbolic Applications
Abstract:
Hidden Markov models (HMM) are commonly used in generation tasks and have demonstrated strong capabilities in neuro-symbolic applications for the Markov property. These applications leverage the strengths of neural networks and symbolic reasoning to create robust and interpretable AI systems. However, they may inherit and amplify the shortcomings of both approaches. Both components require dense computation and data transfer, and their communication further hinders performance. This paper proposes Norm-Q, a normalized linear quantization approach for compressing probabilistic symbolic models, such as HMMs. We reduce the bit width of the data with minimal impact, thereby alleviating memory and bandwidth stress and enabling deployment on potential custom hardware. Our method introduces a normalized quantization-aware expectation maximization process for probabilistic model training. The experimental results show that Norm-Q achieves a higher compression rate with reasonable score loss compared to traditional quantization methods. In the case of the constrained generation task of large language models, we successfully quantize an HMM of 4096 hidden states to 8 bits without loss and, at most, 3 bits with acceptable loss. Notably, the Norm-Q method can achieve a compression rate of 99% for the weights of the HMM. The code is open source at https://github.com/superstarghy/Norm-Q.

Authors:Zhibo Hou, Zhiyu An, Wan Du
Title: Beyond Noisy-TVs: Noise-Robust Exploration Via Learning Progress Monitoring
Abstract:
When there exists an unlearnable source of randomness (noisy-TV) in the environment, a naively intrinsic reward driven exploring agent gets stuck at that source of randomness and fails at exploration. Intrinsic reward based on uncertainty estimation or distribution similarity, while eventually escapes noisy-TVs as time unfolds, suffers from poor sample efficiency and high computational cost. Inspired by recent findings from neuroscience that humans monitor their improvements during exploration, we propose a novel method for intrinsically-motivated exploration, named Learning Progress Monitoring (LPM). During exploration, LPM rewards model improvements instead of prediction error or novelty, effectively rewards the agent for observing learnable transitions rather than the unlearnable transitions. We introduce a dual-network design that uses an error model to predict the expected prediction error of the dynamics model in its previous iteration, and use the difference between the model errors of the current iteration and previous iteration to guide exploration. We theoretically show that the intrinsic reward of LPM is zero-equivariant and a monotone indicator of Information Gain (IG), and that the error model is necessary to achieve monotonicity correspondence with IG. We empirically compared LPM against state-of-the-art baselines in noisy environments based on MNIST, 3D maze with 160x120 RGB inputs, and Atari. Results show that LPM's intrinsic reward converges faster, explores more states in the maze experiment, and achieves higher extrinsic reward in Atari. This conceptually simple approach marks a shift-of-paradigm of noise-robust exploration. For code to reproduce our experiments, see https://github.com/Akuna23Matata/LPM_exploration

Authors:Ana Paula Gomes Ferreira, Aleksandar Anžel, Izabel Oliva Marcilio de Souza, Helen Hughes, Alex J Elliot, Jude Dzevela Kong, Madlen Schranz, Alexander Ullrich, Georges Hattab
Title: The Open Syndrome Definition
Abstract:
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.

Authors:Hao Ban, Kaiyi Ji
Title: Rethinking Parameter Sharing for LLM Fine-Tuning with Multiple LoRAs
Abstract:
Large language models are often adapted using parameter-efficient techniques such as Low-Rank Adaptation (LoRA), formulated as $y = W_0x + BAx$, where $W_0$ is the pre-trained parameters and $x$ is the input to the adapted layer. While multi-adapter extensions often employ multiple LoRAs, prior studies suggest that the inner $A$ matrices are highly similar during training and thus suitable for sharing. We revisit this phenomenon and find that this similarity is largely attributable to the identical initialization rather than shared knowledge, with $B$ playing a more critical role in knowledge encoding and transfer. Motivated by these insights, we propose \textbf{ALoRA}, an asymmetric multi-LoRA design with multiple $A$ matrices and a single shared $B$ in multi-task fine-tuning, and \textbf{Fed-ALoRA}, which shares $B$ across clients in federated fine-tuning under both homogeneous and heterogeneous settings, through a novel matrix decomposition strategy to accommodate heterogeneous ranks across clients. Experiments on commonsense reasoning, math reasoning, multi-task NLP dataset, and federated NLP dataset demonstrate that our methods achieve more balanced performance across tasks with comparable or superior average accuracy relative to existing multi-LoRA approaches. Codes are available at https://github.com/OptMN-Lab/ALoRA.

Authors:Zewei Zhang, Huan Liu, Yuanhao Yu, Jun Chen, Xiangyu Xu
Title: Boolean Satisfiability via Imitation Learning
Abstract:
We propose ImitSAT, a branching policy for conflict-driven clause learning (CDCL) solvers based on imitation learning for the Boolean satisfiability problem (SAT). Unlike previous methods that predict instance-level signals to improve CDCL branching indirectly, or rely on reinforcement learning and insufficient CDCL information to enhance branching, ImitSAT learns from expert KeyTrace that collapses a full run into the sequence of surviving decisions. Replaying a KeyTrace on the same instance is nearly conflict-free, providing dense decision-level supervision and directly reducing propagations -- the dominant contributor to wall-clock time. This prefix-conditioned supervision enables ImitSAT to reproduce high-quality branches without exploration, yielding faster convergence, stable training, and seamless integration into CDCL. Extensive experiments demonstrate that ImitSAT reduces propagation counts and runtime, outperforming state-of-the-art learned approaches. We released the source code and trained model at https://github.com/zewei-Zhang/ImitSAT

Authors:Yuyou Zhang, Radu Corcodel, Chiori Hori, Anoop Cherian, Ding Zhao
Title: SpinBench: Perspective and Rotation as a Lens on Spatial Reasoning in VLMs
Abstract:
We present SpinBench, a cognitively grounded diagnostic benchmark for evaluating spatial reasoning in vision language models (VLMs). SpinBench is designed around the core challenge of spatial reasoning: perspective taking, the ability to reason about how scenes and object relations change under viewpoint transformation. Since perspective taking requires multiple cognitive capabilities, such as recognizing objects across views, relative positions grounding, and mentally simulating transformations, SpinBench introduces a set of fine-grained diagnostic categories. Our categories target translation, rotation, object relative pose, and viewpoint change, and are progressively structured so that single-object simpler tasks scaffold toward the most demanding multi-object perspective-taking setting. We evaluate 37 state-of-the-art VLMs, both proprietary and open source. Results reveal systematic weaknesses: strong egocentric bias, poor rotational understanding, and inconsistencies under symmetrical and syntactic reformulations. Scaling analysis shows both smooth improvements and emergent capabilities. While human subjects achieve high accuracy (91.2\%), task difficulty as measured by human response time shows strong correlation with VLM accuracy, indicating that SpinBench captures spatial reasoning challenges shared across humans and VLMs. We believe SpinBench provides critical insights into spatial reasoning in VLMs and highlights key gaps in their ability to reason about physical space. Our website can be found at https://spinbench25.github.io/.

Authors:S. Sandra Bae, Takanori Fujiwara, Danielle Albers Szafir, Ellen Yi-Luen Do, Michael L. Rivera
Title: Computational Design and Single-Wire Sensing of 3D Printed Objects with Integrated Capacitive Touchpoints
Abstract:
Producing interactive 3D printed objects currently requires laborious 3D design and post-instrumentation with off-the-shelf electronics. Multi-material 3D printing using conductive PLA presents opportunities to mitigate these challenges. We present a computational design pipeline that embeds multiple capacitive touchpoints into any 3D model that has a closed mesh without self-intersection. With our pipeline, users define touchpoints on the 3D object's surface to indicate interactive regions. Our pipeline then automatically generates a conductive path to connect the touch regions. This path is optimized to output unique resistor-capacitor delays when each region is touched, resulting in all regions being able to be sensed through a double-wire or single-wire connection. We illustrate our approach's utility with five computational and sensing performance evaluations (achieving 93.35% mean accuracy for single-wire) and six application examples. Our sensing technique supports existing uses (e.g., prototyping) and highlights the growing promise to produce interactive devices entirely with 3D printing. Project website: https://github.com/d-rep-lab/3dp-singlewire-sensing

Authors:Kunlun Zhu, Zijia Liu, Bingxuan Li, Muxin Tian, Yingxuan Yang, Jiaxun Zhang, Pengrui Han, Qipeng Xie, Fuyang Cui, Weijia Zhang, Xiaoteng Ma, Xiaodong Yu, Gowtham Ramesh, Jialian Wu, Zicheng Liu, Pan Lu, James Zou, Jiaxuan You
Title: Where LLM Agents Fail and How They can Learn From Failures
Abstract:
Large Language Model (LLM) agents, which integrate planning, memory, reflection, and tool-use modules, have shown promise in solving complex, multi-step tasks. Yet their sophisticated architectures amplify vulnerability to cascading failures, where a single root-cause error propagates through subsequent decisions, leading to task failure. Current systems lack a framework that can comprehensively understand agent error in a modular and systemic way, and therefore fail to detect these errors accordingly. We address this gap with three contributions. First, we introduce the AgentErrorTaxonomy, a modular classification of failure modes spanning memory, reflection, planning, action, and system-level operations. Second, we construct AgentErrorBench, the first dataset of systematically annotated failure trajectories from ALFWorld, GAIA, and WebShop, grounding error analysis in real-world agent rollouts. Third, we propose AgentDebug, a debugging framework that isolates root-cause failures and provides corrective feedback, enabling agents to recover and iteratively improve. Experiments on AgentErrorBench show that AgentDebug achieves 24% higher all-correct accuracy and 17% higher step accuracy compared to the strongest baseline. Beyond detection, the targeted feedback generated by AgentDebug enables LLM agents to iteratively recover from failures, yielding up to 26% relative improvements in task success across ALFWorld, GAIA, and WebShop. These results establish principled debugging as a pathway to more reliable and adaptive LLM agents. The code and data will be available at https://github.com/ulab-uiuc/AgentDebug

Authors:Paul Gavrikov, Wei Lin, M. Jehanzeb Mirza, Soumya Jahagirdar, Muhammad Huzaifa, Sivan Doveh, Serena Yeung-Levy, James Glass, Hilde Kuehne
Title: VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Abstract:
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload

Authors:Daniel Platnick, Mohamed E. Bengueddache, Marjan Alirezaie, Dava J. Newman, Alex ''Sandy'' Pentland, Hossein Rahnama
Title: ID-RAG: Identity Retrieval-Augmented Generation for Long-Horizon Persona Coherence in Generative Agents
Abstract:
Generative agents powered by language models are increasingly deployed for long-horizon tasks. However, as long-term memory context grows over time, they struggle to maintain coherence. This deficiency leads to critical failures, including identity drift, ignoring established beliefs, and the propagation of hallucinations in multi-agent systems. To mitigate these challenges, this paper introduces Identity Retrieval-Augmented Generation (ID-RAG), a novel mechanism designed to ground an agent's persona and persistent preferences in a dynamic, structured identity model: a knowledge graph of core beliefs, traits, and values. During the agent's decision loop, this model is queried to retrieve relevant identity context, which directly informs action selection. We demonstrate this approach by introducing and implementing a new class of ID-RAG enabled agents called Human-AI Agents (HAis), where the identity model is inspired by the Chronicle structure used in Perspective-Aware AI, a dynamic knowledge graph learned from a real-world entity's digital footprint. In social simulations of a mayoral election, HAis using ID-RAG outperformed baseline agents in long-horizon persona coherence - achieving higher identity recall across all tested models by the fourth timestep - and reduced simulation convergence time by 19% (GPT-4o) and 58% (GPT-4o mini). By treating identity as an explicit, retrievable knowledge structure, ID-RAG offers a foundational approach for developing more temporally coherent, interpretable, and aligned generative agents. Our code is open-source and available at: https://github.com/flybits/humanai-agents.

Authors:Jun Kawasaki
Title: ActorDB: A Unified Database Model Integrating Single-Writer Actors, Incremental View Maintenance, and Zero-Trust Messaging
Abstract:
This paper presents ActorDB ( Dekigoto ) , a novel database architecture that tightly integrates a single-writer actor model for writes, Incremental View Maintenance (IVM), and a zero-trust security model as a core component. The primary contribution of this work is the unification of these powerful but complex concepts into a single, cohesive system designed to reduce architectural complexity for developers of modern, data-intensive applications. We argue that by providing these capabilities out-of-the-box, ActorDB can offer a more robust, secure, and developer-friendly platform compared to solutions that require manual integration of separate systems for actor persistence, stream processing, and security. We present the core architecture, discuss the critical trade-offs in its design, and define the performance criteria for a Minimum Viable Product (MVP) to validate our approach.

Authors:Yingming Pu, Tao Lin, Hongyu Chen
Title: Mechanisms of Matter: Language Inferential Benchmark on Physicochemical Hypothesis in Materials Synthesis
Abstract:
The capacity of Large Language Models (LLMs) to generate valid scientific hypotheses for materials synthesis remains largely unquantified, hindered by the absence of benchmarks probing physicochemical logics reasoning. To address this, we introduce MatterMech, a benchmark for evaluating LLM-generated hypotheses across eight nanomaterial synthesis domains. Our analysis reveals a critical disconnect: LLMs are proficient in abstract logic yet fail to ground their reasoning in fundamental physicochemical principles. We demonstrate that our proposed principle-aware prompting methodology substantially outperforms standard Chain-of-Thought, enhancing both hypothesis accuracy and computational efficiency. This work provides a methodological framework to advance LLMs toward reliable scientific hypothesis generation in materials science. The MatterMech benchmark and associated code is publicly available at \href{https://github.com/amair-lab/MatterMech}{GitHub}.

Authors:Chi Zhang, Zehua Chen, Kaiwen Zheng, Jun Zhu
Title: VoiceBridge: Designing Latent Bridge Models for General Speech Restoration at Scale
Abstract:
Bridge models have recently been explored for speech enhancement tasks such as denoising, dereverberation, and super-resolution, while these efforts are typically confined to a single task or small-scale datasets, with constrained general speech restoration (GSR) capability at scale. In this work, we introduce VoiceBridge, a GSR system rooted in latent bridge models (LBMs), capable of reconstructing high-fidelity speech at full-band (\textit{i.e.,} 48~kHz) from various distortions. By compressing speech waveform into continuous latent representations, VoiceBridge models the~\textit{diverse LQ-to-HQ tasks} (namely, low-quality to high-quality) in GSR with~\textit{a single latent-to-latent generative process} backed by a scalable transformer architecture. To better inherit the advantages of bridge models from the data domain to the latent space, we present an energy-preserving variational autoencoder, enhancing the alignment between the waveform and latent space over varying energy levels. Furthermore, to address the difficulty of HQ reconstruction from distinctively different LQ priors, we propose a joint neural prior, uniformly alleviating the reconstruction burden of LBM. At last, considering the key requirement of GSR systems, human perceptual quality, a perceptually aware fine-tuning stage is designed to mitigate the cascading mismatch in generation while improving perceptual alignment. Extensive validation across in-domain and out-of-domain tasks and datasets (\textit{e.g.}, refining recent zero-shot speech and podcast generation results) demonstrates the superior performance of VoiceBridge. Demo samples can be visited at: https://VoiceBridge-demo.github.io/.

Authors:Liangjian Wen, Qun Dai, Jianzhuang Liu, Jiangtao Zheng, Yong Dai, Dongkai Wang, Zhao Kang, Jun Wang, Zenglin Xu, Jiang Duan
Title: InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions
Abstract:
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.

Authors:Aayush Gupta
Title: Fact Grounded Attention: Eliminating Hallucination in Large Language Models Through Attention Level Knowledge Integration
Abstract:
"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.

Authors:Kevin Xu, Issei Sato
Title: A Formal Comparison Between Chain-of-Thought and Latent Thought
Abstract:
Chain-of-Thought (CoT) elicits reasoning in large language models by explicitly generating intermediate steps in natural language. In contrast, Latent Thought in looped models operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that Latent Thought in Looped Transformers enables parallel computation, which is more efficient than the inherently sequential process of CoT. In contrast, CoT leverages stochastic decoding to approximate solutions to problems where exact computation is intractable. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms. Code is available at https://github.com/kevin671/cot-vs-loop.

Authors:Xiaojian Wang, Chaoli Zhang, Zhonglong Zheng, Yunliang Jiang
Title: WDformer: A Wavelet-based Differential Transformer Model for Time Series Forecasting
Abstract:
Time series forecasting has various applications, such as meteorological rainfall prediction, traffic flow analysis, financial forecasting, and operational load monitoring for various systems. Due to the sparsity of time series data, relying solely on time-domain or frequency-domain modeling limits the model's ability to fully leverage multi-domain information. Moreover, when applied to time series forecasting tasks, traditional attention mechanisms tend to over-focus on irrelevant historical information, which may introduce noise into the prediction process, leading to biased results. We proposed WDformer, a wavelet-based differential Transformer model. This study employs the wavelet transform to conduct a multi-resolution analysis of time series data. By leveraging the advantages of joint representation in the time-frequency domain, it accurately extracts the key information components that reflect the essential characteristics of the data. Furthermore, we apply attention mechanisms on inverted dimensions, allowing the attention mechanism to capture relationships between multiple variables. When performing attention calculations, we introduced the differential attention mechanism, which computes the attention score by taking the difference between two separate softmax attention matrices. This approach enables the model to focus more on important information and reduce noise. WDformer has achieved state-of-the-art (SOTA) results on multiple challenging real-world datasets, demonstrating its accuracy and effectiveness. Code is available at https://github.com/xiaowangbc/WDformer.

Authors:Long Xu, Yongcai Chen, Fengshuo Liu, Yuzhong Peng
Title: MSCoD: An Enhanced Bayesian Updating Framework with Multi-Scale Information Bottleneck and Cooperative Attention for Structure-Based Drug Design
Abstract:
Structure-Based Drug Design (SBDD) is a powerful strategy in computational drug discovery, utilizing three-dimensional protein structures to guide the design of molecules with improved binding affinity. However, capturing complex protein-ligand interactions across multiple scales remains challenging, as current methods often overlook the hierarchical organization and intrinsic asymmetry of these interactions. To address these limitations, we propose MSCoD, a novel Bayesian updating-based generative framework for structure-based drug design. In our MSCoD, Multi-Scale Information Bottleneck (MSIB) was developed, which enables semantic compression at multiple abstraction levels for efficient hierarchical feature extraction. Furthermore, a multi-head cooperative attention (MHCA) mechanism was developed, which employs asymmetric protein-to-ligand attention to capture diverse interaction types while addressing the dimensionality disparity between proteins and ligands. Empirical studies showed that MSCoD outperforms state-of-the-art methods on the benchmark dataset. Case studies on challenging targets such as KRAS G12D further demonstrate its applicability in real-world scenarios. The code and data underlying this article are freely available at https://github.com/xulong0826/MSCoD.

Authors:Guillermo Comesaña Cimadevila
Title: Evaluating Double Descent in Machine Learning: Insights from Tree-Based Models Applied to a Genomic Prediction Task
Abstract:
Classical learning theory describes a well-characterised U-shaped relationship between model complexity and prediction error, reflecting a transition from underfitting in underparameterised regimes to overfitting as complexity grows. Recent work, however, has introduced the notion of a second descent in test error beyond the interpolation threshold-giving rise to the so-called double descent phenomenon. While double descent has been studied extensively in the context of deep learning, it has also been reported in simpler models, including decision trees and gradient boosting. In this work, we revisit these claims through the lens of classical machine learning applied to a biological classification task: predicting isoniazid resistance in Mycobacterium tuberculosis using whole-genome sequencing data. We systematically vary model complexity along two orthogonal axes-learner capacity (e.g., Pleaf, Pboost) and ensemble size (i.e., Pens)-and show that double descent consistently emerges only when complexity is scaled jointly across these axes. When either axis is held fixed, generalisation behaviour reverts to classical U- or L-shaped patterns. These results are replicated on a synthetic benchmark and support the unfolding hypothesis, which attributes double descent to the projection of distinct generalisation regimes onto a single complexity axis. Our findings underscore the importance of treating model complexity as a multidimensional construct when analysing generalisation behaviour. All code and reproducibility materials are available at: https://github.com/guillermocomesanacimadevila/Demystifying-Double-Descent-in-ML.

Authors:Yang Liu, Chuanchen Luo, Zimo Tang, Junran Peng, Zhaoxiang Zhang
Title: VGGT-X: When VGGT Meets Dense Novel View Synthesis
Abstract:
We study the problem of applying 3D Foundation Models (3DFMs) to dense Novel View Synthesis (NVS). Despite significant progress in Novel View Synthesis powered by NeRF and 3DGS, current approaches remain reliant on accurate 3D attributes (e.g., camera poses and point clouds) acquired from Structure-from-Motion (SfM), which is often slow and fragile in low-texture or low-overlap captures. Recent 3DFMs showcase orders of magnitude speedup over the traditional pipeline and great potential for online NVS. But most of the validation and conclusions are confined to sparse-view settings. Our study reveals that naively scaling 3DFMs to dense views encounters two fundamental barriers: dramatically increasing VRAM burden and imperfect outputs that degrade initialization-sensitive 3D training. To address these barriers, we introduce VGGT-X, incorporating a memory-efficient VGGT implementation that scales to 1,000+ images, an adaptive global alignment for VGGT output enhancement, and robust 3DGS training practices. Extensive experiments show that these measures substantially close the fidelity gap with COLMAP-initialized pipelines, achieving state-of-the-art results in dense COLMAP-free NVS and pose estimation. Additionally, we analyze the causes of remaining gaps with COLMAP-initialized rendering, providing insights for the future development of 3D foundation models and dense NVS. Our project page is available at https://dekuliutesla.github.io/vggt-x.github.io/

Authors:Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu
Title: Visual Jigsaw Post-Training Improves MLLMs
Abstract:
Reinforcement learning based post-training has recently emerged as a powerful paradigm for enhancing the alignment and reasoning capabilities of multimodal large language models (MLLMs). While vision-centric post-training is crucial for enhancing MLLMs' intrinsic understanding of visual signals, current post-training paradigms are predominantly text-centric, where dense visual inputs are only leveraged to extract sparse cues for text-based reasoning. There exist a few approaches in this direction, however, they often still rely on text as an intermediate mediator or introduce additional visual generative designs. In this work, we introduce Visual Jigsaw, a generic self-supervised post-training framework designed to strengthen visual understanding in MLLMs. Visual Jigsaw is formulated as a general ordering task: visual inputs are partitioned, shuffled, and the model must reconstruct the visual information by producing the correct permutation in natural language. This naturally aligns with reinforcement learning from verifiable rewards (RLVR), requires no additional visual generative components, and derives its supervisory signal automatically without any annotations. We instantiate Visual Jigsaw across three visual modalities, including images, videos, and 3D data. Extensive experiments demonstrate substantial improvements in fine-grained perception, temporal reasoning, and 3D spatial understanding. Our findings highlight the potential of self-supervised vision-centric tasks in post-training MLLMs and aim to inspire further research on vision-centric pretext designs. Project Page: https://penghao-wu.github.io/visual_jigsaw/

Authors:Yunyang Ge, Xinhua Cheng, Chengshu Zhao, Xianyi He, Shenghai Yuan, Bin Lin, Bin Zhu, Li Yuan
Title: FlashI2V: Fourier-Guided Latent Shifting Prevents Conditional Image Leakage in Image-to-Video Generation
Abstract:
In Image-to-Video (I2V) generation, a video is created using an input image as the first-frame condition. Existing I2V methods concatenate the full information of the conditional image with noisy latents to achieve high fidelity. However, the denoisers in these methods tend to shortcut the conditional image, which is known as conditional image leakage, leading to performance degradation issues such as slow motion and color inconsistency. In this work, we further clarify that conditional image leakage leads to overfitting to in-domain data and decreases the performance in out-of-domain scenarios. Moreover, we introduce Fourier-Guided Latent Shifting I2V, named FlashI2V, to prevent conditional image leakage. Concretely, FlashI2V consists of: (1) Latent Shifting. We modify the source and target distributions of flow matching by subtracting the conditional image information from the noisy latents, thereby incorporating the condition implicitly. (2) Fourier Guidance. We use high-frequency magnitude features obtained by the Fourier Transform to accelerate convergence and enable the adjustment of detail levels in the generated video. Experimental results show that our method effectively overcomes conditional image leakage and achieves the best generalization and performance on out-of-domain data among various I2V paradigms. With only 1.3B parameters, FlashI2V achieves a dynamic degree score of 53.01 on Vbench-I2V, surpassing CogVideoX1.5-5B-I2V and Wan2.1-I2V-14B-480P. Github page: https://pku-yuangroup.github.io/FlashI2V/

Authors:Shuoshuo Zhang, Zijian Li, Yizhen Zhang, Jingjing Fu, Lei Song, Jiang Bian, Jun Zhang, Yujiu Yang, Rui Wang
Title: PixelCraft: A Multi-Agent System for High-Fidelity Visual Reasoning on Structured Images
Abstract:
Structured images (e.g., charts and geometric diagrams) remain challenging for multimodal large language models (MLLMs), as perceptual slips can cascade into erroneous conclusions. Intermediate visual cues can steer reasoning; however, existing cue-based methods are constrained with low-fidelity image processing and linear, rigid reasoning patterns, limiting their effectiveness on complex structured-image tasks. In this paper, we propose PixelCraft, a novel multi-agent system for high-fidelity image processing and flexible visual reasoning on structured images. The system comprises a dispatcher, a planner, a reasoner, critics, and a set of visual tool agents. To achieve high-fidelity processing, we construct a high-quality corpus and fine-tune an MLLM into a grounding model, whose pixel-level localizations are integrated with traditional computer vision (CV) algorithms in tool agents. Building on this foundation, PixelCraft facilitates flexible visual reasoning through a dynamic three-stage workflow of tool selection, agent discussion, and self-criticism. Moreover, unlike prior linear reasoning patterns that simply append historical images, PixelCraft maintains an image memory to allow the planner to adaptively revisit earlier visual steps, explore alternative reasoning branches, and dynamically adjust the reasoning trajectory during discussion. Extensive experiments on challenging chart and geometry benchmarks demonstrate that PixelCraft significantly improves visual reasoning performance for advanced MLLMs, setting a new standard for structured image reasoning. Our code will be available at https://github.com/microsoft/PixelCraft.

Authors:Junyu Chen, Wenkun He, Yuchao Gu, Yuyang Zhao, Jincheng Yu, Junsong Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Muyang Li, Haocheng Xi, Ligeng Zhu, Enze Xie, Song Han, Han Cai
Title: DC-VideoGen: Efficient Video Generation with Deep Compression Video Autoencoder
Abstract:
We introduce DC-VideoGen, a post-training acceleration framework for efficient video generation. DC-VideoGen can be applied to any pre-trained video diffusion model, improving efficiency by adapting it to a deep compression latent space with lightweight fine-tuning. The framework builds on two key innovations: (i) a Deep Compression Video Autoencoder with a novel chunk-causal temporal design that achieves 32x/64x spatial and 4x temporal compression while preserving reconstruction quality and generalization to longer videos; and (ii) AE-Adapt-V, a robust adaptation strategy that enables rapid and stable transfer of pre-trained models into the new latent space. Adapting the pre-trained Wan-2.1-14B model with DC-VideoGen requires only 10 GPU days on the NVIDIA H100 GPU. The accelerated models achieve up to 14.8x lower inference latency than their base counterparts without compromising quality, and further enable 2160x3840 video generation on a single GPU. Code: https://github.com/dc-ai-projects/DC-VideoGen.

Authors:Wenkun He, Yuchao Gu, Junyu Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Haocheng Xi, Muyang Li, Ligeng Zhu, Jincheng Yu, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Abstract:
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Bingkui Tong, Jiaer Xia, Kaiyang Zhou
Title: Mitigating Hallucination in Multimodal LLMs with Layer Contrastive Decoding
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive perception and reasoning capabilities, yet they often suffer from hallucinations -- generating outputs that are linguistically coherent but inconsistent with the context of the input image, including inaccuracies in objects, attributes, and relations. To address this challenge, we propose a simple approach called Layer Contrastive Decoding (LayerCD). Our design is motivated by the observation that shallow visual features are much more likely than deep visual features to cause an MLLM to hallucinate as they only capture biased, low-level information that is insufficient for high-level reasoning. Therefore, LayerCD aims to filter out hallucinations by contrasting the output distributions generated from visual features of different levels, specifically those from the shallow and deep layers of the vision encoder, respectively. We conduct extensive experiments on two hallucination benchmarks and show that LayerCD significantly outperforms current state-of-the-art. The code for LayerCD is available at https://github.com/maifoundations/LayerCD .

Authors:Haolei Xu, Xinyu Mei, Yuchen Yan, Rui Zhou, Wenqi Zhang, Weiming Lu, Yueting Zhuang, Yongliang Shen
Title: EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Abstract:
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4$\times$ speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.

Authors:Yuxin Jiang, Yuchao Gu, Yiren Song, Ivor Tsang, Mike Zheng Shou
Title: Personalized Vision via Visual In-Context Learning
Abstract:
Modern vision models, trained on large-scale annotated datasets, excel at predefined tasks but struggle with personalized vision -- tasks defined at test time by users with customized objects or novel objectives. Existing personalization approaches rely on costly fine-tuning or synthetic data pipelines, which are inflexible and restricted to fixed task formats. Visual in-context learning (ICL) offers a promising alternative, yet prior methods confine to narrow, in-domain tasks and fail to generalize to open-ended personalization. We introduce Personalized In-Context Operator (PICO), a simple four-panel framework that repurposes diffusion transformers as visual in-context learners. Given a single annotated exemplar, PICO infers the underlying transformation and applies it to new inputs without retraining. To enable this, we construct VisRel, a compact yet diverse tuning dataset, showing that task diversity, rather than scale, drives robust generalization. We further propose an attention-guided seed scorer that improves reliability via efficient inference scaling. Extensive experiments demonstrate that PICO (i) surpasses fine-tuning and synthetic-data baselines, (ii) flexibly adapts to novel user-defined tasks, and (iii) generalizes across both recognition and generation.

Authors:Kunhao Liu, Wenbo Hu, Jiale Xu, Ying Shan, Shijian Lu
Title: Rolling Forcing: Autoregressive Long Video Diffusion in Real Time
Abstract:
Streaming video generation, as one fundamental component in interactive world models and neural game engines, aims to generate high-quality, low-latency, and temporally coherent long video streams. However, most existing work suffers from severe error accumulation that often significantly degrades the generated stream videos over long horizons. We design Rolling Forcing, a novel video generation technique that enables streaming long videos with minimal error accumulation. Rolling Forcing comes with three novel designs. First, instead of iteratively sampling individual frames, which accelerates error propagation, we design a joint denoising scheme that simultaneously denoises multiple frames with progressively increasing noise levels. This design relaxes the strict causality across adjacent frames, effectively suppressing error growth. Second, we introduce the attention sink mechanism into the long-horizon stream video generation task, which allows the model to keep key value states of initial frames as a global context anchor and thereby enhances long-term global consistency. Third, we design an efficient training algorithm that enables few-step distillation over largely extended denoising windows. This algorithm operates on non-overlapping windows and mitigates exposure bias conditioned on self-generated histories. Extensive experiments show that Rolling Forcing enables real-time streaming generation of multi-minute videos on a single GPU, with substantially reduced error accumulation.

Authors:Fan Yuan, Yuchen Yan, Yifan Jiang, Haoran Zhao, Tao Feng, Jinyan Chen, Yanwei Lou, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Abstract:
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

Authors:Zhaozhi Wang, Tong Zhang, Mingyue Guo, Yaowei Wang, Qixiang Ye
Title: VideoAnchor: Reinforcing Subspace-Structured Visual Cues for Coherent Visual-Spatial Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language alignment, yet they remain limited in visual-spatial reasoning. We first identify that this limitation arises from the attention mechanism: visual tokens are overshadowed by language tokens, preventing the model from consistently recognizing the same visual cues across frames. To address this challenge, we draw a novel connection between the self-expressiveness property in sparse subspace clustering and the attention mechanism in Transformers. Building on this insight, we propose VideoAnchor, a plug-and-play module that leverages subspace affinities to reinforce visual cues across frames without retraining, effectively anchoring attention to shared visual structures. Extensive experiments across benchmarks and backbone models show consistent performance gains -- $e.g.$, 3.2% and 4.6% improvements on VSI-Bench and Video-MME (spatial-related tasks) with InternVL2-8B and Qwen2.5VL-72B -- while qualitative analyses demonstrate more coherent subspace partitions and stronger visual grounding. Our codes will be made public available at https://github.com/feufhd/VideoAnchor.

Authors:Tomoyuki Suzuki, Kang-Jun Liu, Naoto Inoue, Kota Yamaguchi
Title: LayerD: Decomposing Raster Graphic Designs into Layers
Abstract:
Designers craft and edit graphic designs in a layer representation, but layer-based editing becomes impossible once composited into a raster image. In this work, we propose LayerD, a method to decompose raster graphic designs into layers for re-editable creative workflow. LayerD addresses the decomposition task by iteratively extracting unoccluded foreground layers. We propose a simple yet effective refinement approach taking advantage of the assumption that layers often exhibit uniform appearance in graphic designs. As decomposition is ill-posed and the ground-truth layer structure may not be reliable, we develop a quality metric that addresses the difficulty. In experiments, we show that LayerD successfully achieves high-quality decomposition and outperforms baselines. We also demonstrate the use of LayerD with state-of-the-art image generators and layer-based editing.

Authors:Chengyao Wang, Zhisheng Zhong, Bohao Peng, Senqiao Yang, Yuqi Liu, Haokun Gui, Bin Xia, Jingyao Li, Bei Yu, Jiaya Jia
Title: MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech
Abstract:
We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation.

Authors:Jan Held, Renaud Vandeghen, Sanghyun Son, Daniel Rebain, Matheus Gadelha, Yi Zhou, Ming C. Lin, Marc Van Droogenbroeck, Andrea Tagliasacchi
Title: Triangle Splatting+: Differentiable Rendering with Opaque Triangles
Abstract:
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.

Authors:M A Al-Masud, Juan Miguel Lopez Alcaraz, Nils Strodthoff
Title: Benchmarking ECG Foundational Models: A Reality Check Across Clinical Tasks
Abstract:
The 12-lead electrocardiogram (ECG) is a long-standing diagnostic tool. Yet machine learning for ECG interpretation remains fragmented, often limited to narrow tasks or datasets. Foundation models promise broader adaptability, but their generalization across diverse ECG tasks is not well understood. We benchmarked eight ECG foundation models on 26 clinically relevant tasks using 12 public datasets comprising 1,650 regression and classification targets. Models were evaluated under fine-tuning and frozen settings, with scaling analyses across dataset sizes. Results show heterogeneous performance across domains: in the most widely studied domain, adult ECG interpretation, three foundation models consistently outperformed strong supervised baselines. In contrast, ECG-CPC, a compact structured state-space model pretrained on HEEDB, dominated other categories where most foundation models failed to surpass supervised learning. Foundation models also displayed distinct scaling behaviors with dataset size, which are critical for small-scale clinical applications. Overall, while foundation models show promise for adult ECG analysis, substantial gaps remain in cardiac structure, outcome prediction, and patient characterization. Notably, ECG-CPC's strong performance despite being orders of magnitude smaller and consuming minimal computational resources highlights untapped opportunities for advancing ECG foundation models.

Authors:AmirHossein Zamani, Bruno Roy, Arianna Rampini
Title: Unsupervised Representation Learning for 3D Mesh Parameterization with Semantic and Visibility Objectives
Abstract:
Recent 3D generative models produce high-quality textures for 3D mesh objects. However, they commonly rely on the heavy assumption that input 3D meshes are accompanied by manual mesh parameterization (UV mapping), a manual task that requires both technical precision and artistic judgment. Industry surveys show that this process often accounts for a significant share of asset creation, creating a major bottleneck for 3D content creators. Moreover, existing automatic methods often ignore two perceptually important criteria: (1) semantic awareness (UV charts should align semantically similar 3D parts across shapes) and (2) visibility awareness (cutting seams should lie in regions unlikely to be seen). To overcome these shortcomings and to automate the mesh parameterization process, we present an unsupervised differentiable framework that augments standard geometry-preserving UV learning with semantic- and visibility-aware objectives. For semantic-awareness, our pipeline (i) segments the mesh into semantic 3D parts, (ii) applies an unsupervised learned per-part UV-parameterization backbone, and (iii) aggregates per-part charts into a unified UV atlas. For visibility-awareness, we use ambient occlusion (AO) as an exposure proxy and back-propagate a soft differentiable AO-weighted seam objective to steer cutting seams toward occluded regions. By conducting qualitative and quantitative evaluations against state-of-the-art methods, we show that the proposed method produces UV atlases that better support texture generation and reduce perceptible seam artifacts compared to recent baselines. Our implementation code is publicly available at: https://github.com/AHHHZ975/Semantic-Visibility-UV-Param.

Authors:Bogdan Raonić, Siddhartha Mishra, Samuel Lanthaler
Title: Towards a Certificate of Trust: Task-Aware OOD Detection for Scientific AI
Abstract:
Data-driven models are increasingly adopted in critical scientific fields like weather forecasting and fluid dynamics. These methods can fail on out-of-distribution (OOD) data, but detecting such failures in regression tasks is an open challenge. We propose a new OOD detection method based on estimating joint likelihoods using a score-based diffusion model. This approach considers not just the input but also the regression model's prediction, providing a task-aware reliability score. Across numerous scientific datasets, including PDE datasets, satellite imagery and brain tumor segmentation, we show that this likelihood strongly correlates with prediction error. Our work provides a foundational step towards building a verifiable 'certificate of trust', thereby offering a practical tool for assessing the trustworthiness of AI-based scientific predictions. Our code is publicly available at https://github.com/bogdanraonic3/OOD_Detection_ScientificML

Authors:Dingning Liu, Haoyu Guo, Jingyi Zhou, Tong He
Title: BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
Abstract:
Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.

Authors:Huaizhi Qu, Xiao Wang, Gengwei Zhang, Jie Peng, Tianlong Chen
Title: GEM: 3D Gaussian Splatting for Efficient and Accurate Cryo-EM Reconstruction
Abstract:
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.

Authors:Kenny Truong, Yongkyu Lee, Jason Irie, Shivam Kumar Panda, Mohammad Jony, Shahab Ahmad, Md. Mukhlesur Rahman, M. Khalid Jawed
Title: AgriCruiser: An Open Source Agriculture Robot for Over-the-row Navigation
Abstract:
We present the AgriCruiser, an open-source over-the-row agricultural robot developed for low-cost deployment and rapid adaptation across diverse crops and row layouts. The chassis provides an adjustable track width of 1.42 m to 1.57 m, along with a ground clearance of 0.94 m. The AgriCruiser achieves compact pivot turns with radii of 0.71 m to 0.79 m, enabling efficient headland maneuvers. The platform is designed for the integration of the other subsystems, and in this study, a precision spraying system was implemented to assess its effectiveness in weed management. In twelve flax plots, a single robotic spray pass reduced total weed populations (pigweed and Venice mallow) by 24- to 42-fold compared to manual weeding in four flax plots, while also causing less crop damage. Mobility experiments conducted on concrete, asphalt, gravel, grass, and both wet and dry soil confirmed reliable traversal consistent with torque sizing. The complete chassis can be constructed from commodity T-slot extrusion with minimal machining, resulting in a bill of materials costing approximately $5,000 - $6,000, which enables replication and customization. The mentioned results demonstrate that low-cost, reconfigurable over-the-row robots can achieve effective weed management with reduced crop damage and labor requirements, while providing a versatile foundation for phenotyping, sensing, and other agriculture applications. Design files and implementation details are released to accelerate research and adoption of modular agricultural robotics.

Authors:Shuchen Xue, Chongjian Ge, Shilong Zhang, Yichen Li, Zhi-Ming Ma
Title: Advantage Weighted Matching: Aligning RL with Pretraining in Diffusion Models
Abstract:
Reinforcement Learning (RL) has emerged as a central paradigm for advancing Large Language Models (LLMs), where pre-training and RL post-training share the same log-likelihood formulation. In contrast, recent RL approaches for diffusion models, most notably Denoising Diffusion Policy Optimization (DDPO), optimize an objective different from the pretraining objectives--score/flow matching loss. In this work, we establish a novel theoretical analysis: DDPO is an implicit form of score/flow matching with noisy targets, which increases variance and slows convergence. Building on this analysis, we introduce \textbf{Advantage Weighted Matching (AWM)}, a policy-gradient method for diffusion. It uses the same score/flow-matching loss as pretraining to obtain a lower-variance objective and reweights each sample by its advantage. In effect, AWM raises the influence of high-reward samples and suppresses low-reward ones while keeping the modeling objective identical to pretraining. This unifies pretraining and RL conceptually and practically, is consistent with policy-gradient theory, reduces variance, and yields faster convergence. This simple yet effective design yields substantial benefits: on GenEval, OCR, and PickScore benchmarks, AWM delivers up to a $24\times$ speedup over Flow-GRPO (which builds on DDPO), when applied to Stable Diffusion 3.5 Medium and FLUX, without compromising generation quality. Code is available at https://github.com/scxue/advantage_weighted_matching.

Authors:Wenhao Li, Qiangchang Wang, Xianjing Meng, Zhibin Wu, Yilong Yin
Title: VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning
Abstract:
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.

Authors:Xiaoxiao Ma, Haibo Qiu, Guohui Zhang, Zhixiong Zeng, Siqi Yang, Lin Ma, Feng Zhao
Title: STAGE: Stable and Generalizable GRPO for Autoregressive Image Generation
Abstract:
Reinforcement learning has recently been explored to improve text-to-image generation, yet applying existing GRPO algorithms to autoregressive (AR) image models remains challenging. The instability of the training process easily disrupts the pretrained model capability during long runs, resulting in marginal gains, degraded image quality, and poor generalization. In this work, we revisit GRPO for AR image generation and identify two key issues: contradictory gradients from unnecessary tokens and unstable policy entropy dynamics. To address these, we introduce STAGE, a stable and generalizable framework that leverages two targeted solutions: 1) Advantage/KL reweighting. Similarity-aware reweighting to alleviate conflicting updates; and 2) Entropy reward. An entropy-based reward corresponding to reference model to stabilize learning. With the help of alleviating conflicts between tokens and an entropy reward for stabilizing training, we reduce disruption of the pretrained distribution and mitigate reward hacking, which in turn improves generalization and transfer better to other benchmarks. Experiments across multiple benchmarks show that STAGE consistently improves visual quality, stability, and cross-task generalization compared to baseline GRPO.

Authors:Mustansar Fiaz, Hiyam Debary, Paolo Fraccaro, Danda Paudel, Luc Van Gool, Fahad Khan, Salman Khan
Title: GeoVLM-R1: Reinforcement Fine-Tuning for Improved Remote Sensing Reasoning
Abstract:
Recent advances in reinforcement learning (RL) have delivered strong reasoning capabilities in natural image domains, yet their potential for Earth Observation (EO) remains largely unexplored. EO tasks introduce unique challenges, spanning referred object detection, image or region captioning, change detection, grounding, and temporal analysis, that demand task aware reasoning. We propose a novel post training framework that incorporates task aware rewards to enable effective adaptation of reasoning based RL models to diverse EO tasks. This training strategy enhances reasoning capabilities for remote sensing images, stabilizes optimization, and improves robustness. Extensive experiments across multiple EO benchmarks show consistent performance gains over state of the art generic and specialized vision language models. Code and models will be released publicly at https://mustansarfiaz.github.io/GeoVLM-R1/ .

Authors:Tooba Imtiaz, Lucy Chai, Kathryn Heal, Xuan Luo, Jungyeon Park, Jennifer Dy, John Flynn
Title: LVT: Large-Scale Scene Reconstruction via Local View Transformers
Abstract:
Large transformer models are proving to be a powerful tool for 3D vision and novel view synthesis. However, the standard Transformer's well-known quadratic complexity makes it difficult to scale these methods to large scenes. To address this challenge, we propose the Local View Transformer (LVT), a large-scale scene reconstruction and novel view synthesis architecture that circumvents the need for the quadratic attention operation. Motivated by the insight that spatially nearby views provide more useful signal about the local scene composition than distant views, our model processes all information in a local neighborhood around each view. To attend to tokens in nearby views, we leverage a novel positional encoding that conditions on the relative geometric transformation between the query and nearby views. We decode the output of our model into a 3D Gaussian Splat scene representation that includes both color and opacity view-dependence. Taken together, the Local View Transformer enables reconstruction of arbitrarily large, high-resolution scenes in a single forward pass. See our project page for results and interactive demos https://toobaimt.github.io/lvt/.

Authors:Yuyang Yin, HaoXiang Guo, Fangfu Liu, Mengyu Wang, Hanwen Liang, Eric Li, Yikai Wang, Xiaojie Jin, Yao Zhao, Yunchao Wei
Title: PanoWorld-X: Generating Explorable Panoramic Worlds via Sphere-Aware Video Diffusion
Abstract:
Generating a complete and explorable 360-degree visual world enables a wide range of downstream applications. While prior works have advanced the field, they remain constrained by either narrow field-of-view limitations, which hinder the synthesis of continuous and holistic scenes, or insufficient camera controllability that restricts free exploration by users or autonomous agents. To address this, we propose PanoWorld-X, a novel framework for high-fidelity and controllable panoramic video generation with diverse camera trajectories. Specifically, we first construct a large-scale dataset of panoramic video-exploration route pairs by simulating camera trajectories in virtual 3D environments via Unreal Engine. As the spherical geometry of panoramic data misaligns with the inductive priors from conventional video diffusion, we then introduce a Sphere-Aware Diffusion Transformer architecture that reprojects equirectangular features onto the spherical surface to model geometric adjacency in latent space, significantly enhancing visual fidelity and spatiotemporal continuity. Extensive experiments demonstrate that our PanoWorld-X achieves superior performance in various aspects, including motion range, control precision, and visual quality, underscoring its potential for real-world applications.

Authors:Hanqi Xiao, Vaidehi Patil, Hyunji Lee, Elias Stengel-Eskin, Mohit Bansal
Title: Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Abstract:
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

Authors:Haotian Dong, Wenjing Wang, Chen Li, Di Lin
Title: Wan-Alpha: High-Quality Text-to-Video Generation with Alpha Channel
Abstract:
RGBA video generation, which includes an alpha channel to represent transparency, is gaining increasing attention across a wide range of applications. However, existing methods often neglect visual quality, limiting their practical usability. In this paper, we propose Wan-Alpha, a new framework that generates transparent videos by learning both RGB and alpha channels jointly. We design an effective variational autoencoder (VAE) that encodes the alpha channel into the RGB latent space. Then, to support the training of our diffusion transformer, we construct a high-quality and diverse RGBA video dataset. Compared with state-of-the-art methods, our model demonstrates superior performance in visual quality, motion realism, and transparency rendering. Notably, our model can generate a wide variety of semi-transparent objects, glowing effects, and fine-grained details such as hair strands. The released model is available on our website: https://donghaotian123.github.io/Wan-Alpha/.

Authors:Lekang Yang, Yuetong Liu, Yitong Zhang, Jia Li
Title: DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Abstract:
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .

Authors:Kaihong Li, Huichi Zhou, Bin Ma, Fangjun Huang
Title: SemanticShield: LLM-Powered Audits Expose Shilling Attacks in Recommender Systems
Abstract:
Recommender systems (RS) are widely used in e-commerce for personalized suggestions, yet their openness makes them susceptible to shilling attacks, where adversaries inject fake behaviors to manipulate recommendations. Most existing defenses emphasize user-side behaviors while overlooking item-side features such as titles and descriptions that can expose malicious intent. To address this gap, we propose a two-stage detection framework that integrates item-side semantics via large language models (LLMs). The first stage pre-screens suspicious users using low-cost behavioral criteria, and the second stage employs LLM-based auditing to evaluate semantic consistency. Furthermore, we enhance the auditing model through reinforcement fine-tuning on a lightweight LLM with carefully designed reward functions, yielding a specialized detector called SemanticShield. Experiments on six representative attack strategies demonstrate the effectiveness of SemanticShield against shilling attacks, and further evaluation on previously unseen attack methods shows its strong generalization capability. Code is available at https://github.com/FrankenstLee/SemanticShield.

Authors:Angxiao Yue, Anqi Dong, Hongteng Xu
Title: OAT-FM: Optimal Acceleration Transport for Improved Flow Matching
Abstract:
As a powerful technique in generative modeling, Flow Matching (FM) aims to learn velocity fields from noise to data, which is often explained and implemented as solving Optimal Transport (OT) problems. In this study, we bridge FM and the recent theory of Optimal Acceleration Transport (OAT), developing an improved FM method called OAT-FM and exploring its benefits in both theory and practice. In particular, we demonstrate that the straightening objective hidden in existing OT-based FM methods is mathematically equivalent to minimizing the physical action associated with acceleration defined by OAT. Accordingly, instead of enforcing constant velocity, OAT-FM optimizes the acceleration transport in the product space of sample and velocity, whose objective corresponds to a necessary and sufficient condition of flow straightness. An efficient algorithm is designed to achieve OAT-FM with low complexity. OAT-FM motivates a new two-phase FM paradigm: Given a generative model trained by an arbitrary FM method, whose velocity information has been relatively reliable, we can fine-tune and improve it via OAT-FM. This paradigm eliminates the risk of data distribution drift and the need to generate a large number of noise data pairs, which consistently improves model performance in various generative tasks. Code is available at: https://github.com/AngxiaoYue/OAT-FM

Authors:Tian Xia, Matthew Sinclair, Andreas Schuh, Fabio De Sousa Ribeiro, Raghav Mehta, Rajat Rasal, Esther Puyol-Antón, Samuel Gerber, Kersten Petersen, Michiel Schaap, Ben Glocker
Title: Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis
Abstract:
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.

Authors:Thanh Long Nguyen, Duc Phu Nguyen, Thanh Thao Ton Nu, Quan Le, Thuan Hoang Tran, Manh Duong Phung
Title: Real-time Recognition of Human Interactions from a Single RGB-D Camera for Socially-Aware Robot Navigation
Abstract:
{Recognizing human interactions is essential for social robots as it enables them to navigate safely and naturally in shared environments. Conventional robotic systems however often focus on obstacle avoidance, neglecting social cues necessary for seamless human-robot interaction. To address this gap, we propose a framework to recognize human group interactions for socially aware navigation. Our method utilizes color and depth frames from a monocular RGB-D camera to estimate 3D human keypoints and positions. Principal component analysis (PCA) is then used to determine dominant interaction directions. The shoelace formula is finally applied to compute interest points and engagement areas. Extensive experiments have been conducted to evaluate the validity of the proposed method. The results show that our method is capable of recognizing group interactions across different scenarios with varying numbers of individuals. It also achieves high-speed performance, processing each frame in approximately 4 ms on a single-board computer used in robotic systems. The method is implemented as a ROS 2 package making it simple to integrate into existing navigation systems. Source code is available at https://github.com/thanhlong103/social-interaction-detector

Authors:Yu Ma, Guoliang Wei, Haihong Xiao, Yue Cheng
Title: HBSplat: Robust Sparse-View Gaussian Reconstruction with Hybrid-Loss Guided Depth and Bidirectional Warping
Abstract:
Novel View Synthesis (NVS) from sparse views presents a formidable challenge in 3D reconstruction, where limited multi-view constraints lead to severe overfitting, geometric distortion, and fragmented scenes. While 3D Gaussian Splatting (3DGS) delivers real-time, high-fidelity rendering, its performance drastically deteriorates under sparse inputs, plagued by floating artifacts and structural failures. To address these challenges, we introduce HBSplat, a unified framework that elevates 3DGS by seamlessly integrating robust structural cues, virtual view constraints, and occluded region completion. Our core contributions are threefold: a Hybrid-Loss Depth Estimation module that ensures multi-view consistency by leveraging dense matching priors and integrating reprojection, point propagation, and smoothness constraints; a Bidirectional Warping Virtual View Synthesis method that enforces substantially stronger constraints by creating high-fidelity virtual views through bidirectional depth-image warping and multi-view fusion; and an Occlusion-Aware Reconstruction component that recovers occluded areas using a depth-difference mask and a learning-based inpainting model. Extensive evaluations on LLFF, Blender, and DTU benchmarks validate that HBSplat sets a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while maintaining real-time inference. Code is available at: https://github.com/eternalland/HBSplat.

Authors:Jiuhong Xiao, Roshan Nayak, Ning Zhang, Daniel Tortei, Giuseppe Loianno
Title: ThermalGen: Style-Disentangled Flow-Based Generative Models for RGB-to-Thermal Image Translation
Abstract:
Paired RGB-thermal data is crucial for visual-thermal sensor fusion and cross-modality tasks, including important applications such as multi-modal image alignment and retrieval. However, the scarcity of synchronized and calibrated RGB-thermal image pairs presents a major obstacle to progress in these areas. To overcome this challenge, RGB-to-Thermal (RGB-T) image translation has emerged as a promising solution, enabling the synthesis of thermal images from abundant RGB datasets for training purposes. In this study, we propose ThermalGen, an adaptive flow-based generative model for RGB-T image translation, incorporating an RGB image conditioning architecture and a style-disentangled mechanism. To support large-scale training, we curated eight public satellite-aerial, aerial, and ground RGB-T paired datasets, and introduced three new large-scale satellite-aerial RGB-T datasets--DJI-day, Bosonplus-day, and Bosonplus-night--captured across diverse times, sensor types, and geographic regions. Extensive evaluations across multiple RGB-T benchmarks demonstrate that ThermalGen achieves comparable or superior translation performance compared to existing GAN-based and diffusion-based methods. To our knowledge, ThermalGen is the first RGB-T image translation model capable of synthesizing thermal images that reflect significant variations in viewpoints, sensor characteristics, and environmental conditions. Project page: http://xjh19971.github.io/ThermalGen

Authors:Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann
Title: Uncertainty-Guided Expert-AI Collaboration for Efficient Soil Horizon Annotation
Abstract:
Uncertainty quantification is essential in human-machine collaboration, as human agents tend to adjust their decisions based on the confidence of the machine counterpart. Reliably calibrated model uncertainties, hence, enable more effective collaboration, targeted expert intervention and more responsible usage of Machine Learning (ML) systems. Conformal prediction has become a well established model-agnostic framework for uncertainty calibration of ML models, offering statistically valid confidence estimates for both regression and classification tasks. In this work, we apply conformal prediction to $\textit{SoilNet}$, a multimodal multitask model for describing soil profiles. We design a simulated human-in-the-loop (HIL) annotation pipeline, where a limited budget for obtaining ground truth annotations from domain experts is available when model uncertainty is high. Our experiments show that conformalizing SoilNet leads to more efficient annotation in regression tasks and comparable performance scores in classification tasks under the same annotation budget when tested against its non-conformal counterpart. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR

Authors:Jiayi Li, Flora D. Salim
Title: DRIFT-Net: A Spectral--Coupled Neural Operator for PDEs Learning
Abstract:
Learning PDE dynamics with neural solvers can significantly improve wall-clock efficiency and accuracy compared with classical numerical solvers. In recent years, foundation models for PDEs have largely adopted multi-scale windowed self-attention, with the scOT backbone in \textsc{Poseidon} serving as a representative example. However, because of their locality, truly globally consistent spectral coupling can only be propagated gradually through deep stacking and window shifting. This weakens global coupling and leads to error accumulation and drift during closed-loop rollouts. To address this, we propose \textbf{DRIFT-Net}. It employs a dual-branch design comprising a spectral branch and an image branch. The spectral branch is responsible for capturing global, large-scale low-frequency information, whereas the image branch focuses on local details and nonstationary structures. Specifically, we first perform controlled, lightweight mixing within the low-frequency range. Then we fuse the spectral and image paths at each layer via bandwise weighting, which avoids the width inflation and training instability caused by naive concatenation. The fused result is transformed back into the spatial domain and added to the image branch, thereby preserving both global structure and high-frequency details across scales. Compared with strong attention-based baselines, DRIFT-Net achieves lower error and higher throughput with fewer parameters under identical training settings and budget. On Navier--Stokes benchmarks, the relative $L_{1}$ error is reduced by 7\%--54\%, the parameter count decreases by about 15\%, and the throughput remains higher than scOT. Ablation studies and theoretical analyses further demonstrate the stability and effectiveness of this design. The code is available at https://github.com/cruiseresearchgroup/DRIFT-Net.

Authors:Alexandre Queant, Ulysse Rançon, Benoit R Cottereau, Timothée Masquelier
Title: DelRec: learning delays in recurrent spiking neural networks
Abstract:
Spiking neural networks (SNNs) are a bio-inspired alternative to conventional real-valued deep learning models, with the potential for substantially higher energy efficiency. Interest in SNNs has recently exploded due to a major breakthrough: surrogate gradient learning (SGL), which allows training SNNs with backpropagation, strongly outperforming other approaches. In SNNs, each synapse is characterized not only by a weight but also by a transmission delay. While theoretical works have long suggested that trainable delays significantly enhance expressivity, practical methods for learning them have only recently emerged. Here, we introduce ''DelRec'', the first SGL-based method to train axonal or synaptic delays in recurrent spiking layers, compatible with any spiking neuron model. DelRec leverages a differentiable interpolation technique to handle non-integer delays with well-defined gradients at training time. We show that trainable recurrent delays outperform feedforward ones, leading to new state-of-the-art (SOTA) on two challenging temporal datasets (Spiking Speech Command, an audio dataset, and Permuted Sequential MNIST, a vision one), and match the SOTA on the now saturated Spiking Heidelberg Digit dataset using only vanilla Leaky-Integrate-and-Fire neurons with stateless (instantaneous) synapses. Our results demonstrate that recurrent delays are critical for temporal processing in SNNs and can be effectively optimized with DelRec, paving the way for efficient deployment on neuromorphic hardware with programmable delays. Our code is available at : https://github.com/alexmaxad/DelRec.

Authors:Hannah Kim, Kushan Mitra, Chen Shen, Dan Zhang, Estevam Hruschka
Title: AIPOM: Agent-aware Interactive Planning for Multi-Agent Systems
Abstract:
Large language models (LLMs) are being increasingly used for planning in orchestrated multi-agent systems. However, existing LLM-based approaches often fall short of human expectations and, critically, lack effective mechanisms for users to inspect, understand, and control their behaviors. These limitations call for enhanced transparency, controllability, and human oversight. To address this, we introduce AIPOM, a system supporting human-in-the-loop planning through conversational and graph-based interfaces. AIPOM enables users to transparently inspect, refine, and collaboratively guide LLM-generated plans, significantly enhancing user control and trust in multi-agent workflows. Our code and demo video are available at https://github.com/megagonlabs/aipom.

Authors:Rui Jia, Yuang Wei, Ruijia Li, Yuang-Hao Jiang, Xinyu Xie, Yaomin Shen, Min Zhang, Bo Jiang
Title: DiaCDM: Cognitive Diagnosis in Teacher-Student Dialogues using the Initiation-Response-Evaluation Framework
Abstract:
While cognitive diagnosis (CD) effectively assesses students' knowledge mastery from structured test data, applying it to real-world teacher-student dialogues presents two fundamental challenges. Traditional CD models lack a suitable framework for handling dynamic, unstructured dialogues, and it's difficult to accurately extract diagnostic semantics from lengthy dialogues. To overcome these hurdles, we propose DiaCDM, an innovative model. We've adapted the initiation-response-evaluation (IRE) framework from educational theory to design a diagnostic framework tailored for dialogue. We also developed a unique graph-based encoding method that integrates teacher questions with relevant knowledge components to capture key information more precisely. To our knowledge, this is the first exploration of cognitive diagnosis in a dialogue setting. Experiments on three real-world dialogue datasets confirm that DiaCDM not only significantly improves diagnostic accuracy but also enhances the results' interpretability, providing teachers with a powerful tool for assessing students' cognitive states. The code is available at https://github.com/Mind-Lab-ECNU/DiaCDM/tree/main.

Authors:Zeyu Cai, Ziyang Li, Xiaoben Li, Boqian Li, Zeyu Wang, Zhenyu Zhang, Yuliang Xiu
Title: UP2You: Fast Reconstruction of Yourself from Unconstrained Photo Collections
Abstract:
We present UP2You, the first tuning-free solution for reconstructing high-fidelity 3D clothed portraits from extremely unconstrained in-the-wild 2D photos. Unlike previous approaches that require "clean" inputs (e.g., full-body images with minimal occlusions, or well-calibrated cross-view captures), UP2You directly processes raw, unstructured photographs, which may vary significantly in pose, viewpoint, cropping, and occlusion. Instead of compressing data into tokens for slow online text-to-3D optimization, we introduce a data rectifier paradigm that efficiently converts unconstrained inputs into clean, orthogonal multi-view images in a single forward pass within seconds, simplifying the 3D reconstruction. Central to UP2You is a pose-correlated feature aggregation module (PCFA), that selectively fuses information from multiple reference images w.r.t. target poses, enabling better identity preservation and nearly constant memory footprint, with more observations. We also introduce a perceiver-based multi-reference shape predictor, removing the need for pre-captured body templates. Extensive experiments on 4D-Dress, PuzzleIOI, and in-the-wild captures demonstrate that UP2You consistently surpasses previous methods in both geometric accuracy (Chamfer-15%, P2S-18% on PuzzleIOI) and texture fidelity (PSNR-21%, LPIPS-46% on 4D-Dress). UP2You is efficient (1.5 minutes per person), and versatile (supports arbitrary pose control, and training-free multi-garment 3D virtual try-on), making it practical for real-world scenarios where humans are casually captured. Both models and code will be released to facilitate future research on this underexplored task. Project Page: https://zcai0612.github.io/UP2You

Authors:Boxuan Zhang, Runqing Wang, Wei Xiao, Weipu Zhang, Jian Sun, Gao Huang, Jie Chen, Gang Wang
Title: DyMoDreamer: World Modeling with Dynamic Modulation
Abstract:
A critical bottleneck in deep reinforcement learning (DRL) is sample inefficiency, as training high-performance agents often demands extensive environmental interactions. Model-based reinforcement learning (MBRL) mitigates this by building world models that simulate environmental dynamics and generate synthetic experience, improving sample efficiency. However, conventional world models process observations holistically, failing to decouple dynamic objects and temporal features from static backgrounds. This approach is computationally inefficient, especially for visual tasks where dynamic objects significantly influence rewards and decision-making performance. To address this, we introduce DyMoDreamer, a novel MBRL algorithm that incorporates a dynamic modulation mechanism to improve the extraction of dynamic features and enrich the temporal information. DyMoDreamer employs differential observations derived from a novel inter-frame differencing mask, explicitly encoding object-level motion cues and temporal dynamics. Dynamic modulation is modeled as stochastic categorical distributions and integrated into a recurrent state-space model (RSSM), enhancing the model's focus on reward-relevant dynamics. Experiments demonstrate that DyMoDreamer sets a new state-of-the-art on the Atari $100$k benchmark with a $156.6$\% mean human-normalized score, establishes a new record of $832$ on the DeepMind Visual Control Suite, and gains a $9.5$\% performance improvement after $1$M steps on the Crafter benchmark. Our code is released at https://github.com/Ultraman-Tiga1/DyMoDreamer.

Authors:Hongyang Zhang, Yinhao Liu, Zhenyu Kuang
Title: SkyLink: Unifying Street-Satellite Geo-Localization via UAV-Mediated 3D Scene Alignment
Abstract:
Cross-view geo-localization aims at establishing location correspondences between different viewpoints. Existing approaches typically learn cross-view correlations through direct feature similarity matching, often overlooking semantic degradation caused by extreme viewpoint disparities. To address this unique problem, we focus on robust feature retrieval under viewpoint variation and propose the novel SkyLink method. We firstly utilize the Google Retrieval Enhancement Module to perform data enhancement on street images, which mitigates the occlusion of the key target due to restricted street viewpoints. The Patch-Aware Feature Aggregation module is further adopted to emphasize multiple local feature aggregations to ensure the consistent feature extraction across viewpoints. Meanwhile, we integrate the 3D scene information constructed from multi-scale UAV images as a bridge between street and satellite viewpoints, and perform feature alignment through self-supervised and cross-view contrastive learning. Experimental results demonstrate robustness and generalization across diverse urban scenarios, which achieve 25.75$\%$ Recall@1 accuracy on University-1652 in the UAVM2025 Challenge. Code will be released at https://github.com/HRT00/CVGL-3D.

Authors:Yizhuo Ding, Mingkang Chen, Zhibang Feng, Tong Xiao, Wanying Qu, Wenqi Shao, Yanwei Fu
Title: VTPerception-R1: Enhancing Multimodal Reasoning via Explicit Visual and Textual Perceptual Grounding
Abstract:
Multimodal large language models (MLLMs) often struggle to ground reasoning in perceptual evidence. We present a systematic study of perception strategies-explicit, implicit, visual, and textual-across four multimodal benchmarks and two MLLMs. Our findings show that explicit perception, especially when paired with textual cues, consistently yields the best improvements, particularly for smaller models. Based on this insight, we propose VTPerception-R1, a unified two-stage framework that decouples perception from reasoning. Stage 1 introduces perception-augmented fine-tuning, and Stage 2 applies perception-aware reinforcement learning with novel visual, textual, and consistency rewards. Experiments demonstrate that VTPerception-R1 significantly improves reasoning accuracy and robustness across diverse tasks, offering a scalable and auditable solution for perception-grounded multimodal reasoning. Our code is available at: https://github.com/yizhuoDi/VTPerceprion-R1.

Authors:Jiaqi Chen, Xinhao Ji, Yuanyuan Gao, Hao Li, Yuning Gong, Yifei Liu, Dan Xu, Zhihang Zhong, Dingwen Zhang, Xiao Sun
Title: ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Abstract:
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at: https://github.com/chenttt2001/ExGS

Authors:Longxiang He, Deheng Ye, Junbo Tan, Xueqian Wang, Li Shen
Title: Robust Policy Expansion for Offline-to-Online RL under Diverse Data Corruption
Abstract:
Pretraining a policy on offline data followed by fine-tuning through online interactions, known as Offline-to-Online Reinforcement Learning (O2O RL), has emerged as a promising paradigm for real-world RL deployment. However, both offline datasets and online interactions in practical environments are often noisy or even maliciously corrupted, severely degrading the performance of O2O RL. Existing works primarily focus on mitigating the conservatism of offline policies via online exploration, while the robustness of O2O RL under data corruption, including states, actions, rewards, and dynamics, is still unexplored. In this work, we observe that data corruption induces heavy-tailed behavior in the policy, thereby substantially degrading the efficiency of online exploration. To address this issue, we incorporate Inverse Probability Weighted (IPW) into the online exploration policy to alleviate heavy-tailedness, and propose a novel, simple yet effective method termed $\textbf{RPEX}$: $\textbf{R}$obust $\textbf{P}$olicy $\textbf{EX}$pansion. Extensive experimental results on D4RL datasets demonstrate that RPEX achieves SOTA O2O performance across a wide range of data corruption scenarios. Code is available at $\href{https://github.com/felix-thu/RPEX}{https://github.com/felix-thu/RPEX}$.

Authors:Yixuan Wang, Huang He, Siqi Bao, Hua Wu, Haifeng Wang, Qingfu Zhu, Wanxiang Che
Title: ProxyAttn: Guided Sparse Attention via Representative Heads
Abstract:
The quadratic complexity of attention mechanisms limits the efficiency of Large Language Models (LLMs) on long-text tasks. Recently, methods that dynamically estimate block importance have enabled efficient block sparse attention, leading to significant acceleration in long-text pre-filling of LLMs. However, their coarse-grained estimation inevitably leads to performance degradation at high sparsity rates. In this work, we propose ProxyAttn, a training-free sparse attention algorithm that achieves more precise block estimation by compressing the dimension of attention heads. Based on our observation of the similarity among multiple attention heads, we use the scores of pooled representative heads to approximate the scores for all heads. To account for the varying sparsity among heads, we also propose a block-aware dynamic budget estimation method. By combining the scores from representative proxy heads with multi-head dynamic budgets, we achieve a more fine-grained block importance evaluation at low computational cost. Experiments on a variety of mainstream models and extensive benchmarks confirm the underlying similarity among attention heads. Leveraging a fine-grained estimation, the proposed method achieves substantial gains in performance and efficiency compared to existing methods. More precisely, ProxyAttn can achieve up to 10.3x attention acceleration and 2.4x prefilling acceleration without significant performance loss. Our code is available at https://github.com/wyxstriker/ProxyAttn.

Authors:Yang Chen, Minghao Liu, Yufan Shen, Yunwen Li, Tianyuan Huang, Xinyu Fang, Tianyu Zheng, Wenxuan Huang, Cheng Yang, Daocheng Fu, Jianbiao Mei, Rong Wu, Licheng Wen, Xuemeng Yang, Song Mao, Qunshu Lin, Zhi Yu, Yongliang Shen, Yu Qiao, Botian Shi
Title: IWR-Bench: Can LVLMs reconstruct interactive webpage from a user interaction video?
Abstract:
The webpage-to-code task requires models to understand visual representations of webpages and generate corresponding code. However, existing benchmarks primarily focus on static screenshot-to-code tasks, thereby overlooking the dynamic interactions fundamental to real-world web applications. To address this limitation, this paper introduces IWR-Bench, a novel benchmark for evaluating the capabilities of Large Vision-Language Models (LVLMs) in interactive webpage reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks from 100 real-world websites, with 1,001 actions and featuring diverse interaction complexities (e.g., web games), visual styles, and domains. Aligning with standard web development practices, each task includes not only user interaction videos but also all crawled static assets (e.g., images, videos). This benchmark evaluates models on two fundamental challenges: comprehensive multi-modal reasoning to infer interaction logic from video and assets, and advanced code generation to translate this logic into functional code. An agent-as-a-judge framework with a comprehensive metric system automatically assesses the functional correctness and visual fidelity of generated webpages. Extensive experiments on 28 LVLMs reveal a significant challenge: the best model achieves an overall score of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind visual fidelity (64.25% VFS). These results highlight critical limitations in current models' ability to reason about temporal dynamics and synthesize event-driven logic, establishing IWR-Bench as a challenging frontier for vision-language research. The benchmark and evaluation code will be made publicly available. Code is available at https://github.com/L-O-I/IWR-Bench.

Authors:Suli Wang, Yang-yang Li, Siqi Cai, Haizhou Li
Title: A Robust Multi-Scale Framework with Test-Time Adaptation for sEEG-Based Speech Decoding
Abstract:
Decoding speech from stereo-electroencephalography (sEEG) signals has emerged as a promising direction for brain-computer interfaces (BCIs). Its clinical applicability, however, is limited by the inherent non-stationarity of neural signals, which causes domain shifts between training and testing, undermining decoding reliability. To address this challenge, a two-stage framework is proposed for enhanced robustness. First, a multi-scale decomposable mixing (MDM) module is introduced to model the hierarchical temporal dynamics of speech production, learning stable multi-timescale representations from sEEG signals. Second, a source-free online test-time adaptation (TTA) method performs entropy minimization to adapt the model to distribution shifts during inference. Evaluations on the public DU-IN spoken word decoding benchmark show that the approach outperforms state-of-the-art models, particularly in challenging cases. This study demonstrates that combining invariant feature learning with online adaptation is a principled strategy for developing reliable BCI systems. Our code is available at https://github.com/lyyi599/MDM-TENT.

Authors:Daniel Pahr, Sara Di Bartolomeo
Title: Investigating the Task Load of Investigating the Task Load in Visualization Studies
Abstract:
The NASA task load index (short: NASA-TLX) is a common metric to evaluate the workload of a user in a visualization study. Yet, it is rarely performed as initially intended, as the sources-of-workload evaluation is often omitted for various reasons. We conduct an online survey to investigate the task load of administering different versions of the NASA-TLX in a meta-study using the ReVISit framework. Our results show that it is not the slight increase in experiment time, but rather participants' frustration with the procedure, that contributes to the slight increase in task load when using the full version of the TLX compared to using a shortened version. However, we also show that the full version can shine a different and more faceted light on workload by adding a personal dimension to the data. We propose that a compact version of the sources-of-workload questionnaire can mitigate both time loss and frustration for study participants, while still providing the same data as the original procedure. The online study can be found and interactively explored on https://dpahr.github.io/tlxtlx/, and the source for the study, as well as the code for our analysis, can be found on https://github.com/dpahr/tlxtlx/.

Authors:Gio Paik, Yongbeom Kim, Soungmin Lee, Sangmin Ahn, Chanwoo Kim
Title: HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
Abstract:
Despite advances in multilingual automatic speech recognition (ASR), code-switching (CS), the mixing of languages within an utterance common in daily speech, remains a severely underexplored challenge. In this paper, we introduce HiKE: the Hierarchical Korean-English code-switching benchmark, the first globally accessible evaluation framework for Korean-English CS, aiming to provide a means for the precise evaluation of multilingual ASR models and to foster research in the field. The proposed framework not only consists of high-quality, natural CS data across various topics, but also provides meticulous loanword labels and a hierarchical CS-level labeling scheme (word, phrase, and sentence) that together enable a systematic evaluation of a model's ability to handle each distinct level of code-switching. Through evaluations of diverse multilingual ASR models and fine-tuning experiments, this paper demonstrates that although most multilingual ASR models initially exhibit inadequate CS-ASR performance, this capability can be enabled through fine-tuning with synthetic CS data. HiKE is available at https://github.com/ThetaOne-AI/HiKE

Authors:Josip Tomo Licardo, Nikola Tankovic, Darko Etinger
Title: BPMN Assistant: An LLM-Based Approach to Business Process Modeling
Abstract:
This paper presents BPMN Assistant, a tool that leverages Large Language Models (LLMs) for natural language-based creation and editing of BPMN diagrams. A specialized JSON-based representation is introduced as a structured alternative to the direct handling of XML to enhance the accuracy of process modifications. Process generation quality is evaluated using Graph Edit Distance (GED) and Relative Graph Edit Distance (RGED), while editing performance is evaluated with a binary success metric. Results show that JSON and XML achieve similar similarity scores in generation, but JSON offers greater reliability, faster processing, and significantly higher editing success rates. We discuss key trade-offs, limitations, and future improvements. The implementation is available at https://github.com/jtlicardo/bpmn-assistant.

Authors:Haozhuo Zhang, Michele Caprio, Jing Shao, Qiang Zhang, Jian Tang, Shanghang Zhang, Wei Pan
Title: PoseDiff: A Unified Diffusion Model Bridging Robot Pose Estimation and Video-to-Action Control
Abstract:
We present PoseDiff, a conditional diffusion model that unifies robot state estimation and control within a single framework. At its core, PoseDiff maps raw visual observations into structured robot states-such as 3D keypoints or joint angles-from a single RGB image, eliminating the need for multi-stage pipelines or auxiliary modalities. Building upon this foundation, PoseDiff extends naturally to video-to-action inverse dynamics: by conditioning on sparse video keyframes generated by world models, it produces smooth and continuous long-horizon action sequences through an overlap-averaging strategy. This unified design enables scalable and efficient integration of perception and control. On the DREAM dataset, PoseDiff achieves state-of-the-art accuracy and real-time performance for pose estimation. On Libero-Object manipulation tasks, it substantially improves success rates over existing inverse dynamics modules, even under strict offline settings. Together, these results show that PoseDiff provides a scalable, accurate, and efficient bridge between perception, planning, and control in embodied AI. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/PoseDiff-project-page/.

Authors:Zidu Wang, Meng Xu, Miao Xu, Hengyuan Ma, Jiankuo Zhao, Xutao Li, Xiangyu Zhu, Zhen Lei
Title: BFSM: 3D Bidirectional Face-Skull Morphable Model
Abstract:
Building a joint face-skull morphable model holds great potential for applications such as remote diagnostics, surgical planning, medical education, and physically based facial simulation. However, realizing this vision is constrained by the scarcity of paired face-skull data, insufficient registration accuracy, and limited exploration of reconstruction and clinical applications. Moreover, individuals with craniofacial deformities are often overlooked, resulting in underrepresentation and limited inclusivity. To address these challenges, we first construct a dataset comprising over 200 samples, including both normal cases and rare craniofacial conditions. Each case contains a CT-based skull, a CT-based face, and a high-fidelity textured face scan. Secondly, we propose a novel dense ray matching registration method that ensures topological consistency across face, skull, and their tissue correspondences. Based on this, we introduce the 3D Bidirectional Face-Skull Morphable Model (BFSM), which enables shape inference between the face and skull through a shared coefficient space, while also modeling tissue thickness variation to support one-to-many facial reconstructions from the same skull, reflecting individual changes such as fat over time. Finally, we demonstrate the potential of BFSM in medical applications, including 3D face-skull reconstruction from a single image and surgical planning prediction. Extensive experiments confirm the robustness and accuracy of our method. BFSM is available at https://github.com/wang-zidu/BFSM

Authors:Peter Hönig, Stefan Thalhammer, Jean-Baptiste Weibel, Matthias Hirschmanner, Markus Vincze
Title: SCOPE: Semantic Conditioning for Sim2Real Category-Level Object Pose Estimation in Robotics
Abstract:
Object manipulation requires accurate object pose estimation. In open environments, robots encounter unknown objects, which requires semantic understanding in order to generalize both to known categories and beyond. To resolve this challenge, we present SCOPE, a diffusion-based category-level object pose estimation model that eliminates the need for discrete category labels by leveraging DINOv2 features as continuous semantic priors. By combining these DINOv2 features with photorealistic training data and a noise model for point normals, we reduce the Sim2Real gap in category-level object pose estimation. Furthermore, injecting the continuous semantic priors via cross-attention enables SCOPE to learn canonicalized object coordinate systems across object instances beyond the distribution of known categories. SCOPE outperforms the current state of the art in synthetically trained category-level object pose estimation, achieving a relative improvement of 31.9\% on the 5$^\circ$5cm metric. Additional experiments on two instance-level datasets demonstrate generalization beyond known object categories, enabling grasping of unseen objects from unknown categories with a success rate of up to 100\%. Code available: https://github.com/hoenigpeter/scope.

Authors:Zi-Yuan Hu, Shuo Liang, Duo Zheng, Yanyang Li, Yeyao Tao, Shijia Huang, Wei Feng, Jia Qin, Jianguang Yu, Jing Huang, Meng Fang, Yin Li, Liwei Wang
Title: NeMo: Needle in a Montage for Video-Language Understanding
Abstract:
Recent advances in video large language models (VideoLLMs) call for new evaluation protocols and benchmarks for complex temporal reasoning in video-language understanding. Inspired by the needle in a haystack test widely used by LLMs, we introduce a novel task of Needle in a Montage (NeMo), designed to assess VideoLLMs' critical reasoning capabilities, including long-context recall and temporal grounding. To generate video question answering data for our task, we develop a scalable automated data generation pipeline that facilitates high-quality data synthesis. Built upon the proposed pipeline, we present NeMoBench, a video-language benchmark centered on our task. Specifically, our full set of NeMoBench features 31,378 automatically generated question-answer (QA) pairs from 13,486 videos with various durations ranging from seconds to hours. Experiments demonstrate that our pipeline can reliably and automatically generate high-quality evaluation data, enabling NeMoBench to be continuously updated with the latest videos. We evaluate 20 state-of-the-art models on our benchmark, providing extensive results and key insights into their capabilities and limitations. Our project page is available at: https://lavi-lab.github.io/NeMoBench.

Authors:Sophia N. Wilson, Jens Hesselbjerg Christensen, Raghavendra Selvan
Title: Trading Carbon for Physics: On the Resource Efficiency of Machine Learning for Spatio-Temporal Forecasting
Abstract:
Development of modern deep learning methods has been driven primarily by the push for improving model efficacy (accuracy metrics). This sole focus on efficacy has steered development of large-scale models that require massive resources, and results in considerable carbon footprint across the model life-cycle. In this work, we explore how physics inductive biases can offer useful trade-offs between model efficacy and model efficiency (compute, energy, and carbon). We study a variety of models for spatio-temporal forecasting, a task governed by physical laws and well-suited for exploring different levels of physics inductive bias. We show that embedding physics inductive biases into the model design can yield substantial efficiency gains while retaining or even improving efficacy for the tasks under consideration. In addition to using standard physics-informed spatio-temporal models, we demonstrate the usefulness of more recent models like flow matching as a general purpose method for spatio-temporal forecasting. Our experiments show that incorporating physics inductive biases offer a principled way to improve the efficiency and reduce the carbon footprint of machine learning models. We argue that model efficiency, along with model efficacy, should become a core consideration driving machine learning model development and deployment.

Authors:Wenjie Fu, Huandong Wang, Junyao Gao, Guoan Wan, Tao Jiang
Title: Sanitize Your Responses: Mitigating Privacy Leakage in Large Language Models
Abstract:
As Large Language Models (LLMs) achieve remarkable success across a wide range of applications, such as chatbots and code copilots, concerns surrounding the generation of harmful content have come increasingly into focus. Despite significant advances in aligning LLMs with safety and ethical standards, adversarial prompts can still be crafted to elicit undesirable responses. Existing mitigation strategies are predominantly based on post-hoc filtering, which introduces substantial latency or computational overhead, and is incompatible with token-level streaming generation. In this work, we introduce Self-Sanitize, a novel LLM-driven mitigation framework inspired by cognitive psychology, which emulates human self-monitor and self-repair behaviors during conversations. Self-Sanitize comprises a lightweight Self-Monitor module that continuously inspects high-level intentions within the LLM at the token level via representation engineering, and a Self-Repair module that performs in-place correction of harmful content without initiating separate review dialogues. This design allows for real-time streaming monitoring and seamless repair, with negligible impact on latency and resource utilization. Given that privacy-invasive content has often been insufficiently focused in previous studies, we perform extensive experiments on four LLMs across three privacy leakage scenarios. The results demonstrate that Self-Sanitize achieves superior mitigation performance with minimal overhead and without degrading the utility of LLMs, offering a practical and robust solution for safer LLM deployments. Our code is available at the following link: https://github.com/wjfu99/LLM_Self_Sanitize

Authors:Shijie Lian, Changti Wu, Laurence Tianruo Yang, Hang Yuan, Bin Yu, Lei Zhang, Kai Chen
Title: Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Abstract:
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.

Authors:Haosi Mo, Xinyu Ma, Xuebo Liu, Derek F. Wong, Yu Li, Jie Liu, Min Zhang
Title: CDT: A Comprehensive Capability Framework for Large Language Models Across Cognition, Domain, and Task
Abstract:
Recent advances in Large Language Models (LLMs) have significantly enhanced their capabilities, highlighting the need for comprehensive evaluation frameworks that extend beyond task-specific benchmarks. However, existing benchmarks often focus on isolated abilities, lacking a holistic framework for assessing LLM capabilities. To address this gap, we propose the Cognition-Domain-Task (CDT) framework, which comprehensively measures a model's capabilities across three dimensions. We expand the scope of model capability definitions at the cognitive level by incorporating the Cattell-Horn-Carroll cognitive theory, refining the categorization of model capabilities. We apply CDT in two directions: dataset capability evaluation and data selection. Experiments show that our capability metrics correlate well with downstream performance and can support effective dataset analysis and construction. The experiments on data selection also show significant improvements in both general and specific benchmarks, achieving scores of 44.3 and 45.4, with an increase of 1.6 and 2.2 points over the baselines, respectively. These results validate the effectiveness and practicality of CDT. Source code and models are available at https://github.com/Alessa-mo/CDT.

Authors:Kai Liu, Shaoqiu Zhang, Linghe Kong, Yulun Zhang
Title: CLQ: Cross-Layer Guided Orthogonal-based Quantization for Diffusion Transformers
Abstract:
Visual generation quality has been greatly promoted with the rapid advances in diffusion transformers (DiTs), which is attributed to the scaling of model size and complexity. However, these attributions also hinder the practical deployment of DiTs on edge devices, limiting their development and application. Serve as an efficient model compression technique, model post-training quantization (PTQ) can reduce the memory consumption and speed up the inference, with inevitable performance degradation. To alleviate the degradation, we propose CLQ, a cross-layer guided orthogonal-based quantization method for DiTs. To be specific, CLQ consists of three key designs. First, we observe that the calibration data used by most of the PTQ methods can not honestly represent the distribution of the activations. Therefore, we propose cross-block calibration (CBC) to obtain accurate calibration data, with which the quantization can be better guided. Second, we propose orthogonal-based smoothing (OBS), which quantifies the outlier score of each channel and leverages block Hadamard matrix to smooth the outliers with negligible overhead. Third, we propose cross-layer parameter searching (CLPS) to search. We evaluate CLQ with both image generation and video generation models and successfully compress the model into W4A4 with negligible degradation in visual quality and metrics. CLQ achieves 3.98x memory saving and 3.95x speedup. Our code is available at \hyperlink{https://github.com/Kai-Liu001/CLQ}{https://github.com/Kai-Liu001/CLQ}.

Authors:Tao Yin, Xiaohong Zhang, Shaochen Fu, Zhibin Zhang, Li Huang, Yiyuan Yang, Kaixiang Yang, Meng Yan
Title: ScatterAD: Temporal-Topological Scattering Mechanism for Time Series Anomaly Detection
Abstract:
One main challenge in time series anomaly detection for industrial IoT lies in the complex spatio-temporal couplings within multivariate data. However, traditional anomaly detection methods focus on modeling spatial or temporal dependencies independently, resulting in suboptimal representation learning and limited sensitivity to anomalous dispersion in high-dimensional spaces. In this work, we conduct an empirical analysis showing that both normal and anomalous samples tend to scatter in high-dimensional space, especially anomalous samples are markedly more dispersed. We formalize this dispersion phenomenon as scattering, quantified by the mean pairwise distance among sample representations, and leverage it as an inductive signal to enhance spatio-temporal anomaly detection. Technically, we propose ScatterAD to model representation scattering across temporal and topological dimensions. ScatterAD incorporates a topological encoder for capturing graph-structured scattering and a temporal encoder for constraining over-scattering through mean squared error minimization between neighboring time steps. We introduce a contrastive fusion mechanism to ensure the complementarity of the learned temporal and topological representations. Additionally, we theoretically show that maximizing the conditional mutual information between temporal and topological views improves cross-view consistency and enhances more discriminative representations. Extensive experiments on multiple public benchmarks show that ScatterAD achieves state-of-the-art performance on multivariate time series anomaly detection. Code is available at this repository: https://github.com/jk-sounds/ScatterAD.

Authors:Khanh Trinh Pham, Thu Huong Nguyen, Jun Jo, Quoc Viet Hung Nguyen, Thanh Tam Nguyen
Title: Multilingual Text-to-SQL: Benchmarking the Limits of Language Models with Collaborative Language Agents
Abstract:
Text-to-SQL enables natural access to databases, yet most benchmarks are English-only, limiting multilingual progress. We introduce MultiSpider 2.0, extending Spider 2.0 to eight languages (English, German, French, Spanish, Portuguese, Japanese, Chinese, Vietnamese). It preserves Spider 2.0's structural difficulty while adding linguistic and dialectal variability, demanding deeper reasoning for complex SQL. On this benchmark, state-of-the-art LLMs (such as DeepSeek-R1 and OpenAI o1) reach only 4\% execution accuracy when relying on intrinsic reasoning, versus 60\% on MultiSpider 1.0. Therefore, we provide a collaboration-driven language agents baseline that iteratively refines queries, improving accuracy to 15\%. These results reveal a substantial multilingual gap and motivate methods that are robust across languages and ready for real-world enterprise deployment. Our benchmark is available at https://github.com/phkhanhtrinh23/Multilingual_Text_to_SQL.

Authors:Song-Ze Yu
Title: From Sound to Setting: AI-Based Equalizer Parameter Prediction for Piano Tone Replication
Abstract:
This project presents an AI-based system for tone replication in music production, focusing on predicting EQ parameter settings directly from audio features. Unlike traditional audio-to-audio methods, our approach outputs interpretable parameter values (e.g., EQ band gains) that musicians can further adjust in their workflow. Using a dataset of piano recordings with systematically varied EQ settings, we evaluate both regression and neural network models. The neural network achieves a mean squared error of 0.0216 on multi-band tasks. The system enables practical, flexible, and automated tone matching for music producers and lays the foundation for extensions to more complex audio effects.

Authors:Runwu Shi, Kai Li, Chang Li, Jiang Wang, Sihan Tan, Kazuhiro Nakadai
Title: Unsupervised Single-Channel Speech Separation with a Diffusion Prior under Speaker-Embedding Guidance
Abstract:
Speech separation is a fundamental task in audio processing, typically addressed with fully supervised systems trained on paired mixtures. While effective, such systems typically rely on synthetic data pipelines, which may not reflect real-world conditions. Instead, we revisit the source-model paradigm, training a diffusion generative model solely on anechoic speech and formulating separation as a diffusion inverse problem. However, unconditional diffusion models lack speaker-level conditioning, they can capture local acoustic structure but produce temporally inconsistent speaker identities in separated sources. To address this limitation, we propose Speaker-Embedding guidance that, during the reverse diffusion process, maintains speaker coherence within each separated track while driving embeddings of different speakers further apart. In addition, we propose a new separation-oriented solver tailored for speech separation, and both strategies effectively enhance performance on the challenging task of unsupervised source-model-based speech separation, as confirmed by extensive experimental results. Audio samples and code are available at https://runwushi.github.io/UnSepDiff_demo.

Authors:Xuenan Xu, Jiahao Mei, Zihao Zheng, Ye Tao, Zeyu Xie, Yaoyun Zhang, Haohe Liu, Yuning Wu, Ming Yan, Wen Wu, Chao Zhang, Mengyue Wu
Title: UniFlow-Audio: Unified Flow Matching for Audio Generation from Omni-Modalities
Abstract:
Audio generation, including speech, music and sound effects, has advanced rapidly in recent years. These tasks can be divided into two categories: time-aligned (TA) tasks, where each input unit corresponds to a specific segment of the output audio (e.g., phonemes aligned with frames in speech synthesis); and non-time-aligned (NTA) tasks, where such alignment is not available. Since modeling paradigms for the two types are typically different, research on different audio generation tasks has traditionally followed separate trajectories. However, audio is not inherently divided into such categories, making a unified model a natural and necessary goal for general audio generation. Previous unified audio generation works have adopted autoregressive architectures, while unified non-autoregressive approaches remain largely unexplored. In this work, we propose UniFlow-Audio, a universal audio generation framework based on flow matching. We propose a dual-fusion mechanism that temporally aligns audio latents with TA features and integrates NTA features via cross-attention in each model block. Task-balanced data sampling is employed to maintain strong performance across both TA and NTA tasks. UniFlow-Audio supports omni-modalities, including text, audio, and video. By leveraging the advantage of multi-task learning and the generative modeling capabilities of flow matching, UniFlow-Audio achieves strong results across 7 tasks using fewer than 8K hours of public training data and under 1B trainable parameters. Even the small variant with only ~200M trainable parameters shows competitive performance, highlighting UniFlow-Audio as a potential non-auto-regressive foundation model for audio generation. Code and models will be available at https://wsntxxn.github.io/uniflow_audio.

Authors:Xin Ding, Jianyu Wei, Yifan Yang, Shiqi Jiang, Qianxi Zhang, Hao Wu, Fucheng Jia, Liang Mi, Yuxuan Yan, Weijun Wang, Yunxin Liu, Zhibo Chen, Ting Cao
Title: AdaNav: Adaptive Reasoning with Uncertainty for Vision-Language Navigation
Abstract:
Vision Language Navigation (VLN) requires agents to follow natural language instructions by grounding them in sequential visual observations over long horizons. Explicit reasoning could enhance temporal consistency and perception action alignment, but reasoning at fixed steps often leads to suboptimal performance and unnecessary computation. To address this, we propose AdaNav, an uncertainty-based adaptive reasoning framework for VLN. At its core is the Uncertainty Adaptive Reasoning Block (UAR), a lightweight plugin that dynamically triggers reasoning. We introduce Action Entropy as a policy prior for UAR and progressively refine it through a Heuristics to RL training method, enabling agents to learn difficulty aware reasoning policies under the strict data limitations of embodied tasks. Results show that with only 6K training samples, AdaNav achieves substantial gains over closed source models trained on million scale data, improving success rate by 20% on R2R val-unseen, 11.7% on RxR-CE, and 11.4% in real world scenes. The code is available at https://github.com/xinding-sys/AdaNav.

Authors:Junyi Gu, Beatriz Cabrero-Daniel, Ali Nouri, Lydia Armini, Christian Berger
Title: PCICF: A Pedestrian Crossing Identification and Classification Framework
Abstract:
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF

Authors:Shihao Qi, Jie Ma, Ziang Yin, Lingling Zhang, Jian Zhang, Jun Liu, Feng Tian, Tongliang Liu
Title: Plan before Solving: Problem-Aware Strategy Routing for Mathematical Reasoning with LLMs
Abstract:
Existing methods usually leverage a fixed strategy, such as natural language reasoning, code-augmented reasoning, tool-integrated reasoning, or ensemble-based reasoning, to guide Large Language Models (LLMs) to perform mathematical reasoning. Our analysis reveals that the single strategy cannot adapt to problem-specific requirements and thus overlooks the trade-off between effectiveness and efficiency. To address these issues, we propose Planning and Routing through Instance-Specific Modeling (PRISM), a novel framework that decouples mathematical reasoning into two stages: strategy planning and targeted execution. Specifically, we first curate a multi-strategy preference dataset, which we call MathStrat, capturing correctness, process quality, and computational efficiency for each problem--strategy pair. Then, we train a lightweight Strategy Adapter based on the dataset to obtain confidence distributions over the mentioned four reasoning strategies. At inference time, an adaptive routing policy dynamically tailors the reasoning approach based on predictor confidence. It directs the model to use single-strategy execution for high-confidence predictions, dual-strategy verification for competitive scenarios, or comprehensive multi-strategy exploration for uncertain cases. Extensive experiments across five mathematical reasoning benchmarks demonstrate that PRISM consistently outperforms individual strategies and ensemble baselines, achieving improvements ranging from 0.9% to 7.6% across different base models. The adaptive routing approach shows particularly strong benefits for mathematical reasoning tasks across diverse model architectures. Our code is released at https://github.com/reml-group/PRISM.

Authors:Hao Chen, Fang Xu, Tamer Saleh, Weifeng Hao, Gui-Song Xia
Title: Mask Clustering-based Annotation Engine for Large-Scale Submeter Land Cover Mapping
Abstract:
Recent advances in remote sensing technology have made submeter resolution imagery increasingly accessible, offering remarkable detail for fine-grained land cover analysis. However, its full potential remains underutilized - particularly for large-scale land cover mapping - due to the lack of sufficient, high-quality annotated datasets. Existing labels are typically derived from pre-existing products or manual annotation, which are often unreliable or prohibitively expensive, particularly given the rich visual detail and massive data volumes of submeter imagery. Inspired by the spatial autocorrelation principle, which suggests that objects of the same class tend to co-occur with similar visual features in local neighborhoods, we propose the Mask Clustering-based Annotation Engine (MCAE), which treats semantically consistent mask groups as the minimal annotating units to enable efficient, simultaneous annotation of multiple instances. It significantly improves annotation efficiency by one to two orders of magnitude, while preserving label quality, semantic diversity, and spatial representativeness. With MCAE, we build a high-quality annotated dataset of about 14 billion labeled pixels, referred to as HiCity-LC, which supports the generation of city-scale land cover maps across five major Chinese cities with classification accuracies above 85%. It is the first publicly available submeter resolution city-level land cover benchmark, highlighting the scalability and practical utility of MCAE for large-scale, submeter resolution mapping. The dataset is available at https://github.com/chenhaocs/MCAE

Authors:Xin Qiu, Yulu Gan, Conor F. Hayes, Qiyao Liang, Elliot Meyerson, Babak Hodjat, Risto Miikkulainen
Title: Evolution Strategies at Scale: LLM Fine-Tuning Beyond Reinforcement Learning
Abstract:
Fine-tuning pre-trained large language models (LLMs) for down-stream tasks is a critical step in the AI deployment pipeline. Reinforcement learning (RL) is arguably the most prominent fine-tuning method, contributing to the birth of many state-of-the-art LLMs. In contrast, evolution strategies (ES), which once showed comparable performance to RL on models with a few million parameters, was neglected due to the pessimistic perception of its scalability to larger models. In this work, we report the first successful attempt to scale up ES for fine-tuning the full parameters of LLMs, showing the surprising fact that ES can search efficiently over billions of parameters and outperform existing RL fine-tuning methods in multiple respects, including sample efficiency, tolerance to long-horizon rewards, robustness to different base LLMs, less tendency to reward hacking, and more stable performance across runs. It therefore serves as a basis to unlock a new direction in LLM fine-tuning beyond what current RL techniques provide. The source codes are provided at: https://github.com/VsonicV/es-fine-tuning-paper.

Authors:Congjia Chen, Yufu Qu
Title: DINOReg: Strong Point Cloud Registration with Vision Foundation Model
Abstract:
Point cloud registration is a fundamental task in 3D computer vision. Most existing methods rely solely on geometric information for feature extraction and matching. Recently, several studies have incorporated color information from RGB-D data into feature extraction. Although these methods achieve remarkable improvements, they have not fully exploited the abundant texture and semantic information in images, and the feature fusion is performed in an image-lossy manner, which limit their performance. In this paper, we propose DINOReg, a registration network that sufficiently utilizes both visual and geometric information to solve the point cloud registration problem. Inspired by advances in vision foundation models, we employ DINOv2 to extract informative visual features from images, and fuse visual and geometric features at the patch level. This design effectively combines the rich texture and global semantic information extracted by DINOv2 with the detailed geometric structure information captured by the geometric backbone. Additionally, a mixed positional embedding is proposed to encode positional information from both image space and point cloud space, which enhances the model's ability to perceive spatial relationships between patches. Extensive experiments on the RGBD-3DMatch and RGBD-3DLoMatch datasets demonstrate that our method achieves significant improvements over state-of-the-art geometry-only and multi-modal registration methods, with a 14.2% increase in patch inlier ratio and a 15.7% increase in registration recall. The code is publicly available at https://github.com/ccjccjccj/DINOReg.

Authors:Jitai Hao, Hao Liu, Xinyan Xiao, Qiang Huang, Jun Yu
Title: Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models
Abstract:
Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

Authors:Hao Yang, Weijie Qiu, Ru Zhang, Zhou Fang, Ruichao Mao, Xiaoyu Lin, Maji Huang, Zhaosong Huang, Teng Guo, Shuoyang Liu, Hai Rao
Title: UI-UG: A Unified MLLM for UI Understanding and Generation
Abstract:
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG

Authors:Jie Ma, Shihao Qi, Rui Xing, Ziang Yin, Bifan Wei, Jun Liu, Tongliang Liu
Title: From Static to Dynamic: Adaptive Monte Carlo Search for Mathematical Process Supervision
Abstract:
The quality of process data plays a key role in training a Process Reward Model (PRM), which can enhance the complex mathematical reasoning capability of large language models. Existing methods estimate the quality of reasoning steps based on a fixed-budget sampling strategy and navigate a vast search space to perform path expansion during the automated data generation process, resulting in their inefficiency and inflexibility. To address these issues, we propose Adaptive Monte Carlo Search (AMCS), a framework that transforms data generation from fixed, static to adaptive, dynamic search at the level of node value estimation and path expansion. On one hand, AMCS adaptively refines estimation by allocating more samples to uncertain reasoning steps while using fewer samples for those that are easier to estimate. On the other hand, it enhances the path expansion through a Monte Carlo algorithm with a temporally adaptive policy that begins with broad exploration and gradually shifts toward exploiting the most promising directions. With AMCS, we construct a large-scale dataset MathSearch-200K of about 200K process supervision examples for training PRMs. To verify the effectiveness of our method, we conduct extensive experiments on four mathematical reasoning benchmarks. Experimental results show that Qwen2.5-Math-7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B, outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. Moreover, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-distribution problems, demonstrating strong generalization capability. Our code is available at https://github.com/reml-group/AMCS.

Authors:Sarmistha Das, Priya Mathur, Ishani Sharma, Sriparna Saha, Kitsuchart Pasupa, Alka Maurya
Title: Fin-Ally: Pioneering the Development of an Advanced, Commonsense-Embedded Conversational AI for Money Matters
Abstract:
The exponential technological breakthrough of the FinTech industry has significantly enhanced user engagement through sophisticated advisory chatbots. However, large-scale fine-tuning of LLMs can occasionally yield unprofessional or flippant remarks, such as ``With that money, you're going to change the world,'' which, though factually correct, can be contextually inappropriate and erode user trust. The scarcity of domain-specific datasets has led previous studies to focus on isolated components, such as reasoning-aware frameworks or the enhancement of human-like response generation. To address this research gap, we present Fin-Solution 2.O, an advanced solution that 1) introduces the multi-turn financial conversational dataset, Fin-Vault, and 2) incorporates a unified model, Fin-Ally, which integrates commonsense reasoning, politeness, and human-like conversational dynamics. Fin-Ally is powered by COMET-BART-embedded commonsense context and optimized with a Direct Preference Optimization (DPO) mechanism to generate human-aligned responses. The novel Fin-Vault dataset, consisting of 1,417 annotated multi-turn dialogues, enables Fin-Ally to extend beyond basic account management to provide personalized budgeting, real-time expense tracking, and automated financial planning. Our comprehensive results demonstrate that incorporating commonsense context enables language models to generate more refined, textually precise, and professionally grounded financial guidance, positioning this approach as a next-generation AI solution for the FinTech sector. Dataset and codes are available at: https://github.com/sarmistha-D/Fin-Ally

Authors:Mengyu Bu, Shaolei Zhang, Zhongjun He, Hua Wu, Yang Feng
Title: AlignX: Advancing Multilingual Large Language Models with Multilingual Representation Alignment
Abstract:
Multilingual large language models (LLMs) possess impressive multilingual understanding and generation capabilities. However, their performance and cross-lingual alignment often lag for non-dominant languages. A common solution is to fine-tune LLMs on large-scale and more balanced multilingual corpus, but such approaches often lead to imprecise alignment and suboptimal knowledge transfer, struggling with limited improvements across languages. In this paper, we propose AlignX to bridge the multilingual performance gap, which is a two-stage representation-level framework for enhancing multilingual performance of pre-trained LLMs. In the first stage, we align multilingual representations with multilingual semantic alignment and language feature integration. In the second stage, we stimulate the multilingual capability of LLMs via multilingual instruction fine-tuning. Experimental results on several pre-trained LLMs demonstrate that our approach enhances LLMs' multilingual general and cross-lingual generation capability. Further analysis indicates that AlignX brings the multilingual representations closer and improves the cross-lingual alignment.

Authors:Wankun Chen, Feng Gao, Yanhai Gan, Jingchao Cao, Junyu Dong, Qian Du
Title: Wavelet-Assisted Mamba for Satellite-Derived Sea Surface Temperature Super-Resolution
Abstract:
Sea surface temperature (SST) is an essential indicator of global climate change and one of the most intuitive factors reflecting ocean conditions. Obtaining high-resolution SST data remains challenging due to limitations in physical imaging, and super-resolution via deep neural networks is a promising solution. Recently, Mamba-based approaches leveraging State Space Models (SSM) have demonstrated significant potential for long-range dependency modeling with linear complexity. However, their application to SST data super-resolution remains largely unexplored. To this end, we propose the Wavelet-assisted Mamba Super-Resolution (WMSR) framework for satellite-derived SST data. The WMSR includes two key components: the Low-Frequency State Space Module (LFSSM) and High-Frequency Enhancement Module (HFEM). The LFSSM uses 2D-SSM to capture global information of the input data, and the robust global modeling capabilities of SSM are exploited to preserve the critical temperature information in the low-frequency component. The HFEM employs the pixel difference convolution to match and correct the high-frequency feature, achieving accurate and clear textures. Through comprehensive experiments on three SST datasets, our WMSR demonstrated superior performance over state-of-the-art methods. Our codes and datasets will be made publicly available at https://github.com/oucailab/WMSR.

Authors:Kun Wang, Guibin Zhang, ManKit Ye, Xinyu Deng, Dongxia Wang, Xiaobin Hu, Jinyang Guo, Yang Liu, Yufei Guo
Title: MAS$^2$: Self-Generative, Self-Configuring, Self-Rectifying Multi-Agent Systems
Abstract:
The past two years have witnessed the meteoric rise of Large Language Model (LLM)-powered multi-agent systems (MAS), which harness collective intelligence and exhibit a remarkable trajectory toward self-evolution. This paradigm has rapidly progressed from manually engineered systems that require bespoke configuration of prompts, tools, roles, and communication protocols toward frameworks capable of automated orchestration. Yet, dominant automatic multi-agent systems, whether generated by external modules or a single LLM agent, largely adhere to a rigid ``\textit{generate-once-and-deploy}'' paradigm, rendering the resulting systems brittle and ill-prepared for the dynamism and uncertainty of real-world environments. To transcend this limitation, we introduce MAS$^2$, a paradigm predicated on the principle of recursive self-generation: a multi-agent system that autonomously architects bespoke multi-agent systems for diverse problems. Technically, we devise a ``\textit{generator-implementer-rectifier}'' tri-agent team capable of dynamically composing and adaptively rectifying a target agent system in response to real-time task demands. Collaborative Tree Optimization is proposed to train and specialize these meta-agents. Extensive evaluation across seven benchmarks reveals that MAS$^2$ achieves performance gains of up to $19.6\%$ over state-of-the-art MAS in complex scenarios such as deep research and code generation. Moreover, MAS$^2$ exhibits superior cross-backbone generalization, effectively leveraging previously unseen LLMs to yield improvements of up to $15.1\%$. Crucially, these gains are attained without incurring excessive token costs, as MAS$^2$ consistently resides on the Pareto frontier of cost-performance trade-offs. The source codes are available at https://github.com/yeyeyeah2/MAS2.

Authors:Yuntao Shou, Tao Meng, Wei Ai, Keqin Li
Title: Multimodal Large Language Models Meet Multimodal Emotion Recognition and Reasoning: A Survey
Abstract:
In recent years, large language models (LLMs) have driven major advances in language understanding, marking a significant step toward artificial general intelligence (AGI). With increasing demands for higher-level semantics and cross-modal fusion, multimodal large language models (MLLMs) have emerged, integrating diverse information sources (e.g., text, vision, and audio) to enhance modeling and reasoning in complex scenarios. In AI for Science, multimodal emotion recognition and reasoning has become a rapidly growing frontier. While LLMs and MLLMs have achieved notable progress in this area, the field still lacks a systematic review that consolidates recent developments. To address this gap, this paper provides a comprehensive survey of LLMs and MLLMs for emotion recognition and reasoning, covering model architectures, datasets, and performance benchmarks. We further highlight key challenges and outline future research directions, aiming to offer researchers both an authoritative reference and practical insights for advancing this domain. To the best of our knowledge, this paper is the first attempt to comprehensively survey the intersection of MLLMs with multimodal emotion recognition and reasoning. The summary of existing methods mentioned is in our Github: \href{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}.

Authors:Dipan Maity
Title: AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Abstract:
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON

Authors:Korbinian Moller, Roland Stroop, Mattia Piccinini, Alexander Langmann, Johannes Betz
Title: Learning to Sample: Reinforcement Learning-Guided Sampling for Autonomous Vehicle Motion Planning
Abstract:
Sampling-based motion planning is a well-established approach in autonomous driving, valued for its modularity and analytical tractability. In complex urban scenarios, however, uniform or heuristic sampling often produces many infeasible or irrelevant trajectories. We address this limitation with a hybrid framework that learns where to sample while keeping trajectory generation and evaluation fully analytical and verifiable. A reinforcement learning (RL) agent guides the sampling process toward regions of the action space likely to yield feasible trajectories, while evaluation and final selection remains governed by deterministic feasibility checks and cost functions. We couple the RL sampler with a world model (WM) based on a decodable deep set encoder, enabling both variable numbers of traffic participants and reconstructable latent representations. The approach is evaluated in the CommonRoad simulation environment, showing up to 99% fewer required samples and a runtime reduction of up to 84% while maintaining planning quality in terms of success and collision-free rates. These improvements lead to faster, more reliable decision-making for autonomous vehicles in urban environments, achieving safer and more responsive navigation under real-world constraints. Code and trained artifacts are publicly available at: https://github.com/TUM-AVS/Learning-to-Sample

Authors:Changde Du, Yizhuo Lu, Zhongyu Huang, Yi Sun, Zisen Zhou, Shaozheng Qin, Huiguang He
Title: Bridging the behavior-neural gap: A multimodal AI reveals the brain's geometry of emotion more accurately than human self-reports
Abstract:
The ability to represent emotion plays a significant role in human cognition and social interaction, yet the high-dimensional geometry of this affective space and its neural underpinnings remain debated. A key challenge, the `behavior-neural gap,' is the limited ability of human self-reports to predict brain activity. Here we test the hypothesis that this gap arises from the constraints of traditional rating scales and that large-scale similarity judgments can more faithfully capture the brain's affective geometry. Using AI models as `cognitive agents,' we collected millions of triplet odd-one-out judgments from a multimodal large language model (MLLM) and a language-only model (LLM) in response to 2,180 emotionally evocative videos. We found that the emergent 30-dimensional embeddings from these models are highly interpretable and organize emotion primarily along categorical lines, yet in a blended fashion that incorporates dimensional properties. Most remarkably, the MLLM's representation predicted neural activity in human emotion-processing networks with the highest accuracy, outperforming not only the LLM but also, counterintuitively, representations derived directly from human behavioral ratings. This result supports our primary hypothesis and suggests that sensory grounding--learning from rich visual data--is critical for developing a truly neurally-aligned conceptual framework for emotion. Our findings provide compelling evidence that MLLMs can autonomously develop rich, neurally-aligned affective representations, offering a powerful paradigm to bridge the gap between subjective experience and its neural substrates. Project page: https://reedonepeck.github.io/ai-emotion.github.io/.

Authors:Zherui Li, Zheng Nie, Zhenhong Zhou, Yufei Guo, Yue Liu, Yitong Zhang, Yu Cheng, Qingsong Wen, Kun Wang, Jiaheng Zhang
Title: DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models
Abstract:
The rapid advancement of Diffusion Large Language Models (dLLMs) introduces unprecedented vulnerabilities that are fundamentally distinct from Autoregressive LLMs, stemming from their iterative and parallel generation mechanisms. In this paper, we conduct an in-depth analysis of dLLM vulnerabilities to jailbreak attacks across two distinct dimensions: intra-step and inter-step dynamics. Experimental results reveal a harmful bias inherent in the standard greedy remasking strategy and identify a critical phenomenon we term Denoising-path Dependence, where the safety of early-stage tokens decisively influences the final output. These findings also indicate that while current decoding strategies constitute a significant vulnerability, dLLMs possess a substantial intrinsic safety potential. To unlock this potential, we propose DiffuGuard, a training-free defense framework that addresses vulnerabilities through a dual-stage approach: Stochastic Annealing Remasking dynamically introduces controlled randomness to mitigate greedy selection bias, while Block-level Audit and Repair exploits internal model representations for autonomous risk detection and guided correction. Comprehensive experiments on four dLLMs demonstrate DiffuGuard's exceptional effectiveness, reducing Attack Success Rate against six diverse jailbreak methods from 47.9% to 14.7% while preserving model utility and efficiency. Our code is available at: https://github.com/niez233/DiffuGuard.

Authors:Sai Raj Kishore Perla, Aditya Vora, Sauradip Nag, Ali Mahdavi-Amiri, Hao Zhang
Title: ASIA: Adaptive 3D Segmentation using Few Image Annotations
Abstract:
We introduce ASIA (Adaptive 3D Segmentation using few Image Annotations), a novel framework that enables segmentation of possibly non-semantic and non-text-describable "parts" in 3D. Our segmentation is controllable through a few user-annotated in-the-wild images, which are easier to collect than multi-view images, less demanding to annotate than 3D models, and more precise than potentially ambiguous text descriptions. Our method leverages the rich priors of text-to-image diffusion models, such as Stable Diffusion (SD), to transfer segmentations from image space to 3D, even when the annotated and target objects differ significantly in geometry or structure. During training, we optimize a text token for each segment and fine-tune our model with a novel cross-view part correspondence loss. At inference, we segment multi-view renderings of the 3D mesh, fuse the labels in UV-space via voting, refine them with our novel Noise Optimization technique, and finally map the UV-labels back onto the mesh. ASIA provides a practical and generalizable solution for both semantic and non-semantic 3D segmentation tasks, outperforming existing methods by a noticeable margin in both quantitative and qualitative evaluations.

Authors:Jeng-Yue Liu, Ting-Chao Hsu, Yen-Tung Yeh, Li Su, Yi-Hsuan Yang
Title: SynthCloner: Synthesizer Preset Conversion via Factorized Codec with ADSR Envelope Control
Abstract:
Electronic synthesizer sounds are controlled by presets, parameters settings that yield complex timbral characteristics and ADSR envelopes, making preset conversion particularly challenging. Recent approaches to timbre transfer often rely on spectral objectives or implicit style matching, offering limited control over envelope shaping. Moreover, public synthesizer datasets rarely provide diverse coverage of timbres and ADSR envelopes. To address these gaps, we present SynthCloner, a factorized codec model that disentangles audio into three attributes: ADSR envelope, timbre, and content. This separation enables expressive synthesizer preset conversion with independent control over these three attributes. Additionally, we introduce SynthCAT, a new synthesizer dataset with a task-specific rendering pipeline covering 250 timbres, 120 ADSR envelopes, and 100 MIDI sequences. Experiments show that SynthCloner outperforms baselines on both objective and subjective metrics, while enabling independent attribute control. The code, model checkpoint, and audio examples are available at https://buffett0323.github.io/synthcloner/.

Authors:An Dao, Vu Tran, Le-Minh Nguyen, Yuji Matsumoto
Title: Overview of SCIDOCA 2025 Shared Task on Citation Prediction, Discovery, and Placement
Abstract:
We present an overview of the SCIDOCA 2025 Shared Task, which focuses on citation discovery and prediction in scientific documents. The task is divided into three subtasks: (1) Citation Discovery, where systems must identify relevant references for a given paragraph; (2) Masked Citation Prediction, which requires selecting the correct citation for masked citation slots; and (3) Citation Sentence Prediction, where systems must determine the correct reference for each cited sentence. We release a large-scale dataset constructed from the Semantic Scholar Open Research Corpus (S2ORC), containing over 60,000 annotated paragraphs and a curated reference set. The test set consists of 1,000 paragraphs from distinct papers, each annotated with ground-truth citations and distractor candidates. A total of seven teams registered, with three submitting results. We report performance metrics across all subtasks and analyze the effectiveness of submitted systems. This shared task provides a new benchmark for evaluating citation modeling and encourages future research in scientific document understanding. The dataset and task materials are publicly available at https://github.com/daotuanan/scidoca2025-shared-task.

Authors:Nimisha Ghosh, Dheeran Sankaran, Rahul Balakrishnan Adhi, Sharath S, Amrut Anand
Title: LAMP-PRo: Label-aware Attention for Multi-label Prediction of DNA- and RNA-binding Proteins using Protein Language Models
Abstract:
Identifying DNA- (DBPs) and RNA-binding proteins (RBPs) is crucial for the understanding of cell function, molecular interactions as well as regulatory functions. Owing to their high similarity, most of the existing approaches face challenges in differentiating between DBPs and RBPs leading to high cross-prediction errors. Moreover, identifying proteins which bind to both DNA and RNA (DRBPs) is also quite a challenging task. In this regard, we propose a novel framework viz. LAMP-PRo which is based on pre-trained protein language model (PLM), attention mechanisms and multi-label learning to mitigate these issues. First, pre-trained PLM such ESM-2 is used for embedding the protein sequences followed by convolutional neural network (CNN). Subsequently multi-head self-attention mechanism is applied for the contextual information while label-aware attention is used to compute class-specific representations by attending to the sequence in a way that is tailored to each label (DBP, RBP and non-NABP) in a multi-label setup. We have also included a novel cross-label attention mechanism to explicitly capture dependencies between DNA- and RNA-binding proteins, enabling more accurate prediction of DRBP. Finally, a linear layer followed by a sigmoid function are used for the final prediction. Extensive experiments are carried out to compare LAMP-PRo with the existing methods wherein the proposed model shows consistent competent performance. Furthermore, we also provide visualization to showcase model interpretability, highlighting which parts of the sequence are most relevant for a predicted label. The original datasets are available at http://bliulab.net/iDRBP\_MMC and the codes are available at https://github.com/NimishaGhosh/LAMP-PRo.

Authors:Rubing Yang, Huajun Bai, Song Liu, Guanghua Yu, Runzhi Fan, Yanbin Dang, Jiejing Zhang, Kai Liu, Jianchen Zhu, Peng Chen
Title: SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Abstract:
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.

Authors:Siyan Dong, Zijun Wang, Lulu Cai, Yi Ma, Yanchao Yang
Title: PROFusion: Robust and Accurate Dense Reconstruction via Camera Pose Regression and Optimization
Abstract:
Real-time dense scene reconstruction during unstable camera motions is crucial for robotics, yet current RGB-D SLAM systems fail when cameras experience large viewpoint changes, fast motions, or sudden shaking. Classical optimization-based methods deliver high accuracy but fail with poor initialization during large motions, while learning-based approaches provide robustness but lack sufficient accuracy for dense reconstruction. We address this challenge through a combination of learning-based initialization with optimization-based refinement. Our method employs a camera pose regression network to predict metric-aware relative poses from consecutive RGB-D frames, which serve as reliable starting points for a randomized optimization algorithm that further aligns depth images with the scene geometry. Extensive experiments demonstrate promising results: our approach outperforms the best competitor on challenging benchmarks, while maintaining comparable accuracy on stable motion sequences. The system operates in real-time, showcasing that combining simple and principled techniques can achieve both robustness for unstable motions and accuracy for dense reconstruction. Project page: https://github.com/siyandong/PROFusion.

Authors:Xuan Lin, Jiming Ren, Yandong Luo, Weijun Xie, Ye Zhao
Title: Towards Tighter Convex Relaxation of Mixed-integer Programs: Leveraging Logic Network Flow for Task and Motion Planning
Abstract:
This paper proposes an optimization-based task and motion planning framework, named "Logic Network Flow", that integrates temporal logic specifications into mixed-integer programs for efficient robot planning. Inspired by the Graph-of-Convex-Sets formulation, temporal predicates are encoded as polyhedron constraints on each edge of a network flow model, instead of as constraints between nodes in traditional Logic Tree formulations. We further propose a network-flow-based Fourier-Motzkin elimination procedure that removes continuous flow variables while preserving convex relaxation tightness, leading to provably tighter convex relaxations and fewer constraints than Logic Tree formulations. For temporal logic motion planning with piecewise-affine dynamic systems, comprehensive experiments across vehicle routing, multi-robot coordination, and temporal logic control on dynamical systems using point mass and linear inverted pendulum models demonstrate computational speedups of up to several orders of magnitude. Hardware demonstrations with quadrupedal robots validate real-time replanning capabilities under dynamically changing environmental conditions. The project website is at https://logicnetworkflow.github.io/.

Authors:Junjie Wang, Pan Zhou, Yiming Dong, Huan Li, Jia Li, Xun Zhou, Qicheng Lao, Cong Fang, Zhouchen Lin
Title: Conda: Column-Normalized Adam for Training Large Language Models Faster
Abstract:
Large language models (LLMs) have demonstrated impressive generalization and emergent capabilities, yet their pre-training remains computationally expensive and sensitive to optimization dynamics. While Adam-based optimizers offer fast convergence by adapting learning rates coordinate-wise, recent studies reveal that their updates often suffer from poor spectral conditioning and low-rank structures, hindering efficiency. Muon addresses this issue via global spectral normalization but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-Normalized Adam (Conda), a novel optimizer that bridges the strengths of both approaches. Conda projects updates into an orthogonal subspace and applies column-wise second moment normalization based on the projected gradients, thereby achieving both improved spectral conditioning and maintaining coordinate-wise adaptivity. This design alleviates the spectral pathologies of Adam while preserving its fast convergence behavior. Extensive experiments on the LLaMA and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves 2-2.5 the convergence speed of AdamW, measured in both training steps and training time. Further ablations demonstrate its robustness under diverse training setups. These results collectively highlight Conda as an effective and broadly applicable optimizer for large-scale LLM training. The code is released on https://github.com/jie040109/Conda

Authors:Gaurav Srivastava, Aafiya Hussain, Zhenyu Bi, Swastik Roy, Priya Pitre, Meng Lu, Morteza Ziyadi, Xuan Wang
Title: BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models
Abstract:
Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/

Authors:Yingdong Hu, Yisheng He, Jinnan Chen, Weihao Yuan, Kejie Qiu, Zehong Lin, Siyu Zhu, Zilong Dong, Jun Zhang
Title: Forge4D: Feed-Forward 4D Human Reconstruction and Interpolation from Uncalibrated Sparse-view Videos
Abstract:
Instant reconstruction of dynamic 3D humans from uncalibrated sparse-view videos is critical for numerous downstream applications. Existing methods, however, are either limited by the slow reconstruction speeds or incapable of generating novel-time representations. To address these challenges, we propose Forge4D, a feed-forward 4D human reconstruction and interpolation model that efficiently reconstructs temporally aligned representations from uncalibrated sparse-view videos, enabling both novel view and novel time synthesis. Our model simplifies the 4D reconstruction and interpolation problem as a joint task of streaming 3D Gaussian reconstruction and dense motion prediction. For the task of streaming 3D Gaussian reconstruction, we first reconstruct static 3D Gaussians from uncalibrated sparse-view images and then introduce learnable state tokens to enforce temporal consistency in a memory-friendly manner by interactively updating shared information across different timestamps. For novel time synthesis, we design a novel motion prediction module to predict dense motions for each 3D Gaussian between two adjacent frames, coupled with an occlusion-aware Gaussian fusion process to interpolate 3D Gaussians at arbitrary timestamps. To overcome the lack of the ground truth for dense motion supervision, we formulate dense motion prediction as a dense point matching task and introduce a self-supervised retargeting loss to optimize this module. An additional occlusion-aware optical flow loss is introduced to ensure motion consistency with plausible human movement, providing stronger regularization. Extensive experiments demonstrate the effectiveness of our model on both in-domain and out-of-domain datasets. Project page and code at: https://zhenliuzju.github.io/huyingdong/Forge4D.

Authors:Chaorui Yao, Yanxi Chen, Yuchang Sun, Yushuo Chen, Wenhao Zhang, Xuchen Pan, Yaliang Li, Bolin Ding
Title: Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends
Abstract:
Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.

Authors:Jiabin Luo, Junhui Lin, Zeyu Zhang, Biao Wu, Meng Fang, Ling Chen, Hao Tang
Title: UniVid: The Open-Source Unified Video Model
Abstract:
Unified video modeling that combines generation and understanding capabilities is increasingly important but faces two key challenges: maintaining semantic faithfulness during flow-based generation due to text-visual token imbalance and the limitations of uniform cross-modal attention across the flow trajectory, and efficiently extending image-centric MLLMs to video without costly retraining. We present UniVid, a unified architecture that couples an MLLM with a diffusion decoder through a lightweight adapter, enabling both video understanding and generation. We introduce Temperature Modality Alignment to improve prompt adherence and Pyramid Reflection for efficient temporal reasoning via dynamic keyframe selection. Extensive experiments on standard benchmarks demonstrate state-of-the-art performance, achieving a 2.2% improvement on VBench-Long total score compared to EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines. Code: https://github.com/AIGeeksGroup/UniVid. Website: https://aigeeksgroup.github.io/UniVid.

Authors:Ran Xu, Yuchen Zhuang, Zihan Dong, Jonathan Wang, Yue Yu, Joyce C. Ho, Linjun Zhang, Haoyu Wang, Wenqi Shi, Carl Yang
Title: AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play
Abstract:
Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the DeepSeek-V3 model using less than 5% of its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9x more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks. Our code will be published at https://github.com/ritaranx/AceSearcher and https://huggingface.co/AceSearcher.

Authors:Le Dong, Jinghao Bian, Jingyang Hou, Jingliang Hu, Yilei Shi, Weisheng Dong, Xiao Xiang Zhu, Lichao Mou
Title: High-Order Progressive Trajectory Matching for Medical Image Dataset Distillation
Abstract:
Medical image analysis faces significant challenges in data sharing due to privacy regulations and complex institutional protocols. Dataset distillation offers a solution to address these challenges by synthesizing compact datasets that capture essential information from real, large medical datasets. Trajectory matching has emerged as a promising methodology for dataset distillation; however, existing methods primarily focus on terminal states, overlooking crucial information in intermediate optimization states. We address this limitation by proposing a shape-wise potential that captures the geometric structure of parameter trajectories, and an easy-to-complex matching strategy that progressively addresses parameters based on their complexity. Experiments on medical image classification tasks demonstrate that our method improves distillation performance while preserving privacy and maintaining model accuracy comparable to training on the original datasets. Our code is available at https://github.com/Bian-jh/HoP-TM.

Authors:Jun-Hao Wang, Yi-Yang Tian, Baoquan Chen, Peng-Shuai Wang
Title: Neural Visibility of Point Sets
Abstract:
Point clouds are widely used representations of 3D data, but determining the visibility of points from a given viewpoint remains a challenging problem due to their sparse nature and lack of explicit connectivity. Traditional methods, such as Hidden Point Removal (HPR), face limitations in computational efficiency, robustness to noise, and handling concave regions or low-density point clouds. In this paper, we propose a novel approach to visibility determination in point clouds by formulating it as a binary classification task. The core of our network consists of a 3D U-Net that extracts view-independent point-wise features and a shared multi-layer perceptron (MLP) that predicts point visibility using the extracted features and view direction as inputs. The network is trained end-to-end with ground-truth visibility labels generated from rendered 3D models. Our method significantly outperforms HPR in both accuracy and computational efficiency, achieving up to 126 times speedup on large point clouds. Additionally, our network demonstrates robustness to noise and varying point cloud densities and generalizes well to unseen shapes. We validate the effectiveness of our approach through extensive experiments on the ShapeNet, ABC Dataset and real-world datasets, showing substantial improvements in visibility accuracy. We also demonstrate the versatility of our method in various applications, including point cloud visualization, surface reconstruction, normal estimation, shadow rendering, and viewpoint optimization. Our code and models are available at https://github.com/octree-nn/neural-visibility.

Authors:Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, David Casbeer
Title: A Novel Model for 3D Motion Planning for a Generalized Dubins Vehicle with Pitch and Yaw Rate Constraints
Abstract:
In this paper, we propose a new modeling approach and a fast algorithm for 3D motion planning, applicable for fixed-wing unmanned aerial vehicles. The goal is to construct the shortest path connecting given initial and final configurations subject to motion constraints. Our work differs from existing literature in two ways. First, we consider full vehicle orientation using a body-attached frame, which includes roll, pitch, and yaw angles. However, existing work uses only pitch and/or heading angle, which is insufficient to uniquely determine orientation. Second, we use two control inputs to represent bounded pitch and yaw rates, reflecting control by two separate actuators. In contrast, most previous methods rely on a single input, such as path curvature, which is insufficient for accurately modeling the vehicle's kinematics in 3D. We use a rotation minimizing frame to describe the vehicle's configuration and its evolution, and construct paths by concatenating optimal Dubins paths on spherical, cylindrical, or planar surfaces. Numerical simulations show our approach generates feasible paths within 10 seconds on average and yields shorter paths than existing methods in most cases.

Authors:Jianze Li, Yong Guo, Yulun Zhang, Xiaokang Yang
Title: Asymmetric VAE for One-Step Video Super-Resolution Acceleration
Abstract:
Diffusion models have significant advantages in the field of real-world video super-resolution and have demonstrated strong performance in past research. In recent diffusion-based video super-resolution (VSR) models, the number of sampling steps has been reduced to just one, yet there remains significant room for further optimization in inference efficiency. In this paper, we propose FastVSR, which achieves substantial reductions in computational cost by implementing a high compression VAE (spatial compression ratio of 16, denoted as f16). We design the structure of the f16 VAE and introduce a stable training framework. We employ pixel shuffle and channel replication to achieve additional upsampling. Furthermore, we propose a lower-bound-guided training strategy, which introduces a simpler training objective as a lower bound for the VAE's performance. It makes the training process more stable and easier to converge. Experimental results show that FastVSR achieves speedups of 111.9 times compared to multi-step models and 3.92 times compared to existing one-step models. We will release code and models at https://github.com/JianzeLi-114/FastVSR.

Authors:Md Mozaharul Mottalib, Thao-Ly T. Phan, Rahmatollah Beheshti
Title: HyMaTE: A Hybrid Mamba and Transformer Model for EHR Representation Learning
Abstract:
Electronic health Records (EHRs) have become a cornerstone in modern-day healthcare. They are a crucial part for analyzing the progression of patient health; however, their complexity, characterized by long, multivariate sequences, sparsity, and missing values poses significant challenges in traditional deep learning modeling. While Transformer-based models have demonstrated success in modeling EHR data and predicting clinical outcomes, their quadratic computational complexity and limited context length hinder their efficiency and practical applications. On the other hand, State Space Models (SSMs) like Mamba present a promising alternative offering linear-time sequence modeling and improved efficiency for handling long sequences, but focus mostly on mixing sequence-level information rather than channel-level data. To overcome these challenges, we propose HyMaTE (A Hybrid Mamba and Transformer Model for EHR Representation Learning), a novel hybrid model tailored for representing longitudinal data, combining the strengths of SSMs with advanced attention mechanisms. By testing the model on predictive tasks on multiple clinical datasets, we demonstrate HyMaTE's ability to capture an effective, richer, and more nuanced unified representation of EHR data. Additionally, the interpretability of the outcomes achieved by self-attention illustrates the effectiveness of our model as a scalable and generalizable solution for real-world healthcare applications. Codes are available at: https://github.com/healthylaife/HyMaTE.

Authors:Li Zhang, Haoxiang Gao, Zhihao Zhang, Luoxiao Huang, Tao Zhang
Title: SVAC: Scaling Is All You Need For Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects in video sequences based on natural language descriptions. While recent advances in Multi-modal Large Language Models (MLLMs) have improved RVOS performance through enhanced text-video understanding, several challenges remain, including insufficient exploitation of MLLMs' prior knowledge, prohibitive computational and memory costs for long-duration videos, and inadequate handling of complex temporal dynamics. In this work, we propose SVAC, a unified model that improves RVOS by scaling up input frames and segmentation tokens to enhance video-language interaction and segmentation precision. To address the resulting computational challenges, SVAC incorporates the Anchor-Based Spatio-Temporal Compression (ASTC) module to compress visual tokens while preserving essential spatio-temporal structure. Moreover, the Clip-Specific Allocation (CSA) strategy is introduced to better handle dynamic object behaviors across video clips. Experimental results demonstrate that SVAC achieves state-of-the-art performance on multiple RVOS benchmarks with competitive efficiency. Our code is available at https://github.com/lizhang1998/SVAC.

Authors:Kaiyu He, Peilin Wu, Mian Zhang, Kun Wan, Wentian Zhao, Xinya Du, Zhiyu Chen
Title: GEAR: A General Evaluation Framework for Abductive Reasoning
Abstract:
Since the advent of large language models (LLMs), research has focused on instruction following and deductive reasoning. A central question remains: can these models discover new knowledge, and how can we evaluate this ability? We address this by studying abductive reasoning-the generation of plausible hypotheses to explain observations-and introduce GEAR (General Evaluation for Abductive Reasoning), a general-purpose, fully automated, transparent, and label-free evaluation paradigm. GEAR scores hypothesis sets by three metrics: consistency (each hypothesis explains the observations), generalizability (consistent hypotheses make meaningful predictions on unseen inputs), and diversity (the set covers distinct predictions and patterns). Built this way, GEAR is scalable (no human gold answers), reliable (deterministic scoring aligned with classical abduction), and open-ended (scores improve only when models produce new plausible hypotheses, unlike static benchmarks that saturate once accuracy is high). Using GEAR, we conduct a fine-grained study of nine LLMs on four abduction benchmarks with 1,500 problems, generating over 50,000 candidate hypotheses and revealing model differences obscured by gold-answer or purely human evaluations. We further propose a momentum-based curriculum that adjusts GEAR-derived training data by learning velocity: it starts with what the model learns quickly and shifts toward harder objectives such as generating diverse hypotheses once the model is confident on foundational objectives. Without gold-label supervision, this strategy improves all GEAR objectives and these gains transfer to established abductive reasoning benchmarks. Taken together, GEAR provides a principled framework that evaluates abduction and supplies label-free, scalable training signals that help LLMs produce more diverse and reliable hypotheses.

Authors:Zeqing Wang, Gongfan Fang, Xinyin Ma, Xingyi Yang, Xinchao Wang
Title: SparseD: Sparse Attention for Diffusion Language Models
Abstract:
While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to $1.50\times$ speedup over FlashAttention at a 64k context length with 1,024 denoising steps.

Authors:Yangzhou Liu, Yue Cao, Hao Li, Gen Luo, Zhe Chen, Weiyun Wang, Xiaobo Liang, Biqing Qi, Lijun Wu, Changyao Tian, Yanting Zhang, Yuqiang Li, Tong Lu, Yu Qiao, Jifeng Dai, Wenhai Wang
Title: Sequential Diffusion Language Models
Abstract:
Diffusion language models (DLMs) have strong theoretical efficiency but are limited by fixed-length decoding and incompatibility with key-value (KV) caches. Block diffusion mitigates these issues, yet still enforces a fixed block size and requires expensive training. We introduce Next Sequence Prediction (NSP), which unifies next-token and next-block prediction, enabling the model to adaptively determine the generation length at each step. When the length is fixed to 1, NSP reduces to standard next-token prediction. Building on NSP, we propose Sequential Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive language models (ALMs) at minimal cost. Specifically, SDLM performs diffusion inference within fixed-size mask blocks, but dynamically decodes consecutive subsequences based on model confidence, thereby preserving KV-cache compatibility and improving robustness to varying uncertainty and semantics across the sequence. Experiments show that SDLM matches or surpasses strong autoregressive baselines using only 3.5M training samples, while achieving 2.1 higher throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more pronounced efficiency gains, demonstrating the strong scalability potential of our modeling paradigm. Project page and codes: https://github.com/OpenGVLab/SDLM

Authors:Zhiqi Huang, Dulongkai Cui, Jinglu Hu
Title: SIE3D: Single-image Expressive 3D Avatar generation via Semantic Embedding and Perceptual Expression Loss
Abstract:
Generating high-fidelity 3D head avatars from a single image is challenging, as current methods lack fine-grained, intuitive control over expressions via text. This paper proposes SIE3D, a framework that generates expressive 3D avatars from a single image and descriptive text. SIE3D fuses identity features from the image with semantic embedding from text through a novel conditioning scheme, enabling detailed control. To ensure generated expressions accurately match the text, it introduces an innovative perceptual expression loss function. This loss uses a pre-trained expression classifier to regularize the generation process, guaranteeing expression accuracy. Extensive experiments show SIE3D significantly improves controllability and realism, outperforming competitive methods in identity preservation and expression fidelity on a single consumer-grade GPU. Project page: https://blazingcrystal1747.github.io/SIE3D/

Authors:Matej Palider, Omar Eldardeer, Viktor Kocur
Title: Gaze Estimation for Human-Robot Interaction: Analysis Using the NICO Platform
Abstract:
This paper evaluates the current gaze estimation methods within an HRI context of a shared workspace scenario. We introduce a new, annotated dataset collected with the NICO robotic platform. We evaluate four state-of-the-art gaze estimation models. The evaluation shows that the angular errors are close to those reported on general-purpose benchmarks. However, when expressed in terms of distance in the shared workspace the best median error is 16.48 cm quantifying the practical limitations of current methods. We conclude by discussing these limitations and offering recommendations on how to best integrate gaze estimation as a modality in HRI systems.

Authors:Alistair Turcan, Kexin Huang, Lei Li, Martin Jinye Zhang
Title: TusoAI: Agentic Optimization for Scientific Methods
Abstract:
Scientific discovery is often slowed by the manual development of computational tools needed to analyze complex experimental data. Building such tools is costly and time-consuming because scientists must iteratively review literature, test modeling and scientific assumptions against empirical data, and implement these insights into efficient software. Large language models (LLMs) have demonstrated strong capabilities in synthesizing literature, reasoning with empirical data, and generating domain-specific code, offering new opportunities to accelerate computational method development. Existing LLM-based systems either focus on performing scientific analyses using existing computational methods or on developing computational methods or models for general machine learning without effectively integrating the often unstructured knowledge specific to scientific domains. Here, we introduce TusoAI , an agentic AI system that takes a scientific task description with an evaluation function and autonomously develops and optimizes computational methods for the application. TusoAI integrates domain knowledge into a knowledge tree representation and performs iterative, domain-specific optimization and model diagnosis, improving performance over a pool of candidate solutions. We conducted comprehensive benchmark evaluations demonstrating that TusoAI outperforms state-of-the-art expert methods, MLE agents, and scientific AI agents across diverse tasks, such as single-cell RNA-seq data denoising and satellite-based earth monitoring. Applying TusoAI to two key open problems in genetics improved existing computational methods and uncovered novel biology, including 9 new associations between autoimmune diseases and T cell subtypes and 7 previously unreported links between disease variants linked to their target genes. Our code is publicly available at https://github.com/Alistair-Turcan/TusoAI.

Authors:Jinpei Guo, Yifei Ji, Zheng Chen, Yufei Wang, Sizhuo Ma, Yong Guo, Yulun Zhang, Jian Wang
Title: Towards Redundancy Reduction in Diffusion Models for Efficient Video Super-Resolution
Abstract:
Diffusion models have recently shown promising results for video super-resolution (VSR). However, directly adapting generative diffusion models to VSR can result in redundancy, since low-quality videos already preserve substantial content information. Such redundancy leads to increased computational overhead and learning burden, as the model performs superfluous operations and must learn to filter out irrelevant information. To address this problem, we propose OASIS, an efficient $\textbf{o}$ne-step diffusion model with $\textbf{a}$ttention $\textbf{s}$pecialization for real-world v$\textbf{i}$deo $\textbf{s}$uper-resolution. OASIS incorporates an attention specialization routing that assigns attention heads to different patterns according to their intrinsic behaviors. This routing mitigates redundancy while effectively preserving pretrained knowledge, allowing diffusion models to better adapt to VSR and achieve stronger performance. Moreover, we propose a simple yet effective progressive training strategy, which starts with temporally consistent degradations and then shifts to inconsistent settings. This strategy facilitates learning under complex degradations. Extensive experiments demonstrate that OASIS achieves state-of-the-art performance on both synthetic and real-world datasets. OASIS also provides superior inference speed, offering a $\textbf{6.2$\times$}$ speedup over one-step diffusion baselines such as SeedVR2. The code will be available at \href{https://github.com/jp-guo/OASIS}{https://github.com/jp-guo/OASIS}.

Authors:Siyu Cao, Hangting Chen, Peng Chen, Yiji Cheng, Yutao Cui, Xinchi Deng, Ying Dong, Kipper Gong, Tianpeng Gu, Xiusen Gu, Tiankai Hang, Duojun Huang, Jie Jiang, Zhengkai Jiang, Weijie Kong, Changlin Li, Donghao Li, Junzhe Li, Xin Li, Yang Li, Zhenxi Li, Zhimin Li, Jiaxin Lin, Linus, Lucaz Liu, Shu Liu, Songtao Liu, Yu Liu, Yuhong Liu, Yanxin Long, Fanbin Lu, Qinglin Lu, Yuyang Peng, Yuanbo Peng, Xiangwei Shen, Yixuan Shi, Jiale Tao, Yangyu Tao, Qi Tian, Pengfei Wan, Chunyu Wang, Kai Wang, Lei Wang, Linqing Wang, Lucas Wang, Qixun Wang, Weiyan Wang, Hao Wen, Bing Wu, Jianbing Wu, Yue Wu, Senhao Xie, Fang Yang, Miles Yang, Xiaofeng Yang, Xuan Yang, Zhantao Yang, Jingmiao Yu, Zheng Yuan, Chao Zhang, Jian-Wei Zhang, Peizhen Zhang, Shi-Xue Zhang, Tao Zhang, Weigang Zhang, Yepeng Zhang, Yingfang Zhang, Zihao Zhang, Zijian Zhang, Penghao Zhao, Zhiyuan Zhao, Xuefei Zhe, Jianchen Zhu, Zhao Zhong
Title: HunyuanImage 3.0 Technical Report
Abstract:
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0

Authors:Surya Murthy, Kushagra Gupta, Mustafa O. Karabag, David Fridovich-Keil, Ufuk Topcu
Title: DiBS-MTL: Transformation-Invariant Multitask Learning with Direction Oracles
Abstract:
Multitask learning (MTL) algorithms typically rely on schemes that combine different task losses or their gradients through weighted averaging. These methods aim to find Pareto stationary points by using heuristics that require access to task loss values, gradients, or both. In doing so, a central challenge arises because task losses can be arbitrarily, nonaffinely scaled relative to one another, causing certain tasks to dominate training and degrade overall performance. A recent advance in cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS), yields Pareto stationary solutions immune to task domination because of its invariance to monotonic nonaffine task loss transformations. However, the convergence behavior of DiBS in nonconvex MTL settings is currently not understood. To this end, we prove that under standard assumptions, a subsequence of DiBS iterates converges to a Pareto stationary point when task losses are possibly nonconvex, and propose DiBS-MTL, a computationally efficient adaptation of DiBS to the MTL setting. Finally, we validate DiBS-MTL empirically on standard MTL benchmarks, showing that it achieves competitive performance with state-of-the-art methods while maintaining robustness to nonaffine monotonic transformations that significantly degrade the performance of existing approaches, including prior bargaining-inspired MTL methods. Code available at https://github.com/suryakmurthy/dibs-mtl.

Authors:Dragoş-Andrei Chileban, Andrei-Ştefan Bulzan, Cosmin Cernǎzanu-Glǎvan
Title: CrashSplat: 2D to 3D Vehicle Damage Segmentation in Gaussian Splatting
Abstract:
Automatic car damage detection has been a topic of significant interest for the auto insurance industry as it promises faster, accurate, and cost-effective damage assessments. However, few works have gone beyond 2D image analysis to leverage 3D reconstruction methods, which have the potential to provide a more comprehensive and geometrically accurate representation of the damage. Moreover, recent methods employing 3D representations for novel view synthesis, particularly 3D Gaussian Splatting (3D-GS), have demonstrated the ability to generate accurate and coherent 3D reconstructions from a limited number of views. In this work we introduce an automatic car damage detection pipeline that performs 3D damage segmentation by up-lifting 2D masks. Additionally, we propose a simple yet effective learning-free approach for single-view 3D-GS segmentation. Specifically, Gaussians are projected onto the image plane using camera parameters obtained via Structure from Motion (SfM). They are then filtered through an algorithm that utilizes Z-buffering along with a normal distribution model of depth and opacities. Through experiments we found that this method is particularly effective for challenging scenarios like car damage detection, where target objects (e.g., scratches, small dents) may only be clearly visible in a single view, making multi-view consistency approaches impractical or impossible. The code is publicly available at: https://github.com/DragosChileban/CrashSplat.

Authors:Kaisen Yang, Lixuan He, Rushi Shah, Kaicheng Yang, Qinwei Ma, Dianbo Liu, Alex Lamb
Title: Explore-Execute Chain: Towards an Efficient Structured Reasoning Paradigm
Abstract:
Chain-of-Thought (CoT) and its variants have markedly advanced the reasoning abilities of Large Language Models (LLMs), yet their monolithic and auto-regressive architecture inherently conflates high-level strategic planning with low-level step-by-step execution, leading to computational inefficiency, limited exploration of reasoning paths, and reduced interpretability. To overcome these issues, we propose the Explore-Execute Chain ($E^2C$), a structured reasoning framework that decouples reasoning into two distinct phases: an exploratory phase that stochastically generates succinct high-level plans, followed by an execution phase that deterministically carries out the chosen plan. Our approach incorporates a two-stage training methodology, which combines Supervised Fine-Tuning (SFT) - augmented by a novel data generation algorithm enforcing strict plan adherence - with a subsequent Reinforcement Learning (RL) stage that capitalizes on the informativeness of exploration and reinforces the determinism of execution. This decomposition enables an efficient test-time scaling strategy: on AIME'2024, $E^2C$ Test Time Scaling reaches 58.1% accuracy using <10% of the decoding tokens required by comparable methods (e.g., Forest-of-Thought), sharply cutting self-consistency overhead. For cross-domain adaptation, our Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT on medical benchmarks, delivering state-of-the-art performance, strong generalization, and greater interpretability by separating planning from execution. The code and pre-trained models for the project are available at: https://github.com/yks23/Explore-Execute-Chain.git

Authors:Jiahao Ying, Mingbao Lin, Qianru Sun, Yixin Cao
Title: Beyond Benchmarks: Understanding Mixture-of-Experts Models through Internal Mechanisms
Abstract:
Mixture-of-Experts (MoE) architectures have emerged as a promising direction, offering efficiency and scalability by activating only a subset of parameters during inference. However, current research remains largely performance-centric, with limited understanding of its internal mechanisms, thereby constraining broader progress. In this work, we use an internal metric to investigate the mechanisms of MoE architecture by explicitly incorporating routing mechanisms and analyzing expert-level behaviors. Through systematic analyses of a wide range of publicly available MoE models, we uncover several findings: (1) neuron utilization decreases as models evolve, reflecting stronger generalization; (2) training exhibits a dynamic trajectory, where benchmark performance alone provides limited signal while MUI reveals deeper insights; (3) task completion emerges from collaborative contributions of multiple experts, with shared experts driving concentration; and (4) activation patterns at the neuron level provide a fine-grained proxy for data diversity. Together, these results demonstrate the potential of MUI as a complementary indicator to benchmark performance, offering new insights into the capacity, dynamics, and specialization of MoE models. Our project can be found at https://yingjiahao14.github.io/MoE-MUI/.

Authors:Hanshi Wang, Yuhao Xu, Zekun Xu, Jin Gao, Yufan Liu, Weiming Hu, Ke Wang, Zhipeng Zhang
Title: AutoPrune: Each Complexity Deserves a Pruning Policy
Abstract:
The established redundancy in visual tokens within large vision-language models allows pruning to effectively reduce their substantial computational demands. Previous methods typically employ heuristic layer-specific pruning strategies where, although the number of tokens removed may differ across decoder layers, the overall pruning schedule is fixed and applied uniformly to all input samples and tasks, failing to align token elimination with the model's holistic reasoning trajectory. Cognitive science indicates that human visual processing often begins with broad exploration to accumulate evidence before narrowing focus as the target becomes distinct. Our experiments reveal an analogous pattern in these models. This observation suggests that neither a fixed pruning schedule nor a heuristic layer-wise strategy can optimally accommodate the diverse complexities inherent in different inputs. To overcome this limitation, we introduce Complexity-Adaptive Pruning (AutoPrune), a training-free, plug-and-play framework that tailors pruning policies to varying sample and task complexities. Specifically, AutoPrune quantifies the mutual information between visual and textual tokens, then projects this signal to a budget-constrained logistic retention curve. Each such logistic curve, defined by its unique shape, corresponds to the specific complexity of different tasks and can guarantee adherence to predefined computational constraints. We evaluate AutoPrune on standard vision-language tasks and on Vision-Language-Action models for autonomous driving. Notably, when applied to LLaVA-1.5-7B, our method prunes 89% of visual tokens and reduces inference FLOPs by 76.8% while retaining 96.7% of the original accuracy averaged over all tasks. This corresponds to a 9.1% improvement over the recent work PDrop, demonstrating the effectiveness. Code is available at https://github.com/AutoLab-SAI-SJTU/AutoPrune.

Authors:Jingyi Yang, Guanxu Chen, Xuhao Hu, Jing Shao
Title: Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step
Abstract:
Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

Authors:Haibao Yu, Wenxian Yang, Ruiyang Hao, Chuanye Wang, Jiaru Zhong, Ping Luo, Zaiqing Nie
Title: DriveE2E: Closed-Loop Benchmark for End-to-End Autonomous Driving through Real-to-Simulation
Abstract:
Closed-loop evaluation is increasingly critical for end-to-end autonomous driving. Current closed-loop benchmarks using the CARLA simulator rely on manually configured traffic scenarios, which can diverge from real-world conditions, limiting their ability to reflect actual driving performance. To address these limitations, we introduce a simple yet challenging closed-loop evaluation framework that closely integrates real-world driving scenarios into the CARLA simulator with infrastructure cooperation. Our approach involves extracting 800 dynamic traffic scenarios selected from a comprehensive 100-hour video dataset captured by high-mounted infrastructure sensors, and creating static digital twin assets for 15 real-world intersections with consistent visual appearance. These digital twins accurately replicate the traffic and environmental characteristics of their real-world counterparts, enabling more realistic simulations in CARLA. This evaluation is challenging due to the diversity of driving behaviors, locations, weather conditions, and times of day at complex urban intersections. In addition, we provide a comprehensive closed-loop benchmark for evaluating end-to-end autonomous driving models. Project URL: \href{https://github.com/AIR-THU/DriveE2E}{https://github.com/AIR-THU/DriveE2E}.

Authors:Xiyan Xu, Sirui Xu, Yu-Xiong Wang, Liang-Yan Gui
Title: MoReact: Generating Reactive Motion from Textual Descriptions
Abstract:
Modeling and generating human reactions poses a significant challenge with broad applications for computer vision and human-computer interaction. Existing methods either treat multiple individuals as a single entity, directly generating interactions, or rely solely on one person's motion to generate the other's reaction, failing to integrate the rich semantic information that underpins human interactions. Yet, these methods often fall short in adaptive responsiveness, i.e., the ability to accurately respond to diverse and dynamic interaction scenarios. Recognizing this gap, our work introduces an approach tailored to address the limitations of existing models by focusing on text-driven human reaction generation. Our model specifically generates realistic motion sequences for individuals that responding to the other's actions based on a descriptive text of the interaction scenario. The goal is to produce motion sequences that not only complement the opponent's movements but also semantically fit the described interactions. To achieve this, we present MoReact, a diffusion-based method designed to disentangle the generation of global trajectories and local motions sequentially. This approach stems from the observation that generating global trajectories first is crucial for guiding local motion, ensuring better alignment with given action and text. Furthermore, we introduce a novel interaction loss to enhance the realism of generated close interactions. Our experiments, utilizing data adapted from a two-person motion dataset, demonstrate the efficacy of our approach for this novel task, which is capable of producing realistic, diverse, and controllable reactions that not only closely match the movements of the counterpart but also adhere to the textual guidance. Please find our webpage at https://xiyan-xu.github.io/MoReactWebPage.

Authors:Xin Luo, Jiahao Wang, Chenyuan Wu, Shitao Xiao, Xiyan Jiang, Defu Lian, Jiajun Zhang, Dong Liu, Zheng liu
Title: EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling
Abstract:
Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.

Authors:You Zhou, Lijiang Chen, Shuchang Lyu, Guangxia Cui, Wenpei Bai, Zheng Zhou, Meng Li, Guangliang Cheng, Huiyu Zhou, Qi Zhao
Title: Adversarial Versus Federated: An Adversarial Learning based Multi-Modality Cross-Domain Federated Medical Segmentation
Abstract:
Federated learning enables collaborative training of machine learning models among different clients while ensuring data privacy, emerging as the mainstream for breaking data silos in the healthcare domain. However, the imbalance of medical resources, data corruption or improper data preservation may lead to a situation where different clients possess medical images of different modality. This heterogeneity poses a significant challenge for cross-domain medical image segmentation within the federated learning framework. To address this challenge, we propose a new Federated Domain Adaptation (FedDA) segmentation training framework. Specifically, we propose a feature-level adversarial learning among clients by aligning feature maps across clients through embedding an adversarial training mechanism. This design can enhance the model's generalization on multiple domains and alleviate the negative impact from domain-shift. Comprehensive experiments on three medical image datasets demonstrate that our proposed FedDA substantially achieves cross-domain federated aggregation, endowing single modality client with cross-modality processing capabilities, and consistently delivers robust performance compared to state-of-the-art federated aggregation algorithms in objective and subjective assessment. Our code are available at https://github.com/GGbond-study/FedDA.

Authors:Zhixin Zhang, Zeming Wei, Meng Sun
Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
Abstract:
Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.

Authors:Wei Zeng, Junchuan Zhao, Ye Wang
Title: Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Abstract:
Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content-style disentanglement, reliable style transfer, and stylistically appropriate rendering. Demos are available at https://jointpianist.github.io/epr-apt/

Authors:Yukun Chen, Boheng Li, Yu Yuan, Leyi Qi, Yiming Li, Tianwei Zhang, Zhan Qin, Kui Ren
Title: Taught Well Learned Ill: Towards Distillation-conditional Backdoor Attack
Abstract:
Knowledge distillation (KD) is a vital technique for deploying deep neural networks (DNNs) on resource-constrained devices by transferring knowledge from large teacher models to lightweight student models. While teacher models from third-party platforms may undergo security verification (\eg, backdoor detection), we uncover a novel and critical threat: distillation-conditional backdoor attacks (DCBAs). DCBA injects dormant and undetectable backdoors into teacher models, which become activated in student models via the KD process, even with clean distillation datasets. While the direct extension of existing methods is ineffective for DCBA, we implement this attack by formulating it as a bilevel optimization problem and proposing a simple yet effective method (\ie, SCAR). Specifically, the inner optimization simulates the KD process by optimizing a surrogate student model, while the outer optimization leverages outputs from this surrogate to optimize the teacher model for implanting the conditional backdoor. Our SCAR addresses this complex optimization utilizing an implicit differentiation algorithm with a pre-optimized trigger injection function. Extensive experiments across diverse datasets, model architectures, and KD techniques validate the effectiveness of our SCAR and its resistance against existing backdoor detection, highlighting a significant yet previously overlooked vulnerability in the KD process. Our code is available at https://github.com/WhitolfChen/SCAR.

Authors:Bingyang Cui, Yujie Zhang, Qi Yang, Zhu Li, Yiling Xu
Title: Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Abstract:
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.

Authors:Cancan Li, Fei Su, Juan Liu, Hui Bu, Yulong Wan, Hongbin Suo, Ming Li
Title: AISHELL6-whisper: A Chinese Mandarin Audio-visual Whisper Speech Dataset with Speech Recognition Baselines
Abstract:
Whisper speech recognition is crucial not only for ensuring privacy in sensitive communications but also for providing a critical communication bridge for patients under vocal restraint and enabling discrete interaction in noise-sensitive environments. The development of Chinese mandarin audio-visual whisper speech recognition is hindered by the lack of large-scale datasets. We present AISHELL6-Whisper, a large-scale open-source audio-visual whisper speech dataset, featuring 30 hours each of whisper speech and parallel normal speech, with synchronized frontal facial videos. Moreover, we propose an audio-visual speech recognition (AVSR) baseline based on the Whisper-Flamingo framework, which integrates a parallel training strategy to align embeddings across speech types, and employs a projection layer to adapt to whisper speech's spectral properties. The model achieves a Character Error Rate (CER) of 4.13% for whisper speech and 1.11% for normal speech in the test set of our dataset, and establishes new state-of-the-art results on the wTIMIT benchmark. The dataset and the AVSR baseline codes are open-sourced at https://zutm.github.io/AISHELL6-Whisper.

Authors:Tian Nian, Weijie Ke, Yao Mu, Tianxing Chen, Shaolong Zhu, Bingshan Hu
Title: Control Your Robot: A Unified System for Robot Control and Policy Deployment
Abstract:
Cross-platform robot control remains difficult because hardware interfaces, data formats, and control paradigms vary widely, which fragments toolchains and slows deployment. To address this, we present Control Your Robot, a modular, general-purpose framework that unifies data collection and policy deployment across diverse platforms. The system reduces fragmentation through a standardized workflow with modular design, unified APIs, and a closed-loop architecture. It supports flexible robot registration, dual-mode control with teleoperation and trajectory playback, and seamless integration from multimodal data acquisition to inference. Experiments on single-arm and dual-arm systems show efficient, low-latency data collection and effective support for policy learning with imitation learning and vision-language-action models. Policies trained on data gathered by Control Your Robot match expert demonstrations closely, indicating that the framework enables scalable and reproducible robot learning across platforms.

Authors:Hong Huang, Decheng Wu, Rui Cen, Guanghua Yu, Zonghang Li, Kai Liu, Jianchen Zhu, Peng Chen, Xue Liu, Dapeng Wu
Title: Tequila: Trapping-free Ternary Quantization for Large Language Models
Abstract:
Quantization techniques are essential for the deployment of Large Language Models (LLMs) on edge devices. However, prevailing methods often rely on mixed-precision multiplication that lacks efficient hardware support, making it not feasible. Ternary weight quantization addresses this by constraining weights to {-1, 0, 1}, replacing expensive multiplications with hardware-efficient additions. However, such aggressive compression leads to significant accuracy degradation, even after costly quantization-aware training with massive data. We identify the core issue as deadzone trapping: a large number of weights are trapped at the deadzone boundary. This occurs because these weights receive only noisy, uninformative gradients, preventing stable escape from the deadzone and severely impeding model capacity and optimization. To address this issue, we propose Tequila, a trapping-free quantization optimization method that reactivates deadzone-trapped weights by repurposing them as dynamic biases. This allows the repurposed weights to provide a continuous signal in the forward pass and, critically, receive direct, meaningful gradient signals during backpropagation, thereby enhancing model capacity and optimization with nearly zero inference overhead. Extensive evaluations demonstrate that Tequila outperforms state-of-the-art (SOTA) ternary quantization methods across five benchmarks. Specifically, on the ARC benchmark, it achieves >4% accuracy gain over the SOTA baseline, nearly matching full-precision performance (within <1% gap) with a 3.0x inference speedup. Consequently, Tequila offers a highly practical and efficient implementation for the deployment of advanced LLMs in resource-constrained environments. The code is available at https://github.com/Tencent/AngelSlim.

Authors:Xiaojie Li, Bei Wang, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Title: GenView++: Unifying Adaptive View Generation and Quality-Driven Supervision for Contrastive Representation Learning
Abstract:
The success of contrastive learning depends on the construction and utilization of high-quality positive pairs. However, current methods face critical limitations on two fronts: on the construction side, both handcrafted and generative augmentations often suffer from limited diversity and risk semantic corruption; on the learning side, the absence of a quality assessment mechanism leads to suboptimal supervision where all pairs are treated equally. To tackle these challenges, we propose GenView++, a unified framework that addresses both fronts by introducing two synergistic innovations. To improve pair construction, GenView++ introduces a multi-source adaptive view generation mechanism to synthesize diverse yet semantically coherent views by dynamically modulating generative parameters across image-conditioned, text-conditioned, and image-text-conditioned strategies. Second, a quality-driven contrastive learning mechanism assesses each pair's semantic alignment and diversity to dynamically reweight their training contribution, prioritizing high-quality pairs while suppressing redundant or misaligned pairs. Extensive experiments demonstrate the effectiveness of GenView++ across both vision and vision-language tasks. For vision representation learning, it improves MoCov2 by +2.5% on ImageNet linear classification. For vision-language learning, it raises the average zero-shot classification accuracy by +12.31% over CLIP and +5.31% over SLIP across ten datasets, and further improves Flickr30k text retrieval R@5 by +3.2%. The code is available at https://github.com/xiaojieli0903/GenViewPlusPlus.

Authors:Lezhong Wang, Shutong Jin, Ruiqi Cui, Anders Bjorholm Dahl, Jeppe Revall Frisvad, Siavash Bigdeli
Title: ReLumix: Extending Image Relighting to Video via Video Diffusion Models
Abstract:
Controlling illumination during video post-production is a crucial yet elusive goal in computational photography. Existing methods often lack flexibility, restricting users to certain relighting models. This paper introduces ReLumix, a novel framework that decouples the relighting algorithm from temporal synthesis, thereby enabling any image relighting technique to be seamlessly applied to video. Our approach reformulates video relighting into a simple yet effective two-stage process: (1) an artist relights a single reference frame using any preferred image-based technique (e.g., Diffusion Models, physics-based renderers); and (2) a fine-tuned stable video diffusion (SVD) model seamlessly propagates this target illumination throughout the sequence. To ensure temporal coherence and prevent artifacts, we introduce a gated cross-attention mechanism for smooth feature blending and a temporal bootstrapping strategy that harnesses SVD's powerful motion priors. Although trained on synthetic data, ReLumix shows competitive generalization to real-world videos. The method demonstrates significant improvements in visual fidelity, offering a scalable and versatile solution for dynamic lighting control.

Authors:Arshia Yousefi Nezhad, Helia Aghaei, Hedieh Sajedi
Title: PVTAdpNet: Polyp Segmentation using Pyramid vision transformer with a novel Adapter block
Abstract:
Colorectal cancer ranks among the most common and deadly cancers, emphasizing the need for effective early detection and treatment. To address the limitations of traditional colonoscopy, including high miss rates due to polyp variability, we introduce the Pyramid Vision Transformer Adapter Residual Network (PVTAdpNet). This model integrates a U-Net-style encoder-decoder structure with a Pyramid Vision Transformer backbone, novel residual blocks, and adapter-based skip connections. The design enhances feature extraction, dense prediction, and gradient flow, supported by squeeze-and-excitation attention for improved channel-wise feature refinement. PVTAdpNet achieves real-time, accurate polyp segmentation, demonstrating superior performance on benchmark datasets with high mDice and mIoU scores, making it highly suitable for clinical applications. PVTAdpNet obtains a high Dice coefficient of 0.8851 and a mean Intersection over Union (mIoU) of 0.8167 on out-of-distribution polyp datasets. Evaluation of the PolypGen dataset demonstrates PVTAdpNet's capability for real-time, accurate performance within familiar distributions. The source code of our network is available at https://github.com/ayousefinejad/PVTAdpNet.git

Authors:Li Wang, Sudun, Xingjian Zhang, Wenjun Wu, Lei Huang
Title: An Investigation of Batch Normalization in Off-Policy Actor-Critic Algorithms
Abstract:
Batch Normalization (BN) has played a pivotal role in the success of deep learning by improving training stability, mitigating overfitting, and enabling more effective optimization. However, its adoption in deep reinforcement learning (DRL) has been limited due to the inherent non-i.i.d. nature of data and the dynamically shifting distributions induced by the agent's learning process. In this paper, we argue that, despite these challenges, BN retains unique advantages in DRL settings, particularly through its stochasticity and its ability to ease training. When applied appropriately, BN can adapt to evolving data distributions and enhance both convergence speed and final performance. To this end, we conduct a comprehensive empirical study on the use of BN in off-policy actor-critic algorithms, systematically analyzing how different training and evaluation modes impact performance. We further identify failure modes that lead to instability or divergence, analyze their underlying causes, and propose the Mode-Aware Batch Normalization (MA-BN) method with practical actionable recommendations for robust BN integration in DRL pipelines. We also empirically validate that, in RL settings, MA-BN accelerates and stabilizes training, broadens the effective learning rate range, enhances exploration, and reduces overall optimization difficulty. Our code is available at: https://github.com/monster476/ma-bn.git.

Authors:Yucheng Wang, Yifan Hou, Aydin Javadov, Mubashara Akhtar, Mrinmaya Sachan
Title: Compose and Fuse: Revisiting the Foundational Bottlenecks in Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) promise enhanced reasoning by integrating diverse inputs such as text, vision, and audio. Yet cross-modal reasoning remains underexplored, with conflicting reports on whether added modalities help or harm performance. These inconsistencies stem from a lack of controlled evaluation frameworks and analysis of models' internals to isolate when and why modality interactions support or undermine reasoning. We address this gap through a logic-grounded evaluation framework that categorizes multimodal reasoning into six interaction patterns, varying how facts are distributed across modalities and logically combined. Empirically, additional modalities enhance reasoning only when they provide independent and sufficient reasoning paths, while redundant or chained entailment support often hurts performance. Moreover, reasoning degrades in three systematic ways: weaker modalities drag down overall performance, conflicts bias preference toward certain modalities, and joint signals from different modalities fail to be integrated effectively. Therefore, we identify two core failures: task-composition bottleneck, where recognition and reasoning cannot be jointly executed in one pass, and fusion bottleneck, where early integration introduces bias. For further investigation, we find that attention patterns fail to encode fact usefulness, but a simple two-step prompting (recognize then reason) restores performance, confirming the task-composition bottleneck. Moreover, modality identity remains recoverable in early layers, and softening attention in early fusion improves reasoning, highlighting biased fusion as another failure mode. Overall, our findings show that integration, not perception, is the main barrier to multimodal reasoning, suggesting composition-aware training and early fusion control as promising directions.

Authors:Yewang Chen, Junfeng Li, Shuyin Xia, Qinghong Lai, Xinbo Gao, Guoyin Wang, Dongdong Cheng, Yi Liu, Yi Wang
Title: GBSK: Skeleton Clustering via Granular-ball Computing and Multi-Sampling for Large-Scale Data
Abstract:
To effectively handle clustering task for large-scale datasets, we propose a novel scalable skeleton clustering algorithm, namely GBSK, which leverages the granular-ball technique to capture the underlying structure of data. By multi-sampling the dataset and constructing multi-grained granular-balls, GBSK progressively uncovers a statistical "skeleton" -- a spatial abstraction that approximates the essential structure and distribution of the original data. This strategy enables GBSK to dramatically reduce computational overhead while maintaining high clustering accuracy. In addition, we introduce an adaptive version, AGBSK, with simplified parameter settings to enhance usability and facilitate deployment in real-world scenarios. Extensive experiments conducted on standard computing hardware demonstrate that GBSK achieves high efficiency and strong clustering performance on large-scale datasets, including one with up to 100 million instances across 256 dimensions. Our implementation and experimental results are available at: https://github.com/XFastDataLab/GBSK/.

Authors:Xincheng Yao, Chao Shi, Muming Zhao, Guangtao Zhai, Chongyang Zhang
Title: ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning
Abstract:
This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.

Authors:Hangtian Zhao, Xiang Chen, Yizhe Li, Qianhao Wang, Haibo Lu, Fei Gao
Title: FastViDAR: Real-Time Omnidirectional Depth Estimation via Alternative Hierarchical Attention
Abstract:
In this paper we propose FastViDAR, a novel framework that takes four fisheye camera inputs and produces a full $360^\circ$ depth map along with per-camera depth, fusion depth, and confidence estimates. Our main contributions are: (1) We introduce Alternative Hierarchical Attention (AHA) mechanism that efficiently fuses features across views through separate intra-frame and inter-frame windowed self-attention, achieving cross-view feature mixing with reduced overhead. (2) We propose a novel ERP fusion approach that projects multi-view depth estimates to a shared equirectangular coordinate system to obtain the final fusion depth. (3) We generate ERP image-depth pairs using HM3D and 2D3D-S datasets for comprehensive evaluation, demonstrating competitive zero-shot performance on real datasets while achieving up to 20 FPS on NVIDIA Orin NX embedded hardware. Project page: \href{https://3f7dfc.github.io/FastVidar/}{https://3f7dfc.github.io/FastVidar/}

Authors:Yiheng Zhang, Zhuojiang Cai, Mingdao Wang, Meitong Guo, Tianxiao Li, Li Lin, Yuwang Wang
Title: M3DLayout: A Multi-Source Dataset of 3D Indoor Layouts and Structured Descriptions for 3D Generation
Abstract:
In text-driven 3D scene generation, object layout serves as a crucial intermediate representation that bridges high-level language instructions with detailed geometric output. It not only provides a structural blueprint for ensuring physical plausibility but also supports semantic controllability and interactive editing. However, the learning capabilities of current 3D indoor layout generation models are constrained by the limited scale, diversity, and annotation quality of existing datasets. To address this, we introduce M3DLayout, a large-scale, multi-source dataset for 3D indoor layout generation. M3DLayout comprises 15,080 layouts and over 258k object instances, integrating three distinct sources: real-world scans, professional CAD designs, and procedurally generated scenes. Each layout is paired with detailed structured text describing global scene summaries, relational placements of large furniture, and fine-grained arrangements of smaller items. This diverse and richly annotated resource enables models to learn complex spatial and semantic patterns across a wide variety of indoor environments. To assess the potential of M3DLayout, we establish a benchmark using a text-conditioned diffusion model. Experimental results demonstrate that our dataset provides a solid foundation for training layout generation models. Its multi-source composition enhances diversity, notably through the Inf3DLayout subset which provides rich small-object information, enabling the generation of more complex and detailed scenes. We hope that M3DLayout can serve as a valuable resource for advancing research in text-driven 3D scene synthesis.

Authors:Yinyi Wei, Xiao Li
Title: Text-to-Code Generation for Modular Building Layouts in Building Information Modeling
Abstract:
We present Text2MBL, a text-to-code generation framework that generates executable Building Information Modeling (BIM) code directly from textual descriptions of modular building layout (MBL) design. Unlike conventional layout generation approaches that operate in 2D space, Text2MBL produces fully parametric, semantically rich BIM layouts through on-the-fly code instantiation. To address MBLs' unique challenges due to their hierarchical three-tier structure: modules (physical building blocks), units (self-contained dwellings), and rooms (functional spaces), we developed an object-oriented code architecture and fine-tuned large language models to output structured action sequences in code format. To train and evaluate the framework, we curated a dataset of paired descriptions and ground truth layouts drawn from real-world modular housing projects. Performance was assessed using metrics for executable validity, semantic fidelity, and geometric consistency. By tightly unifying natural language understanding with BIM code generation, Text2MBL establishes a scalable pipeline from high-level conceptual design to automation-ready modular construction workflows. Our implementation is available at https://github.com/CI3LAB/Text2MBL.

Authors:Yunjiang Xu, Lingzhi Li, Jin Wang, Yupeng Ouyang, Benyuan Yang
Title: INSTINCT: Instance-Level Interaction Architecture for Query-Based Collaborative Perception
Abstract:
Collaborative perception systems overcome single-vehicle limitations in long-range detection and occlusion scenarios by integrating multi-agent sensory data, improving accuracy and safety. However, frequent cooperative interactions and real-time requirements impose stringent bandwidth constraints. Previous works proves that query-based instance-level interaction reduces bandwidth demands and manual priors, however, LiDAR-focused implementations in collaborative perception remain underdeveloped, with performance still trailing state-of-the-art approaches. To bridge this gap, we propose INSTINCT (INSTance-level INteraCtion ArchiTecture), a novel collaborative perception framework featuring three core components: 1) a quality-aware filtering mechanism for high-quality instance feature selection; 2) a dual-branch detection routing scheme to decouple collaboration-irrelevant and collaboration-relevant instances; and 3) a Cross Agent Local Instance Fusion module to aggregate local hybrid instance features. Additionally, we enhance the ground truth (GT) sampling technique to facilitate training with diverse hybrid instance features. Extensive experiments across multiple datasets demonstrate that INSTINCT achieves superior performance. Specifically, our method achieves an improvement in accuracy 13.23%/33.08% in DAIR-V2X and V2V4Real while reducing the communication bandwidth to 1/281 and 1/264 compared to state-of-the-art methods. The code is available at https://github.com/CrazyShout/INSTINCT.

Authors:Jianshuo Dong, Sheng Guo, Hao Wang, Zhuotao Liu, Tianwei Zhang, Ke Xu, Minlie Huang, Han Qiu
Title: SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents
Abstract:
Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

Authors:Yifeng He, Luning Yang, Christopher Castro Gaw Gonzalo, Hao Chen
Title: TF-Bench: Evaluating Program Semantics Reasoning with Type Inference in System F
Abstract:
Large Language Models (LLMs) are increasingly integrated into the software engineering ecosystem. Their test-time compute (TTC) reasoning capabilities show significant potential for understanding program logic and semantics beyond mere token recognition. However, current benchmarks for code reasoning lack a formal, program-centric deductive framework to ensure sound evaluation, and are incapable of assessing whether models genuinely reason about program semantics or merely exploit superficial associations between natural language and code tokens. To bridge this gap, we introduce TF-Bench, a benchmark designed to evaluate LLM reasoning based on type inference in System F, a task we refer to as program semantics reasoning. By employing verified transformations to remove semantically irrelevant natural language, we construct TF-Bench_pure, a purely semantics-driven variant of TF-Bench. Our analysis reveals substantial limitations in state-of-the-art LLMs, with the best-performing LLM (Claude-3.7-sonnet) achieving only 55.85% accuracy on TF-Bench_pure. Additionally, we propose two novel metrics to assess robustness and the effectiveness of test-time reasoning, underscoring critical limitations in current LLM capabilities and highlighting essential directions for future research.

Authors:Danni Yang, Zhikang Chen, Sen Cui, Mengyue Yang, Ding Li, Abudukelimu Wuerkaixi, Haoxuan Li, Jinke Ren, Mingming Gong
Title: Decentralized Dynamic Cooperation of Personalized Models for Federated Continual Learning
Abstract:
Federated continual learning (FCL) has garnered increasing attention for its ability to support distributed computation in environments with evolving data distributions. However, the emergence of new tasks introduces both temporal and cross-client shifts, making catastrophic forgetting a critical challenge. Most existing works aggregate knowledge from clients into a global model, which may not enhance client performance since irrelevant knowledge could introduce interference, especially in heterogeneous scenarios. Additionally, directly applying decentralized approaches to FCL suffers from ineffective group formation caused by task changes. To address these challenges, we propose a decentralized dynamic cooperation framework for FCL, where clients establish dynamic cooperative learning coalitions to balance the acquisition of new knowledge and the retention of prior learning, thereby obtaining personalized models. To maximize model performance, each client engages in selective cooperation, dynamically allying with others who offer meaningful performance gains. This results in non-overlapping, variable coalitions at each stage of the task. Moreover, we use coalitional affinity game to simulate coalition relationships between clients. By assessing both client gradient coherence and model similarity, we quantify the client benefits derived from cooperation. We also propose a merge-blocking algorithm and a dynamic cooperative evolution algorithm to achieve cooperative and dynamic equilibrium. Comprehensive experiments demonstrate the superiority of our method compared to various baselines. Code is available at: https://github.com/ydn3229/DCFCL.

Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Mingqiang Wu, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: QuantSparse: Comprehensively Compressing Video Diffusion Transformer with Model Quantization and Attention Sparsification
Abstract:
Diffusion transformers exhibit remarkable video generation capability, yet their prohibitive computational and memory costs hinder practical deployment. Model quantization and attention sparsification are two promising directions for compression, but each alone suffers severe performance degradation under aggressive compression. Combining them promises compounded efficiency gains, but naive integration is ineffective. The sparsity-induced information loss exacerbates quantization noise, leading to amplified attention shifts. To address this, we propose \textbf{QuantSparse}, a unified framework that integrates model quantization with attention sparsification. Specifically, we introduce \textit{Multi-Scale Salient Attention Distillation}, which leverages both global structural guidance and local salient supervision to mitigate quantization-induced bias. In addition, we develop \textit{Second-Order Sparse Attention Reparameterization}, which exploits the temporal stability of second-order residuals to efficiently recover information lost under sparsity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves 20.88 PSNR, substantially outperforming the state-of-the-art quantization baseline Q-VDiT (16.85 PSNR), while simultaneously delivering a \textbf{3.68$\times$} reduction in storage and \textbf{1.88$\times$} acceleration in end-to-end inference. Our code will be released in https://github.com/wlfeng0509/QuantSparse.

Authors:Dayu Tan, Ziwei Zhang, Yansan Su, Xin Peng, Yike Dai, Chunhou Zheng, Weimin Zhong
Title: MSD-KMamba: Bidirectional Spatial-Aware Multi-Modal 3D Brain Segmentation via Multi-scale Self-Distilled Fusion Strategy
Abstract:
Numerous CNN-Transformer hybrid models rely on high-complexity global attention mechanisms to capture long-range dependencies, which introduces non-linear computational complexity and leads to significant resource consumption. Although knowledge distillation and sparse attention mechanisms can improve efficiency, they often fall short of delivering the high segmentation accuracy necessary for complex tasks. Balancing model performance with computational efficiency remains a critical challenge. In this work, we propose a novel 3D multi-modal image segmentation framework, termed MSD-KMamba, which integrates bidirectional spatial perception with multi-scale self-distillation. The bidirectional spatial aware branch effectively captures long-range spatial context dependencies across brain regions, while also incorporating a powerful nonlinear feature extraction mechanism that further enhances the model's ability to learn complex and heterogeneous patterns. In addition, the proposed multi-scale self-distilled fusion strategy strengthens hierarchical feature representations and improves the transfer of semantic information at different resolution levels. By jointly leveraging the bidirectional spatial perception branch and the multi-scale self-distilled fusion strategy, our framework effectively mitigates the bottleneck of quadratic computational complexity in volumetric segmentation, while simultaneously addressing the limitation of insufficient global perception. Extensive experiments on multiple standard benchmark datasets demonstrate that MSD-KMamba consistently outperforms state-of-the-art methods in segmentation accuracy, robustness, and generalization, while maintaining high computational efficiency and favorable scalability. The source code of MSD-KMamba is publicly available at https://github.com/daimao-zhang/MSD-KMamba.

Authors:Jue Zhang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: From Reasoning to Answer: Empirical, Attention-Based and Mechanistic Insights into Distilled DeepSeek R1 Models
Abstract:
Large Reasoning Models (LRMs) generate explicit reasoning traces alongside final answers, yet the extent to which these traces influence answer generation remains unclear. In this work, we conduct a three-stage investigation into the interplay between reasoning and answer generation in three distilled DeepSeek R1 models. First, through empirical evaluation, we demonstrate that including explicit reasoning consistently improves answer quality across diverse domains. Second, attention analysis reveals that answer tokens attend substantially to reasoning tokens, with certain mid-layer Reasoning-Focus Heads (RFHs) closely tracking the reasoning trajectory, including self-reflective cues. Third, we apply mechanistic interventions using activation patching to assess the dependence of answer tokens on reasoning activations. Our results show that perturbations to key reasoning tokens can reliably alter the final answers, confirming a directional and functional flow of information from reasoning to answer. These findings deepen our understanding of how LRMs leverage reasoning tokens for answer generation, highlighting the functional role of intermediate reasoning in shaping model outputs. Our data and code are publicly available at \href{https://aka.ms/R2A-code}{this URL}.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Beyond Greedy Exits: Improved Early Exit Decisions for Risk Control and Reliability
Abstract:
Early-Exit Deep Neural Networks enable adaptive inference by allowing prediction at intermediary layers, significantly reducing computational costs and latency. Most of the early exit strategies greedily exit a sample at an intermediary layer if the confidence in class prediction exceeds a predefined threshold that is set using a static validation set. This is problematic as the model might be overconfident in a wrong class. Also, they are not robust to distribution shifts encountered in deployment, which can undermine model trustworthiness and accuracy. To address these challenges, we propose UAT that adapts the threshold for exit decisions using a Multi-Armed Bandit framework, enabling online, unsupervised adjustment of exit decisions. UAT makes decisions based on a new reward function that assesses predictive certainty and its reliability to balance computational efficiency and prediction quality while penalizing unnecessary late exits. We provide guarantees on risk achieved by UAT and validate its performance on diverse tasks spanning vision-language understanding, text generation, and classification. Our framework demonstrates consistent improvements in speedup (1.70-2.10x) with a minimal performance drop (<2%) as compared to full model performance. Our source code is available at https://github.com/Div290/UAT.

Authors:Kristina P. Sinaga, Arjun S. Nair
Title: Calibration Meets Reality: Making Machine Learning Predictions Trustworthy
Abstract:
Post-hoc calibration methods are widely used to improve the reliability of probabilistic predictions from machine learning models. Despite their prevalence, a comprehensive theoretical understanding of these methods remains elusive, particularly regarding their performance across different datasets and model architectures. Input features play a crucial role in shaping model predictions and, consequently, their calibration. However, the interplay between feature quality and calibration performance has not been thoroughly investigated. In this work, we present a rigorous theoretical analysis of post-hoc calibration methods, focusing on Platt scaling and isotonic regression. We derive convergence guarantees, computational complexity bounds, and finite-sample performance metrics for these methods. Furthermore, we explore the impact of feature informativeness on calibration performance through controlled synthetic experiments. Our empirical evaluation spans a diverse set of real-world datasets and model architectures, demonstrating consistent improvements in calibration metrics across various scenarios. By examining calibration performance under varying feature conditions utilizing only informative features versus complete feature spaces including noise dimensions, we provide fundamental insights into the robustness and reliability of different calibration approaches. Our findings offer practical guidelines for selecting appropriate calibration methods based on dataset characteristics and computational constraints, bridging the gap between theoretical understanding and practical implementation in uncertainty quantification. Code and experimental data are available at: https://github.com/Ajwebdevs/calibration-analysis-experiments.

Authors:Fanlong Zeng, Wensheng Gan, Jiayang Wu, Philip S. Yu
Title: Pure Node Selection for Imbalanced Graph Node Classification
Abstract:
The problem of class imbalance refers to an uneven distribution of quantity among classes in a dataset, where some classes are significantly underrepresented compared to others. Class imbalance is also prevalent in graph-structured data. Graph neural networks (GNNs) are typically based on the assumption of class balance, often overlooking the issue of class imbalance. In our investigation, we identified a problem, which we term the Randomness Anomalous Connectivity Problem (RACP), where certain off-the-shelf models are affected by random seeds, leading to a significant performance degradation. To eliminate the influence of random factors in algorithms, we proposed PNS (Pure Node Sampling) to address the RACP in the node synthesis stage. Unlike existing approaches that design specialized algorithms to handle either quantity imbalance or topological imbalance, PNS is a novel plug-and-play module that operates directly during node synthesis to mitigate RACP. Moreover, PNS also alleviates performance degradation caused by abnormal distribution of node neighbors. We conduct a series of experiments to identify what factors are influenced by random seeds. Experimental results demonstrate the effectiveness and stability of our method, which not only eliminates the effect of unfavorable random seeds but also outperforms the baseline across various benchmark datasets with different GNN backbones. Data and code are available at https://github.com/flzeng1/PNS.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Kangli Zi, Qingming Huang
Title: LightFair: Towards an Efficient Alternative for Fair T2I Diffusion via Debiasing Pre-trained Text Encoders
Abstract:
This paper explores a novel lightweight approach LightFair to achieve fair text-to-image diffusion models (T2I DMs) by addressing the adverse effects of the text encoder. Most existing methods either couple different parts of the diffusion model for full-parameter training or rely on auxiliary networks for correction. They incur heavy training or sampling burden and unsatisfactory performance. Since T2I DMs consist of multiple components, with the text encoder being the most fine-tunable and front-end module, this paper focuses on mitigating bias by fine-tuning text embeddings. To validate feasibility, we observe that the text encoder's neutral embedding output shows substantial skewness across image embeddings of various attributes in the CLIP space. More importantly, the noise prediction network further amplifies this imbalance. To finetune the text embedding, we propose a collaborative distance-constrained debiasing strategy that balances embedding distances to improve fairness without auxiliary references. However, mitigating bias can compromise the original generation quality. To address this, we introduce a two-stage text-guided sampling strategy to limit when the debiased text encoder intervenes. Extensive experiments demonstrate that LightFair is effective and efficient. Notably, on Stable Diffusion v1.5, our method achieves SOTA debiasing at just $1/4$ of the training burden, with virtually no increase in sampling burden. The code is available at https://github.com/boyuh/LightFair.

Authors:Cheng Huang, Weizheng Xie, Fan Gao, Yutong Liu, Ruoling Wu, Zeyu Han, Jingxi Qiu, Xiangxiang Wang, Zhenglin Yang, Hao Wang, Yongbin Yu
Title: BioVessel-Net and RetinaMix: Unsupervised Retinal Vessel Segmentation from OCTA Images
Abstract:
Structural changes in retinal blood vessels are critical biomarkers for the onset and progression of glaucoma and other ocular diseases. However, current vessel segmentation approaches largely rely on supervised learning and extensive manual annotations, which are costly, error-prone, and difficult to obtain in optical coherence tomography angiography. Here we present BioVessel-Net, an unsupervised generative framework that integrates vessel biostatistics with adversarial refinement and a radius-guided segmentation strategy. Unlike pixel-based methods, BioVessel-Net directly models vascular structures with biostatistical coherence, achieving accurate and explainable vessel extraction without labeled data or high-performance computing. To support training and evaluation, we introduce RetinaMix, a new benchmark dataset of 2D and 3D OCTA images with high-resolution vessel details from diverse populations. Experimental results demonstrate that BioVessel-Net achieves near-perfect segmentation accuracy across RetinaMix and existing datasets, substantially outperforming state-of-the-art supervised and semi-supervised methods. Together, BioVessel-Net and RetinaMix provide a label-free, computationally efficient, and clinically interpretable solution for retinal vessel analysis, with broad potential for glaucoma monitoring, blood flow modeling, and progression prediction. Code and dataset are available: https://github.com/VikiXie/SatMar8.

Authors:Fanlong Zeng, Wensheng Gan, Philip S. Yu
Title: GraphIFE: Rethinking Graph Imbalance Node Classification via Invariant Learning
Abstract:
The class imbalance problem refers to the disproportionate distribution of samples across different classes within a dataset, where the minority classes are significantly underrepresented. This issue is also prevalent in graph-structured data. Most graph neural networks (GNNs) implicitly assume a balanced class distribution and therefore often fail to account for the challenges introduced by class imbalance, which can lead to biased learning and degraded performance on minority classes. We identify a quality inconsistency problem in synthesized nodes, which leads to suboptimal performance under graph imbalance conditions. To mitigate this issue, we propose GraphIFE (Graph Invariant Feature Extraction), a novel framework designed to mitigate quality inconsistency in synthesized nodes. Our approach incorporates two key concepts from graph invariant learning and introduces strategies to strengthen the embedding space representation, thereby enhancing the model's ability to identify invariant features. Extensive experiments demonstrate the framework's efficiency and robust generalization, as GraphIFE consistently outperforms various baselines across multiple datasets. The code is publicly available at https://github.com/flzeng1/GraphIFE.

Authors:Xiang Tang, Ruotong Li, Xiaopeng Fan
Title: ZeroScene: A Zero-Shot Framework for 3D Scene Generation from a Single Image and Controllable Texture Editing
Abstract:
In the field of 3D content generation, single image scene reconstruction methods still struggle to simultaneously ensure the quality of individual assets and the coherence of the overall scene in complex environments, while texture editing techniques often fail to maintain both local continuity and multi-view consistency. In this paper, we propose a novel system ZeroScene, which leverages the prior knowledge of large vision models to accomplish both single image-to-3D scene reconstruction and texture editing in a zero-shot manner. ZeroScene extracts object-level 2D segmentation and depth information from input images to infer spatial relationships within the scene. It then jointly optimizes 3D and 2D projection losses of the point cloud to update object poses for precise scene alignment, ultimately constructing a coherent and complete 3D scene that encompasses both foreground and background. Moreover, ZeroScene supports texture editing of objects in the scene. By imposing constraints on the diffusion model and introducing a mask-guided progressive image generation strategy, we effectively maintain texture consistency across multiple viewpoints and further enhance the realism of rendered results through Physically Based Rendering (PBR) material estimation. Experimental results demonstrate that our framework not only ensures the geometric and appearance accuracy of generated assets, but also faithfully reconstructs scene layouts and produces highly detailed textures that closely align with text prompts.

Authors:Han Hu, Zhuoran Zheng, Liang Li, Chen Lyu
Title: VAMamba: An Efficient Visual Adaptive Mamba for Image Restoration
Abstract:
Recent Mamba-based image restoration methods have achieved promising results but remain limited by fixed scanning patterns and inefficient feature utilization. Conventional Mamba architectures rely on predetermined paths that cannot adapt to diverse degradations, constraining both restoration performance and computational efficiency. To overcome these limitations, we propose VAMamba, a Visual Adaptive Mamba framework with two key innovations. First, QCLAM(Queue-basedCacheLow-rankAdaptiveMemory)enhancesfeaturelearningthrougha FIFO cache that stores historical representations. Similarity between current LoRA-adapted and cached features guides intelligent fusion, enabling dynamic reuse while effectively controlling memorygrowth.Second, GPS-SS2D(GreedyPathScanSS2D)introducesadaptive scanning. A Vision Transformer generates score maps to estimate pixel importance, and a greedy strategy de termines optimal forward and backward scanning paths. These learned trajectories replace rigid patterns, enabling SS2D to perform targeted feature extraction. The integration of QCLAM and GPS-SS2D allows VAMamba to adaptively focus on degraded regions while maintaining high computational efficiency. Extensive experiments across diverse restoration tasks demonstrate that VAMamba consistently outperforms existing approaches in both restoration quality and efficiency, establishing new benchmarks for adaptive image restoration. Our code is available at https://github.com/WaterHQH/VAMamba.

Authors:Kaicheng Yang, Xun Zhang, Haotong Qin, Yucheng Lin, Kaisen Yang, Xianglong Yan, Yulun Zhang
Title: RobuQ: Pushing DiTs to W1.58A2 via Robust Activation Quantization
Abstract:
Diffusion Transformers (DiTs) have recently emerged as a powerful backbone for image generation, demonstrating superior scalability and performance over U-Net architectures. However, their practical deployment is hindered by substantial computational and memory costs. While Quantization-Aware Training (QAT) has shown promise for U-Nets, its application to DiTs faces unique challenges, primarily due to the sensitivity and distributional complexity of activations. In this work, we identify activation quantization as the primary bottleneck for pushing DiTs to extremely low-bit settings. To address this, we propose a systematic QAT framework for DiTs, named RobuQ. We start by establishing a strong ternary weight (W1.58A4) DiT baseline. Building upon this, we propose RobustQuantizer to achieve robust activation quantization. Our theoretical analyses show that the Hadamard transform can convert unknown per-token distributions into per-token normal distributions, providing a strong foundation for this method. Furthermore, we propose AMPN, the first Activation-only Mixed-Precision Network pipeline for DiTs. This method applies ternary weights across the entire network while allocating different activation precisions to each layer to eliminate information bottlenecks. Through extensive experiments on unconditional and conditional image generation, our RobuQ framework achieves state-of-the-art performance for DiT quantization in sub-4-bit quantization configuration. To the best of our knowledge, RobuQ is the first achieving stable and competitive image generation on large datasets like ImageNet-1K with activations quantized to average 2 bits. The code and models will be available at https://github.com/racoonykc/RobuQ .

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Yang Xiang, Buzhou Tang
Title: Towards Efficient CoT Distillation: Self-Guided Rationale Selector for Better Performance with Fewer Rationales
Abstract:
Chain-of-thought (CoT) distillation aims to enhance small language models' (SLMs) reasoning by transferring multi-step reasoning capability from the larger teacher models. However, existing work underestimates rationale quality, focusing primarily on data quantity, which may transfer noisy or incorrect information to the student model. To address the above issues, we proposed \textbf{M}odel-\textbf{O}riented \textbf{R}ationale \textbf{S}election \textbf{D}istillation (MoRSD), which can discern and select high quality rationales for distillation to improve performance further. We further propose a Rationale Difficulty (RD) metric to measure the ability of the student model to generate the correct answer under a given rationale. Compared to the baseline, we achieved 4.6$\%$ average improvement on seven datasets over three tasks, using fewer rationales by controlling their accuracy, diversity, and difficulty. Our results reveal that a small portion of the high quality rationales can enhance the reasoning ability of student models than the entire dataset. Our method promises to be a possible solution for efficient CoT distillation. Our code will be released in https://github.com/Leon221220/MoRSD.

Authors:Min-Hsuan Yeh, Yixuan Li
Title: Clean First, Align Later: Benchmarking Preference Data Cleaning for Reliable LLM Alignment
Abstract:
Human feedback plays a pivotal role in aligning large language models (LLMs) with human preferences. However, such feedback is often noisy or inconsistent, which can degrade the quality of reward models and hinder alignment. While various automated data cleaning methods have been proposed to mitigate this issue, a systematic evaluation of their effectiveness and generalizability remains lacking. To bridge this gap, we introduce the first comprehensive benchmark for evaluating 13 preference data cleaning methods in the context of LLM alignment. PrefCleanBench offers a standardized protocol to assess cleaning strategies in terms of alignment performance and generalizability across diverse datasets, model architectures, and optimization algorithms. By unifying disparate methods and rigorously comparing them, we uncover key factors that determine the success of data cleaning in alignment tasks. This benchmark lays the groundwork for principled and reproducible approaches to improving LLM alignment through better data quality-highlighting the crucial but underexplored role of data preprocessing in responsible AI development. We release modular implementations of all methods to catalyze further research: https://github.com/deeplearning-wisc/PrefCleanBench.

Authors:Hamidreza Rouzegar, Masoud Makrehchi
Title: The Impact of Role Design in In-Context Learning for Large Language Models
Abstract:
In-context learning (ICL) enables Large Language Models (LLMs) to generate predictions based on prompts without additional fine-tuning. While prompt engineering has been widely studied, the impact of role design within prompts remains underexplored. This study examines the influence of role configurations in zero-shot and few-shot learning scenarios using GPT-3.5 and GPT-4o from OpenAI and Llama2-7b and Llama2-13b from Meta. We evaluate the models' performance across datasets, focusing on tasks like sentiment analysis, text classification, question answering, and math reasoning. Our findings suggest the potential of role-based prompt structuring to enhance LLM performance.

Authors:Jie Yang, Yifan Hu, Kexin Zhang, Luyang Niu, Yushun Dong, Philip S. Yu, Kaize Ding
Title: Revisiting Multivariate Time Series Forecasting with Missing Values
Abstract:
Missing values are common in real-world time series, and multivariate time series forecasting with missing values (MTSF-M) has become a crucial area of research for ensuring reliable predictions. To address the challenge of missing data, current approaches have developed an imputation-then-prediction framework that uses imputation modules to fill in missing values, followed by forecasting on the imputed data. However, this framework overlooks a critical issue: there is no ground truth for the missing values, making the imputation process susceptible to errors that can degrade prediction accuracy. In this paper, we conduct a systematic empirical study and reveal that imputation without direct supervision can corrupt the underlying data distribution and actively degrade prediction accuracy. To address this, we propose a paradigm shift that moves away from imputation and directly predicts from the partially observed time series. We introduce Consistency-Regularized Information Bottleneck (CRIB), a novel framework built on the Information Bottleneck principle. CRIB combines a unified-variate attention mechanism with a consistency regularization scheme to learn robust representations that filter out noise introduced by missing values while preserving essential predictive signals. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of CRIB, which predicts accurately even under high missing rates. Our code is available in https://github.com/Muyiiiii/CRIB.

Authors:Junyi Wu, Jiachen Tao, Haoxuan Wang, Gaowen Liu, Ramana Rao Kompella, Yan Yan
Title: Orientation-anchored Hyper-Gaussian for 4D Reconstruction from Casual Videos
Abstract:
We present Orientation-anchored Gaussian Splatting (OriGS), a novel framework for high-quality 4D reconstruction from casually captured monocular videos. While recent advances extend 3D Gaussian Splatting to dynamic scenes via various motion anchors, such as graph nodes or spline control points, they often rely on low-rank assumptions and fall short in modeling complex, region-specific deformations inherent to unconstrained dynamics. OriGS addresses this by introducing a hyperdimensional representation grounded in scene orientation. We first estimate a Global Orientation Field that propagates principal forward directions across space and time, serving as stable structural guidance for dynamic modeling. Built upon this, we propose Orientation-aware Hyper-Gaussian, a unified formulation that embeds time, space, geometry, and orientation into a coherent probabilistic state. This enables inferring region-specific deformation through principled conditioned slicing, adaptively capturing diverse local dynamics in alignment with global motion intent. Experiments demonstrate the superior reconstruction fidelity of OriGS over mainstream methods in challenging real-world dynamic scenes.

Authors:Jiang-Xin Shi, Wen-Da Wei, Jin-Fei Qi, Xuanyu Chen, Tong Wei, Yu-Feng Li
Title: Memory-Efficient Fine-Tuning via Low-Rank Activation Compression
Abstract:
The parameter-efficient fine-tuning paradigm has garnered significant attention with the advancement of foundation models. Although numerous methods have been proposed to reduce the number of trainable parameters, their substantial memory overhead remains a critical bottleneck that hinders practical deployment. In this paper, we observe that model activations constitute a major source of memory consumption, especially under large batch sizes and long context lengths; however, the rank of the activations remains consistently low. Motivated by this insight, we propose a memory-efficient fine-tuning approach Low-Rank Activation Compression (LoRAct). Unlike prior work, LoRAct provides a more flexible and versatile compressing strategy that can be applied online during the forward pass without the need for any calibration data. Moreover, LoRAct incorporates a novel sampling-based orthogonal decomposition algorithm specifically designed for low-rank matrices, offering improved computational efficiency and a tighter error bound compared to the widely used RSVD. Experiments on both vision and language tasks demonstrate the effectiveness of LoRAct. Notably, LoRAct further reduces activation memory by approximately 80% in comparison with the widely adopted LoRA method, while maintaining competitive performance. The source code is available at https://github.com/shijxcs/meft.

Authors:Mohammad Hossein Sameti, Amir M. Mansourian, Arash Marioriyad, Soheil Fadaee Oshyani, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah
Title: No Concept Left Behind: Test-Time Optimization for Compositional Text-to-Image Generation
Abstract:
Despite recent advances in text-to-image (T2I) models, they often fail to faithfully render all elements of complex prompts, frequently omitting or misrepresenting specific objects and attributes. Test-time optimization has emerged as a promising approach to address this limitation by refining generation without the need for retraining. In this paper, we propose a fine-grained test-time optimization framework that enhances compositional faithfulness in T2I generation. Unlike most of prior approaches that rely solely on a global image/text similarity score, our method decomposes the input prompt into semantic concepts and evaluates alignment at both the global and concept levels. A fine-grained variant of CLIP is used to compute concept-level correspondence, producing detailed feedback on missing or inaccurate concepts. This feedback is fed into an iterative prompt refinement loop, enabling the large language model to propose improved prompts. Experiments on DrawBench and CompBench prompts demonstrate that our method significantly improves concept coverage and human-judged faithfulness over both standard test-time optimization and the base T2I model. Code is available at: https://github.com/AmirMansurian/NoConceptLeftBehind

Authors:Tharindu Ekanayake, Constantino Álvarez Casado, Miguel Bordallo López
Title: 3DPCNet: Pose Canonicalization for Robust Viewpoint-Invariant 3D Kinematic Analysis from Monocular RGB cameras
Abstract:
Monocular 3D pose estimators produce camera-centered skeletons, creating view-dependent kinematic signals that complicate comparative analysis in applications such as health and sports science. We present 3DPCNet, a compact, estimator-agnostic module that operates directly on 3D joint coordinates to rectify any input pose into a consistent, body-centered canonical frame. Its hybrid encoder fuses local skeletal features from a graph convolutional network with global context from a transformer via a gated cross-attention mechanism. From this representation, the model predicts a continuous 6D rotation that is mapped to an $SO(3)$ matrix to align the pose. We train the model in a self-supervised manner on the MM-Fi dataset using synthetically rotated poses, guided by a composite loss ensuring both accurate rotation and pose reconstruction. On the MM-Fi benchmark, 3DPCNet reduces the mean rotation error from over 20$^{\circ}$ to 3.4$^{\circ}$ and the Mean Per Joint Position Error from ~64 mm to 47 mm compared to a geometric baseline. Qualitative evaluations on the TotalCapture dataset further demonstrate that our method produces acceleration signals from video that show strong visual correspondence to ground-truth IMU sensor data, confirming that our module removes viewpoint variability to enable physically plausible motion analysis.

Authors:Sahithya Ravi, Aditya Chinchure, Raymond T. Ng, Leonid Sigal, Vered Shwartz
Title: SPIKE-RL: Video-LLMs meet Bayesian Surprise
Abstract:
Real-world videos often show routine activities punctuated by memorable, surprising events. However, most Video-LLMs process videos by sampling frames uniformly, likely missing critical moments that define a video's narrative. We introduce SPIKE, an inference-time framework that quantifies Bayesian Surprise as the belief update triggered by new visual evidence in the video stream, identifying moments where new visual evidence conflicts with prior beliefs. SPIKE effectively localizes surprise in videos, strongly correlated with humans on positive (FunQA) and negative (Oops!) surprise benchmarks. Since the beliefs of zero-shot Video-LLMs are often suboptimal, we develop SPIKE-RL, which leverages GRPO to optimize belief hypotheses based on a reward signal from the video caption. SPIKE and SPIKE-RL guide query-agnostic surprise-weighted frame sampling, which allocates more frames to interesting moments in the video. With this strategy, we achieve consistent performance gains on five downstream benchmarks over uniform sampling. By enabling Video-LLMs to track beliefs and register surprise, our work paves the way for more robust models that can revise their understanding in response to new information.

Authors:Rajaa El Hamdani, Samy Haffoudhi, Nils Holzenberger, Fabian Suchanek, Thomas Bonald, Fragkiskos D. Malliaros
Title: Retrieval-Constrained Decoding Reveals Underestimated Parametric Knowledge in Language Models
Abstract:
Language models (LMs) encode substantial factual knowledge, but often produce answers judged as incorrect. We hypothesize that many of these answers are actually correct, but are expressed in alternative surface forms that are dismissed due to an overly strict evaluation, leading to an underestimation of models' parametric knowledge. We propose Retrieval-Constrained Decoding (RCD), a decoding strategy that restricts model outputs to unique surface forms. We introduce YAGO-QA, a dataset of 19,137 general knowledge questions. Evaluating open-source LMs from 135M to 70B parameters, we show that standard decoding undervalues their knowledge. For instance, Llama-3.1-70B scores only 32.3% F1 with vanilla decoding but 46.0% with RCD. Similarly, Llama-3.1-8B reaches 33.0% with RCD, outperforming the larger model under vanilla decoding. We publicly share the code and dataset at https://github.com/Rajjaa/disambiguated-LLM.

Authors:Takehiko Ohkawa, Jihyun Lee, Shunsuke Saito, Jason Saragih, Fabian Prado, Yichen Xu, Shoou-I Yu, Ryosuke Furuta, Yoichi Sato, Takaaki Shiratori
Title: Generative Modeling of Shape-Dependent Self-Contact Human Poses
Abstract:
One can hardly model self-contact of human poses without considering underlying body shapes. For example, the pose of rubbing a belly for a person with a low BMI leads to penetration of the hand into the belly for a person with a high BMI. Despite its relevance, existing self-contact datasets lack the variety of self-contact poses and precise body shapes, limiting conclusive analysis between self-contact poses and shapes. To address this, we begin by introducing the first extensive self-contact dataset with precise body shape registration, Goliath-SC, consisting of 383K self-contact poses across 130 subjects. Using this dataset, we propose generative modeling of self-contact prior conditioned by body shape parameters, based on a body-part-wise latent diffusion with self-attention. We further incorporate this prior into single-view human pose estimation while refining estimated poses to be in contact. Our experiments suggest that shape conditioning is vital to the successful modeling of self-contact pose distribution, hence improving single-view pose estimation in self-contact.

Authors:Wenhang Shi, Yiren Chen, Shuqing Bian, Xinyi Zhang, Kai Tang, Pengfei Hu, Zhe Zhao, Wei Lu, Xiaoyong Du
Title: No Loss, No Gain: Gated Refinement and Adaptive Compression for Prompt Optimization
Abstract:
Prompt engineering is crucial for leveraging the full potential of large language models (LLMs). While automatic prompt optimization offers a scalable alternative to costly manual design, generating effective prompts remains challenging. Existing methods often struggle to stably generate improved prompts, leading to low efficiency, and overlook that prompt optimization easily gets trapped in local optima. Addressing this, we propose GRACE, a framework that integrates two synergistic strategies: Gated Refinement and Adaptive Compression, achieving Efficient prompt optimization. The gated refinement strategy introduces a feedback regulation gate and an update rejection gate, which refine update signals to produce stable and effective prompt improvements. When optimization stagnates, the adaptive compression strategy distills the prompt's core concepts, restructuring the optimization trace and opening new paths. By strategically introducing information loss through refinement and compression, GRACE delivers substantial gains in performance and efficiency. In extensive experiments on 11 tasks across three practical domains, including BIG-Bench Hard (BBH), domain-specific, and general NLP tasks, GRACE achieves significant average relative performance improvements of 4.7%, 4.4% and 2.7% over state-of-the-art methods, respectively. Further analysis shows that GRACE achieves these gains using only 25% of the prompt generation budget required by prior methods, highlighting its high optimization efficiency and low computational overhead. Our code is available at https://github.com/Eric8932/GRACE.

Authors:Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao
Title: Graph Your Own Prompt
Abstract:
We propose Graph Consistency Regularization (GCR), a novel framework that injects relational graph structures, derived from model predictions, into the learning process to promote class-aware, semantically meaningful feature representations. Functioning as a form of self-prompting, GCR enables the model to refine its internal structure using its own outputs. While deep networks learn rich representations, these often capture noisy inter-class similarities that contradict the model's predicted semantics. GCR addresses this issue by introducing parameter-free Graph Consistency Layers (GCLs) at arbitrary depths. Each GCL builds a batch-level feature similarity graph and aligns it with a global, class-aware masked prediction graph, derived by modulating softmax prediction similarities with intra-class indicators. This alignment enforces that feature-level relationships reflect class-consistent prediction behavior, acting as a semantic regularizer throughout the network. Unlike prior work, GCR introduces a multi-layer, cross-space graph alignment mechanism with adaptive weighting, where layer importance is learned from graph discrepancy magnitudes. This allows the model to prioritize semantically reliable layers and suppress noisy ones, enhancing feature quality without modifying the architecture or training procedure. GCR is model-agnostic, lightweight, and improves semantic structure across various networks and datasets. Experiments show that GCR promotes cleaner feature structure, stronger intra-class cohesion, and improved generalization, offering a new perspective on learning from prediction structure. [Project website](https://darcyddx.github.io/gcr/) [Code](https://github.com/Darcyddx/graph-prompt)

Authors:Zhaohua Zhang, Jianhuan Zhuo, Muxi Chen, Chenchen Zhao, Wenyu Jiang, Tianwen Jiang, Mingyang Chen, Yu Tang, Qiuyong Xiao, Jihong Zhang, Zhixun Su
Title: GRAPE: Let GPRO Supervise Query Rewriting by Ranking for Retrieval
Abstract:
The CLIP model has become a cornerstone of large-scale retrieval systems by aligning text and image data in a unified embedding space. Despite its simplicity and efficiency, CLIP struggles when applied to tasks whose input distributions diverge from its training corpus, such as queries with multilingual, long-form, or multimodal differences. To avoid costly retraining, existing methods mainly adopt query-rewriting strategies with large language models (LLMs), aiming to mitigate distribution gaps at the query level. However, due to the lack of supervision signals, LLMs fail to generate the optimal one that fits the training distribution. We address this challenge with GRAPE (Grouped Ranking-Aware Policy Optimization Enhancement), a plug-and-play enhancement approach that incorporates ranking signals into retrieval-guided query rewriting with LLMs. Intuitively, GRAPE proposes to leverage GRPO to bridge distributional differences -- including length, multilingual, and modality shifts -- by transforming queries into forms better aligned with the retriever's training distribution. However, our preliminary experiment finds that naively finetuning LLM with similarity scores can lead to score inflation, where nearly all candidates are assigned unexpectedly high scores regardless of their true relevance. To address score inflation, we propose a corpus-relative ranking-based reward, which explicitly aligns optimization with ranking metrics while suppressing spurious score inflation. Extensive experiments demonstrate that GRAPE consistently improves retrieval performance under distributional shifts -- including multilingual differences (Flickr30k-CN, CVLUE, XM3600), length differences (Wikipedia), and multimodal differences (CIRR) -- achieving an average improvement of 4.9\% in Recall\@10. The code is available at https://github.com/Chinese0123456/GRAPE.git

Authors:Wei Zhou, Guoliang Li, Haoyu Wang, Yuxing Han, Xufei Wu, Fan Wu, Xuanhe Zhou
Title: PARROT: A Benchmark for Evaluating LLMs in Cross-System SQL Translation
Abstract:
Large language models (LLMS) have shown increasing effectiveness in Text-to-SQL tasks. However, another closely related problem, Cross-System SQL Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database system (e.g., MySQL) into its equivalent one for another system (e.g., ClickHouse), is of great practical importance but remains underexplored. Existing SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) focus on a limited set of database systems (often just SQLite) and (2) cannot capture many system-specific SQL dialects (e.g., customized functions, data types, and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises 598 translation pairs from 38 open-source benchmarks and real-world business services, specifically prepared to challenge system-specific SQL understanding (e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide multiple benchmark variants, including PARROT-Diverse with 28,003 translations (for extensive syntax testing) and PARROT-Simple with 5,306 representative samples (for focused stress testing), covering 22 production-grade database systems. To promote future research, we release a public leaderboard and source code at: https://code4db.github.io/parrot-bench/.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Space Robotics Bench: Robot Learning Beyond Earth
Abstract:
The growing ambition for space exploration demands robust autonomous systems that can operate in unstructured environments under extreme extraterrestrial conditions. The adoption of robot learning in this domain is severely hindered by the prohibitive cost of technology demonstrations and the limited availability of data. To bridge this gap, we introduce the Space Robotics Bench, an open-source simulation framework for robot learning in space. It offers a modular architecture that integrates on-demand procedural generation with massively parallel simulation environments to support the creation of vast and diverse training distributions for learning-based agents. To ground research and enable direct comparison, the framework includes a comprehensive suite of benchmark tasks that span a wide range of mission-relevant scenarios. We establish performance baselines using standard reinforcement learning algorithms and present a series of experimental case studies that investigate key challenges in generalization, end-to-end learning, adaptive control, and sim-to-real transfer. Our results reveal insights into the limitations of current methods and demonstrate the utility of the framework in producing policies capable of real-world operation. These contributions establish the Space Robotics Bench as a valuable resource for developing, benchmarking, and deploying the robust autonomous systems required for the final frontier.

Authors:Siheng Wang, Zhengdao Li, Yanshu Li, Canran Xiao, Haibo Zhan, Zhengtao Yao, Xuzhi Zhang, Jiale Kang, Linshan Li, Weiming Liu, Zhikang Dong, Jifeng Shen, Junhao Dong, Qiang Sun, Piotr Koniusz
Title: C3-OWD: A Curriculum Cross-modal Contrastive Learning Framework for Open-World Detection
Abstract:
Object detection has advanced significantly in the closed-set setting, but real-world deployment remains limited by two challenges: poor generalization to unseen categories and insufficient robustness under adverse conditions. Prior research has explored these issues separately: visible-infrared detection improves robustness but lacks generalization, while open-world detection leverages vision-language alignment strategy for category diversity but struggles under extreme environments. This trade-off leaves robustness and diversity difficult to achieve simultaneously. To mitigate these issues, we propose \textbf{C3-OWD}, a curriculum cross-modal contrastive learning framework that unifies both strengths. Stage~1 enhances robustness by pretraining with RGBT data, while Stage~2 improves generalization via vision-language alignment. To prevent catastrophic forgetting between two stages, we introduce an Exponential Moving Average (EMA) mechanism that theoretically guarantees preservation of pre-stage performance with bounded parameter lag and function consistency. Experiments on FLIR, OV-COCO, and OV-LVIS demonstrate the effectiveness of our approach: C3-OWD achieves $80.1$ AP$^{50}$ on FLIR, $48.6$ AP$^{50}_{\text{Novel}}$ on OV-COCO, and $35.7$ mAP$_r$ on OV-LVIS, establishing competitive performance across both robustness and diversity evaluations. Code available at: https://github.com/justin-herry/C3-OWD.git.

Authors:Hao Liu, Yongjie Zheng, Yuhan Kang, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: Balanced Diffusion-Guided Fusion for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based techniques for the analysis of multimodal remote sensing data have become popular due to their ability to effectively integrate complementary spatial, spectral, and structural information from different sensors. Recently, denoising diffusion probabilistic models (DDPMs) have attracted attention in the remote sensing community due to their powerful ability to capture robust and complex spatial-spectral distributions. However, pre-training multimodal DDPMs may result in modality imbalance, and effectively leveraging diffusion features to guide complementary diversity feature extraction remains an open question. To address these issues, this paper proposes a balanced diffusion-guided fusion (BDGF) framework that leverages multimodal diffusion features to guide a multi-branch network for land-cover classification. Specifically, we propose an adaptive modality masking strategy to encourage the DDPMs to obtain a modality-balanced rather than spectral image-dominated data distribution. Subsequently, these diffusion features hierarchically guide feature extraction among CNN, Mamba, and transformer networks by integrating feature fusion, group channel attention, and cross-attention mechanisms. Finally, a mutual learning strategy is developed to enhance inter-branch collaboration by aligning the probability entropy and feature similarity of individual subnetworks. Extensive experiments on four multimodal remote sensing datasets demonstrate that the proposed method achieves superior classification performance. The code is available at https://github.com/HaoLiu-XDU/BDGF.

Authors:Yike Zhu, Boyi Kang, Ziqian Wang, Xingchen Li, Zihan Zhang, Wenjie Li, Longshuai Xiao, Wei Xue, Lei Xie
Title: MeanFlowSE: One-Step Generative Speech Enhancement via MeanFlow
Abstract:
Speech enhancement (SE) recovers clean speech from noisy signals and is vital for applications such as telecommunications and automatic speech recognition (ASR). While generative approaches achieve strong perceptual quality, they often rely on multi-step sampling (diffusion/flow-matching) or large language models, limiting real-time deployment. To mitigate these constraints, we present MeanFlowSE, a one-step generative SE framework. It adopts MeanFlow to predict an average-velocity field for one-step latent refinement and conditions the model on self-supervised learning (SSL) representations rather than VAE latents. This design accelerates inference and provides robust acoustic-semantic guidance during training. In the Interspeech 2020 DNS Challenge blind test set and simulated test set, MeanFlowSE attains state-of-the-art (SOTA) level perceptual quality and competitive intelligibility while significantly lowering both real-time factor (RTF) and model size compared with recent generative competitors, making it suitable for practical use. The code will be released upon publication at https://github.com/Hello3orld/MeanFlowSE.

Authors:Minsun Jeon, Simon S. Woo
Title: Seeing Through the Blur: Unlocking Defocus Maps for Deepfake Detection
Abstract:
The rapid advancement of generative AI has enabled the mass production of photorealistic synthetic images, blurring the boundary between authentic and fabricated visual content. This challenge is particularly evident in deepfake scenarios involving facial manipulation, but also extends to broader AI-generated content (AIGC) cases involving fully synthesized scenes. As such content becomes increasingly difficult to distinguish from reality, the integrity of visual media is under threat. To address this issue, we propose a physically interpretable deepfake detection framework and demonstrate that defocus blur can serve as an effective forensic signal. Defocus blur is a depth-dependent optical phenomenon that naturally occurs in camera-captured images due to lens focus and scene geometry. In contrast, synthetic images often lack realistic depth-of-field (DoF) characteristics. To capture these discrepancies, we construct a defocus blur map and use it as a discriminative feature for detecting manipulated content. Unlike RGB textures or frequency-domain signals, defocus blur arises universally from optical imaging principles and encodes physical scene structure. This makes it a robust and generalizable forensic cue. Our approach is supported by three in-depth feature analyses, and experimental results confirm that defocus blur provides a reliable and interpretable cue for identifying synthetic images. We aim for our defocus-based detection pipeline and interpretability tools to contribute meaningfully to ongoing research in media forensics. The implementation is publicly available at: https://github.com/irissun9602/Defocus-Deepfake-Detection

Authors:Wonje Jeung, Sangyeon Yoon, Yoonjun Cho, Dongjae Jeon, Sangwoo Shin, Hyesoo Hong, Albert No
Title: A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models
Abstract:
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.

Authors:Francesco Marchiori, Rohan Sinha, Christopher Agia, Alexander Robey, George J. Pappas, Mauro Conti, Marco Pavone
Title: Preventing Robotic Jailbreaking via Multimodal Domain Adaptation
Abstract:
Large Language Models (LLMs) and Vision-Language Models (VLMs) are increasingly deployed in robotic environments but remain vulnerable to jailbreaking attacks that bypass safety mechanisms and drive unsafe or physically harmful behaviors in the real world. Data-driven defenses such as jailbreak classifiers show promise, yet they struggle to generalize in domains where specialized datasets are scarce, limiting their effectiveness in robotics and other safety-critical contexts. To address this gap, we introduce J-DAPT, a lightweight framework for multimodal jailbreak detection through attention-based fusion and domain adaptation. J-DAPT integrates textual and visual embeddings to capture both semantic intent and environmental grounding, while aligning general-purpose jailbreak datasets with domain-specific reference data. Evaluations across autonomous driving, maritime robotics, and quadruped navigation show that J-DAPT boosts detection accuracy to nearly 100% with minimal overhead. These results demonstrate that J-DAPT provides a practical defense for securing VLMs in robotic applications. Additional materials are made available at: https://j-dapt.github.io.

Authors:Atakan Topaloglu, Kunyi Li, Michael Niemeyer, Nassir Navab, A. Murat Tekalp, Federico Tombari
Title: OracleGS: Grounding Generative Priors for Sparse-View Gaussian Splatting
Abstract:
Sparse-view novel view synthesis is fundamentally ill-posed due to severe geometric ambiguity. Current methods are caught in a trade-off: regressive models are geometrically faithful but incomplete, whereas generative models can complete scenes but often introduce structural inconsistencies. We propose OracleGS, a novel framework that reconciles generative completeness with regressive fidelity for sparse view Gaussian Splatting. Instead of using generative models to patch incomplete reconstructions, our "propose-and-validate" framework first leverages a pre-trained 3D-aware diffusion model to synthesize novel views to propose a complete scene. We then repurpose a multi-view stereo (MVS) model as a 3D-aware oracle to validate the 3D uncertainties of generated views, using its attention maps to reveal regions where the generated views are well-supported by multi-view evidence versus where they fall into regions of high uncertainty due to occlusion, lack of texture, or direct inconsistency. This uncertainty signal directly guides the optimization of a 3D Gaussian Splatting model via an uncertainty-weighted loss. Our approach conditions the powerful generative prior on multi-view geometric evidence, filtering hallucinatory artifacts while preserving plausible completions in under-constrained regions, outperforming state-of-the-art methods on datasets including Mip-NeRF 360 and NeRF Synthetic.

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Le Nguyen, Tharindu Ekanayake, Manuel Lage Cañellas, Nhi Nguyen, Miguel Bordallo López
Title: LiDAR-based Human Activity Recognition through Laplacian Spectral Analysis
Abstract:
Human Activity Recognition supports applications in healthcare, manufacturing, and human-machine interaction. LiDAR point clouds offer a privacy-preserving alternative to cameras and are robust to illumination. We propose a HAR method based on graph spectral analysis. Each LiDAR frame is mapped to a proximity graph (epsilon-graph) and the Laplacian spectrum is computed. Eigenvalues and statistics of eigenvectors form pose descriptors, and temporal statistics over sliding windows yield fixed vectors for classification with support vector machines and random forests. On the MM-Fi dataset with 40 subjects and 27 activities, under a strict subject-independent protocol, the method reaches 94.4% accuracy on a 13-class rehabilitation set and 90.3% on all 27 activities. It also surpasses the skeleton-based baselines reported for MM-Fi. The contribution is a compact and interpretable feature set derived directly from point cloud geometry that provides an accurate and efficient alternative to end-to-end deep learning.

Authors:Shamir Matan, Elhadad Osher, Nageris Ben, Mirsky Reuth
Title: Online Dynamic Goal Recognition in Gym Environments
Abstract:
Goal Recognition (GR) is the task of inferring an agent's intended goal from partial observations of its behavior, typically in an online and one-shot setting. Despite recent advances in model-free GR, particularly in applications such as human-robot interaction, surveillance, and assistive systems, the field remains fragmented due to inconsistencies in benchmarks, domains, and evaluation protocols. To address this, we introduce gr-libs (https://github.com/MatanShamir1/gr_libs) and gr-envs (https://github.com/MatanShamir1/gr_envs), two complementary open-source frameworks that support the development, evaluation, and comparison of GR algorithms in Gym-compatible environments. gr-libs includes modular implementations of MDP-based GR baselines, diagnostic tools, and evaluation utilities. gr-envs provides a curated suite of environments adapted for dynamic and goal-directed behavior, along with wrappers that ensure compatibility with standard reinforcement learning toolkits. Together, these libraries offer a standardized, extensible, and reproducible platform for advancing GR research. Both packages are open-source and available on GitHub and PyPI.

Authors:Bingshuai Liu, Ante Wang, Zijun Min, Liang Yao, Haibo Zhang, Yang Liu, Anxiang Zeng, Jinsong Su
Title: SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Abstract:
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL

Authors:Ye Chen, Zichen Zhou, Jianyu Dou, Te Cui, Yi Yang, Yufeng Yue
Title: GLUE: Global-Local Unified Encoding for Imitation Learning via Key-Patch Tracking
Abstract:
In recent years, visual representation learning has gained widespread attention in robotic imitation learning. However, in complex Out-of-Distribution(OOD) settings characterized by clutter and occlusion, the attention of global visual representations can be diluted or interfered, leading to degraded policy performance. The invariance of local representations for task-relevant objects offers a solution. By efficiently utilizing these local representations, training and testing data can be mapped to a more similar feature space, thereby mitigating the covariate shift problem. Accordingly, we propose GLUE, a global-local unified encoding framework for imitation learning based on key-patch tracking. GLUE selects and tracks key-patches as critical local representations by employing a text-guided mechanism. It features a novel fusion framework where global patch features query local patches to distill essential information, yielding fine-grained local features with low heterogeneity relative to the global context. This fused representation steers the robot's visual attention toward task-relevant objects and preserves precise global context, which together align the training and testing distributions into a similar and task-informative feature space, ultimately enhancing the robustness of the imitation learning policy. Experiments demonstrate that GLUE achieves strong performance across diverse tasks in both simulation and real-world settings, outperforming the strongest baseline by 17.6% in simulation, 36.3% in real-world environments, and 58.3% on real-world generalization settings. The project website of GLUE is available at https://GLUE666.github.io/.

Authors:Wenhao Zhang, Shao Zhang, Xihuai Wang, Yang Li, Ying Wen
Title: Towards Monotonic Improvement in In-Context Reinforcement Learning
Abstract:
In-Context Reinforcement Learning (ICRL) has emerged as a promising paradigm for developing agents that can rapidly adapt to new tasks by leveraging past experiences as context, without updating their parameters. Recent approaches train large sequence models on monotonic policy improvement data from online RL, aiming to a continue improved testing time performance. However, our experimental analysis reveals a critical flaw: these models cannot show a continue improvement like the training data during testing time. Theoretically, we identify this phenomenon as Contextual Ambiguity, where the model's own stochastic actions can generate an interaction history that misleadingly resembles that of a sub-optimal policy from the training data, initiating a vicious cycle of poor action selection. To resolve the Contextual Ambiguity, we introduce Context Value into training phase and propose Context Value Informed ICRL (CV-ICRL). CV-ICRL use Context Value as an explicit signal representing the ideal performance theoretically achievable by a policy given the current context. As the context expands, Context Value could include more task-relevant information, and therefore the ideal performance should be non-decreasing. We prove that the Context Value tightens the lower bound on the performance gap relative to an ideal, monotonically improving policy. We fruther propose two methods for estimating Context Value at both training and testing time. Experiments conducted on the Dark Room and Minigrid testbeds demonstrate that CV-ICRL effectively mitigates performance degradation and improves overall ICRL abilities across various tasks and environments. The source code and data of this paper are available at https://github.com/Bluixe/towards_monotonic_improvement .

Authors:Haorui Yu, Ramon Ruiz-Dolz, Qiufeng Yi
Title: A Structured Framework for Evaluating and Enhancing Interpretive Capabilities of Multimodal LLMs in Culturally Situated Tasks
Abstract:
This study aims to test and evaluate the capabilities and characteristics of current mainstream Visual Language Models (VLMs) in generating critiques for traditional Chinese painting. To achieve this, we first developed a quantitative framework for Chinese painting critique. This framework was constructed by extracting multi-dimensional evaluative features covering evaluative stance, feature focus, and commentary quality from human expert critiques using a zero-shot classification model. Based on these features, several representative critic personas were defined and quantified. This framework was then employed to evaluate selected VLMs such as Llama, Qwen, or Gemini. The experimental design involved persona-guided prompting to assess the VLM's ability to generate critiques from diverse perspectives. Our findings reveal the current performance levels, strengths, and areas for improvement of VLMs in the domain of art critique, offering insights into their potential and limitations in complex semantic understanding and content generation tasks. The code used for our experiments can be publicly accessed at: https://github.com/yha9806/VULCA-EMNLP2025.

Authors:Xiaowen Ma, Shuning Ge, Fan Yang, Xiangyu Li, Yun Chen, Mengting Ma, Wei Zhang, Zhipeng Liu
Title: TimeExpert: Boosting Long Time Series Forecasting with Temporal Mix of Experts
Abstract:
Transformer-based architectures dominate time series modeling by enabling global attention over all timestamps, yet their rigid 'one-size-fits-all' context aggregation fails to address two critical challenges in real-world data: (1) inherent lag effects, where the relevance of historical timestamps to a query varies dynamically; (2) anomalous segments, which introduce noisy signals that degrade forecasting accuracy. To resolve these problems, we propose the Temporal Mix of Experts (TMOE), a novel attention-level mechanism that reimagines key-value (K-V) pairs as local experts (each specialized in a distinct temporal context) and performs adaptive expert selection for each query via localized filtering of irrelevant timestamps. Complementing this local adaptation, a shared global expert preserves the Transformer's strength in capturing long-range dependencies. We then replace the vanilla attention mechanism in popular time-series Transformer frameworks (i.e., PatchTST and Timer) with TMOE, without extra structural modifications, yielding our specific version TimeExpert and general version TimeExpert-G. Extensive experiments on seven real-world long-term forecasting benchmarks demonstrate that TimeExpert and TimeExpert-G outperform state-of-the-art methods. Code is available at https://github.com/xwmaxwma/TimeExpert.

Authors:Donghao Zhang, Yimin Chen, Kauê TN Duarte, Taha Aslan, Mohamed AlShamrani, Brij Karmur, Yan Wan, Shengcai Chen, Bo Hu, Bijoy K Menon, Wu Qiu
Title: Benchmarking DINOv3 for Multi-Task Stroke Analysis on Non-Contrast CT
Abstract:
Non-contrast computed tomography (NCCT) is essential for rapid stroke diagnosis but is limited by low image contrast and signal to noise ratio. We address this challenge by leveraging DINOv3, a state-of-the-art self-supervised vision transformer, to generate powerful feature representations for a comprehensive set of stroke analysis tasks. Our evaluation encompasses infarct and hemorrhage segmentation, anomaly classification (normal vs. stroke and normal vs. infarct vs. hemorrhage), hemorrhage subtype classification (EDH, SDH, SAH, IPH, IVH), and dichotomized ASPECTS classification (<=6 vs. >6) on multiple public and private datasets. This study establishes strong benchmarks for these tasks and demonstrates the potential of advanced self-supervised models to improve automated stroke diagnosis from NCCT, providing a clear analysis of both the advantages and current constraints of the approach. The code is available at https://github.com/Zzz0251/DINOv3-stroke.

Authors:Haotian Liu, Shuo Wang, Hongteng Xu
Title: C$^2$GSPG: Confidence-calibrated Group Sequence Policy Gradient towards Self-aware Reasoning
Abstract:
Reinforcement Learning (RL) methods, exemplified by Group Relative Policy Optimization (GRPO) and its variants, play a central role in developing reasoning models. However, these methods often suffer from a critical overconfidence issue, which prevents them from achieving self-aware reasoning models. In this study, we propose a simple yet effective confidence-calibration group sequence policy gradient method, called C$^2$GSPG, which simultaneously enhances reasoning performance while suppressing overconfidence. In principle, we propose a Group Sequence Policy Gradient (GSPG) framework for learning reasoning models, which eliminates the token-level bias commonly appearing in GRPO and its variants. In this framework, we define the model confidence for each reasoning problem using the normalized sequence-level probability, and then apply a cross-entropy regularizer to calibrate the model confidence to the sequence's reward. We demonstrate that the confidence calibration regularizer and GSPG are collaborative for binary rewards, as their objectives always share the same gradient direction. For non-binary rewards, we apply nonlinear reward normalization and adaptive regularizer clipping, mitigating the potential conflict between the two objectives. Applying C$^2$GSPG to post-train large language models in logical and mathematical reasoning tasks, we show its superiority over state-of-the-art methods in both reasoning accuracy and confidence calibration. The code of C$^2$GSPG is available at https://github.com/HaotianLiu123/CCGSPG.

Authors:Haoyu He, Haozheng Luo, Yan Chen, Qi R. Wang
Title: RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
Abstract:
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby significantly reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM freezes the pretrained LLM's backbone to reduce attention complexity and memory cost. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.

Authors:Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi
Title: Multiplayer Nash Preference Optimization
Abstract:
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

Authors:Wen Tao, Jing Tang, Alvin Chan, Bryan Hooi, Baolong Bi, Nanyun Peng, Yuansheng Liu, Yiwei Wang
Title: How to Make Large Language Models Generate 100% Valid Molecules?
Abstract:
Molecule generation is key to drug discovery and materials science, enabling the design of novel compounds with specific properties. Large language models (LLMs) can learn to perform a wide range of tasks from just a few examples. However, generating valid molecules using representations like SMILES is challenging for LLMs in few-shot settings. In this work, we explore how LLMs can generate 100% valid molecules. We evaluate whether LLMs can use SELFIES, a representation where every string corresponds to a valid molecule, for valid molecule generation but find that LLMs perform worse with SELFIES than with SMILES. We then examine LLMs' ability to correct invalid SMILES and find their capacity limited. Finally, we introduce SmiSelf, a cross-chemical language framework for invalid SMILES correction. SmiSelf converts invalid SMILES to SELFIES using grammatical rules, leveraging SELFIES' mechanisms to correct the invalid SMILES. Experiments show that SmiSelf ensures 100% validity while preserving molecular characteristics and maintaining or even enhancing performance on other metrics. SmiSelf helps expand LLMs' practical applications in biomedicine and is compatible with all SMILES-based generative models. Code is available at https://github.com/wentao228/SmiSelf.

Authors:Yuchu Jiang, Yue Cai, Xiangzhong Luo, Jiale Fu, Jiarui Wang, Chonghan Liu, Xu Yang
Title: d$^2$Cache: Accelerating Diffusion-Based LLMs via Dual Adaptive Caching
Abstract:
Diffusion-based large language models (dLLMs), despite their promising performance, still suffer from inferior inference efficiency. This is because dLLMs rely on bidirectional attention and cannot directly benefit from the standard key-value (KV) cache as autoregressive models (ARMs) do. To tackle this issue, we introduce \textit{Dual aDaptive Cache} (d$^2$Cache), which is a training-free approximate KV cache framework for accelerating dLLM inference. d$^2$Cache features a two-stage fine-grained selection strategy to identify tokens and adaptively update their KV states at each decoding step, while caching the KV states of the remaining tokens for reuse. Furthermore, d$^2$Cache naturally offers a more reliable decoding alternative, which can enable quasi left-to-right generation and mitigate premature overconfidence in tokens at the end of the sequence. Extensive experimental results on two representative dLLMs (\ie, LLaDA and Dream) demonstrate that d$^2$Cache not only achieves substantial inference speedups, but also yields consistent improvements in generation quality. The code is available at https://github.com/Kamichanw/d2Cache.

Authors:Yutao Shen, Junkun Yuan, Toru Aonishi, Hideki Nakayama, Yue Ma
Title: Follow-Your-Preference: Towards Preference-Aligned Image Inpainting
Abstract:
This paper investigates image inpainting with preference alignment. Instead of introducing a novel method, we go back to basics and revisit fundamental problems in achieving such alignment. We leverage the prominent direct preference optimization approach for alignment training and employ public reward models to construct preference training datasets. Experiments are conducted across nine reward models, two benchmarks, and two baseline models with varying structures and generative algorithms. Our key findings are as follows: (1) Most reward models deliver valid reward scores for constructing preference data, even if some of them are not reliable evaluators. (2) Preference data demonstrates robust trends in both candidate scaling and sample scaling across models and benchmarks. (3) Observable biases in reward models, particularly in brightness, composition, and color scheme, render them susceptible to cause reward hacking. (4) A simple ensemble of these models yields robust and generalizable results by mitigating such biases. Built upon these observations, our alignment models significantly outperform prior models across standard metrics, GPT-4 assessments, and human evaluations, without any changes to model structures or the use of new datasets. We hope our work can set a simple yet solid baseline, pushing this promising frontier. Our code is open-sourced at: https://github.com/shenytzzz/Follow-Your-Preference.

Authors:Ben Liang, Yuan Liu, Bingwen Qiu, Yihong Wang, Xiubao Sui, Qian Chen
Title: FMC-DETR: Frequency-Decoupled Multi-Domain Coordination for Aerial-View Object Detection
Abstract:
Aerial-view object detection is a critical technology for real-world applications such as natural resource monitoring, traffic management, and UAV-based search and rescue. Detecting tiny objects in high-resolution aerial imagery presents a long-standing challenge due to their limited visual cues and the difficulty of modeling global context in complex scenes. Existing methods are often hampered by delayed contextual fusion and inadequate non-linear modeling, failing to effectively use global information to refine shallow features and thus encountering a performance bottleneck. To address these challenges, we propose FMC-DETR, a novel framework with frequency-decoupled fusion for aerial-view object detection. First, we introduce the Wavelet Kolmogorov-Arnold Transformer (WeKat) backbone, which applies cascaded wavelet transforms to enhance global low-frequency context perception in shallow features while preserving fine-grained details, and employs Kolmogorov-Arnold networks to achieve adaptive non-linear modeling of multi-scale dependencies. Next, a lightweight Cross-stage Partial Fusion (CPF) module reduces redundancy and improves multi-scale feature interaction. Finally, we introduce the Multi-Domain Feature Coordination (MDFC) module, which unifies spatial, frequency, and structural priors to to balance detail preservation and global enhancement. Extensive experiments on benchmark aerial-view datasets demonstrate that FMC-DETR achieves state-of-the-art performance with fewer parameters. On the challenging VisDrone dataset, our model achieves improvements of 6.5% AP and 8.2% AP50 over the baseline, highlighting its effectiveness in tiny object detection. The code can be accessed at https://github.com/bloomingvision/FMC-DETR.

Authors:Zijian Wang, Xiaofei Zhang, Xin Zhang, Yukun Liu, Qiong Zhang
Title: Beyond Aggregation: Guiding Clients in Heterogeneous Federated Learning
Abstract:
Federated learning (FL) is increasingly adopted in domains like healthcare, where data privacy is paramount. A fundamental challenge in these systems is statistical heterogeneity-the fact that data distributions vary significantly across clients (e.g., different hospitals may treat distinct patient demographics). While current FL algorithms focus on aggregating model updates from these heterogeneous clients, the potential of the central server remains under-explored. This paper is motivated by a healthcare scenario: could a central server not only build a model but also guide a new patient to the hospital best equipped for their specific condition? We generalize this idea to propose a novel paradigm for FL systems where the server actively guides the allocation of new tasks or queries to the most appropriate client in the network. To enable this, we introduce an empirical likelihood-based framework that simultaneously addresses two goals: (1) learning effective local models on each client, and (2) finding the best matching client for a new query. Empirical results demonstrate the framework's effectiveness on benchmark datasets, showing improvements in both model accuracy and the precision of client guidance compared to standard FL approaches. This work opens a new direction for building more intelligent and resource-efficient federated systems that leverage heterogeneity as a feature, not just a bug. Code is available at https://github.com/zijianwang0510/FedDRM.git.

Authors:Ye-eun Kim, Suhyeon Lim, Andrew J. Choi
Title: MMeViT: Multi-Modal ensemble ViT for Post-Stroke Rehabilitation Action Recognition
Abstract:
Rehabilitation therapy for stroke patients faces a supply shortage despite the increasing demand. To address this issue, remote monitoring systems that reduce the burden on medical staff are emerging as a viable alternative. A key component of these remote monitoring systems is Human Action Recognition (HAR) technology, which classifies actions. However, existing HAR studies have primarily focused on non-disable individuals, making them unsuitable for recognizing the actions of stroke patients. HAR research for stroke has largely concentrated on classifying relatively simple actions using machine learning rather than deep learning. In this study, we designed a system to monitor the actions of stroke patients, focusing on domiciliary upper limb Activities of Daily Living (ADL). Our system utilizes IMU (Inertial Measurement Unit) sensors and an RGB-D camera, which are the most common modalities in HAR. We directly collected a dataset through this system, investigated an appropriate preprocess and proposed a deep learning model suitable for processing multimodal data. We analyzed the collected dataset and found that the action data of stroke patients is less clustering than that of non-disabled individuals. Simultaneously, we found that the proposed model learns similar tendencies for each label in data with features that are difficult to clustering. This study suggests the possibility of expanding the deep learning model, which has learned the action features of stroke patients, to not only simple action recognition but also feedback such as assessment contributing to domiciliary rehabilitation in future research. The code presented in this study is available at https://github.com/ye-Kim/MMeViT.

Authors:Zi Liang, Qingqing Ye, Xuan Liu, Yanyun Wang, Jianliang Xu, Haibo Hu
Title: Virus Infection Attack on LLMs: Your Poisoning Can Spread "VIA" Synthetic Data
Abstract:
Synthetic data refers to artificial samples generated by models. While it has been validated to significantly enhance the performance of large language models (LLMs) during training and has been widely adopted in LLM development, potential security risks it may introduce remain uninvestigated. This paper systematically evaluates the resilience of synthetic-data-integrated training paradigm for LLMs against mainstream poisoning and backdoor attacks. We reveal that such a paradigm exhibits strong resistance to existing attacks, primarily thanks to the different distribution patterns between poisoning data and queries used to generate synthetic samples. To enhance the effectiveness of these attacks and further investigate the security risks introduced by synthetic data, we introduce a novel and universal attack framework, namely, Virus Infection Attack (VIA), which enables the propagation of current attacks through synthetic data even under purely clean queries. Inspired by the principles of virus design in cybersecurity, VIA conceals the poisoning payload within a protective "shell" and strategically searches for optimal hijacking points in benign samples to maximize the likelihood of generating malicious content. Extensive experiments on both data poisoning and backdoor attacks show that VIA significantly increases the presence of poisoning content in synthetic data and correspondingly raises the attack success rate (ASR) on downstream models to levels comparable to those observed in the poisoned upstream models.

Authors:Gabriel A. Viana, Luis F. Alves Pereira, Tsang Ing Ren, George D. C. Cavalcanti, Jan Sijbers
Title: Perceptual Influence: Improving the Perceptual Loss Design for Low-Dose CT Enhancement
Abstract:
Perceptual losses have emerged as powerful tools for training networks to enhance Low-Dose Computed Tomography (LDCT) images, offering an alternative to traditional pixel-wise losses such as Mean Squared Error, which often lead to over-smoothed reconstructions and loss of clinically relevant details in LDCT images. The perceptual losses operate in a latent feature space defined by a pretrained encoder and aim to preserve semantic content by comparing high-level features rather than raw pixel values. However, the design of perceptual losses involves critical yet underexplored decisions, including the feature representation level, the dataset used to pretrain the encoder, and the relative importance assigned to the perceptual component during optimization. In this work, we introduce the concept of perceptual influence (a metric that quantifies the relative contribution of the perceptual loss term to the total loss) and propose a principled framework to assess the impact of the loss design choices on the model training performance. Through systematic experimentation, we show that the widely used configurations in the literature to set up a perceptual loss underperform compared to better-designed alternatives. Our findings show that better perceptual loss designs lead to significant improvements in noise reduction and structural fidelity of reconstructed CT images, without requiring any changes to the network architecture. We also provide objective guidelines, supported by statistical analysis, to inform the effective use of perceptual losses in LDCT denoising. Our source code is available at https://github.com/vngabriel/perceptual-influence.

Authors:Davi Bastos Costa, Renato Vicente
Title: Deceive, Detect, and Disclose: Large Language Models Play Mini-Mafia
Abstract:
Mafia is a social deduction game where informed mafia compete against uninformed townsfolk. Its asymmetry of information and reliance on theory-of-mind reasoning mirror real-world multi-agent scenarios, making it a useful testbed for evaluating the social intelligence of large language models (LLMs). To support a systematic study, we introduce Mini-Mafia: a simplified four-player variant with one mafioso, one detective, and two villagers. We set the mafioso to kill a villager and the detective to investigate the mafioso during the night, reducing the game to a single day phase of discussion and voting. This setup isolates three interactive capabilities through role-specific win conditions: the mafioso must deceive, the villagers must detect deception, and the detective must effectively disclose information. To measure these skills, we have LLMs play against each other, creating the Mini-Mafia Benchmark: a two-stage framework that first estimates win rates within fixed opponent configurations, then aggregates performance across them using standardized scoring. Built entirely from model interactions without external data, the benchmark evolves as new models are introduced, with each one serving both as a new opponent and as a subject of evaluation. Our experiments reveal counterintuitive results, including cases where smaller models outperform larger ones. Beyond benchmarking, Mini-Mafia enables quantitative study of emergent multi-agent dynamics such as name bias and last-speaker advantage. It also contributes to AI safety by generating training data for deception detectors and by tracking models' deception capabilities against human baselines.

Authors:Zhiqiang Tian, Weigang Li, Chunhua Deng, Junwei Hu, Yongqiang Wang, Wenping Liu
Title: Desensitizing for Improving Corruption Robustness in Point Cloud Classification through Adversarial Training
Abstract:
Due to scene complexity, sensor inaccuracies, and processing imprecision, point cloud corruption is inevitable. Over-reliance on input features is the root cause of DNN vulnerabilities. It remains unclear whether this issue exists in 3D tasks involving point clouds and whether reducing dependence on these features can enhance the model's robustness to corrupted point clouds. This study attempts to answer these questions. Specifically, we quantified the sensitivity of the DNN to point cloud features using Shapley values and found that models trained using traditional methods exhibited high sensitivity values for certain features. Furthermore, under an equal pruning ratio, prioritizing the pruning of highly sensitive features causes more severe damage to model performance than random pruning. We propose `Desensitized Adversarial Training' (DesenAT), generating adversarial samples using feature desensitization and conducting training within a self-distillation framework, which aims to alleviate DNN's over-reliance on point clouds features by smoothing sensitivity. First, data points with high contribution components are eliminated, and spatial transformation is used to simulate corruption scenes, generate adversarial samples, and conduct adversarial training on the model. Next, to compensate for information loss in adversarial samples, we use the self-distillation method to transfer knowledge from clean samples to adversarial samples, and perform adversarial training in a distillation manner.Extensive experiments on ModelNet-C and PointCloud-C demonstrate show that the propose method can effectively improve the robustness of the model without reducing the performance of clean data sets. This code is publicly available at \href{https://github.com/JerkyT/DesenAT/tree/master}{https://github.com/JerkyT/DesenAT}.

Authors:Siheng Zhao, Jiageng Mao, Wei Chow, Zeyu Shangguan, Tianheng Shi, Rong Xue, Yuxi Zheng, Yijia Weng, Yang You, Daniel Seita, Leonidas Guibas, Sergey Zakharov, Vitor Guizilini, Yue Wang
Title: Robot Learning from Any Images
Abstract:
We introduce RoLA, a framework that transforms any in-the-wild image into an interactive, physics-enabled robotic environment. Unlike previous methods, RoLA operates directly on a single image without requiring additional hardware or digital assets. Our framework democratizes robotic data generation by producing massive visuomotor robotic demonstrations within minutes from a wide range of image sources, including camera captures, robotic datasets, and Internet images. At its core, our approach combines a novel method for single-view physical scene recovery with an efficient visual blending strategy for photorealistic data collection. We demonstrate RoLA's versatility across applications like scalable robotic data generation and augmentation, robot learning from Internet images, and single-image real-to-sim-to-real systems for manipulators and humanoids. Video results are available at https://sihengz02.github.io/RoLA .

Authors:Lorenz K. Müller, Philippe Bich, Jiawei Zhuang, Ahmet Çelik, Luca Benfenati, Lukas Cavigelli
Title: SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Abstract:
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances, thereby minimizing a novel per-matrix proxy target for quantization: the matrix imbalance. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layers. We evaluate our method on the Qwen3 model family and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity significantly against uncalibrated uniform quantization baselines and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code to reproduce the results of this work and to easily quantize models using SINQ is available at https://github.com/huawei-csl/SINQ.

Authors:Sergiu Bursuc, Theodore Ehrenborg, Shaowei Lin, Lacramioara Astefanoaei, Ionel Emilian Chiosa, Jure Kukovec, Alok Singh, Oliver Butterley, Adem Bizid, Quinn Dougherty, Miranda Zhao, Max Tan, Max Tegmark
Title: A benchmark for vericoding: formally verified program synthesis
Abstract:
We present and test the largest benchmark for vericoding, LLM-generation of formally verified code from formal specifications - in contrast to vibe coding, which generates potentially buggy code from a natural language description. Our benchmark contains 12,504 formal specifications, with 3,029 in Dafny, 2,334 in Verus/Rust and 7,141 in Lean. Of these, 6,174 are new unseen problems. We find vericoding success rates of 27% in Lean, 44% in Verus/Rust and 82% in Dafny using off-the-shelf LLMs. Adding natural-language descriptions does not significantly improve performance. We also find that LLM progress has improved progress on pure Dafny verification from 68% to 96% over the past year. The benchmark and vericoding results are shared at https://github.com/Beneficial-AI-Foundation/vericoding-benchmark

Authors:Haochen Gong, Zhen Tao, Shidong Pan, Zhenchang Xing, Xiaoyu Sun
Title: Towards Context-aware Mobile Privacy Notice: Implementation of A Deployable Contextual Privacy Policies Generator
Abstract:
Lengthy and legally phrased privacy policies impede users' understanding of how mobile applications collect and process personal data. Prior work proposed Contextual Privacy Policies (CPPs) for mobile apps to display shorter policy snippets only in the corresponding user interface contexts, but the pipeline could not be deployable in real-world mobile environments. In this paper, we present PrivScan, the first deployable CPP Software Development Kit (SDK) for Android. It captures live app screenshots to identify GUI elements associated with types of personal data and displays CPPs in a concise, user-facing format. We provide a lightweight floating button that offers low-friction, on-demand control. The architecture leverages remote deployment to decouple the multimodal backend pipeline from a mobile client comprising five modular components, thereby reducing on-device resource demands and easing cross-platform portability. A feasibility-oriented evaluation shows an average execution time of 9.15\,s, demonstrating the practicality of our approach. The source code of PrivScan is available at https://github.com/buyanghc/PrivScan and the demo video can be found at https://www.youtube.com/watch?v=ck-25otfyHc.

Authors:Federico Chinello, Giacomo Boracchi
Title: Convolutional Set Transformer
Abstract:
We introduce the Convolutional Set Transformer (CST), a novel neural architecture designed to process image sets of arbitrary cardinality that are visually heterogeneous yet share high-level semantics - such as a common category, scene, or concept. Existing set-input networks, e.g., Deep Sets and Set Transformer, are limited to vector inputs and cannot directly handle 3D image tensors. As a result, they must be cascaded with a feature extractor, typically a CNN, which encodes images into embeddings before the set-input network can model inter-image relationships. In contrast, CST operates directly on 3D image tensors, performing feature extraction and contextual modeling simultaneously, thereby enabling synergies between the two processes. This design yields superior performance in tasks such as Set Classification and Set Anomaly Detection and further provides native compatibility with CNN explainability methods such as Grad-CAM, unlike competing approaches that remain opaque. Finally, we show that CSTs can be pre-trained on large-scale datasets and subsequently adapted to new domains and tasks through standard Transfer Learning schemes. To support further research, we release CST-15, a CST backbone pre-trained on ImageNet (https://github.com/chinefed/convolutional-set-transformer).

Authors:Xuan He, Dongfu Jiang, Ping Nie, Minghao Liu, Zhengxuan Jiang, Mingyi Su, Wentao Ma, Junru Lin, Chun Ye, Yi Lu, Keming Wu, Benjamin Schneider, Quy Duc Do, Zhuofeng Li, Yiming Jia, Yuxuan Zhang, Guo Cheng, Haozhe Wang, Wangchunshu Zhou, Qunshu Lin, Yuanxing Zhang, Ge Zhang, Wenhao Huang, Wenhu Chen
Title: VideoScore2: Think before You Score in Generative Video Evaluation
Abstract:
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/

Authors:Komal Kumar, Rao Muhammad Anwer, Fahad Shahbaz Khan, Salman Khan, Ivan Laptev, Hisham Cholakkal
Title: DEFT: Decompositional Efficient Fine-Tuning for Text-to-Image Models
Abstract:
Efficient fine-tuning of pre-trained Text-to-Image (T2I) models involves adjusting the model to suit a particular task or dataset while minimizing computational resources and limiting the number of trainable parameters. However, it often faces challenges in striking a trade-off between aligning with the target distribution: learning a novel concept from a limited image for personalization and retaining the instruction ability needed for unifying multiple tasks, all while maintaining editability (aligning with a variety of prompts or in-context generation). In this work, we introduce DEFT, Decompositional Efficient Fine-Tuning, an efficient fine-tuning framework that adapts a pre-trained weight matrix by decomposing its update into two components with two trainable matrices: (1) a projection onto the complement of a low-rank subspace spanned by a low-rank matrix, and (2) a low-rank update. The single trainable low-rank matrix defines the subspace, while the other trainable low-rank matrix enables flexible parameter adaptation within that subspace. We conducted extensive experiments on the Dreambooth and Dreambench Plus datasets for personalization, the InsDet dataset for object and scene adaptation, and the VisualCloze dataset for a universal image generation framework through visual in-context learning with both Stable Diffusion and a unified model. Our results demonstrated state-of-the-art performance, highlighting the emergent properties of efficient fine-tuning. Our code is available on \href{https://github.com/MAXNORM8650/DEFT}{DEFTBase}.

Authors:Fernando Julio Cendra, Kai Han
Title: PartCo: Part-Level Correspondence Priors Enhance Category Discovery
Abstract:
Generalized Category Discovery (GCD) aims to identify both known and novel categories within unlabeled data by leveraging a set of labeled examples from known categories. Existing GCD methods primarily depend on semantic labels and global image representations, often overlooking the detailed part-level cues that are crucial for distinguishing closely related categories. In this paper, we introduce PartCo, short for Part-Level Correspondence Prior, a novel framework that enhances category discovery by incorporating part-level visual feature correspondences. By leveraging part-level relationships, PartCo captures finer-grained semantic structures, enabling a more nuanced understanding of category relationships. Importantly, PartCo seamlessly integrates with existing GCD methods without requiring significant modifications. Our extensive experiments on multiple benchmark datasets demonstrate that PartCo significantly improves the performance of current GCD approaches, achieving state-of-the-art results by bridging the gap between semantic labels and part-level visual compositions, thereby setting new benchmarks for GCD. Project page: https://visual-ai.github.io/partco

Authors:Ekaterina Trofimova, Zosia Shamina, Maria Selifanova, Artem Zaitsev, Remi Savchuk, Maxim Minets, Daria Ozerova, Emil Sataev, Denis Zuenko, Andrey E. Ustyuzhanin
Title: ML2B: Multi-Lingual ML Benchmark For AutoML
Abstract:
Large language models (LLMs) have recently demonstrated strong capabilities in generating machine learning (ML) code, enabling end-to-end pipeline construction from natural language instructions. However, existing benchmarks for ML code generation are mainly restricted to English, overlooking the global and multilingual nature of ML research and practice. To address this gap, we present ML2B, the first benchmark for evaluating multilingual ML code generation. ML2B consists of 30 Kaggle competitions translated into 13 natural languages, covering tabular, text, and image data types, with structured metadata and validated human-reviewed translations. For evaluation, we employ AIDE, an automated framework for end-to-end assessment of data science pipelines, and provide insights into cross-lingual model performance. Our results reveal substantial 15-45% performance degradation on non-English tasks, highlighting critical challenges in multilingual representation learning for code generation. The benchmark, evaluation framework, and comprehensive results are made available through our GitHub repository to facilitate future research in multilingual ML code generation: https://github.com/enaix/ml2b.

Authors:Le Zhang, Ao Li, Qibin Hou, Ce Zhu, Yonina C. Eldar
Title: Deep Learning Empowered Super-Resolution: A Comprehensive Survey and Future Prospects
Abstract:
Super-resolution (SR) has garnered significant attention within the computer vision community, driven by advances in deep learning (DL) techniques and the growing demand for high-quality visual applications. With the expansion of this field, numerous surveys have emerged. Most existing surveys focus on specific domains, lacking a comprehensive overview of this field. Here, we present an in-depth review of diverse SR methods, encompassing single image super-resolution (SISR), video super-resolution (VSR), stereo super-resolution (SSR), and light field super-resolution (LFSR). We extensively cover over 150 SISR methods, nearly 70 VSR approaches, and approximately 30 techniques for SSR and LFSR. We analyze methodologies, datasets, evaluation protocols, empirical results, and complexity. In addition, we conducted a taxonomy based on each backbone structure according to the diverse purposes. We also explore valuable yet under-studied open issues in the field. We believe that this work will serve as a valuable resource and offer guidance to researchers in this domain. To facilitate access to related work, we created a dedicated repository available at https://github.com/AVC2-UESTC/Holistic-Super-Resolution-Review.

Authors:Ha-Hieu Pham, Minh Le, Han Huynh, Nguyen Quoc Khanh Le, Huy-Hieu Pham
Title: Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision. Code is available at https://github.com/hieuphamha19/TGC.

Authors:Yash Thube
Title: Pathological Truth Bias in Vision-Language Models
Abstract:
Vision Language Models (VLMs) are improving quickly, but standard benchmarks can hide systematic failures that reduce real world trust. We introduce MATS (Multimodal Audit for Truthful Spatialization), a compact behavioral audit that measures whether models reject visually contradicted statements, and two metrics Spatial Consistency Score (SCS) and Incorrect Agreement Rate (IAR). Instruction tuned generative VLMs (LLaVA 1.5, QwenVLchat) exhibit very low SCS and high IAR, while contrastive encoders (CLIP, SigLIP) are far more robust. Activation patching causally localizes failure loci (mid to late cross attention for generative models, pooled projection components for contrastive models) and suggests concrete repair paths.

Authors:E-Ro Nguyen, Yichi Zhang, Kanchana Ranasinghe, Xiang Li, Michael S. Ryoo
Title: Pixel Motion Diffusion is What We Need for Robot Control
Abstract:
We present DAWN (Diffusion is All We Need for robot control), a unified diffusion-based framework for language-conditioned robotic manipulation that bridges high-level motion intent and low-level robot action via structured pixel motion representation. In DAWN, both the high-level and low-level controllers are modeled as diffusion processes, yielding a fully trainable, end-to-end system with interpretable intermediate motion abstractions. DAWN achieves state-of-the-art results on the challenging CALVIN benchmark, demonstrating strong multi-task performance, and further validates its effectiveness on MetaWorld. Despite the substantial domain gap between simulation and reality and limited real-world data, we demonstrate reliable real-world transfer with only minimal finetuning, illustrating the practical viability of diffusion-based motion abstractions for robotic control. Our results show the effectiveness of combining diffusion modeling with motion-centric representations as a strong baseline for scalable and robust robot learning. Project page: https://nero1342.github.io/DAWN/

Authors:Ke Wang, Houxing Ren, Zimu Lu, Mingjie Zhan, Hongsheng Li
Title: VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
Abstract:
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .

Authors:Long Xing, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jianze Liang, Qidong Huang, Jiaqi Wang, Feng Wu, Dahua Lin
Title: CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning
Abstract:
Image captioning is a fundamental task that bridges the visual and linguistic domains, playing a critical role in pre-training Large Vision-Language Models (LVLMs). Current state-of-the-art captioning models are typically trained with Supervised Fine-Tuning (SFT), a paradigm that relies on expensive, non-scalable data annotated by humans or proprietary models. This approach often leads to models that memorize specific ground-truth answers, limiting their generality and ability to generate diverse, creative descriptions. To overcome the limitation of SFT, we propose applying the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm to the open-ended task of image captioning. A primary challenge, however, is designing an objective reward function for the inherently subjective nature of what constitutes a "good" caption. We introduce Captioning Reinforcement Learning (CapRL), a novel training framework that redefines caption quality through its utility: a high-quality caption should enable a non-visual language model to accurately answer questions about the corresponding image. CapRL employs a decoupled two-stage pipeline where an LVLM generates a caption, and the objective reward is derived from the accuracy of a separate, vision-free LLM answering Multiple-Choice Questions based solely on that caption. As the first study to apply RLVR to the subjective image captioning task, we demonstrate that CapRL significantly enhances multiple settings. Pretraining on the CapRL-5M caption dataset annotated by CapRL-3B results in substantial gains across 12 benchmarks. Moreover, within the Prism Framework for caption quality evaluation, CapRL achieves performance comparable to Qwen2.5-VL-72B, while exceeding the baseline by an average margin of 8.4%. Code is available here: https://github.com/InternLM/CapRL.

Authors:Renjie Luo, Zichen Liu, Xiangyan Liu, Chao Du, Min Lin, Wenhu Chen, Wei Lu, Tianyu Pang
Title: Language Models Can Learn from Verbal Feedback Without Scalar Rewards
Abstract:
LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy.

Authors:Xiangxin Zhou, Zichen Liu, Haonan Wang, Chao Du, Min Lin, Chongxuan Li, Liang Wang, Tianyu Pang
Title: Variational Reasoning for Language Models
Abstract:
We introduce a variational reasoning framework for language models that treats thinking traces as latent variables and optimizes them through variational inference. Starting from the evidence lower bound (ELBO), we extend it to a multi-trace objective for tighter bounds and propose a forward-KL formulation that stabilizes the training of the variational posterior. We further show that rejection sampling finetuning and binary-reward RL, including GRPO, can be interpreted as local forward-KL objectives, where an implicit weighting by model accuracy naturally arises from the derivation and reveals a previously unnoticed bias toward easier questions. We empirically validate our method on the Qwen 2.5 and Qwen 3 model families across a wide range of reasoning tasks. Overall, our work provides a principled probabilistic perspective that unifies variational inference with RL-style methods and yields stable objectives for improving the reasoning ability of language models. Our code is available at https://github.com/sail-sg/variational-reasoning.

Authors:Alexandre Lopes, Roberto Souza, Helio Pedrini
Title: CCNeXt: An Effective Self-Supervised Stereo Depth Estimation Approach
Abstract:
Depth Estimation plays a crucial role in recent applications in robotics, autonomous vehicles, and augmented reality. These scenarios commonly operate under constraints imposed by computational power. Stereo image pairs offer an effective solution for depth estimation since it only needs to estimate the disparity of pixels in image pairs to determine the depth in a known rectified system. Due to the difficulty in acquiring reliable ground-truth depth data across diverse scenarios, self-supervised techniques emerge as a solution, particularly when large unlabeled datasets are available. We propose a novel self-supervised convolutional approach that outperforms existing state-of-the-art Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) while balancing computational cost. The proposed CCNeXt architecture employs a modern CNN feature extractor with a novel windowed epipolar cross-attention module in the encoder, complemented by a comprehensive redesign of the depth estimation decoder. Our experiments demonstrate that CCNeXt achieves competitive metrics on the KITTI Eigen Split test data while being 10.18$\times$ faster than the current best model and achieves state-of-the-art results in all metrics in the KITTI Eigen Split Improved Ground Truth and Driving Stereo datasets when compared to recently proposed techniques. To ensure complete reproducibility, our project is accessible at \href{https://github.com/alelopes/CCNext}{\texttt{https://github.com/alelopes/CCNext}}.

Authors:Ziyu Liu, Yuhang Zang, Shengyuan Ding, Yuhang Cao, Xiaoyi Dong, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: SPARK: Synergistic Policy And Reward Co-Evolving Framework
Abstract:
Recent Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) increasingly use Reinforcement Learning (RL) for post-pretraining, such as RL with Verifiable Rewards (RLVR) for objective tasks and RL from Human Feedback (RLHF) for subjective tasks. However, RLHF incurs high costs and potential reward-policy mismatch due to reliance on human preferences, while RLVR still wastes supervision by discarding rollouts and correctness signals after each update. To address these challenges, we introduce the Synergistic Policy And Reward Co-Evolving Framework (SPARK), an efficient, on-policy, and stable method that builds on RLVR. Instead of discarding rollouts and correctness data, SPARK recycles this valuable information to simultaneously train the model itself as a generative reward model. This auxiliary training uses a mix of objectives, such as pointwise reward score, pairwise comparison, and evaluation conditioned on further-reflection responses, to teach the model to evaluate and improve its own responses. Our process eliminates the need for a separate reward model and costly human preference data. SPARK creates a positive co-evolving feedback loop: improved reward accuracy yields better policy gradients, which in turn produce higher-quality rollouts that further refine the reward model. Our unified framework supports test-time scaling via self-reflection without external reward models and their associated costs. We show that SPARK achieves significant performance gains on multiple LLM and LVLM models and multiple reasoning, reward models, and general benchmarks. For example, SPARK-VL-7B achieves an average 9.7% gain on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks, and 1.5% on 8 general benchmarks over the baselines, demonstrating robustness and broad generalization.

Authors:Shuai Yang, Wei Huang, Ruihang Chu, Yicheng Xiao, Yuyang Zhao, Xianbang Wang, Muyang Li, Enze Xie, Yingcong Chen, Yao Lu, Song Han, Yukang Chen
Title: LongLive: Real-time Interactive Long Video Generation
Abstract:
We present LongLive, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LongLive adopts a causal, frame-level AR design that integrates a KV-recache mechanism that refreshes cached states with new prompts for smooth, adherent switches; streaming long tuning to enable long video training and to align training and inference (train-long-test-long); and short window attention paired with a frame-level attention sink, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LongLive fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LongLive sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LongLive supports up to 240-second videos on a single H100 GPU. LongLive further supports INT8-quantized inference with only marginal quality loss.

Authors:Dmitri Volkov, Yafei Yang, Chung-chieh Shan
Title: Committing to the bit: Relational programming with semiring arrays and SAT solving
Abstract:
We propose semiringKanren, a relational programming language where each relation expression denotes a semiring array. We formalize a type system that restricts the arrays to finite size. We then define a semantics that is parameterized by the semiring that the arrays draw their elements from. We compile semiringKanren types to bitstring representations. For the Boolean semiring, this compilation enables us to use an SAT solver to run semiringKanren programs efficiently. We compare the performance of semiringKanren and faster miniKanren for solving Sudoku puzzles. Our experiment shows that semiringKanren can be a more efficient variant of miniKanren.

Authors:Katsuhiko Hayashi, Hidetaka Kamigaito
Title: From Formal Language Theory to Statistical Learning: Finite Observability of Subregular Languages
Abstract:
We prove that all standard subregular language classes are linearly separable when represented by their deciding predicates. This establishes finite observability and guarantees learnability with simple linear models. Synthetic experiments confirm perfect separability under noise-free conditions, while real-data experiments on English morphology show that learned features align with well-known linguistic constraints. These results demonstrate that the subregular hierarchy provides a rigorous and interpretable foundation for modeling natural language structure. Our code used in real-data experiments is available at https://github.com/UTokyo-HayashiLab/subregular.

Authors:Mo El-Haj
Title: ArabJobs: A Multinational Corpus of Arabic Job Ads
Abstract:
ArabJobs is a publicly available corpus of Arabic job advertisements collected from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates. Comprising over 8,500 postings and more than 550,000 words, the dataset captures linguistic, regional, and socio-economic variation in the Arab labour market. We present analyses of gender representation and occupational structure, and highlight dialectal variation across ads, which offers opportunities for future research. We also demonstrate applications such as salary estimation and job category normalisation using large language models, alongside benchmark tasks for gender bias detection and profession classification. The findings show the utility of ArabJobs for fairness-aware Arabic NLP and labour market research. The dataset is publicly available on GitHub: https://github.com/drelhaj/ArabJobs.

Authors:Guannan Lai, Da-Wei Zhou, Xin Yang, Han-Jia Ye
Title: The Lie of the Average: How Class Incremental Learning Evaluation Deceives You?
Abstract:
Class Incremental Learning (CIL) requires models to continuously learn new classes without forgetting previously learned ones, while maintaining stable performance across all possible class sequences. In real-world settings, the order in which classes arrive is diverse and unpredictable, and model performance can vary substantially across different sequences. Yet mainstream evaluation protocols calculate mean and variance from only a small set of randomly sampled sequences. Our theoretical analysis and empirical results demonstrate that this sampling strategy fails to capture the full performance range, resulting in biased mean estimates and a severe underestimation of the true variance in the performance distribution. We therefore contend that a robust CIL evaluation protocol should accurately characterize and estimate the entire performance distribution. To this end, we introduce the concept of extreme sequences and provide theoretical justification for their crucial role in the reliable evaluation of CIL. Moreover, we observe a consistent positive correlation between inter-task similarity and model performance, a relation that can be leveraged to guide the search for extreme sequences. Building on these insights, we propose EDGE (Extreme case-based Distribution and Generalization Evaluation), an evaluation protocol that adaptively identifies and samples extreme class sequences using inter-task similarity, offering a closer approximation of the ground-truth performance distribution. Extensive experiments demonstrate that EDGE effectively captures performance extremes and yields more accurate estimates of distributional boundaries, providing actionable insights for model selection and robustness checking. Our code is available at https://github.com/AIGNLAI/EDGE.

Authors:Shuang Zeng, Dekang Qi, Xinyuan Chang, Feng Xiong, Shichao Xie, Xiaolong Wu, Shiyi Liang, Mu Xu, Xing Wei
Title: JanusVLN: Decoupling Semantics and Spatiality with Dual Implicit Memory for Vision-Language Navigation
Abstract:
Vision-and-Language Navigation requires an embodied agent to navigate through unseen environments, guided by natural language instructions and a continuous video stream. Recent advances in VLN have been driven by the powerful semantic understanding of Multimodal Large Language Models. However, these methods typically rely on explicit semantic memory, such as building textual cognitive maps or storing historical visual frames. This type of method suffers from spatial information loss, computational redundancy, and memory bloat, which impede efficient navigation. Inspired by the implicit scene representation in human navigation, analogous to the left brain's semantic understanding and the right brain's spatial cognition, we propose JanusVLN, a novel VLN framework featuring a dual implicit neural memory that models spatial-geometric and visual-semantic memory as separate, compact, and fixed-size neural representations. This framework first extends the MLLM to incorporate 3D prior knowledge from the spatial-geometric encoder, thereby enhancing the spatial reasoning capabilities of models based solely on RGB input. Then, the historical key-value caches from the spatial-geometric and visual-semantic encoders are constructed into a dual implicit memory. By retaining only the KVs of tokens in the initial and sliding window, redundant computation is avoided, enabling efficient incremental updates. Extensive experiments demonstrate that JanusVLN outperforms over 20 recent methods to achieve SOTA performance. For example, the success rate improves by 10.5-35.5 compared to methods using multiple data types as input and by 3.6-10.8 compared to methods using more RGB training data. This indicates that the proposed dual implicit neural memory, as a novel paradigm, explores promising new directions for future VLN research. Ours project page: https://miv-xjtu.github.io/JanusVLN.github.io/.

Authors:Jinfeng Zhou, Zheyu Chen, Shuai Wang, Quanyu Dai, Zhenhua Dong, Hongning Wang, Minlie Huang
Title: Think Socially via Cognitive Reasoning
Abstract:
LLMs trained for logical reasoning excel at step-by-step deduction to reach verifiable answers. However, this paradigm is ill-suited for navigating social situations, which induce an interpretive process of analyzing ambiguous cues that rarely yield a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a paradigm modeled on human social cognition. It formulates the interpretive process into a structured cognitive flow of interconnected cognitive units (e.g., observation or attribution), which combine adaptively to enable effective social thinking and responses. We then propose CogFlow, a complete framework that instills this capability in LLMs. CogFlow first curates a dataset of cognitive flows by simulating the associative and progressive nature of human thought via tree-structured planning. After instilling the basic cognitive reasoning capability via supervised fine-tuning, CogFlow adopts reinforcement learning to enable the model to improve itself via trial and error, guided by a multi-objective reward that optimizes both cognitive flow and response quality. Extensive experiments show that CogFlow effectively enhances the social cognitive capabilities of LLMs, and even humans, leading to more effective social decision-making.

Authors:Zhenqi He, Yuanpei Liu, Kai Han
Title: Category Discovery: An Open-World Perspective
Abstract:
Category discovery (CD) is an emerging open-world learning task, which aims at automatically categorizing unlabelled data containing instances from unseen classes, given some labelled data from seen classes. This task has attracted significant attention over the years and leads to a rich body of literature trying to address the problem from different perspectives. In this survey, we provide a comprehensive review of the literature, and offer detailed analysis and in-depth discussion on different methods. Firstly, we introduce a taxonomy for the literature by considering two base settings, namely novel category discovery (NCD) and generalized category discovery (GCD), and several derived settings that are designed to address the extra challenges in different real-world application scenarios, including continual category discovery, skewed data distribution, federated category discovery, etc. Secondly, for each setting, we offer a detailed analysis of the methods encompassing three fundamental components, representation learning, label assignment, and estimation of class number. Thirdly, we benchmark all the methods and distill key insights showing that large-scale pretrained backbones, hierarchical and auxiliary cues, and curriculum-style training are all beneficial for category discovery, while challenges remain in the design of label assignment, the estimation of class numbers, and scaling to complex multi-object scenarios. Finally, we discuss the key insights from the literature so far and point out promising future research directions. We compile a living survey of the category discovery literature at https://github.com/Visual-AI/Category-Discovery.

Authors:Yonghan Jung
Title: Debiased Front-Door Learners for Heterogeneous Effects
Abstract:
In observational settings where treatment and outcome share unmeasured confounders but an observed mediator remains unconfounded, the front-door (FD) adjustment identifies causal effects through the mediator. We study the heterogeneous treatment effect (HTE) under FD identification and introduce two debiased learners: FD-DR-Learner and FD-R-Learner. Both attain fast, quasi-oracle rates (i.e., performance comparable to an oracle that knows the nuisances) even when nuisance functions converge as slowly as n^-1/4. We provide error analyses establishing debiasedness and demonstrate robust empirical performance in synthetic studies and a real-world case study of primary seat-belt laws using Fatality Analysis Reporting System (FARS) dataset. Together, these results indicate that the proposed learners deliver reliable and sample-efficient HTE estimates in FD scenarios. The implementation is available at https://github.com/yonghanjung/FD-CATE. Keywords: Front-door adjustment; Heterogeneous treatment effects; Debiased learning; Quasi-oracle rates; Causal inference.

Authors:Ruoyu Chen, Xiaoqing Guo, Kangwei Liu, Siyuan Liang, Shiming Liu, Qunli Zhang, Hua Zhang, Xiaochun Cao
Title: Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation
Abstract:
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in aligning visual inputs with natural language outputs. Yet, the extent to which generated tokens depend on visual modalities remains poorly understood, limiting interpretability and reliability. In this work, we present EAGLE, a lightweight black-box framework for explaining autoregressive token generation in MLLMs. EAGLE attributes any selected tokens to compact perceptual regions while quantifying the relative influence of language priors and perceptual evidence. The framework introduces an objective function that unifies sufficiency (insight score) and indispensability (necessity score), optimized via greedy search over sparsified image regions for faithful and efficient attribution. Beyond spatial attribution, EAGLE performs modality-aware analysis that disentangles what tokens rely on, providing fine-grained interpretability of model decisions. Extensive experiments across open-source MLLMs show that EAGLE consistently outperforms existing methods in faithfulness, localization, and hallucination diagnosis, while requiring substantially less GPU memory. These results highlight its effectiveness and practicality for advancing the interpretability of MLLMs. The code is available at https://github.com/RuoyuChen10/EAGLE.

Authors:Guohui Zhang, Hu Yu, Xiaoxiao Ma, JingHao Zhang, Yaning Pan, Mingde Yao, Jie Xiao, Linjiang Huang, Feng Zhao
Title: Group Critical-token Policy Optimization for Autoregressive Image Generation
Abstract:
Recent studies have extended Reinforcement Learning with Verifiable Rewards (RLVR) to autoregressive (AR) visual generation and achieved promising progress. However, existing methods typically apply uniform optimization across all image tokens, while the varying contributions of different image tokens for RLVR's training remain unexplored. In fact, the key obstacle lies in how to identify more critical image tokens during AR generation and implement effective token-wise optimization for them. To tackle this challenge, we propose $\textbf{G}$roup $\textbf{C}$ritical-token $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{GCPO}$), which facilitates effective policy optimization on critical tokens. We identify the critical tokens in RLVR-based AR generation from three perspectives, specifically: $\textbf{(1)}$ Causal dependency: early tokens fundamentally determine the later tokens and final image effect due to unidirectional dependency; $\textbf{(2)}$ Entropy-induced spatial structure: tokens with high entropy gradients correspond to image structure and bridges distinct visual regions; $\textbf{(3)}$ RLVR-focused token diversity: tokens with low visual similarity across a group of sampled images contribute to richer token-level diversity. For these identified critical tokens, we further introduce a dynamic token-wise advantage weight to encourage exploration, based on confidence divergence between the policy model and reference model. By leveraging 30\% of the image tokens, GCPO achieves better performance than GRPO with full tokens. Extensive experiments on multiple text-to-image benchmarks for both AR models and unified multimodal models demonstrate the effectiveness of GCPO for AR visual generation.

Authors:Antreas Ioannou, Andreas Shiamishis, Nora Hollenstein, Nezihe Merve Gürel
Title: Evaluating the Limits of Large Language Models in Multilingual Legal Reasoning
Abstract:
In an era dominated by Large Language Models (LLMs), understanding their capabilities and limitations, especially in high-stakes fields like law, is crucial. While LLMs such as Meta's LLaMA, OpenAI's ChatGPT, Google's Gemini, DeepSeek, and other emerging models are increasingly integrated into legal workflows, their performance in multilingual, jurisdictionally diverse, and adversarial contexts remains insufficiently explored. This work evaluates LLaMA and Gemini on multilingual legal and non-legal benchmarks, and assesses their adversarial robustness in legal tasks through character and word-level perturbations. We use an LLM-as-a-Judge approach for human-aligned evaluation. We moreover present an open-source, modular evaluation pipeline designed to support multilingual, task-diverse benchmarking of any combination of LLMs and datasets, with a particular focus on legal tasks, including classification, summarization, open questions, and general reasoning. Our findings confirm that legal tasks pose significant challenges for LLMs with accuracies often below 50% on legal reasoning benchmarks such as LEXam, compared to over 70% on general-purpose tasks like XNLI. In addition, while English generally yields more stable results, it does not always lead to higher accuracy. Prompt sensitivity and adversarial vulnerability is also shown to persist across languages. Finally, a correlation is found between the performance of a language and its syntactic similarity to English. We also observe that LLaMA is weaker than Gemini, with the latter showing an average advantage of about 24 percentage points across the same task. Despite improvements in newer LLMs, challenges remain in deploying them reliably for critical, multilingual legal applications.

Authors:Alejandro Almodóvar, Patricia A. Apellániz, Santiago Zazo, Juan Parras
Title: CausalKANs: interpretable treatment effect estimation with Kolmogorov-Arnold networks
Abstract:
Deep neural networks achieve state-of-the-art performance in estimating heterogeneous treatment effects, but their opacity limits trust and adoption in sensitive domains such as medicine, economics, and public policy. Building on well-established and high-performing causal neural architectures, we propose causalKANs, a framework that transforms neural estimators of conditional average treatment effects (CATEs) into Kolmogorov--Arnold Networks (KANs). By incorporating pruning and symbolic simplification, causalKANs yields interpretable closed-form formulas while preserving predictive accuracy. Experiments on benchmark datasets demonstrate that causalKANs perform on par with neural baselines in CATE error metrics, and that even simple KAN variants achieve competitive performance, offering a favorable accuracy--interpretability trade-off. By combining reliability with analytic accessibility, causalKANs provide auditable estimators supported by closed-form expressions and interpretable plots, enabling trustworthy individualized decision-making in high-stakes settings. We release the code for reproducibility at https://github.com/aalmodovares/causalkans .

Authors:Hui Li, Changhao Jiang, Hongyu Wang, Ming Zhang, Jiajun Sun, Zhixiong Yang, Yifei Cao, Shihan Dou, Xiaoran Fan, Baoyu Fan, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
Title: MDAR: A Multi-scene Dynamic Audio Reasoning Benchmark
Abstract:
The ability to reason from audio, including speech, paralinguistic cues, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce MDAR, a benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. MDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on MDAR and observe that they exhibit limitations in complex reasoning tasks. On single-choice questions, Qwen2.5-Omni (open-source) achieves 76.67% accuracy, whereas GPT-4o Audio (closed-source) reaches 68.47%; however, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice and open-ended tasks. Across all three question types, no model achieves 80% performance. These findings underscore the unique challenges posed by MDAR and its value as a benchmark for advancing audio reasoning research.Code and benchmark can be found at https://github.com/luckyerr/MDAR.

Authors:Changhun Kim, Timon Conrad, Redwanul Karim, Julian Oelhaf, David Riebesel, Tomás Arias-Vergara, Andreas Maier, Johann Jäger, Siming Bayer
Title: Physics-informed GNN for medium-high voltage AC power flow with edge-aware attention and line search correction operator
Abstract:
Physics-informed graph neural networks (PIGNNs) have emerged as fast AC power-flow solvers that can replace classic Newton--Raphson (NR) solvers, especially when thousands of scenarios must be evaluated. However, current PIGNNs still need accuracy improvements at parity speed; in particular, the physics loss is inoperative at inference, which can deter operational adoption. We address this with PIGNN-Attn-LS, combining an edge-aware attention mechanism that explicitly encodes line physics via per-edge biases, capturing the grid's anisotropy, with a backtracking line-search-based globalized correction operator that restores an operative decrease criterion at inference. Training and testing use a realistic High-/Medium-Voltage scenario generator, with NR used only to construct reference states. On held-out HV cases consisting of 4--32-bus grids, PIGNN-Attn-LS achieves a test RMSE of 0.00033 p.u. in voltage and 0.08$^\circ$ in angle, outperforming the PIGNN-MLP baseline by 99.5\% and 87.1\%, respectively. With streaming micro-batches, it delivers 2--5$\times$ faster batched inference than NR on 4--1024-bus grids.

Authors:Mishal Fatima, Shashank Agnihotri, Marius Bock, Kanchana Vaishnavi Gandikota, Kristof Van Laerhoven, Michael Moeller, Margret Keuper
Title: $γ$-Quant: Towards Learnable Quantization for Low-bit Pattern Recognition
Abstract:
Most pattern recognition models are developed on pre-proce\-ssed data. In computer vision, for instance, RGB images processed through image signal processing (ISP) pipelines designed to cater to human perception are the most frequent input to image analysis networks. However, many modern vision tasks operate without a human in the loop, raising the question of whether such pre-processing is optimal for automated analysis. Similarly, human activity recognition (HAR) on body-worn sensor data commonly takes normalized floating-point data arising from a high-bit analog-to-digital converter (ADC) as an input, despite such an approach being highly inefficient in terms of data transmission, significantly affecting the battery life of wearable devices. In this work, we target low-bandwidth and energy-constrained settings where sensors are limited to low-bit-depth capture. We propose $γ$-Quant, i.e.~the task-specific learning of a non-linear quantization for pattern recognition. We exemplify our approach on raw-image object detection as well as HAR of wearable data, and demonstrate that raw data with a learnable quantization using as few as 4-bits can perform on par with the use of raw 12-bit data. All code to reproduce our experiments is publicly available via https://github.com/Mishalfatima/Gamma-Quant

Authors:Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, C. Karen Liu
Title: Learning to Ball: Composing Policies for Long-Horizon Basketball Moves
Abstract:
Learning a control policy for a multi-phase, long-horizon task, such as basketball maneuvers, remains challenging for reinforcement learning approaches due to the need for seamless policy composition and transitions between skills. A long-horizon task typically consists of distinct subtasks with well-defined goals, separated by transitional subtasks with unclear goals but critical to the success of the entire task. Existing methods like the mixture of experts and skill chaining struggle with tasks where individual policies do not share significant commonly explored states or lack well-defined initial and terminal states between different phases. In this paper, we introduce a novel policy integration framework to enable the composition of drastically different motor skills in multi-phase long-horizon tasks with ill-defined intermediate states. Based on that, we further introduce a high-level soft router to enable seamless and robust transitions between the subtasks. We evaluate our framework on a set of fundamental basketball skills and challenging transitions. Policies trained by our approach can effectively control the simulated character to interact with the ball and accomplish the long-horizon task specified by real-time user commands, without relying on ball trajectory references.

Authors:Ziheng Chi, Yifan Hou, Chenxi Pang, Shaobo Cui, Mubashara Akhtar, Mrinmaya Sachan
Title: Chimera: Diagnosing Shortcut Learning in Visual-Language Understanding
Abstract:
Diagrams convey symbolic information in a visual format rather than a linear stream of words, making them especially challenging for AI models to process. While recent evaluations suggest that vision-language models (VLMs) perform well on diagram-related benchmarks, their reliance on knowledge, reasoning, or modality shortcuts raises concerns about whether they genuinely understand and reason over diagrams. To address this gap, we introduce Chimera, a comprehensive test suite comprising 7,500 high-quality diagrams sourced from Wikipedia; each diagram is annotated with its symbolic content represented by semantic triples along with multi-level questions designed to assess four fundamental aspects of diagram comprehension: entity recognition, relation understanding, knowledge grounding, and visual reasoning. We use Chimera to measure the presence of three types of shortcuts in visual question answering: (1) the visual-memorization shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-recall shortcut, where models leverage memorized factual knowledge instead of interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit superficial language patterns or priors without true comprehension. We evaluate 15 open-source VLMs from 7 model families on Chimera and find that their seemingly strong performance largely stems from shortcut behaviors: visual-memorization shortcuts have slight impact, knowledge-recall shortcuts play a moderate role, and Clever-Hans shortcuts contribute significantly. These findings expose critical limitations in current VLMs and underscore the need for more robust evaluation protocols that benchmark genuine comprehension of complex visual inputs (e.g., diagrams) rather than question-answering shortcuts.

Authors:Song Fei, Tian Ye, Lujia Wang, Lei Zhu
Title: LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer
Abstract:
Universal image restoration (UIR) aims to recover images degraded by unknown mixtures while preserving semantics -- conditions under which discriminative restorers and UNet-based diffusion priors often oversmooth, hallucinate, or drift. We present LucidFlux, a caption-free UIR framework that adapts a large diffusion transformer (Flux.1) without image captions. LucidFlux introduces a lightweight dual-branch conditioner that injects signals from the degraded input and a lightly restored proxy to respectively anchor geometry and suppress artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed to route these cues across the backbone's hierarchy, in order to yield coarse-to-fine and context-aware updates that protect the global structure while recovering texture. After that, to avoid the latency and instability of text prompts or MLLM captions, we enforce caption-free semantic alignment via SigLIP features extracted from the proxy. A scalable curation pipeline further filters large-scale data for structure-rich supervision. Across synthetic and in-the-wild benchmarks, LucidFlux consistently outperforms strong open-source and commercial baselines, and ablation studies verify the necessity of each component. LucidFlux shows that, for large DiTs, when, where, and what to condition on -- rather than adding parameters or relying on text prompts -- is the governing lever for robust and caption-free universal image restoration in the wild.

Authors:Haoyu Li, XiaoSong Li
Title: Gradient-based multi-focus image fusion with focus-aware saliency enhancement
Abstract:
Multi-focus image fusion (MFIF) aims to yield an all-focused image from multiple partially focused inputs, which is crucial in applications cover sur-veillance, microscopy, and computational photography. However, existing methods struggle to preserve sharp focus-defocus boundaries, often resulting in blurred transitions and focused details loss. To solve this problem, we propose a MFIF method based on significant boundary enhancement, which generates high-quality fused boundaries while effectively detecting focus in-formation. Particularly, we propose a gradient-domain-based model that can obtain initial fusion results with complete boundaries and effectively pre-serve the boundary details. Additionally, we introduce Tenengrad gradient detection to extract salient features from both the source images and the ini-tial fused image, generating the corresponding saliency maps. For boundary refinement, we develop a focus metric based on gradient and complementary information, integrating the salient features with the complementary infor-mation across images to emphasize focused regions and produce a high-quality initial decision result. Extensive experiments on four public datasets demonstrate that our method consistently outperforms 12 state-of-the-art methods in both subjective and objective evaluations. We have realized codes in https://github.com/Lihyua/GICI

Authors:Nikita Kotelevskii, Maiya Goloburda, Vladimir Kondratyev, Alexander Fishkov, Mohsen Guizani, Eric Moulines, Maxim Panov
Title: Multidimensional Uncertainty Quantification via Optimal Transport
Abstract:
Most uncertainty quantification (UQ) approaches provide a single scalar value as a measure of model reliability. However, different uncertainty measures could provide complementary information on the prediction confidence. Even measures targeting the same type of uncertainty (e.g., ensemble-based and density-based measures of epistemic uncertainty) may capture different failure modes. We take a multidimensional view on UQ by stacking complementary UQ measures into a vector. Such vectors are assigned with Monge-Kantorovich ranks produced by an optimal-transport-based ordering method. The prediction is then deemed more uncertain than the other if it has a higher rank. The resulting VecUQ-OT algorithm uses entropy-regularized optimal transport. The transport map is learned on vectors of scores from in-distribution data and, by design, applies to unseen inputs, including out-of-distribution cases, without retraining. Our framework supports flexible non-additive uncertainty fusion (including aleatoric and epistemic components). It yields a robust ordering for downstream tasks such as selective prediction, misclassification detection, out-of-distribution detection, and selective generation. Across synthetic, image, and text data, VecUQ-OT shows high efficiency even when individual measures fail. The code for the method is available at: https://github.com/stat-ml/multidimensional_uncertainty.

Authors:Zijian Zhao, Dian Jin, Zijing Zhou
Title: Zero-Effort Image-to-Music Generation: An Interpretable RAG-based VLM Approach
Abstract:
Recently, Image-to-Music (I2M) generation has garnered significant attention, with potential applications in fields such as gaming, advertising, and multi-modal art creation. However, due to the ambiguous and subjective nature of I2M tasks, most end-to-end methods lack interpretability, leaving users puzzled about the generation results. Even methods based on emotion mapping face controversy, as emotion represents only a singular aspect of art. Additionally, most learning-based methods require substantial computational resources and large datasets for training, hindering accessibility for common users. To address these challenges, we propose the first Vision Language Model (VLM)-based I2M framework that offers high interpretability and low computational cost. Specifically, we utilize ABC notation to bridge the text and music modalities, enabling the VLM to generate music using natural language. We then apply multi-modal Retrieval-Augmented Generation (RAG) and self-refinement techniques to allow the VLM to produce high-quality music without external training. Furthermore, we leverage the generated motivations in text and the attention maps from the VLM to provide explanations for the generated results in both text and image modalities. To validate our method, we conduct both human studies and machine evaluations, where our method outperforms others in terms of music quality and music-image consistency, indicating promising results. Our code is available at https://github.com/RS2002/Image2Music .

Authors:Niharika Hegde, Subarnaduti Paul, Lars Joel-Frey, Manuel Brack, Kristian Kersting, Martin Mundt, Patrick Schramowski
Title: CHRONOBERG: Capturing Language Evolution and Temporal Awareness in Foundation Models
Abstract:
Large language models (LLMs) excel at operating at scale by leveraging social media and various data crawled from the web. Whereas existing corpora are diverse, their frequent lack of long-term temporal structure may however limit an LLM's ability to contextualize semantic and normative evolution of language and to capture diachronic variation. To support analysis and training for the latter, we introduce CHRONOBERG, a temporally structured corpus of English book texts spanning 250 years, curated from Project Gutenberg and enriched with a variety of temporal annotations. First, the edited nature of books enables us to quantify lexical semantic change through time-sensitive Valence-Arousal-Dominance (VAD) analysis and to construct historically calibrated affective lexicons to support temporally grounded interpretation. With the lexicons at hand, we demonstrate a need for modern LLM-based tools to better situate their detection of discriminatory language and contextualization of sentiment across various time-periods. In fact, we show how language models trained sequentially on CHRONOBERG struggle to encode diachronic shifts in meaning, emphasizing the need for temporally aware training and evaluation pipelines, and positioning CHRONOBERG as a scalable resource for the study of linguistic change and temporal generalization. Disclaimer: This paper includes language and display of samples that could be offensive to readers. Open Access: Chronoberg is available publicly on HuggingFace at ( https://huggingface.co/datasets/spaul25/Chronoberg). Code is available at (https://github.com/paulsubarna/Chronoberg).

Authors:Xiao Wang, Shujuan Wu, Xiaoxia Cheng, Changwei Bi, Jin Tang, Bin Luo
Title: Pedestrian Attribute Recognition via Hierarchical Cross-Modality HyperGraph Learning
Abstract:
Current Pedestrian Attribute Recognition (PAR) algorithms typically focus on mapping visual features to semantic labels or attempt to enhance learning by fusing visual and attribute information. However, these methods fail to fully exploit attribute knowledge and contextual information for more accurate recognition. Although recent works have started to consider using attribute text as additional input to enhance the association between visual and semantic information, these methods are still in their infancy. To address the above challenges, this paper proposes the construction of a multi-modal knowledge graph, which is utilized to mine the relationships between local visual features and text, as well as the relationships between attributes and extensive visual context samples. Specifically, we propose an effective multi-modal knowledge graph construction method that fully considers the relationships among attributes and the relationships between attributes and vision tokens. To effectively model these relationships, this paper introduces a knowledge graph-guided cross-modal hypergraph learning framework to enhance the standard pedestrian attribute recognition framework. Comprehensive experiments on multiple PAR benchmark datasets have thoroughly demonstrated the effectiveness of our proposed knowledge graph for the PAR task, establishing a strong foundation for knowledge-guided pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR

Authors:Pierrick Chatillon, Julien Rabin, David Tschumperlé
Title: NIFTY: a Non-Local Image Flow Matching for Texture Synthesis
Abstract:
This paper addresses the problem of exemplar-based texture synthesis. We introduce NIFTY, a hybrid framework that combines recent insights on diffusion models trained with convolutional neural networks, and classical patch-based texture optimization techniques. NIFTY is a non-parametric flow-matching model built on non-local patch matching, which avoids the need for neural network training while alleviating common shortcomings of patch-based methods, such as poor initialization or visual artifacts. Experimental results demonstrate the effectiveness of the proposed approach compared to representative methods from the literature. Code is available at https://github.com/PierrickCh/Nifty.git

Authors:Jinpeng Lu, Linghan Cai, Yinda Chen, Guo Tang, Songhan Jiang, Haoyuan Shi, Zhiwei Xiong
Title: Johnson-Lindenstrauss Lemma Guided Network for Efficient 3D Medical Segmentation
Abstract:
Lightweight 3D medical image segmentation remains constrained by a fundamental "efficiency / robustness conflict", particularly when processing complex anatomical structures and heterogeneous modalities. In this paper, we study how to redesign the framework based on the characteristics of high-dimensional 3D images, and explore data synergy to overcome the fragile representation of lightweight methods. Our approach, VeloxSeg, begins with a deployable and extensible dual-stream CNN-Transformer architecture composed of Paired Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC). For each 3D image, we invoke a "glance-and-focus" principle, where PWA rapidly retrieves multi-scale information, and JLC ensures robust local feature extraction with minimal parameters, significantly enhancing the model's ability to operate with low computational budget. Followed by an extension of the dual-stream architecture that incorporates modal interaction into the multi-scale image-retrieval process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture prior extracted by a self-supervised network into the segmentation network, yielding stronger representations than baselines at no extra inference cost. Experimental results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice improvement, alongside increasing GPU throughput by 11x and CPU by 48x. Codes are available at https://github.com/JinPLu/VeloxSeg.

Authors:Ke Li, Zheng Yang, Zhongbin Zhou, Feng Xue, Zhonglin Jiang, Wenxiao Wang
Title: HEAPr: Hessian-based Efficient Atomic Expert Pruning in Output Space
Abstract:
Mixture-of-Experts (MoE) architectures in large language models (LLMs) deliver exceptional performance and reduced inference costs compared to dense LLMs. However, their large parameter counts result in prohibitive memory requirements, limiting practical deployment. While existing pruning methods primarily focus on expert-level pruning, this coarse granularity often leads to substantial accuracy degradation. In this work, we introduce HEAPr, a novel pruning algorithm that decomposes experts into smaller, indivisible atomic experts, enabling more precise and flexible atomic expert pruning. To measure the importance of each atomic expert, we leverage second-order information based on principles similar to Optimal Brain Surgeon (OBS) theory. To address the computational and storage challenges posed by second-order information, HEAPr exploits the inherent properties of atomic experts to transform the second-order information from expert parameters into that of atomic expert parameters, and further simplifies it to the second-order information of atomic expert outputs. This approach reduces the space complexity from $O(d^4)$, where d is the model's dimensionality, to $O(d^2)$. HEAPr requires only two forward passes and one backward pass on a small calibration set to compute the importance of atomic experts. Extensive experiments on MoE models, including DeepSeek MoE and Qwen MoE family, demonstrate that HEAPr outperforms existing expert-level pruning methods across a wide range of compression ratios and benchmarks. Specifically, HEAPr achieves nearly lossless compression at compression ratios of 20% ~ 25% in most models, while also reducing FLOPs nearly by 20%. The code can be found at \href{https://github.com/LLIKKE/HEAPr}{https://github.com/LLIKKE/HEAPr}.

Authors:Aleksandar Terzić, Nicolas Menet, Michael Hersche, Thomas Hofmann, Abbas Rahimi
Title: Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models
Abstract:
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model

Authors:Michael Jungo, Andreas Fischer
Title: Rule-Based Reinforcement Learning for Document Image Classification with Vision Language Models
Abstract:
Rule-based reinforcement learning has been gaining popularity ever since DeepSeek-R1 has demonstrated its success through simple verifiable rewards. In the domain of document analysis, reinforcement learning is not as prevalent, even though many downstream tasks may benefit from the emerging properties of reinforcement learning, particularly the enhanced reason capabilities. We study the effects of rule-based reinforcement learning with the task of Document Image Classification which is one of the most commonly studied downstream tasks in document analysis. We find that reinforcement learning tends to have better generalisation capabilities to out-of-distritbution data, which we examine in three different scenarios, namely out-of-distribution images, unseen classes and different modalities. Our code is available at https://github.com/jungomi/vision-finetune.

Authors:Guanghao Zhu, Zhitian Hou, Zeyu Liu, Zhijie Sang, Congkai Xie, Hongxia Yang
Title: InfiMed-Foundation: Pioneering Advanced Multimodal Medical Models with Compute-Efficient Pre-Training and Multi-Stage Fine-Tuning
Abstract:
Multimodal large language models (MLLMs) have shown remarkable potential in various domains, yet their application in the medical field is hindered by several challenges. General-purpose MLLMs often lack the specialized knowledge required for medical tasks, leading to uncertain or hallucinatory responses. Knowledge distillation from advanced models struggles to capture domain-specific expertise in radiology and pharmacology. Additionally, the computational cost of continual pretraining with large-scale medical data poses significant efficiency challenges. To address these issues, we propose InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-specific MLLMs designed to deliver state-of-the-art performance in medical applications. We combined high-quality general-purpose and medical multimodal data and proposed a novel five-dimensional quality assessment framework to curate high-quality multimodal medical datasets. We employ low-to-high image resolution and multimodal sequence packing to enhance training efficiency, enabling the integration of extensive medical data. Furthermore, a three-stage supervised fine-tuning process ensures effective knowledge extraction for complex medical tasks. Evaluated on the MedEvalKit framework, InfiMed-Foundation-1.7B outperforms Qwen2.5VL-3B, while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-IT, demonstrating superior performance in medical visual question answering and diagnostic tasks. By addressing key challenges in data quality, training efficiency, and domain-specific knowledge extraction, our work paves the way for more reliable and effective AI-driven solutions in healthcare. InfiMed-Foundation-4B model is available at \href{https://huggingface.co/InfiX-ai/InfiMed-Foundation-4B}{InfiMed-Foundation-4B}.

Authors:Yifang Zhang, Pengfei Duan, Yiwen Yang, Shengwu Xiong
Title: Beyond Textual Context: Structural Graph Encoding with Adaptive Space Alignment to alleviate the hallucination of LLMs
Abstract:
Currently, the main approach for Large Language Models (LLMs) to tackle the hallucination issue is incorporating Knowledge Graphs(KGs).However, LLMs typically treat KGs as plain text, extracting only semantic information and limiting their use of the crucial structural aspects of KGs. Another challenge is the gap between the embedding spaces of KGs encoders and LLMs text embeddings, which hinders the effective integration of structured knowledge. To overcome these obstacles, we put forward the SSKG-LLM, an innovative model architecture that is designed to efficiently integrate both the Structural and Semantic information of KGs into the reasoning processes of LLMs. SSKG-LLM incorporates the Knowledge Graph Retrieval (KGR) module and the Knowledge Graph Encoding (KGE) module to preserve semantics while utilizing structure. Then, the Knowledge Graph Adaptation (KGA) module is incorporated to enable LLMs to understand KGs embeddings. We conduct extensive experiments and provide a detailed analysis to explore how incorporating the structural information of KGs can enhance the factual reasoning abilities of LLMs. Our code are available at https://github.com/yfangZhang/SSKG-LLM.

Authors:Junyi Wu, Zhiteng Li, Haotong Qin, Xiaohong Liu, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: FlashEdit: Decoupling Speed, Structure, and Semantics for Precise Image Editing
Abstract:
Text-guided image editing with diffusion models has achieved remarkable quality but suffers from prohibitive latency, hindering real-world applications. We introduce FlashEdit, a novel framework designed to enable high-fidelity, real-time image editing. Its efficiency stems from three key innovations: (1) a One-Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative processes; (2) a Background Shield (BG-Shield) technique that guarantees background preservation by selectively modifying features only within the edit region; and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures precise, localized edits by suppressing semantic leakage to the background. Extensive experiments demonstrate that FlashEdit maintains superior background consistency and structural integrity, while performing edits in under 0.2 seconds, which is an over 150$\times$ speedup compared to prior multi-step methods. Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit.

Authors:Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, Zhenjiang Jin, Guang Liang, Rui Zhang, Wenzheng Zhang, Yuan Qu, Zhifei Ren, Yuefeng Sun, Yuanhong Zheng, Dongsheng Ma, Zirui Tang, Boyu Niu, Ziyang Miao, Hejun Dong, Siyi Qian, Junyuan Zhang, Jingzhou Chen, Fangdong Wang, Xiaomeng Zhao, Liqun Wei, Wei Li, Shasha Wang, Ruiliang Xu, Yuanyuan Cao, Lu Chen, Qianqian Wu, Huaiyu Gu, Lindong Lu, Keming Wang, Dechen Lin, Guanlin Shen, Xuanhe Zhou, Linfeng Zhang, Yuhang Zang, Xiaoyi Dong, Jiaqi Wang, Bo Zhang, Lei Bai, Pei Chu, Weijia Li, Jiang Wu, Lijun Wu, Zhenxiang Li, Guangyu Wang, Zhongying Tu, Chao Xu, Kai Chen, Yu Qiao, Bowen Zhou, Dahua Lin, Wentao Zhang, Conghui He
Title: MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
Abstract:
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.

Authors:Quanzhou Li, Zhonghua Wu, Jingbo Wang, Chen Change Loy, Bo Dai
Title: DHAGrasp: Synthesizing Affordance-Aware Dual-Hand Grasps with Text Instructions
Abstract:
Learning to generate dual-hand grasps that respect object semantics is essential for robust hand-object interaction but remains largely underexplored due to dataset scarcity. Existing grasp datasets predominantly focus on single-hand interactions and contain only limited semantic part annotations. To address these challenges, we introduce a pipeline, SymOpt, that constructs a large-scale dual-hand grasp dataset by leveraging existing single-hand datasets and exploiting object and hand symmetries. Building on this, we propose a text-guided dual-hand grasp generator, DHAGrasp, that synthesizes Dual-Hand Affordance-aware Grasps for unseen objects. Our approach incorporates a novel dual-hand affordance representation and follows a two-stage design, which enables effective learning from a small set of segmented training objects while scaling to a much larger pool of unsegmented data. Extensive experiments demonstrate that our method produces diverse and semantically consistent grasps, outperforming strong baselines in both grasp quality and generalization to unseen objects. The project page is at https://quanzhou-li.github.io/DHAGrasp/.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Zike Yuan, Yang Xiang, Buzhou Tang
Title: From Long to Lean: Performance-aware and Adaptive Chain-of-Thought Compression via Multi-round Refinement
Abstract:
Chain-of-Thought (CoT) reasoning improves performance on complex tasks but introduces significant inference latency due to verbosity. We propose Multiround Adaptive Chain-of-Thought Compression (MACC), a framework that leverages the token elasticity phenomenon--where overly small token budgets can paradoxically increase output length--to progressively compress CoTs via multiround refinement. This adaptive strategy allows MACC to determine the optimal compression depth for each input. Our method achieves an average accuracy improvement of 5.6 percent over state-of-the-art baselines, while also reducing CoT length by an average of 47 tokens and significantly lowering latency. Furthermore, we show that test-time performance--accuracy and token length--can be reliably predicted using interpretable features like perplexity and compression rate on the training set. Evaluated across different models, our method enables efficient model selection and forecasting without repeated fine-tuning, demonstrating that CoT compression is both effective and predictable. Our code will be released in https://github.com/Leon221220/MACC.

Authors:Primakov Chungkham, V Venktesh, Vinay Setty, Avishek Anand
Title: Think Right, Not More: Test-Time Scaling for Numerical Claim Verification
Abstract:
Fact-checking real-world claims, particularly numerical claims, is inherently complex that require multistep reasoning and numerical reasoning for verifying diverse aspects of the claim. Although large language models (LLMs) including reasoning models have made tremendous advances, they still fall short on fact-checking real-world claims that require a combination of compositional and numerical reasoning. They are unable to understand nuance of numerical aspects, and are also susceptible to the reasoning drift issue, where the model is unable to contextualize diverse information resulting in misinterpretation and backtracking of reasoning process. In this work, we systematically explore scaling test-time compute (TTS) for LLMs on the task of fact-checking complex numerical claims, which entails eliciting multiple reasoning paths from an LLM. We train a verifier model (VERIFIERFC) to navigate this space of possible reasoning paths and select one that could lead to the correct verdict. We observe that TTS helps mitigate the reasoning drift issue, leading to significant performance gains for fact-checking numerical claims. To improve compute efficiency in TTS, we introduce an adaptive mechanism that performs TTS selectively based on the perceived complexity of the claim. This approach achieves 1.8x higher efficiency than standard TTS, while delivering a notable 18.8% performance improvement over single-shot claim verification methods. Our code and data can be found at https://github.com/VenkteshV/VerifierFC

Authors:Xiaohuan Pei, Yuxing Chen, Siyu Xu, Yunke Wang, Yuheng Shi, Chang Xu
Title: Action-aware Dynamic Pruning for Efficient Vision-Language-Action Manipulation
Abstract:
Robotic manipulation with Vision-Language-Action models requires efficient inference over long-horizon multi-modal context, where attention to dense visual tokens dominates computational cost. Existing methods optimize inference speed by reducing visual redundancy within VLA models, but they overlook the varying redundancy across robotic manipulation stages. We observe that the visual token redundancy is higher in coarse manipulation phase than in fine-grained operations, and is strongly correlated with the action dynamic. Motivated by this observation, we propose \textbf{A}ction-aware \textbf{D}ynamic \textbf{P}runing (\textbf{ADP}), a multi-modal pruning framework that integrates text-driven token selection with action-aware trajectory gating. Our method introduces a gating mechanism that conditions the pruning signal on recent action trajectories, using past motion windows to adaptively adjust token retention ratios in accordance with dynamics, thereby balancing computational efficiency and perceptual precision across different manipulation stages. Extensive experiments on the LIBERO suites and diverse real-world scenarios demonstrate that our method significantly reduces FLOPs and action inference latency (\textit{e.g.} $1.35 \times$ speed up on OpenVLA-OFT) while maintaining competitive success rates (\textit{e.g.} 25.8\% improvements with OpenVLA) compared to baselines, thereby providing a simple plug-in path to efficient robot policies that advances the efficiency and performance frontier of robotic manipulation. Our project website is: \href{https://vla-adp.github.io/}{ADP.com}.

Authors:Inzamamul Alam, Md Tanvir Islam, Simon S. Woo
Title: SpecXNet: A Dual-Domain Convolutional Network for Robust Deepfake Detection
Abstract:
The increasing realism of content generated by GANs and diffusion models has made deepfake detection significantly more challenging. Existing approaches often focus solely on spatial or frequency-domain features, limiting their generalization to unseen manipulations. We propose the Spectral Cross-Attentional Network (SpecXNet), a dual-domain architecture for robust deepfake detection. The core \textbf{Dual-Domain Feature Coupler (DDFC)} decomposes features into a local spatial branch for capturing texture-level anomalies and a global spectral branch that employs Fast Fourier Transform to model periodic inconsistencies. This dual-domain formulation allows SpecXNet to jointly exploit localized detail and global structural coherence, which are critical for distinguishing authentic from manipulated images. We also introduce the \textbf{Dual Fourier Attention (DFA)} module, which dynamically fuses spatial and spectral features in a content-aware manner. Built atop a modified XceptionNet backbone, we embed the DDFC and DFA modules within a separable convolution block. Extensive experiments on multiple deepfake benchmarks show that SpecXNet achieves state-of-the-art accuracy, particularly under cross-dataset and unseen manipulation scenarios, while maintaining real-time feasibility. Our results highlight the effectiveness of unified spatial-spectral learning for robust and generalizable deepfake detection. To ensure reproducibility, we released the full code on \href{https://github.com/inzamamulDU/SpecXNet}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Yudong Li, Yufei Sun, Yuhan Yao, Peiru Yang, Wanyue Li, Jiajun Zou, Yongfeng Huang, Linlin Shen
Title: RedNote-Vibe: A Dataset for Capturing Temporal Dynamics of AI-Generated Text in Social Media
Abstract:
The proliferation of Large Language Models (LLMs) has led to widespread AI-Generated Text (AIGT) on social media platforms, creating unique challenges where content dynamics are driven by user engagement and evolve over time. However, existing datasets mainly depict static AIGT detection. In this work, we introduce RedNote-Vibe, the first longitudinal (5-years) dataset for social media AIGT analysis. This dataset is sourced from Xiaohongshu platform, containing user engagement metrics (e.g., likes, comments) and timestamps spanning from the pre-LLM period to July 2025, which enables research into the temporal dynamics and user interaction patterns of AIGT. Furthermore, to detect AIGT in the context of social media, we propose PsychoLinguistic AIGT Detection Framework (PLAD), an interpretable approach that leverages psycholinguistic features. Our experiments show that PLAD achieves superior detection performance and provides insights into the signatures distinguishing human and AI-generated content. More importantly, it reveals the complex relationship between these linguistic features and social media engagement. The dataset is available at https://github.com/testuser03158/RedNote-Vibe.

Authors:Muxi Chen, Zhaohua Zhang, Chenchen Zhao, Mingyang Chen, Wenyu Jiang, Tianwen Jiang, Jianhuan Zhuo, Yu Tang, Qiuyong Xiao, Jihong Zhang, Qiang Xu
Title: FailureAtlas:Mapping the Failure Landscape of T2I Models via Active Exploration
Abstract:
Static benchmarks have provided a valuable foundation for comparing Text-to-Image (T2I) models. However, their passive design offers limited diagnostic power, struggling to uncover the full landscape of systematic failures or isolate their root causes. We argue for a complementary paradigm: active exploration. We introduce FailureAtlas, the first framework designed to autonomously explore and map the vast failure landscape of T2I models at scale. FailureAtlas frames error discovery as a structured search for minimal, failure-inducing concepts. While it is a computationally explosive problem, we make it tractable with novel acceleration techniques. When applied to Stable Diffusion models, our method uncovers hundreds of thousands of previously unknown error slices (over 247,000 in SD1.5 alone) and provides the first large-scale evidence linking these failures to data scarcity in the training set. By providing a principled and scalable engine for deep model auditing, FailureAtlas establishes a new, diagnostic-first methodology to guide the development of more robust generative AI. The code is available at https://github.com/cure-lab/FailureAtlas

Authors:Jewon Lee, Wooksu Shin, Seungmin Yang, Ki-Ung Song, DongUk Lim, Jaeyeon Kim, Tae-Ho Kim, Bo-Kyeong Kim
Title: ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
Abstract:
Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

Authors:Abdelrahman Eldesokey, Aleksandar Cvejic, Bernard Ghanem, Peter Wonka
Title: Mind-the-Glitch: Visual Correspondence for Detecting Inconsistencies in Subject-Driven Generation
Abstract:
We propose a novel approach for disentangling visual and semantic features from the backbones of pre-trained diffusion models, enabling visual correspondence in a manner analogous to the well-established semantic correspondence. While diffusion model backbones are known to encode semantically rich features, they must also contain visual features to support their image synthesis capabilities. However, isolating these visual features is challenging due to the absence of annotated datasets. To address this, we introduce an automated pipeline that constructs image pairs with annotated semantic and visual correspondences based on existing subject-driven image generation datasets, and design a contrastive architecture to separate the two feature types. Leveraging the disentangled representations, we propose a new metric, Visual Semantic Matching (VSM), that quantifies visual inconsistencies in subject-driven image generation. Empirical results show that our approach outperforms global feature-based metrics such as CLIP, DINO, and vision--language models in quantifying visual inconsistencies while also enabling spatial localization of inconsistent regions. To our knowledge, this is the first method that supports both quantification and localization of inconsistencies in subject-driven generation, offering a valuable tool for advancing this task. Project Page:https://abdo-eldesokey.github.io/mind-the-glitch/

Authors:Yushen Chen, Kai Hu, Long Zhou, Shulin Feng, Xusheng Yang, Hangting Chen, Xie Chen
Title: AUV: Teaching Audio Universal Vector Quantization with Single Nested Codebook
Abstract:
We propose AUV, a unified neural audio codec with a single codebook, which enables a favourable reconstruction of speech and further extends to general audio, including vocal, music, and sound. AUV is capable of tackling any 16 kHz mixed-domain audio segment at bit rates around 700 bps. To accomplish this, we guide the matryoshka codebook with nested domain-specific partitions, assigned with corresponding teacher models to perform distillation, all in a single-stage training. A conformer-style encoder-decoder architecture with STFT features as audio representation is employed, yielding better audio quality. Comprehensive evaluations demonstrate that AUV exhibits comparable audio reconstruction ability to state-of-the-art domain-specific single-layer quantizer codecs, showcasing the potential of audio universal vector quantization with a single codebook. The pre-trained model and demo samples are available at https://swivid.github.io/AUV/.

Authors:Zhe Zhu, Le Wan, Rui Xu, Yiheng Zhang, Honghua Chen, Zhiyang Dou, Cheng Lin, Yuan Liu, Mingqiang Wei
Title: PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data
Abstract:
Segmenting 3D objects into parts is a long-standing challenge in computer vision. To overcome taxonomy constraints and generalize to unseen 3D objects, recent works turn to open-world part segmentation. These approaches typically transfer supervision from 2D foundation models, such as SAM, by lifting multi-view masks into 3D. However, this indirect paradigm fails to capture intrinsic geometry, leading to surface-only understanding, uncontrolled decomposition, and limited generalization. We present PartSAM, the first promptable part segmentation model trained natively on large-scale 3D data. Following the design philosophy of SAM, PartSAM employs an encoder-decoder architecture in which a triplane-based dual-branch encoder produces spatially structured tokens for scalable part-aware representation learning. To enable large-scale supervision, we further introduce a model-in-the-loop annotation pipeline that curates over five million 3D shape-part pairs from online assets, providing diverse and fine-grained labels. This combination of scalable architecture and diverse 3D data yields emergent open-world capabilities: with a single prompt, PartSAM achieves highly accurate part identification, and in a Segment-Every-Part mode, it automatically decomposes shapes into both surface and internal structures. Extensive experiments show that PartSAM outperforms state-of-the-art methods by large margins across multiple benchmarks, marking a decisive step toward foundation models for 3D part understanding.

Authors:Tao Wu, Yibo Jiang, Yehao Lu, Zhizhong Wang, Zeyi Huang, Zequn Qin, Xi Li
Title: MultiCrafter: High-Fidelity Multi-Subject Generation via Spatially Disentangled Attention and Identity-Aware Reinforcement Learning
Abstract:
Multi-subject image generation aims to synthesize user-provided subjects in a single image while preserving subject fidelity, ensuring prompt consistency, and aligning with human aesthetic preferences. However, existing methods, particularly those built on the In-Context-Learning paradigm, are limited by their reliance on simple reconstruction-based objectives, leading to both severe attribute leakage that compromises subject fidelity and failing to align with nuanced human preferences. To address this, we propose MultiCrafter, a framework that ensures high-fidelity, preference-aligned generation. First, we find that the root cause of attribute leakage is a significant entanglement of attention between different subjects during the generation process. Therefore, we introduce explicit positional supervision to explicitly separate attention regions for each subject, effectively mitigating attribute leakage. To enable the model to accurately plan the attention region of different subjects in diverse scenarios, we employ a Mixture-of-Experts architecture to enhance the model's capacity, allowing different experts to focus on different scenarios. Finally, we design a novel online reinforcement learning framework to align the model with human preferences, featuring a scoring mechanism to accurately assess multi-subject fidelity and a more stable training strategy tailored for the MoE architecture. Experiments validate that our framework significantly improves subject fidelity while aligning with human preferences better.

Authors:Daiqing Wu, Dongbao Yang, Sicheng Zhao, Can Ma, Yu Zhou
Title: Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.

Authors:Taeyoung Yun, Pierre-Luc St-Charles, Jinkyoo Park, Yoshua Bengio, Minsu Kim
Title: Active Attacks: Red-teaming LLMs via Adaptive Environments
Abstract:
We address the challenge of generating diverse attack prompts for large language models (LLMs) that elicit harmful behaviors (e.g., insults, sexual content) and are used for safety fine-tuning. Rather than relying on manual prompt engineering, attacker LLMs can be trained with reinforcement learning (RL) to automatically generate such prompts using only a toxicity classifier as a reward. However, capturing a wide range of harmful behaviors is a significant challenge that requires explicit diversity objectives. Existing diversity-seeking RL methods often collapse to limited modes: once high-reward prompts are found, exploration of new regions is discouraged. Inspired by the active learning paradigm that encourages adaptive exploration, we introduce \textit{Active Attacks}, a novel RL-based red-teaming algorithm that adapts its attacks as the victim evolves. By periodically safety fine-tuning the victim LLM with collected attack prompts, rewards in exploited regions diminish, which forces the attacker to seek unexplored vulnerabilities. This process naturally induces an easy-to-hard exploration curriculum, where the attacker progresses beyond easy modes toward increasingly difficult ones. As a result, Active Attacks uncovers a wide range of local attack modes step by step, and their combination achieves wide coverage of the multi-mode distribution. Active Attacks, a simple plug-and-play module that seamlessly integrates into existing RL objectives, unexpectedly outperformed prior RL-based methods -- including GFlowNets, PPO, and REINFORCE -- by improving cross-attack success rates against GFlowNets, the previous state-of-the-art, from 0.07% to 31.28% (a relative gain greater than $400\ \times$) with only a 6% increase in computation. Our code is publicly available \href{https://github.com/dbsxodud-11/active_attacks}{here}.

Authors:Woosung Joung, Daewon Chae, Jinkyu Kim
Title: SemanticControl: A Training-Free Approach for Handling Loosely Aligned Visual Conditions in ControlNet
Abstract:
ControlNet has enabled detailed spatial control in text-to-image diffusion models by incorporating additional visual conditions such as depth or edge maps. However, its effectiveness heavily depends on the availability of visual conditions that are precisely aligned with the generation goal specified by text prompt-a requirement that often fails in practice, especially for uncommon or imaginative scenes. For example, generating an image of a cat cooking in a specific pose may be infeasible due to the lack of suitable visual conditions. In contrast, structurally similar cues can often be found in more common settings-for instance, poses of humans cooking are widely available and can serve as rough visual guides. Unfortunately, existing ControlNet models struggle to use such loosely aligned visual conditions, often resulting in low text fidelity or visual artifacts. To address this limitation, we propose SemanticControl, a training-free method for effectively leveraging misaligned but semantically relevant visual conditions. Our approach adaptively suppresses the influence of the visual condition where it conflicts with the prompt, while strengthening guidance from the text. The key idea is to first run an auxiliary denoising process using a surrogate prompt aligned with the visual condition (e.g., "a human playing guitar" for a human pose condition) to extract informative attention masks, and then utilize these masks during the denoising of the actual target prompt (e.g., cat playing guitar). Experimental results demonstrate that our method improves performance under loosely aligned conditions across various conditions, including depth maps, edge maps, and human skeletons, outperforming existing baselines. Our code is available at https://mung3477.github.io/semantic-control.

Authors:Zhengyan Wan, Yidong Ouyang, Liyan Xie, Fang Fang, Hongyuan Zha, Guang Cheng
Title: Discrete Guidance Matching: Exact Guidance for Discrete Flow Matching
Abstract:
Guidance provides a simple and effective framework for posterior sampling by steering the generation process towards the desired distribution. When modeling discrete data, existing approaches mostly focus on guidance with the first-order Taylor approximation to improve the sampling efficiency. However, such an approximation is inappropriate in discrete state spaces since the approximation error could be large. A novel guidance framework for discrete data is proposed to address this problem: We derive the exact transition rate for the desired distribution given a learned discrete flow matching model, leading to guidance that only requires a single forward pass in each sampling step, significantly improving efficiency. This unified novel framework is general enough, encompassing existing guidance methods as special cases, and it can also be seamlessly applied to the masked diffusion model. We demonstrate the effectiveness of our proposed guidance on energy-guided simulations and preference alignment on text-to-image generation and multimodal understanding tasks. The code is available through https://github.com/WanZhengyan/Discrete-Guidance-Matching/tree/main.

Authors:Jibin Song, Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Title: Syncphony: Synchronized Audio-to-Video Generation with Diffusion Transformers
Abstract:
Text-to-video and image-to-video generation have made rapid progress in visual quality, but they remain limited in controlling the precise timing of motion. In contrast, audio provides temporal cues aligned with video motion, making it a promising condition for temporally controlled video generation. However, existing audio-to-video (A2V) models struggle with fine-grained synchronization due to indirect conditioning mechanisms or limited temporal modeling capacity. We present Syncphony, which generates 380x640 resolution, 24fps videos synchronized with diverse audio inputs. Our approach builds upon a pre-trained video backbone and incorporates two key components to improve synchronization: (1) Motion-aware Loss, which emphasizes learning at high-motion regions; (2) Audio Sync Guidance, which guides the full model using a visually aligned off-sync model without audio layers to better exploit audio cues at inference while maintaining visual quality. To evaluate synchronization, we propose CycleSync, a video-to-audio-based metric that measures the amount of motion cues in the generated video to reconstruct the original audio. Experiments on AVSync15 and The Greatest Hits datasets demonstrate that Syncphony outperforms existing methods in both synchronization accuracy and visual quality. Project page is available at: https://jibin86.github.io/syncphony_project_page

Authors:Yifei Peng, Yaoli Liu, Enbo Xia, Yu Jin, Wang-Zhou Dai, Zhong Ren, Yao-Xiang Ding, Kun Zhou
Title: Abductive Logical Rule Induction by Bridging Inductive Logic Programming and Multimodal Large Language Models
Abstract:
We propose ILP-CoT, a method that bridges Inductive Logic Programming (ILP) and Multimodal Large Language Models (MLLMs) for abductive logical rule induction. The task involves both discovering logical facts and inducing logical rules from a small number of unstructured textual or visual inputs, which still remain challenging when solely relying on ILP, due to the requirement of specified background knowledge and high computational cost, or MLLMs, due to the appearance of perceptual hallucinations. Based on the key observation that MLLMs could propose structure-correct rules even under hallucinations, our approach automatically builds ILP tasks with pruned search spaces based on the rule structure proposals from MLLMs, and utilizes ILP system to output rules built upon rectified logical facts and formal inductive reasoning. Its effectiveness is verified through challenging logical induction benchmarks, as well as a potential application of our approach, namely text-to-image customized generation with rule induction. Our code and data are released at https://github.com/future-item/ILP-CoT.

Authors:Minje Kim, Tae-Kyun Kim
Title: SRHand: Super-Resolving Hand Images and 3D Shapes via View/Pose-aware Neural Image Representations and Explicit 3D Meshes
Abstract:
Reconstructing detailed hand avatars plays a crucial role in various applications. While prior works have focused on capturing high-fidelity hand geometry, they heavily rely on high-resolution multi-view image inputs and struggle to generalize on low-resolution images. Multi-view image super-resolution methods have been proposed to enforce 3D view consistency. These methods, however, are limited to static objects/scenes with fixed resolutions and are not applicable to articulated deformable hands. In this paper, we propose SRHand (Super-Resolution Hand), the method for reconstructing detailed 3D geometry as well as textured images of hands from low-resolution images. SRHand leverages the advantages of implicit image representation with explicit hand meshes. Specifically, we introduce a geometric-aware implicit image function (GIIF) that learns detailed hand prior by upsampling the coarse input images. By jointly optimizing the implicit image function and explicit 3D hand shapes, our method preserves multi-view and pose consistency among upsampled hand images, and achieves fine-detailed 3D reconstruction (wrinkles, nails). In experiments using the InterHand2.6M and Goliath datasets, our method significantly outperforms state-of-the-art image upsampling methods adapted to hand datasets, and 3D hand reconstruction methods, quantitatively and qualitatively. Project page: https://yunminjin2.github.io/projects/srhand

Authors:Junhao Chen, Yu Huang, Siyuan Li, Rui Yao, Hanqian Li, Hanyu Zhang, Jungang Li, Jian Chen, Bowen Wang, Xuming Hu
Title: KnowMT-Bench: Benchmarking Knowledge-Intensive Long-Form Question Answering in Multi-Turn Dialogues
Abstract:
Multi-Turn Long-Form Question Answering (MT-LFQA) is a key application paradigm of Large Language Models (LLMs) in knowledge-intensive domains. However, existing benchmarks are limited to single-turn dialogue, while multi-turn dialogue benchmarks typically assess other orthogonal capabilities rather than knowledge-intensive factuality. To bridge this critical gap, we introduce \textbf{KnowMT-Bench}, the \textit{first-ever} benchmark designed to systematically evaluate MT-LFQA for LLMs across knowledge-intensive fields, including medicine, finance, and law. To faithfully assess the model's real-world performance, KnowMT-Bench employs a dynamic evaluation setting where models generate their own multi-turn dialogue histories given logically progressive question sequences. The factual capability and information delivery efficiency of the \textit{final-turn} answer are then evaluated using a human-validated automated pipeline. Our experiments reveal that multi-turn contexts degrade performance: factual capability declines due to the contextual noise from self-generated histories, while information efficiency drops as models become more verbose with increasing dialogue length. We then investigate mitigation strategies, demonstrating that retrieval-augmented generation (RAG) can effectively alleviate and even reverse this factual degradation. These findings underscore the importance of our benchmark in evaluating and enhancing the conversational factual capabilities of LLMs in real-world knowledge-intensive applications. Code is available at \href{https://github.com/hardenyu21/KnowMT-Bench}{\textcolor{cyan}{\texttt{KnowMT-Bench}}}.

Authors:Taejong Joo, Shu Ishida, Ivan Sosnovik, Bryan Lim, Sahand Rezaei-Shoshtari, Adam Gaier, Robert Giaquinto
Title: Graph of Agents: Principled Long Context Modeling by Emergent Multi-Agent Collaboration
Abstract:
As a model-agnostic approach to long context modeling, multi-agent systems can process inputs longer than a large language model's context window without retraining or architectural modifications. However, their performance often heavily relies on hand-crafted multi-agent collaboration strategies and prompt engineering, which limit generalizability. In this work, we introduce a principled framework that formalizes the model-agnostic long context modeling problem as a compression problem, yielding an information-theoretic compression objective. Building on this framework, we propose Graph of Agents (GoA), which dynamically constructs an input-dependent collaboration structure that maximizes this objective. For Llama 3.1 8B and Qwen3 8B across six document question answering benchmarks, GoA improves the average $F_1$ score of retrieval-augmented generation by 5.7\% and a strong multi-agent baseline using a fixed collaboration structure by 16.35\%, respectively. Even with only a 2K context window, GoA surpasses the 128K context window Llama 3.1 8B on LongBench, showing a dramatic increase in effective context length. Our source code is available at https://github.com/tjoo512/graph-of-agents.

Authors:Shengxiang Xu, Jiayi Zhang, Shimin Di, Yuyu Luo, Liang Yao, Hanmo Liu, Jia Zhu, Fan Liu, Min-Ling Zhang
Title: RobustFlow: Towards Robust Agentic Workflow Generation
Abstract:
The automated generation of agentic workflows is a promising frontier for enabling large language models (LLMs) to solve complex tasks. However, our investigation reveals that the robustness of agentic workflow remains a critical, unaddressed challenge. Current methods often generate wildly inconsistent workflows when provided with instructions that are semantically identical but differently phrased. This brittleness severely undermines their reliability and trustworthiness for real-world applications. To quantitatively diagnose this instability, we propose metrics based on nodal and topological similarity to evaluate workflow consistency against common semantic variations such as paraphrasing and noise injection. Subsequently, we further propose a novel training framework, RobustFlow, that leverages preference optimization to teach models invariance to instruction variations. By training on sets of synonymous task descriptions, RobustFlow boosts workflow robustness scores to 70\% - 90\%, which is a substantial improvement over existing approaches. The code is publicly available at https://github.com/DEFENSE-SEU/RobustFlow.

Authors:Yu Shang, Yangcheng Yu, Xin Zhang, Xin Jin, Haisheng Su, Wei Wu, Yong Li
Title: MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Abstract:
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.

Authors:Yizhou Zhang, Ning Lv, Teng Wang, Jisheng Dang
Title: FastGRPO: Accelerating Policy Optimization via Concurrency-aware Speculative Decoding and Online Draft Learning
Abstract:
Group relative policy optimization (GRPO) has demonstrated significant potential in improving the reasoning capabilities of large language models (LLMs) via reinforcement learning. However, its practical deployment is impeded by an excessively slow training process, primarily attributed to the computationally intensive autoregressive generation of multiple responses per query, which makes the generation phase the primary performance bottleneck. Although speculative decoding presents a promising direction for acceleration, its direct application in GRPO achieves limited speedup under high-concurrency training conditions. To overcome this limitation, we propose a concurrency-aware speculative decoding framework that dynamically adjusts the drafting and verification strategy according to real-time concurrency levels, thereby maximizing the acceleration of the generation process. Furthermore, to address performance degradation arising from distributional drift between the evolving target model and the fixed draft model during training, we introduce an online draft learning mechanism that enables the draft model to continuously adapt using feedback signals from the target model. Experimental results across multiple mathematical reasoning datasets and models demonstrate that the proposed method achieves end-to-end speedups of 2.35x to 2.72x, significantly surpassing baseline approaches in efficiency. The code is available at https://github.com/yedaotian9/GRPO_speculative.

Authors:Yu Shang, Lei Jin, Yiding Ma, Xin Zhang, Chen Gao, Wei Wu, Yong Li
Title: LongScape: Advancing Long-Horizon Embodied World Models with Context-Aware MoE
Abstract:
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.

Authors:Xinlei Yu, Chengming Xu, Guibin Zhang, Yongbo He, Zhangquan Chen, Zhucun Xue, Jiangning Zhang, Yue Liao, Xiaobin Hu, Yu-Gang Jiang, Shuicheng Yan
Title: Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Abstract:
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code will be available at: https://github.com/YU-deep/ViF.git.

Authors:Lihao Zheng, Jiawei Chen, Xintian Shen, Hao Ma, Tao Wei
Title: MIRG-RL: Multi-Image Reasoning and Grounding with Reinforcement Learning
Abstract:
Multi-image reasoning and grounding require understanding complex cross-image relationships at both object levels and image levels. Current Large Visual Language Models (LVLMs) face two critical challenges: the lack of cross-image reasoning capabilities and insufficient cross-image reference reward modeling. To address these issues, we propose a unified framework - Multi-Image Reasoning and Grounding with Reinforcement Learning (MIRG-RL). Specifically, our two-stage training paradigm combines supervised fine-tuning with annotated trajectories and image-aware reinforcement learning optimization, progressively developing multi-image reasoning capabilities. Furthermore, we innovatively propose a method for constructing the trajectory data, which integrates object-level and image-level annotation information, and use this method to generate a lightweight reasoning-enhanced dataset. To effectively resolve cross-image ambiguities, we design an image-aware RL policy with dual reward functions for objects and images. Experiments demonstrate that MIRG-RL achieves state-of-the-art (SOTA) performance in multi-image grounding benchmarks, attaining 64.82% on cross-image reasoning tasks - exceeding the previous best method by 1%. The code and dataset have been released at https://github.com/ZEUS2035/MIRG-RL.

Authors:Tianci Wu, Guangming Zhu, Jiang Lu, Siyuan Wang, Ning Wang, Nuoye Xiong, Zhang Liang
Title: Prompt-guided Representation Disentanglement for Action Recognition
Abstract:
Action recognition is a fundamental task in video understanding. Existing methods typically extract unified features to process all actions in one video, which makes it challenging to model the interactions between different objects in multi-action scenarios. To alleviate this issue, we explore disentangling any specified actions from complex scenes as an effective solution. In this paper, we propose Prompt-guided Disentangled Representation for Action Recognition (ProDA), a novel framework that disentangles any specified actions from a multi-action scene. ProDA leverages Spatio-temporal Scene Graphs (SSGs) and introduces Dynamic Prompt Module (DPM) to guide a Graph Parsing Neural Network (GPNN) in generating action-specific representations. Furthermore, we design a video-adapted GPNN that aggregates information using dynamic weights. Experiments in video action recognition demonstrate the effectiveness of our approach when compared with the state-of-the-art methods. Our code can be found in https://github.com/iamsnaping/ProDA.git

Authors:Junliang Liu, Jingyu Xiao, Wenxin Tang, Wenxuan Wang, Zhixian Wang, Minrui Zhang, Shuanghe Yu
Title: Benchmarking MLLM-based Web Understanding: Reasoning, Robustness and Safety
Abstract:
Multimodal large language models (MLLMs) are increasingly positioned as AI collaborators for building complex web-related applications like GUI agents and front-end code generation. However, existing benchmarks largely emphasize visual perception or UI code generation, showing insufficient evaluation on the reasoning, robustness and safety capability required for end-to-end web applications. To bridge the gap, we introduce a comprehensive web understanding benchmark, named WebRSSBench, that jointly evaluates Reasoning, Robustness, and Safety across eight tasks, such as position relationship reasoning, color robustness, and safety critical detection, etc. The benchmark is constructed from 729 websites and contains 3799 question answer pairs that probe multi-step inference over page structure, text, widgets, and safety-critical interactions. To ensure reliable measurement, we adopt standardized prompts, deterministic evaluation scripts, and multi-stage quality control combining automatic checks with targeted human verification. We evaluate 12 MLLMs on WebRSSBench. The results reveal significant gaps, models still struggle with compositional and cross-element reasoning over realistic layouts, show limited robustness when facing perturbations in user interfaces and content such as layout rearrangements or visual style shifts, and are rather conservative in recognizing and avoiding safety critical or irreversible actions. Our code is available at https://github.com/jinliang-byte/webssrbench.

Authors:Hyeonseong Kim, Roy El-Helou, Seungbeen Lee, Sungjoon Choi, Matthew Pan
Title: The Turkish Ice Cream Robot: Examining Playful Deception in Social Human-Robot Interactions
Abstract:
Playful deception, a common feature in human social interactions, remains underexplored in Human-Robot Interaction (HRI). Inspired by the Turkish Ice Cream (TIC) vendor routine, we investigate how bounded, culturally familiar forms of deception influence user trust, enjoyment, and engagement during robotic handovers. We design a robotic manipulator equipped with a custom end-effector and implement five TIC-inspired trick policies that deceptively delay the handover of an ice cream-shaped object. Through a mixed-design user study with 91 participants, we evaluate the effects of playful deception and interaction duration on user experience. Results reveal that TIC-inspired deception significantly enhances enjoyment and engagement, though reduces perceived safety and trust, suggesting a structured trade-off across the multi-dimensional aspects. Our findings demonstrate that playful deception can be a valuable design strategy for interactive robots in entertainment and engagement-focused contexts, while underscoring the importance of deliberate consideration of its complex trade-offs. You can find more information, including demonstration videos, on https://hyeonseong-kim98.github.io/turkish-ice-cream-robot/ .

Authors:Haotian Luo, Huaisong Zhang, Xuelin Zhang, Haoyu Wang, Zeyu Qin, Wenjie Lu, Guozheng Ma, Haiying He, Yingsha Xie, Qiyang Zhou, Zixuan Hu, Hongze Mi, Yibo Wang, Naiqiang Tan, Hong Chen, Yi R. Fung, Chun Yuan, Li Shen
Title: UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Abstract:
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce \textbf{UltraHorizon} a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average \textbf{200k+} tokens and \textbf{400+} tool calls, whereas in standard configurations they still exceed \textbf{35k} tokens and involve more than \textbf{60} tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. \href{https://github.com/StarDewXXX/UltraHorizon}{Our code will be available here.}

Authors:Lan Chen, Yuchao Gu, Qi Mao
Title: UniVid: Unifying Vision Tasks with Pre-trained Video Generation Models
Abstract:
Large language models, trained on extensive corpora, successfully unify diverse linguistic tasks within a single generative framework. Inspired by this, recent works like Large Vision Model (LVM) extend this paradigm to vision by organizing tasks into sequential visual sentences, where visual prompts serve as the context to guide outputs. However, such modeling requires task-specific pre-training across modalities and sources, which is costly and limits scalability to unseen tasks. Given that pre-trained video generation models inherently capture temporal sequence dependencies, we explore a more unified and scalable alternative: can a pre-trained video generation model adapt to diverse image and video tasks? To answer this, we propose UniVid, a framework that fine-tunes a video diffusion transformer to handle various vision tasks without task-specific modifications. Tasks are represented as visual sentences, where the context sequence defines both the task and the expected output modality. We evaluate the generalization of UniVid from two perspectives: (1) cross-modal inference with contexts composed of both images and videos, extending beyond LVM's uni-modal setting; (2) cross-source tasks from natural to annotated data, without multi-source pre-training. Despite being trained solely on natural video data, UniVid generalizes well in both settings. Notably, understanding and generation tasks can easily switch by simply reversing the visual sentence order in this paradigm. These findings highlight the potential of pre-trained video generation models to serve as a scalable and unified foundation for vision modeling. Our code will be released at https://github.com/CUC-MIPG/UniVid.

Authors:Mehwish Mehmood, Ivor Spence, Muhammad Fahim
Title: LFA-Net: A Lightweight Network with LiteFusion Attention for Retinal Vessel Segmentation
Abstract:
Lightweight retinal vessel segmentation is important for the early diagnosis of vision-threatening and systemic diseases, especially in a real-world clinical environment with limited computational resources. Although segmentation methods based on deep learning are improving, existing models are still facing challenges of small vessel segmentation and high computational costs. To address these challenges, we proposed a new vascular segmentation network, LFA-Net, which incorporates a newly designed attention module, LiteFusion-Attention. This attention module incorporates residual learning connections, Vision Mamba-inspired dynamics, and modulation-based attention, enabling the model to capture local and global context efficiently and in a lightweight manner. LFA-Net offers high performance with 0.11 million parameters, 0.42 MB memory size, and 4.46 GFLOPs, which make it ideal for resource-constrained environments. We validated our proposed model on DRIVE, STARE, and CHASE_DB with outstanding performance in terms of dice scores of 83.28, 87.44, and 84.50% and Jaccard indices of 72.85, 79.31, and 74.70%, respectively. The code of LFA-Net is available online https://github.com/Mehwish4593/LFA-Net.

Authors:Xavier Gonzalez, E. Kelly Buchanan, Hyun Dong Lee, Jerry Weihong Liu, Ke Alexander Wang, David M. Zoltowski, Christopher Ré, Scott W. Linderman
Title: A Unifying Framework for Parallelizing Sequential Models with Linear Dynamical Systems
Abstract:
Harnessing parallelism in seemingly sequential models is a central challenge for modern machine learning. Several approaches have been proposed for evaluating sequential processes in parallel using fixed-point methods, like Newton, Picard, and Jacobi iterations. In this work, we show that these methods can be understood within a common framework based on linear dynamical systems (LDSs), where different iteration schemes arise naturally as approximate linearizations of a nonlinear recursion. This unifying view highlights shared principles behind these techniques and clarifies when particular fixed-point methods are most likely to be effective. By bridging diverse algorithms through the language of LDSs, our framework provides a clearer theoretical foundation for parallelizing sequential models and points toward new opportunities for efficient and scalable computation.

Authors:Xuanchen Wang, Heng Wang, Weidong Cai
Title: MusicWeaver: Coherent Long-Range and Editable Music Generation from a Beat-Aligned Structural Plan
Abstract:
Current music generators capture local textures but often fail to model long-range structure, leading to off-beat outputs, weak section transitions, and limited editing capability. We present MusicWeaver, a music generation model conditioned on a beat-aligned structural plan. This plan serves as an editable intermediate between the input prompt and the generated music, preserving global form and enabling professional, localized edits. MusicWeaver consists of a planner, which translates prompts into a structural plan encoding musical form and compositional cues, and a diffusion-based generator, which synthesizes music under the plan's guidance. To assess generation and editing quality, we introduce two metrics: the Structure Coherence Score (SCS) for evaluating long-range form and timing, and the Edit Fidelity Score (EFS) for measuring the accuracy of realizing plan edits. Experiments demonstrate that MusicWeaver achieves state-of-the-art fidelity and controllability, producing music closer to human-composed works. Music results can be found on our project page: https://musicweaver.github.io/.

Authors:Weikai Lin, Sushant Kondguli, Carl Marshall, Yuhao Zhu
Title: PowerGS: Display-Rendering Power Co-Optimization for Neural Rendering in Power-Constrained XR Systems
Abstract:
3D Gaussian Splatting (3DGS) combines classic image-based rendering, pointbased graphics, and modern differentiable techniques, and offers an interesting alternative to traditional physically-based rendering. 3DGS-family models are far from efficient for power-constrained Extended Reality (XR) devices, which need to operate at a Watt-level. This paper introduces PowerGS, the first framework to jointly minimize the rendering and display power in 3DGS under a quality constraint. We present a general problem formulation and show that solving the problem amounts to 1) identifying the iso-quality curve(s) in the landscape subtended by the display and rendering power and 2) identifying the power-minimal point on a given curve, which has a closed-form solution given a proper parameterization of the curves. PowerGS also readily supports foveated rendering for further power savings. Extensive experiments and user studies show that PowerGS achieves up to 86% total power reduction compared to state-of-the-art 3DGS models, with minimal loss in both subjective and objective quality. Code is available at https://github.com/horizon-research/PowerGS.

Authors:Mahindra Singh Rautela, Alexander Most, Siddharth Mansingh, Bradley C. Love, Ayan Biswas, Diane Oyen, Earl Lawrence
Title: MORPH: Shape-agnostic PDE Foundation Models
Abstract:
We introduce MORPH, a shape-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data dimensionality (1D--3D) at different resolutions, multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorizes full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch in both zero-shot and full-shot generalization. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.

Authors:Abhishek Jindal, Dmitry Kalashnikov, Oscar Chang, Divya Garikapati, Anirudha Majumdar, Pierre Sermanet, Vikas Sindhwani
Title: Can AI Perceive Physical Danger and Intervene?
Abstract:
When AI interacts with the physical world -- as a robot or an assistive agent -- new safety challenges emerge beyond those of purely ``digital AI". In such interactions, the potential for physical harm is direct and immediate. How well do state-of-the-art foundation models understand common-sense facts about physical safety, e.g. that a box may be too heavy to lift, or that a hot cup of coffee should not be handed to a child? In this paper, our contributions are three-fold: first, we develop a highly scalable approach to continuous physical safety benchmarking of Embodied AI systems, grounded in real-world injury narratives and operational safety constraints. To probe multi-modal safety understanding, we turn these narratives and constraints into photorealistic images and videos capturing transitions from safe to unsafe states, using advanced generative models. Secondly, we comprehensively analyze the ability of major foundation models to perceive risks, reason about safety, and trigger interventions; this yields multi-faceted insights into their deployment readiness for safety-critical agentic applications. Finally, we develop a post-training paradigm to teach models to explicitly reason about embodiment-specific safety constraints provided through system instructions. The resulting models generate thinking traces that make safety reasoning interpretable and transparent, achieving state of the art performance in constraint satisfaction evaluations. The benchmark will be released at https://asimov-benchmark.github.io/v2

Authors:Mingze Dong, Leda Wang, Yuval Kluger
Title: Understanding and Enhancing Mask-Based Pretraining towards Universal Representations
Abstract:
Mask-based pretraining has become a cornerstone of modern large-scale models across language, vision, and recently biology. Despite its empirical success, its role and limits in learning data representations have been unclear. In this work, we show that the behavior of mask-based pretraining can be directly characterized by test risk in high-dimensional minimum-norm ("ridge-less") linear regression, without relying on further model specifications. Further analysis of linear models uncovers several novel aspects of mask-based pretraining. The theoretical framework and its implications have been validated across diverse neural architectures (including MLPs, CNNs, and Transformers) applied to both vision and language tasks. Guided by our theory, we propose an embarrassingly simple yet overlooked pretraining scheme named Randomly Random Mask AutoEncoding (R$^2$MAE), which enforces capturing multi-scale features from data and is able to outperform optimal fixed mask ratio settings in our linear model framework. We implement R$^2$MAE in vision, language, DNA sequence, and single-cell models, where it consistently outperforms standard and more complicated masking schemes, leading to improvements for state-of-the-art models. Our code is available at: https://github.com/MingzeDong/r2mae

Authors:Zitong Lan, Yiduo Hao, Mingmin Zhao
Title: Guiding Audio Editing with Audio Language Model
Abstract:
Audio editing plays a central role in VR/AR immersion, virtual conferencing, sound design, and other interactive media. However, recent generative audio editing models depend on template-like instruction formats and are restricted to mono-channel audio. These models fail to deal with declarative audio editing, where the user declares what the desired outcome should be, while leaving the details of editing operations to the system. We introduce SmartDJ, a novel framework for stereo audio editing that combines the reasoning capability of audio language models with the generative power of latent diffusion. Given a high-level instruction, SmartDJ decomposes it into a sequence of atomic edit operations, such as adding, removing, or spatially relocating events. These operations are then executed by a diffusion model trained to manipulate stereo audio. To support this, we design a data synthesis pipeline that produces paired examples of high-level instructions, atomic edit operations, and audios before and after each edit operation. Experiments demonstrate that SmartDJ achieves superior perceptual quality, spatial realism, and semantic alignment compared to prior audio editing methods. Demos are available at https://zitonglan.github.io/project/smartdj/smartdj.html.

Authors:Andreas Burger, Luca Thiede, Nikolaj Rønne, Varinia Bernales, Nandita Vijaykumar, Tejs Vegge, Arghya Bhowmik, Alan Aspuru-Guzik
Title: Shoot from the HIP: Hessian Interatomic Potentials without derivatives
Abstract:
Fundamental tasks in computational chemistry, from transition state search to vibrational analysis, rely on molecular Hessians, which are the second derivatives of the potential energy. Yet, Hessians are computationally expensive to calculate and scale poorly with system size, with both quantum mechanical methods and neural networks. In this work, we demonstrate that Hessians can be predicted directly from a deep learning model, without relying on automatic differentiation or finite differences. We observe that one can construct SE(3)-equivariant, symmetric Hessians from irreducible representations (irrep) features up to degree $l$=2 computed during message passing in graph neural networks. This makes HIP Hessians one to two orders of magnitude faster, more accurate, more memory efficient, easier to train, and enables more favorable scaling with system size. We validate our predictions across a wide range of downstream tasks, demonstrating consistently superior performance for transition state search, accelerated geometry optimization, zero-point energy corrections, and vibrational analysis benchmarks. We open-source the HIP codebase and model weights to enable further development of the direct prediction of Hessians at https://github.com/BurgerAndreas/hip

Authors:Yi Zhu, Heitor R. Guimarães, Arthur Pimentel, Tiago Falk
Title: AUDDT: Audio Unified Deepfake Detection Benchmark Toolkit
Abstract:
With the prevalence of artificial intelligence (AI)-generated content, such as audio deepfakes, a large body of recent work has focused on developing deepfake detection techniques. However, most models are evaluated on a narrow set of datasets, leaving their generalization to real-world conditions uncertain. In this paper, we systematically review 28 existing audio deepfake datasets and present an open-source benchmarking toolkit called AUDDT (https://github.com/MuSAELab/AUDDT). The goal of this toolkit is to automate the evaluation of pretrained detectors across these 28 datasets, giving users direct feedback on the advantages and shortcomings of their deepfake detectors. We start by showcasing the usage of the developed toolkit, the composition of our benchmark, and the breakdown of different deepfake subgroups. Next, using a widely adopted pretrained deepfake detector, we present in- and out-of-domain detection results, revealing notable differences across conditions and audio manipulation types. Lastly, we also analyze the limitations of these existing datasets and their gap relative to practical deployment scenarios.

Authors:You Xie, Tianpei Gu, Zenan Li, Chenxu Zhang, Guoxian Song, Xiaochen Zhao, Chao Liang, Jianwen Jiang, Hongyi Xu, Linjie Luo
Title: X-Streamer: Unified Human World Modeling with Audiovisual Interaction
Abstract:
We introduce X-Streamer, an end-to-end multimodal human world modeling framework for building digital human agents capable of infinite interactions across text, speech, and video within a single unified architecture. Starting from a single portrait, X-Streamer enables real-time, open-ended video calls driven by streaming multimodal inputs. At its core is a Thinker-Actor dual-transformer architecture that unifies multimodal understanding and generation, turning a static portrait into persistent and intelligent audiovisual interactions. The Thinker module perceives and reasons over streaming user inputs, while its hidden states are translated by the Actor into synchronized multimodal streams in real time. Concretely, the Thinker leverages a pretrained large language-speech model, while the Actor employs a chunk-wise autoregressive diffusion model that cross-attends to the Thinker's hidden states to produce time-aligned multimodal responses with interleaved discrete text and audio tokens and continuous video latents. To ensure long-horizon stability, we design inter- and intra-chunk attentions with time-aligned multimodal positional embeddings for fine-grained cross-modality alignment and context retention, further reinforced by chunk-wise diffusion forcing and global identity referencing. X-Streamer runs in real time on two A100 GPUs, sustaining hours-long consistent video chat experiences from arbitrary portraits and paving the way toward unified world modeling of interactive digital humans.

Authors:Prasanna Reddy Pulakurthi, Jiamian Wang, Majid Rabbani, Sohail Dianat, Raghuveer Rao, Zhiqiang Tao
Title: X-CoT: Explainable Text-to-Video Retrieval via LLM-based Chain-of-Thought Reasoning
Abstract:
Prevalent text-to-video retrieval systems mainly adopt embedding models for feature extraction and compute cosine similarities for ranking. However, this design presents two limitations. Low-quality text-video data pairs could compromise the retrieval, yet are hard to identify and examine. Cosine similarity alone provides no explanation for the ranking results, limiting the interpretability. We ask that can we interpret the ranking results, so as to assess the retrieval models and examine the text-video data? This work proposes X-CoT, an explainable retrieval framework upon LLM CoT reasoning in place of the embedding model-based similarity ranking. We first expand the existing benchmarks with additional video annotations to support semantic understanding and reduce data bias. We also devise a retrieval CoT consisting of pairwise comparison steps, yielding detailed reasoning and complete ranking. X-CoT empirically improves the retrieval performance and produces detailed rationales. It also facilitates the model behavior and data quality analysis. Code and data are available at: https://github.com/PrasannaPulakurthi/X-CoT.

Authors:Rohan Sanda, Asad Aali, Andrew Johnston, Eduardo Reis, Jonathan Singh, Gordon Wetzstein, Sara Fridovich-Keil
Title: Patch-Based Diffusion for Data-Efficient, Radiologist-Preferred MRI Reconstruction
Abstract:
Magnetic resonance imaging (MRI) requires long acquisition times, raising costs, reducing accessibility, and making scans more susceptible to motion artifacts. Diffusion probabilistic models that learn data-driven priors can potentially assist in reducing acquisition time. However, they typically require large training datasets that can be prohibitively expensive to collect. Patch-based diffusion models have shown promise in learning effective data-driven priors over small real-valued datasets, but have not yet demonstrated clinical value in MRI. We extend the Patch-based Diffusion Inverse Solver (PaDIS) to complex-valued, multi-coil MRI reconstruction, and compare it against a state-of-the-art whole-image diffusion baseline (FastMRI-EDM) for 7x undersampled MRI reconstruction on the FastMRI brain dataset. We show that PaDIS-MRI models trained on small datasets of as few as 25 k-space images outperform FastMRI-EDM on image quality metrics (PSNR, SSIM, NRMSE), pixel-level uncertainty, cross-contrast generalization, and robustness to severe k-space undersampling. In a blinded study with three radiologists, PaDIS-MRI reconstructions were chosen as diagnostically superior in 91.7% of cases, compared to baselines (i) FastMRI-EDM and (ii) classical convex reconstruction with wavelet sparsity. These findings highlight the potential of patch-based diffusion priors for high-fidelity MRI reconstruction in data-scarce clinical settings where diagnostic confidence matters.

Authors:Junkai Zhang, Zihao Wang, Lin Gui, Swarnashree Mysore Sathyendra, Jaehwan Jeong, Victor Veitch, Wei Wang, Yunzhong He, Bing Liu, Lifeng Jin
Title: Chasing the Tail: Effective Rubric-based Reward Modeling for Large Language Model Post-Training
Abstract:
Reinforcement fine-tuning (RFT) often suffers from \emph{reward over-optimization}, where a policy model hacks the reward signals to achieve high scores while producing low-quality outputs. Our theoretical analysis shows that the key lies in reward misspecification at the high-reward tail: the inability to reliably distinguish Excellent responses from merely Great ones. This motivate us to focus on the high-reward region. However, such tail examples are scarce under the base LLM. While off-policy exemplars (e.g. from stronger models or rewrites) are easier to obtain, naively training on them yields a misspecified reward for the policy we aim to align. To address this, we study rubric-based rewards. By design, rubrics can leverage off-policy examples while remaining insensitive to their artifacts. To elicit rubrics that capture the high-reward tail, we highlight the importance of distinguishing among great and diverse responses, and introduce a workflow to implement this idea. We empirically demonstrate that rubric-based rewards substantially mitigate reward over-optimization and deliver effective LLM post-training improvements. Our code can be accessed at https://github.com/Jun-Kai-Zhang/rubrics.git .

Authors:Yuan Gao, Hao Wu, Qingsong Wen, Kun Wang, Xian Wu, Xiaomeng Huang
Title: VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Abstract:
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.

Authors:Hude Liu, Jerry Yao-Chieh Hu, Jennifer Yuntong Zhang, Zhao Song, Han Liu
Title: Are Hallucinations Bad Estimations?
Abstract:
We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

Authors:George Yakushev, Alina Shutova, Ivan Rubachev, Renat Sergazinov, Artem Babenko
Title: Talking Trees: Reasoning-Assisted Induction of Decision Trees for Tabular Data
Abstract:
Tabular foundation models are becoming increasingly popular for low-resource tabular problems. These models make up for small training datasets by pretraining on large volumes of synthetic data. The prior knowledge obtained via pretraining provides the exceptional performance, but the resulting model becomes a black box that is difficult to interpret and costly to inference. In this work, we explore an alternative strategy: using reasoning-capable LLMs to induce decision trees for small tabular datasets in agentic setup. We design a minimal set of tools for constructing, analyzing and manipulating decision trees. By using these tools, LLMs combine their prior knowledge with learning from data to create a lightweight decision tree that outperforms traditional CART on low-resource tabular problems. While a single decision tree does not outperform state-of-the-art black box models, it comes with a human-readable reasoning trace that can be checked for biases and data leaks. Furthermore, the reasoning-based LLM's creation process allows for additional human input: correcting biases or incorporating domain-specific intuition that is not captured in the data.

Authors:Anton Konushin, Nikita Drozdov, Bulat Gabdullin, Alexey Zakharov, Anna Vorontsova, Danila Rukhovich, Maksim Kolodiazhnyi
Title: TUN3D: Towards Real-World Scene Understanding from Unposed Images
Abstract:
Layout estimation and 3D object detection are two fundamental tasks in indoor scene understanding. When combined, they enable the creation of a compact yet semantically rich spatial representation of a scene. Existing approaches typically rely on point cloud input, which poses a major limitation since most consumer cameras lack depth sensors and visual-only data remains far more common. We address this issue with TUN3D, the first method that tackles joint layout estimation and 3D object detection in real scans, given multi-view images as input, and does not require ground-truth camera poses or depth supervision. Our approach builds on a lightweight sparse-convolutional backbone and employs two dedicated heads: one for 3D object detection and one for layout estimation, leveraging a novel and effective parametric wall representation. Extensive experiments show that TUN3D achieves state-of-the-art performance across three challenging scene understanding benchmarks: (i) using ground-truth point clouds, (ii) using posed images, and (iii) using unposed images. While performing on par with specialized 3D object detection methods, TUN3D significantly advances layout estimation, setting a new benchmark in holistic indoor scene understanding. Code is available at https://github.com/col14m/tun3d .

Authors:Anja Sheppard, Tyler Smithline, Andrew Scheffer, David Smith, Advaith V. Sethuraman, Ryan Bird, Sabrina Lin, Katherine A. Skinner
Title: ShipwreckFinder: A QGIS Tool for Shipwreck Detection in Multibeam Sonar Data
Abstract:
In this paper, we introduce ShipwreckFinder, an open-source QGIS plugin that detects shipwrecks from multibeam sonar data. Shipwrecks are an important historical marker of maritime history, and can be discovered through manual inspection of bathymetric data. However, this is a time-consuming process and often requires expert analysis. Our proposed tool allows users to automatically preprocess bathymetry data, perform deep learning inference, threshold model outputs, and produce either pixel-wise segmentation masks or bounding boxes of predicted shipwrecks. The backbone of this open-source tool is a deep learning model, which is trained on a variety of shipwreck data from the Great Lakes and the coasts of Ireland. Additionally, we employ synthetic data generation in order to increase the size and diversity of our dataset. We demonstrate superior segmentation performance with our open-source tool and training pipeline as compared to a deep learning-based ArcGIS toolkit and a more classical inverse sinkhole detection method. The open-source tool can be found at https://github.com/umfieldrobotics/ShipwreckFinderQGISPlugin.

Authors:Yinfeng Yu, Hailong Zhang, Meiling Zhu
Title: Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation
Abstract:
Audiovisual embodied navigation enables robots to locate audio sources by dynamically integrating visual observations from onboard sensors with the auditory signals emitted by the target. The core challenge lies in effectively leveraging multimodal cues to guide navigation. While prior works have explored basic fusion of visual and audio data, they often overlook deeper perceptual context. To address this, we propose the Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation (DMTF-AVN). Our approach uses a multi-target architecture coupled with a refined Transformer mechanism to filter and selectively fuse cross-modal information. Extensive experiments on the Replica and Matterport3D datasets demonstrate that DMTF-AVN achieves state-of-the-art performance, outperforming existing methods in success rate (SR), path efficiency (SPL), and scene adaptation (SNA). Furthermore, the model exhibits strong scalability and generalizability, paving the way for advanced multimodal fusion strategies in robotic navigation. The code and videos are available at https://github.com/zzzmmm-svg/DMTF.

Authors:Dayu Yang, Hui Fang
Title: ReGeS: Reciprocal Retrieval-Generation Synergy for Conversational Recommender Systems
Abstract:
Connecting conversation with external domain knowledge is vital for conversational recommender systems (CRS) to correctly understand user preferences. However, existing solutions either require domain-specific engineering, which limits flexibility, or rely solely on large language models, which increases the risk of hallucination. While Retrieval-Augmented Generation (RAG) holds promise, its naive use in CRS is hindered by noisy dialogues that weaken retrieval and by overlooked nuances among similar items. We propose ReGeS, a reciprocal Retrieval-Generation Synergy framework that unifies generation-augmented retrieval to distill informative user intent from conversations and retrieval-augmented generation to differentiate subtle item features. This synergy obviates the need for extra annotations, reduces hallucinations, and simplifies continuous updates. Experiments on multiple CRS benchmarks show that ReGeS achieves state-of-the-art performance in recommendation accuracy, demonstrating the effectiveness of reciprocal synergy for knowledge-intensive CRS tasks.

Authors:Jiale Deng, Yanyan Shen, Ziyuan Pei, Youmin Chen, Linpeng Huang
Title: Influence Guided Context Selection for Effective Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) addresses large language model (LLM) hallucinations by grounding responses in external knowledge, but its effectiveness is compromised by poor-quality retrieved contexts containing irrelevant or noisy information. While existing approaches attempt to improve performance through context selection based on predefined context quality assessment metrics, they show limited gains over standard RAG. We attribute this limitation to their failure in holistically utilizing available information (query, context list, and generator) for comprehensive quality assessment. Inspired by recent advances in data selection, we reconceptualize context quality assessment as an inference-time data valuation problem and introduce the Contextual Influence Value (CI value). This novel metric quantifies context quality by measuring the performance degradation when removing each context from the list, effectively integrating query-aware relevance, list-aware uniqueness, and generator-aware alignment. Moreover, CI value eliminates complex selection hyperparameter tuning by simply retaining contexts with positive CI values. To address practical challenges of label dependency and computational overhead, we develop a parameterized surrogate model for CI value prediction during inference. The model employs a hierarchical architecture that captures both local query-context relevance and global inter-context interactions, trained through oracle CI value supervision and end-to-end generator feedback. Extensive experiments across 8 NLP tasks and multiple LLMs demonstrate that our context selection method significantly outperforms state-of-the-art baselines, effectively filtering poor-quality contexts while preserving critical information. Code is available at https://github.com/SJTU-DMTai/RAG-CSM.

Authors:Huizhe Zhang, Jintang Li, Yuchang Zhu, Liang Chen, Li Kuang
Title: SGNNBench: A Holistic Evaluation of Spiking Graph Neural Network on Large-scale Graph
Abstract:
Graph Neural Networks (GNNs) are exemplary deep models designed for graph data. Message passing mechanism enables GNNs to effectively capture graph topology and push the performance boundaries across various graph tasks. However, the trend of developing such complex machinery for graph representation learning has become unsustainable on large-scale graphs. The computational and time overhead make it imperative to develop more energy-efficient GNNs to cope with the explosive growth of real-world graphs. Spiking Graph Neural Networks (SGNNs), which integrate biologically plausible learning via unique spike-based neurons, have emerged as a promising energy-efficient alternative. Different layers communicate with sparse and binary spikes, which facilitates computation and storage of intermediate graph representations. Despite the proliferation of SGNNs proposed in recent years, there is no systematic benchmark to explore the basic design principles of these brain-inspired networks on the graph data. To bridge this gap, we present SGNNBench to quantify progress in the field of SGNNs. Specifically, SGNNBench conducts an in-depth investigation of SGNNs from multiple perspectives, including effectiveness, energy efficiency, and architectural design. We comprehensively evaluate 9 state-of-the-art SGNNs across 18 datasets. Regarding efficiency, we empirically compare these baselines w.r.t model size, memory usage, and theoretical energy consumption to reveal the often-overlooked energy bottlenecks of SGNNs. Besides, we elaborately investigate the design space of SGNNs to promote the development of a general SGNN paradigm.

Authors:Jiahao Zhang, Wenzhe Yin, Shujian Yu
Title: Cross-Modal Retrieval with Cauchy-Schwarz Divergence
Abstract:
Effective cross-modal retrieval requires robust alignment of heterogeneous data types. Most existing methods focus on bi-modal retrieval tasks and rely on distributional alignment techniques such as Kullback-Leibler divergence, Maximum Mean Discrepancy, and correlation alignment. However, these methods often suffer from critical limitations, including numerical instability, sensitivity to hyperparameters, and their inability to capture the full structure of the underlying distributions. In this paper, we introduce the Cauchy-Schwarz (CS) divergence, a hyperparameter-free measure that improves both training stability and retrieval performance. We further propose a novel Generalized CS (GCS) divergence inspired by Hölder's inequality. This extension enables direct alignment of three or more modalities within a unified mathematical framework through a bidirectional circular comparison scheme, eliminating the need for exhaustive pairwise comparisons. Extensive experiments on six benchmark datasets demonstrate the effectiveness of our method in both bi-modal and tri-modal retrieval tasks. The code of our CS/GCS divergence is publicly available at https://github.com/JiahaoZhang666/CSD.

Authors:Guohang Yan, Yue Zhang, Pinlong Cai, Ding Wang, Song Mao, Hongwei Zhang, Yaoze Zhang, Hairong Zhang, Xinyu Cai, Botian Shi
Title: HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Abstract:
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.

Authors:Yizhou Wang, Chen Tang, Han Deng, Jiabei Xiao, Jiaqi Liu, Jianyu Wu, Jun Yao, Pengze Li, Encheng Su, Lintao Wang, Guohang Zhuang, Yuchen Ren, Ben Fei, Ming Hu, Xin Chen, Dongzhan Zhou, Junjun He, Xiangyu Yue, Zhenfei Yin, Jiamin Wu, Qihao Zheng, Yuhao Zhou, Huihui Xu, Chenglong Ma, Yan Lu, Wenlong Zhang, Chunfeng Song, Philip Torr, Shixiang Tang, Xinzhu Ma, Wanli Ouyang, Lei Bai
Title: SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
Abstract:
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.

Authors:Hmrishav Bandyopadhyay, Rahim Entezari, Jim Scott, Reshinth Adithyan, Yi-Zhe Song, Varun Jampani
Title: SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
Abstract:
We present SD3.5-Flash, an efficient few-step distillation framework that brings high-quality image generation to accessible consumer devices. Our approach distills computationally prohibitive rectified flow models through a reformulated distribution matching objective tailored specifically for few-step generation. We introduce two key innovations: "timestep sharing" to reduce gradient noise and "split-timestep fine-tuning" to improve prompt alignment. Combined with comprehensive pipeline optimizations like text encoder restructuring and specialized quantization, our system enables both rapid generation and memory-efficient deployment across different hardware configurations. This democratizes access across the full spectrum of devices, from mobile phones to desktop computers. Through extensive evaluation including large-scale user studies, we demonstrate that SD3.5-Flash consistently outperforms existing few-step methods, making advanced generative AI truly accessible for practical deployment.

Authors:Yu Yuan, Xijun Wang, Tharindu Wickremasinghe, Zeeshan Nadir, Bole Ma, Stanley H. Chan
Title: NewtonGen: Physics-Consistent and Controllable Text-to-Video Generation via Neural Newtonian Dynamics
Abstract:
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.

Authors:Weilun Feng, Haotong Qin, Mingqiang Wu, Chuanguang Yang, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: Quantized Visual Geometry Grounded Transformer
Abstract:
Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7$\times$ memory reduction and 2.5$\times$ acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.

Authors:Yidan Zhang, Mutian Xu, Yiming Hao, Kun Zhou, Jiahao Chang, Xiaoqiang Liu, Pengfei Wan, Hongbo Fu, Xiaoguang Han
Title: VC-Agent: An Interactive Agent for Customized Video Dataset Collection
Abstract:
Facing scaling laws, video data from the internet becomes increasingly important. However, collecting extensive videos that meet specific needs is extremely labor-intensive and time-consuming. In this work, we study the way to expedite this collection process and propose VC-Agent, the first interactive agent that is able to understand users' queries and feedback, and accordingly retrieve/scale up relevant video clips with minimal user input. Specifically, considering the user interface, our agent defines various user-friendly ways for the user to specify requirements based on textual descriptions and confirmations. As for agent functions, we leverage existing multi-modal large language models to connect the user's requirements with the video content. More importantly, we propose two novel filtering policies that can be updated when user interaction is continually performed. Finally, we provide a new benchmark for personalized video dataset collection, and carefully conduct the user study to verify our agent's usage in various real scenarios. Extensive experiments demonstrate the effectiveness and efficiency of our agent for customized video dataset collection. Project page: https://allenyidan.github.io/vcagent_page/.

Authors:Irina Tolstykh, Aleksandra Tsybina, Sergey Yakubson, Maksim Kuprashevich
Title: LLMTrace: A Corpus for Classification and Fine-Grained Localization of AI-Written Text
Abstract:
The widespread use of human-like text from Large Language Models (LLMs) necessitates the development of robust detection systems. However, progress is limited by a critical lack of suitable training data; existing datasets are often generated with outdated models, are predominantly in English, and fail to address the increasingly common scenario of mixed human-AI authorship. Crucially, while some datasets address mixed authorship, none provide the character-level annotations required for the precise localization of AI-generated segments within a text. To address these gaps, we introduce LLMTrace, a new large-scale, bilingual (English and Russian) corpus for AI-generated text detection. Constructed using a diverse range of modern proprietary and open-source LLMs, our dataset is designed to support two key tasks: traditional full-text binary classification (human vs. AI) and the novel task of AI-generated interval detection, facilitated by character-level annotations. We believe LLMTrace will serve as a vital resource for training and evaluating the next generation of more nuanced and practical AI detection models. The project page is available at \href{https://sweetdream779.github.io/LLMTrace-info/}{iitolstykh/LLMTrace}.

Authors:Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Yuming Jiang, Hang Zhang, Xin Li, Lidong Bing, Deli Zhao, Wei Lu, Yu Rong, Aixin Sun, Shijian Lu
Title: MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Abstract:
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.

Authors:Zijian Shao, Haiyang Shen, Mugeng Liu, Gecheng Fu, Yaoqi Guo, Yanfeng Wang, Yun Ma
Title: Grounding AI Explanations in Experience: A Reflective Cognitive Architecture for Clinical Decision Support
Abstract:
Effective disease prediction in modern healthcare demands the twin goals of high accuracy and transparent, clinically meaningful explanations. Existing machine learning and large language model (LLM) based approaches often struggle to balance these goals. Many models yield accurate but unclear statistical outputs, while others generate fluent but statistically unsupported narratives, often undermining both the validity of the explanation and the predictive accuracy itself. This shortcoming comes from a shallow interaction with the data, preventing the development of a deep, detailed understanding similar to a human expert's. We argue that high accuracy and high-quality explanations are not separate objectives but are mutually reinforcing outcomes of a model that develops a deep, direct understanding of the data. To achieve this, we propose the Reflective Cognitive Architecture (RCA), a novel framework that coordinates multiple LLMs to learn from direct experience. RCA features an iterative rule refinement mechanism that improves its logic from prediction errors and a distribution-aware rules check mechanism that bases its reasoning in the dataset's global statistics. By using predictive accuracy as a signal to drive deeper comprehension, RCA builds a strong internal model of the data. We evaluated RCA on one private and two public datasets against 22 baselines. The results demonstrate that RCA not only achieves state-of-the-art accuracy and robustness with a relative improvement of up to 40\% over the baseline but, more importantly, leverages this deep understanding to excel in generating explanations that are clear, logical, evidence-based, and balanced, highlighting its potential for creating genuinely trustworthy clinical decision support systems. The code is available at \https://github.com/ssssszj/RCA.

Authors:Xinyu Liu, Guolei Sun, Cheng Wang, Yixuan Yuan, Ender Konukoglu
Title: MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation
Abstract:
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.

Authors:Babak Salamat, Dominik Mattern, Sebastian-Sven Olzem, Gerhard Elsbacher, Christian Seidel, Andrea M. Tonello
Title: \LARGE GMP$^{3}$: Learning-Driven, Bellman-Guided Trajectory Planning for UAVs in Real-Time on SE(3)
Abstract:
We propose $\text{GMP}^{3}$, a multiphase global path planning framework that generates dynamically feasible three-dimensional trajectories for unmanned aerial vehicles (UAVs) operating in cluttered environments. The framework extends traditional path planning from Euclidean position spaces to the Lie group $\mathrm{SE}(3)$, allowing joint learning of translational motion and rotational dynamics. A modified Bellman-based operator is introduced to support reinforcement learning (RL) policy updates while leveraging prior trajectory information for improved convergence. $\text{GMP}^{3}$ is designed as a distributed framework in which agents influence each other and share policy information along the trajectory: each agent refines its assigned segment and shares with its neighbors via a consensus-based scheme, enabling cooperative policy updates and convergence toward a path shaped globally even under kinematic constraints. We also propose DroneManager, a modular ground control software that interfaces the planner with real UAV platforms via the MAVLink protocol, supporting real-time deployment and feedback. Simulation studies and indoor flight experiments validate the effectiveness of the proposed method in constrained 3D environments, demonstrating reliable obstacle avoidance and smooth, feasible trajectories across both position and orientation. The open-source implementation is available at https://github.com/Domattee/DroneManager

Authors:Andrii Kliachkin, Jana Lepšová, Gilles Bareilles, Jakub Mareček
Title: humancompatible.train: Implementing Optimization Algorithms for Stochastically-Constrained Stochastic Optimization Problems
Abstract:
There has been a considerable interest in constrained training of deep neural networks (DNNs) recently for applications such as fairness and safety. Several toolkits have been proposed for this task, yet there is still no industry standard. We present humancompatible.train (https://github.com/humancompatible/train), an easily-extendable PyTorch-based Python package for training DNNs with stochastic constraints. We implement multiple previously unimplemented algorithms for stochastically constrained stochastic optimization. We demonstrate the toolkit use by comparing two algorithms on a deep learning task with fairness constraints.

Authors:Seyed Amir Kasaei, Ali Aghayari, Arash Marioriyad, Niki Sepasian, MohammadAmin Fazli, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Title: Evaluating the Evaluators: Metrics for Compositional Text-to-Image Generation
Abstract:
Text-image generation has advanced rapidly, but assessing whether outputs truly capture the objects, attributes, and relations described in prompts remains a central challenge. Evaluation in this space relies heavily on automated metrics, yet these are often adopted by convention or popularity rather than validated against human judgment. Because evaluation and reported progress in the field depend directly on these metrics, it is critical to understand how well they reflect human preferences. To address this, we present a broad study of widely used metrics for compositional text-image evaluation. Our analysis goes beyond simple correlation, examining their behavior across diverse compositional challenges and comparing how different metric families align with human judgments. The results show that no single metric performs consistently across tasks: performance varies with the type of compositional problem. Notably, VQA-based metrics, though popular, are not uniformly superior, while certain embedding-based metrics prove stronger in specific cases. Image-only metrics, as expected, contribute little to compositional evaluation, as they are designed for perceptual quality rather than alignment. These findings underscore the importance of careful and transparent metric selection, both for trustworthy evaluation and for their use as reward models in generation. Project page is available at \href{https://amirkasaei.com/eval-the-evals/}{this URL}.

Authors:Benedikt Hoock, Tobias Köppl
Title: Data-driven Neural Networks for Windkessel Parameter Calibration
Abstract:
In this work, we propose a novel method for calibrating Windkessel (WK) parameters in a dimensionally reduced 1D-0D coupled blood flow model. To this end, we design a data-driven neural network (NN)trained on simulated blood pressures in the left brachial artery. Once trained, the NN emulates the pressure pulse waves across the entire simulated domain, i.e., over time, space and varying WK parameters, with negligible error and computational effort. To calibrate the WK parameters on a measured pulse wave, the NN is extended by dummy neurons and retrained only on these. The main objective of this work is to assess the effectiveness of the method in various scenarios -- particularly, when the exact measurement location is unknown or the data are affected by noise.

Authors:Kaiyang Wan, Lang Gao, Honglin Mu, Preslav Nakov, Yuxia Wang, Xiuying Chen
Title: A Fano-Style Accuracy Upper Bound for LLM Single-Pass Reasoning in Multi-Hop QA
Abstract:
Multi-Hop Question Answering (MHQA) requires integrating dispersed, interdependent evidence through sequential reasoning under noise. This task is challenging for LLMs as they have a finite per-pass output capacity, beyond which the integration of task-relevant evidence proves unreliable. Consequently, the single-pass reasoning paradigm is inherently vulnerable to this capacity overflow. To formalize this bottleneck, our analysis establishes a Fano-style accuracy upper bound, defining a theoretical performance ceiling for single-pass LLMs. This bound reveals that accuracy inevitably collapses once task complexity exceeds model capacity, providing general principles for capacity-aware representation and structuring of MHQA in LLMs. Building on these principles, we introduce a proof-of-concept multi-call framework for MHQA, InfoQA. It ensures high per-step accuracy by combining capacity-aware task decomposition with active pruning of prior reasoning traces, keeping the information load within the single-pass limit. It further achieves robustness by a dependency-explicit workflow that enables precise control over the reasoning path. We construct a stringent and noise-rich benchmark to validate our theory and framework. Experimental results show that model behavior aligns with our predicted capacity curves while InfoQA achieves consistent performance improvements. We hope our work inspires more LLM multi-step reasoning methods: \faGithub \href{https://github.com/KaiyangWan/InfoQA}{InfoQA}.

Authors:Xiangru Tang, Wanghan Xu, Yujie Wang, Zijie Guo, Daniel Shao, Jiapeng Chen, Cixuan Zhang, Ziyi Wang, Lixin Zhang, Guancheng Wan, Wenlong Zhang, Lei Bai, Zhenfei Yin, Philip Torr, Hanrui Wang, Di Jin
Title: Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning
Abstract:
Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

Authors:Jacob Fein-Ashley, Dhruv Parikh, Rajgopal Kannan, Viktor Prasanna
Title: Mixture of Thoughts: Learning to Aggregate What Experts Think, Not Just What They Say
Abstract:
Open-source Large Language Models (LLMs) increasingly specialize by domain (e.g., math, code, general reasoning), motivating systems that leverage complementary strengths across models. Prior multi-LLM approaches either (i) route a query to one or a few experts and generate independently, (ii) aggregate outputs from each model via costly multi-turn exchanges, or (iii) fuse weights into a single model-typically requiring architectural homogeneity. We introduce Mixture of Thoughts (MoT), a simple method for latent-level collaboration among heterogeneous experts under a global routing scheme. For each query, a lightweight router selects top-$K$ experts and designates a primary expert; uniformly placed interaction layers project hidden states into a shared latent space where the primary expert performs cross-attention over its active (selected) peers. Pre-trained experts remain frozen; only the router and the lightweight interaction layers are trained with a novel joint training objective that improves both the expert selection and inter-expert collaboration. Across five in-distribution (ID) and three out-of-distribution (OOD) benchmarks, MoT surpasses the current routing and aggregation-based state-of-the-art, Avengers, by $+0.38\%$ and $+2.92\%$, respectively. Further, MoT significantly outperforms the best-performing single model. It achieves this with single-pass inference, runtime comparable to routing baselines, and none of the overheads of iterative aggregation. MoT offers a simple latent-space mechanism for combining heterogeneous LLMs, a practical step toward broader multi-LLM collaboration. Our code is publicly available at https://github.com/jacobfa/mot.

Authors:Sitong Cheng, Weizhen Bian, Xinsheng Wang, Ruibin Yuan, Jianyi Chen, Shunshun Yin, Yike Guo, Wei Xue
Title: UniSS: Unified Expressive Speech-to-Speech Translation with Your Voice
Abstract:
The ultimate goal of expressive speech-to-speech translation (S2ST) is to accurately translate spoken content while preserving the speaker identity and emotional style. However, progress in this field is largely hindered by three key challenges: the scarcity of paired speech data that retains expressive styles, the complexity of multi-stage processing pipelines, and the limited transfer of translation capabilities from large language models (LLMs). In this work, we address these challenges by introducing UniSS, a novel single-stage framework for expressive S2ST. Our approach features carefully designed speech semantic and style modeling, enabling seamless integration with existing text-based LLM frameworks to develop a unified text-speech language model. To transfer translation capabilities from text to speech, we propose a cross-modal chain-of-thought prompting process that progressively aligns audio semantics with text and ensures style preservation in the decoded results. Furthermore, we construct and release a large-scale, high-quality expressive S2ST dataset, UniST, comprising 44.8k hours of data. Experimental results show that UniSS significantly outperforms previous methods in translation fidelity and speech quality while preserving voice, emotion, and duration consistency. Our work establishes a simpler and more effective paradigm for building the next generation of expressive S2ST systems. Audio samples are available at https://cmots.github.io/uniss-demo.

Authors:Killian Steunou, Théo Druilhe, Sigurd Saue
Title: Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Abstract:
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.

Authors:Yidong Wang, Yunze Song, Tingyuan Zhu, Xuanwang Zhang, Zhuohao Yu, Hao Chen, Chiyu Song, Qiufeng Wang, Cunxiang Wang, Zhen Wu, Xinyu Dai, Yue Zhang, Wei Ye, Shikun Zhang
Title: TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
Abstract:
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

Authors:Yuze He, Yanning Zhou, Wang Zhao, Jingwen Ye, Yushi Bai, Kaiwen Xiao, Yong-Jin Liu, Zhongqian Sun, Wei Yang
Title: CHARM: Control-point-based 3D Anime Hairstyle Auto-Regressive Modeling
Abstract:
We present CHARM, a novel parametric representation and generative framework for anime hairstyle modeling. While traditional hair modeling methods focus on realistic hair using strand-based or volumetric representations, anime hairstyle exhibits highly stylized, piecewise-structured geometry that challenges existing techniques. Existing works often rely on dense mesh modeling or hand-crafted spline curves, making them inefficient for editing and unsuitable for scalable learning. CHARM introduces a compact, invertible control-point-based parameterization, where a sequence of control points represents each hair card, and each point is encoded with only five geometric parameters. This efficient and accurate representation supports both artist-friendly design and learning-based generation. Built upon this representation, CHARM introduces an autoregressive generative framework that effectively generates anime hairstyles from input images or point clouds. By interpreting anime hairstyles as a sequential "hair language", our autoregressive transformer captures both local geometry and global hairstyle topology, resulting in high-fidelity anime hairstyle creation. To facilitate both training and evaluation of anime hairstyle generation, we construct AnimeHair, a large-scale dataset of 37K high-quality anime hairstyles with separated hair cards and processed mesh data. Extensive experiments demonstrate state-of-the-art performance of CHARM in both reconstruction accuracy and generation quality, offering an expressive and scalable solution for anime hairstyle modeling. Project page: https://hyzcluster.github.io/charm/

Authors:Hyunseo Kim, Sangam Lee, Kwangwook Seo, Dongha Lee
Title: BESPOKE: Benchmark for Search-Augmented Large Language Model Personalization via Diagnostic Feedback
Abstract:
Search-augmented large language models (LLMs) have advanced information-seeking tasks by integrating retrieval into generation, reducing users' cognitive burden compared to traditional search systems. Yet they remain insufficient for fully addressing diverse user needs, which requires recognizing how the same query can reflect different intents across users and delivering information in preferred forms. While recent systems such as ChatGPT and Gemini attempt personalization by leveraging user histories, systematic evaluation of such personalization is under-explored. To address this gap, we propose BESPOKE, the realistic benchmark for evaluating personalization in search-augmented LLMs. BESPOKE is designed to be both realistic, by collecting authentic chat and search histories directly from humans, and diagnostic, by pairing responses with fine-grained preference scores and feedback. The benchmark is constructed through long-term, deeply engaged human annotation, where human annotators contributed their own histories, authored queries with detailed information needs, and evaluated responses with scores and diagnostic feedback. Leveraging BESPOKE, we conduct systematic analyses that reveal key requirements for effective personalization in information-seeking tasks, providing a foundation for fine-grained evaluation of personalized search-augmented LLMs. Our code and data are available at https://augustinlib.github.io/BESPOKE/.

Authors:Suaiba Amina Salahuddin, Teresa Dorszewski, Marit Almenning Martiniussen, Tone Hovda, Antonio Portaluri, Solveig Thrun, Michael Kampffmeyer, Elisabeth Wetzer, Kristoffer Wickstrøm, Robert Jenssen
Title: Mammo-CLIP Dissect: A Framework for Analysing Mammography Concepts in Vision-Language Models
Abstract:
Understanding what deep learning (DL) models learn is essential for the safe deployment of artificial intelligence (AI) in clinical settings. While previous work has focused on pixel-based explainability methods, less attention has been paid to the textual concepts learned by these models, which may better reflect the reasoning used by clinicians. We introduce Mammo-CLIP Dissect, the first concept-based explainability framework for systematically dissecting DL vision models trained for mammography. Leveraging a mammography-specific vision-language model (Mammo-CLIP) as a "dissector," our approach labels neurons at specified layers with human-interpretable textual concepts and quantifies their alignment to domain knowledge. Using Mammo-CLIP Dissect, we investigate three key questions: (1) how concept learning differs between DL vision models trained on general image datasets versus mammography-specific datasets; (2) how fine-tuning for downstream mammography tasks affects concept specialisation; and (3) which mammography-relevant concepts remain underrepresented. We show that models trained on mammography data capture more clinically relevant concepts and align more closely with radiologists' workflows than models not trained on mammography data. Fine-tuning for task-specific classification enhances the capture of certain concept categories (e.g., benign calcifications) but can reduce coverage of others (e.g., density-related features), indicating a trade-off between specialisation and generalisation. Our findings show that Mammo-CLIP Dissect provides insights into how convolutional neural networks (CNNs) capture mammography-specific knowledge. By comparing models across training data and fine-tuning regimes, we reveal how domain-specific training and task-specific adaptation shape concept learning. Code and concept set are available: https://github.com/Suaiba/Mammo-CLIP-Dissect.

Authors:Guojun Lei, Rong Zhang, Chi Wang, Tianhang Liu, Hong Li, Zhiyuan Ma, Weiwei Xu
Title: UniTransfer: Video Concept Transfer via Progressive Spatial and Timestep Decomposition
Abstract:
We propose a novel architecture UniTransfer, which introduces both spatial and diffusion timestep decomposition in a progressive paradigm, achieving precise and controllable video concept transfer. Specifically, in terms of spatial decomposition, we decouple videos into three key components: the foreground subject, the background, and the motion flow. Building upon this decomposed formulation, we further introduce a dual-to-single-stream DiT-based architecture for supporting fine-grained control over different components in the videos. We also introduce a self-supervised pretraining strategy based on random masking to enhance the decomposed representation learning from large-scale unlabeled video data. Inspired by the Chain-of-Thought reasoning paradigm, we further revisit the denoising diffusion process and propose a Chain-of-Prompt (CoP) mechanism to achieve the timestep decomposition. We decompose the denoising process into three stages of different granularity and leverage large language models (LLMs) for stage-specific instructions to guide the generation progressively. We also curate an animal-centric video dataset called OpenAnimal to facilitate the advancement and benchmarking of research in video concept transfer. Extensive experiments demonstrate that our method achieves high-quality and controllable video concept transfer across diverse reference images and scenes, surpassing existing baselines in both visual fidelity and editability. Web Page: https://yu-shaonian.github.io/UniTransfer-Web/

Authors:Qizhi Pei, Zhuoshi Pan, Honglin Lin, Xin Gao, Yu Li, Zinan Tang, Conghui He, Rui Yan, Lijun Wu
Title: ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning
Abstract:
Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

Authors:Zhen Liu, Yongtao Zhang, Shaobo Ren, Yuxin You
Title: Structure-Attribute Transformations with Markov Chain Boost Graph Domain Adaptation
Abstract:
Graph domain adaptation has gained significant attention in label-scarce scenarios across different graph domains. Traditional approaches to graph domain adaptation primarily focus on transforming node attributes over raw graph structures and aligning the distributions of the transformed node features across networks. However, these methods often struggle with the underlying structural heterogeneity between distinct graph domains, which leads to suboptimal distribution alignment. To address this limitation, we propose Structure-Attribute Transformation with Markov Chain (SATMC), a novel framework that sequentially aligns distributions across networks via both graph structure and attribute transformations. To mitigate the negative influence of domain-private information and further enhance the model's generalization, SATMC introduces a private domain information reduction mechanism and an empirical Wasserstein distance. Theoretical proofs suggest that SATMC can achieve a tighter error bound for cross-network node classification compared to existing graph domain adaptation methods. Extensive experiments on nine pairs of publicly available cross-domain datasets show that SATMC outperforms state-of-the-art methods in the cross-network node classification task. The code is available at https://github.com/GiantZhangYT/SATMC.

Authors:Jiahao Huo, Shuliang Liu, Bin Wang, Junyan Zhang, Yibo Yan, Aiwei Liu, Xuming Hu, Mingxun Zhou
Title: PMark: Towards Robust and Distortion-free Semantic-level Watermarking with Channel Constraints
Abstract:
Semantic-level watermarking (SWM) for large language models (LLMs) enhances watermarking robustness against text modifications and paraphrasing attacks by treating the sentence as the fundamental unit. However, existing methods still lack strong theoretical guarantees of robustness, and reject-sampling-based generation often introduces significant distribution distortions compared with unwatermarked outputs. In this work, we introduce a new theoretical framework on SWM through the concept of proxy functions (PFs) $\unicode{x2013}$ functions that map sentences to scalar values. Building on this framework, we propose PMark, a simple yet powerful SWM method that estimates the PF median for the next sentence dynamically through sampling while enforcing multiple PF constraints (which we call channels) to strengthen watermark evidence. Equipped with solid theoretical guarantees, PMark achieves the desired distortion-free property and improves the robustness against paraphrasing-style attacks. We also provide an empirically optimized version that further removes the requirement for dynamical median estimation for better sampling efficiency. Experimental results show that PMark consistently outperforms existing SWM baselines in both text quality and robustness, offering a more effective paradigm for detecting machine-generated text. Our code will be released at [this URL](https://github.com/PMark-repo/PMark).

Authors:Songyue Cai, Zongqian Wu, Yujie Mo, Liang Peng, Ping Hu, Xiaoshuang Shi, Xiaofeng Zhu
Title: Background Prompt for Few-Shot Out-of-Distribution Detection
Abstract:
Existing foreground-background (FG-BG) decomposition methods for the few-shot out-of-distribution (FS-OOD) detection often suffer from low robustness due to over-reliance on the local class similarity and a fixed background patch extraction strategy. To address these challenges, we propose a new FG-BG decomposition framework, namely Mambo, for FS-OOD detection. Specifically, we propose to first learn a background prompt to obtain the local background similarity containing both the background and image semantic information, and then refine the local background similarity using the local class similarity. As a result, we use both the refined local background similarity and the local class similarity to conduct background extraction, reducing the dependence of the local class similarity in previous methods. Furthermore, we propose the patch self-calibrated tuning to consider the sample diversity to flexibly select numbers of background patches for different samples, and thus exploring the issue of fixed background extraction strategies in previous methods. Extensive experiments on real-world datasets demonstrate that our proposed Mambo achieves the best performance, compared to SOTA methods in terms of OOD detection and near OOD detection setting. The source code will be released at https://github.com/YuzunoKawori/Mambo.

Authors:Junu Kim, Xiao Liu, Zhenghao Lin, Lei Ji, Yeyun Gong, Edward Choi
Title: Behind RoPE: How Does Causal Mask Encode Positional Information?
Abstract:
While explicit positional encodings such as RoPE are a primary source of positional information in Transformer decoders, the causal mask also provides positional information. In this work, we prove that the causal mask can induce position-dependent patterns in attention scores, even without parameters or causal dependency in the input. Our theoretical analysis indicates that the induced attention pattern tends to favor nearby query-key pairs, mirroring the behavior of common positional encodings. Empirical analysis confirms that trained models exhibit the same behavior, with learned parameters further amplifying these patterns. Notably, we found that the interaction of causal mask and RoPE distorts RoPE's relative attention score patterns into non-relative ones. We consistently observed this effect in modern large language models, suggesting the importance of considering the causal mask as a source of positional information alongside explicit positional encodings.

Authors:Rubaiyat Tasnim Chowdhury, Nayan Bala, Ronojoy Roy, Tarek Mahmud
Title: BactoBot: A Low-Cost, Bacteria-Inspired Soft Underwater Robot for Marine Exploration
Abstract:
Traditional rigid underwater vehicles pose risks to delicate marine ecosystems. This paper presents BactoBot, a low-cost, soft underwater robot designed for safe and gentle marine exploration. Inspired by bacterial flagellar propulsion, BactoBot features 12 flexible, silicone-based arms arranged on a 3D-printed dodecahedral frame. The design provides inherent compliance, redundancy, and the potential for omnidirectional movement. The prototype was fabricated using accessible DIY methods, including food-grade silicone molding, 3D printing, and off-the-shelf microcontrollers. Waterproofing and buoyancy calibration protocols were developed, and the robot was successfully tested in a controlled water tank, demonstrating forward motion and turning. The results validate the feasibility of replicating complex biological locomotion at low cost. The project lays a foundation for environmentally conscious robotic tools, particularly for marine science in resource-constrained settings, and identifies pathways toward autonomous operation and field deployment.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Sriparna Saha, Alka Maurya
Title: Unlocking Financial Insights: An advanced Multimodal Summarization with Multimodal Output Framework for Financial Advisory Videos
Abstract:
The dynamic propagation of social media has broadened the reach of financial advisory content through podcast videos, yet extracting insights from lengthy, multimodal segments (30-40 minutes) remains challenging. We introduce FASTER (Financial Advisory Summariser with Textual Embedded Relevant images), a modular framework that tackles three key challenges: (1) extracting modality-specific features, (2) producing optimized, concise summaries, and (3) aligning visual keyframes with associated textual points. FASTER employs BLIP for semantic visual descriptions, OCR for textual patterns, and Whisper-based transcription with Speaker diarization as BOS features. A modified Direct Preference Optimization (DPO)-based loss function, equipped with BOS-specific fact-checking, ensures precision, relevance, and factual consistency against the human-aligned summary. A ranker-based retrieval mechanism further aligns keyframes with summarized content, enhancing interpretability and cross-modal coherence. To acknowledge data resource scarcity, we introduce Fin-APT, a dataset comprising 470 publicly accessible financial advisory pep-talk videos for robust multimodal research. Comprehensive cross-domain experiments confirm FASTER's strong performance, robustness, and generalizability when compared to Large Language Models (LLMs) and Vision-Language Models (VLMs). By establishing a new standard for multimodal summarization, FASTER makes financial advisory content more accessible and actionable, thereby opening new avenues for research. The dataset and code are available at: https://github.com/sarmistha-D/FASTER

Authors:Jianbo Zhao, Taiyu Ban, Xiangjie Li, Xingtai Gui, Hangning Zhou, Lei Liu, Hongwei Zhao, Bin Li
Title: Autoregressive End-to-End Planning with Time-Invariant Spatial Alignment and Multi-Objective Policy Refinement
Abstract:
The inherent sequential modeling capabilities of autoregressive models make them a formidable baseline for end-to-end planning in autonomous driving. Nevertheless, their performance is constrained by a spatio-temporal misalignment, as the planner must condition future actions on past sensory data. This creates an inconsistent worldview, limiting the upper bound of performance for an otherwise powerful approach. To address this, we propose a Time-Invariant Spatial Alignment (TISA) module that learns to project initial environmental features into a consistent ego-centric frame for each future time step, effectively correcting the agent's worldview without explicit future scene prediction. In addition, we employ a kinematic action prediction head (i.e., acceleration and yaw rate) to ensure physically feasible trajectories. Finally, we introduce a multi-objective post-training stage using Direct Preference Optimization (DPO) to move beyond pure imitation. Our approach provides targeted feedback on specific driving behaviors, offering a more fine-grained learning signal than the single, overall objective used in standard DPO. Our model achieves a state-of-the-art 89.8 PDMS on the NAVSIM dataset among autoregressive models. The video document is available at https://tisa-dpo-e2e.github.io/.

Authors:Wenhao Tang, Heng Fang, Ge Wu, Xiang Li, Ming-Ming Cheng
Title: Revisiting Data Challenges of Computational Pathology: A Pack-based Multiple Instance Learning Framework
Abstract:
Computational pathology (CPath) digitizes pathology slides into whole slide images (WSIs), enabling analysis for critical healthcare tasks such as cancer diagnosis and prognosis. However, WSIs possess extremely long sequence lengths (up to 200K), significant length variations (from 200 to 200K), and limited supervision. These extreme variations in sequence length lead to high data heterogeneity and redundancy. Conventional methods often compromise on training efficiency and optimization to preserve such heterogeneity under limited supervision. To comprehensively address these challenges, we propose a pack-based MIL framework. It packs multiple sampled, variable-length feature sequences into fixed-length ones, enabling batched training while preserving data heterogeneity. Moreover, we introduce a residual branch that composes discarded features from multiple slides into a hyperslide which is trained with tailored labels. It offers multi-slide supervision while mitigating feature loss from sampling. Meanwhile, an attention-driven downsampler is introduced to compress features in both branches to reduce redundancy. By alleviating these challenges, our approach achieves an accuracy improvement of up to 8% while using only 12% of the training time in the PANDA(UNI). Extensive experiments demonstrate that focusing data challenges in CPath holds significant potential in the era of foundation models. The code is https://github.com/FangHeng/PackMIL

Authors:Kairui Fu, Tao Zhang, Shuwen Xiao, Ziyang Wang, Xinming Zhang, Chenchi Zhang, Yuliang Yan, Junjun Zheng, Yu Li, Zhihong Chen, Jian Wu, Xiangheng Kong, Shengyu Zhang, Kun Kuang, Yuning Jiang, Bo Zheng
Title: FORGE: Forming Semantic Identifiers for Generative Retrieval in Industrial Datasets
Abstract:
Semantic identifiers (SIDs) have gained increasing attention in generative retrieval (GR) due to their meaningful semantic discriminability. However, current research on SIDs faces three main challenges: (1) the absence of large-scale public datasets with multimodal features, (2) limited investigation into optimization strategies for SID generation, which typically rely on costly GR training for evaluation, and (3) slow online convergence in industrial deployment. To address these challenges, we propose FORGE, a comprehensive benchmark for FOrming semantic identifieR in Generative rEtrieval with industrial datasets. Specifically, FORGE is equipped with a dataset comprising 14 billion user interactions and multimodal features of 250 million items sampled from Taobao, one of the biggest e-commerce platforms in China. Leveraging this dataset, FORGE explores several optimizations to enhance the SID construction and validates their effectiveness via offline experiments across different settings and tasks. Further online analysis conducted on the "Guess You Like" section of Taobao's homepage shows a 0.35% increase in transaction count, highlighting the practical impact of our method. Regarding the expensive SID validation accompanied by the full training of GRs, we propose two novel metrics of SID that correlate positively with recommendation performance, enabling convenient evaluations without any GR training. For real-world applications, FORGE introduces an offline pretraining schema that reduces online convergence by half. The code and data are available at https://github.com/selous123/al_sid.

Authors:Zhifei Li, Feng Qiu, Yiran Wang, Yujing Xia, Kui Xiao, Miao Zhang, Yan Zhang
Title: Integrating Object Interaction Self-Attention and GAN-Based Debiasing for Visual Question Answering
Abstract:
Visual Question Answering (VQA) presents a unique challenge by requiring models to understand and reason about visual content to answer questions accurately. Existing VQA models often struggle with biases introduced by the training data, leading to over-reliance on superficial patterns and inadequate generalization to diverse questions and images. This paper presents a novel model, IOG-VQA, which integrates Object Interaction Self-Attention and GAN-Based Debiasing to enhance VQA model performance. The self-attention mechanism allows our model to capture complex interactions between objects within an image, providing a more comprehensive understanding of the visual context. Meanwhile, the GAN-based debiasing framework generates unbiased data distributions, helping the model to learn more robust and generalizable features. By leveraging these two components, IOG-VQA effectively combines visual and textual information to address the inherent biases in VQA datasets. Extensive experiments on the VQA-CP v1 and VQA-CP v2 datasets demonstrate that our model shows excellent performance compared with the existing methods, particularly in handling biased and imbalanced data distributions highlighting the importance of addressing both object interactions and dataset biases in advancing VQA tasks. Our code is available at https://github.com/HubuKG/IOG-VQA.

Authors:Yan Zhang, Jiaqing Lin, Miao Zhang, Kui Xiao, Xiaoju Hou, Yue Zhao, Zhifei Li
Title: SCRA-VQA: Summarized Caption-Rerank for Augmented Large Language Models in Visual Question Answering
Abstract:
Acquiring high-quality knowledge is a central focus in Knowledge-Based Visual Question Answering (KB-VQA). Recent methods use large language models (LLMs) as knowledge engines for answering. These methods generally employ image captions as visual text descriptions to assist LLMs in interpreting images. However, the captions frequently include excessive noise irrelevant to the question, and LLMs generally do not comprehend VQA tasks, limiting their reasoning capabilities. To address this issue, we propose the Summarized Caption-Rerank Augmented VQA (SCRA-VQA), which employs a pre-trained visual language model to convert images into captions. Moreover, SCRA-VQA generates contextual examples for the captions while simultaneously summarizing and reordering them to exclude unrelated information. The caption-rerank process enables LLMs to understand the image information and questions better, thus enhancing the model's reasoning ability and task adaptability without expensive end-to-end training. Based on an LLM with 6.7B parameters, SCRA-VQA performs excellently on two challenging knowledge-based VQA datasets: OK-VQA and A-OKVQA, achieving accuracies of 38.8% and 34.6%. Our code is available at https://github.com/HubuKG/SCRA-VQA.

Authors:Junyu Guo, Shangding Gu, Ming Jin, Costas Spanos, Javad Lavaei
Title: StyleBench: Evaluating thinking styles in Large Language Models
Abstract:
The effectiveness of Large Language Models (LLMs) is heavily influenced by the reasoning strategies, or styles of thought, employed in their prompts. However, the interplay between these reasoning styles, model architecture, and task type remains poorly understood. To address this, we introduce StyleBench, a comprehensive benchmark for systematically evaluating reasoning styles across diverse tasks and models. We assess five representative reasoning styles, including Chain of Thought (CoT), Tree of Thought (ToT), Algorithm of Thought (AoT), Sketch of Thought (SoT), and Chain-of-Draft (CoD) on five reasoning tasks, using 15 open-source models from major families (LLaMA, Qwen, Mistral, Gemma, GPT-OSS, Phi, and DeepSeek) ranging from 270M to 120B parameters. Our large-scale analysis reveals that no single style is universally optimal. We demonstrate that strategy efficacy is highly contingent on both model scale and task type: search-based methods (AoT, ToT) excel in open-ended problems but require large-scale models, while concise styles (SoT, CoD) achieve radical efficiency gains on well-defined tasks. Furthermore, we identify key behavioral patterns: smaller models frequently fail to follow output instructions and default to guessing, while reasoning robustness emerges as a function of scale. Our findings offer a crucial roadmap for selecting optimal reasoning strategies based on specific constraints, we open source the benchmark in https://github.com/JamesJunyuGuo/Style_Bench.

Authors:Xiaonan Hu, Xuebing Li, Jinyu Xu, Abdulkadir Duran Adan, Letian Zhou, Xuhui Zhu, Yanan Li, Wei Guo, Shouyang Liu, Wenzhong Liu, Hao Lu
Title: TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting
Abstract:
Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

Authors:Keitaro Sakamoto, Issei Sato
Title: Explaining Grokking and Information Bottleneck through Neural Collapse Emergence
Abstract:
The training dynamics of deep neural networks often defy expectations, even as these models form the foundation of modern machine learning. Two prominent examples are grokking, where test performance improves abruptly long after the training loss has plateaued, and the information bottleneck principle, where models progressively discard input information irrelevant to the prediction task as training proceeds. However, the mechanisms underlying these phenomena and their relations remain poorly understood. In this work, we present a unified explanation of such late-phase phenomena through the lens of neural collapse, which characterizes the geometry of learned representations. We show that the contraction of population within-class variance is a key factor underlying both grokking and information bottleneck, and relate this measure to the neural collapse measure defined on the training set. By analyzing the dynamics of neural collapse, we show that distinct time scales between fitting the training set and the progression of neural collapse account for the behavior of the late-phase phenomena. Finally, we validate our theoretical findings on multiple datasets and architectures.

Authors:Songze Li, Zhiqiang Liu, Zhengke Gui, Huajun Chen, Wen Zhang
Title: Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching
Abstract:
Large Language Models (LLMs) exhibit strong reasoning capabilities in complex tasks. However, they still struggle with hallucinations and factual errors in knowledge-intensive scenarios like knowledge graph question answering (KGQA). We attribute this to the semantic gap between structured knowledge graphs (KGs) and unstructured queries, caused by inherent differences in their focuses and structures. Existing methods usually employ resource-intensive, non-scalable workflows reasoning on vanilla KGs, but overlook this gap. To address this challenge, we propose a flexible framework, Enrich-on-Graph (EoG), which leverages LLMs' prior knowledge to enrich KGs, bridge the semantic gap between graphs and queries. EoG enables efficient evidence extraction from KGs for precise and robust reasoning, while ensuring low computational costs, scalability, and adaptability across different methods. Furthermore, we propose three graph quality evaluation metrics to analyze query-graph alignment in KGQA task, supported by theoretical validation of our optimization objectives. Extensive experiments on two KGQA benchmark datasets indicate that EoG can effectively generate high-quality KGs and achieve the state-of-the-art performance. Our code and data are available at https://github.com/zjukg/Enrich-on-Graph.

Authors:Shihua Huang, Yongjie Hou, Longfei Liu, Xuanlong Yu, Xi Shen
Title: Real-Time Object Detection Meets DINOv3
Abstract:
Benefiting from the simplicity and effectiveness of Dense O2O and MAL, DEIM has become the mainstream training framework for real-time DETRs, significantly outperforming the YOLO series. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2

Authors:Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao
Title: Towards Atoms of Large Language Models
Abstract:
The fundamental units of internal representations in large language models (LLMs) remain undefined, limiting further understanding of their mechanisms. Neurons or features are often regarded as such units, yet neurons suffer from polysemy, while features face concerns of unreliable reconstruction and instability. To address this issue, we propose the Atoms Theory, which defines such units as atoms. We introduce the atomic inner product (AIP) to correct representation shifting, formally define atoms, and prove the conditions that atoms satisfy the Restricted Isometry Property (RIP), ensuring stable sparse representations over atom set and linking to compressed sensing. Under stronger conditions, we further establish the uniqueness and exact $\ell_1$ recoverability of the sparse representations, and provide guarantees that single-layer sparse autoencoders (SAEs) with threshold activations can reliably identify the atoms. To validate the Atoms Theory, we train threshold-activated SAEs on Gemma2-2B, Gemma2-9B, and Llama3.1-8B, achieving 99.9% sparse reconstruction across layers on average, and more than 99.8% of atoms satisfy the uniqueness condition, compared to 0.5% for neurons and 68.2% for features, showing that atoms more faithfully capture intrinsic representations of LLMs. Scaling experiments further reveal the link between SAEs size and recovery capacity. Overall, this work systematically introduces and validates Atoms Theory of LLMs, providing a theoretical framework for understanding internal representations and a foundation for mechanistic interpretability. Code available at https://github.com/ChenhuiHu/towards_atoms.

Authors:Hyomin Choi, Heeji Han, Chris Rosewarne, Fabien Racapé
Title: CompressAI-Vision: Open-source software to evaluate compression methods for computer vision tasks
Abstract:
With the increasing use of neural network (NN)-based computer vision applications that process image and video data as input, interest has emerged in video compression technology optimized for computer vision tasks. In fact, given the variety of vision tasks, associated NN models and datasets, a consolidated platform is needed as a common ground to implement and evaluate compression methods optimized for downstream vision tasks. CompressAI-Vision is introduced as a comprehensive evaluation platform where new coding tools compete to efficiently compress the input of vision network while retaining task accuracy in the context of two different inference scenarios: "remote" and "split" inferencing. Our study showcases various use cases of the evaluation platform incorporated with standard codecs (under development) by examining the compression gain on several datasets in terms of bit-rate versus task accuracy. This evaluation platform has been developed as open-source software and is adopted by the Moving Pictures Experts Group (MPEG) for the development the Feature Coding for Machines (FCM) standard. The software is available publicly at https://github.com/InterDigitalInc/CompressAI-Vision.

Authors:Yuxuan Zhou, Xingxing Li, Shengyu Li, Zhuohao Yan, Chunxi Xia, Shaoquan Feng
Title: MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Abstract:
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

Authors:Yufan Mao, Hanjing Ye, Wenlong Dong, Chengjie Zhang, Hong Zhang
Title: Meta-Memory: Retrieving and Integrating Semantic-Spatial Memories for Robot Spatial Reasoning
Abstract:
Navigating complex environments requires robots to effectively store observations as memories and leverage them to answer human queries about spatial locations, which is a critical yet underexplored research challenge. While prior work has made progress in constructing robotic memory, few have addressed the principled mechanisms needed for efficient memory retrieval and integration. To bridge this gap, we propose Meta-Memory, a large language model (LLM)-driven agent that constructs a high-density memory representation of the environment. The key innovation of Meta-Memory lies in its capacity to retrieve and integrate relevant memories through joint reasoning over semantic and spatial modalities in response to natural language location queries, thereby empowering robots with robust and accurate spatial reasoning capabilities. To evaluate its performance, we introduce SpaceLocQA, a large-scale dataset encompassing diverse real-world spatial question-answering scenarios. Experimental results show that Meta-Memory significantly outperforms state-of-the-art methods on both the SpaceLocQA and the public NaVQA benchmarks. Furthermore, we successfully deployed Meta-Memory on real-world robotic platforms, demonstrating its practical utility in complex environments. Project page: https://itsbaymax.github.io/meta-memory.github.io/ .

Authors:Yu Guo, Shengfeng He, Yuxu Lu, Haonan An, Yihang Tao, Huilin Zhu, Jingxian Liu, Yuguang Fang
Title: Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection
Abstract:
Maritime object detection is essential for navigation safety, surveillance, and autonomous operations, yet constrained by two key challenges: the scarcity of annotated maritime data and poor generalization across various maritime attributes (e.g., object category, viewpoint, location, and imaging environment). To address these challenges, we propose Neptune-X, a data-centric generative-selection framework that enhances training effectiveness by leveraging synthetic data generation with task-aware sample selection. From the generation perspective, we develop X-to-Maritime, a multi-modality-conditioned generative model that synthesizes diverse and realistic maritime scenes. A key component is the Bidirectional Object-Water Attention module, which captures boundary interactions between objects and their aquatic surroundings to improve visual fidelity. To further improve downstream tasking performance, we propose Attribute-correlated Active Sampling, which dynamically selects synthetic samples based on their task relevance. To support robust benchmarking, we construct the Maritime Generation Dataset, the first dataset tailored for generative maritime learning, encompassing a wide range of semantic conditions. Extensive experiments demonstrate that our approach sets a new benchmark in maritime scene synthesis, significantly improving detection accuracy, particularly in challenging and previously underrepresented settings. The code is available at https://github.com/gy65896/Neptune-X.

Authors:Zhenshan Zhang, Xueping Zhang, Yechen Wang, Liwei Jin, Ming Li
Title: The Impact of Audio Watermarking on Audio Anti-Spoofing Countermeasures
Abstract:
This paper presents the first study on the impact of audio watermarking on spoofing countermeasures. While anti-spoofing systems are essential for securing speech-based applications, the influence of widely used audio watermarking, originally designed for copyright protection, remains largely unexplored. We construct watermark-augmented training and evaluation datasets, named the Watermark-Spoofing dataset, by applying diverse handcrafted and neural watermarking methods to existing anti-spoofing datasets. Experiments show that watermarking consistently degrades anti-spoofing performance, with higher watermark density correlating with higher Equal Error Rates (EERs). To mitigate this, we propose the Knowledge-Preserving Watermark Learning (KPWL) framework, enabling models to adapt to watermark-induced shifts while preserving their original-domain spoofing detection capability. These findings reveal audio watermarking as a previously overlooked domain shift and establish the first benchmark for developing watermark-resilient anti-spoofing systems. All related protocols are publicly available at https://github.com/Alphawarheads/Watermark_Spoofing.git

Authors:Ruixu Zhang, Yuran Wang, Xinyi Hu, Chaoyu Mai, Wenxuan Liu, Danni Xu, Xian Zhong, Zheng Wang
Title: Beyond the Individual: Introducing Group Intention Forecasting with SHOT Dataset
Abstract:
Intention recognition has traditionally focused on individual intentions, overlooking the complexities of collective intentions in group settings. To address this limitation, we introduce the concept of group intention, which represents shared goals emerging through the actions of multiple individuals, and Group Intention Forecasting (GIF), a novel task that forecasts when group intentions will occur by analyzing individual actions and interactions before the collective goal becomes apparent. To investigate GIF in a specific scenario, we propose SHOT, the first large-scale dataset for GIF, consisting of 1,979 basketball video clips captured from 5 camera views and annotated with 6 types of individual attributes. SHOT is designed with 3 key characteristics: multi-individual information, multi-view adaptability, and multi-level intention, making it well-suited for studying emerging group intentions. Furthermore, we introduce GIFT (Group Intention ForecasTer), a framework that extracts fine-grained individual features and models evolving group dynamics to forecast intention emergence. Experimental results confirm the effectiveness of SHOT and GIFT, establishing a strong foundation for future research in group intention forecasting. The dataset is available at https://xinyi-hu.github.io/SHOT_DATASET.

Authors:Yuan Chiang, Tobias Kreiman, Christine Zhang, Matthew C. Kuner, Elizabeth Weaver, Ishan Amin, Hyunsoo Park, Yunsung Lim, Jihan Kim, Daryl Chrzan, Aron Walsh, Samuel M. Blau, Mark Asta, Aditi S. Krishnapriyan
Title: MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials via an Open, Accessible Benchmark Platform
Abstract:
Machine learning interatomic potentials (MLIPs) have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references. We introduce MLIP Arena, a benchmark platform that evaluates force field performance based on physics awareness, chemical reactivity, stability under extreme conditions, and predictive capabilities for thermodynamic properties and physical phenomena. By moving beyond static DFT references and revealing the important failure modes of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency. The Python package and online leaderboard are available at https://github.com/atomind-ai/mlip-arena.

Authors:Eric Fithian, Kirill Skobelev
Title: DELM: a Python toolkit for Data Extraction with Language Models
Abstract:
Large Language Models (LLMs) have become powerful tools for annotating unstructured data. However, most existing workflows rely on ad hoc scripts, making reproducibility, robustness, and systematic evaluation difficult. To address these challenges, we introduce DELM (Data Extraction with Language Models), an open-source Python toolkit designed for rapid experimental iteration of LLM-based data extraction pipelines and for quantifying the trade-offs between them. DELM minimizes boilerplate code and offers a modular framework with structured outputs, built-in validation, flexible data-loading and scoring strategies, and efficient batch processing. It also includes robust support for working with LLM APIs, featuring retry logic, result caching, detailed cost tracking, and comprehensive configuration management. We showcase DELM's capabilities through two case studies: one featuring a novel prompt optimization algorithm, and another illustrating how DELM quantifies trade-offs between cost and coverage when selecting keywords to decide which paragraphs to pass to an LLM. DELM is available at \href{https://github.com/Center-for-Applied-AI/delm}{\texttt{github.com/Center-for-Applied-AI/delm}}.

Authors:Maria Chiper, Radu Tudor Ionescu
Title: Every Character Counts: From Vulnerability to Defense in Phishing Detection
Abstract:
Phishing attacks targeting both organizations and individuals are becoming an increasingly significant threat as technology advances. Current automatic detection methods often lack explainability and robustness in detecting new phishing attacks. In this work, we investigate the effectiveness of character-level deep learning models for phishing detection, which can provide both robustness and interpretability. We evaluate three neural architectures adapted to operate at the character level, namely CharCNN, CharGRU, and CharBiLSTM, on a custom-built email dataset, which combines data from multiple sources. Their performance is analyzed under three scenarios: (i) standard training and testing, (ii) standard training and testing under adversarial attacks, and (iii) training and testing with adversarial examples. Aiming to develop a tool that operates as a browser extension, we test all models under limited computational resources. In this constrained setup, CharGRU proves to be the best-performing model across all scenarios. All models show vulnerability to adversarial attacks, but adversarial training substantially improves their robustness. In addition, by adapting the Gradient-weighted Class Activation Mapping (Grad-CAM) technique to character-level inputs, we are able to visualize which parts of each email influence the decision of each model. Our open-source code and data is released at https://github.com/chipermaria/every-character-counts.

Authors:Srinidhi Kalgundi Srinivas, Yash Shukla, Adam Arnold, Sachin Chitta
Title: GraspFactory: A Large Object-Centric Grasping Dataset
Abstract:
Robotic grasping is a crucial task in industrial automation, where robots are increasingly expected to handle a wide range of objects. However, a significant challenge arises when robot grasping models trained on limited datasets encounter novel objects. In real-world environments such as warehouses or manufacturing plants, the diversity of objects can be vast, and grasping models need to generalize to this diversity. Training large, generalizable robot-grasping models requires geometrically diverse datasets. In this paper, we introduce GraspFactory, a dataset containing over 109 million 6-DoF grasps collectively for the Franka Panda (with 14,690 objects) and Robotiq 2F-85 grippers (with 33,710 objects). GraspFactory is designed for training data-intensive models, and we demonstrate the generalization capabilities of one such model trained on a subset of GraspFactory in both simulated and real-world settings. The dataset and tools are made available for download at https://graspfactory.github.io/.

Authors:Xiao Wang, Jia Wang, Yijie Wang, Pengtao Dang, Sha Cao, Chi Zhang
Title: MARS: toward more efficient multi-agent collaboration for LLM reasoning
Abstract:
Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS.

Authors:Tue Do, Varun Chandrasekaran, Daniel Alabi
Title: Efficiently Attacking Memorization Scores
Abstract:
Influence estimation tools -- such as memorization scores -- are widely used to understand model behavior, attribute training data, and inform dataset curation. However, recent applications in data valuation and responsible machine learning raise the question: can these scores themselves be adversarially manipulated? In this work, we present a systematic study of the feasibility of attacking memorization-based influence estimators. We characterize attacks for producing highly memorized samples as highly sensitive queries in the regime where a trained algorithm is accurate. Our attack (calculating the pseudoinverse of the input) is practical, requiring only black-box access to model outputs and incur modest computational overhead. We empirically validate our attack across a wide suite of image classification tasks, showing that even state-of-the-art proxies are vulnerable to targeted score manipulations. In addition, we provide a theoretical analysis of the stability of memorization scores under adversarial perturbations, revealing conditions under which influence estimates are inherently fragile. Our findings highlight critical vulnerabilities in influence-based attribution and suggest the need for robust defenses. All code can be found at https://github.com/tuedo2/MemAttack

Authors:Bruce Kuwahara, Chen-Yuan Lin, Xiao Shi Huang, Kin Kwan Leung, Jullian Arta Yapeter, Ilya Stanevich, Felipe Perez, Jesse C. Cresswell
Title: Document Summarization with Conformal Importance Guarantees
Abstract:
Automatic summarization systems have advanced rapidly with large language models (LLMs), yet they still lack reliable guarantees on inclusion of critical content in high-stakes domains like healthcare, law, and finance. In this work, we introduce Conformal Importance Summarization, the first framework for importance-preserving summary generation which uses conformal prediction to provide rigorous, distribution-free coverage guarantees. By calibrating thresholds on sentence-level importance scores, we enable extractive document summarization with user-specified coverage and recall rates over critical content. Our method is model-agnostic, requires only a small calibration set, and seamlessly integrates with existing black-box LLMs. Experiments on established summarization benchmarks demonstrate that Conformal Importance Summarization achieves the theoretically assured information coverage rate. Our work suggests that Conformal Importance Summarization can be combined with existing techniques to achieve reliable, controllable automatic summarization, paving the way for safer deployment of AI summarization tools in critical applications. Code is available at https://github.com/layer6ai-labs/conformal-importance-summarization.

Authors:Yandan Yang, Baoxiong Jia, Shujie Zhang, Siyuan Huang
Title: SceneWeaver: All-in-One 3D Scene Synthesis with an Extensible and Self-Reflective Agent
Abstract:
Indoor scene synthesis has become increasingly important with the rise of Embodied AI, which requires 3D environments that are not only visually realistic but also physically plausible and functionally diverse. While recent approaches have advanced visual fidelity, they often remain constrained to fixed scene categories, lack sufficient object-level detail and physical consistency, and struggle to align with complex user instructions. In this work, we present SceneWeaver, a reflective agentic framework that unifies diverse scene synthesis paradigms through tool-based iterative refinement. At its core, SceneWeaver employs a language model-based planner to select from a suite of extensible scene generation tools, ranging from data-driven generative models to visual- and LLM-based methods, guided by self-evaluation of physical plausibility, visual realism, and semantic alignment with user input. This closed-loop reason-act-reflect design enables the agent to identify semantic inconsistencies, invoke targeted tools, and update the environment over successive iterations. Extensive experiments on both common and open-vocabulary room types demonstrate that SceneWeaver not only outperforms prior methods on physical, visual, and semantic metrics, but also generalizes effectively to complex scenes with diverse instructions, marking a step toward general-purpose 3D environment generation. Project website: https://scene-weaver.github.io/.

Authors:Zhe Shen
Title: The First Open-Source Framework for Learning Stability Certificate from Data
Abstract:
Before 2025, no open-source system existed that could learn Lyapunov stability certificates directly from noisy, real-world flight data. No tool could answer the critical question: is this controller still stabilizable-especially when its closed-loop system is a total black box. We broke that boundary. This year, we released the first-ever open-source framework that can learn Lyapunov functions from trajectory data under realistic, noise-corrupted conditions. Unlike statistical anomaly detectors, our method does not merely flag deviations-it directly determines whether the system can still be proven stable. Applied to public data from the 2024 SAS severe turbulence incident, our method revealed that, within just 60 seconds of the aircrafts descent becoming abnormal, no Lyapunov function could be constructed to certify system stability. Moreover, this is the first known data-driven stability-theoretic method ever applied to a civil airliner accident. And our approach works with zero access to the controller logic-a breakthrough for commercial aircraft where control laws are proprietary and opaque. The implementation of the proposed framework is open-sourced and available at: https://github.com/HansOersted/stability

Authors:Haoxuan Li, Zhen Wen, Qiqi Jiang, Chenxiao Li, Yuwei Wu, Yuchen Yang, Yiyao Wang, Xiuqi Huang, Minfeng Zhu, Wei Chen
Title: ConceptViz: A Visual Analytics Approach for Exploring Concepts in Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks. Understanding how LLMs internally represent knowledge remains a significant challenge. Despite Sparse Autoencoders (SAEs) have emerged as a promising technique for extracting interpretable features from LLMs, SAE features do not inherently align with human-understandable concepts, making their interpretation cumbersome and labor-intensive. To bridge the gap between SAE features and human concepts, we present ConceptViz, a visual analytics system designed for exploring concepts in LLMs. ConceptViz implements a novel dentification => Interpretation => Validation pipeline, enabling users to query SAEs using concepts of interest, interactively explore concept-to-feature alignments, and validate the correspondences through model behavior verification. We demonstrate the effectiveness of ConceptViz through two usage scenarios and a user study. Our results show that ConceptViz enhances interpretability research by streamlining the discovery and validation of meaningful concept representations in LLMs, ultimately aiding researchers in building more accurate mental models of LLM features. Our code and user guide are publicly available at https://github.com/Happy-Hippo209/ConceptViz.

Authors:Nithin Somasekharan, Ling Yue, Yadi Cao, Weichao Li, Patrick Emami, Pochinapeddi Sai Bhargav, Anurag Acharya, Xingyu Xie, Shaowu Pan
Title: CFD-LLMBench: A Benchmark Suite for Evaluating Large Language Models in Computational Fluid Dynamics
Abstract:
Large Language Models (LLMs) have demonstrated strong performance across general NLP tasks, but their utility in automating numerical experiments of complex physical system -- a critical and labor-intensive component -- remains underexplored. As the major workhorse of computational science over the past decades, Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a benchmark suite comprising three complementary components -- CFDQuery, CFDCodeBench, and FoamBench -- designed to holistically evaluate LLM performance across three key competencies: graduate-level CFD knowledge, numerical and physical reasoning of CFD, and context-dependent implementation of CFD workflows. Grounded in real-world CFD practices, our benchmark combines a detailed task taxonomy with a rigorous evaluation framework to deliver reproducible results and quantify LLM performance across code executability, solution accuracy, and numerical convergence behavior. CFDLLMBench establishes a solid foundation for the development and evaluation of LLM-driven automation of numerical experiments for complex physical systems. Code and data are available at https://github.com/NREL-Theseus/cfdllmbench/.

Authors:Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, Lingjie Liu
Title: PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Abstract:
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl

Authors:Adithya Bhaskar, Xi Ye, Danqi Chen
Title: Language Models that Think, Chat Better
Abstract:
Reinforcement learning with verifiable rewards (RLVR) improves language model reasoning by using rule-based rewards in verifiable domains such as mathematics and code. However, RLVR leads to limited generalization for open-ended tasks -- such as writing outline essays or making meal plans -- where humans reason routinely. This paper shows that the RLVR paradigm is effective beyond verifiable domains, and introduces **RL** with **M**odel-rewarded **T**hinking (**RLMT**) for general-purpose chat capabilities. Using diverse real-world prompts, RLMT requires LMs to generate long CoT reasoning before response, and optimizes them with online RL against a preference-based reward model used in RLHF. Across 40 training runs on Llama-3.1-8B and Qwen-2.5-7B (both base and instruct) and multiple optimization algorithms (DPO, PPO, and GRPO), RLMT consistently outperforms standard RLHF pipelines. This includes substantial gains of 3-7 points on three chat benchmarks (AlpacaEval2, WildBench, and ArenaHardV2), along with 1-3 point improvements on other tasks like creative writing and general knowledge. Our best 8B model surpasses GPT-4o in chat and creative writing and rivals Claude-3.7-Sonnet (Thinking). RLMT can also be applied directly to base models without an SFT stage, akin to R1-Zero training. Remarkably, with only 7K prompts, Llama-3.1-8B base trained with our RLMT recipe outperforms Llama-3.1-8B-Instruct post-trained with a complex multi-staged pipeline with 25M+ examples. We close with qualitative and quantitative analyses of how trained models plan their responses. Our results rethink the post-training pipeline and call upon future work to understand and employ thinking more broadly.

Authors:Sara Fridovich-Keil, Mert Pilanci
Title: A Recovery Guarantee for Sparse Neural Networks
Abstract:
We prove the first guarantees of sparse recovery for ReLU neural networks, where the sparse network weights constitute the signal to be recovered. Specifically, we study structural properties of the sparse network weights for two-layer, scalar-output networks under which a simple iterative hard thresholding algorithm recovers these weights exactly, using memory that grows linearly in the number of nonzero weights. We validate this theoretical result with simple experiments on recovery of sparse planted MLPs, MNIST classification, and implicit neural representations. Experimentally, we find performance that is competitive with, and often exceeds, a high-performing but memory-inefficient baseline based on iterative magnitude pruning.

Authors:Bishal Adhikari, Jiajia Li, Eric S. Michel, Jacob Dykes, Te-Ming Paul Tseng, Mary Love Tagert, Dong Chen
Title: A Comprehensive Evaluation of YOLO-based Deer Detection Performance on Edge Devices
Abstract:
The escalating economic losses in agriculture due to deer intrusion, estimated to be in the hundreds of millions of dollars annually in the U.S., highlight the inadequacy of traditional mitigation strategies since these methods are often labor-intensive, costly, and ineffective for modern farming systems. To overcome this, there is a critical need for intelligent, autonomous solutions which require accurate and efficient deer detection. But the progress in this field is impeded by a significant gap in the literature, mainly the lack of a domain-specific, practical dataset and limited study on the on-field deployability of deer detection systems. Addressing this gap, this study presents a comprehensive evaluation of state-of-the-art deep learning models for deer detection in challenging real-world scenarios. The contributions of this work are threefold. First, we introduce a curated, publicly available dataset of 3,095 annotated images with bounding-box annotations of deer, derived from the Idaho Cameratraps project. Second, we provide an extensive comparative analysis of 12 model variants across four recent YOLO architectures(v8, v9, v10, and v11). Finally, we benchmarked performance on a high-end NVIDIA RTX 5090 GPU and evaluated on two representative edge computing platforms: Raspberry Pi 5 and NVIDIA Jetson AGX Xavier. Results show that the real-time detection is not feasible in Raspberry Pi without hardware-specific model optimization, while NVIDIA Jetson provides greater than 30 FPS with GPU-accelerated inference on 's' and 'n' series models. This study also reveals that smaller, architecturally advanced models such as YOLOv11n, YOLOv8s, and YOLOv9s offer the optimal balance of high accuracy (AP@.5 > 0.85) and computational efficiency (FPS > 30). To support further research, both the source code and datasets are publicly available at https://github.com/WinnerBishal/track-the-deer.

Authors:Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title: SIM-CoT: Supervised Implicit Chain-of-Thought
Abstract:
Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to explicit CoT reasoning in Large Language Models (LLMs), but a persistent performance gap has limited their adoption. We identify a core latent instability issue when scaling the computational budget of implicit CoT: as the number of reasoning tokens increases, training often becomes unstable and collapses. Our analysis shows that this instability arises from latent representations becoming homogeneous and losing semantic diversity, caused by insufficient step-level supervision in current implicit CoT methods. To address this, we propose SIM-CoT, a plug-and-play training module that introduces step-level supervision to stabilize and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder during training to align each implicit token with its corresponding explicit reasoning step, ensuring latent states capture distinct and meaningful information. The auxiliary decoder is removed at inference, preserving the efficiency of implicit CoT with no added overhead. It also provides interpretability by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization and diagnosis. SIM-CoT significantly improves both in-domain accuracy and out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2\% on GPT-2 and CODI by +3.0\% on LLaMA-3.1 8B. It further surpasses the explicit CoT baseline on GPT-2 by 2.1\% with 2.3$\times$ greater token efficiency, while closing the performance gap on larger models like LLaMA-3.1 8B. Code: https://github.com/InternLM/SIM-CoT

Authors:Xichen Xu, Yanshu Wang, Jinbao Wang, Xiaoning Lei, Guoyang Xie, Guannan Jiang, Zhichao Lu
Title: FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis
Abstract:
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.

Authors:Benjamin Feuer, Chiung-Yi Tseng, Astitwa Sarthak Lathe, Oussama Elachqar, John P Dickerson
Title: When Judgment Becomes Noise: How Design Failures in LLM Judge Benchmarks Silently Undermine Validity
Abstract:
LLM-judged benchmarks are increasingly used to evaluate complex model behaviors, yet their design introduces failure modes absent in conventional ground-truth based benchmarks. We argue that without tight objectives and verifiable constructions, benchmark rankings can produce high-confidence rankings that are in fact largely noise. We introduce two mechanisms to diagnose these issues. Schematic adherence quantifies how much of a judge's overall verdict is explained by the explicit evaluation schema, revealing unexplained variance when judges deviate from their own rubric. Psychometric validity aggregates internal consistency and discriminant validity signals to quantify irreducible uncertainty in any benchmarking run. Applying these tools to Arena-Hard Auto, we find severe schema incoherence and factor collapse across popular judges: for example, unexplained variance exceeding 90 percent for DeepSeek-R1-32B and factor correlations above 0.93 for most criteria. We also show that the ELO-style aggregation used by Arena-Hard Auto collapses and masks genuine ranking uncertainty. Our results highlight design failures that undermine validity and offer actionable principles for building better-scoped, reliability-aware LLM-judged benchmarks. We released our code and dataset at https://github.com/penfever/judgment-to-noise

Authors:Dayu Tan, Jing Chen, Xiaoping Zhou, Yansen Su, Chunhou Zheng
Title: PGCLODA: Prompt-Guided Graph Contrastive Learning for Oligopeptide-Infectious Disease Association Prediction
Abstract:
Infectious diseases continue to pose a serious threat to public health, underscoring the urgent need for effective computational approaches to screen novel anti-infective agents. Oligopeptides have emerged as promising candidates in antimicrobial research due to their structural simplicity, high bioavailability, and low susceptibility to resistance. Despite their potential, computational models specifically designed to predict associations between oligopeptides and infectious diseases remain scarce. This study introduces a prompt-guided graph-based contrastive learning framework (PGCLODA) to uncover potential associations. A tripartite graph is constructed with oligopeptides, microbes, and diseases as nodes, incorporating both structural and semantic information. To preserve critical regions during contrastive learning, a prompt-guided graph augmentation strategy is employed to generate meaningful paired views. A dual encoder architecture, integrating Graph Convolutional Network (GCN) and Transformer, is used to jointly capture local and global features. The fused embeddings are subsequently input into a multilayer perceptron (MLP) classifier for final prediction. Experimental results on a benchmark dataset indicate that PGCLODA consistently outperforms state-of-the-art models in AUROC, AUPRC, and accuracy. Ablation and hyperparameter studies confirm the contribution of each module. Case studies further validate the generalization ability of PGCLODA and its potential to uncover novel, biologically relevant associations. These findings offer valuable insights for mechanism-driven discovery and oligopeptide-based drug development. The source code of PGCLODA is available online at https://github.com/jjnlcode/PGCLODA.

Authors:Georgios Tziafas, Jiayun Zhang, Hamidreza Kasaei
Title: Parse-Augment-Distill: Learning Generalizable Bimanual Visuomotor Policies from Single Human Video
Abstract:
Learning visuomotor policies from expert demonstrations is an important frontier in modern robotics research, however, most popular methods require copious efforts for collecting teleoperation data and struggle to generalize out-ofdistribution. Scaling data collection has been explored through leveraging human videos, as well as demonstration augmentation techniques. The latter approach typically requires expensive simulation rollouts and trains policies with synthetic image data, therefore introducing a sim-to-real gap. In parallel, alternative state representations such as keypoints have shown great promise for category-level generalization. In this work, we bring these avenues together in a unified framework: PAD (Parse-AugmentDistill), for learning generalizable bimanual policies from a single human video. Our method relies on three steps: (a) parsing a human video demo into a robot-executable keypoint-action trajectory, (b) employing bimanual task-and-motion-planning to augment the demonstration at scale without simulators, and (c) distilling the augmented trajectories into a keypoint-conditioned policy. Empirically, we showcase that PAD outperforms state-ofthe-art bimanual demonstration augmentation works relying on image policies with simulation rollouts, both in terms of success rate and sample/cost efficiency. We deploy our framework in six diverse real-world bimanual tasks such as pouring drinks, cleaning trash and opening containers, producing one-shot policies that generalize in unseen spatial arrangements, object instances and background distractors. Supplementary material can be found in the project webpage https://gtziafas.github.io/PAD_project/.

Authors:Dayu Tan, Zhenpeng Xu, Yansen Su, Xin Peng, Chunhou Zheng, Weimin Zhong
Title: HiPerformer: A High-Performance Global-Local Segmentation Model with Modular Hierarchical Fusion Strategy
Abstract:
Both local details and global context are crucial in medical image segmentation, and effectively integrating them is essential for achieving high accuracy. However, existing mainstream methods based on CNN-Transformer hybrid architectures typically employ simple feature fusion techniques such as serial stacking, endpoint concatenation, or pointwise addition, which struggle to address the inconsistencies between features and are prone to information conflict and loss. To address the aforementioned challenges, we innovatively propose HiPerformer. The encoder of HiPerformer employs a novel modular hierarchical architecture that dynamically fuses multi-source features in parallel, enabling layer-wise deep integration of heterogeneous information. The modular hierarchical design not only retains the independent modeling capability of each branch in the encoder, but also ensures sufficient information transfer between layers, effectively avoiding the degradation of features and information loss that come with traditional stacking methods. Furthermore, we design a Local-Global Feature Fusion (LGFF) module to achieve precise and efficient integration of local details and global semantic information, effectively alleviating the feature inconsistency problem and resulting in a more comprehensive feature representation. To further enhance multi-scale feature representation capabilities and suppress noise interference, we also propose a Progressive Pyramid Aggregation (PPA) module to replace traditional skip connections. Experiments on eleven public datasets demonstrate that the proposed method outperforms existing segmentation techniques, demonstrating higher segmentation accuracy and robustness. The code is available at https://github.com/xzphappy/HiPerformer.

Authors:Hao Lu, Zhuang Ma, Guangfeng Jiang, Wenhang Ge, Bohan Li, Yuzhan Cai, Wenzhao Zheng, Yunpeng Zhang, Yingcong Chen
Title: 4D Driving Scene Generation With Stereo Forcing
Abstract:
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. Bridging generation and novel view synthesis remains a major challenge. We present PhiGenesis, a unified framework for 4D scene generation that extends video generation techniques with geometric and temporal consistency. Given multi-view image sequences and camera parameters, PhiGenesis produces temporally continuous 4D Gaussian splatting representations along target 3D trajectories. In its first stage, PhiGenesis leverages a pre-trained video VAE with a novel range-view adapter to enable feed-forward 4D reconstruction from multi-view images. This architecture supports single-frame or video inputs and outputs complete 4D scenes including geometry, semantics, and motion. In the second stage, PhiGenesis introduces a geometric-guided video diffusion model, using rendered historical 4D scenes as priors to generate future views conditioned on trajectories. To address geometric exposure bias in novel views, we propose Stereo Forcing, a novel conditioning strategy that integrates geometric uncertainty during denoising. This method enhances temporal coherence by dynamically adjusting generative influence based on uncertainty-aware perturbations. Our experimental results demonstrate that our method achieves state-of-the-art performance in both appearance and geometric reconstruction, temporal generation and novel view synthesis (NVS) tasks, while simultaneously delivering competitive performance in downstream evaluations. Homepage is at \href{https://jiangxb98.github.io/PhiGensis}{PhiGensis}.

Authors:Kwang-Hyun Uhm, Hyunjun Cho, Sung-Hoo Hong, Seung-Won Jung
Title: An Anisotropic Cross-View Texture Transfer with Multi-Reference Non-Local Attention for CT Slice Interpolation
Abstract:
Computed tomography (CT) is one of the most widely used non-invasive imaging modalities for medical diagnosis. In clinical practice, CT images are usually acquired with large slice thicknesses due to the high cost of memory storage and operation time, resulting in an anisotropic CT volume with much lower inter-slice resolution than in-plane resolution. Since such inconsistent resolution may lead to difficulties in disease diagnosis, deep learning-based volumetric super-resolution methods have been developed to improve inter-slice resolution. Most existing methods conduct single-image super-resolution on the through-plane or synthesize intermediate slices from adjacent slices; however, the anisotropic characteristic of 3D CT volume has not been well explored. In this paper, we propose a novel cross-view texture transfer approach for CT slice interpolation by fully utilizing the anisotropic nature of 3D CT volume. Specifically, we design a unique framework that takes high-resolution in-plane texture details as a reference and transfers them to low-resolution through-plane images. To this end, we introduce a multi-reference non-local attention module that extracts meaningful features for reconstructing through-plane high-frequency details from multiple in-plane images. Through extensive experiments, we demonstrate that our method performs significantly better in CT slice interpolation than existing competing methods on public CT datasets including a real-paired benchmark, verifying the effectiveness of the proposed framework. The source code of this work is available at https://github.com/khuhm/ACVTT.

Authors:Tom Burgert, Oliver Stoll, Paolo Rota, Begüm Demir
Title: ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
Abstract:
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.

Authors:Deokjae Lee, Hyun Oh Song
Title: Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment
Abstract:
We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.

Authors:Hailay Kidu Teklehaymanot, Gebrearegawi Gidey, Wolfgang Nejdl
Title: Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks
Abstract:
Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng

Authors:Parker Glenn, Alfy Samuel, Daben Liu
Title: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
Abstract:
Integrating LLM powered operators in declarative query languages allows for the combination of cheap and interpretable functions with powerful, generalizable language model reasoning. However, in order to benefit from the optimized execution of a database query language like SQL, generated outputs must align with the rules enforced by both type checkers and database contents. Current approaches address this challenge with orchestrations consisting of many LLM-based post-processing calls to ensure alignment between generated outputs and database values, introducing performance bottlenecks. We perform a study on the ability of various sized open-source language models to both parse and execute functions within a query language based on SQL, showing that small language models can excel as function executors over hybrid data sources. Then, we propose an efficient solution to enforce the well-typedness of LLM functions, demonstrating 7% accuracy improvement on a multi-hop question answering dataset with 53% improvement in latency over comparable solutions. We make our implementation available at https://github.com/parkervg/blendsql

Authors:Mahmoud Khater, Mona Strauss, Philipp von Olshausen, Alexander Reiterer
Title: PU-Gaussian: Point Cloud Upsampling using 3D Gaussian Representation
Abstract:
Point clouds produced by 3D sensors are often sparse and noisy, posing challenges for tasks requiring dense and high-fidelity 3D representations. Prior work has explored both implicit feature-based upsampling and distance-function learning to address this, but often at the expense of geometric interpretability or robustness to input sparsity. To overcome these limitations, we propose PU-Gaussian, a novel upsampling network that models the local neighborhood around each point using anisotropic 3D Gaussian distributions. These Gaussians capture the underlying geometric structure, allowing us to perform upsampling explicitly in the local geometric domain by direct point sampling. The sampling process generates a dense, but coarse, point cloud. A subsequent refinement network adjusts the coarse output to produce a more uniform distribution and sharper edges. We perform extensive testing on the PU1K and PUGAN datasets, demonstrating that PU-Gaussian achieves state-of-the-art performance. We make code and model weights publicly available at https://github.com/mvg-inatech/PU-Gaussian.git.

Authors:Philipp Erler, Lukas Herzberger, Michael Wimmer, Markus Schütz
Title: LidarScout: Direct Out-of-Core Rendering of Massive Point Clouds
Abstract:
Large-scale terrain scans are the basis for many important tasks, such as topographic mapping, forestry, agriculture, and infrastructure planning. The resulting point cloud data sets are so massive in size that even basic tasks like viewing take hours to days of pre-processing in order to create level-of-detail structures that allow inspecting the data set in their entirety in real time. In this paper, we propose a method that is capable of instantly visualizing massive country-sized scans with hundreds of billions of points. Upon opening the data set, we first load a sparse subsample of points and initialize an overview of the entire point cloud, immediately followed by a surface reconstruction process to generate higher-quality, hole-free heightmaps. As users start navigating towards a region of interest, we continue to prioritize the heightmap construction process to the user's viewpoint. Once a user zooms in closely, we load the full-resolution point cloud data for that region and update the corresponding height map textures with the full-resolution data. As users navigate elsewhere, full-resolution point data that is no longer needed is unloaded, but the updated heightmap textures are retained as a form of medium level of detail. Overall, our method constitutes a form of direct out-of-core rendering for massive point cloud data sets (terabytes, compressed) that requires no preprocessing and no additional disk space. Source code, executable, pre-trained model, and dataset are available at: https://github.com/cg-tuwien/lidarscout

Authors:Chaojun Nie, Jun Zhou, Guanxiang Wang, Shisong Wu, Zichen Wang
Title: Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation
Abstract:
Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Abstract:
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.

Authors:Min Cen, Zhenfeng Zhuang, Yuzhe Zhang, Min Zeng, Baptiste Magnier, Lequan Yu, Hong Zhang, Liansheng Wang
Title: C$^2$MIL: Synchronizing Semantic and Topological Causalities in Multiple Instance Learning for Robust and Interpretable Survival Analysis
Abstract:
Graph-based Multiple Instance Learning (MIL) is widely used in survival analysis with Hematoxylin and Eosin (H\&E)-stained whole slide images (WSIs) due to its ability to capture topological information. However, variations in staining and scanning can introduce semantic bias, while topological subgraphs that are not relevant to the causal relationships can create noise, resulting in biased slide-level representations. These issues can hinder both the interpretability and generalization of the analysis. To tackle this, we introduce a dual structural causal model as the theoretical foundation and propose a novel and interpretable dual causal graph-based MIL model, C$^2$MIL. C$^2$MIL incorporates a novel cross-scale adaptive feature disentangling module for semantic causal intervention and a new Bernoulli differentiable causal subgraph sampling method for topological causal discovery. A joint optimization strategy combining disentangling supervision and contrastive learning enables simultaneous refinement of both semantic and topological causalities. Experiments demonstrate that C$^2$MIL consistently improves generalization and interpretability over existing methods and can serve as a causal enhancement for diverse MIL baselines. The code is available at https://github.com/mimic0127/C2MIL.

Authors:Tong Nie, Yuewen Mei, Yihong Tang, Junlin He, Jie Sun, Haotian Shi, Wei Ma, Jian Sun
Title: Steerable Adversarial Scenario Generation through Test-Time Preference Alignment
Abstract:
Adversarial scenario generation is a cost-effective approach for safety assessment of autonomous driving systems. However, existing methods are often constrained to a single, fixed trade-off between competing objectives such as adversariality and realism. This yields behavior-specific models that cannot be steered at inference time, lacking the efficiency and flexibility to generate tailored scenarios for diverse training and testing requirements. In view of this, we reframe the task of adversarial scenario generation as a multi-objective preference alignment problem and introduce a new framework named \textbf{S}teerable \textbf{A}dversarial scenario \textbf{GE}nerator (SAGE). SAGE enables fine-grained test-time control over the trade-off between adversariality and realism without any retraining. We first propose hierarchical group-based preference optimization, a data-efficient offline alignment method that learns to balance competing objectives by decoupling hard feasibility constraints from soft preferences. Instead of training a fixed model, SAGE fine-tunes two experts on opposing preferences and constructs a continuous spectrum of policies at inference time by linearly interpolating their weights. We provide theoretical justification for this framework through the lens of linear mode connectivity. Extensive experiments demonstrate that SAGE not only generates scenarios with a superior balance of adversariality and realism but also enables more effective closed-loop training of driving policies. Project page: https://tongnie.github.io/SAGE/.

Authors:Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, Feng Zhao
Title: Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing
Abstract:
Diffusion models have recently been investigated as powerful generative solvers for image dehazing, owing to their remarkable capability to model the data distribution. However, the massive computational burden imposed by the retraining of diffusion models, coupled with the extensive sampling steps during the inference, limit the broader application of diffusion models in image dehazing. To address these issues, we explore the properties of hazy images in the semantic latent space of frozen pre-trained diffusion models, and propose a Diffusion Latent Inspired network for Image Dehazing, dubbed DiffLI$^2$D. Specifically, we first reveal that the semantic latent space of pre-trained diffusion models can represent the content and haze characteristics of hazy images, as the diffusion time-step changes. Building upon this insight, we integrate the diffusion latent representations at different time-steps into a delicately designed dehazing network to provide instructions for image dehazing. Our DiffLI$^2$D avoids re-training diffusion models and iterative sampling process by effectively utilizing the informative representations derived from the pre-trained diffusion models, which also offers a novel perspective for introducing diffusion models to image dehazing. Extensive experiments on multiple datasets demonstrate that the proposed method achieves superior performance to existing image dehazing methods. Code is available at https://github.com/aaaasan111/difflid.

Authors:Manahil Raza, Ayesha Azam, Talha Qaiser, Nasir Rajpoot
Title: PS3: A Multimodal Transformer Integrating Pathology Reports with Histology Images and Biological Pathways for Cancer Survival Prediction
Abstract:
Current multimodal fusion approaches in computational oncology primarily focus on integrating multi-gigapixel histology whole slide images (WSIs) with genomic or transcriptomic data, demonstrating improved survival prediction. We hypothesize that incorporating pathology reports can further enhance prognostic performance. Pathology reports, as essential components of clinical workflows, offer readily available complementary information by summarizing histopathological findings and integrating expert interpretations and clinical context. However, fusing these modalities poses challenges due to their heterogeneous nature. WSIs are high-dimensional, each containing several billion pixels, whereas pathology reports consist of concise text summaries of varying lengths, leading to potential modality imbalance. To address this, we propose a prototype-based approach to generate balanced representations, which are then integrated using a Transformer-based fusion model for survival prediction that we term PS3 (Predicting Survival from Three Modalities). Specifically, we present: (1) Diagnostic prototypes from pathology reports, leveraging self-attention to extract diagnostically relevant sections and standardize text representation; (2) Histological prototypes to compactly represent key morphological patterns in WSIs; and (3) Biological pathway prototypes to encode transcriptomic expressions, accurately capturing cellular functions. PS3, the three-modal transformer model, processes the resulting prototype-based multimodal tokens and models intra-modal and cross-modal interactions across pathology reports, WSIs and transcriptomic data. The proposed model outperforms state-of-the-art methods when evaluated against clinical, unimodal and multimodal baselines on six datasets from The Cancer Genome Atlas (TCGA). The code is available at: https://github.com/manahilr/PS3.

Authors:Nico Schulthess, Ender Konukoglu
Title: Anomaly Detection by Clustering DINO Embeddings using a Dirichlet Process Mixture
Abstract:
In this work, we leverage informative embeddings from foundational models for unsupervised anomaly detection in medical imaging. For small datasets, a memory-bank of normative features can directly be used for anomaly detection which has been demonstrated recently. However, this is unsuitable for large medical datasets as the computational burden increases substantially. Therefore, we propose to model the distribution of normative DINOv2 embeddings with a Dirichlet Process Mixture model (DPMM), a non-parametric mixture model that automatically adjusts the number of mixture components to the data at hand. Rather than using a memory bank, we use the similarity between the component centers and the embeddings as anomaly score function to create a coarse anomaly segmentation mask. Our experiments show that through DPMM embeddings of DINOv2, despite being trained on natural images, achieve very competitive anomaly detection performance on medical imaging benchmarks and can do this while at least halving the computation time at inference. Our analysis further indicates that normalized DINOv2 embeddings are generally more aligned with anatomical structures than unnormalized features, even in the presence of anomalies, making them great representations for anomaly detection. The code is available at https://github.com/NicoSchulthess/anomalydino-dpmm.

Authors:Rui Xu, Tianyang Xue, Qiujie Dong, Le Wan, Zhe Zhu, Peng Li, Zhiyang Dou, Cheng Lin, Shiqing Xin, Yuan Liu, Wenping Wang, Taku Komura
Title: MeshMosaic: Scaling Artist Mesh Generation via Local-to-Global Assembly
Abstract:
Scaling artist-designed meshes to high triangle numbers remains challenging for autoregressive generative models. Existing transformer-based methods suffer from long-sequence bottlenecks and limited quantization resolution, primarily due to the large number of tokens required and constrained quantization granularity. These issues prevent faithful reproduction of fine geometric details and structured density patterns. We introduce MeshMosaic, a novel local-to-global framework for artist mesh generation that scales to over 100K triangles--substantially surpassing prior methods, which typically handle only around 8K faces. MeshMosaic first segments shapes into patches, generating each patch autoregressively and leveraging shared boundary conditions to promote coherence, symmetry, and seamless connectivity between neighboring regions. This strategy enhances scalability to high-resolution meshes by quantizing patches individually, resulting in more symmetrical and organized mesh density and structure. Extensive experiments across multiple public datasets demonstrate that MeshMosaic significantly outperforms state-of-the-art methods in both geometric fidelity and user preference, supporting superior detail representation and practical mesh generation for real-world applications.

Authors:Sepehr Maleki, Negar Pourmoazemi
Title: Pi-Transformer: A Physics-informed Attention Mechanism for Time Series Anomaly Detection
Abstract:
Anomalies in multivariate time series often arise from temporal context and cross-channel coordination rather than isolated outliers. We present Pi-Transformer, a physics-informed transformer with two attention pathways: a data-driven series attention and a smoothly evolving prior attention that encodes temporal invariants such as scale-related self-similarity and phase synchrony. The prior acts as a stable reference that calibrates reconstruction error. During training, we pair a reconstruction objective with a divergence term that encourages agreement between the two attentions while keeping them meaningfully distinct; the prior is regularised to evolve smoothly and is lightly distilled towards dataset-level statistics. At inference, the model combines an alignment-weighted reconstruction signal (Energy) with a mismatch signal that highlights timing and phase disruptions, and fuses them into a single score for detection. Across five benchmarks (SMD, MSL, SMAP, SWaT, and PSM), Pi-Transformer achieves state-of-the-art or highly competitive F1, with particular strength on timing and phase-breaking anomalies. Case analyses show complementary behaviour of the two streams and interpretable detections around regime changes. Embedding physics-informed priors into attention yields a calibrated and robust approach to anomaly detection in complex multivariate systems. Code is publicly available at this GitHub repository\footnote{https://github.com/sepehr-m/Pi-Transformer}.

Authors:Haolin Li, Tianjie Dai, Zhe Chen, Siyuan Du, Jiangchao Yao, Ya Zhang, Yanfeng Wang
Title: RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis
Abstract:
Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD.

Authors:Albina Klepach, Egor E. Nuzhin, Alexey A. Tsukanov, Nikolay V. Brilliantov
Title: An effective control of large systems of active particles: An application to evacuation problem
Abstract:
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.

Authors:Phyo Thet Yee, Dimitrios Kollias, Sudeepta Mishra, Abhinav Dhall
Title: SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Abstract:
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at .

Authors:Feiyang Fu, Tongxian Guo, Zhaoqiang Liu
Title: Learnable Sampler Distillation for Discrete Diffusion Models
Abstract:
Discrete diffusion models (DDMs) have shown powerful generation ability for discrete data modalities like text and molecules. However, their practical application is hindered by inefficient sampling, requiring a large number of sampling steps. Accelerating DDMs by using larger step sizes typically introduces significant problems in generation quality, as it amplifies the impact of both the compounding decoding error due to factorized predictions and discretization error from numerical approximations, leading to a significant decrease in sampling quality. To address these challenges, we propose learnable sampler distillation (LSD), a novel approach to train fast and high-fidelity samplers for DDMs. LSD employs a distillation approach where a student sampler with a few steps learns to align its intermediate score trajectory with that of a high-quality teacher sampler with numerous steps. This alignment is achieved by optimizing learnable sampler coefficients that adaptively adjust sampling dynamics. Additionally, we further propose LSD+, which also learns time schedules that allocate steps non-uniformly. Experiments across text generation, image generation, and synthetic tasks demonstrate that our proposed approaches outperform existing samplers for DDMs, achieving substantially higher sampling quality with significantly fewer sampling steps. Our code is available at \href{https://github.com/feiyangfu/LSD}{https://github.com/feiyangfu/LSD}.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Kirtan Jain, Vinayak Goyal, Sriparna Saha, Manish Gupta
Title: When Words Can't Capture It All: Towards Video-Based User Complaint Text Generation with Multimodal Video Complaint Dataset
Abstract:
While there exists a lot of work on explainable complaint mining, articulating user concerns through text or video remains a significant challenge, often leaving issues unresolved. Users frequently struggle to express their complaints clearly in text but can easily upload videos depicting product defects (e.g., vague text such as `worst product' paired with a 5-second video depicting a broken headphone with the right earcup). This paper formulates a new task in the field of complaint mining to aid the common users' need to write an expressive complaint, which is Complaint Description from Videos (CoD-V) (e.g., to help the above user articulate her complaint about the defective right earcup). To this end, we introduce ComVID, a video complaint dataset containing 1,175 complaint videos and the corresponding descriptions, also annotated with the emotional state of the complainer. Additionally, we present a new complaint retention (CR) evaluation metric that discriminates the proposed (CoD-V) task against standard video summary generation and description tasks. To strengthen this initiative, we introduce a multimodal Retrieval-Augmented Generation (RAG) embedded VideoLLaMA2-7b model, designed to generate complaints while accounting for the user's emotional state. We conduct a comprehensive evaluation of several Video Language Models on several tasks (pre-trained and fine-tuned versions) with a range of established evaluation metrics, including METEOR, perplexity, and the Coleman-Liau readability score, among others. Our study lays the foundation for a new research direction to provide a platform for users to express complaints through video. Dataset and resources are available at: https://github.com/sarmistha-D/CoD-V.

Authors:Edmund Bu, Yossi Gandelsman
Title: Interpreting ResNet-based CLIP via Neuron-Attention Decomposition
Abstract:
We present a novel technique for interpreting the neurons in CLIP-ResNet by decomposing their contributions to the output into individual computation paths. More specifically, we analyze all pairwise combinations of neurons and the following attention heads of CLIP's attention-pooling layer. We find that these neuron-head pairs can be approximated by a single direction in CLIP-ResNet's image-text embedding space. Leveraging this insight, we interpret each neuron-head pair by associating it with text. Additionally, we find that only a sparse set of the neuron-head pairs have a significant contribution to the output value, and that some neuron-head pairs, while polysemantic, represent sub-concepts of their corresponding neurons. We use these observations for two applications. First, we employ the pairs for training-free semantic segmentation, outperforming previous methods for CLIP-ResNet. Second, we utilize the contributions of neuron-head pairs to monitor dataset distribution shifts. Our results demonstrate that examining individual computation paths in neural networks uncovers interpretable units, and that such units can be utilized for downstream tasks.

Authors:Hyunjin Cho, Giyun Choi, Jongwon Choi
Title: AJAHR: Amputated Joint Aware 3D Human Mesh Recovery
Abstract:
Existing human mesh recovery methods assume a standard human body structure, overlooking diverse anatomical conditions such as limb loss. This assumption introduces bias when applied to individuals with amputations - a limitation further exacerbated by the scarcity of suitable datasets. To address this gap, we propose Amputated Joint Aware 3D Human Mesh Recovery (AJAHR), which is an adaptive pose estimation framework that improves mesh reconstruction for individuals with limb loss. Our model integrates a body-part amputation classifier, jointly trained with the mesh recovery network, to detect potential amputations. We also introduce Amputee 3D (A3D), which is a synthetic dataset offering a wide range of amputee poses for robust training. While maintaining competitive performance on non-amputees, our approach achieves state-of-the-art results for amputated individuals. Additional materials can be found at the project webpage.

Authors:Guo Chen, Jiarun Liu, Sicong Du, Chenming Wu, Deqi Li, Shi-Sheng Huang, Guofeng Zhang, Sheng Yang
Title: GS-RoadPatching: Inpainting Gaussians via 3D Searching and Placing for Driving Scenes
Abstract:
This paper presents GS-RoadPatching, an inpainting method for driving scene completion by referring to completely reconstructed regions, which are represented by 3D Gaussian Splatting (3DGS). Unlike existing 3DGS inpainting methods that perform generative completion relying on 2D perspective-view-based diffusion or GAN models to predict limited appearance or depth cues for missing regions, our approach enables substitutional scene inpainting and editing directly through the 3DGS modality, extricating it from requiring spatial-temporal consistency of 2D cross-modals and eliminating the need for time-intensive retraining of Gaussians. Our key insight is that the highly repetitive patterns in driving scenes often share multi-modal similarities within the implicit 3DGS feature space and are particularly suitable for structural matching to enable effective 3DGS-based substitutional inpainting. Practically, we construct feature-embedded 3DGS scenes to incorporate a patch measurement method for abstracting local context at different scales and, subsequently, propose a structural search method to find candidate patches in 3D space effectively. Finally, we propose a simple yet effective substitution-and-fusion optimization for better visual harmony. We conduct extensive experiments on multiple publicly available datasets to demonstrate the effectiveness and efficiency of our proposed method in driving scenes, and the results validate that our method achieves state-of-the-art performance compared to the baseline methods in terms of both quality and interoperability. Additional experiments in general scenes also demonstrate the applicability of the proposed 3D inpainting strategy. The project page and code are available at: https://shanzhaguoo.github.io/GS-RoadPatching/

Authors:Miren Samaniego, Igor Rodriguez, Elena Lazkano
Title: CapStARE: Capsule-based Spatiotemporal Architecture for Robust and Efficient Gaze Estimation
Abstract:
We introduce CapStARE, a capsule-based spatio-temporal architecture for gaze estimation that integrates a ConvNeXt backbone, capsule formation with attention routing, and dual GRU decoders specialized for slow and rapid gaze dynamics. This modular design enables efficient part-whole reasoning and disentangled temporal modeling, achieving state-of-the-art performance on ETH-XGaze (3.36) and MPIIFaceGaze (2.65) while maintaining real-time inference (< 10 ms). The model also generalizes well to unconstrained conditions in Gaze360 (9.06) and human-robot interaction scenarios in RT-GENE (4.76), outperforming or matching existing methods with fewer parameters and greater interpretability. These results demonstrate that CapStARE offers a practical and robust solution for real-time gaze estimation in interactive systems. The related code and results for this article can be found on: https://github.com/toukapy/capsStare

Authors:Binbin Zhang, Chengdong Liang, Shuai Wang, Xuelong Geng, Zhao Guo, Haoyu Li, Hao Yin, Xipeng Yang, Pengshen Zhang, Changwei Ma, Lei Xie
Title: WEST: LLM based Speech Toolkit for Speech Understanding, Generation, and Interaction
Abstract:
In this paper, we present WEST(WE Speech Toolkit), a speech toolkit based on a large language model (LLM) for speech understanding, generation, and interaction. There are three key features of WEST: 1) Fully LLM-based: Standing on the shoulders of giants by reusing mature architectures, ecosystems (e.g., Hugging Face), and methods (e.g., sequence packing) from large models. 2) Full-stack: Supports tasks such as recognition, synthesis, understanding, dialogue, and multimodal capabilities, with extensibility to incorporate open-source models. 3) Simple and Stupid: A simple and stupid speech toolkit that everyone can Touch. In addition, WEST provides two types of recipes, models, and experimental results. The first is entirely based on open-source models and open-source data, allowing users to fully reproduce the experiments in this paper and serving as a verification system or minimal system baseline. The second is trained on massive data, offering superior performance so the user can directly apply it out of the box. WEST is publicly avilable at https://github.com/wenet-e2e/west/

Authors:Xueliang Zhao, Wei Wu, Jian Guan, Zhuocheng Gong, Lingpeng Kong
Title: PromptCoT 2.0: Scaling Prompt Synthesis for Large Language Model Reasoning
Abstract:
Large language models (LLMs) are evolving from conversational systems into strong reasoners for tasks such as Olympiad mathematics and competitive programming. While scaling parameters and test-time computation has driven progress, a key bottleneck is the lack of high-quality training problems: human-curated datasets are costly and limited, while existing synthetic corpora are often too easy or narrow. PromptCoT 1.0 showed that injecting rationales into prompt synthesis increases problem difficulty. Building on this, we present PromptCoT 2.0, a scalable framework that replaces hand-crafted heuristics with an expectation-maximization (EM) loop, where rationales are iteratively refined to guide prompt construction. This produces problems that are both harder and more diverse than prior corpora. The synthetic prompts support two post-training regimes: (1) Self-Play, where strong models improve autonomously via verifiable feedback without stronger teachers; and (2) Supervised Fine-Tuning (SFT), where weaker models learn from teacher-distilled traces. Extensive experiments demonstrate the effectiveness of this approach. In self-play, applying PromptCoT 2.0 to Qwen3-30B-A3B-Thinking-2507 sets new state-of-the-art results at the 30B scale, with +4.4, +4.8, and +5.3 on AIME 24/25 and HMMT 25, +6.1 and +5.0 on LiveCodeBench v5/v6, and +35 Elo on Codeforces. In SFT, training Qwen2.5-7B-Instruct solely on synthetic prompts boosts accuracy to 73.1 (AIME 24), 65.6 (AIME 25), and 53.4 (LiveCodeBench v5), surpassing models trained on human or hybrid data. Analyses further confirm that PromptCoT 2.0 yields fundamentally harder and distributionally distinct problems. These results establish prompt synthesis as a new axis for scaling reasoning and position PromptCoT 2.0 as a scalable foundation for future open-source models. The implementation is available at https://github.com/inclusionAI/PromptCoT.

Authors:The Hieu Pham, Tan Dat Nguyen, Phuong Thanh Tran, Joon Son Chung, Duc Dung Nguyen
Title: MAGE: A Coarse-to-Fine Speech Enhancer with Masked Generative Model
Abstract:
Speech enhancement remains challenging due to the trade-off between efficiency and perceptual quality. In this paper, we introduce MAGE, a Masked Audio Generative Enhancer that advances generative speech enhancement through a compact and robust design. Unlike prior masked generative models with random masking, MAGE employs a scarcity-aware coarse-to-fine masking strategy that prioritizes frequent tokens in early steps and rare tokens in later refinements, improving efficiency and generalization. We also propose a lightweight corrector module that further stabilizes inference by detecting low-confidence predictions and re-masking them for refinement. Built on BigCodec and finetuned from Qwen2.5-0.5B, MAGE is reduced to 200M parameters through selective layer retention. Experiments on DNS Challenge and noisy LibriSpeech show that MAGE achieves state-of-the-art perceptual quality and significantly reduces word error rate for downstream recognition, outperforming larger baselines. Audio examples are available at https://hieugiaosu.github.io/MAGE/.

Authors:ShiMing Wang, ZhiHao Du, Yang Xiang, TianYu Zhao, Han Zhao, Qian Chen, XianGang Li, HanJie Guo, ZhenHua Ling
Title: Eliminating stability hallucinations in llm-based tts models via attention guidance
Abstract:
This paper focuses on resolving stability hallucinations (e.g., repetitive or omitted speech) in LLM-based Text-to-Speech (TTS) models by improving and leveraging the attention mechanism. First, we analyzed the alignment mechanism between text tokens and speech tokens in LLMs. We then proposed a metric termed the Optimal Alignment Score (OAS), which employs the Viterbi algorithm to evaluate text-speech alignment quality. Subsequently, OAS was integrated into the training of CosyVoice2 to assist LLMs in learning continuous, stable alignment. Additionally, the pre-trained attention value is employed to guide the training of the student CosyVoice2 via chain-of-thought (CoT), which further reduces stability hallucinations in synthesized speech. Experiments on the Seed-TTS-Eval and CV3-Eval test sets demonstrate that the proposed methods can effectively reduce the stability hallucinations of CosyVoice2 without introducing additional negative effects. The appendix is available at https://wsmzzz.github.io/llm_attn.

Authors:Ao Sun, Weilin Zhao, Xu Han, Cheng Yang, Zhiyuan Liu, Chuan Shi, Maosong sun
Title: BurstEngine: an Efficient Distributed Framework for Training Transformers on Extremely Long Sequences of over 1M Tokens
Abstract:
Existing methods for training LLMs on long-sequence data, such as Tensor Parallelism and Context Parallelism, exhibit low Model FLOPs Utilization as sequence lengths and number of GPUs increase, especially when sequence lengths exceed 1M tokens. To address these challenges, we propose BurstEngine, an efficient framework designed to train LLMs on long-sequence data. BurstEngine introduces BurstAttention, an optimized distributed attention with lower communication cost than RingAttention. BurstAttention leverages topology-aware ring communication to fully utilize network bandwidth and incorporates fine-grained communication-computation overlap. Furthermore, BurstEngine introduces sequence-level selective checkpointing and fuses the language modeling head with the loss function to reduce memory cost. Additionally, BurstEngine introduces workload balance optimization for various types of attention masking. By integrating these optimizations, BurstEngine achieves a $1.2\times$ speedup with much lower memory overhead than the state-of-the-art baselines when training LLMs on extremely long sequences of over 1M tokens. We have made our code publicly available on GitHub: https://github.com/thunlp/BurstEngine.

Authors:Sen Yang, Yu Bao, Yu Lu, Jiajun Chen, Shujian Huang, Shanbo Cheng
Title: EnAnchored-X2X: English-Anchored Optimization for Many-to-Many Translation
Abstract:
Large language models (LLMs) have demonstrated strong machine translation capabilities for English-centric language pairs but underperform in direct non-English (x2x) translation. This work addresses this limitation through a synthetic data generation framework that leverages models' established English-to-x (en2x) capabilities. By extending English parallel corpora into omnidirectional datasets and developing an English-referenced quality evaluation proxy, we enable effective collection of high-quality x2x training data. Combined with preference-based optimization, our method achieves significant improvement across 72 x2x directions for widely used LLMs, while generalizing to enhance en2x performance. The results demonstrate that strategic exploitation of English-centric strengths can bootstrap comprehensive multilingual translation capabilities in LLMs. We release codes, datasets, and model checkpoints at https://github.com/NJUNLP/EAX

Authors:Xiangyang Chen, Shuzhao Li, Xiuwen Zhu, Yongfan Chen, Fan Yang, Cheng Fang, Lin Qu, Xiaoxiao Xu, Hu Wei, Minggang Wu
Title: Logics-Parsing Technical Report
Abstract:
Recent advances in Large Vision-Language models (LVLM) have spurred significant progress in document parsing task. Compared to traditional pipeline-based methods, end-to-end paradigms have shown their excellence in converting PDF images into structured outputs through integrated Optical Character Recognition (OCR), table recognition, mathematical formula recognition and so on. However, the absence of explicit analytical stages for document layouts and reading orders limits the LVLM's capability in handling complex document types such as multi-column newspapers or posters. To address this limitation, we propose in this report Logics-Parsing: an end-to-end LVLM-based model augmented with reinforcement learning. Our model incorporates meticulously designed reward mechanisms to optimize complex layout analysis and reading order inference. In addition, we expand the model's versatility by incorporating diverse data types such as chemical formulas and handwritten Chinese characters into supervised fine-tuning. Finally, to enable rigorous evaluation of our approach, we introduce LogicsParsingBench, a curated set of 1,078 page-level PDF images spanning nine major categories and over twenty sub-categories, which will be released later. Comprehensive experiments conducted on LogicsParsingBench have validated the efficacy and State-of-the-art (SOTA) performance of our proposed model across diverse document analysis scenarios. Project Page: https://github.com/alibaba/Logics-Parsing

Authors:Jinhui Zheng, Xueyuan Gong
Title: ExpFace: Exponential Angular Margin Loss for Deep Face Recognition
Abstract:
Face recognition is an open-set problem requiring high discriminative power to ensure that intra-class distances remain smaller than inter-class distances. Margin-based softmax losses, such as SphereFace, CosFace, and ArcFace, have been widely adopted to enhance intra-class compactness and inter-class separability, yet they overlook the impact of noisy samples. By examining the distribution of samples in the angular space, we observe that clean samples predominantly cluster in the center region, whereas noisy samples tend to shift toward the peripheral region. Motivated by this observation, we propose the Exponential Angular Margin Loss (ExpFace), which introduces an angular exponential term as the margin. This design applies a larger penalty in the center region and a smaller penalty in the peripheral region within the angular space, thereby emphasizing clean samples while suppressing noisy samples. We present a unified analysis of ExpFace and classical margin-based softmax losses in terms of margin embedding forms, similarity curves, and gradient curves, showing that ExpFace not only avoids the training instability of SphereFace and the non-monotonicity of ArcFace, but also exhibits a similarity curve that applies penalties in the same manner as the decision boundary in the angular space. Extensive experiments demonstrate that ExpFace achieves state-of-the-art performance. To facilitate future research, we have released the source code at: https://github.com/dfr-code/ExpFace.

Authors:Yi Yang
Title: nnFilterMatch: A Unified Semi-Supervised Learning Framework with Uncertainty-Aware Pseudo-Label Filtering for Efficient Medical Segmentation
Abstract:
Semi-supervised learning (SSL) has emerged as a promising paradigm in medical image segmentation, offering competitive performance while substantially reducing the need for extensive manual annotation. When combined with active learning (AL), these strategies further minimize annotation burden by selectively incorporating the most informative samples. However, conventional SSL_AL hybrid approaches often rely on iterative and loop-based retraining cycles after each annotation round, incurring significant computational overhead and limiting scalability in clinical applications. In this study, we present a novel, annotation-efficient, and self-adaptive deep segmentation framework that integrates SSL with entropy-based pseudo-label filtering (FilterMatch), an AL-inspired mechanism, within the single-pass nnU-Net training segmentation framework (nnFilterMatch). By selectively excluding high-confidence pseudo-labels during training, our method circumvents the need for retraining loops while preserving the benefits of uncertainty-guided learning. We validate the proposed framework across multiple clinical segmentation benchmarks and demonstrate that it achieves performance comparable to or exceeding fully supervised models, even with only 5\%--20\% labeled data. This work introduces a scalable, end-to-end learning strategy for reducing annotation demands in medical image segmentation without compromising accuracy. Code is available here: https://github.com/Ordi117/nnFilterMatch.git.

Authors:Shuyu Zhang, Yifan Wei, Xinru Wang, Yanmin Zhu, Yangfan He, Yixuan Weng, Bin Li
Title: HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Abstract:
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Chenfei Ye, Hanyang Peng, Jianfeng Cao, Ting Ma
Title: Towards Robust In-Context Learning for Medical Image Segmentation via Data Synthesis
Abstract:
The rise of In-Context Learning (ICL) for universal medical image segmentation has introduced an unprecedented demand for large-scale, diverse datasets for training, exacerbating the long-standing problem of data scarcity. While data synthesis offers a promising solution, existing methods often fail to simultaneously achieve both high data diversity and a domain distribution suitable for medical data. To bridge this gap, we propose \textbf{SynthICL}, a novel data synthesis framework built upon domain randomization. SynthICL ensures realism by leveraging anatomical priors from real-world datasets, generates diverse anatomical structures to cover a broad data distribution, and explicitly models inter-subject variations to create data cohorts suitable for ICL. Extensive experiments on four held-out datasets validate our framework's effectiveness, showing that models trained with our data achieve performance gains of up to 63\% in average Dice and substantially enhanced generalization to unseen anatomical domains. Our work helps mitigate the data bottleneck for ICL-based segmentation, paving the way for robust models. Our code and the generated dataset are publicly available at https://github.com/jiesihu/Neuroverse3D.

Authors:J. Ben Tamo, Nishant S. Chouhan, Micky C. Nnamdi, Yining Yuan, Shreya S. Chivilkar, Wenqi Shi, Steven W. Hwang, B. Randall Brenn, May D. Wang
Title: Causal Machine Learning for Surgical Interventions
Abstract:
Surgical decision-making is complex and requires understanding causal relationships between patient characteristics, interventions, and outcomes. In high-stakes settings like spinal fusion or scoliosis correction, accurate estimation of individualized treatment effects (ITEs) remains limited due to the reliance on traditional statistical methods that struggle with complex, heterogeneous data. In this study, we develop a multi-task meta-learning framework, X-MultiTask, for ITE estimation that models each surgical decision (e.g., anterior vs. posterior approach, surgery vs. no surgery) as a distinct task while learning shared representations across tasks. To strengthen causal validity, we incorporate the inverse probability weighting (IPW) into the training objective. We evaluate our approach on two datasets: (1) a public spinal fusion dataset (1,017 patients) to assess the effect of anterior vs. posterior approaches on complication severity; and (2) a private AIS dataset (368 patients) to analyze the impact of posterior spinal fusion (PSF) vs. non-surgical management on patient-reported outcomes (PROs). Our model achieves the highest average AUC (0.84) in the anterior group and maintains competitive performance in the posterior group (0.77). It outperforms baselines in treatment effect estimation with the lowest overall $ε_{\text{NN-PEHE}}$ (0.2778) and $ε_{\text{ATE}}$ (0.0763). Similarly, when predicting PROs in AIS, X-MultiTask consistently shows superior performance across all domains, with $ε_{\text{NN-PEHE}}$ = 0.2551 and $ε_{\text{ATE}}$ = 0.0902. By providing robust, patient-specific causal estimates, X-MultiTask offers a powerful tool to advance personalized surgical care and improve patient outcomes. The code is available at https://github.com/Wizaaard/X-MultiTask.

Authors:Shuyu Zhang, Yifan Wei, Jialuo Yuan, Xinru Wang, Yanmin Zhu, Bin Li
Title: DyBBT: Dynamic Balance via Bandit inspired Targeting for Dialog Policy with Cognitive Dual-Systems
Abstract:
Task oriented dialog systems often rely on static exploration strategies that do not adapt to dynamic dialog contexts, leading to inefficient exploration and suboptimal performance. We propose DyBBT, a novel dialog policy learning framework that formalizes the exploration challenge through a structured cognitive state space capturing dialog progression, user uncertainty, and slot dependency. DyBBT proposes a bandit inspired meta-controller that dynamically switches between a fast intuitive inference (System 1) and a slow deliberative reasoner (System 2) based on real-time cognitive states and visitation counts. Extensive experiments on single- and multi-domain benchmarks show that DyBBT achieves state-of-the-art performance in success rate, efficiency, and generalization, with human evaluations confirming its decisions are well aligned with expert judgment. Code is available at https://github.com/carsonz/DyBBT.

Authors:Ling Lo, Kelvin C. K. Chan, Wen-Huang Cheng, Ming-Hsuan Yang
Title: From Prompt to Progression: Taming Video Diffusion Models for Seamless Attribute Transition
Abstract:
Existing models often struggle with complex temporal changes, particularly when generating videos with gradual attribute transitions. The most common prompt interpolation approach for motion transitions often fails to handle gradual attribute transitions, where inconsistencies tend to become more pronounced. In this work, we propose a simple yet effective method to extend existing models for smooth and consistent attribute transitions, through introducing frame-wise guidance during the denoising process. Our approach constructs a data-specific transitional direction for each noisy latent, guiding the gradual shift from initial to final attributes frame by frame while preserving the motion dynamics of the video. Moreover, we present the Controlled-Attribute-Transition Benchmark (CAT-Bench), which integrates both attribute and motion dynamics, to comprehensively evaluate the performance of different models. We further propose two metrics to assess the accuracy and smoothness of attribute transitions. Experimental results demonstrate that our approach performs favorably against existing baselines, achieving visual fidelity, maintaining alignment with text prompts, and delivering seamless attribute transitions. Code and CATBench are released: https://github.com/lynn-ling-lo/Prompt2Progression.

Authors:Kunlun Xu, Yibo Feng, Jiangmeng Li, Yongsheng Qi, Jiahuan Zhou
Title: C${}^2$Prompt: Class-aware Client Knowledge Interaction for Federated Continual Learning
Abstract:
Federated continual learning (FCL) tackles scenarios of learning from continuously emerging task data across distributed clients, where the key challenge lies in addressing both temporal forgetting over time and spatial forgetting simultaneously. Recently, prompt-based FCL methods have shown advanced performance through task-wise prompt communication.In this study, we underscore that the existing prompt-based FCL methods are prone to class-wise knowledge coherence between prompts across clients. The class-wise knowledge coherence includes two aspects: (1) intra-class distribution gap across clients, which degrades the learned semantics across prompts, (2) inter-prompt class-wise relevance, which highlights cross-class knowledge confusion. During prompt communication, insufficient class-wise coherence exacerbates knowledge conflicts among new prompts and induces interference with old prompts, intensifying both spatial and temporal forgetting. To address these issues, we propose a novel Class-aware Client Knowledge Interaction (C${}^2$Prompt) method that explicitly enhances class-wise knowledge coherence during prompt communication. Specifically, a local class distribution compensation mechanism (LCDC) is introduced to reduce intra-class distribution disparities across clients, thereby reinforcing intra-class knowledge consistency. Additionally, a class-aware prompt aggregation scheme (CPA) is designed to alleviate inter-class knowledge confusion by selectively strengthening class-relevant knowledge aggregation. Extensive experiments on multiple FCL benchmarks demonstrate that C${}^2$Prompt achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/NeurIPS2025-C2Prompt

Authors:Youngju Yoo, Jiaheng Hu, Yifeng Zhu, Bo Liu, Qiang Liu, Roberto Martín-Martín, Peter Stone
Title: RoboSSM: Scalable In-context Imitation Learning via State-Space Models
Abstract:
In-context imitation learning (ICIL) enables robots to learn tasks from prompts consisting of just a handful of demonstrations. By eliminating the need for parameter updates at deployment time, this paradigm supports few-shot adaptation to novel tasks. However, recent ICIL methods rely on Transformers, which have computational limitations and tend to underperform when handling longer prompts than those seen during training. In this work, we introduce RoboSSM, a scalable recipe for in-context imitation learning based on state-space models (SSM). Specifically, RoboSSM replaces Transformers with Longhorn -- a state-of-the-art SSM that provides linear-time inference and strong extrapolation capabilities, making it well-suited for long-context prompts. We evaluate our approach on the LIBERO benchmark and compare it against strong Transformer-based ICIL baselines. Experiments show that RoboSSM extrapolates effectively to varying numbers of in-context demonstrations, yields high performance on unseen tasks, and remains robust in long-horizon scenarios. These results highlight the potential of SSMs as an efficient and scalable backbone for ICIL. Our code is available at https://github.com/youngjuY/RoboSSM.

Authors:Yijun Yuan
Title: Formalization of Harder-Narasimhan theory
Abstract:
The Harder-Narasimhan theory provides a canonical filtration of a vector bundle on a projective curve whose successive quotients are semistable with strictly decreasing slopes. In this article, we present the formalization of Harder-Narasimhan theory in the proof assistant Lean 4 with Mathlib. This formalization is based on a recent approach of Harder-Narasimhan theory by Chen and Jeannin, which reinterprets the theory in order-theoretic terms and avoids the classical dependence on algebraic geometry. As an application, we formalize the uniqueness of coprimary filtration of a finitely generated module over a noetherian ring, and the existence of the Jordan-Hölder filtration of a semistable Harder-Narasimhan game. Code available at: https://github.com/YijunYuan/HarderNarasimhan

Authors:Juan Manuel Perez, Kevin Garcia, Brooklyn Berry, Dongjin Song, Yifeng Gao
Title: Adaptive von Mises-Fisher Likelihood Loss for Supervised Deep Time Series Hashing
Abstract:
Indexing time series by creating compact binary representations is a fundamental task in time series data mining. Recently, deep learning-based hashing methods have proven effective for indexing time series based on semantic meaning rather than just raw similarity. The purpose of deep hashing is to map samples with the same semantic meaning to identical binary hash codes, enabling more efficient search and retrieval. Unlike other supervised representation learning methods, supervised deep hashing requires a discretization step to convert real-valued representations into binary codes, but this can induce significant information loss. In this paper, we propose a von Mises-Fisher (vMF) hashing loss. The proposed deep hashing model maps data to an M-dimensional hyperspherical space to effectively reduce information loss and models each data class as points following distinct vMF distributions. The designed loss aims to maximize the separation between each modeled vMF distribution to provide a better way to maximize the margin between each semantically different data sample. Experimental results show that our method outperforms existing baselines. The implementation is publicly available at https://github.com/jmpq97/vmf-hashing

Authors:Rohan Surana, Amit Namburi, Gagan Mundada, Abhay Lal, Zachary Novack, Julian McAuley, Junda Wu
Title: MusiCRS: Benchmarking Audio-Centric Conversational Recommendation
Abstract:
Conversational recommendation has advanced rapidly with large language models (LLMs), yet music remains a uniquely challenging domain where effective recommendations require reasoning over audio content beyond what text or metadata can capture. We present MusiCRS, the first benchmark for audio-centric conversational recommendation that links authentic user conversations from Reddit with corresponding audio tracks. MusiCRS contains 477 high-quality conversations spanning diverse genres (classical, hip-hop, electronic, metal, pop, indie, jazz) with 3,589 unique musical entities and audio grounding via YouTube links. MusiCRS enables evaluation across three input modality configurations: audio-only, query-only, and audio+query (multimodal), allowing systematic comparison of audio-LLMs, retrieval models, and traditional approaches. Our experiments reveal that current systems rely heavily on textual signals and struggle with nuanced audio reasoning. This exposes fundamental limitations in cross-modal knowledge integration where models excel at dialogue semantics but cannot effectively ground abstract musical concepts in actual audio content. To facilitate progress, we release the MusiCRS dataset (https://huggingface.co/datasets/rohan2810/MusiCRS), evaluation code (https://github.com/rohan2810/musiCRS), and comprehensive baselines.

Authors:Yifan Ye, Jun Cen, Jing Chen, Zhihe Lu
Title: Self-evolved Imitation Learning in Simulated World
Abstract:
Imitation learning has been a trend recently, yet training a generalist agent across multiple tasks still requires large-scale expert demonstrations, which are costly and labor-intensive to collect. To address the challenge of limited supervision, we propose Self-Evolved Imitation Learning (SEIL), a framework that progressively improves a few-shot model through simulator interactions. The model first attempts tasksin the simulator, from which successful trajectories are collected as new demonstrations for iterative refinement. To enhance the diversity of these demonstrations, SEIL employs dual-level augmentation: (i) Model-level, using an Exponential Moving Average (EMA) model to collaborate with the primary model, and (ii) Environment-level, introducing slight variations in initial object positions. We further introduce a lightweight selector that filters complementary and informative trajectories from the generated pool to ensure demonstration quality. These curated samples enable the model to achieve competitive performance with far fewer training examples. Extensive experiments on the LIBERO benchmark show that SEIL achieves a new state-of-the-art performance in few-shot imitation learning scenarios. Code is available at https://github.com/Jasper-aaa/SEIL.git.

Authors:Jason Chen, I-Chun Arthur Liu, Gaurav Sukhatme, Daniel Seita
Title: ROPA: Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation
Abstract:
Training robust bimanual manipulation policies via imitation learning requires demonstration data with broad coverage over robot poses, contacts, and scene contexts. However, collecting diverse and precise real-world demonstrations is costly and time-consuming, which hinders scalability. Prior works have addressed this with data augmentation, typically for either eye-in-hand (wrist camera) setups with RGB inputs or for generating novel images without paired actions, leaving augmentation for eye-to-hand (third-person) RGB-D training with new action labels less explored. In this paper, we propose Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation (ROPA), an offline imitation learning data augmentation method that fine-tunes Stable Diffusion to synthesize third-person RGB and RGB-D observations of novel robot poses. Our approach simultaneously generates corresponding joint-space action labels while employing constrained optimization to enforce physical consistency through appropriate gripper-to-object contact constraints in bimanual scenarios. We evaluate our method on 5 simulated and 3 real-world tasks. Our results across 2625 simulation trials and 300 real-world trials demonstrate that ROPA outperforms baselines and ablations, showing its potential for scalable RGB and RGB-D data augmentation in eye-to-hand bimanual manipulation. Our project website is available at: https://ropaaug.github.io/.

Authors:Sahil Tyagi, Andrei Cozma, Olivera Kotevska, Feiyi Wang
Title: OmniFed: A Modular Framework for Configurable Federated Learning from Edge to HPC
Abstract:
Federated Learning (FL) is critical for edge and High Performance Computing (HPC) where data is not centralized and privacy is crucial. We present OmniFed, a modular framework designed around decoupling and clear separation of concerns for configuration, orchestration, communication, and training logic. Its architecture supports configuration-driven prototyping and code-level override-what-you-need customization. We also support different topologies, mixed communication protocols within a single deployment, and popular training algorithms. It also offers optional privacy mechanisms including Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Aggregation (SA), as well as compression strategies. These capabilities are exposed through well-defined extension points, allowing users to customize topology and orchestration, learning logic, and privacy/compression plugins, all while preserving the integrity of the core system. We evaluate multiple models and algorithms to measure various performance metrics. By unifying topology configuration, mixed-protocol communication, and pluggable modules in one stack, OmniFed streamlines FL deployment across heterogeneous environments. Github repository is available at https://github.com/at-aaims/OmniFed.

Authors:Axel Marmoret, Reda Bensaid, Jonathan Lys, Vincent Gripon, François Leduc-Primeau
Title: TensLoRA: Tensor Alternatives for Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.

Authors:Zhijin Guo, Chenhao Xue, Zhaozhen Xu, Hongbo Bo, Yuxuan Ye, Janet B. Pierrehumbert, Martha Lewis
Title: Quantifying Compositionality of Classic and State-of-the-Art Embeddings
Abstract:
For language models to generalize correctly to novel expressions, it is critical that they exploit access compositional meanings when this is justified. Even if we don't know what a "pelp" is, we can use our knowledge of numbers to understand that "ten pelps" makes more pelps than "two pelps". Static word embeddings such as Word2vec made strong, indeed excessive, claims about compositionality. The SOTA generative, transformer models and graph models, however, go too far in the other direction by providing no real limits on shifts in meaning due to context. To quantify the additive compositionality, we formalize a two-step, generalized evaluation that (i) measures the linearity between known entity attributes and their embeddings via canonical correlation analysis, and (ii) evaluates additive generalization by reconstructing embeddings for unseen attribute combinations and checking reconstruction metrics such as L2 loss, cosine similarity, and retrieval accuracy. These metrics also capture failure cases where linear composition breaks down. Sentences, knowledge graphs, and word embeddings are evaluated and tracked the compositionality across all layers and training stages. Stronger compositional signals are observed in later training stages across data modalities, and in deeper layers of the transformer-based model before a decline at the top layer. Code is available at https://github.com/Zhijin-Guo1/quantifying-compositionality.

Authors:Enhao Huang, Zhiyu Zhang, Tianxiang Xu, Chunshu Xia, Kaichun Hu, Yuchen Yang, Tongtong Pan, Dong Dong, Zhan Qin
Title: Holographic Transformers for Complex-Valued Signal Processing: Integrating Phase Interference into Self-Attention
Abstract:
Complex-valued signals encode both amplitude and phase, yet most deep models treat attention as real-valued correlation, overlooking interference effects. We introduce the Holographic Transformer, a physics-inspired architecture that incorporates wave interference principles into self-attention. Holographic attention modulates interactions by relative phase and coherently superimposes values, ensuring consistency between amplitude and phase. A dual-headed decoder simultaneously reconstructs the input and predicts task outputs, preventing phase collapse when losses prioritize magnitude over phase. We demonstrate that holographic attention implements a discrete interference operator and maintains phase consistency under linear mixing. Experiments on PolSAR image classification and wireless channel prediction show strong performance, achieving high classification accuracy and F1 scores, low regression error, and increased robustness to phase perturbations. These results highlight that enforcing physical consistency in attention leads to generalizable improvements in complex-valued learning and provides a unified, physics-based framework for coherent signal modeling. The code is available at https://github.com/EonHao/Holographic-Transformers.

Authors:Ruochi Li, Haoxuan Zhang, Edward Gehringer, Ting Xiao, Junhua Ding, Haihua Chen
Title: Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers
Abstract:
The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

Authors:Millie Vyas, Timothy Blattner, Alden Dima
Title: Readme_AI: Dynamic Context Construction for Large Language Models
Abstract:
Despite being trained on significant amounts of data, Large Language Models (LLMs) can provide inaccurate or unreliable information in the context of a user's specific query. Given query-specific context significantly improves the usefulness of its responses. In this paper, we present a specification that can be used to dynamically build context for data sources. The data source owner creates the file containing metadata for LLMs to use when reasoning about dataset-related queries. To demonstrate our proposed specification, we created a prototype Readme_AI Model Context Protocol (MCP) server that retrieves the metadata from the data source and uses it to dynamically build context. Some features that make this specification dynamic are the extensible types that represent crawling web-pages, fetching data from data repositories, downloading and parsing publications, and general text. The context is formatted and grouped using user-specified tags that provide clear contextual information for the LLM to reason about the content. We demonstrate the capabilities of this early prototype by asking the LLM about the NIST-developed Hedgehog library, for which common LLMs often provides inaccurate and irrelevant responses containing hallucinations. With Readme_AI, the LLM receives enough context that it is now able to reason about the library and its use, and even generate code interpolated from examples that were included in the Readme_AI file provided by Hedgehog's developer. Our primary contribution is a extensible protocol for dynamically grounding LLMs in specialized, owner-provided data, enhancing responses from LLMs and reducing hallucinations. The source code for the Readme_AI tool is posted here: https://github.com/usnistgov/readme_ai .

Authors:Gyubok Lee, Elea Bach, Eric Yang, Tom Pollard, Alistair Johnson, Edward Choi, Yugang jia, Jong Ha Lee
Title: FHIR-AgentBench: Benchmarking LLM Agents for Realistic Interoperable EHR Question Answering
Abstract:
The recent shift toward the Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR) standard opens a new frontier for clinical AI, demanding LLM agents to navigate complex, resource-based data models instead of conventional structured health data. However, existing benchmarks have lagged behind this transition, lacking the realism needed to evaluate recent LLMs on interoperable clinical data. To bridge this gap, we introduce FHIR-AgentBench, a benchmark that grounds 2,931 real-world clinical questions in the HL7 FHIR standard. Using this benchmark, we systematically evaluate agentic frameworks, comparing different data retrieval strategies (direct FHIR API calls vs. specialized tools), interaction patterns (single-turn vs. multi-turn), and reasoning strategies (natural language vs. code generation). Our experiments highlight the practical challenges of retrieving data from intricate FHIR resources and the difficulty of reasoning over them, both of which critically affect question answering performance. We publicly release the FHIR-AgentBench dataset and evaluation suite (https://github.com/glee4810/FHIR-AgentBench) to promote reproducible research and the development of robust, reliable LLM agents for clinical applications.

Authors:Weijie Wang, Yeqing Chen, Zeyu Zhang, Hengyu Liu, Haoxiao Wang, Zhiyuan Feng, Wenkang Qin, Zheng Zhu, Donny Y. Chen, Bohan Zhuang
Title: VolSplat: Rethinking Feed-Forward 3D Gaussian Splatting with Voxel-Aligned Prediction
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) has emerged as a highly effective solution for novel view synthesis. Existing methods predominantly rely on a pixel-aligned Gaussian prediction paradigm, where each 2D pixel is mapped to a 3D Gaussian. We rethink this widely adopted formulation and identify several inherent limitations: it renders the reconstructed 3D models heavily dependent on the number of input views, leads to view-biased density distributions, and introduces alignment errors, particularly when source views contain occlusions or low texture. To address these challenges, we introduce VolSplat, a new multi-view feed-forward paradigm that replaces pixel alignment with voxel-aligned Gaussians. By directly predicting Gaussians from a predicted 3D voxel grid, it overcomes pixel alignment's reliance on error-prone 2D feature matching, ensuring robust multi-view consistency. Furthermore, it enables adaptive control over Gaussian density based on 3D scene complexity, yielding more faithful Gaussian point clouds, improved geometric consistency, and enhanced novel-view rendering quality. Experiments on widely used benchmarks including RealEstate10K and ScanNet demonstrate that VolSplat achieves state-of-the-art performance while producing more plausible and view-consistent Gaussian reconstructions. In addition to superior results, our approach establishes a more scalable framework for feed-forward 3D reconstruction with denser and more robust representations, paving the way for further research in wider communities. The video results, code and trained models are available on our project page: https://lhmd.top/volsplat.

Authors:Yang Jin, Jun Lv, Han Xue, Wendi Chen, Chuan Wen, Cewu Lu
Title: SOE: Sample-Efficient Robot Policy Self-Improvement via On-Manifold Exploration
Abstract:
Intelligent agents progress by continually refining their capabilities through actively exploring environments. Yet robot policies often lack sufficient exploration capability due to action mode collapse. Existing methods that encourage exploration typically rely on random perturbations, which are unsafe and induce unstable, erratic behaviors, thereby limiting their effectiveness. We propose Self-Improvement via On-Manifold Exploration (SOE), a framework that enhances policy exploration and improvement in robotic manipulation. SOE learns a compact latent representation of task-relevant factors and constrains exploration to the manifold of valid actions, ensuring safety, diversity, and effectiveness. It can be seamlessly integrated with arbitrary policy models as a plug-in module, augmenting exploration without degrading the base policy performance. Moreover, the structured latent space enables human-guided exploration, further improving efficiency and controllability. Extensive experiments in both simulation and real-world tasks demonstrate that SOE consistently outperforms prior methods, achieving higher task success rates, smoother and safer exploration, and superior sample efficiency. These results establish on-manifold exploration as a principled approach to sample-efficient policy self-improvement. Project website: https://ericjin2002.github.io/SOE

Authors:Bingnan Li, Chen-Yu Wang, Haiyang Xu, Xiang Zhang, Ethan Armand, Divyansh Srivastava, Xiaojun Shan, Zeyuan Chen, Jianwen Xie, Zhuowen Tu
Title: OverLayBench: A Benchmark for Layout-to-Image Generation with Dense Overlaps
Abstract:
Despite steady progress in layout-to-image generation, current methods still struggle with layouts containing significant overlap between bounding boxes. We identify two primary challenges: (1) large overlapping regions and (2) overlapping instances with minimal semantic distinction. Through both qualitative examples and quantitative analysis, we demonstrate how these factors degrade generation quality. To systematically assess this issue, we introduce OverLayScore, a novel metric that quantifies the complexity of overlapping bounding boxes. Our analysis reveals that existing benchmarks are biased toward simpler cases with low OverLayScore values, limiting their effectiveness in evaluating model performance under more challenging conditions. To bridge this gap, we present OverLayBench, a new benchmark featuring high-quality annotations and a balanced distribution across different levels of OverLayScore. As an initial step toward improving performance on complex overlaps, we also propose CreatiLayout-AM, a model fine-tuned on a curated amodal mask dataset. Together, our contributions lay the groundwork for more robust layout-to-image generation under realistic and challenging scenarios. Project link: https://mlpc-ucsd.github.io/OverLayBench.

Authors:Kuanqi Cai, Chunfeng Wang, Zeqi Li, Haowen Yao, Weinan Chen, Luis Figueredo, Aude Billard, Arash Ajoudani
Title: Imitation-Guided Bimanual Planning for Stable Manipulation under Changing External Forces
Abstract:
Robotic manipulation in dynamic environments often requires seamless transitions between different grasp types to maintain stability and efficiency. However, achieving smooth and adaptive grasp transitions remains a challenge, particularly when dealing with external forces and complex motion constraints. Existing grasp transition strategies often fail to account for varying external forces and do not optimize motion performance effectively. In this work, we propose an Imitation-Guided Bimanual Planning Framework that integrates efficient grasp transition strategies and motion performance optimization to enhance stability and dexterity in robotic manipulation. Our approach introduces Strategies for Sampling Stable Intersections in Grasp Manifolds for seamless transitions between uni-manual and bi-manual grasps, reducing computational costs and regrasping inefficiencies. Additionally, a Hierarchical Dual-Stage Motion Architecture combines an Imitation Learning-based Global Path Generator with a Quadratic Programming-driven Local Planner to ensure real-time motion feasibility, obstacle avoidance, and superior manipulability. The proposed method is evaluated through a series of force-intensive tasks, demonstrating significant improvements in grasp transition efficiency and motion performance. A video demonstrating our simulation results can be viewed at \href{https://youtu.be/3DhbUsv4eDo}{\textcolor{blue}{https://youtu.be/3DhbUsv4eDo}}.

Authors:Gabriel Maldonado, Narges Rashvand, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Title: Adversarially-Refined VQ-GAN with Dense Motion Tokenization for Spatio-Temporal Heatmaps
Abstract:
Continuous human motion understanding remains a core challenge in computer vision due to its high dimensionality and inherent redundancy. Efficient compression and representation are crucial for analyzing complex motion dynamics. In this work, we introduce an adversarially-refined VQ-GAN framework with dense motion tokenization for compressing spatio-temporal heatmaps while preserving the fine-grained traces of human motion. Our approach combines dense motion tokenization with adversarial refinement, which eliminates reconstruction artifacts like motion smearing and temporal misalignment observed in non-adversarial baselines. Our experiments on the CMU Panoptic dataset provide conclusive evidence of our method's superiority, outperforming the dVAE baseline by 9.31% SSIM and reducing temporal instability by 37.1%. Furthermore, our dense tokenization strategy enables a novel analysis of motion complexity, revealing that 2D motion can be optimally represented with a compact 128-token vocabulary, while 3D motion's complexity demands a much larger 1024-token codebook for faithful reconstruction. These results establish practical deployment feasibility across diverse motion analysis applications. The code base for this work is available at https://github.com/TeCSAR-UNCC/Pose-Quantization.

Authors:Chunhao Tian, Yutong Wang, Xuebo Liu, Zhexuan Wang, Liang Ding, Miao Zhang, Min Zhang
Title: AgentInit: Initializing LLM-based Multi-Agent Systems via Diversity and Expertise Orchestration for Effective and Efficient Collaboration
Abstract:
Proper initialization is crucial for any system, particularly in multi-agent systems (MAS), where it plays a pivotal role in determining both the system's efficiency and effectiveness. However, existing MAS initialization methods do not fully account for the collaborative needs of the generated agents in subsequent stages. Inspired by the principles of effective team composition, we propose AgentInit, which aims to optimize the structure of agent teams. Specifically, in addition to multi-round interactions and reflections between agents during agent generation, AgentInit incorporates a Natural Language to Format mechanism to ensure consistency and standardization. Balanced team selection strategies using Pareto principles are subsequently applied to jointly consider agent team diversity and task relevance to promote effective and efficient collaboration and enhance overall system performance. Experiments show that AgentInit consistently outperforms state-of-the-art initialization methods and pre-defined strategies across various frameworks and tasks, achieving an overall performance improvement of up to 1.2 and 1.6, respectively, while also significantly reducing token consumption. Further analysis confirms its strong transferability to similar tasks and verifies the effectiveness of its key components, demonstrating its capability and adaptability as a reliable MAS initialization method. Source code and models are available at https://github.com/1737423697/AgentInit.

Authors:Ioanna Ntinou, Alexandros Xenos, Yassine Ouali, Adrian Bulat, Georgios Tzimiropoulos
Title: Vision-Free Retrieval: Rethinking Multimodal Search with Textual Scene Descriptions
Abstract:
Contrastively-trained Vision-Language Models (VLMs), such as CLIP, have become the standard approach for learning discriminative vision-language representations. However, these models often exhibit shallow language understanding, manifesting bag-of-words behaviour. These limitations are reinforced by their dual-encoder design, which induces a modality gap. Additionally, the reliance on vast web-collected data corpora for training makes the process computationally expensive and introduces significant privacy concerns. To address these limitations, in this work, we challenge the necessity of vision encoders for retrieval tasks by introducing a vision-free, single-encoder retrieval pipeline. Departing from the traditional text-to-image retrieval paradigm, we migrate to a text-to-text paradigm with the assistance of VLLM-generated structured image descriptions. We demonstrate that this paradigm shift has significant advantages, including a substantial reduction of the modality gap, improved compositionality, and better performance on short and long caption queries, all attainable with only a few hours of calibration on two GPUs. Additionally, substituting raw images with textual descriptions introduces a more privacy-friendly alternative for retrieval. To further assess generalisation and address some of the shortcomings of prior compositionality benchmarks, we release two benchmarks derived from Flickr30k and COCO, containing diverse compositional queries made of short captions, which we coin subFlickr and subCOCO. Our vision-free retriever matches and often surpasses traditional multimodal models. Importantly, our approach achieves state-of-the-art zero-shot performance on multiple retrieval and compositionality benchmarks, with models as small as 0.3B parameters. Code is available at: https://github.com/IoannaNti/LexiCLIP

Authors:Yun Wang, Junjie Hu, Junhui Hou, Chenghao Zhang, Renwei Yang, Dapeng Oliver Wu
Title: RoSe: Robust Self-supervised Stereo Matching under Adverse Weather Conditions
Abstract:
Recent self-supervised stereo matching methods have made significant progress, but their performance significantly degrades under adverse weather conditions such as night, rain, and fog. We identify two primary weaknesses contributing to this performance degradation. First, adverse weather introduces noise and reduces visibility, making CNN-based feature extractors struggle with degraded regions like reflective and textureless areas. Second, these degraded regions can disrupt accurate pixel correspondences, leading to ineffective supervision based on the photometric consistency assumption. To address these challenges, we propose injecting robust priors derived from the visual foundation model into the CNN-based feature extractor to improve feature representation under adverse weather conditions. We then introduce scene correspondence priors to construct robust supervisory signals rather than relying solely on the photometric consistency assumption. Specifically, we create synthetic stereo datasets with realistic weather degradations. These datasets feature clear and adverse image pairs that maintain the same semantic context and disparity, preserving the scene correspondence property. With this knowledge, we propose a robust self-supervised training paradigm, consisting of two key steps: robust self-supervised scene correspondence learning and adverse weather distillation. Both steps aim to align underlying scene results from clean and adverse image pairs, thus improving model disparity estimation under adverse weather effects. Extensive experiments demonstrate the effectiveness and versatility of our proposed solution, which outperforms existing state-of-the-art self-supervised methods. Codes are available at \textcolor{blue}{https://github.com/cocowy1/RoSe-Robust-Self-supervised-Stereo-Matching-under-Adverse-Weather-Conditions}.

Authors:Qingfeng Lan, Gautham Vasan, A. Rupam Mahmood
Title: Efficient Reinforcement Learning by Reducing Forgetting with Elephant Activation Functions
Abstract:
Catastrophic forgetting has remained a significant challenge for efficient reinforcement learning for decades (Ring 1994, Rivest and Precup 2003). While recent works have proposed effective methods to mitigate this issue, they mainly focus on the algorithmic side. Meanwhile, we do not fully understand what architectural properties of neural networks lead to catastrophic forgetting. This study aims to fill this gap by studying the role of activation functions in the training dynamics of neural networks and their impact on catastrophic forgetting in reinforcement learning setup. Our study reveals that, besides sparse representations, the gradient sparsity of activation functions also plays an important role in reducing forgetting. Based on this insight, we propose a new class of activation functions, elephant activation functions, that can generate both sparse outputs and sparse gradients. We show that by simply replacing classical activation functions with elephant activation functions in the neural networks of value-based algorithms, we can significantly improve the resilience of neural networks to catastrophic forgetting, thus making reinforcement learning more sample-efficient and memory-efficient.

Authors:Görkay Aydemir, Weidi Xie, Fatma Güney
Title: Track-On2: Enhancing Online Point Tracking with Memory
Abstract:
In this paper, we consider the problem of long-term point tracking, which requires consistent identification of points across video frames under significant appearance changes, motion, and occlusion. We target the online setting, i.e. tracking points frame-by-frame, making it suitable for real-time and streaming applications. We extend our prior model Track-On into Track-On2, a simple and efficient transformer-based model for online long-term tracking. Track-On2 improves both performance and efficiency through architectural refinements, more effective use of memory, and improved synthetic training strategies. Unlike prior approaches that rely on full-sequence access or iterative updates, our model processes frames causally and maintains temporal coherence via a memory mechanism, which is key to handling drift and occlusions without requiring future frames. At inference, we perform coarse patch-level classification followed by refinement. Beyond architecture, we systematically study synthetic training setups and their impact on memory behavior, showing how they shape temporal robustness over long sequences. Through comprehensive experiments, Track-On2 achieves state-of-the-art results across five synthetic and real-world benchmarks, surpassing prior online trackers and even strong offline methods that exploit bidirectional context. These results highlight the effectiveness of causal, memory-based architectures trained purely on synthetic data as scalable solutions for real-world point tracking. Project page: https://kuis-ai.github.io/track_on2

Authors:Sarvesh Prajapati, Ananya Trivedi, Nathaniel Hanson, Bruce Maxwell, Taskin Padir
Title: Spectral Signature Mapping from RGB Imagery for Terrain-Aware Navigation
Abstract:
Successful navigation in outdoor environments requires accurate prediction of the physical interactions between the robot and the terrain. To this end, several methods rely on geometric or semantic labels to classify traversable surfaces. However, such labels cannot distinguish visually similar surfaces that differ in material properties. Spectral sensors enable inference of material composition from surface reflectance measured across multiple wavelength bands. Although spectral sensing is gaining traction in robotics, widespread deployment remains constrained by the need for custom hardware integration, high sensor costs, and compute-intensive processing pipelines. In this paper, we present RGB Image to Spectral Signature Neural Network (RS-Net), a deep neural network designed to bridge the gap between the accessibility of RGB sensing and the rich material information provided by spectral data. RS-Net predicts spectral signatures from RGB patches, which we map to terrain labels and friction coefficients. The resulting terrain classifications are integrated into a sampling-based motion planner for a wheeled robot operating in outdoor environments. Likewise, the friction estimates are incorporated into a contact-force-based MPC for a quadruped robot navigating slippery surfaces. Thus, we introduce a framework that learns the task-relevant physical property once during training and thereafter relies solely on RGB sensing at test time. The code is available at https://github.com/prajapatisarvesh/RS-Net.

Authors:Alexey Nekrasov, Ali Athar, Daan de Geus, Alexander Hermans, Bastian Leibe
Title: 3rd Place Report of LSVOS 2025 MeViS Track: Sa2VA-i: Improving Sa2VA Results with Consistent Training and Inference
Abstract:
Sa2VA is a recent model for language-guided dense grounding in images and video that achieves state-of-the-art results on multiple segmentation benchmarks and that has become widely popular. However, we found that Sa2VA does not perform according to its full potential for referring video object segmentation tasks. We identify inconsistencies between training and inference procedures as the key factor holding it back. To mitigate this issue, we propose an improved version of Sa2VA, Sa2VA-i, that rectifies these issues and improves the results. In fact, Sa2VA-i sets a new state of the art for multiple video benchmarks and achieves improvements of up to +11.6 J&F on MeViS, +1.4 on Ref-YT-VOS, +3.3 on Ref-DAVIS and +4.1 on ReVOS using the same Sa2VA checkpoints. With our fixes, the Sa2VA-i-1B model even performs on par with the original Sa2VA-26B model on the MeViS benchmark. We hope that this work will show the importance of seemingly trivial implementation details and that it will provide valuable insights for the referring video segmentation field. We provide the code and updated models at https://github.com/kumuji/sa2va-i

Authors:Zhennan Jiang, Kai Liu, Yuxin Qin, Shuai Tian, Yupeng Zheng, Mingcai Zhou, Chao Yu, Haoran Li, Dongbin Zhao
Title: World4RL: Diffusion World Models for Policy Refinement with Reinforcement Learning for Robotic Manipulation
Abstract:
Robotic manipulation policies are commonly initialized through imitation learning, but their performance is limited by the scarcity and narrow coverage of expert data. Reinforcement learning can refine polices to alleviate this limitation, yet real-robot training is costly and unsafe, while training in simulators suffers from the sim-to-real gap. Recent advances in generative models have demonstrated remarkable capabilities in real-world simulation, with diffusion models in particular excelling at generation. This raises the question of how diffusion model-based world models can be combined to enhance pre-trained policies in robotic manipulation. In this work, we propose World4RL, a framework that employs diffusion-based world models as high-fidelity simulators to refine pre-trained policies entirely in imagined environments for robotic manipulation. Unlike prior works that primarily employ world models for planning, our framework enables direct end-to-end policy optimization. World4RL is designed around two principles: pre-training a diffusion world model that captures diverse dynamics on multi-task datasets and refining policies entirely within a frozen world model to avoid online real-world interactions. We further design a two-hot action encoding scheme tailored for robotic manipulation and adopt diffusion backbones to improve modeling fidelity. Extensive simulation and real-world experiments demonstrate that World4RL provides high-fidelity environment modeling and enables consistent policy refinement, yielding significantly higher success rates compared to imitation learning and other baselines. More visualization results are available at https://world4rl.github.io/.

Authors:Qingzheng Cong, Steven Oh, Wen Fan, Shan Luo, Kaspar Althoefer, Dandan Zhang
Title: TacEva: A Performance Evaluation Framework For Vision-Based Tactile Sensors
Abstract:
Vision-Based Tactile Sensors (VBTSs) are widely used in robotic tasks because of the high spatial resolution they offer and their relatively low manufacturing costs. However, variations in their sensing mechanisms, structural dimension, and other parameters lead to significant performance disparities between existing VBTSs. This makes it challenging to optimize them for specific tasks, as both the initial choice and subsequent fine-tuning are hindered by the lack of standardized metrics. To address this issue, TacEva is introduced as a comprehensive evaluation framework for the quantitative analysis of VBTS performance. The framework defines a set of performance metrics that capture key characteristics in typical application scenarios. For each metric, a structured experimental pipeline is designed to ensure consistent and repeatable quantification. The framework is applied to multiple VBTSs with distinct sensing mechanisms, and the results demonstrate its ability to provide a thorough evaluation of each design and quantitative indicators for each performance dimension. This enables researchers to pre-select the most appropriate VBTS on a task by task basis, while also offering performance-guided insights into the optimization of VBTS design. A list of existing VBTS evaluation methods and additional evaluations can be found on our website: https://stevenoh2003.github.io/TacEva/

Authors:Teng Xiao, Zuchao Li, Lefei Zhang
Title: OmniBridge: Unified Multimodal Understanding, Generation, and Retrieval via Latent Space Alignment
Abstract:
Recent advances in multimodal large language models (LLMs) have led to significant progress in understanding, generation, and retrieval tasks. However, current solutions often treat these tasks in isolation or require training LLMs from scratch, resulting in high computational costs and limited generalization across modalities. In this work, we present OmniBridge, a unified and modular multimodal framework that supports vision-language understanding, generation, and retrieval within a unified architecture. OmniBridge adopts a language-centric design that reuses pretrained LLMs and introduces a lightweight bidirectional latent alignment module. To address the challenge of task interference, we propose a two-stage decoupled training strategy: supervised fine-tuning and latent space alignment for aligning LLM behavior with multimodal reasoning, and semantic-guided diffusion training to align cross-modal latent spaces via learnable query embeddings. Extensive experiments across a wide range of benchmarks demonstrate that OmniBridge achieves competitive or state-of-the-art performance in all three tasks. Moreover, our results highlight the effectiveness of latent space alignment for unifying multimodal modeling under a shared representation space. Code and models are released at https://github.com/xiao-xt/OmniBridge.

Authors:Honghao Chen, Xingzhou Lou, Xiaokun Feng, Kaiqi Huang, Xinlong Wang
Title: Unveiling Chain of Step Reasoning for Vision-Language Models with Fine-grained Rewards
Abstract:
Chain of thought reasoning has demonstrated remarkable success in large language models, yet its adaptation to vision-language reasoning remains an open challenge with unclear best practices. Existing attempts typically employ reasoning chains at a coarse-grained level, which struggles to perform fine-grained structured reasoning and, more importantly, are difficult to evaluate the reward and quality of intermediate reasoning. In this work, we delve into chain of step reasoning for vision-language models, enabling assessing reasoning step quality accurately and leading to effective reinforcement learning and inference-time scaling with fine-grained rewards. We present a simple, effective, and fully transparent framework, including the step-level reasoning data, process reward model (PRM), and reinforcement learning training. With the proposed approaches, our models set strong baselines with consistent improvements on challenging vision-language benchmarks. More importantly, we conduct a thorough empirical analysis and ablation study, unveiling the impact of each component and several intriguing properties of inference-time scaling. We believe this paper serves as a baseline for vision-language models and offers insights into more complex multimodal reasoning. Our dataset, PRM, and code will be available at https://github.com/baaivision/CoS.

Authors:Sihang Nie, Xiaofen Xing, Jingyuan Xing, Baiji Liu, Xiangmin Xu
Title: HD-PPT: Hierarchical Decoding of Content- and Prompt-Preference Tokens for Instruction-based TTS
Abstract:
Large Language Model (LLM)-based Text-to-Speech (TTS) models have already reached a high degree of naturalness. However, the precision control of TTS inference is still challenging. Although instruction-based Text-to-Speech (Instruct-TTS) models are proposed, these models still lack fine-grained control due to the modality gap between single-level text instructions and multilevel speech tokens. To address this limitation, we propose HD-PPT, a framework that transforms speech synthesis into a structured, hierarchical task. To enable fine-grained control, we introduce a novel speech codec to extract distinct prompt-preference and content-preference tokens from the complex speech tokens, supervised by automatic speech recognition (ASR) and cross-lingual audio-text pre-training (CLAP) objectives. To bridge the modality gap of these tokens, we propose a hierarchical decoding strategy, where the LLM generates tokens in a structured order: first semantic, then fine-grained style, and finally complete acoustic representation. Extensive experiments demonstrate that this hierarchical paradigm significantly improves instruction adherence and achieves state-of-the-art naturalness, validating our approach for precise and controllable speech synthesis. Audio samples are available at https://xxh333.github.io/.

Authors:Lorenzo Shaikewitz, Tim Nguyen, Luca Carlone
Title: Category-Level Object Shape and Pose Estimation in Less Than a Millisecond
Abstract:
Object shape and pose estimation is a foundational robotics problem, supporting tasks from manipulation to scene understanding and navigation. We present a fast local solver for shape and pose estimation which requires only category-level object priors and admits an efficient certificate of global optimality. Given an RGB-D image of an object, we use a learned front-end to detect sparse, category-level semantic keypoints on the target object. We represent the target object's unknown shape using a linear active shape model and pose a maximum a posteriori optimization problem to solve for position, orientation, and shape simultaneously. Expressed in unit quaternions, this problem admits first-order optimality conditions in the form of an eigenvalue problem with eigenvector nonlinearities. Our primary contribution is to solve this problem efficiently with self-consistent field iteration, which only requires computing a 4-by-4 matrix and finding its minimum eigenvalue-vector pair at each iterate. Solving a linear system for the corresponding Lagrange multipliers gives a simple global optimality certificate. One iteration of our solver runs in about 100 microseconds, enabling fast outlier rejection. We test our method on synthetic data and a variety of real-world settings, including two public datasets and a drone tracking scenario. Code is released at https://github.com/MIT-SPARK/Fast-ShapeAndPose.

Authors:Pamela Osuna-Vargas, Altug Kamacioglu, Dominik F. Aschauer, Petros E. Vlachos, Sercan Alipek, Jochen Triesch, Simon Rumpel, Matthias Kaschube
Title: SynapFlow: A Modular Framework Towards Large-Scale Analysis of Dendritic Spines
Abstract:
Dendritic spines are key structural components of excitatory synapses in the brain. Given the size of dendritic spines provides a proxy for synaptic efficacy, their detection and tracking across time is important for studies of the neural basis of learning and memory. Despite their relevance, large-scale analyses of the structural dynamics of dendritic spines in 3D+time microscopy data remain challenging and labor-intense. Here, we present a modular machine learning-based pipeline designed to automate the detection, time-tracking, and feature extraction of dendritic spines in volumes chronically recorded with two-photon microscopy. Our approach tackles the challenges posed by biological data by combining a transformer-based detection module, a depth-tracking component that integrates spatial features, a time-tracking module to associate 3D spines across time by leveraging spatial consistency, and a feature extraction unit that quantifies biologically relevant spine properties. We validate our method on open-source labeled spine data, and on two complementary annotated datasets that we publish alongside this work: one for detection and depth-tracking, and one for time-tracking, which, to the best of our knowledge, is the first data of this kind. To encourage future research, we release our data, code, and pre-trained weights at https://github.com/pamelaosuna/SynapFlow, establishing a baseline for scalable, end-to-end analysis of dendritic spine dynamics.

Authors:Kartik Teotia, Helge Rhodin, Mohit Mendiratta, Hyeongwoo Kim, Marc Habermann, Christian Theobalt
Title: Audio-Driven Universal Gaussian Head Avatars
Abstract:
We introduce the first method for audio-driven universal photorealistic avatar synthesis, combining a person-agnostic speech model with our novel Universal Head Avatar Prior (UHAP). UHAP is trained on cross-identity multi-view videos. In particular, our UHAP is supervised with neutral scan data, enabling it to capture the identity-specific details at high fidelity. In contrast to previous approaches, which predominantly map audio features to geometric deformations only while ignoring audio-dependent appearance variations, our universal speech model directly maps raw audio inputs into the UHAP latent expression space. This expression space inherently encodes, both, geometric and appearance variations. For efficient personalization to new subjects, we employ a monocular encoder, which enables lightweight regression of dynamic expression variations across video frames. By accounting for these expression-dependent changes, it enables the subsequent model fine-tuning stage to focus exclusively on capturing the subject's global appearance and geometry. Decoding these audio-driven expression codes via UHAP generates highly realistic avatars with precise lip synchronization and nuanced expressive details, such as eyebrow movement, gaze shifts, and realistic mouth interior appearance as well as motion. Extensive evaluations demonstrate that our method is not only the first generalizable audio-driven avatar model that can account for detailed appearance modeling and rendering, but it also outperforms competing (geometry-only) methods across metrics measuring lip-sync accuracy, quantitative image quality, and perceptual realism.

Authors:Chuni Liu, Hongjie Li, Jiaqi Du, Yangyang Hou, Qian Sun, Lei Jin, Ke Xu
Title: Advancing Metallic Surface Defect Detection via Anomaly-Guided Pretraining on a Large Industrial Dataset
Abstract:
The pretraining-finetuning paradigm is a crucial strategy in metallic surface defect detection for mitigating the challenges posed by data scarcity. However, its implementation presents a critical dilemma. Pretraining on natural image datasets such as ImageNet, faces a significant domain gap. Meanwhile, naive self-supervised pretraining on in-domain industrial data is often ineffective due to the inability of existing learning objectives to distinguish subtle defect patterns from complex background noise and textures. To resolve this, we introduce Anomaly-Guided Self-Supervised Pretraining (AGSSP), a novel paradigm that explicitly guides representation learning through anomaly priors. AGSSP employs a two-stage framework: (1) it first pretrains the model's backbone by distilling knowledge from anomaly maps, encouraging the network to capture defect-salient features; (2) it then pretrains the detector using pseudo-defect boxes derived from these maps, aligning it with localization tasks. To enable this, we develop a knowledge-enhanced method to generate high-quality anomaly maps and collect a large-scale industrial dataset of 120,000 images. Additionally, we present two small-scale, pixel-level labeled metallic surface defect datasets for validation. Extensive experiments demonstrate that AGSSP consistently enhances performance across various settings, achieving up to a 10\% improvement in mAP@0.5 and 11.4\% in mAP@0.5:0.95 compared to ImageNet-based models. All code, pretrained models, and datasets are publicly available at https://clovermini.github.io/AGSSP-Dev/.

Authors:Songsong Yu, Yuxin Chen, Hao Ju, Lianjie Jia, Fuxi Zhang, Shaofei Huang, Yuhan Wu, Rundi Cui, Binghao Ran, Zaibin Zhang, Zhedong Zheng, Zhipeng Zhang, Yifan Wang, Lin Song, Lijun Wang, Yanwei Li, Ying Shan, Huchuan Lu
Title: How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective
Abstract:
Visual Spatial Reasoning (VSR) is a core human cognitive ability and a critical requirement for advancing embodied intelligence and autonomous systems. Despite recent progress in Vision-Language Models (VLMs), achieving human-level VSR remains highly challenging due to the complexity of representing and reasoning over three-dimensional space. In this paper, we present a systematic investigation of VSR in VLMs, encompassing a review of existing methodologies across input modalities, model architectures, training strategies, and reasoning mechanisms. Furthermore, we categorize spatial intelligence into three levels of capability, ie, basic perception, spatial understanding, spatial planning, and curate SIBench, a spatial intelligence benchmark encompassing nearly 20 open-source datasets across 23 task settings. Experiments with state-of-the-art VLMs reveal a pronounced gap between perception and reasoning, as models show competence in basic perceptual tasks but consistently underperform in understanding and planning tasks, particularly in numerical estimation, multi-view reasoning, temporal dynamics, and spatial imagination. These findings underscore the substantial challenges that remain in achieving spatial intelligence, while providing both a systematic roadmap and a comprehensive benchmark to drive future research in the field. The related resources of this study are accessible at https://sibench.github.io/Awesome-Visual-Spatial-Reasoning/.

Authors:Masato Kobayashi, Thanpimon Buamanee
Title: Bi-VLA: Bilateral Control-Based Imitation Learning via Vision-Language Fusion for Action Generation
Abstract:
We propose Bilateral Control-Based Imitation Learning via Vision-Language Fusion for Action Generation (Bi-VLA), a novel framework that extends bilateral control-based imitation learning to handle more than one task within a single model. Conventional bilateral control methods exploit joint angle, velocity, torque, and vision for precise manipulation but require task-specific models, limiting their generality. Bi-VLA overcomes this limitation by utilizing robot joint angle, velocity, and torque data from leader-follower bilateral control with visual features and natural language instructions through SigLIP and FiLM-based fusion. We validated Bi-VLA on two task types: one requiring supplementary language cues and another distinguishable solely by vision. Real-robot experiments showed that Bi-VLA successfully interprets vision-language combinations and improves task success rates compared to conventional bilateral control-based imitation learning. Our Bi-VLA addresses the single-task limitation of prior bilateral approaches and provides empirical evidence that combining vision and language significantly enhances versatility. Experimental results validate the effectiveness of Bi-VLA in real-world tasks. For additional material, please visit the website: https://mertcookimg.github.io/bi-vla/

Authors:Gongrui Nan, Siye Chen, Jing Huang, Mengyu Lu, Dexun Wang, Chunmei Xie, Weiqi Xiong, Xianzhou Zeng, Qixuan Zhou, Yadong Li, Xingzhong Xu
Title: NGRPO: Negative-enhanced Group Relative Policy Optimization
Abstract:
RLVR has enhanced the reasoning capabilities of Large Language Models (LLMs) across various tasks. However, GRPO, a representative RLVR algorithm, suffers from a critical limitation: when all responses within a group are either entirely correct or entirely incorrect, the model fails to learn from these homogeneous responses. This is particularly problematic for homogeneously incorrect groups, where GRPO's advantage function yields a value of zero, leading to null gradients and the loss of valuable learning signals. To overcome this issue, we propose NGRPO (Negative-enhanced Group Relative Policy Optimization), an algorithm designed to convert homogeneous errors into robust learning signals. First, NGRPO introduces Advantage Calibration. This mechanism hypothesizes the existence of a virtual maximum-reward sample during advantage calculation, thereby altering the mean and variance of rewards within a group and ensuring that the advantages for homogeneously incorrect samples are no longer zero. Second, NGRPO employs Asymmetric Clipping, which relaxes the update magnitude for positive samples while imposing stricter constraints on that of negative samples. This serves to stabilize the exploration pressure introduced by the advantage calibration. Our experiments on Qwen2.5-Math-7B demonstrate that NGRPO significantly outperforms baselines such as PPO, GRPO, DAPO, and PSR-NSR on mathematical benchmarks including MATH500, AMC23, and AIME2025. These results validate NGRPO's ability to learn from homogeneous errors, leading to stable and substantial improvements in mathematical reasoning. Our code is available at https://github.com/nangongrui-ngr/NGRPO.

Authors:Damian Stachura, Joanna Konieczna, Artur Nowak
Title: Are Smaller Open-Weight LLMs Closing the Gap to Proprietary Models for Biomedical Question Answering?
Abstract:
Open-weight versions of large language models (LLMs) are rapidly advancing, with state-of-the-art models like DeepSeek-V3 now performing comparably to proprietary LLMs. This progression raises the question of whether small open-weight LLMs are capable of effectively replacing larger closed-source models. We are particularly interested in the context of biomedical question-answering, a domain we explored by participating in Task 13B Phase B of the BioASQ challenge. In this work, we compare several open-weight models against top-performing systems such as GPT-4o, GPT-4.1, Claude 3.5 Sonnet, and Claude 3.7 Sonnet. To enhance question answering capabilities, we use various techniques including retrieving the most relevant snippets based on embedding distance, in-context learning, and structured outputs. For certain submissions, we utilize ensemble approaches to leverage the diverse outputs generated by different models for exact-answer questions. Our results demonstrate that open-weight LLMs are comparable to proprietary ones. In some instances, open-weight LLMs even surpassed their closed counterparts, particularly when ensembling strategies were applied. All code is publicly available at https://github.com/evidenceprime/BioASQ-13b.

Authors:Suzannah Wistreich, Baiyu Shi, Stephen Tian, Samuel Clarke, Michael Nath, Chengyi Xu, Zhenan Bao, Jiajun Wu
Title: DexSkin: High-Coverage Conformable Robotic Skin for Learning Contact-Rich Manipulation
Abstract:
Human skin provides a rich tactile sensing stream, localizing intentional and unintentional contact events over a large and contoured region. Replicating these tactile sensing capabilities for dexterous robotic manipulation systems remains a longstanding challenge. In this work, we take a step towards this goal by introducing DexSkin. DexSkin is a soft, conformable capacitive electronic skin that enables sensitive, localized, and calibratable tactile sensing, and can be tailored to varying geometries. We demonstrate its efficacy for learning downstream robotic manipulation by sensorizing a pair of parallel jaw gripper fingers, providing tactile coverage across almost the entire finger surfaces. We empirically evaluate DexSkin's capabilities in learning challenging manipulation tasks that require sensing coverage across the entire surface of the fingers, such as reorienting objects in hand and wrapping elastic bands around boxes, in a learning-from-demonstration framework. We then show that, critically for data-driven approaches, DexSkin can be calibrated to enable model transfer across sensor instances, and demonstrate its applicability to online reinforcement learning on real robots. Our results highlight DexSkin's suitability and practicality for learning real-world, contact-rich manipulation. Please see our project webpage for videos and visualizations: https://dex-skin.github.io/.

Authors:Wenlong Lyu, Yuheng Jia, Hui Liu, Junhui Hou
Title: Graph-based Clustering Revisited: A Relaxation of Kernel $k$-Means Perspective
Abstract:
The well-known graph-based clustering methods, including spectral clustering, symmetric non-negative matrix factorization, and doubly stochastic normalization, can be viewed as relaxations of the kernel $k$-means approach. However, we posit that these methods excessively relax their inherent low-rank, nonnegative, doubly stochastic, and orthonormal constraints to ensure numerical feasibility, potentially limiting their clustering efficacy. In this paper, guided by our theoretical analyses, we propose \textbf{Lo}w-\textbf{R}ank \textbf{D}oubly stochastic clustering (\textbf{LoRD}), a model that only relaxes the orthonormal constraint to derive a probabilistic clustering results. Furthermore, we theoretically establish the equivalence between orthogonality and block diagonality under the doubly stochastic constraint. By integrating \textbf{B}lock diagonal regularization into LoRD, expressed as the maximization of the Frobenius norm, we propose \textbf{B-LoRD}, which further enhances the clustering performance. To ensure numerical solvability, we transform the non-convex doubly stochastic constraint into a linear convex constraint through the introduction of a class probability parameter. We further theoretically demonstrate the gradient Lipschitz continuity of our LoRD and B-LoRD enables the proposal of a globally convergent projected gradient descent algorithm for their optimization. Extensive experiments validate the effectiveness of our approaches. The code is publicly available at https://github.com/lwl-learning/LoRD.

Authors:Liting Zhang, Shiwan Zhao, Aobo Kong, Qicheng Li
Title: MAPEX: A Multi-Agent Pipeline for Keyphrase Extraction
Abstract:
Keyphrase extraction is a fundamental task in natural language processing. However, existing unsupervised prompt-based methods for Large Language Models (LLMs) often rely on single-stage inference pipelines with uniform prompting, regardless of document length or LLM backbone. Such one-size-fits-all designs hinder the full exploitation of LLMs' reasoning and generation capabilities, especially given the complexity of keyphrase extraction across diverse scenarios. To address these challenges, we propose MAPEX, the first framework that introduces multi-agent collaboration into keyphrase extraction. MAPEX coordinates LLM-based agents through modules for expert recruitment, candidate extraction, topic guidance, knowledge augmentation, and post-processing. A dual-path strategy dynamically adapts to document length: knowledge-driven extraction for short texts and topic-guided extraction for long texts. Extensive experiments on six benchmark datasets across three different LLMs demonstrate its strong generalization and universality, outperforming the state-of-the-art unsupervised method by 2.44% and standard LLM baselines by 4.01% in F1@5 on average. Code is available at https://github.com/NKU-LITI/MAPEX.

Authors:Christian Ganhör, Marta Moscati, Anna Hausberger, Shah Nawaz, Markus Schedl
Title: Single-Branch Network Architectures to Close the Modality Gap in Multimodal Recommendation
Abstract:
Traditional recommender systems rely on collaborative filtering, using past user-item interactions to help users discover new items in a vast collection. In cold start, i.e., when interaction histories of users or items are not available, content-based recommender systems use side information instead. Hybrid recommender systems (HRSs) often employ multimodal learning to combine collaborative and side information, which we jointly refer to as modalities. Though HRSs can provide recommendations when some modalities are missing, their quality degrades. In this work, we utilize single-branch neural networks equipped with weight sharing, modality sampling, and contrastive loss to provide accurate recommendations even in missing modality scenarios by narrowing the modality gap. We compare these networks with multi-branch alternatives and conduct extensive experiments on three datasets. Six accuracy-based and four beyond-accuracy-based metrics help assess the recommendation quality for the different training paradigms and their hyperparameters in warm-start and missing modality scenarios. We quantitatively and qualitatively study the effects of these different aspects on bridging the modality gap. Our results show that single-branch networks achieve competitive performance in warm-start scenarios and are significantly better in missing modality settings. Moreover, our approach leads to closer proximity of an item's modalities in the embedding space. Our full experimental setup is available at https://github.com/hcai-mms/single-branch-networks.

Authors:Kuang Xiaodong, Li Bingxuan, Li Yuan, Rao Fan, Ma Gege, Xie Qingguo, Mok Greta S P, Liu Huafeng, Zhu Wentao
Title: A Kernel Space-based Multidimensional Sparse Model for Dynamic PET Image Denoising
Abstract:
Achieving high image quality for temporal frames in dynamic positron emission tomography (PET) is challenging due to the limited statistic especially for the short frames. Recent studies have shown that deep learning (DL) is useful in a wide range of medical image denoising tasks. In this paper, we propose a model-based neural network for dynamic PET image denoising. The inter-frame spatial correlation and intra-frame structural consistency in dynamic PET are used to establish the kernel space-based multidimensional sparse (KMDS) model. We then substitute the inherent forms of the parameter estimation with neural networks to enable adaptive parameters optimization, forming the end-to-end neural KMDS-Net. Extensive experimental results from simulated and real data demonstrate that the neural KMDS-Net exhibits strong denoising performance for dynamic PET, outperforming previous baseline methods. The proposed method may be used to effectively achieve high temporal and spatial resolution for dynamic PET. Our source code is available at https://github.com/Kuangxd/Neural-KMDS-Net/tree/main.

Authors:Lukas Zanger, Bastian Lampe, Lennart Reiher, Lutz Eckstein
Title: Application Management in C-ITS: Orchestrating Demand-Driven Deployments and Reconfigurations
Abstract:
Vehicles are becoming increasingly automated and interconnected, enabling the formation of cooperative intelligent transport systems (C-ITS) and the use of offboard services. As a result, cloud-native techniques, such as microservices and container orchestration, play an increasingly important role in their operation. However, orchestrating applications in a large-scale C-ITS poses unique challenges due to the dynamic nature of the environment and the need for efficient resource utilization. In this paper, we present a demand-driven application management approach that leverages cloud-native techniques - specifically Kubernetes - to address these challenges. Taking into account the demands originating from different entities within the C-ITS, the approach enables the automation of processes, such as deployment, reconfiguration, update, upgrade, and scaling of microservices. Executing these processes on demand can, for example, reduce computing resource consumption and network traffic. A demand may include a request for provisioning an external supporting service, such as a collective environment model. The approach handles changing and new demands by dynamically reconciling them through our proposed application management framework built on Kubernetes and the Robot Operating System (ROS 2). We demonstrate the operation of our framework in the C-ITS use case of collective environment perception and make the source code of the prototypical framework publicly available at https://github.com/ika-rwth-aachen/application_manager .

Authors:Antoine P. Leeman, Johannes Köhler, Melanie N. Zeilinger
Title: Guaranteed Robust Nonlinear MPC via Disturbance Feedback
Abstract:
Robots must satisfy safety-critical state and input constraints despite disturbances and model mismatch. We introduce a robust model predictive control (RMPC) formulation that is fast, scalable, and compatible with real-time implementation. Our formulation guarantees robust constraint satisfaction, input-to-state stability (ISS) and recursive feasibility. The key idea is to decompose the uncertain nonlinear system into (i) a nominal nonlinear dynamic model, (ii) disturbance-feedback controllers, and (iii) bounds on the model error. These components are optimized jointly using sequential convex programming. The resulting convex subproblems are solved efficiently using a recent disturbance-feedback MPC solver. The approach is validated across multiple dynamics, including a rocket-landing problem with steerable thrust. An open-source implementation is available at https://github.com/antoineleeman/robust-nonlinear-mpc.

Authors:Ruichao Hou, Xingyuan Li, Tongwei Ren, Dongming Zhou, Gangshan Wu, Jinde Cao
Title: HyPSAM: Hybrid Prompt-driven Segment Anything Model for RGB-Thermal Salient Object Detection
Abstract:
RGB-thermal salient object detection (RGB-T SOD) aims to identify prominent objects by integrating complementary information from RGB and thermal modalities. However, learning the precise boundaries and complete objects remains challenging due to the intrinsic insufficient feature fusion and the extrinsic limitations of data scarcity. In this paper, we propose a novel hybrid prompt-driven segment anything model (HyPSAM), which leverages the zero-shot generalization capabilities of the segment anything model (SAM) for RGB-T SOD. Specifically, we first propose a dynamic fusion network (DFNet) that generates high-quality initial saliency maps as visual prompts. DFNet employs dynamic convolution and multi-branch decoding to facilitate adaptive cross-modality interaction, overcoming the limitations of fixed-parameter kernels and enhancing multi-modal feature representation. Moreover, we propose a plug-and-play refinement network (P2RNet), which serves as a general optimization strategy to guide SAM in refining saliency maps by using hybrid prompts. The text prompt ensures reliable modality input, while the mask and box prompts enable precise salient object localization. Extensive experiments on three public datasets demonstrate that our method achieves state-of-the-art performance. Notably, HyPSAM has remarkable versatility, seamlessly integrating with different RGB-T SOD methods to achieve significant performance gains, thereby highlighting the potential of prompt engineering in this field. The code and results of our method are available at: https://github.com/milotic233/HyPSAM.

Authors:Yingquan Wang, Pingping Zhang, Chong Sun, Dong Wang, Huchuan Lu
Title: What Makes You Unique? Attribute Prompt Composition for Object Re-Identification
Abstract:
Object Re-IDentification (ReID) aims to recognize individuals across non-overlapping camera views. While recent advances have achieved remarkable progress, most existing models are constrained to either single-domain or cross-domain scenarios, limiting their real-world applicability. Single-domain models tend to overfit to domain-specific features, whereas cross-domain models often rely on diverse normalization strategies that may inadvertently suppress identity-specific discriminative cues. To address these limitations, we propose an Attribute Prompt Composition (APC) framework, which exploits textual semantics to jointly enhance discrimination and generalization. Specifically, we design an Attribute Prompt Generator (APG) consisting of a Semantic Attribute Dictionary (SAD) and a Prompt Composition Module (PCM). SAD is an over-complete attribute dictionary to provide rich semantic descriptions, while PCM adaptively composes relevant attributes from SAD to generate discriminative attribute-aware features. In addition, motivated by the strong generalization ability of Vision-Language Models (VLM), we propose a Fast-Slow Training Strategy (FSTS) to balance ReID-specific discrimination and generalizable representation learning. Specifically, FSTS adopts a Fast Update Stream (FUS) to rapidly acquire ReID-specific discriminative knowledge and a Slow Update Stream (SUS) to retain the generalizable knowledge inherited from the pre-trained VLM. Through a mutual interaction, the framework effectively focuses on ReID-relevant features while mitigating overfitting. Extensive experiments on both conventional and Domain Generalized (DG) ReID datasets demonstrate that our framework surpasses state-of-the-art methods, exhibiting superior performances in terms of both discrimination and generalization. The source code is available at https://github.com/AWangYQ/APC.

Authors:Huanxin Sheng, Xinyi Liu, Hangfeng He, Jieyu Zhao, Jian Kang
Title: Analyzing Uncertainty of LLM-as-a-Judge: Interval Evaluations with Conformal Prediction
Abstract:
LLM-as-a-judge has become a promising paradigm for using large language models (LLMs) to evaluate natural language generation (NLG), but the uncertainty of its evaluation remains underexplored. This lack of reliability may limit its deployment in many applications. This work presents the first framework to analyze the uncertainty by offering a prediction interval of LLM-based scoring via conformal prediction. Conformal prediction constructs continuous prediction intervals from a single evaluation run, and we design an ordinal boundary adjustment for discrete rating tasks. We also suggest a midpoint-based score within the interval as a low-bias alternative to raw model score and weighted average. We perform extensive experiments and analysis, which show that conformal prediction can provide valid prediction interval with coverage guarantees. We also explore the usefulness of interval midpoint and judge reprompting for better judgment.

Authors:Nicolas Toussaint, Emanuele Colleoni, Ricardo Sanchez-Matilla, Joshua Sutcliffe, Vanessa Thompson, Muhammad Asad, Imanol Luengo, Danail Stoyanov
Title: Zero-shot Monocular Metric Depth for Endoscopic Images
Abstract:
Monocular relative and metric depth estimation has seen a tremendous boost in the last few years due to the sharp advancements in foundation models and in particular transformer based networks. As we start to see applications to the domain of endoscopic images, there is still a lack of robust benchmarks and high-quality datasets in that area. This paper addresses these limitations by presenting a comprehensive benchmark of state-of-the-art (metric and relative) depth estimation models evaluated on real, unseen endoscopic images, providing critical insights into their generalisation and performance in clinical scenarios. Additionally, we introduce and publish a novel synthetic dataset (EndoSynth) of endoscopic surgical instruments paired with ground truth metric depth and segmentation masks, designed to bridge the gap between synthetic and real-world data. We demonstrate that fine-tuning depth foundation models using our synthetic dataset boosts accuracy on most unseen real data by a significant margin. By providing both a benchmark and a synthetic dataset, this work advances the field of depth estimation for endoscopic images and serves as an important resource for future research. Project page, EndoSynth dataset and trained weights are available at https://github.com/TouchSurgery/EndoSynth.

Authors:Yuanhuiyi Lyu, Chi Kit Wong, Chenfei Liao, Lutao Jiang, Xu Zheng, Zexin Lu, Linfeng Zhang, Xuming Hu
Title: Understanding-in-Generation: Reinforcing Generative Capability of Unified Model via Infusing Understanding into Generation
Abstract:
Recent works have made notable advancements in enhancing unified models for text-to-image generation through the Chain-of-Thought (CoT). However, these reasoning methods separate the processes of understanding and generation, which limits their ability to guide the reasoning of unified models in addressing the deficiencies of their generative capabilities. To this end, we propose a novel reasoning framework for unified models, Understanding-in-Generation (UiG), which harnesses the robust understanding capabilities of unified models to reinforce their performance in image generation. The core insight of our UiG is to integrate generative guidance by the strong understanding capabilities during the reasoning process, thereby mitigating the limitations of generative abilities. To achieve this, we introduce "Image Editing" as a bridge to infuse understanding into the generation process. Initially, we verify the generated image and incorporate the understanding of unified models into the editing instructions. Subsequently, we enhance the generated image step by step, gradually infusing the understanding into the generation process. Our UiG framework demonstrates a significant performance improvement in text-to-image generation over existing text-to-image reasoning methods, e.g., a 3.92% gain on the long prompt setting of the TIIF benchmark. The project code: https://github.com/QC-LY/UiG

Authors:Yara Mohajerani
Title: Adaptive Learning in Spatial Agent-Based Models for Climate Risk Assessment: A Geospatial Framework with Evolutionary Economic Agents
Abstract:
Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines Mesa-based spatial modelling with CLIMADA climate impact assessment, introducing adaptive learning behaviours that allow firms to evolve strategies for budget allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections under RCP8.5 until 2100, showing that evolutionary adaptation enables firms to converge with baseline (no hazard) production levels after decades of disruption due to climate stress. Our results reveal systemic risks where even agents that are not directly exposed to floods face impacts through supply chain disruptions, with the end-of-century average price of goods 5.6% higher under RCP8.5 compared to the baseline. This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating cost-effective adaptation strategies.

Authors:Parsa Vahidi, Omid G. Sani, Maryam M. Shanechi
Title: BRAID: Input-Driven Nonlinear Dynamical Modeling of Neural-Behavioral Data
Abstract:
Neural populations exhibit complex recurrent structures that drive behavior, while continuously receiving and integrating external inputs from sensory stimuli, upstream regions, and neurostimulation. However, neural populations are often modeled as autonomous dynamical systems, with little consideration given to the influence of external inputs that shape the population activity and behavioral outcomes. Here, we introduce BRAID, a deep learning framework that models nonlinear neural dynamics underlying behavior while explicitly incorporating any measured external inputs. Our method disentangles intrinsic recurrent neural population dynamics from the effects of inputs by including a forecasting objective within input-driven recurrent neural networks. BRAID further prioritizes the learning of intrinsic dynamics that are related to a behavior of interest by using a multi-stage optimization scheme. We validate BRAID with nonlinear simulations, showing that it can accurately learn the intrinsic dynamics shared between neural and behavioral modalities. We then apply BRAID to motor cortical activity recorded during a motor task and demonstrate that our method more accurately fits the neural-behavioral data by incorporating measured sensory stimuli into the model and improves the forecasting of neural-behavioral data compared with various baseline methods, whether input-driven or not.

Authors:Neel P. Bhatt, Yunhao Yang, Rohan Siva, Pranay Samineni, Daniel Milan, Zhangyang Wang, Ufuk Topcu
Title: VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation
Abstract:
Rapid adaptation in unseen environments is essential for scalable real-world autonomy, yet existing approaches rely on exhaustive exploration or rigid navigation policies that fail to generalize. We present VLN-Zero, a two-phase vision-language navigation framework that leverages vision-language models to efficiently construct symbolic scene graphs and enable zero-shot neurosymbolic navigation. In the exploration phase, structured prompts guide VLM-based search toward informative and diverse trajectories, yielding compact scene graph representations. In the deployment phase, a neurosymbolic planner reasons over the scene graph and environmental observations to generate executable plans, while a cache-enabled execution module accelerates adaptation by reusing previously computed task-location trajectories. By combining rapid exploration, symbolic reasoning, and cache-enabled execution, the proposed framework overcomes the computational inefficiency and poor generalization of prior vision-language navigation methods, enabling robust and scalable decision-making in unseen environments. VLN-Zero achieves 2x higher success rate compared to state-of-the-art zero-shot models, outperforms most fine-tuned baselines, and reaches goal locations in half the time with 55% fewer VLM calls on average compared to state-of-the-art models across diverse environments. Codebase, datasets, and videos for VLN-Zero are available at: https://vln-zero.github.io/.

Authors:Jiarui Jin, Haoyu Wang, Xiang Lan, Jun Li, Gaofeng Cheng, Hongyan Li, Shenda Hong
Title: UniECG: Understanding and Generating ECG in One Unified Model
Abstract:
Recent unified models such as GPT-5 have achieved encouraging progress on vision-language tasks. However, these unified models typically fail to correctly understand ECG signals and provide accurate medical diagnoses, nor can they correctly generate ECG signals. To address these limitations, we propose UniECG, the first unified model for ECG capable of concurrently performing evidence-based ECG interpretation and text-conditioned ECG generation tasks. Through a decoupled two-stage training approach, the model first learns evidence-based interpretation skills (ECG-to-Text), and then injects ECG generation capabilities (Text-to-ECG) via latent space alignment. UniECG can autonomously choose to interpret or generate an ECG based on user input, significantly extending the capability boundaries of current ECG models. Our code and checkpoints will be made publicly available at https://github.com/PKUDigitalHealth/UniECG upon acceptance.

Authors:Yu Chen, Yifei Han, Long Zhang, Yue Du, Bin Li
Title: TsqLoRA: Towards Sensitivity and Quality Low-Rank Adaptation for Efficient Fine-Tuning
Abstract:
Fine-tuning large pre-trained models for downstream tasks has become a fundamental approach in natural language processing. Fully fine-tuning all model parameters is computationally expensive and memory-intensive, especially in resource-constrained environments. Existing parameter-efficient fine-tuning methods reduce the number of trainable parameters but typically overlook the varying sensitivity of different model layers and the importance of training data. In this work, we propose TsqLoRA, a novel method that integrates data-quality-driven selection with sensitivity-aware low-rank adaptation, consisted of two main components: a quality-aware sampling mechanism for selecting the most informative training data, and a dynamic rank allocation module that adjusts the rank of each layer based on its sensitivity to parameter updates. The experimental results demonstrate that TsqLoRA improves fine-tuning efficiency while maintaining or even improving performance on a variety of NLP tasks. Our code will be available at https://github.com/Benjamin-Ricky/TsqLoRA.

Authors:Yaoyao Qian, Yifan Zeng, Yuchao Jiang, Chelsi Jain, Huazheng Wang
Title: The Ranking Blind Spot: Decision Hijacking in LLM-based Text Ranking
Abstract:
Large Language Models (LLMs) have demonstrated strong performance in information retrieval tasks like passage ranking. Our research examines how instruction-following capabilities in LLMs interact with multi-document comparison tasks, identifying what we term the "Ranking Blind Spot", a characteristic of LLM decision processes during comparative evaluation. We analyze how this ranking blind spot affects LLM evaluation systems through two approaches: Decision Objective Hijacking, which alters the evaluation goal in pairwise ranking systems, and Decision Criteria Hijacking, which modifies relevance standards across ranking schemes. These approaches demonstrate how content providers could potentially influence LLM-based ranking systems to affect document positioning. These attacks aim to force the LLM ranker to prefer a specific passage and rank it at the top. Malicious content providers can exploit this weakness, which helps them gain additional exposure by attacking the ranker. In our experiment, We empirically show that the proposed attacks are effective in various LLMs and can be generalized to multiple ranking schemes. We apply these attack to realistic examples to show their effectiveness. We also found stronger LLMs are more vulnerable to these attacks. Our code is available at: https://github.com/blindspotorg/RankingBlindSpot

Authors:Jiaxun Yang, Yifei Han, Long Zhang, Yujie Liu, Bin Li, Bo Gao, Yangfan He, Kejia Zhan
Title: CPCLDETECTOR: Knowledge Enhancement and Alignment Selection for Chinese Patronizing and Condescending Language Detection
Abstract:
Chinese Patronizing and Condescending Language (CPCL) is an implicitly discriminatory toxic speech targeting vulnerable groups on Chinese video platforms. The existing dataset lacks user comments, which are a direct reflection of video content. This undermines the model's understanding of video content and results in the failure to detect some CPLC videos. To make up for this loss, this research reconstructs a new dataset PCLMMPLUS that includes 103k comment entries and expands the dataset size. We also propose the CPCLDetector model with alignment selection and knowledge-enhanced comment content modules. Extensive experiments show the proposed CPCLDetector outperforms the SOTA on PCLMM and achieves higher performance on PCLMMPLUS . CPLC videos are detected more accurately, supporting content governance and protecting vulnerable groups. Code and dataset are available at https://github.com/jiaxunyang256/PCLD.

Authors:Zixin Zhu, Haoxiang Li, Xuelu Feng, He Wu, Chunming Qiao, Junsong Yuan
Title: GeoRemover: Removing Objects and Their Causal Visual Artifacts
Abstract:
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.

Authors:Jin Young Kim, Ji Won Yoon
Title: CCQA: Generating Question from Solution Can Improve Inference-Time Reasoning in SLMs
Abstract:
Recently, inference-time reasoning strategies have further improved the accuracy of large language models (LLMs), but their effectiveness on smaller models remains unclear. Based on the observation that conventional approaches often fail to improve performance in this context, we propose \textbf{C}ycle-\textbf{C}onsistency in \textbf{Q}uestion \textbf{A}nswering (CCQA), a novel reasoning method that can be effectively applied to SLMs. Inspired by cycle consistency, CCQA generates a question from each reasoning path and answer, evaluates each by its similarity to the original question, and then selects the candidate solution with the highest similarity score as the final response. Since conventional SLMs struggle to generate accurate questions from their own reasoning paths and answers, we employ a lightweight Flan-T5 model specialized for question generation to support this process efficiently. From the experimental results, it is verified that CCQA consistently outperforms existing state-of-the-art (SOTA) methods across eight models on mathematical and commonsense reasoning benchmarks. Furthermore, our method establishes a new practical baseline for efficient reasoning in SLMs. Source code can be found at https://github.com/scai-research/ccqa_official.

Authors:Seungyoun Shin, Dongha Ahn, Jiwoo Kim, Sungwook Jeon
Title: No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS
Abstract:
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}

Authors:Steve Huntsman
Title: Automatic coherence-driven inference on arguments
Abstract:
Inconsistencies are ubiquitous in law, administration, and jurisprudence. Though a cure is too much to hope for, we propose a technological remedy. Large language models (LLMs) can accurately extract propositions from arguments and compile them into natural data structures that enable coherence-driven inference (CDI) via combinatorial optimization. This neurosymbolic architecture naturally separates concerns and enables meaningful judgments about the coherence of arguments that can inform legislative and policy analysis and legal reasoning.

Authors:Yuzhen Zhou, Jiajun Li, Yusheng Su, Gowtham Ramesh, Zilin Zhu, Xiang Long, Chenyang Zhao, Jin Pan, Xiaodong Yu, Ze Wang, Kangrui Du, Jialian Wu, Ximeng Sun, Jiang Liu, Qiaolin Yu, Hao Chen, Zicheng Liu, Emad Barsoum
Title: APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation
Abstract:
Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

Authors:Mohammad Hosseini, Maryam M. Shanechi
Title: Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data
Abstract:
High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.

Authors:Maximilian Fehrentz, Alexander Winkler, Thomas Heiliger, Nazim Haouchine, Christian Heiliger, Nassir Navab
Title: BridgeSplat: Bidirectionally Coupled CT and Non-Rigid Gaussian Splatting for Deformable Intraoperative Surgical Navigation
Abstract:
We introduce BridgeSplat, a novel approach for deformable surgical navigation that couples intraoperative 3D reconstruction with preoperative CT data to bridge the gap between surgical video and volumetric patient data. Our method rigs 3D Gaussians to a CT mesh, enabling joint optimization of Gaussian parameters and mesh deformation through photometric supervision. By parametrizing each Gaussian relative to its parent mesh triangle, we enforce alignment between Gaussians and mesh and obtain deformations that can be propagated back to update the CT. We demonstrate BridgeSplat's effectiveness on visceral pig surgeries and synthetic data of a human liver under simulation, showing sensible deformations of the preoperative CT on monocular RGB data. Code, data, and additional resources can be found at https://maxfehrentz.github.io/ct-informed-splatting/ .

Authors:Md Mostafijur Rahman, Radu Marculescu
Title: MK-UNet: Multi-kernel Lightweight CNN for Medical Image Segmentation
Abstract:
In this paper, we introduce MK-UNet, a paradigm shift towards ultra-lightweight, multi-kernel U-shaped CNNs tailored for medical image segmentation. Central to MK-UNet is the multi-kernel depth-wise convolution block (MKDC) we design to adeptly process images through multiple kernels, while capturing complex multi-resolution spatial relationships. MK-UNet also emphasizes the images salient features through sophisticated attention mechanisms, including channel, spatial, and grouped gated attention. Our MK-UNet network, with a modest computational footprint of only 0.316M parameters and 0.314G FLOPs, represents not only a remarkably lightweight, but also significantly improved segmentation solution that provides higher accuracy over state-of-the-art (SOTA) methods across six binary medical imaging benchmarks. Specifically, MK-UNet outperforms TransUNet in DICE score with nearly 333$\times$ and 123$\times$ fewer parameters and FLOPs, respectively. Similarly, when compared against UNeXt, MK-UNet exhibits superior segmentation performance, improving the DICE score up to 6.7% margins while operating with 4.7$\times$ fewer #Params. Our MK-UNet also outperforms other recent lightweight networks, such as MedT, CMUNeXt, EGE-UNet, and Rolling-UNet, with much lower computational resources. This leap in performance, coupled with drastic computational gains, positions MK-UNet as an unparalleled solution for real-time, high-fidelity medical diagnostics in resource-limited settings, such as point-of-care devices. Our implementation is available at https://github.com/SLDGroup/MK-UNet.

Authors:Binhua Huang, Wendong Yao, Shaowu Chen, Guoxin Wang, Qingyuan Wang, Soumyabrata Dev
Title: MoCrop: Training Free Motion Guided Cropping for Efficient Video Action Recognition
Abstract:
We introduce MoCrop, a motion-aware adaptive cropping module for efficient video action recognition in the compressed domain. MoCrop uses motion vectors that are available in H.264 video to locate motion-dense regions and produces a single clip-level crop that is applied to all I-frames at inference. The module is training free, adds no parameters, and can be plugged into diverse backbones. A lightweight pipeline that includes denoising & merge (DM), Monte Carlo sampling (MCS), and adaptive cropping (AC) via a motion-density submatrix search yields robust crops with negligible overhead. On UCF101, MoCrop improves accuracy or reduces compute. With ResNet-50, it delivers +3.5% Top-1 accuracy at equal FLOPs (attention setting), or +2.4% Top-1 accuracy with 26.5% fewer FLOPs (efficiency setting). Applied to CoViAR, it reaches 89.2% Top-1 accuracy at the original cost and 88.5% Top-1 accuracy while reducing compute from 11.6 to 8.5 GFLOPs. Consistent gains on MobileNet-V3, EfficientNet-B1, and Swin-B indicate strong generality and make MoCrop practical for real-time deployment in the compressed domain. Our code and models are available at https://github.com/microa/MoCrop.

Authors:Han-Lin Hsieh, Maryam M. Shanechi
Title: Probabilistic Geometric Principal Component Analysis with application to neural data
Abstract:
Dimensionality reduction is critical across various domains of science including neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent dimensionality reduction method that provides a probabilistic approach unlike the deterministic approach of PCA and serves as a connection between PCA and Factor Analysis (FA). Despite their power, PPCA and its extensions are mainly based on linear models and can only describe the data in a Euclidean coordinate system. However, in many neuroscience applications, data may be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the Euclidean space. We develop Probabilistic Geometric Principal Component Analysis (PGPCA) for such datasets as a new dimensionality reduction algorithm that can explicitly incorporate knowledge about a given nonlinear manifold that is first fitted from these data. Further, we show how in addition to the Euclidean coordinate system, a geometric coordinate system can be derived for the manifold to capture the deviations of data from the manifold and noise. We also derive a data-driven EM algorithm for learning the PGPCA model parameters. As such, PGPCA generalizes PPCA to better describe data distributions by incorporating a nonlinear manifold geometry. In simulations and brain data analyses, we show that PGPCA can effectively model the data distribution around various given manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the capability to test whether the new geometric coordinate system better describes the data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction and learn the data distribution both around and on the manifold. These capabilities make PGPCA valuable for enhancing the efficacy of dimensionality reduction for analysis of high-dimensional data that exhibit noise and are distributed around a nonlinear manifold.

Authors:Daniel Kaiser, Arnoldo Frigessi, Ali Ramezani-Kebrya, Benjamin Ricaud
Title: CogniLoad: A Synthetic Natural Language Reasoning Benchmark With Tunable Length, Intrinsic Difficulty, and Distractor Density
Abstract:
Current benchmarks for long-context reasoning in Large Language Models (LLMs) often blur critical factors like intrinsic task complexity, distractor interference, and task length. To enable more precise failure analysis, we introduce CogniLoad, a novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad generates natural-language logic puzzles with independently tunable parameters that reflect CLT's core dimensions: intrinsic difficulty ($d$) controls intrinsic load; distractor-to-signal ratio ($ρ$) regulates extraneous load; and task length ($N$) serves as an operational proxy for conditions demanding germane load. Evaluating 22 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities, identifying task length as a dominant constraint and uncovering varied tolerances to intrinsic complexity and U-shaped responses to distractor ratios. By offering systematic, factorial control over these cognitive load dimensions, CogniLoad provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM reasoning limitations and guiding future model development.

Authors:Nikolai Skripko
Title: Instruction-Following Evaluation in Function Calling for Large Language Models
Abstract:
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.

Authors:Zitian Zhang, Joshua Urban Davis, Jeanne Phuong Anh Vu, Jiangtao Kuang, Jean-François Lalonde
Title: Improving the color accuracy of lighting estimation models
Abstract:
Advances in high dynamic range (HDR) lighting estimation from a single image have opened new possibilities for augmented reality (AR) applications. Predicting complex lighting environments from a single input image allows for the realistic rendering and compositing of virtual objects. In this work, we investigate the color robustness of such methods -- an often overlooked yet critical factor for achieving visual realism. While most evaluations conflate color with other lighting attributes (e.g., intensity, direction), we isolate color as the primary variable of interest. Rather than introducing a new lighting estimation algorithm, we explore whether simple adaptation techniques can enhance the color accuracy of existing models. Using a novel HDR dataset featuring diverse lighting colors, we systematically evaluate several adaptation strategies. Our results show that preprocessing the input image with a pre-trained white balance network improves color robustness, outperforming other strategies across all tested scenarios. Notably, this approach requires no retraining of the lighting estimation model. We further validate the generality of this finding by applying the technique to three state-of-the-art lighting estimation methods from recent literature.

Authors:Binhua Huang, Ni Wang, Wendong Yao, Soumyabrata Dev
Title: MVP: Motion Vector Propagation for Zero-Shot Video Object Detection
Abstract:
Running a large open-vocabulary (Open-vocab) detector on every video frame is accurate but expensive. We introduce a training-free pipeline that invokes OWLv2 only on fixed-interval keyframes and propagates detections to intermediate frames using compressed-domain motion vectors (MV). A simple 3x3 grid aggregation of motion vectors provides translation and uniform-scale updates, augmented with an area-growth check and an optional single-class switch. The method requires no labels, no fine-tuning, and uses the same prompt list for all open-vocabulary methods. On ILSVRC2015-VID (validation dataset), our approach (MVP) attains mAP@0.5=0.609 and mAP@[0.5:0.95]=0.316. At loose intersection-over-union (IoU) thresholds it remains close to framewise OWLv2-Large (0.747/0.721 at 0.2/0.3 versus 0.784/0.780), reflecting that coarse localization is largely preserved. Under the same keyframe schedule, MVP outperforms tracker-based propagation (MOSSE, KCF, CSRT) at mAP@0.5. A supervised reference (YOLOv12x) reaches 0.631 at mAP@0.5 but requires labeled training, whereas our method remains label-free and open-vocabulary. These results indicate that compressed-domain propagation is a practical way to reduce detector invocations while keeping strong zero-shot coverage in videos. Our code and models are available at https://github.com/microa/MVP.

Authors:Mehrdad Moradi, Shengzhe Chen, Hao Yan, Kamran Paynabar
Title: A Single Image Is All You Need: Zero-Shot Anomaly Localization Without Training Data
Abstract:
Anomaly detection in images is typically addressed by learning from collections of training data or relying on reference samples. In many real-world scenarios, however, such training data may be unavailable, and only the test image itself is provided. We address this zero-shot setting by proposing a single-image anomaly localization method that leverages the inductive bias of convolutional neural networks, inspired by Deep Image Prior (DIP). Our method is named Single Shot Decomposition Network (SSDnet). Our key assumption is that natural images often exhibit unified textures and patterns, and that anomalies manifest as localized deviations from these repetitive or stochastic patterns. To learn the deep image prior, we design a patch-based training framework where the input image is fed directly into the network for self-reconstruction, rather than mapping random noise to the image as done in DIP. To avoid the model simply learning an identity mapping, we apply masking, patch shuffling, and small Gaussian noise. In addition, we use a perceptual loss based on inner-product similarity to capture structure beyond pixel fidelity. Our approach needs no external training data, labels, or references, and remains robust in the presence of noise or missing pixels. SSDnet achieves 0.99 AUROC and 0.60 AUPRC on MVTec-AD and 0.98 AUROC and 0.67 AUPRC on the fabric dataset, outperforming state-of-the-art methods. The implementation code will be released at https://github.com/mehrdadmoradi124/SSDnet

Authors:Oussema Dhaouadi, Riccardo Marin, Johannes Meier, Jacques Kaiser, Daniel Cremers
Title: OrthoLoC: UAV 6-DoF Localization and Calibration Using Orthographic Geodata
Abstract:
Accurate visual localization from aerial views is a fundamental problem with applications in mapping, large-area inspection, and search-and-rescue operations. In many scenarios, these systems require high-precision localization while operating with limited resources (e.g., no internet connection or GNSS/GPS support), making large image databases or heavy 3D models impractical. Surprisingly, little attention has been given to leveraging orthographic geodata as an alternative paradigm, which is lightweight and increasingly available through free releases by governmental authorities (e.g., the European Union). To fill this gap, we propose OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Germany and the United States with multiple modalities. The dataset addresses domain shifts between UAV imagery and geospatial data. Its paired structure enables fair benchmarking of existing solutions by decoupling image retrieval from feature matching, allowing isolated evaluation of localization and calibration performance. Through comprehensive evaluation, we examine the impact of domain shifts, data resolutions, and covisibility on localization accuracy. Finally, we introduce a refinement technique called AdHoP, which can be integrated with any feature matcher, improving matching by up to 95% and reducing translation error by up to 63%. The dataset and code are available at: https://deepscenario.github.io/OrthoLoC.

Authors:Yixin Zhang, Ryan Chamberlain, Lawrence Ngo, Kevin Kramer, Maciej A. Mazurowski
Title: Rethinking Pulmonary Embolism Segmentation: A Study of Current Approaches and Challenges with an Open Weight Model
Abstract:
In this study, we curated a densely annotated in-house dataset comprising 490 CTPA scans. Using this dataset, we systematically evaluated nine widely used segmentation architectures from both the CNN and Vision Transformer (ViT) families, initialized with either pretrained or random weights, under a unified testing framework as a performance audit. Our study leads to several important observations: (1) 3D U-Net with a ResNet encoder remains a highly effective architecture for PE segmentation; (2) 3D models are particularly well-suited to this task given the morphological characteristics of emboli; (3) CNN-based models generally yield superior performance compared to their ViT-based counterparts in PE segmentation; (4) classification-based pretraining, even on large PE datasets, can adversely impact segmentation performance compared to training from scratch, suggesting that PE classification and segmentation may rely on different sets of discriminative features; (5) different model architectures show a highly consistent pattern of segmentation performance when trained on the same data; and (6) while central and large emboli can be segmented with satisfactory accuracy, distal emboli remain challenging due to both task complexity and the scarcity of high-quality datasets. Besides these findings, our best-performing model achieves a mean Dice score of 0.7131 for segmentation. It detects 181 emboli with 49 false positives and 28 false negatives from 60 in-house testing scans. Its generalizability is further validated on public datasets.

Authors:Yi Gu, Kuniaki Saito, Jiaxin Ma
Title: Learning Contrastive Multimodal Fusion with Improved Modality Dropout for Disease Detection and Prediction
Abstract:
As medical diagnoses increasingly leverage multimodal data, machine learning models are expected to effectively fuse heterogeneous information while remaining robust to missing modalities. In this work, we propose a novel multimodal learning framework that integrates enhanced modalities dropout and contrastive learning to address real-world limitations such as modality imbalance and missingness. Our approach introduces learnable modality tokens for improving missingness-aware fusion of modalities and augments conventional unimodal contrastive objectives with fused multimodal representations. We validate our framework on large-scale clinical datasets for disease detection and prediction tasks, encompassing both visual and tabular modalities. Experimental results demonstrate that our method achieves state-of-the-art performance, particularly in challenging and practical scenarios where only a single modality is available. Furthermore, we show its adaptability through successful integration with a recent CT foundation model. Our findings highlight the effectiveness, efficiency, and generalizability of our approach for multimodal learning, offering a scalable, low-cost solution with significant potential for real-world clinical applications. The code is available at https://github.com/omron-sinicx/medical-modality-dropout.

Authors:Jesse Zhang, Marius Memmel, Kevin Kim, Dieter Fox, Jesse Thomason, Fabio Ramos, Erdem Bıyık, Abhishek Gupta, Anqi Li
Title: PEEK: Guiding and Minimal Image Representations for Zero-Shot Generalization of Robot Manipulation Policies
Abstract:
Robotic manipulation policies often fail to generalize because they must simultaneously learn where to attend, what actions to take, and how to execute them. We argue that high-level reasoning about where and what can be offloaded to vision-language models (VLMs), leaving policies to specialize in how to act. We present PEEK (Policy-agnostic Extraction of Essential Keypoints), which fine-tunes VLMs to predict a unified point-based intermediate representation: 1. end-effector paths specifying what actions to take, and 2. task-relevant masks indicating where to focus. These annotations are directly overlaid onto robot observations, making the representation policy-agnostic and transferable across architectures. To enable scalable training, we introduce an automatic annotation pipeline, generating labeled data across 20+ robot datasets spanning 9 embodiments. In real-world evaluations, PEEK consistently boosts zero-shot generalization, including a 41.4x real-world improvement for a 3D policy trained only in simulation, and 2-3.5x gains for both large VLAs and small manipulation policies. By letting VLMs absorb semantic and visual complexity, PEEK equips manipulation policies with the minimal cues they need--where, what, and how. Website at https://peek-robot.github.io/.

Authors:Rui Liu, Zikang Wang, Peng Gao, Yu Shen, Pratap Tokekar, Ming Lin
Title: MMCD: Multi-Modal Collaborative Decision-Making for Connected Autonomy with Knowledge Distillation
Abstract:
Autonomous systems have advanced significantly, but challenges persist in accident-prone environments where robust decision-making is crucial. A single vehicle's limited sensor range and obstructed views increase the likelihood of accidents. Multi-vehicle connected systems and multi-modal approaches, leveraging RGB images and LiDAR point clouds, have emerged as promising solutions. However, existing methods often assume the availability of all data modalities and connected vehicles during both training and testing, which is impractical due to potential sensor failures or missing connected vehicles. To address these challenges, we introduce a novel framework MMCD (Multi-Modal Collaborative Decision-making) for connected autonomy. Our framework fuses multi-modal observations from ego and collaborative vehicles to enhance decision-making under challenging conditions. To ensure robust performance when certain data modalities are unavailable during testing, we propose an approach based on cross-modal knowledge distillation with a teacher-student model structure. The teacher model is trained with multiple data modalities, while the student model is designed to operate effectively with reduced modalities. In experiments on $\textit{connected autonomous driving with ground vehicles}$ and $\textit{aerial-ground vehicles collaboration}$, our method improves driving safety by up to ${\it 20.7}\%$, surpassing the best-existing baseline in detecting potential accidents and making safe driving decisions. More information can be found on our website https://ruiiu.github.io/mmcd.

Authors:Jialong Mai, Jinxin Ji, Xiaofen Xing, Chen Yang, Weidong Chen, Jingyuan Xing, Xiangmin Xu
Title: MNV-17: A High-Quality Performative Mandarin Dataset for Nonverbal Vocalization Recognition in Speech
Abstract:
Mainstream Automatic Speech Recognition (ASR) systems excel at transcribing lexical content, but largely fail to recognize nonverbal vocalizations (NVs) embedded in speech, such as sighs, laughs, and coughs. This capability is important for a comprehensive understanding of human communication, as NVs convey crucial emotional and intentional cues. Progress in NV-aware ASR has been hindered by the lack of high-quality, well-annotated datasets. To address this gap, we introduce MNV-17, a 7.55-hour performative Mandarin speech dataset. Unlike most existing corpora that rely on model-based detection, MNV-17's performative nature ensures high-fidelity, clearly articulated NV instances. To the best of our knowledge, MNV-17 provides the most extensive set of nonverbal vocalization categories, comprising 17 distinct and well-balanced classes of common NVs. We benchmarked MNV-17 on four mainstream ASR architectures, evaluating their joint performance on semantic transcription and NV classification. The dataset and the pretrained model checkpoints will be made publicly available to facilitate future research in expressive ASR.

Authors:Felix Petre, Lasse Bienzeisler, Bernhard Friedrich
Title: Introducing a novel Location-Assignment Algorithm for Activity-Based Transport Models: CARLA
Abstract:
This paper introduces CARLA (spatially Constrained Anchor-based Recursive Location Assignment), a recursive algorithm for assigning secondary or any activity locations in activity-based travel models. CARLA minimizes distance deviations while integrating location potentials, ensuring more realistic activity distributions. The algorithm decomposes trip chains into smaller subsegments, using geometric constraints and configurable heuristics to efficiently search the solution space. Compared to a state-of-the-art relaxation-discretization approach, CARLA achieves significantly lower mean deviations, even under limited runtimes. It is robust to real-world data inconsistencies, such as infeasible distances, and can flexibly adapt to various priorities, such as emphasizing location attractiveness or distance accuracy. CARLA's versatility and efficiency make it a valuable tool for improving the spatial accuracy of activity-based travel models and agent-based transport simulations. Our implementation is available at https://github.com/tnoud/carla.

Authors:Ling Yue, Nithin Somasekharan, Tingwen Zhang, Yadi Cao, Shaowu Pan
Title: Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.

Authors:Hongyi Luo, Qing Cheng, Daniel Matos, Hari Krishna Gadi, Yanfeng Zhang, Lu Liu, Yongliang Wang, Niclas Zeller, Daniel Cremers, Liqiu Meng
Title: TurnBack: A Geospatial Route Cognition Benchmark for Large Language Models through Reverse Route
Abstract:
Humans can interpret geospatial information through natural language, while the geospatial cognition capabilities of Large Language Models (LLMs) remain underexplored. Prior research in this domain has been constrained by non-quantifiable metrics, limited evaluation datasets and unclear research hierarchies. Therefore, we propose a large-scale benchmark and conduct a comprehensive evaluation of the geospatial route cognition of LLMs. We create a large-scale evaluation dataset comprised of 36000 routes from 12 metropolises worldwide. Then, we introduce PathBuilder, a novel tool for converting natural language instructions into navigation routes, and vice versa, bridging the gap between geospatial information and natural language. Finally, we propose a new evaluation framework and metrics to rigorously assess 11 state-of-the-art (SOTA) LLMs on the task of route reversal. The benchmark reveals that LLMs exhibit limitation to reverse routes: most reverse routes neither return to the starting point nor are similar to the optimal route. Additionally, LLMs face challenges such as low robustness in route generation and high confidence for their incorrect answers. Code\ \&\ Data available here: \href{https://github.com/bghjmn32/EMNLP2025_Turnback}{TurnBack.}

Authors:Xiuding Cai, Yaoyao Zhu, Linjie Fu, Dong Miao, Yu Yao
Title: Self Identity Mapping
Abstract:
Regularization is essential in deep learning to enhance generalization and mitigate overfitting. However, conventional techniques often rely on heuristics, making them less reliable or effective across diverse settings. We propose Self Identity Mapping (SIM), a simple yet effective, data-intrinsic regularization framework that leverages an inverse mapping mechanism to enhance representation learning. By reconstructing the input from its transformed output, SIM reduces information loss during forward propagation and facilitates smoother gradient flow. To address computational inefficiencies, We instantiate SIM as $ ρ\text{SIM} $ by incorporating patch-level feature sampling and projection-based method to reconstruct latent features, effectively lowering complexity. As a model-agnostic, task-agnostic regularizer, SIM can be seamlessly integrated as a plug-and-play module, making it applicable to different network architectures and tasks. We extensively evaluate $ρ\text{SIM}$ across three tasks: image classification, few-shot prompt learning, and domain generalization. Experimental results show consistent improvements over baseline methods, highlighting $ρ\text{SIM}$'s ability to enhance representation learning across various tasks. We also demonstrate that $ρ\text{SIM}$ is orthogonal to existing regularization methods, boosting their effectiveness. Moreover, our results confirm that $ρ\text{SIM}$ effectively preserves semantic information and enhances performance in dense-to-dense tasks, such as semantic segmentation and image translation, as well as in non-visual domains including audio classification and time series anomaly detection. The code is publicly available at https://github.com/XiudingCai/SIM-pytorch.

Authors:Seungyoun Yi, Minsoo Khang, Sungrae Park
Title: ZERA: Zero-init Instruction Evolving Refinement Agent -- From Zero Instructions to Structured Prompts via Principle-based Optimization
Abstract:
Automatic Prompt Optimization (APO) improves large language model (LLM) performance by refining prompts for specific tasks. However, prior APO methods typically focus only on user prompts, rely on unstructured feedback, and require large sample sizes and long iteration cycles-making them costly and brittle. We propose ZERA (Zero-init Instruction Evolving Refinement Agent), a novel framework that jointly optimizes both system and user prompts through principled, low-overhead refinement. ZERA scores prompts using eight generalizable criteria with automatically inferred weights, and revises prompts based on these structured critiques. This enables fast convergence to high-quality prompts using minimal examples and short iteration cycles. We evaluate ZERA across five LLMs and nine diverse datasets spanning reasoning, summarization, and code generation tasks. Experimental results demonstrate consistent improvements over strong baselines. Further ablation studies highlight the contribution of each component to more effective prompt construction. Our implementation including all prompts is publicly available at https://github.com/younatics/zera-agent.

Authors:Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding, Xu Han, Yuan Yao, Zhiyuan Liu, Maosong Sun
Title: MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe
Abstract:
Multimodal Large Language Models (MLLMs) are undergoing rapid progress and represent the frontier of AI development. However, their training and inference efficiency have emerged as a core bottleneck in making MLLMs more accessible and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B parameter model designed for high efficiency and strong performance. We introduce three core improvements in model architecture, data strategy and training method: a unified 3D-Resampler model architecture for highly compact encoding over images and videos, a unified learning paradigm for document knowledge and text recognition without heavy data engineering, and a hybrid reinforcement learning strategy for proficiency in both short and long reasoning modes. Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 surpasses widely used proprietary models such as GPT-4o-latest, and significantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong performance is achieved with remarkable efficiency. For example, on the widely adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art performance among models under 30B size, using just 46.7\% GPU memory cost and 8.7\% inference time of Qwen2.5-VL 7B.

Authors:Kairong Han, Weidong Huang, Taiyang Zhou, Peng Zhen, Kun Kuang
Title: Augmenting Limited and Biased RCTs through Pseudo-Sample Matching-Based Observational Data Fusion Method
Abstract:
In the online ride-hailing pricing context, companies often conduct randomized controlled trials (RCTs) and utilize uplift models to assess the effect of discounts on customer orders, which substantially influences competitive market outcomes. However, due to the high cost of RCTs, the proportion of trial data relative to observational data is small, which only accounts for 0.65\% of total traffic in our context, resulting in significant bias when generalizing to the broader user base. Additionally, the complexity of industrial processes reduces the quality of RCT data, which is often subject to heterogeneity from potential interference and selection bias, making it difficult to correct. Moreover, existing data fusion methods are challenging to implement effectively in complex industrial settings due to the high dimensionality of features and the strict assumptions that are hard to verify with real-world data. To address these issues, we propose an empirical data fusion method called pseudo-sample matching. By generating pseudo-samples from biased, low-quality RCT data and matching them with the most similar samples from large-scale observational data, the method expands the RCT dataset while mitigating its heterogeneity. We validated the method through simulation experiments, conducted offline and online tests using real-world data. In a week-long online experiment, we achieved a 0.41\% improvement in profit, which is a considerable gain when scaled to industrial scenarios with hundreds of millions in revenue. In addition, we discuss the harm to model training, offline evaluation, and online economic benefits when the RCT data quality is not high, and emphasize the importance of improving RCT data quality in industrial scenarios. Further details of the simulation experiments can be found in the GitHub repository https://github.com/Kairong-Han/Pseudo-Matching.

Authors:Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting Wang, Wenyi Zhao, Yuxiao Dong
Title: MobileRL: Online Agentic Reinforcement Learning for Mobile GUI Agents
Abstract:
Building general-purpose graphical user interface (GUI) agents has become increasingly promising with the progress in vision language models. However, developing effective mobile GUI agents with reinforcement learning (RL) remains challenging due to the heavy-tailed distribution of task difficulty and the inefficiency of large-scale environment sampling. We present an online agentic reinforcement learning framework MOBILERL to enhance GUI agents in mobile environments. Its core component is the Difficulty-Adaptive GRPO (ADAGRPO) algorithm. In ADAGRPO, we design difficulty-adaptive positive replay and failure curriculum filtering to adapt the model to different task difficulties. We introduce the shortest path reward adjustment strategy to reshape rewards concerning the task length in multi-turn agentic tasks. Those strategies jointly stabilize RL training, improve sample efficiency, and generate strong performance across diverse mobile apps and tasks. We apply MOBILERL to two open models (Qwen2.5-VL-7B-Instruct and GLM-4.1V-9B-Base). The resultant MOBILERL-9B model achieves state-of-the-art results in terms of success rates on both AndroidWorld (75.8%) and AndroidLab (46.8%). The MOBILERL framework is adopted in the AutoGLM products, and also open-sourced at https://github.com/THUDM/MobileRL.

Authors:Nathan Egbuna, Saatvik Gaur, Sunishchal Dev, Ashwinee Panda, Maheep Chaudhary
Title: Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Abstract:
Test-time optimization remains impractical at scale due to prohibitive inference costs\textemdash techniques like iterative refinement and multi-step verification can require $10$--$100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-$500$ benchmarks, ALS achieves $2$--$5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101\% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at~\href{https://anonymous.4open.science/r/steering-17F2}{https://anonymous.4open.science/r/steering-17F2}

Authors:Julian Kaltheuner, Alexander Oebel, Hannah Droege, Patrick Stotko, Reinhard Klein
Title: Preconditioned Deformation Grids
Abstract:
Dynamic surface reconstruction of objects from point cloud sequences is a challenging field in computer graphics. Existing approaches either require multiple regularization terms or extensive training data which, however, lead to compromises in reconstruction accuracy as well as over-smoothing or poor generalization to unseen objects and motions. To address these lim- itations, we introduce Preconditioned Deformation Grids, a novel technique for estimating coherent deformation fields directly from unstructured point cloud sequences without requiring or forming explicit correspondences. Key to our approach is the use of multi-resolution voxel grids that capture the overall motion at varying spatial scales, enabling a more flexible deformation representation. In conjunction with incorporating grid-based Sobolev preconditioning into gradient-based optimization, we show that applying a Chamfer loss between the input point clouds as well as to an evolving template mesh is sufficient to obtain accurate deformations. To ensure temporal consistency along the object surface, we include a weak isometry loss on mesh edges which complements the main objective without constraining deformation fidelity. Extensive evaluations demonstrate that our method achieves superior results, particularly for long sequences, compared to state-of-the-art techniques.

Authors:Chaehyun Kim, Heeseong Shin, Eunbeen Hong, Heeji Yoon, Anurag Arnab, Paul Hongsuck Seo, Sunghwan Hong, Seungryong Kim
Title: Seg4Diff: Unveiling Open-Vocabulary Segmentation in Text-to-Image Diffusion Transformers
Abstract:
Text-to-image diffusion models excel at translating language prompts into photorealistic images by implicitly grounding textual concepts through their cross-modal attention mechanisms. Recent multi-modal diffusion transformers extend this by introducing joint self-attention over concatenated image and text tokens, enabling richer and more scalable cross-modal alignment. However, a detailed understanding of how and where these attention maps contribute to image generation remains limited. In this paper, we introduce Seg4Diff (Segmentation for Diffusion), a systematic framework for analyzing the attention structures of MM-DiT, with a focus on how specific layers propagate semantic information from text to image. Through comprehensive analysis, we identify a semantic grounding expert layer, a specific MM-DiT block that consistently aligns text tokens with spatially coherent image regions, naturally producing high-quality semantic segmentation masks. We further demonstrate that applying a lightweight fine-tuning scheme with mask-annotated image data enhances the semantic grouping capabilities of these layers and thereby improves both segmentation performance and generated image fidelity. Our findings demonstrate that semantic grouping is an emergent property of diffusion transformers and can be selectively amplified to advance both segmentation and generation performance, paving the way for unified models that bridge visual perception and generation.

Authors:Ye Liu, Zongyang Ma, Junfu Pu, Zhongang Qi, Yang Wu, Ying Shan, Chang Wen Chen
Title: UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning
Abstract:
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.

Authors:Guocheng Gordon Qian, Daniil Ostashev, Egor Nemchinov, Avihay Assouline, Sergey Tulyakov, Kuan-Chieh Jackson Wang, Kfir Aberman
Title: ComposeMe: Attribute-Specific Image Prompts for Controllable Human Image Generation
Abstract:
Generating high-fidelity images of humans with fine-grained control over attributes such as hairstyle and clothing remains a core challenge in personalized text-to-image synthesis. While prior methods emphasize identity preservation from a reference image, they lack modularity and fail to provide disentangled control over specific visual attributes. We introduce a new paradigm for attribute-specific image prompting, in which distinct sets of reference images are used to guide the generation of individual aspects of human appearance, such as hair, clothing, and identity. Our method encodes these inputs into attribute-specific tokens, which are injected into a pre-trained text-to-image diffusion model. This enables compositional and disentangled control over multiple visual factors, even across multiple people within a single image. To promote natural composition and robust disentanglement, we curate a cross-reference training dataset featuring subjects in diverse poses and expressions, and propose a multi-attribute cross-reference training strategy that encourages the model to generate faithful outputs from misaligned attribute inputs while adhering to both identity and textual conditioning. Extensive experiments show that our method achieves state-of-the-art performance in accurately following both visual and textual prompts. Our framework paves the way for more configurable human image synthesis by combining visual prompting with text-driven generation. Webpage is available at: https://snap-research.github.io/composeme/.

Authors:Jiahe Li, Jiawei Zhang, Youmin Zhang, Xiao Bai, Jin Zheng, Xiaohan Yu, Lin Gu
Title: GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction
Abstract:
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.

Authors:Yunheng Li, Jing Cheng, Shaoyong Jia, Hangyi Kuang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Title: TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
Abstract:
This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework designed to improve the effectiveness of adapting multimodal large language models (MLLMs) to video temporal grounding tasks. We reveal that existing reinforcement learning methods, such as Group Relative Policy Optimization (GRPO), rely on on-policy sampling for policy updates. However, in tasks with large temporal search spaces, this strategy becomes both inefficient and limited in performance, as it often fails to identify temporally accurate solutions. To address this limitation, TempSamp-R1 leverages ground-truth annotations as off-policy supervision to provide temporally precise guidance, effectively compensating for the sparsity and misalignment in on-policy solutions. To further stabilize training and reduce variance in reward-based updates, TempSamp-R1 provides a non-linear soft advantage computation method that dynamically reshapes the reward feedback via an asymmetric transformation. By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1 optimizes a single unified model to support both CoT and non-CoT inference modes, enabling efficient handling of queries with varying reasoning complexity. Experimental results demonstrate that TempSamp-R1 outperforms GRPO-based baselines, establishing new state-of-the-art performance on benchmark datasets: Charades-STA (R1@0.7: 52.9%, +2.7%), ActivityNet Captions (R1@0.5: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover, TempSamp-R1 shows robust few-shot generalization capabilities under limited data. Code: https://github.com/HVision-NKU/TempSamp-R1

Authors:Hsu-kuang Chiu, Ryo Hachiuma, Chien-Yi Wang, Yu-Chiang Frank Wang, Min-Hung Chen, Stephen F. Smith
Title: V2V-GoT: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multimodal Large Language Models and Graph-of-Thoughts
Abstract:
Current state-of-the-art autonomous vehicles could face safety-critical situations when their local sensors are occluded by large nearby objects on the road. Vehicle-to-vehicle (V2V) cooperative autonomous driving has been proposed as a means of addressing this problem, and one recently introduced framework for cooperative autonomous driving has further adopted an approach that incorporates a Multimodal Large Language Model (MLLM) to integrate cooperative perception and planning processes. However, despite the potential benefit of applying graph-of-thoughts reasoning to the MLLM, this idea has not been considered by previous cooperative autonomous driving research. In this paper, we propose a novel graph-of-thoughts framework specifically designed for MLLM-based cooperative autonomous driving. Our graph-of-thoughts includes our proposed novel ideas of occlusion-aware perception and planning-aware prediction. We curate the V2V-GoT-QA dataset and develop the V2V-GoT model for training and testing the cooperative driving graph-of-thoughts. Our experimental results show that our method outperforms other baselines in cooperative perception, prediction, and planning tasks. Our project website: https://eddyhkchiu.github.io/v2vgot.github.io/ .

Authors:Richard Cornelius Suwandi, Feng Yin, Juntao Wang, Renjie Li, Tsung-Hui Chang, Sergios Theodoridis
Title: Adaptive Kernel Design for Bayesian Optimization Is a Piece of CAKE with LLMs
Abstract:
The efficiency of Bayesian optimization (BO) relies heavily on the choice of the Gaussian process (GP) kernel, which plays a central role in balancing exploration and exploitation under limited evaluation budgets. Traditional BO methods often rely on fixed or heuristic kernel selection strategies, which can result in slow convergence or suboptimal solutions when the chosen kernel is poorly suited to the underlying objective function. To address this limitation, we propose a freshly-baked Context-Aware Kernel Evolution (CAKE) to enhance BO with large language models (LLMs). Concretely, CAKE leverages LLMs as the crossover and mutation operators to adaptively generate and refine GP kernels based on the observed data throughout the optimization process. To maximize the power of CAKE, we further propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective kernel through balancing the model fit measured by the Bayesian information criterion (BIC) with the expected improvement at each iteration of BO. Extensive experiments demonstrate that our fresh CAKE-based BO method consistently outperforms established baselines across a range of real-world tasks, including hyperparameter optimization, controller tuning, and photonic chip design. Our code is publicly available at https://github.com/richardcsuwandi/cake.

Authors:Geonung Kim, Janghyeok Han, Sunghyun Cho
Title: VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models
Abstract:
In this paper, we propose VideoFrom3D, a novel framework for synthesizing high-quality 3D scene videos from coarse geometry, a camera trajectory, and a reference image. Our approach streamlines the 3D graphic design workflow, enabling flexible design exploration and rapid production of deliverables. A straightforward approach to synthesizing a video from coarse geometry might condition a video diffusion model on geometric structure. However, existing video diffusion models struggle to generate high-fidelity results for complex scenes due to the difficulty of jointly modeling visual quality, motion, and temporal consistency. To address this, we propose a generative framework that leverages the complementary strengths of image and video diffusion models. Specifically, our framework consists of a Sparse Anchor-view Generation (SAG) and a Geometry-guided Generative Inbetweening (GGI) module. The SAG module generates high-quality, cross-view consistent anchor views using an image diffusion model, aided by Sparse Appearance-guided Sampling. Building on these anchor views, GGI module faithfully interpolates intermediate frames using a video diffusion model, enhanced by flow-based camera control and structural guidance. Notably, both modules operate without any paired dataset of 3D scene models and natural images, which is extremely difficult to obtain. Comprehensive experiments show that our method produces high-quality, style-consistent scene videos under diverse and challenging scenarios, outperforming simple and extended baselines.

Authors:Kai Li, Xingxing Weng, Yupeng Deng, Yu Meng, Chao Pang, Gui-Song Xia, Xiangyu Zhao
Title: DragOSM: Extract Building Roofs and Footprints from Aerial Images by Aligning Historical Labels
Abstract:
Extracting polygonal roofs and footprints from remote sensing images is critical for large-scale urban analysis. Most existing methods rely on segmentation-based models that assume clear semantic boundaries of roofs, but these approaches struggle in off- nadir images, where the roof and footprint are significantly displaced, and facade pixels are fused with the roof boundary. With the increasing availability of open vector map annotations, e.g., OpenStreetMap, utilizing historical labels for off-nadir image annotation has become viable because remote sensing images are georeferenced once captured. However, these historical labels commonly suffer from significant positional discrepancies with new images and only have one annotation (roof or footprint), which fails to describe the correct structures of a building. To address these discrepancies, we first introduce a concept of an alignment token, which encodes the correction vector to guide the label correction. Based on this concept, we then propose Drag OpenStreetMap Labels (DragOSM), a novel model designed to align dislocated historical labels with roofs and footprints. Specifically, DragOSM formulates the label alignment as an interactive denoising process, modeling the positional discrepancy as a Gaussian distribution. During training, it learns to correct these errors by simulating misalignment with random Gaussian perturbations; during inference, it iteratively refines the positions of input labels. To validate our method, we further present a new dataset, Repairing Buildings in OSM (ReBO), comprising 179,265 buildings with both OpenStreetMap and manually corrected annotations across 5,473 images from 41 cities. Experimental results on ReBO demonstrate the effectiveness of DragOSM. Code, dataset, and trained models are publicly available at https://github.com/likaiucas/DragOSM.git.

Authors:Romain Thoreau, Jessie Levillain, Dawa Derksen
Title: Can multimodal representation learning by alignment preserve modality-specific information?
Abstract:
Combining multimodal data is a key issue in a wide range of machine learning tasks, including many remote sensing problems. In Earth observation, early multimodal data fusion methods were based on specific neural network architectures and supervised learning. Ever since, the scarcity of labeled data has motivated self-supervised learning techniques. State-of-the-art multimodal representation learning techniques leverage the spatial alignment between satellite data from different modalities acquired over the same geographic area in order to foster a semantic alignment in the latent space. In this paper, we investigate how this methods can preserve task-relevant information that is not shared across modalities. First, we show, under simplifying assumptions, when alignment strategies fundamentally lead to an information loss. Then, we support our theoretical insight through numerical experiments in more realistic settings. With those theoretical and empirical evidences, we hope to support new developments in contrastive learning for the combination of multimodal satellite data. Our code and data is publicly available at https://github.com/Romain3Ch216/alg_maclean_25.

Authors:Yuanhan Wang, Yifei Chen, Shuo Jiang, Wenjing Yu, Mingxuan Liu, Beining Wu, Jinying Zong, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: SmaRT: Style-Modulated Robust Test-Time Adaptation for Cross-Domain Brain Tumor Segmentation in MRI
Abstract:
Reliable brain tumor segmentation in MRI is indispensable for treatment planning and outcome monitoring, yet models trained on curated benchmarks often fail under domain shifts arising from scanner and protocol variability as well as population heterogeneity. Such gaps are especially severe in low-resource and pediatric cohorts, where conventional test-time or source-free adaptation strategies often suffer from instability and structural inconsistency. We propose SmaRT, a style-modulated robust test-time adaptation framework that enables source-free cross-domain generalization. SmaRT integrates style-aware augmentation to mitigate appearance discrepancies, a dual-branch momentum strategy for stable pseudo-label refinement, and structural priors enforcing consistency, integrity, and connectivity. This synergy ensures both adaptation stability and anatomical fidelity under extreme domain shifts. Extensive evaluations on sub-Saharan Africa and pediatric glioma datasets show that SmaRT consistently outperforms state-of-the-art methods, with notable gains in Dice accuracy and boundary precision. Overall, SmaRT bridges the gap between algorithmic advances and equitable clinical applicability, supporting robust deployment of MRI-based neuro-oncology tools in diverse clinical environments. Our source code is available at https://github.com/baiyou1234/SmaRT.

Authors:Jamiyan Sukhbaatar, Satoshi Imamura, Ibuki Inoue, Shoya Murakami, Kazi Mahmudul Hassan, Seungwoo Han, Ingon Chanpornpakdi, Toshihisa Tanaka
Title: SingLEM: Single-Channel Large EEG Model
Abstract:
Current deep learning models for electroencephalography (EEG) are often task-specific and depend on large labeled datasets, limiting their adaptability. Although emerging foundation models aim for broader applicability, their rigid dependence on fixed, high-density multi-channel montages restricts their use across heterogeneous datasets and in missing-channel or practical low-channel settings. To address these limitations, we introduce SingLEM, a self-supervised foundation model that learns robust, general-purpose representations from single-channel EEG, making it inherently hardware agnostic. The model employs a hybrid encoder architecture that combines convolutional layers to extract local features with a hierarchical transformer to model both short- and long-range temporal dependencies. SingLEM is pretrained on 71 public datasets comprising over 9,200 subjects and 357,000 single-channel hours of EEG. When evaluated as a fixed feature extractor across six motor imagery and cognitive tasks, aggregated single-channel representations consistently outperformed leading multi-channel foundation models and handcrafted baselines. These results demonstrate that a single-channel approach can achieve state-of-the-art generalization while enabling fine-grained neurophysiological analysis and enhancing interpretability. The source code and pretrained models are available at https://github.com/ttlabtuat/SingLEM.

Authors:Geewook Kim, Minjoon Seo
Title: Does Audio Matter for Modern Video-LLMs and Their Benchmarks?
Abstract:
Modern multimodal large language models often claim "video understanding," yet most evaluations use muted videos or simply discard audio. We ask a direct question: how much does audio actually matter for contemporary Video-LLMs and the benchmarks that certify them? We audit widely used suites and observe that many items are even solvable from a single frame, rendering audio largely redundant. Building on LLaVA-OneVision architecture, we attach a speech/audio encoder (e.g., Whisper) and analyze when audio helps, while addressing audio token explosion with a lightweight Mamba-based state-space token compressor. We find that audio yields minimal gains on recent video benchmarks but is decisive on curated, audio-sensitive subsets. To enable faithful evaluation, we release AVQA-Hard and Music-AVQA-Hard, our model, and code. Our findings surface a growing gap between current academic practice and real-world expectations, and provide practical tools for scalable audio-visual Video-LLMs. We will fully open-source our work at https://github.com/naver-ai/LLaVA-AV-SSM.

Authors:Qiushi Han, Yuan Liao, Youhao Si, Liya Huang
Title: Brainprint-Modulated Target Speaker Extraction
Abstract:
Achieving robust and personalized performance in neuro-steered Target Speaker Extraction (TSE) remains a significant challenge for next-generation hearing aids. This is primarily due to two factors: the inherent non-stationarity of EEG signals across sessions, and the high inter-subject variability that limits the efficacy of generalized models. To address these issues, we propose Brainprint-Modulated Target Speaker Extraction (BM-TSE), a novel framework for personalized and high-fidelity extraction. BM-TSE first employs a spatio-temporal EEG encoder with an Adaptive Spectral Gain (ASG) module to extract stable features resilient to non-stationarity. The core of our framework is a personalized modulation mechanism, where a unified brainmap embedding is learned under the joint supervision of subject identification (SID) and auditory attention decoding (AAD) tasks. This learned brainmap, encoding both static user traits and dynamic attentional states, actively refines the audio separation process, dynamically tailoring the output to each user. Evaluations on the public KUL and Cocktail Party datasets demonstrate that BM-TSE achieves state-of-the-art performance, significantly outperforming existing methods. Our code is publicly accessible at: https://github.com/rosshan-orz/BM-TSE.

Authors:Milan Straka
Title: CorPipe at CRAC 2025: Evaluating Multilingual Encoders for Multilingual Coreference Resolution
Abstract:
We present CorPipe 25, the winning entry to the CRAC 2025 Shared Task on Multilingual Coreference Resolution. This fourth iteration of the shared task introduces a new LLM track alongside the original unconstrained track, features reduced development and test sets to lower computational requirements, and includes additional datasets. CorPipe 25 represents a complete reimplementation of our previous systems, migrating from TensorFlow to PyTorch. Our system significantly outperforms all other submissions in both the LLM and unconstrained tracks by a substantial margin of 8 percentage points. The source code and trained models are publicly available at https://github.com/ufal/crac2025-corpipe.

Authors:Xiangmin Shen, Wenyuan Cheng, Yan Chen, Zhenyuan Li, Yuqiao Gu, Lingzhi Wang, Wencheng Zhao, Dawei Sun, Jiashui Wang
Title: AEAS: Actionable Exploit Assessment System
Abstract:
Security practitioners face growing challenges in exploit assessment, as public vulnerability repositories are increasingly populated with inconsistent and low-quality exploit artifacts. Existing scoring systems, such as CVSS and EPSS, offer limited support for this task. They either rely on theoretical metrics or produce opaque probability estimates without assessing whether usable exploit code exists. In practice, security teams often resort to manual triage of exploit repositories, which is time-consuming, error-prone, and difficult to scale. We present AEAS, an automated system designed to assess and prioritize actionable exploits through static analysis. AEAS analyzes both exploit code and associated documentation to extract a structured set of features reflecting exploit availability, functionality, and setup complexity. It then computes an actionability score for each exploit and produces ranked exploit recommendations. We evaluate AEAS on a dataset of over 5,000 vulnerabilities derived from 600+ real-world applications frequently encountered by red teams. Manual validation and expert review on representative subsets show that AEAS achieves a 100% top-3 success rate in recommending functional exploits and shows strong alignment with expert-validated rankings. These results demonstrate the effectiveness of AEAS in supporting exploit-driven vulnerability prioritization.

Authors:Yiyang Chen, Xuanhua He, Xiujun Ma, Yue Ma
Title: ContextFlow: Training-Free Video Object Editing via Adaptive Context Enrichment
Abstract:
Training-free video object editing aims to achieve precise object-level manipulation, including object insertion, swapping, and deletion. However, it faces significant challenges in maintaining fidelity and temporal consistency. Existing methods, often designed for U-Net architectures, suffer from two primary limitations: inaccurate inversion due to first-order solvers, and contextual conflicts caused by crude "hard" feature replacement. These issues are more challenging in Diffusion Transformers (DiTs), where the unsuitability of prior layer-selection heuristics makes effective guidance challenging. To address these limitations, we introduce ContextFlow, a novel training-free framework for DiT-based video object editing. In detail, we first employ a high-order Rectified Flow solver to establish a robust editing foundation. The core of our framework is Adaptive Context Enrichment (for specifying what to edit), a mechanism that addresses contextual conflicts. Instead of replacing features, it enriches the self-attention context by concatenating Key-Value pairs from parallel reconstruction and editing paths, empowering the model to dynamically fuse information. Additionally, to determine where to apply this enrichment (for specifying where to edit), we propose a systematic, data-driven analysis to identify task-specific vital layers. Based on a novel Guidance Responsiveness Metric, our method pinpoints the most influential DiT blocks for different tasks (e.g., insertion, swapping), enabling targeted and highly effective guidance. Extensive experiments show that ContextFlow significantly outperforms existing training-free methods and even surpasses several state-of-the-art training-based approaches, delivering temporally coherent, high-fidelity results.

Authors:Aniello Panariello, Daniel Marczak, Simone Magistri, Angelo Porrello, Bartłomiej Twardowski, Andrew D. Bagdanov, Simone Calderara, Joost van de Weijer
Title: Accurate and Efficient Low-Rank Model Merging in Core Space
Abstract:
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.

Authors:Yibo Peng, Jiahao Yang, Shenhao Yan, Ziyu Huang, Shuang Li, Shuguang Cui, Yiming Zhao, Yatong Han
Title: RoboSeek: You Need to Interact with Your Objects
Abstract:
Optimizing and refining action execution through exploration and interaction is a promising way for robotic manipulation. However, practical approaches to interaction-driven robotic learning are still underexplored, particularly for long-horizon tasks where sequential decision-making, physical constraints, and perceptual uncertainties pose significant challenges. Motivated by embodied cognition theory, we propose RoboSeek, a framework for embodied action execution that leverages interactive experience to accomplish manipulation tasks. RoboSeek optimizes prior knowledge from high-level perception models through closed-loop training in simulation and achieves robust real-world execution via a real2sim2real transfer pipeline. Specifically, we first replicate real-world environments in simulation using 3D reconstruction to provide visually and physically consistent environments, then we train policies in simulation using reinforcement learning and the cross-entropy method leveraging visual priors. The learned policies are subsequently deployed on real robotic platforms for execution. RoboSeek is hardware-agnostic and is evaluated on multiple robotic platforms across eight long-horizon manipulation tasks involving sequential interactions, tool use, and object handling. Our approach achieves an average success rate of 79%, significantly outperforming baselines whose success rates remain below 50%, highlighting its generalization and robustness across tasks and platforms. Experimental results validate the effectiveness of our training framework in complex, dynamic real-world settings and demonstrate the stability of the proposed real2sim2real transfer mechanism, paving the way for more generalizable embodied robotic learning. Project Page: https://russderrick.github.io/Roboseek/

Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Title: I2VWM: Robust Watermarking for Image to Video Generation
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}

Authors:Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title: Qwen3-Omni Technical Report
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Authors:Chengbo Yuan, Rui Zhou, Mengzhen Liu, Yingdong Hu, Shengjie Wang, Li Yi, Chuan Wen, Shanghang Zhang, Yang Gao
Title: MotionTrans: Human VR Data Enable Motion-Level Learning for Robotic Manipulation Policies
Abstract:
Scaling real robot data is a key bottleneck in imitation learning, leading to the use of auxiliary data for policy training. While other aspects of robotic manipulation such as image or language understanding may be learned from internet-based datasets, acquiring motion knowledge remains challenging. Human data, with its rich diversity of manipulation behaviors, offers a valuable resource for this purpose. While previous works show that using human data can bring benefits, such as improving robustness and training efficiency, it remains unclear whether it can realize its greatest advantage: enabling robot policies to directly learn new motions for task completion. In this paper, we systematically explore this potential through multi-task human-robot cotraining. We introduce MotionTrans, a framework that includes a data collection system, a human data transformation pipeline, and a weighted cotraining strategy. By cotraining 30 human-robot tasks simultaneously, we direcly transfer motions of 13 tasks from human data to deployable end-to-end robot policies. Notably, 9 tasks achieve non-trivial success rates in zero-shot manner. MotionTrans also significantly enhances pretraining-finetuning performance (+40% success rate). Through ablation study, we also identify key factors for successful motion learning: cotraining with robot data and broad task-related motion coverage. These findings unlock the potential of motion-level learning from human data, offering insights into its effective use for training robotic manipulation policies. All data, code, and model weights are open-sourced https://motiontrans.github.io/.

Authors:Shenwei Kang, Xin Zhang, Wen Liu, Bin Li, Yujie Liu, Bo Gao
Title: DA-Mamba: Dialogue-aware selective state-space model for multimodal engagement estimation
Abstract:
Human engagement estimation in conversational scenarios is essential for applications such as adaptive tutoring, remote healthcare assessment, and socially aware human--computer interaction. Engagement is a dynamic, multimodal signal conveyed by facial expressions, speech, gestures, and behavioral cues over time. In this work we introduce DA-Mamba, a dialogue-aware multimodal architecture that replaces attention-heavy dialogue encoders with Mamba-based selective state-space processing to achieve linear time and memory complexity while retaining expressive cross-modal reasoning. We design a Mamba dialogue-aware selective state-space model composed of three core modules: a Dialogue-Aware Encoder, and two Mamba-based fusion mechanisms: Modality-Group Fusion and Partner-Group Fusion, these modules achieve expressive dialogue understanding. Extensive experiments on three standard benchmarks (NoXi, NoXi-Add, and MPIIGI) show that DA-Mamba surpasses prior state-of-the-art (SOTA) methods in concordance correlation coefficient (CCC), while reducing training time and peak memory; these gains enable processing much longer sequences and facilitate real-time deployment in resource-constrained, multi-party conversational settings. The source code will be available at: https://github.com/kksssssss-ssda/MMEA.

Authors:Bo Li, Yunkuo Lei, Tingting Bao, Yaxian Wang, Lingling Zhang, Jun Liu
Title: Neurodynamics-Driven Coupled Neural P Systems for Multi-Focus Image Fusion
Abstract:
Multi-focus image fusion (MFIF) is a crucial technique in image processing, with a key challenge being the generation of decision maps with precise boundaries. However, traditional methods based on heuristic rules and deep learning methods with black-box mechanisms are difficult to generate high-quality decision maps. To overcome this challenge, we introduce neurodynamics-driven coupled neural P (CNP) systems, which are third-generation neural computation models inspired by spiking mechanisms, to enhance the accuracy of decision maps. Specifically, we first conduct an in-depth analysis of the model's neurodynamics to identify the constraints between the network parameters and the input signals. This solid analysis avoids abnormal continuous firing of neurons and ensures the model accurately distinguishes between focused and unfocused regions, generating high-quality decision maps for MFIF. Based on this analysis, we propose a Neurodynamics-Driven CNP Fusion model (ND-CNPFuse) tailored for the challenging MFIF task. Unlike current ideas of decision map generation, ND-CNPFuse distinguishes between focused and unfocused regions by mapping the source image into interpretable spike matrices. By comparing the number of spikes, an accurate decision map can be generated directly without any post-processing. Extensive experimental results show that ND-CNPFuse achieves new state-of-the-art performance on four classical MFIF datasets, including Lytro, MFFW, MFI-WHU, and Real-MFF. The code is available at https://github.com/MorvanLi/ND-CNPFuse.

Authors:Xiyuan Zhou, Xinlei Wang, Yirui He, Yang Wu, Ruixi Zou, Yuheng Cheng, Yulu Xie, Wenxuan Liu, Huan Zhao, Yan Xu, Jinjin Gu, Junhua Zhao
Title: EngiBench: A Benchmark for Evaluating Large Language Models on Engineering Problem Solving
Abstract:
Large language models (LLMs) have shown strong performance on mathematical reasoning under well-posed conditions. However, real-world engineering problems require more than mathematical symbolic computation -- they need to deal with uncertainty, context, and open-ended scenarios. Existing benchmarks fail to capture these complexities. We introduce EngiBench, a hierarchical benchmark designed to evaluate LLMs on solving engineering problems. It spans three levels of increasing difficulty (foundational knowledge retrieval, multi-step contextual reasoning, and open-ended modeling) and covers diverse engineering subfields. To facilitate a deeper understanding of model performance, we systematically rewrite each problem into three controlled variants (perturbed, knowledge-enhanced, and math abstraction), enabling us to separately evaluate the model's robustness, domain-specific knowledge, and mathematical reasoning abilities. Experiment results reveal a clear performance gap across levels: models struggle more as tasks get harder, perform worse when problems are slightly changed, and fall far behind human experts on the high-level engineering tasks. These findings reveal that current LLMs still lack the high-level reasoning needed for real-world engineering, highlighting the need for future models with deeper and more reliable problem-solving capabilities. Our source code and data are available at https://github.com/EngiBench/EngiBench.

Authors:Julia Matejas, Olaf Żurawski, Nils Strodthoff, Juan Miguel Lopez Alcaraz
Title: Predicting Chest Radiograph Findings from Electrocardiograms Using Interpretable Machine Learning
Abstract:
Purpose: Chest X-rays are essential for diagnosing pulmonary conditions, but limited access in resource-constrained settings can delay timely diagnosis. Electrocardiograms (ECGs), in contrast, are widely available, non-invasive, and often acquired earlier in clinical workflows. This study aims to assess whether ECG features and patient demographics can predict chest radiograph findings using an interpretable machine learning approach. Methods: Using the MIMIC-IV database, Extreme Gradient Boosting (XGBoost) classifiers were trained to predict diverse chest radiograph findings from ECG-derived features and demographic variables. Recursive feature elimination was performed independently for each target to identify the most predictive features. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC) with bootstrapped 95% confidence intervals. Shapley Additive Explanations (SHAP) were applied to interpret feature contributions. Results: Models successfully predicted multiple chest radiograph findings with varying accuracy. Feature selection tailored predictors to each target, and including demographic variables consistently improved performance. SHAP analysis revealed clinically meaningful contributions from ECG features to radiographic predictions. Conclusion: ECG-derived features combined with patient demographics can serve as a proxy for certain chest radiograph findings, enabling early triage or pre-screening in settings where radiographic imaging is limited. Interpretable machine learning demonstrates potential to support radiology workflows and improve patient care.

Authors:Mariette Schönfeld, Wannes Meert, Hendrik Blockeel
Title: Tailored Transformation Invariance for Industrial Anomaly Detection
Abstract:
Industrial Anomaly Detection (IAD) is a subproblem within Computer Vision Anomaly Detection that has been receiving increasing amounts of attention due to its applicability to real-life scenarios. Recent research has focused on how to extract the most informative features, contrasting older kNN-based methods that use only pretrained features. These recent methods are much more expensive to train however and could complicate real-life application. Careful study of related work with regards to transformation invariance leads to the idea that popular benchmarks require robustness to only minor translations. With this idea we then formulate LWinNN, a local window based approach that creates a middle ground between kNN based methods that have either complete or no translation invariance. Our experiments demonstrate that this small change increases accuracy considerably, while simultaneously decreasing both train and test time. This teaches us two things: first, the gap between kNN-based approaches and more complex state-of-the-art methodology can still be narrowed by effective usage of the limited data available. Second, our assumption of requiring only limited translation invariance highlights potential areas of interest for future work and the need for more spatially diverse benchmarks, for which our method can hopefully serve as a new baseline. Our code can be found at https://github.com/marietteschonfeld/LWinNN .

Authors:Pingyi Chen, Yujing Lou, Shen Cao, Jinhui Guo, Lubin Fan, Yue Wu, Lin Yang, Lizhuang Ma, Jieping Ye
Title: SD-VLM: Spatial Measuring and Understanding with Depth-Encoded Vision-Language Models
Abstract:
While vision language models (VLMs) excel in 2D semantic visual understanding, their ability to quantitatively reason about 3D spatial relationships remains under-explored, due to the deficiency of 2D images' spatial representation ability. In this paper, we analyze the problem hindering VLMs' spatial understanding abilities and propose SD-VLM, a novel framework that significantly enhances fundamental spatial perception abilities of VLMs through two key contributions: (1) propose Massive Spatial Measuring and Understanding (MSMU) dataset with precise spatial annotations, and (2) introduce a simple depth positional encoding method strengthening VLMs' spatial awareness. MSMU dataset covers massive quantitative spatial tasks with 700K QA pairs, 2.5M physical numerical annotations, and 10K chain-of-thought augmented samples. We have trained SD-VLM, a strong generalist VLM which shows superior quantitative spatial measuring and understanding capability. SD-VLM not only achieves state-of-the-art performance on our proposed MSMU-Bench, but also shows spatial generalization abilities on other spatial understanding benchmarks including Q-Spatial and SpatialRGPT-Bench. Extensive experiments demonstrate that SD-VLM outperforms GPT-4o and Intern-VL3-78B by 26.91% and 25.56% respectively on MSMU-Bench. Code and models are released at https://github.com/cpystan/SD-VLM.

Authors:Sehyun Kim, Hye Jun Lee, Jiwoo Lee, Taemin Lee
Title: Clothing agnostic Pre-inpainting Virtual Try-ON
Abstract:
With the development of deep learning technology, virtual try-on technology has become an important application value in the fields of e-commerce, fashion, and entertainment. The recently proposed Leffa has improved the texture distortion problem of diffu-sion-based models, but there are limitations in that the bottom detection inaccuracy and the existing clothing silhouette remain in the synthesis results. To solve this problem, this study proposes CaP-VTON (Clothing agnostic Pre-inpainting Virtual Try-ON). CaP-VTON has improved the naturalness and consistency of whole-body clothing syn-thesis by integrating multi-category masking based on Dress Code and skin inpainting based on Stable Diffusion. In particular, a generate skin module was introduced to solve the skin restoration problem that occurs when long-sleeved images are converted into short-sleeved or sleeveless ones, and high-quality restoration was implemented consider-ing the human body posture and color. As a result, CaP-VTON recorded 92.5%, which is 15.4% better than Leffa in short-sleeved synthesis accuracy, and showed the performance of consistently reproducing the style and shape of reference clothing in visual evaluation. These structures maintain model-agnostic properties and are applicable to various diffu-sion-based virtual inspection systems, and can contribute to applications that require high-precision virtual wearing, such as e-commerce, custom styling, and avatar creation.

Authors:Soroush Mahdi, Fardin Ayar, Ehsan Javanmardi, Manabu Tsukada, Mahdi Javanmardi
Title: Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers
Abstract:
Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical.

Authors:Yuzhen Lei, Hongbin Xie, Jiaxing Zhao, Shuangxue Liu, Xuan Song
Title: MSCoRe: A Benchmark for Multi-Stage Collaborative Reasoning in LLM Agents
Abstract:
Large Language Models (LLMs) have excelled in question-answering (QA) tasks within single domains. However, their reasoning and coordination capabilities in complex, multi-stage scenarios remain underexplored. Existing benchmarks typically focus on isolated tasks or narrow domains, overlooking models' abilities for multi-stage collaboration and optimization without explicit external guidance. To bridge this gap, we propose \textbf{MSCoRe}, a novel benchmark comprising 126696 domain-specific QA instances spanning scenarios in automotive, pharmaceutical, electronics, and energy sectors. The dataset is created using a structured three-phase pipeline: dynamic sampling, iterative question-answer generation, and a multi-level quality assessment to ensure data quality. Tasks are further categorized into three difficulty levels according to stage coverage and complexity. With MSCoRe, we have conducted a comprehensive evaluation of various state-of-the-art LLM agents. The commercial models performed best across all tasks and scenarios, but a notable gap in ROUGE scores remains between simple and complex tasks. We also tested the models' robustness and found that their performance is negatively affected by noisy data. MSCoRe provides a valuable new resource for the community to evaluate and improve multi-stage reasoning in LLM agents. The code and data are available at https://github.com/D3E0-source/MSCoRE.

Authors:Jinshu Chen, Xinghui Li, Xu Bai, Tianxiang Ma, Pengze Zhang, Zhuowei Chen, Gen Li, Lijie Liu, Songtao Zhao, Bingchuan Li, Qian He
Title: OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models
Abstract:
Recent advances in video insertion based on diffusion models are impressive. However, existing methods rely on complex control signals but struggle with subject consistency, limiting their practical applicability. In this paper, we focus on the task of Mask-free Video Insertion and aim to resolve three key challenges: data scarcity, subject-scene equilibrium, and insertion harmonization. To address the data scarcity, we propose a new data pipeline InsertPipe, constructing diverse cross-pair data automatically. Building upon our data pipeline, we develop OmniInsert, a novel unified framework for mask-free video insertion from both single and multiple subject references. Specifically, to maintain subject-scene equilibrium, we introduce a simple yet effective Condition-Specific Feature Injection mechanism to distinctly inject multi-source conditions and propose a novel Progressive Training strategy that enables the model to balance feature injection from subjects and source video. Meanwhile, we design the Subject-Focused Loss to improve the detailed appearance of the subjects. To further enhance insertion harmonization, we propose an Insertive Preference Optimization methodology to optimize the model by simulating human preferences, and incorporate a Context-Aware Rephraser module during reference to seamlessly integrate the subject into the original scenes. To address the lack of a benchmark for the field, we introduce InsertBench, a comprehensive benchmark comprising diverse scenes with meticulously selected subjects. Evaluation on InsertBench indicates OmniInsert outperforms state-of-the-art closed-source commercial solutions. The code will be released.

Authors:Chang Li, Zehua Chen, Liyuan Wang, Jun Zhu
Title: Audio Super-Resolution with Latent Bridge Models
Abstract:
Audio super-resolution (SR), i.e., upsampling the low-resolution (LR) waveform to the high-resolution (HR) version, has recently been explored with diffusion and bridge models, while previous methods often suffer from sub-optimal upsampling quality due to their uninformative generation prior. Towards high-quality audio super-resolution, we present a new system with latent bridge models (LBMs), where we compress the audio waveform into a continuous latent space and design an LBM to enable a latent-to-latent generation process that naturally matches the LR-toHR upsampling process, thereby fully exploiting the instructive prior information contained in the LR waveform. To further enhance the training results despite the limited availability of HR samples, we introduce frequency-aware LBMs, where the prior and target frequency are taken as model input, enabling LBMs to explicitly learn an any-to-any upsampling process at the training stage. Furthermore, we design cascaded LBMs and present two prior augmentation strategies, where we make the first attempt to unlock the audio upsampling beyond 48 kHz and empower a seamless cascaded SR process, providing higher flexibility for audio post-production. Comprehensive experimental results evaluated on the VCTK, ESC-50, Song-Describer benchmark datasets and two internal testsets demonstrate that we achieve state-of-the-art objective and perceptual quality for any-to-48kHz SR across speech, audio, and music signals, as well as setting the first record for any-to-192kHz audio SR. Demo at https://AudioLBM.github.io/.

Authors:Aiming Zhang, Tianyuan Yu, Liang Bai, Jun Tang, Yanming Guo, Yirun Ruan, Yun Zhou, Zhihe Lu
Title: COLA: Context-aware Language-driven Test-time Adaptation
Abstract:
Test-time adaptation (TTA) has gained increasing popularity due to its efficacy in addressing ``distribution shift'' issue while simultaneously protecting data privacy. However, most prior methods assume that a paired source domain model and target domain sharing the same label space coexist, heavily limiting their applicability. In this paper, we investigate a more general source model capable of adaptation to multiple target domains without needing shared labels. This is achieved by using a pre-trained vision-language model (VLM), \egno, CLIP, that can recognize images through matching with class descriptions. While the zero-shot performance of VLMs is impressive, they struggle to effectively capture the distinctive attributes of a target domain. To that end, we propose a novel method -- Context-aware Language-driven TTA (COLA). The proposed method incorporates a lightweight context-aware module that consists of three key components: a task-aware adapter, a context-aware unit, and a residual connection unit for exploring task-specific knowledge, domain-specific knowledge from the VLM and prior knowledge of the VLM, respectively. It is worth noting that the context-aware module can be seamlessly integrated into a frozen VLM, ensuring both minimal effort and parameter efficiency. Additionally, we introduce a Class-Balanced Pseudo-labeling (CBPL) strategy to mitigate the adverse effects caused by class imbalance. We demonstrate the effectiveness of our method not only in TTA scenarios but also in class generalisation tasks. The source code is available at https://github.com/NUDT-Bai-Group/COLA-TTA.

Authors:Florinel Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu
Title: PRNU-Bench: A Novel Benchmark and Model for PRNU-Based Camera Identification
Abstract:
We propose a novel benchmark for camera identification via Photo Response Non-Uniformity (PRNU) estimation. The benchmark comprises 13K photos taken with 120+ cameras, where the training and test photos are taken in different scenarios, enabling ``in-the-wild'' evaluation. In addition, we propose a novel PRNU-based camera identification model that employs a hybrid architecture, comprising a denoising autoencoder to estimate the PRNU signal and a convolutional network that can perform 1:N verification of camera devices. Instead of using a conventional approach based on contrastive learning, our method takes the Hadamard product between reference and query PRNU signals as input. This novel design leads to significantly better results compared with state-of-the-art models based on denoising autoencoders and contrastive learning. We release our dataset and code at: https://github.com/CroitoruAlin/PRNU-Bench.

Authors:Yuxuan Li, Yicheng Zhang, Wenhao Tang, Yimian Dai, Ming-Ming Cheng, Xiang Li, Jian Yang
Title: Visual Instruction Pretraining for Domain-Specific Foundation Models
Abstract:
Modern computer vision is converging on a closed loop in which perception, reasoning and generation mutually reinforce each other. However, this loop remains incomplete: the top-down influence of high-level reasoning on the foundational learning of low-level perceptual features is not yet underexplored. This paper addresses this gap by proposing a new paradigm for pretraining foundation models in downstream domains. We introduce Visual insTruction Pretraining (ViTP), a novel approach that directly leverages reasoning to enhance perception. ViTP embeds a Vision Transformer (ViT) backbone within a Vision-Language Model and pretrains it end-to-end using a rich corpus of visual instruction data curated from target downstream domains. ViTP is powered by our proposed Visual Robustness Learning (VRL), which compels the ViT to learn robust and domain-relevant features from a sparse set of visual tokens. Extensive experiments on 16 challenging remote sensing and medical imaging benchmarks demonstrate that ViTP establishes new state-of-the-art performance across a diverse range of downstream tasks. The code is available at https://github.com/zcablii/ViTP.

Authors:Dian Jin, Yanghao Zhou, Jinxing Zhou, Jiaqi Ma, Ruohao Guo, Dan Guo
Title: SimToken: A Simple Baseline for Referring Audio-Visual Segmentation
Abstract:
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment specific objects in videos based on natural language expressions involving audio, vision, and text information. This task poses significant challenges in cross-modal reasoning and fine-grained object localization. In this paper, we propose a simple framework, SimToken, that integrates a multimodal large language model (MLLM) with the Segment Anything Model (SAM). The MLLM is guided to generate a special semantic token representing the referred object. This compact token, enriched with contextual information from all modalities, acts as a prompt to guide SAM to segment objectsacross video frames. To further improve semantic learning, we introduce a novel target-consistent semantic alignment loss that aligns token embeddings from different expressions but referring to the same object. Experiments on the Ref-AVS benchmark demonstrate that our approach achieves superior performance compared to existing methods.

Authors:Zihan Zheng, Zhenlong Wu, Houqiang Zhong, Yuan Tian, Ning Cao, Lan Xu, Jiangchao Yao, Xiaoyun Zhang, Qiang Hu, Wenjun Zhang
Title: 4DGCPro: Efficient Hierarchical 4D Gaussian Compression for Progressive Volumetric Video Streaming
Abstract:
Achieving seamless viewing of high-fidelity volumetric video, comparable to 2D video experiences, remains an open challenge. Existing volumetric video compression methods either lack the flexibility to adjust quality and bitrate within a single model for efficient streaming across diverse networks and devices, or struggle with real-time decoding and rendering on lightweight mobile platforms. To address these challenges, we introduce 4DGCPro, a novel hierarchical 4D Gaussian compression framework that facilitates real-time mobile decoding and high-quality rendering via progressive volumetric video streaming in a single bitstream. Specifically, we propose a perceptually-weighted and compression-friendly hierarchical 4D Gaussian representation with motion-aware adaptive grouping to reduce temporal redundancy, preserve coherence, and enable scalable multi-level detail streaming. Furthermore, we present an end-to-end entropy-optimized training scheme, which incorporates layer-wise rate-distortion (RD) supervision and attribute-specific entropy modeling for efficient bitstream generation. Extensive experiments show that 4DGCPro enables flexible quality and multiple bitrate within a single model, achieving real-time decoding and rendering on mobile devices while outperforming existing methods in RD performance across multiple datasets. Project Page: https://mediax-sjtu.github.io/4DGCPro

Authors:Wenhao Zhuang, Yuan Sun, Xiaobing Zhao
Title: Enhancing Cross-Lingual Transfer through Reversible Transliteration: A Huffman-Based Approach for Low-Resource Languages
Abstract:
As large language models (LLMs) are trained on increasingly diverse and extensive multilingual corpora, they demonstrate cross-lingual transfer capabilities. However, these capabilities often fail to effectively extend to low-resource languages, particularly those utilizing non-Latin scripts. While transliterating low-resource languages into Latin script presents a natural solution, there currently lacks a comprehensive framework for integrating transliteration into LLMs training and deployment. Taking a pragmatic approach, this paper innovatively combines character transliteration with Huffman coding to design a complete transliteration framework. Our proposed framework offers the following advantages: 1) Compression: Reduces storage requirements for low-resource language content, achieving up to 50% reduction in file size and 50-80% reduction in token count. 2) Accuracy: Guarantees 100% lossless conversion from transliterated text back to the source language. 3) Efficiency: Eliminates the need for vocabulary expansion for low-resource languages, improving training and inference efficiency. 4) Scalability: The framework can be extended to other low-resource languages. We validate the effectiveness of our framework across multiple downstream tasks, including text classification, machine reading comprehension, and machine translation. Experimental results demonstrate that our method significantly enhances the model's capability to process low-resource languages while maintaining performance on high-resource languages. Our data and code are publicly available at https://github.com/CMLI-NLP/HuffmanTranslit.

Authors:Qinghua Lin, Guang-Hai Liu, Zuoyong Li, Yang Li, Yuting Jiang, Xiang Wu
Title: Multimodal Medical Image Classification via Synergistic Learning Pre-training
Abstract:
Multimodal pathological images are usually in clinical diagnosis, but computer vision-based multimodal image-assisted diagnosis faces challenges with modality fusion, especially in the absence of expert-annotated data. To achieve the modality fusion in multimodal images with label scarcity, we propose a novel ``pretraining + fine-tuning" framework for multimodal semi-supervised medical image classification. Specifically, we propose a synergistic learning pretraining framework of consistency, reconstructive, and aligned learning. By treating one modality as an augmented sample of another modality, we implement a self-supervised learning pre-train, enhancing the baseline model's feature representation capability. Then, we design a fine-tuning method for multimodal fusion. During the fine-tuning stage, we set different encoders to extract features from the original modalities and provide a multimodal fusion encoder for fusion modality. In addition, we propose a distribution shift method for multimodal fusion features, which alleviates the prediction uncertainty and overfitting risks caused by the lack of labeled samples. We conduct extensive experiments on the publicly available gastroscopy image datasets Kvasir and Kvasirv2. Quantitative and qualitative results demonstrate that the proposed method outperforms the current state-of-the-art classification methods. The code will be released at: https://github.com/LQH89757/MICS.

Authors:Xingqi Wang, Yiming Cui, Xin Yao, Shijin Wang, Guoping Hu, Xiaoyu Qin
Title: ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding
Abstract:
Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

Authors:Ying Feng, Hongjie Fang, Yinong He, Jingjing Chen, Chenxi Wang, Zihao He, Ruonan Liu, Cewu Lu
Title: Learning Dexterous Manipulation with Quantized Hand State
Abstract:
Dexterous robotic hands enable robots to perform complex manipulations that require fine-grained control and adaptability. Achieving such manipulation is challenging because the high degrees of freedom tightly couple hand and arm motions, making learning and control difficult. Successful dexterous manipulation relies not only on precise hand motions, but also on accurate spatial positioning of the arm and coordinated arm-hand dynamics. However, most existing visuomotor policies represent arm and hand actions in a single combined space, which often causes high-dimensional hand actions to dominate the coupled action space and compromise arm control. To address this, we propose DQ-RISE, which quantizes hand states to simplify hand motion prediction while preserving essential patterns, and applies a continuous relaxation that allows arm actions to diffuse jointly with these compact hand states. This design enables the policy to learn arm-hand coordination from data while preventing hand actions from overwhelming the action space. Experiments show that DQ-RISE achieves more balanced and efficient learning, paving the way toward structured and generalizable dexterous manipulation. Project website: http://rise-policy.github.io/DQ-RISE/

Authors:Haofeng Huang, Yifei Han, Long Zhang, Bin Li, Yangfan He
Title: MVCL-DAF++: Enhancing Multimodal Intent Recognition via Prototype-Aware Contrastive Alignment and Coarse-to-Fine Dynamic Attention Fusion
Abstract:
Multimodal intent recognition (MMIR) suffers from weak semantic grounding and poor robustness under noisy or rare-class conditions. We propose MVCL-DAF++, which extends MVCL-DAF with two key modules: (1) Prototype-aware contrastive alignment, aligning instances to class-level prototypes to enhance semantic consistency; and (2) Coarse-to-fine attention fusion, integrating global modality summaries with token-level features for hierarchical cross-modal interaction. On MIntRec and MIntRec2.0, MVCL-DAF++ achieves new state-of-the-art results, improving rare-class recognition by +1.05\% and +4.18\% WF1, respectively. These results demonstrate the effectiveness of prototype-guided learning and coarse-to-fine fusion for robust multimodal understanding. The source code is available at https://github.com/chr1s623/MVCL-DAF-PlusPlus.

Authors:Tong Chen, Zimu Wang, Yiyi Miao, Haoran Luo, Yuanfei Sun, Wei Wang, Zhengyong Jiang, Procheta Sen, Jionglong Su
Title: MedFact: A Large-scale Chinese Dataset for Evidence-based Medical Fact-checking of LLM Responses
Abstract:
Medical fact-checking has become increasingly critical as more individuals seek medical information online. However, existing datasets predominantly focus on human-generated content, leaving the verification of content generated by large language models (LLMs) relatively unexplored. To address this gap, we introduce MedFact, the first evidence-based Chinese medical fact-checking dataset of LLM-generated medical content. It consists of 1,321 questions and 7,409 claims, mirroring the complexities of real-world medical scenarios. We conduct comprehensive experiments in both in-context learning (ICL) and fine-tuning settings, showcasing the capability and challenges of current LLMs on this task, accompanied by an in-depth error analysis to point out key directions for future research. Our dataset is publicly available at https://github.com/AshleyChenNLP/MedFact.

Authors:Gunjan Chhablani, Xiaomeng Ye, Muhammad Zubair Irshad, Zsolt Kira
Title: EmbodiedSplat: Personalized Real-to-Sim-to-Real Navigation with Gaussian Splats from a Mobile Device
Abstract:
The field of Embodied AI predominantly relies on simulation for training and evaluation, often using either fully synthetic environments that lack photorealism or high-fidelity real-world reconstructions captured with expensive hardware. As a result, sim-to-real transfer remains a major challenge. In this paper, we introduce EmbodiedSplat, a novel approach that personalizes policy training by efficiently capturing the deployment environment and fine-tuning policies within the reconstructed scenes. Our method leverages 3D Gaussian Splatting (GS) and the Habitat-Sim simulator to bridge the gap between realistic scene capture and effective training environments. Using iPhone-captured deployment scenes, we reconstruct meshes via GS, enabling training in settings that closely approximate real-world conditions. We conduct a comprehensive analysis of training strategies, pre-training datasets, and mesh reconstruction techniques, evaluating their impact on sim-to-real predictivity in real-world scenarios. Experimental results demonstrate that agents fine-tuned with EmbodiedSplat outperform both zero-shot baselines pre-trained on large-scale real-world datasets (HM3D) and synthetically generated datasets (HSSD), achieving absolute success rate improvements of 20% and 40% on real-world Image Navigation task. Moreover, our approach yields a high sim-vs-real correlation (0.87-0.97) for the reconstructed meshes, underscoring its effectiveness in adapting policies to diverse environments with minimal effort. Project page: https://gchhablani.github.io/embodied-splat.

Authors:Hyesung Jeon, Seojune Lee, Beomseok Kang, Yulhwa Kim, Jae-Joon Kim
Title: QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models
Abstract:
The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.

Authors:Pramit Sahoo, Maharaj Brahma, Maunendra Sankar Desarkar
Title: DIWALI -- Diversity and Inclusivity aWare cuLture specific Items for India: Dataset and Assessment of LLMs for Cultural Text Adaptation in Indian Context
Abstract:
Large language models (LLMs) are widely used in various tasks and applications. However, despite their wide capabilities, they are shown to lack cultural alignment \citep{ryan-etal-2024-unintended, alkhamissi-etal-2024-investigating} and produce biased generations \cite{naous-etal-2024-beer} due to a lack of cultural knowledge and competence. Evaluation of LLMs for cultural awareness and alignment is particularly challenging due to the lack of proper evaluation metrics and unavailability of culturally grounded datasets representing the vast complexity of cultures at the regional and sub-regional levels. Existing datasets for culture specific items (CSIs) focus primarily on concepts at the regional level and may contain false positives. To address this issue, we introduce a novel CSI dataset for Indian culture, belonging to 17 cultural facets. The dataset comprises $\sim$8k cultural concepts from 36 sub-regions. To measure the cultural competence of LLMs on a cultural text adaptation task, we evaluate the adaptations using the CSIs created, LLM as Judge, and human evaluations from diverse socio-demographic region. Furthermore, we perform quantitative analysis demonstrating selective sub-regional coverage and surface-level adaptations across all considered LLMs. Our dataset is available here: https://huggingface.co/datasets/nlip/DIWALI, project webpage https://nlip-lab.github.io/nlip/publications/diwali/, and our codebase with model outputs can be found here: https://github.com/pramitsahoo/culture-evaluation

Authors:Kang-il Lee, Jahyun Koo, Seunghyun Yoon, Minbeom Kim, Hyukhun Koh, Dongryeol Lee, Kyomin Jung
Title: Program Synthesis via Test-Time Transduction
Abstract:
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.

Authors:Junzhe Wu, Yufei Jia, Yiyi Yan, Zhixing Chen, Tiao Tan, Zifan Wang, Guangyu Wang
Title: FGGS-LiDAR: Ultra-Fast, GPU-Accelerated Simulation from General 3DGS Models to LiDAR
Abstract:
While 3D Gaussian Splatting (3DGS) has revolutionized photorealistic rendering, its vast ecosystem of assets remains incompatible with high-performance LiDAR simulation, a critical tool for robotics and autonomous driving. We present \textbf{FGGS-LiDAR}, a framework that bridges this gap with a truly plug-and-play approach. Our method converts \textit{any} pretrained 3DGS model into a high-fidelity, watertight mesh without requiring LiDAR-specific supervision or architectural alterations. This conversion is achieved through a general pipeline of volumetric discretization and Truncated Signed Distance Field (TSDF) extraction. We pair this with a highly optimized, GPU-accelerated ray-casting module that simulates LiDAR returns at over 500 FPS. We validate our approach on indoor and outdoor scenes, demonstrating exceptional geometric fidelity; By enabling the direct reuse of 3DGS assets for geometrically accurate depth sensing, our framework extends their utility beyond visualization and unlocks new capabilities for scalable, multimodal simulation. Our open-source implementation is available at https://github.com/TATP-233/FGGS-LiDAR.

Authors:Ziqing Zou, Cong Wang, Yue Hu, Xiao Liu, Bowen Xu, Rong Xiong, Changjie Fan, Yingfeng Chen, Yue Wang
Title: High-Precision and High-Efficiency Trajectory Tracking for Excavators Based on Closed-Loop Dynamics
Abstract:
The complex nonlinear dynamics of hydraulic excavators, such as time delays and control coupling, pose significant challenges to achieving high-precision trajectory tracking. Traditional control methods often fall short in such applications due to their inability to effectively handle these nonlinearities, while commonly used learning-based methods require extensive interactions with the environment, leading to inefficiency. To address these issues, we introduce EfficientTrack, a trajectory tracking method that integrates model-based learning to manage nonlinear dynamics and leverages closed-loop dynamics to improve learning efficiency, ultimately minimizing tracking errors. We validate our method through comprehensive experiments both in simulation and on a real-world excavator. Comparative experiments in simulation demonstrate that our method outperforms existing learning-based approaches, achieving the highest tracking precision and smoothness with the fewest interactions. Real-world experiments further show that our method remains effective under load conditions and possesses the ability for continual learning, highlighting its practical applicability. For implementation details and source code, please refer to https://github.com/ZiqingZou/EfficientTrack.

Authors:Zhizhang FU, Guangsheng Bao, Hongbo Zhang, Chenkai Hu, Yue Zhang
Title: Correlation or Causation: Analyzing the Causal Structures of LLM and LRM Reasoning Process
Abstract:
LLMs suffer from critical reasoning issues such as unfaithfulness, bias, and inconsistency, since they lack robust causal underpinnings and may rely on superficial correlations rather than genuine understanding. Successive LRMs have emerged as a promising alternative, leveraging advanced training techniques such as reinforcement learning (RL) and distillation to improve task accuracy. However, the impact of these training methods on causality remains largely unexplored. In this study, we conduct a systematic causal analysis on LLMs and LRMs, examining structural causal models (SCMs) of four key variables: problem instruction (Z), thinking process (T), reasoning steps (X), and answer (Y). Our findings reveal that RLVR-trained LRMs exhibit enhanced causal reasoning capabilities, aligning more closely with ideal causal structures, while LLMs and distilled LRMs fail to address causality-related deficiencies. Our further investigation indicates that RLVR reduces spurious correlations and strengthens genuine causal patterns, thereby mitigating unfaithfulness and bias. In addition, our inspection on the dynamics of the RLVR training process observes a high correlation between reduced spurious features and improved causal structures, where the causal relationships consistently improve in the training process. This study contributes to the understanding of causality in reasoning models, highlights the critical role of RLVR in enhancing causal reasoning, and provides insights for designing future AI systems with stronger causal foundations. We release our code and data at https://github.com/Harryking1999/CoT_Causal_Analysis.

Authors:Minglai Yang, Reyan Ahmed
Title: Word2VecGD: Neural Graph Drawing with Cosine-Stress Optimization
Abstract:
We propose a novel graph visualization method leveraging random walk-based embeddings to replace costly graph-theoretical distance computations. Using word2vec-inspired embeddings, our approach captures both structural and semantic relationships efficiently. Instead of relying on exact shortest-path distances, we optimize layouts using cosine dissimilarities, significantly reducing computational overhead. Our framework integrates differentiable stress optimization with stochastic gradient descent (SGD), supporting multi-criteria layout objectives. Experimental results demonstrate that our method produces high-quality, semantically meaningful layouts while efficiently scaling to large graphs. Code available at: https://github.com/mlyann/graphv_nn

Authors:Weihua Du, Hailei Gong, Zhan Ling, Kang Liu, Lingfeng Shen, Xuesong Yao, Yufei Xu, Dingyuan Shi, Yiming Yang, Jiecao Chen
Title: Generalizable End-to-End Tool-Use RL with Synthetic CodeGym
Abstract:
Tool-augmented large language models (LLMs), hereafter LLM agents, leverage external tools to solve diverse tasks and interface with the real world. However, current training practices largely rely on supervised fine-tuning (SFT) over static trajectories or reinforcement learning (RL) on narrow tasks, and generalize poorly beyond development settings, leading to brittleness with new tools and unseen workflows. Because code execution reflects many structures of real-world workflows, coding problems provide a natural basis for building agent training environments. Motivated by this, we introduce CodeGym, a scalable framework that synthesizes diverse, verifiable, and controllable multi-turn tool-use environments for agent RL, enabling LLM agents to explore and master various workflows actively. CodeGym rewrites static coding problems into interactive environments by extracting atomic functions or logic into callable tools, yielding verifiable tasks that span various tool-execution workflows. Models of varying sizes and chain-of-thought configurations, trained in CodeGym, exhibit consistent out-of-distribution generalizability; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7 points on the OOD benchmark $τ$-Bench. These results highlight CodeGym as a step toward scalable general-purpose RL environments that align with real-world agent workflows.

Authors:Buyin Deng, Lingxin Huang, Kai Luo, Fei Teng, Kailun Yang
Title: DepTR-MOT: Unveiling the Potential of Depth-Informed Trajectory Refinement for Multi-Object Tracking
Abstract:
Visual Multi-Object Tracking (MOT) is a crucial component of robotic perception, yet existing Tracking-By-Detection (TBD) methods often rely on 2D cues, such as bounding boxes and motion modeling, which struggle under occlusions and close-proximity interactions. Trackers relying on these 2D cues are particularly unreliable in robotic environments, where dense targets and frequent occlusions are common. While depth information has the potential to alleviate these issues, most existing MOT datasets lack depth annotations, leading to its underexploited role in the domain. To unveil the potential of depth-informed trajectory refinement, we introduce DepTR-MOT, a DETR-based detector enhanced with instance-level depth information. Specifically, we propose two key innovations: (i) foundation model-based instance-level soft depth label supervision, which refines depth prediction, and (ii) the distillation of dense depth maps to maintain global depth consistency. These strategies enable DepTR-MOT to output instance-level depth during inference, without requiring foundation models and without additional computational cost. By incorporating depth cues, our method enhances the robustness of the TBD paradigm, effectively resolving occlusion and close-proximity challenges. Experiments on both the QuadTrack and DanceTrack datasets demonstrate the effectiveness of our approach, achieving HOTA scores of 27.59 and 44.47, respectively. In particular, results on QuadTrack, a robotic platform MOT dataset, highlight the advantages of our method in handling occlusion and close-proximity challenges in robotic tracking. The source code will be made publicly available at https://github.com/warriordby/DepTR-MOT.

Authors:Paweł Budzianowski, Emilia Wiśnios, Gracjan Góral, Igor Kulakov, Viktor Petrenko, Krzysztof Walas
Title: OpenGVL -- Benchmarking Visual Temporal Progress for Data Curation
Abstract:
Data scarcity remains one of the most limiting factors in driving progress in robotics. However, the amount of available robotics data in the wild is growing exponentially, creating new opportunities for large-scale data utilization. Reliable temporal task completion prediction could help automatically annotate and curate this data at scale. The Generative Value Learning (GVL) approach was recently proposed, leveraging the knowledge embedded in vision-language models (VLMs) to predict task progress from visual observations. Building upon GVL, we propose OpenGVL, a comprehensive benchmark for estimating task progress across diverse challenging manipulation tasks involving both robotic and human embodiments. We evaluate the capabilities of publicly available open-source foundation models, showing that open-source model families significantly underperform closed-source counterparts, achieving only approximately $70\%$ of their performance on temporal progress prediction tasks. Furthermore, we demonstrate how OpenGVL can serve as a practical tool for automated data curation and filtering, enabling efficient quality assessment of large-scale robotics datasets. We release the benchmark along with the complete codebase at \href{github.com/budzianowski/opengvl}{OpenGVL}.

Authors:Zhuofan Chen, Jiyuan He, Yichi Zhang, Xing Hu, Haoxing Wen, Jun Bai, Wenge Rong
Title: CogAtom: From Cognitive Atoms to Olympiad-level Mathematical Reasoning in Large Language Models
Abstract:
Mathematical reasoning poses significant challenges for Large Language Models (LLMs) due to its demand for multi-step reasoning and abstract conceptual integration. While recent test-time scaling techniques rely heavily on high-quality, challenging problems, the scarcity of Olympiad-level math problems remains a bottleneck. We introduce CogAtom, a novel cognitive atom-based framework for synthesizing mathematically rigorous and cognitively diverse problems. Unlike prior approaches, CogAtom models problem construction as a process of selecting and recombining fundamental reasoning units, cognitive atoms, extracted from human-authored solutions. A diversity-promoting random walk algorithm enables exploration of the cognitive atom space, while a constraint-based recombination mechanism ensures logical soundness and structural validity. The combinatorial nature of the graph structure provides a near-infinite space of reasoning paths, and the walk algorithm systematically explores this space to achieve large-scale synthesis of high-quality problems; meanwhile, by controlling the number of cognitive atoms, we can precisely adjust problem difficulty, ensuring diversity, scalability, and controllability of the generated problems. Experimental results demonstrate that CogAtom outperforms existing methods in accuracy, reasoning depth, and diversity, generating problems that closely match the difficulty of AIME while exceeding it in structural variation. Our work offers a cognitively grounded pathway toward scalable, high-quality math problem generation.Our code is publicly available at https://github.com/Icarus-1111/CogAtom.

Authors:Sydney Anuyah, Mehedi Mahmud Kaushik, Krishna Dwarampudi, Rakesh Shiradkar, Arjan Durresi, Sunandan Chakraborty
Title: Automated Knowledge Graph Construction using Large Language Models and Sentence Complexity Modelling
Abstract:
We introduce CoDe-KG, an open-source, end-to-end pipeline for extracting sentence-level knowledge graphs by combining robust coreference resolution with syntactic sentence decomposition. Using our model, we contribute a dataset of over 150,000 knowledge triples, which is open source. We also contribute a training corpus of 7248 rows for sentence complexity, 190 rows of gold human annotations for co-reference resolution using open source lung-cancer abstracts from PubMed, 900 rows of gold human annotations for sentence conversion policies, and 398 triples of gold human annotations. We systematically select optimal prompt-model pairs across five complexity categories, showing that hybrid chain-of-thought and few-shot prompting yields up to 99.8% exact-match accuracy on sentence simplification. On relation extraction (RE), our pipeline achieves 65.8% macro-F1 on REBEL, an 8-point gain over the prior state of the art, and 75.7% micro-F1 on WebNLG2, while matching or exceeding performance on Wiki-NRE and CaRB. Ablation studies demonstrate that integrating coreference and decomposition increases recall on rare relations by over 20%. Code and dataset are available at https://github.com/KaushikMahmud/CoDe-KG_EMNLP_2025

Authors:Mandip Goswami
Title: BeepBank-500: A Synthetic Earcon Mini-Corpus for UI Sound Research and Psychoacoustics Research
Abstract:
We introduce BeepBank-500, a compact, fully synthetic earcon/alert dataset (300-500 clips) designed for rapid, rights-clean experimentation in human-computer interaction and audio machine learning. Each clip is generated from a parametric recipe controlling waveform family (sine, square, triangle, FM), fundamental frequency, duration, amplitude envelope, amplitude modulation (AM), and lightweight Schroeder-style reverberation. We use three reverberation settings: dry, and two synthetic rooms denoted 'rir small' ('small') and 'rir medium' ('medium') throughout the paper and in the metadata. We release mono 48 kHz WAV audio (16-bit), a rich metadata table (signal/spectral features), and tiny reproducible baselines for (i) waveform-family classification and (ii) f0 regression on single tones. The corpus targets tasks such as earcon classification, timbre analyses, and onset detection, with clearly stated licensing and limitations. Audio is dedicated to the public domain via CC0-1.0; code is under MIT. Data DOI: https://doi.org/10.5281/zenodo.17172015. Code: https://github.com/mandip42/earcons-mini-500.

Authors:Ranran Huang, Krystian Mikolajczyk
Title: SPFSplatV2: Efficient Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views
Abstract:
We introduce SPFSplatV2, an efficient feed-forward framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training and inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs. A masked attention mechanism is introduced to efficiently estimate target poses during training, while a reprojection loss enforces pixel-aligned Gaussian primitives, providing stronger geometric constraints. We further demonstrate the compatibility of our training framework with different reconstruction architectures, resulting in two model variants. Remarkably, despite the absence of pose supervision, our method achieves state-of-the-art performance in both in-domain and out-of-domain novel view synthesis, even under extreme viewpoint changes and limited image overlap, and surpasses recent methods that rely on geometric supervision for relative pose estimation. By eliminating dependence on ground-truth poses, our method offers the scalability to leverage larger and more diverse datasets. Code and pretrained models will be available on our project page: https://ranrhuang.github.io/spfsplatv2/.

Authors:Yassine Kebbati, Naima Ait-Oufroukh, Vincent Vigneron, Dalil Ichala
Title: Neural Network and ANFIS based auto-adaptive MPC for path tracking in autonomous vehicles
Abstract:
Self-driving cars operate in constantly changing environments and are exposed to a variety of uncertainties and disturbances. These factors render classical controllers ineffective, especially for lateral control. Therefore, an adaptive MPC controller is designed in this paper for the path tracking task, tuned by an improved particle swarm optimization algorithm. Online parameter adaptation is performed using Neural Networks and ANFIS. The designed controller showed promising results compared to standard MPC in triple lane change and trajectory tracking scenarios. Code can be found here: https://github.com/yassinekebbati/NN_MPC-vs-ANFIS_MPC

Authors:Jinchao Ge, Tengfei Cheng, Biao Wu, Zeyu Zhang, Shiya Huang, Judith Bishop, Gillian Shepherd, Meng Fang, Ling Chen, Yang Zhao
Title: VaseVQA: Multimodal Agent and Benchmark for Ancient Greek Pottery
Abstract:
Analyzing cultural-heritage artifacts remains challenging for MLLMs: general models lack domain expertise, and SFT often overfits superficial patterns, yielding brittle reasoning for authentication and historical attribution. This raises the question of how to equip MLLMs with robust, expert-level reasoning for ancient Greek pottery. We present VaseVL, an SFT-then-RL system that turns evaluation into supervision: we construct a taxonomy of question types, probe the SFT model to localize type-specific performance gaps, and optimize with type-conditioned, compositionality-oriented rewards targeting those gaps. We also release VaseVQA, a comprehensive benchmark of 31,773 images designed to probe deep understanding. Experiments show state-of-the-art results on style classification and historical attribution with marked gains in compositional robustness over SFT-only baselines, validating diagnosis-guided, taxonomy-conditioned reward engineering and providing a reusable resource for future research. Code and dataset will be available at https://github.com/AIGeeksGroup/VaseVQA.

Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Title: Echo-Path: Pathology-Conditioned Echo Video Generation
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1

Authors:Bowen Qin, Chen Yue, Fang Yin, Hui Wang, JG Yao, Jiakang Liu, Jing-Shu Zheng, Miguel Hu Chen, Richeng Xuan, Shibei Meng, Shiqi Zhou, Teng Dai, Tong-Shuai Ren, Wei Cui, Xi Yang, Xialin Du, Xiaojing Xu, Xue Sun, Xuejing Li, Yaming Liu, Yesheng Liu, Ying Liu, Yonghua Lin, Yu Zhao, Yunduo Zhang, Yuwen Luo, Zheqi He, Zhiyuan He, Zhongyuan Wang
Title: FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions
Abstract:
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/

Authors:Zeyu Xie, Xuenan Xu, Yixuan Li, Mengyue Wu, Yuexian Zou
Title: STAR: Speech-to-Audio Generation via Representation Learning
Abstract:
This work presents STAR, the first end-to-end speech-to-audio generation framework, designed to enhance efficiency and address error propagation inherent in cascaded systems. Unlike prior approaches relying on text or vision, STAR leverages speech as it constitutes a natural modality for interaction. As an initial step to validate the feasibility of the system, we demonstrate through representation learning experiments that spoken sound event semantics can be effectively extracted from raw speech, capturing both auditory events and scene cues. Leveraging the semantic representations, STAR incorporates a bridge network for representation mapping and a two-stage training strategy to achieve end-to-end synthesis. With a 76.9% reduction in speech processing latency, STAR demonstrates superior generation performance over the cascaded systems. Overall, STAR establishes speech as a direct interaction signal for audio generation, thereby bridging representation learning and multimodal synthesis. Generated samples are available at https://zeyuxie29.github.io/STAR.

Authors:Junhyeok Lee, Helin Wang, Yaohan Guan, Thomas Thebaud, Laureano Moro-Velazquez, Jesús Villalba, Najim Dehak
Title: MaskVCT: Masked Voice Codec Transformer for Zero-Shot Voice Conversion With Increased Controllability via Multiple Guidances
Abstract:
We introduce MaskVCT, a zero-shot voice conversion (VC) model that offers multi-factor controllability through multiple classifier-free guidances (CFGs). While previous VC models rely on a fixed conditioning scheme, MaskVCT integrates diverse conditions in a single model. To further enhance robustness and control, the model can leverage continuous or quantized linguistic features to enhance intellgibility and speaker similarity, and can use or omit pitch contour to control prosody. These choices allow users to seamlessly balance speaker identity, linguistic content, and prosodic factors in a zero-shot VC setting. Extensive experiments demonstrate that MaskVCT achieves the best target speaker and accent similarities while obtaining competitive word and character error rates compared to existing baselines. Audio samples are available at https://maskvct.github.io/.

Authors:Yuhao Tian, Zheming Yang
Title: SAEC: Scene-Aware Enhanced Edge-Cloud Collaborative Industrial Vision Inspection with Multimodal LLM
Abstract:
Industrial vision inspection requires high accuracy under stringent resource constraints, yet existing approaches face a fundamental trade-off. Multimodal LLMs (MLLMs) deliver strong reasoning capabilities but incur prohibitive computational costs, while lightweight edge models often fail on complex cases. In this paper, we present SAEC, a scene-aware enhanced edge-cloud collaborative industrial vision inspection framework with MLLM. The framework is composed of three synergistic components: (1) Efficient MLLM Fine-Tuning for Complex Defect Inspection, (2) Lightweight Multiscale Scene-Complexity Estimation, and (3) Adaptive Edge-Cloud Scheduler. Together, these modules enable robust defect detection by tailoring multimodal reasoning to scene complexity and dynamically balancing computation between edge and cloud resources. Experimental results on MVTec AD and KSDD2 datasets demonstrate that SAEC attains 85.11% and 82.72% accuracy, surpassing Qwen by 22.1% and 20.8%, and LLaVA by 33.3% and 31.6%. It also reduces runtime by up to 22.4% and cuts energy per correct decision by 40%-74%. The code is available at https://github.com/YuHao-Tian/SAEC.

Authors:Hang Xu, Zang Yu, Yehui Tang, Pengbo Hu, Yuhao Tang, Hao Dong
Title: MCTS-EP: Empowering Embodied Planning with Online Preference Optimization
Abstract:
This paper introduces MCTS-EP, an online learning framework that combines large language models (LLM) with Monte Carlo Tree Search (MCTS) for training embodied agents. MCTS-EP integrates three key components: MCTS-guided exploration for preference data collection, efficient multi-modal reasoning mechanism, and iterative training pipeline based on preference optimization. We theoretically prove that MCTS-EP achieves better performance bounds than conventional on-policy algorithms when the loss function is strongly convex, and demonstrate that it can be formulated as a search-enhanced variant of GAIL. MCTS-EP achieves state-of-the-art performace across serval benchmarks. In ALFWorld, it achieves 92% and 87% success rates for textual and visual tasks. In WebShop, it reaches an average reward of 0.81. MTCS-EP also reduces average interaction steps from from 18.7/19.5 to 10.2/9.9 steps in visual ALFWorld.Code available at: https://github.com/xuhang-2/Embodied-Agent-Planning

Authors:Lingzhao Kong, Jiacheng Lin, Siyu Li, Kai Luo, Zhiyong Li, Kailun Yang
Title: CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception
Abstract:
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@50 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.

Authors:Yuzhu Li, An Sui, Fuping Wu, Xiahai Zhuang
Title: Uncertainty-Supervised Interpretable and Robust Evidential Segmentation
Abstract:
Uncertainty estimation has been widely studied in medical image segmentation as a tool to provide reliability, particularly in deep learning approaches. However, previous methods generally lack effective supervision in uncertainty estimation, leading to low interpretability and robustness of the predictions. In this work, we propose a self-supervised approach to guide the learning of uncertainty. Specifically, we introduce three principles about the relationships between the uncertainty and the image gradients around boundaries and noise. Based on these principles, two uncertainty supervision losses are designed. These losses enhance the alignment between model predictions and human interpretation. Accordingly, we introduce novel quantitative metrics for evaluating the interpretability and robustness of uncertainty. Experimental results demonstrate that compared to state-of-the-art approaches, the proposed method can achieve competitive segmentation performance and superior results in out-of-distribution (OOD) scenarios while significantly improving the interpretability and robustness of uncertainty estimation. Code is available via https://github.com/suiannaius/SURE.

Authors:Jie Chen, Yuhong Feng, Tao Dai, Mingzhe Liu, Hongtao Chen, Zhaoxi He, Jiancong Bai
Title: SFN-YOLO: Towards Free-Range Poultry Detection via Scale-aware Fusion Networks
Abstract:
Detecting and localizing poultry is essential for advancing smart poultry farming. Despite the progress of detection-centric methods, challenges persist in free-range settings due to multiscale targets, obstructions, and complex or dynamic backgrounds. To tackle these challenges, we introduce an innovative poultry detection approach named SFN-YOLO that utilizes scale-aware fusion. This approach combines detailed local features with broader global context to improve detection in intricate environments. Furthermore, we have developed a new expansive dataset (M-SCOPE) tailored for varied free-range conditions. Comprehensive experiments demonstrate our model achieves an mAP of 80.7% with just 7.2M parameters, which is 35.1% fewer than the benchmark, while retaining strong generalization capability across different domains. The efficient and real-time detection capabilities of SFN-YOLO support automated smart poultry farming. The code and dataset can be accessed at https://github.com/chenjessiee/SFN-YOLO.

Authors:Binhua Huang, Ni Wang, Arjun Pakrashi, Soumyabrata Dev
Title: MoCLIP-Lite: Efficient Video Recognition by Fusing CLIP with Motion Vectors
Abstract:
Video action recognition is a fundamental task in computer vision, but state-of-the-art models are often computationally expensive and rely on extensive video pre-training. In parallel, large-scale vision-language models like Contrastive Language-Image Pre-training (CLIP) offer powerful zero-shot capabilities on static images, while motion vectors (MV) provide highly efficient temporal information directly from compressed video streams. To synergize the strengths of these paradigms, we propose MoCLIP-Lite, a simple yet powerful two-stream late fusion framework for efficient video recognition. Our approach combines features from a frozen CLIP image encoder with features from a lightweight, supervised network trained on raw MV. During fusion, both backbones are frozen, and only a tiny Multi-Layer Perceptron (MLP) head is trained, ensuring extreme efficiency. Through comprehensive experiments on the UCF101 dataset, our method achieves a remarkable 89.2% Top-1 accuracy, significantly outperforming strong zero-shot (65.0%) and MV-only (66.5%) baselines. Our work provides a new, highly efficient baseline for video understanding that effectively bridges the gap between large static models and dynamic, low-cost motion cues. Our code and models are available at https://github.com/microa/MoCLIP-Lite.

Authors:Zipeng Wang, Dan Xu
Title: HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis
Abstract:
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.

Authors:Yuhong Feng, Hongtao Chen, Qi Zhang, Jie Chen, Zhaoxi He, Mingzhe Liu, Jianghai Liao
Title: A Dual-Modulation Framework for RGB-T Crowd Counting via Spatially Modulated Attention and Adaptive Fusion
Abstract:
Accurate RGB-Thermal (RGB-T) crowd counting is crucial for public safety in challenging conditions. While recent Transformer-based methods excel at capturing global context, their inherent lack of spatial inductive bias causes attention to spread to irrelevant background regions, compromising crowd localization precision. Furthermore, effectively bridging the gap between these distinct modalities remains a major hurdle. To tackle this, we propose the Dual Modulation Framework, comprising two modules: Spatially Modulated Attention (SMA), which improves crowd localization by using a learnable Spatial Decay Mask to penalize attention between distant tokens and prevent focus from spreading to the background; and Adaptive Fusion Modulation (AFM), which implements a dynamic gating mechanism to prioritize the most reliable modality for adaptive cross-modal fusion. Extensive experiments on RGB-T crowd counting datasets demonstrate the superior performance of our method compared to previous works. Code available at https://github.com/Cht2924/RGBT-Crowd-Counting.

Authors:Kihyun Kim, Michalis Lazarou, Tania Stathaki
Title: Enhanced Detection of Tiny Objects in Aerial Images
Abstract:
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce three enhancement strategies -- input image resolution adjustment, data augmentation, and attention mechanisms -- that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of attention-augmented CNNs. Two well-known attention modules, the Squeeze-and-Excitation Block (SE Block) and the Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 with an increased number of channels, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our codes are available at: https://github.com/Kihyun11/MoonNet

Authors:Kunrong Li, Kwan Hui Lim
Title: RALLM-POI: Retrieval-Augmented LLM for Zero-shot Next POI Recommendation with Geographical Reranking
Abstract:
Next point-of-interest (POI) recommendation predicts a user's next destination from historical movements. Traditional models require intensive training, while LLMs offer flexible and generalizable zero-shot solutions but often generate generic or geographically irrelevant results due to missing trajectory and spatial context. To address these issues, we propose RALLM-POI, a framework that couples LLMs with retrieval-augmented generation and self-rectification. We first propose a Historical Trajectory Retriever (HTR) that retrieves relevant past trajectories to serve as contextual references, which are then reranked by a Geographical Distance Reranker (GDR) for prioritizing spatially relevant trajectories. Lastly, an Agentic LLM Rectifier (ALR) is designed to refine outputs through self-reflection. Without additional training, RALLM-POI achieves substantial accuracy gains across three real-world Foursquare datasets, outperforming both conventional and LLM-based baselines. Code is released at https://github.com/LKRcrocodile/RALLM-POI.

Authors:Yao Du, Jiarong Guo, Xiaomeng Li
Title: CardiacCLIP: Video-based CLIP Adaptation for LVEF Prediction in a Few-shot Manner
Abstract:
Echocardiography is a vital non-invasive modality for cardiac assessment, with left ventricular ejection fraction (LVEF) serving as a key indicator of heart function. Existing LVEF estimation methods depend on large-scale annotated video datasets, which are costly and limit adaptability across various clinical settings. Recent vision-language models for echocardiography, such as EchoCLIP, apply image-to-text pretraining but fail to capture crucial temporal dynamics and localized cardiac structures essential for accurate diagnosis. To address these challenges, we propose CardiacCLIP, a video-based framework that enhances LVEF prediction through attention-based frame aggregation and multi-resolution input scaling. Specifically, we introduce MFL (Multi Frame Learning), a novel attention-based mechanism for selectively fusing informative frames, and EchoZoom, a multi-scale feature extraction strategy that refines spatial representations of cardiac structures. As a novel adaptation of CLIP models for few-shot echocardiogram video analysis, our approach significantly improves diagnostic accuracy, reducing MAE by 2.07 on the EchoNet-Dynamic dataset under 1-shot setting. The code is available at https://github.com/xmed-lab/CardiacCLIP.

Authors:Shuang Liang, Chaochuan Hou, Xu Yao, Shiping Wang, Minqi Jiang, Songqiao Han, Hailiang Huang
Title: TSGym: Design Choices for Deep Multivariate Time-Series Forecasting
Abstract:
Recently, deep learning has driven significant advancements in multivariate time series forecasting (MTSF) tasks. However, much of the current research in MTSF tends to evaluate models from a holistic perspective, which obscures the individual contributions and leaves critical issues unaddressed. Adhering to the current modeling paradigms, this work bridges these gaps by systematically decomposing deep MTSF methods into their core, fine-grained components like series-patching tokenization, channel-independent strategy, attention modules, or even Large Language Models and Time-series Foundation Models. Through extensive experiments and component-level analysis, our work offers more profound insights than previous benchmarks that typically discuss models as a whole. Furthermore, we propose a novel automated solution called TSGym for MTSF tasks. Unlike traditional hyperparameter tuning, neural architecture searching or fixed model selection, TSGym performs fine-grained component selection and automated model construction, which enables the creation of more effective solutions tailored to diverse time series data, therefore enhancing model transferability across different data sources and robustness against distribution shifts. Extensive experiments indicate that TSGym significantly outperforms existing state-of-the-art MTSF and AutoML methods. All code is publicly available on https://github.com/SUFE-AILAB/TSGym.

Authors:Haizhou Ge, Yufei Jia, Zheng Li, Yue Li, Zhixing Chen, Ruqi Huang, Guyue Zhou
Title: FILIC: Dual-Loop Force-Guided Imitation Learning with Impedance Torque Control for Contact-Rich Manipulation Tasks
Abstract:
Contact-rich manipulation is crucial for robots to perform tasks requiring precise force control, such as insertion, assembly, and in-hand manipulation. However, most imitation learning (IL) policies remain position-centric and lack explicit force awareness, and adding force/torque sensors to collaborative robot arms is often costly and requires additional hardware design. To overcome these issues, we propose FILIC, a Force-guided Imitation Learning framework with impedance torque control. FILIC integrates a Transformer-based IL policy with an impedance controller in a dual-loop structure, enabling compliant force-informed, force-executed manipulation. For robots without force/torque sensors, we introduce a cost-effective end-effector force estimator using joint torque measurements through analytical Jacobian-based inversion while compensating with model-predicted torques from a digital twin. We also design complementary force feedback frameworks via handheld haptics and VR visualization to improve demonstration quality. Experiments show that FILIC significantly outperforms vision-only and joint-torque-based methods, achieving safer, more compliant, and adaptable contact-rich manipulation. Our code can be found in https://github.com/TATP-233/FILIC.

Authors:Hang Du, Jiayang Zhang, Guoshun Nan, Wendi Deng, Zhenyan Chen, Chenyang Zhang, Wang Xiao, Shan Huang, Yuqi Pan, Tao Qi, Sicong Leng
Title: From Easy to Hard: The MIR Benchmark for Progressive Interleaved Multi-Image Reasoning
Abstract:
Multi-image Interleaved Reasoning aims to improve Multi-modal Large Language Models (MLLMs) ability to jointly comprehend and reason across multiple images and their associated textual contexts, introducing unique challenges beyond single-image or non-interleaved multi-image tasks. While current multi-image benchmarks overlook interleaved textual contexts and neglect distinct relationships between individual images and their associated texts, enabling models to reason over multi-image interleaved data may significantly enhance their comprehension of complex scenes and better capture cross-modal correlations. To bridge this gap, we introduce a novel benchmark MIR, requiring joint reasoning over multiple images accompanied by interleaved textual contexts to accurately associate image regions with corresponding texts and logically connect information across images. To enhance MLLMs ability to comprehend multi-image interleaved data, we introduce reasoning steps for each instance within the benchmark and propose a stage-wise curriculum learning strategy. This strategy follows an "easy to hard" approach, progressively guiding models from simple to complex scenarios, thereby enhancing their ability to handle challenging tasks. Extensive experiments benchmarking multiple MLLMs demonstrate that our method significantly enhances models reasoning performance on MIR and other established benchmarks. We believe that MIR will encourage further research into multi-image interleaved reasoning, facilitating advancements in MLLMs capability to handle complex inter-modal tasks.Our code and dataset are available at https://github.com/Shelly-coder239/MIRBench.

Authors:Yajing Yang, Tony Deng, Min-Yen Kan
Title: KAHAN: Knowledge-Augmented Hierarchical Analysis and Narration for Financial Data Narration
Abstract:
We propose KAHAN, a knowledge-augmented hierarchical framework that systematically extracts insights from raw tabular data at entity, pairwise, group, and system levels. KAHAN uniquely leverages LLMs as domain experts to drive the analysis. On DataTales financial reporting benchmark, KAHAN outperforms existing approaches by over 20% on narrative quality (GPT-4o), maintains 98.2% factuality, and demonstrates practical utility in human evaluation. Our results reveal that knowledge quality drives model performance through distillation, hierarchical analysis benefits vary with market complexity, and the framework transfers effectively to healthcare domains. The data and code are available at https://github.com/yajingyang/kahan.

Authors:Wenxuan Fang, Jili Fan, Chao Wang, Xiantao Hu, Jiangwei Weng, Ying Tai, Jian Yang, Jun Li
Title: When Color-Space Decoupling Meets Diffusion for Adverse-Weather Image Restoration
Abstract:
Adverse Weather Image Restoration (AWIR) is a highly challenging task due to the unpredictable and dynamic nature of weather-related degradations. Traditional task-specific methods often fail to generalize to unseen or complex degradation types, while recent prompt-learning approaches depend heavily on the degradation estimation capabilities of vision-language models, resulting in inconsistent restorations. In this paper, we propose \textbf{LCDiff}, a novel framework comprising two key components: \textit{Lumina-Chroma Decomposition Network} (LCDN) and \textit{Lumina-Guided Diffusion Model} (LGDM). LCDN processes degraded images in the YCbCr color space, separately handling degradation-related luminance and degradation-invariant chrominance components. This decomposition effectively mitigates weather-induced degradation while preserving color fidelity. To further enhance restoration quality, LGDM leverages degradation-related luminance information as a guiding condition, eliminating the need for explicit degradation prompts. Additionally, LGDM incorporates a \textit{Dynamic Time Step Loss} to optimize the denoising network, ensuring a balanced recovery of both low- and high-frequency features in the image. Finally, we present DriveWeather, a comprehensive all-weather driving dataset designed to enable robust evaluation. Extensive experiments demonstrate that our approach surpasses state-of-the-art methods, setting a new benchmark in AWIR. The dataset and code are available at: https://github.com/fiwy0527/LCDiff.

Authors:Feng Han, Chao Gong, Zhipeng Wei, Jingjing Chen, Yu-Gang Jiang
Title: VCE: Safe Autoregressive Image Generation via Visual Contrast Exploitation
Abstract:
Recently, autoregressive image generation models have wowed audiences with their remarkable capability in creating surprisingly realistic images. Models such as GPT-4o and LlamaGen can not only produce images that faithfully mimic renowned artistic styles like Ghibli, Van Gogh, or Picasso, but also potentially generate Not-Safe-For-Work (NSFW) content, raising significant concerns regarding copyright infringement and ethical use. Despite these concerns, methods to safeguard autoregressive text-to-image models remain underexplored. Previous concept erasure methods, primarily designed for diffusion models that operate in denoising latent space, are not directly applicable to autoregressive models that generate images token by token. To address this critical gap, we propose Visual Contrast Exploitation (VCE), a novel framework comprising: (1) an innovative contrastive image pair construction paradigm that precisely decouples unsafe concepts from their associated content semantics, and (2) a sophisticated DPO-based training approach that enhances the model's ability to identify and leverage visual contrastive features from image pairs, enabling precise concept erasure. Our comprehensive experiments across three challenging tasks-artist style erasure, explicit content erasure, and object removal-demonstrate that our method effectively secures the model, achieving state-of-the-art results while erasing unsafe concepts and maintaining the integrity of unrelated safe concepts. The code and models are available at https://github.com/Maplebb/VCE.

Authors:Yuhang Jia, Xu Zhang, Yang Chen, Hui Wang, Enzhi Wang, Yong Qin
Title: Interpretable Audio Editing Evaluation via Chain-of-Thought Difference-Commonality Reasoning with Multimodal LLMs
Abstract:
Automatic mean opinion score (MOS) prediction provides a more perceptual alternative to objective metrics, offering deeper insights into the evaluated models. With the rapid progress of multimodal large language models (MLLMs), their enhanced perceptual and reasoning abilities enable more comprehensive and interpretable audio quality assessment. In this work, we tackle the challenging task of audio editing evaluation and propose the first natural language-based automated evaluation framework built on MLLMs. Our approach introduces two fine-tuning tasks to boost multi-audio understanding, combined with Chain-of-Thought prompting, and lightweight instruction tuning, to enhance step-by-step reasoning. Experiment demonstrate that our framework delivers accurate, interpretable, and text-based editing evaluation, closely aligning with human judgments and objective metrics while substantially improving over baselines. The code and demo are available at https://github.com/NKU-HLT/Eval_Reasoning.

Authors:Quanzhu Niu, Dengxian Gong, Shihao Chen, Tao Zhang, Yikang Zhou, Haobo Yuan, Lu Qi, Xiangtai Li, Shunping Ji
Title: The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA
Abstract:
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA SaSaSa2VA to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $J\&F$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/magic-research/Sa2VA.

Authors:Leiyu Wang, Biao Jin, Feng Huang, Liqiong Chen, Zhengyong Wang, Xiaohai He, Honggang Chen
Title: MO R-CNN: Multispectral Oriented R-CNN for Object Detection in Remote Sensing Image
Abstract:
Oriented object detection for multi-spectral imagery faces significant challenges due to differences both within and between modalities. Although existing methods have improved detection accuracy through complex network architectures, their high computational complexity and memory consumption severely restrict their performance. Motivated by the success of large kernel convolutions in remote sensing, we propose MO R-CNN, a lightweight framework for multi-spectral oriented detection featuring heterogeneous feature extraction network (HFEN), single modality supervision (SMS), and condition-based multimodal label fusion (CMLF). HFEN leverages inter-modal differences to adaptively align, merge, and enhance multi-modal features. SMS constrains multi-scale features and enables the model to learn from multiple modalities. CMLF fuses multimodal labels based on specific rules, providing the model with a more robust and consistent supervisory signal. Experiments on the DroneVehicle, VEDAI and OGSOD datasets prove the superiority of our method. The source code is available at:https://github.com/Iwill-github/MORCNN.

Authors:Yuheng Shi, Xiaohuan Pei, Minjing Dong, Chang Xu
Title: Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception
Abstract:
Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations.To validate our approach, we integrate the framework into the LLaVA-1.5 architecture. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.

Authors:Dat Thanh Tran, Khai Quang Tran, Khoi Anh Pham, Van Khu Vu, Dong Duc Do
Title: NeuFACO: Neural Focused Ant Colony Optimization for Traveling Salesman Problem
Abstract:
This study presents Neural Focused Ant Colony Optimization (NeuFACO), a non-autoregressive framework for the Traveling Salesman Problem (TSP) that combines advanced reinforcement learning with enhanced Ant Colony Optimization (ACO). NeuFACO employs Proximal Policy Optimization (PPO) with entropy regularization to train a graph neural network for instance-specific heuristic guidance, which is integrated into an optimized ACO framework featuring candidate lists, restricted tour refinement, and scalable local search. By leveraging amortized inference alongside ACO stochastic exploration, NeuFACO efficiently produces high-quality solutions across diverse TSP instances.

Authors:Ragib Amin Nihal, Benjamin Yen, Takeshi Ashizawa, Kazuhiro Nakadai
Title: Cross-Attention with Confidence Weighting for Multi-Channel Audio Alignment
Abstract:
Multi-channel audio alignment is a key requirement in bioacoustic monitoring, spatial audio systems, and acoustic localization. However, existing methods often struggle to address nonlinear clock drift and lack mechanisms for quantifying uncertainty. Traditional methods like Cross-correlation and Dynamic Time Warping assume simple drift patterns and provide no reliability measures. Meanwhile, recent deep learning models typically treat alignment as a binary classification task, overlooking inter-channel dependencies and uncertainty estimation. We introduce a method that combines cross-attention mechanisms with confidence-weighted scoring to improve multi-channel audio synchronization. We extend BEATs encoders with cross-attention layers to model temporal relationships between channels. We also develop a confidence-weighted scoring function that uses the full prediction distribution instead of binary thresholding. Our method achieved first place in the BioDCASE 2025 Task 1 challenge with 0.30 MSE average across test datasets, compared to 0.58 for the deep learning baseline. On individual datasets, we achieved 0.14 MSE on ARU data (77% reduction) and 0.45 MSE on zebra finch data (18% reduction). The framework supports probabilistic temporal alignment, moving beyond point estimates. While validated in a bioacoustic context, the approach is applicable to a broader range of multi-channel audio tasks where alignment confidence is critical. Code available on: https://github.com/Ragib-Amin-Nihal/BEATsCA

Authors:Yijun Yuan, Zhuoguang Chen, Kenan Li, Weibang Wang, Hang Zhao
Title: SLAM-Former: Putting SLAM into One Transformer
Abstract:
We present SLAM-Former, a novel neural approach that integrates full SLAM capabilities into a single transformer. Similar to traditional SLAM systems, SLAM-Former comprises both a frontend and a backend that operate in tandem. The frontend processes sequential monocular images in real-time for incremental mapping and tracking, while the backend performs global refinement to ensure a geometrically consistent result. This alternating execution allows the frontend and backend to mutually promote one another, enhancing overall system performance. Comprehensive experimental results demonstrate that SLAM-Former achieves superior or highly competitive performance compared to state-of-the-art dense SLAM methods.

Authors:Zhijie Qiao, Haowei Li, Zhong Cao, Henry X. Liu
Title: End2Race: Efficient End-to-End Imitation Learning for Real-Time F1Tenth Racing
Abstract:
F1Tenth is a widely adopted reduced-scale platform for developing and testing autonomous racing algorithms, hosting annual competitions worldwide. With high operating speeds, dynamic environments, and head-to-head interactions, autonomous racing requires algorithms that diverge from those in classical autonomous driving. Training such algorithms is particularly challenging: the need for rapid decision-making at high speeds severely limits model capacity. To address this, we propose End2Race, a novel end-to-end imitation learning algorithm designed for head-to-head autonomous racing. End2Race leverages a Gated Recurrent Unit (GRU) architecture to capture continuous temporal dependencies, enabling both short-term responsiveness and long-term strategic planning. We also adopt a sigmoid-based normalization function that transforms raw LiDAR scans into spatial pressure tokens, facilitating effective model training and convergence. The algorithm is extremely efficient, achieving an inference time of less than 0.5 milliseconds on a consumer-class GPU. Experiments in the F1Tenth simulator demonstrate that End2Race achieves a 94.2% safety rate across 2,400 overtaking scenarios, each with an 8-second time limit, and successfully completes overtakes in 59.2% of cases. This surpasses previous methods and establishes ours as a leading solution for the F1Tenth racing testbed. Code is available at https://github.com/michigan-traffic-lab/End2Race.

Authors:Faramarz Farhangian, Leandro A. Ensina, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: DRES: Fake news detection by dynamic representation and ensemble selection
Abstract:
The rapid spread of information via social media has made text-based fake news detection critically important due to its societal impact. This paper presents a novel detection method called Dynamic Representation and Ensemble Selection (DRES) for identifying fake news based solely on text. DRES leverages instance hardness measures to estimate the classification difficulty for each news article across multiple textual feature representations. By dynamically selecting the textual representation and the most competent ensemble of classifiers for each instance, DRES significantly enhances prediction accuracy. Extensive experiments show that DRES achieves notable improvements over state-of-the-art methods, confirming the effectiveness of representation selection based on instance hardness and dynamic ensemble selection in boosting performance. Codes and data are available at: https://github.com/FFarhangian/FakeNewsDetection_DRES

Authors:Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu, Georges El Fakhri, Xiaofeng Liu, Shijian Lu
Title: Rethinking Evaluation of Infrared Small Target Detection
Abstract:
As an essential vision task, infrared small target detection (IRSTD) has seen significant advancements through deep learning. However, critical limitations in current evaluation protocols impede further progress. First, existing methods rely on fragmented pixel- and target-level specific metrics, which fails to provide a comprehensive view of model capabilities. Second, an excessive emphasis on overall performance scores obscures crucial error analysis, which is vital for identifying failure modes and improving real-world system performance. Third, the field predominantly adopts dataset-specific training-testing paradigms, hindering the understanding of model robustness and generalization across diverse infrared scenarios. This paper addresses these issues by introducing a hybrid-level metric incorporating pixel- and target-level performance, proposing a systematic error analysis method, and emphasizing the importance of cross-dataset evaluation. These aim to offer a more thorough and rational hierarchical analysis framework, ultimately fostering the development of more effective and robust IRSTD models. An open-source toolkit has be released to facilitate standardized benchmarking.

Authors:Rui Yang, Michael Fu, Chakkrit Tantithamthavorn, Chetan Arora, Gunel Gulmammadova, Joey Chua
Title: AdaptiveGuard: Towards Adaptive Runtime Safety for LLM-Powered Software
Abstract:
Guardrails are critical for the safe deployment of Large Language Models (LLMs)-powered software. Unlike traditional rule-based systems with limited, predefined input-output spaces that inherently constrain unsafe behavior, LLMs enable open-ended, intelligent interactions--opening the door to jailbreak attacks through user inputs. Guardrails serve as a protective layer, filtering unsafe prompts before they reach the LLM. However, prior research shows that jailbreak attacks can still succeed over 70% of the time, even against advanced models like GPT-4o. While guardrails such as LlamaGuard report up to 95% accuracy, our preliminary analysis shows their performance can drop sharply--to as low as 12%--when confronted with unseen attacks. This highlights a growing software engineering challenge: how to build a post-deployment guardrail that adapts dynamically to emerging threats? To address this, we propose AdaptiveGuard, an adaptive guardrail that detects novel jailbreak attacks as out-of-distribution (OOD) inputs and learns to defend against them through a continual learning framework. Through empirical evaluation, AdaptiveGuard achieves 96% OOD detection accuracy, adapts to new attacks in just two update steps, and retains over 85% F1-score on in-distribution data post-adaptation, outperforming other baselines. These results demonstrate that AdaptiveGuard is a guardrail capable of evolving in response to emerging jailbreak strategies post deployment. We release our AdaptiveGuard and studied datasets at https://github.com/awsm-research/AdaptiveGuard to support further research.

Authors:Omkar Patil, Prabin Rath, Kartikay Pangaonkar, Eric Rosen, Nakul Gopalan
Title: Factorizing Diffusion Policies for Observation Modality Prioritization
Abstract:
Diffusion models have been extensively leveraged for learning robot skills from demonstrations. These policies are conditioned on several observational modalities such as proprioception, vision and tactile. However, observational modalities have varying levels of influence for different tasks that diffusion polices fail to capture. In this work, we propose 'Factorized Diffusion Policies' abbreviated as FDP, a novel policy formulation that enables observational modalities to have differing influence on the action diffusion process by design. This results in learning policies where certain observations modalities can be prioritized over the others such as $\texttt{vision>tactile}$ or $\texttt{proprioception>vision}$. FDP achieves modality prioritization by factorizing the observational conditioning for diffusion process, resulting in more performant and robust policies. Our factored approach shows strong performance improvements in low-data regimes with $15\%$ absolute improvement in success rate on several simulated benchmarks when compared to a standard diffusion policy that jointly conditions on all input modalities. Moreover, our benchmark and real-world experiments show that factored policies are naturally more robust with $40\%$ higher absolute success rate across several visuomotor tasks under distribution shifts such as visual distractors or camera occlusions, where existing diffusion policies fail catastrophically. FDP thus offers a safer and more robust alternative to standard diffusion policies for real-world deployment. Videos are available at https://fdp-policy.github.io/fdp-policy/ .

Authors:Devin R. Wright, Jisun An, Yong-Yeol Ahn
Title: Cognitive Linguistic Identity Fusion Score (CLIFS): A Scalable Cognition-Informed Approach to Quantifying Identity Fusion from Text
Abstract:
Quantifying identity fusion -- the psychological merging of self with another entity or abstract target (e.g., a religious group, political party, ideology, value, brand, belief, etc.) -- is vital for understanding a wide range of group-based human behaviors. We introduce the Cognitive Linguistic Identity Fusion Score (CLIFS), a novel metric that integrates cognitive linguistics with large language models (LLMs), which builds on implicit metaphor detection. Unlike traditional pictorial and verbal scales, which require controlled surveys or direct field contact, CLIFS delivers fully automated, scalable assessments while maintaining strong alignment with the established verbal measure. In benchmarks, CLIFS outperforms both existing automated approaches and human annotation. As a proof of concept, we apply CLIFS to violence risk assessment to demonstrate that it can improve violence risk assessment by more than 240%. Building on our identification of a new NLP task and early success, we underscore the need to develop larger, more diverse datasets that encompass additional fusion-target domains and cultural backgrounds to enhance generalizability and further advance this emerging area. CLIFS models and code are public at https://github.com/DevinW-sudo/CLIFS.

Authors:Md. Atabuzzaman, Ali Asgarov, Chris Thomas
Title: Benchmarking and Mitigating MCQA Selection Bias of Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have achieved strong performance on vision-language tasks, particularly Visual Question Answering (VQA). While prior work has explored unimodal biases in VQA, the problem of selection bias in Multiple-Choice Question Answering (MCQA), where models may favor specific option tokens (e.g., "A") or positions, remains underexplored. In this paper, we investigate both the presence and nature of selection bias in LVLMs through fine-grained MCQA benchmarks spanning easy, medium, and hard difficulty levels, defined by the semantic similarity of the options. We further propose an inference-time logit-level debiasing method that estimates an ensemble bias vector from general and contextual prompts and applies confidence-adaptive corrections to the model's output. Our method mitigates bias without retraining and is compatible with frozen LVLMs. Extensive experiments across several state-of-the-art models reveal consistent selection biases that intensify with task difficulty, and show that our mitigation approach significantly reduces bias while improving accuracy in challenging settings. This work offers new insights into the limitations of LVLMs in MCQA and presents a practical approach to improve their robustness in fine-grained visual reasoning. Datasets and code are available at: https://github.com/Atabuzzaman/Selection-Bias-of-LVLMs

Authors:Kai Jiang, Zhengyan Shi, Dell Zhang, Hongyuan Zhang, Xuelong Li
Title: Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class Incremental Learning (CIL) aims to continuously learn new categories while retaining the knowledge of old ones. Pre-trained models (PTMs) show promising capabilities in CIL. However, existing approaches that apply lightweight fine-tuning to backbones still induce parameter drift, thereby compromising the generalization capability of pre-trained models. Parameter drift can be conceptualized as a form of noise that obscures critical patterns learned for previous tasks. However, recent researches have shown that noise is not always harmful. For example, the large number of visual patterns learned from pre-training can be easily abused by a single task, and introducing appropriate noise can suppress some low-correlation features, thus leaving a margin for future tasks. To this end, we propose learning beneficial noise for CIL guided by information theory and propose Mixture of Noise (Min), aiming to mitigate the degradation of backbone generalization from adapting new tasks. Specifically, task-specific noise is learned from high-dimension features of new tasks. Then, a set of weights is adjusted dynamically for optimal mixture of different task noise. Finally, Min embeds the beneficial noise into the intermediate features to mask the response of inefficient patterns. Extensive experiments on six benchmark datasets demonstrate that Min achieves state-of-the-art performance in most incremental settings, with particularly outstanding results in 50-steps incremental settings. This shows the significant potential for beneficial noise in continual learning. Code is available at https://github.com/ASCIIJK/MiN-NeurIPS2025.

Authors:Dongdong Chen, Linlin Yao, Mengjun Liu, Zhenrong Shen, Yuqi Hu, Zhiyun Song, Shengyu Lu, Qian Wang, Dinggang Shen, Lichi Zhang
Title: Brain Connectivity Network Structure Learning For Brain Disorder Diagnosis
Abstract:
Recent studies in neuroscience highlight the significant potential of brain connectivity networks, which are commonly constructed from functional magnetic resonance imaging (fMRI) data for brain disorder diagnosis. Traditional brain connectivity networks are typically obtained using predefined methods that incorporate manually-set thresholds to estimate inter-regional relationships. However, such approaches often introduce redundant connections or overlook essential interactions, compromising the value of the constructed networks. Besides, the insufficiency of labeled data further increases the difficulty of learning generalized representations of intrinsic brain characteristics. To mitigate those issues, we propose a self-supervised framework to learn an optimal structure and representation for brain connectivity networks, focusing on individualized generation and optimization in an unsupervised manner. We firstly employ two existing whole-brain connectomes to adaptively construct their complementary brain network structure learner, and then introduce a multi-state graph-based encoder with a joint iterative learning strategy to simultaneously optimize both the generated network structure and its representation. By leveraging self-supervised pretraining on large-scale unlabeled brain connectivity data, our framework enables the brain connectivity network learner to generalize e ffectively to unseen disorders, while requiring only minimal finetuning of the encoder for adaptation to new diagnostic tasks. Extensive experiments on cross-dataset brain disorder diagnosis demonstrate that our method consistently outperforms state-of-the-art approaches, validating its effectiveness and generalizability. The code is publicly available at https://github.com/neochen1/BCNSL.

Authors:Auss Abbood, Zaiqiao Meng, Nigel Collier
Title: Time to Revist Exact Match
Abstract:
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only $\pm1$ from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.

Authors:Pan Liu, Jinshi Liu
Title: When Confidence Fails: Revisiting Pseudo-Label Selection in Semi-supervised Semantic Segmentation
Abstract:
While significant advances exist in pseudo-label generation for semi-supervised semantic segmentation, pseudo-label selection remains understudied. Existing methods typically use fixed confidence thresholds to retain high-confidence predictions as pseudo-labels. However, these methods cannot cope with network overconfidence tendency, where correct and incorrect predictions overlap significantly in high-confidence regions, making separation challenging and amplifying model cognitive bias. Meanwhile, the direct discarding of low-confidence predictions disrupts spatial-semantic continuity, causing critical context loss. We propose Confidence Separable Learning (CSL) to address these limitations. CSL formulates pseudo-label selection as a convex optimization problem within the confidence distribution feature space, establishing sample-specific decision boundaries to distinguish reliable from unreliable predictions. Additionally, CSL introduces random masking of reliable pixels to guide the network in learning contextual relationships from low-reliability regions, thereby mitigating the adverse effects of discarding uncertain predictions. Extensive experimental results on the Pascal, Cityscapes, and COCO benchmarks show that CSL performs favorably against state-of-the-art methods. Code and model weights are available at https://github.com/PanLiuCSU/CSL.

Authors:Suorong Yang, Hongchao Yang, Suhan Guo, Furao Shen, Jian Zhao
Title: IPF-RDA: An Information-Preserving Framework for Robust Data Augmentation
Abstract:
Data augmentation is widely utilized as an effective technique to enhance the generalization performance of deep models. However, data augmentation may inevitably introduce distribution shifts and noises, which significantly constrain the potential and deteriorate the performance of deep networks. To this end, we propose a novel information-preserving framework, namely IPF-RDA, to enhance the robustness of data augmentations in this paper. IPF-RDA combines the proposal of (i) a new class-discriminative information estimation algorithm that identifies the points most vulnerable to data augmentation operations and corresponding importance scores; And (ii) a new information-preserving scheme that preserves the critical information in the augmented samples and ensures the diversity of augmented data adaptively. We divide data augmentation methods into three categories according to the operation types and integrate these approaches into our framework accordingly. After being integrated into our framework, the robustness of data augmentation methods can be enhanced and their full potential can be unleashed. Extensive experiments demonstrate that although being simple, IPF-RDA consistently improves the performance of numerous commonly used state-of-the-art data augmentation methods with popular deep models on a variety of datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, CUHK03, Market1501, Oxford Flower, and MNIST, where its performance and scalability are stressed. The implementation is available at https://github.com/Jackbrocp/IPF-RDA.

Authors:Wenxin Li, Kunyu Peng, Di Wen, Ruiping Liu, Mengfei Duan, Kai Luo, Kailun Yang
Title: Segment-to-Act: Label-Noise-Robust Action-Prompted Video Segmentation Towards Embodied Intelligence
Abstract:
Embodied intelligence relies on accurately segmenting objects actively involved in interactions. Action-based video object segmentation addresses this by linking segmentation with action semantics, but it depends on large-scale annotations and prompts that are costly, inconsistent, and prone to multimodal noise such as imprecise masks and referential ambiguity. To date, this challenge remains unexplored. In this work, we take the first step by studying action-based video object segmentation under label noise, focusing on two sources: textual prompt noise (category flips and within-category noun substitutions) and mask annotation noise (perturbed object boundaries to mimic imprecise supervision). Our contributions are threefold. First, we introduce two types of label noises for the action-based video object segmentation task. Second, we build up the first action-based video object segmentation under a label noise benchmark ActiSeg-NL and adapt six label-noise learning strategies to this setting, and establish protocols for evaluating them under textual, boundary, and mixed noise. Third, we provide a comprehensive analysis linking noise types to failure modes and robustness gains, and we introduce a Parallel Mask Head Mechanism (PMHM) to address mask annotation noise. Qualitative evaluations further reveal characteristic failure modes, including boundary leakage and mislocalization under boundary perturbations, as well as occasional identity substitutions under textual flips. Our comparative analysis reveals that different learning strategies exhibit distinct robustness profiles, governed by a foreground-background trade-off where some achieve balanced performance while others prioritize foreground accuracy at the cost of background precision. The established benchmark and source code will be made publicly available at https://github.com/mylwx/ActiSeg-NL.

Authors:Simone Ricci, Niccolò Biondi, Federico Pernici, Ioannis Patras, Alberto Del Bimbo
Title: $\boldsymbolλ$-Orthogonality Regularization for Compatible Representation Learning
Abstract:
Retrieval systems rely on representations learned by increasingly powerful models. However, due to the high training cost and inconsistencies in learned representations, there is significant interest in facilitating communication between representations and ensuring compatibility across independently trained neural networks. In the literature, two primary approaches are commonly used to adapt different learned representations: affine transformations, which adapt well to specific distributions but can significantly alter the original representation, and orthogonal transformations, which preserve the original structure with strict geometric constraints but limit adaptability. A key challenge is adapting the latent spaces of updated models to align with those of previous models on downstream distributions while preserving the newly learned representation spaces. In this paper, we impose a relaxed orthogonality constraint, namely $λ$-orthogonality regularization, while learning an affine transformation, to obtain distribution-specific adaptation while retaining the original learned representations. Extensive experiments across various architectures and datasets validate our approach, demonstrating that it preserves the model's zero-shot performance and ensures compatibility across model updates. Code available at: https://github.com/miccunifi/lambda_orthogonality

Authors:Changyu Zeng, Yifan Wang, Zimu Wang, Wei Wang, Zhengni Yang, Muyi Bao, Jiming Xiao, Anh Nguyen, Yutao Yue
Title: NUMINA: A Natural Understanding Benchmark for Multi-dimensional Intelligence and Numerical Reasoning Abilities
Abstract:
Recent advancements in 2D multimodal large language models (MLLMs) have significantly improved performance in vision-language tasks. However, extending these capabilities to 3D environments remains a distinct challenge due to the complexity of spatial reasoning. Nevertheless, existing 3D benchmarks often lack fine-grained numerical reasoning task annotations, limiting MLLMs' ability to perform precise spatial measurements and complex numerical reasoning. To address this gap, we introduce NUMINA, the first Natural Understanding benchmark for Multi-dimensional Intelligence and Numerical reasoning Abilities to enhance multimodal indoor perceptual understanding. NUMINA features multi-scale annotations and various question-answer pairs, generated using NUMINA-Flow, an automated annotation pipeline that integrates LLM rewriting and rule-based self-verification. We evaluate the performance of various state-of-the-art LLMs on NUMINA following the Chat-Scene framework, demonstrating that current LLMs struggle with multimodal numerical reasoning, particularly in performing precise computations such as distance and volume estimation, highlighting the need for further advancements in 3D models. The dataset and source codes can be obtained from https://github.com/fengshun124/NUMINA.

Authors:Weiran Chen, Guiqian Zhu, Ying Li, Yi Ji, Chunping Liu
Title: DA-Font: Few-Shot Font Generation via Dual-Attention Hybrid Integration
Abstract:
Few-shot font generation aims to create new fonts with a limited number of glyph references. It can be used to significantly reduce the labor cost of manual font design. However, due to the variety and complexity of font styles, the results generated by existing methods often suffer from visible defects, such as stroke errors, artifacts and blurriness. To address these issues, we propose DA-Font, a novel framework which integrates a Dual-Attention Hybrid Module (DAHM). Specifically, we introduce two synergistic attention blocks: the component attention block that leverages component information from content images to guide the style transfer process, and the relation attention block that further refines spatial relationships through interacting the content feature with both original and stylized component-wise representations. These two blocks collaborate to preserve accurate character shapes and stylistic textures. Moreover, we also design a corner consistency loss and an elastic mesh feature loss to better improve geometric alignment. Extensive experiments show that our DA-Font outperforms the state-of-the-art methods across diverse font styles and characters, demonstrating its effectiveness in enhancing structural integrity and local fidelity. The source code can be found at \href{https://github.com/wrchen2001/DA-Font}{\textit{https://github.com/wrchen2001/DA-Font}}.

Authors:Yue Ma, Zexuan Yan, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung Shum, Zhifeng Li, Wei Liu, Linfeng Zhang, Qifeng Chen
Title: Follow-Your-Emoji-Faster: Towards Efficient, Fine-Controllable, and Expressive Freestyle Portrait Animation
Abstract:
We present Follow-Your-Emoji-Faster, an efficient diffusion-based framework for freestyle portrait animation driven by facial landmarks. The main challenges in this task are preserving the identity of the reference portrait, accurately transferring target expressions, and maintaining long-term temporal consistency while ensuring generation efficiency. To address identity preservation and accurate expression retargeting, we enhance Stable Diffusion with two key components: a expression-aware landmarks as explicit motion signals, which improve motion alignment, support exaggerated expressions, and reduce identity leakage; and a fine-grained facial loss that leverages both expression and facial masks to better capture subtle expressions and faithfully preserve the reference appearance. With these components, our model supports controllable and expressive animation across diverse portrait types, including real faces, cartoons, sculptures, and animals. However, diffusion-based frameworks typically struggle to efficiently generate long-term stable animation results, which remains a core challenge in this task. To address this, we propose a progressive generation strategy for stable long-term animation, and introduce a Taylor-interpolated cache, achieving a 2.6X lossless acceleration. These two strategies ensure that our method produces high-quality results efficiently, making it user-friendly and accessible. Finally, we introduce EmojiBench++, a more comprehensive benchmark comprising diverse portraits, driving videos, and landmark sequences. Extensive evaluations on EmojiBench++ demonstrate that Follow-Your-Emoji-Faster achieves superior performance in both animation quality and controllability. The code, training dataset and benchmark will be found in https://follow-your-emoji.github.io/.

Authors:Kaichen Xu, Yihang Du, Mianpeng Liu, Zimu Yu, Xiaobo Sun
Title: Causality-Induced Positional Encoding for Transformer-Based Representation Learning of Non-Sequential Features
Abstract:
Positional encoding is essential for supplementing transformer with positional information of tokens. Existing positional encoding methods demand predefined token/feature order, rendering them unsuitable for real-world data with non-sequential yet causally-related features. To address this limitation, we propose CAPE, a novel method that identifies underlying causal structure over non-sequential features as a weighted directed acyclic graph (DAG) using generalized structural equation modeling. The DAG is then embedded in hyperbolic space where its geometric structure is well-preserved using a hyperboloid model-based approach that effectively captures two important causal graph properties (causal strength & causal specificity). This step yields causality-aware positional encodings for the features, which are converted into their rotary form for integrating with transformer's self-attention mechanism. Theoretical analysis reveals that CAPE-generated rotary positional encodings possess three valuable properties for enhanced self-attention, including causal distance-induced attenuation, causal generality-induced attenuation, and robustness to positional disturbances. We evaluate CAPE over both synthetic and real-word datasets, empirically demonstrating its theoretical properties and effectiveness in enhancing transformer for data with non-sequential features. Our code is available at https://github.com/Catchxu/CAPE.

Authors:Junjie Zhou, Haijun Xiong, Junhao Lu, Ziyu Lin, Bin Feng
Title: CGTGait: Collaborative Graph and Transformer for Gait Emotion Recognition
Abstract:
Skeleton-based gait emotion recognition has received significant attention due to its wide-ranging applications. However, existing methods primarily focus on extracting spatial and local temporal motion information, failing to capture long-range temporal representations. In this paper, we propose \textbf{CGTGait}, a novel framework that collaboratively integrates graph convolution and transformers to extract discriminative spatiotemporal features for gait emotion recognition. Specifically, CGTGait consists of multiple CGT blocks, where each block employs graph convolution to capture frame-level spatial topology and the transformer to model global temporal dependencies. Additionally, we introduce a Bidirectional Cross-Stream Fusion (BCSF) module to effectively aggregate posture and motion spatiotemporal features, facilitating the exchange of complementary information between the two streams. We evaluate our method on two widely used datasets, Emotion-Gait and ELMD, demonstrating that our CGTGait achieves state-of-the-art or at least competitive performance while reducing computational complexity by approximately \textbf{82.2\%} (only requiring 0.34G FLOPs) during testing. Code is available at \small{https://github.com/githubzjj1/CGTGait.}

Authors:Xiwei Zhao, Yiwei Wang, Yansong Wu, Fan Wu, Teng Sun, Zhonghua Miao, Sami Haddadin, Alois Knoll
Title: Video-to-BT: Generating Reactive Behavior Trees from Human Demonstration Videos for Robotic Assembly
Abstract:
Modern manufacturing demands robotic assembly systems with enhanced flexibility and reliability. However, traditional approaches often rely on programming tailored to each product by experts for fixed settings, which are inherently inflexible to product changes and lack the robustness to handle variations. As Behavior Trees (BTs) are increasingly used in robotics for their modularity and reactivity, we propose a novel hierarchical framework, Video-to-BT, that seamlessly integrates high-level cognitive planning with low-level reactive control, with BTs serving both as the structured output of planning and as the governing structure for execution. Our approach leverages a Vision-Language Model (VLM) to decompose human demonstration videos into subtasks, from which Behavior Trees are generated. During the execution, the planned BTs combined with real-time scene interpretation enable the system to operate reactively in the dynamic environment, while VLM-driven replanning is triggered upon execution failure. This closed-loop architecture ensures stability and adaptivity. We validate our framework on real-world assembly tasks through a series of experiments, demonstrating high planning reliability, robust performance in long-horizon assembly tasks, and strong generalization across diverse and perturbed conditions. Project website: https://video2bt.github.io/video2bt_page/

Authors:Junhao Chen, Jingbo Sun, Xiang Li, Haidong Xin, Yuhao Xue, Yibin Xu, Hao Zhao
Title: LLMsPark: A Benchmark for Evaluating Large Language Models in Strategic Gaming Contexts
Abstract:
As large language models (LLMs) advance across diverse tasks, the need for comprehensive evaluation beyond single metrics becomes increasingly important. To fully assess LLM intelligence, it is crucial to examine their interactive dynamics and strategic behaviors. We present LLMsPark, a game theory-based evaluation platform that measures LLMs' decision-making strategies and social behaviors in classic game-theoretic settings, providing a multi-agent environment to explore strategic depth. Our system cross-evaluates 15 leading LLMs (both commercial and open-source) using leaderboard rankings and scoring mechanisms. Higher scores reflect stronger reasoning and strategic capabilities, revealing distinct behavioral patterns and performance differences across models. This work introduces a novel perspective for evaluating LLMs' strategic intelligence, enriching existing benchmarks and broadening their assessment in interactive, game-theoretic scenarios. The benchmark and rankings are publicly available at https://llmsparks.github.io/.

Authors:Shipeng Liu, Zhonglin Zhang, Dengfeng Chen, Liang Zhao
Title: Describe-to-Score: Text-Guided Efficient Image Complexity Assessment
Abstract:
Accurately assessing image complexity (IC) is critical for computer vision, yet most existing methods rely solely on visual features and often neglect high-level semantic information, limiting their accuracy and generalization. We introduce vision-text fusion for IC modeling. This approach integrates visual and textual semantic features, increasing representational diversity. It also reduces the complexity of the hypothesis space, which enhances both accuracy and generalization in complexity assessment. We propose the D2S (Describe-to-Score) framework, which generates image captions with a pre-trained vision-language model. We propose the feature alignment and entropy distribution alignment mechanisms, D2S guides semantic information to inform complexity assessment while bridging the gap between vision and text modalities. D2S utilizes multi-modal information during training but requires only the vision branch during inference, thereby avoiding multi-modal computational overhead and enabling efficient assessment. Experimental results demonstrate that D2S outperforms existing methods on the IC9600 dataset and maintains competitiveness on no-reference image quality assessment (NR-IQA) benchmark, validating the effectiveness and efficiency of multi-modal fusion in complexity-related tasks. Code is available at: https://github.com/xauat-liushipeng/D2S

Authors:Minji Heo, Simon S. Woo
Title: FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Abstract:
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.

Authors:Zheng Liu, Mengjie Liu, Siwei Wen, Mengzhang Cai, Bin Cui, Conghui He, Wentao Zhang
Title: From Uniform to Heterogeneous: Tailoring Policy Optimization to Every Token's Nature
Abstract:
Reinforcement Learning has emerged as the fundamental technique for enhancing reasoning in LLMs. However, existing algorithms apply uniform optimization to all tokens, ignoring their different roles in reasoning process. To address this limitation, we introduce Heterogeneous Adaptive Policy Optimization (HAPO), a comprehensive token-aware algorithm that dynamically adapts optimization based on token entropy. For rollout sampling, we propose Adaptive Temperature Sampling, which adjusts sampling temperature in real time, promoting exploration at high-entropy tokens while preserving coherence at low-entropy ones. For advantage calculation, we introduce Token Level Group Average that normalizes advantages at token level, jointly accounting for sequence-length as in token-mean loss while preserving non-biased treatment. We then develop Differential Advantage Redistribution that leverages entropy and importance ratios to modulate rewards-adjusting updates for tokens with clear signals. For clipping loss, we design Asymmetric Adaptive Clipping, allowing aggressive probability reduction for noisy low-entropy tokens while enabling exploration for high-entropy tokens. Through systematic investigation between entropy and training dynamics, we embedded token-level treatment into every stages to achieve fine-grained control. Extensive experiments demonstrate that HAPO consistently outperforms DAPO across multiple model scales. Our code can be found in https://github.com/starriver030515/HAPO.

Authors:Antonio Scardace, Lemuel Puglisi, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: A Novel Metric for Detecting Memorization in Generative Models for Brain MRI Synthesis
Abstract:
Deep generative models have emerged as a transformative tool in medical imaging, offering substantial potential for synthetic data generation. However, recent empirical studies highlight a critical vulnerability: these models can memorize sensitive training data, posing significant risks of unauthorized patient information disclosure. Detecting memorization in generative models remains particularly challenging, necessitating scalable methods capable of identifying training data leakage across large sets of generated samples. In this work, we propose DeepSSIM, a novel self-supervised metric for quantifying memorization in generative models. DeepSSIM is trained to: i) project images into a learned embedding space and ii) force the cosine similarity between embeddings to match the ground-truth SSIM (Structural Similarity Index) scores computed in the image space. To capture domain-specific anatomical features, training incorporates structure-preserving augmentations, allowing DeepSSIM to estimate similarity reliably without requiring precise spatial alignment. We evaluate DeepSSIM in a case study involving synthetic brain MRI data generated by a Latent Diffusion Model (LDM) trained under memorization-prone conditions, using 2,195 MRI scans from two publicly available datasets (IXI and CoRR). Compared to state-of-the-art memorization metrics, DeepSSIM achieves superior performance, improving F1 scores by an average of +52.03% over the best existing method. Code and data of our approach are publicly available at the following link: https://github.com/brAIn-science/DeepSSIM.

Authors:Jun Rong Brian Chong, Yixuan Tang, Anthony K. H. Tung
Title: MPCG: Multi-Round Persona-Conditioned Generation for Modeling the Evolution of Misinformation with LLMs
Abstract:
Misinformation evolves as it spreads, shifting in language, framing, and moral emphasis to adapt to new audiences. However, current misinformation detection approaches implicitly assume that misinformation is static. We introduce MPCG, a multi-round, persona-conditioned framework that simulates how claims are iteratively reinterpreted by agents with distinct ideological perspectives. Our approach uses an uncensored large language model (LLM) to generate persona-specific claims across multiple rounds, conditioning each generation on outputs from the previous round, enabling the study of misinformation evolution. We evaluate the generated claims through human and LLM-based annotations, cognitive effort metrics (readability, perplexity), emotion evocation metrics (sentiment analysis, morality), clustering, feasibility, and downstream classification. Results show strong agreement between human and GPT-4o-mini annotations, with higher divergence in fluency judgments. Generated claims require greater cognitive effort than the original claims and consistently reflect persona-aligned emotional and moral framing. Clustering and cosine similarity analyses confirm semantic drift across rounds while preserving topical coherence. Feasibility results show a 77% feasibility rate, confirming suitability for downstream tasks. Classification results reveal that commonly used misinformation detectors experience macro-F1 performance drops of up to 49.7%. The code is available at https://github.com/bcjr1997/MPCG

Authors:Ji Soo Lee, Byungoh Ko, Jaewon Cho, Howoong Lee, Jaewoon Byun, Hyunwoo J. Kim
Title: Captioning for Text-Video Retrieval via Dual-Group Direct Preference Optimization
Abstract:
In text-video retrieval, auxiliary captions are often used to enhance video understanding, bridging the gap between the modalities. While recent advances in multi-modal large language models (MLLMs) have enabled strong zero-shot caption generation, we observe that such captions tend to be generic and indistinguishable across visually similar videos, limiting their utility for fine-grained retrieval. Moreover, conventional captioning approaches are typically evaluated using language generation metrics, such as BLEU, which are not typically tailored for retrieval tasks that require making discriminative distinctions between candidates. To address this, we propose $\textbf{CaRe-DPO}$, a retrieval framework that directly optimizes caption generation using retrieval relevance scores. At its core is Dual-Group Direct Preference Optimization (DG-DPO), a novel learning strategy that supervises captioning by modeling preferences across groups of distinct video and caption pairs. In addition, we present an MLLM-based retrieval model that incorporates role-embeddings to better distinguish between textual inputs with different functional roles, such as an auxiliary caption and a text query. Through extensive experiments, we demonstrate that CaRe-DPO significantly enhances retrieval performance by effectively leveraging auxiliary knowledge to generate fine-grained captions for retrieval. Code is available at https://github.com/mlvlab/CaReDPO.

Authors:Zirui Wang, Jiayi Zhang, Tianwei Guan, Yuhan Zhou, Xingyuan Li, Minjing Dong, Jinyuan Liu
Title: Efficient Rectified Flow for Image Fusion
Abstract:
Image fusion is a fundamental and important task in computer vision, aiming to combine complementary information from different modalities to fuse images. In recent years, diffusion models have made significant developments in the field of image fusion. However, diffusion models often require complex computations and redundant inference time, which reduces the applicability of these methods. To address this issue, we propose RFfusion, an efficient one-step diffusion model for image fusion based on Rectified Flow. We incorporate Rectified Flow into the image fusion task to straighten the sampling path in the diffusion model, achieving one-step sampling without the need for additional training, while still maintaining high-quality fusion results. Furthermore, we propose a task-specific variational autoencoder (VAE) architecture tailored for image fusion, where the fusion operation is embedded within the latent space to further reduce computational complexity. To address the inherent discrepancy between conventional reconstruction-oriented VAE objectives and the requirements of image fusion, we introduce a two-stage training strategy. This approach facilitates the effective learning and integration of complementary information from multi-modal source images, thereby enabling the model to retain fine-grained structural details while significantly enhancing inference efficiency. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods in terms of both inference speed and fusion quality. Code is available at https://github.com/zirui0625/RFfusion.

Authors:Guangze Zheng, Shijie Lin, Haobo Zuo, Si Si, Ming-Shan Wang, Changhong Fu, Jia Pan
Title: Lattice Boltzmann Model for Learning Real-World Pixel Dynamicity
Abstract:
This work proposes the Lattice Boltzmann Model (LBM) to learn real-world pixel dynamicity for visual tracking. LBM decomposes visual representations into dynamic pixel lattices and solves pixel motion states through collision-streaming processes. Specifically, the high-dimensional distribution of the target pixels is acquired through a multilayer predict-update network to estimate the pixel positions and visibility. The predict stage formulates lattice collisions among the spatial neighborhood of target pixels and develops lattice streaming within the temporal visual context. The update stage rectifies the pixel distributions with online visual representations. Compared with existing methods, LBM demonstrates practical applicability in an online and real-time manner, which can efficiently adapt to real-world visual tracking tasks. Comprehensive evaluations of real-world point tracking benchmarks such as TAP-Vid and RoboTAP validate LBM's efficiency. A general evaluation of large-scale open-world object tracking benchmarks such as TAO, BFT, and OVT-B further demonstrates LBM's real-world practicality.

Authors:Burak Satar, Zhixin Ma, Patrick A. Irawan, Wilfried A. Mulyawan, Jing Jiang, Ee-Peng Lim, Chong-Wah Ngo
Title: Seeing Culture: A Benchmark for Visual Reasoning and Grounding
Abstract:
Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

Authors:Haijin Zeng, Xuan Lu, Yurong Zhang, Yongyong Chen, Jingyong Su, Jie Liu
Title: SlowFast-SCI: Slow-Fast Deep Unfolding Learning for Spectral Compressive Imaging
Abstract:
Humans learn in two complementary ways: a slow, cumulative process that builds broad, general knowledge, and a fast, on-the-fly process that captures specific experiences. Existing deep-unfolding methods for spectral compressive imaging (SCI) mirror only the slow component-relying on heavy pre-training with many unfolding stages-yet they lack the rapid adaptation needed to handle new optical configurations. As a result, they falter on out-of-distribution cameras, especially in bespoke spectral setups unseen during training. This depth also incurs heavy computation and slow inference. To bridge this gap, we introduce SlowFast-SCI, a dual-speed framework seamlessly integrated into any deep unfolding network beyond SCI systems. During slow learning, we pre-train or reuse a priors-based backbone and distill it via imaging guidance into a compact fast-unfolding model. In the fast learning stage, lightweight adaptation modules are embedded within each block and trained self-supervised at test time via a dual-domain loss-without retraining the backbone. To the best of our knowledge, SlowFast-SCI is the first test-time adaptation-driven deep unfolding framework for efficient, self-adaptive spectral reconstruction. Its dual-stage design unites offline robustness with on-the-fly per-sample calibration-yielding over 70% reduction in parameters and FLOPs, up to 5.79 dB PSNR improvement on out-of-distribution data, preserved cross-domain adaptability, and a 4x faster adaptation speed. In addition, its modularity integrates with any deep-unfolding network, paving the way for self-adaptive, field-deployable imaging and expanded computational imaging modalities. Code and models are available at https://github.com/XuanLu11/SlowFast-SCI.

Authors:Joe Barrow
Title: CommonForms: A Large, Diverse Dataset for Form Field Detection
Abstract:
This paper introduces CommonForms, a web-scale dataset for form field detection. It casts the problem of form field detection as object detection: given an image of a page, predict the location and type (Text Input, Choice Button, Signature) of form fields. The dataset is constructed by filtering Common Crawl to find PDFs that have fillable elements. Starting with 8 million documents, the filtering process is used to arrive at a final dataset of roughly 55k documents that have over 450k pages. Analysis shows that the dataset contains a diverse mixture of languages and domains; one third of the pages are non-English, and among the 14 classified domains, no domain makes up more than 25% of the dataset. In addition, this paper presents a family of form field detectors, FFDNet-Small and FFDNet-Large, which attain a very high average precision on the CommonForms test set. Each model cost less than $500 to train. Ablation results show that high-resolution inputs are crucial for high-quality form field detection, and that the cleaning process improves data efficiency over using all PDFs that have fillable fields in Common Crawl. A qualitative analysis shows that they outperform a popular, commercially available PDF reader that can prepare forms. Unlike the most popular commercially available solutions, FFDNet can predict checkboxes in addition to text and signature fields. This is, to our knowledge, the first large scale dataset released for form field detection, as well as the first open source models. The dataset, models, and code will be released at https://github.com/jbarrow/commonforms

Authors:Dev Gurung, Shiva Raj Pokhrel
Title: sat-QFL: Secure Quantum Federated Learning for Low Orbit Satellites
Abstract:
Low Earth orbit (LEO) constellations violate core assumptions of standard (quantum) federated learning (FL): client-server connectivity is intermittent, participation is time varying, and latency budgets are strict. We present sat-QFL, a hierarchical, access aware quantum federated learning (QFL) framework that partitions satellites into primary (ground connected) and secondary as inter-satellite links (ISL-only) roles, and schedules sequential, simultaneous, or asynchronous edge training aligned with visibility windows. For quantum-resilient confidentiality and integrity, sat-QFL integrates quantum key distribution (QKD) based key establishment with authenticated encryption for model exchange; we also assess teleportation as a feasibility primitive for quantum state transfer. Using derived constellation traces and QFL workloads (Qiskit), we show that sat-QFL sustains robust aggregation under varying participation and reduces communication bottlenecks with modest security overhead. Our implementation and results are available at https://github.com/s222416822/satQFL.

Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Title: AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.

Authors:Zhengri Wu, Yiran Wang, Yu Wen, Zeyu Zhang, Biao Wu, Hao Tang
Title: StereoAdapter: Adapting Stereo Depth Estimation to Underwater Scenes
Abstract:
Underwater stereo depth estimation provides accurate 3D geometry for robotics tasks such as navigation, inspection, and mapping, offering metric depth from low-cost passive cameras while avoiding the scale ambiguity of monocular methods. However, existing approaches face two critical challenges: (i) parameter-efficiently adapting large vision foundation encoders to the underwater domain without extensive labeled data, and (ii) tightly fusing globally coherent but scale-ambiguous monocular priors with locally metric yet photometrically fragile stereo correspondences. To address these challenges, we propose StereoAdapter, a parameter-efficient self-supervised framework that integrates a LoRA-adapted monocular foundation encoder with a recurrent stereo refinement module. We further introduce dynamic LoRA adaptation for efficient rank selection and pre-training on the synthetic UW-StereoDepth-40K dataset to enhance robustness under diverse underwater conditions. Comprehensive evaluations on both simulated and real-world benchmarks show improvements of 6.11% on TartanAir and 5.12% on SQUID compared to state-of-the-art methods, while real-world deployment with the BlueROV2 robot further demonstrates the consistent robustness of our approach. Code: https://github.com/AIGeeksGroup/StereoAdapter. Website: https://aigeeksgroup.github.io/StereoAdapter.

Authors:Francesco Argenziano, Miguel Saavedra-Ruiz, Sacha Morin, Daniele Nardi, Liam Paull
Title: Dynamic Objects Relocalization in Changing Environments with Flow Matching
Abstract:
Task and motion planning are long-standing challenges in robotics, especially when robots have to deal with dynamic environments exhibiting long-term dynamics, such as households or warehouses. In these environments, long-term dynamics mostly stem from human activities, since previously detected objects can be moved or removed from the scene. This adds the necessity to find such objects again before completing the designed task, increasing the risk of failure due to missed relocalizations. However, in these settings, the nature of such human-object interactions is often overlooked, despite being governed by common habits and repetitive patterns. Our conjecture is that these cues can be exploited to recover the most likely objects' positions in the scene, helping to address the problem of unknown relocalization in changing environments. To this end we propose FlowMaps, a model based on Flow Matching that is able to infer multimodal object locations over space and time. Our results present statistical evidence to support our hypotheses, opening the way to more complex applications of our approach. The code is publically available at https://github.com/Fra-Tsuna/flowmaps

Authors:Sean Turland, Eloi Moliner, Vesa Välimäki
Title: Similarity-Guided Diffusion for Long-Gap Music Inpainting
Abstract:
Music inpainting aims to reconstruct missing segments of a corrupted recording. While diffusion-based generative models improve reconstruction for medium-length gaps, they often struggle to preserve musical plausibility over multi-second gaps. We introduce Similarity-Guided Diffusion Posterior Sampling (SimDPS), a hybrid method that combines diffusion-based inference with similarity search. Candidate segments are first retrieved from a corpus based on contextual similarity, then incorporated into a modified likelihood that guides the diffusion process toward contextually consistent reconstructions. Subjective evaluation on piano music inpainting with 2-s gaps shows that the proposed SimDPS method enhances perceptual plausibility compared to unguided diffusion and frequently outperforms similarity search alone when moderately similar candidates are available. These results demonstrate the potential of a hybrid similarity approach for diffusion-based audio enhancement with long gaps.

Authors:Josias K. Moukpe, Philip K. Chan, Ming Zhang
Title: Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
Abstract:
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.

Authors:Yunsoo Kim, Michal W. S. Ong, Alex Shavick, Honghan Wu, Adam P. Levine
Title: HARE: an entity and relation centric evaluation framework for histopathology reports
Abstract:
Medical domain automated text generation is an active area of research and development; however, evaluating the clinical quality of generated reports remains a challenge, especially in instances where domain-specific metrics are lacking, e.g. histopathology. We propose HARE (Histopathology Automated Report Evaluation), a novel entity and relation centric framework, composed of a benchmark dataset, a named entity recognition (NER) model, a relation extraction (RE) model, and a novel metric, which prioritizes clinically relevant content by aligning critical histopathology entities and relations between reference and generated reports. To develop the HARE benchmark, we annotated 813 de-identified clinical diagnostic histopathology reports and 652 histopathology reports from The Cancer Genome Atlas (TCGA) with domain-specific entities and relations. We fine-tuned GatorTronS, a domain-adapted language model to develop HARE-NER and HARE-RE which achieved the highest overall F1-score (0.915) among the tested models. The proposed HARE metric outperformed traditional metrics including ROUGE and Meteor, as well as radiology metrics such as RadGraph-XL, with the highest correlation and the best regression to expert evaluations (higher than the second best method, GREEN, a large language model based radiology report evaluator, by Pearson $r = 0.168$, Spearman $ρ= 0.161$, Kendall $τ= 0.123$, $R^2 = 0.176$, $RMSE = 0.018$). We release HARE, datasets, and the models at https://github.com/knowlab/HARE to foster advancements in histopathology report generation, providing a robust framework for improving the quality of reports.

Authors:Karan Kendre
Title: Machine Learning for Quantum Noise Reduction
Abstract:
Quantum noise fundamentally limits the utility of near-term quantum devices, making error mitigation essential for practical quantum computation. While traditional quantum error correction codes require substantial qubit overhead and complex syndrome decoding, we propose a machine learning approach that directly reconstructs clean quantum states from noisy density matrices without additional qubits. We formulate quantum noise reduction as a supervised learning problem using a convolutional neural network (CNN) autoencoder architecture with a novel fidelity-aware composite loss function. Our method is trained and evaluated on a comprehensive synthetic dataset of 10,000 density matrices derived from random 5-qubit quantum circuits, encompassing five noise types (depolarizing, amplitude damping, phase damping, bit-flip, and mixed noise) across four intensity levels (0.05-0.20). The CNN successfully reconstructs quantum states across all noise conditions, achieving an average fidelity improvement from 0.298 to 0.774 (Δ = 0.476). Notably, the model demonstrates superior performance on complex mixed noise scenarios and higher noise intensities, with mixed noise showing the highest corrected fidelity (0.807) and improvement (0.567). The approach effectively preserves both diagonal elements (populations) and off-diagonal elements (quantum coherences), making it suitable for entanglement-dependent quantum algorithms. While phase damping presents fundamental information-theoretic limitations, our results suggest that CNN-based density matrix reconstruction offers a promising, resource-efficient alternative to traditional quantum error correction for NISQ-era devices. This data-driven approach could enable practical quantum advantage with fewer physical qubits than conventional error correction schemes require.

Authors:Huaiyu Chen, Fahed Hassanat, Robert Laganiere, Martin Bouchard
Title: mRadNet: A Compact Radar Object Detector with MetaFormer
Abstract:
Frequency-modulated continuous wave radars have gained increasing popularity in the automotive industry. Its robustness against adverse weather conditions makes it a suitable choice for radar object detection in advanced driver assistance systems. These real-time embedded systems have requirements for the compactness and efficiency of the model, which have been largely overlooked in previous work. In this work, we propose mRadNet, a novel radar object detection model with compactness in mind. mRadNet employs a U-net style architecture with MetaFormer blocks, in which separable convolution and attention token mixers are used to capture both local and global features effectively. More efficient token embedding and merging strategies are introduced to further facilitate the lightweight design. The performance of mRadNet is validated on the CRUW dataset, improving state-of-the-art performance with the least number of parameters and FLOPs.

Authors:Juhani Merilehto
Title: A 200-Line Python Micro-Benchmark Suite for NISQ Circuit Compilers
Abstract:
We present microbench.py, a compact (approx. 200 lines) Python script that automates the collection of key compiler metrics, i.e., gate depth, two-qubit-gate count, wall-clock compilation time, and memory footprint, across multiple open-source quantum circuit transpilers. The suite ships with six didactic circuits (3 to 8 qubits) implementing fundamental quantum algorithms and supports Qiskit, tket, Cirq, and the Qiskit-Braket provider; in this paper we showcase results for Qiskit 0.46 and Braket 1.16. The entire run completes in under three minutes on a laptop, emits a single CSV plus publisheable plot, and reproduces the figure here with one command. We release the code under the MIT licence to serve as a quick-start regression harness for NISQ compiler research.

Authors:Luca Della Libera, Cem Subakan, Mirco Ravanelli
Title: FocalCodec-Stream: Streaming Low-Bitrate Speech Coding via Causal Distillation
Abstract:
Neural audio codecs are a fundamental component of modern generative audio pipelines. Although recent codecs achieve strong low-bitrate reconstruction and provide powerful representations for downstream tasks, most are non-streamable, limiting their use in real-time applications. We present FocalCodec-Stream, a hybrid codec based on focal modulation that compresses speech into a single binary codebook at 0.55 - 0.80 kbps with a theoretical latency of 80 ms. Our approach combines multi-stage causal distillation of WavLM with targeted architectural improvements, including a lightweight refiner module that enhances quality under latency constraints. Experiments show that FocalCodec-Stream outperforms existing streamable codecs at comparable bitrates, while preserving both semantic and acoustic information. The result is a favorable trade-off between reconstruction quality, downstream task performance, latency, and efficiency. Code and checkpoints will be released at https://github.com/lucadellalib/focalcodec.

Authors:Jinghao Zhang, Sihang Jiang, Shiwei Guo, Shisong Chen, Yanghua Xiao, Hongwei Feng, Jiaqing Liang, Minggui HE, Shimin Tao, Hongxia Ma
Title: CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs
Abstract:
As large language models (LLMs) are increasingly deployed in diverse cultural environments, evaluating their cultural understanding capability has become essential for ensuring trustworthy and culturally aligned applications. However, most existing benchmarks lack comprehensiveness and are challenging to scale and adapt across different cultural contexts, because their frameworks often lack guidance from well-established cultural theories and tend to rely on expert-driven manual annotations. To address these issues, we propose CultureScope, the most comprehensive evaluation framework to date for assessing cultural understanding in LLMs. Inspired by the cultural iceberg theory, we design a novel dimensional schema for cultural knowledge classification, comprising 3 layers and 140 dimensions, which guides the automated construction of culture-specific knowledge bases and corresponding evaluation datasets for any given languages and cultures. Experimental results demonstrate that our method can effectively evaluate cultural understanding. They also reveal that existing large language models lack comprehensive cultural competence, and merely incorporating multilingual data does not necessarily enhance cultural understanding. All code and data files are available at https://github.com/HoganZinger/Culture

Authors:Xiaoqi Zhao, Youwei Pang, Chenyang Yu, Lihe Zhang, Huchuan Lu, Shijian Lu, Georges El Fakhri, Xiaofeng Liu
Title: UniMRSeg: Unified Modality-Relax Segmentation via Hierarchical Self-Supervised Compensation
Abstract:
Multi-modal image segmentation faces real-world deployment challenges from incomplete/corrupted modalities degrading performance. While existing methods address training-inference modality gaps via specialized per-combination models, they introduce high deployment costs by requiring exhaustive model subsets and model-modality matching. In this work, we propose a unified modality-relax segmentation network (UniMRSeg) through hierarchical self-supervised compensation (HSSC). Our approach hierarchically bridges representation gaps between complete and incomplete modalities across input, feature and output levels. % First, we adopt modality reconstruction with the hybrid shuffled-masking augmentation, encouraging the model to learn the intrinsic modality characteristics and generate meaningful representations for missing modalities through cross-modal fusion. % Next, modality-invariant contrastive learning implicitly compensates the feature space distance among incomplete-complete modality pairs. Furthermore, the proposed lightweight reverse attention adapter explicitly compensates for the weak perceptual semantics in the frozen encoder. Last, UniMRSeg is fine-tuned under the hybrid consistency constraint to ensure stable prediction under all modality combinations without large performance fluctuations. Without bells and whistles, UniMRSeg significantly outperforms the state-of-the-art methods under diverse missing modality scenarios on MRI-based brain tumor segmentation, RGB-D semantic segmentation, RGB-D/T salient object segmentation. The code will be released at https://github.com/Xiaoqi-Zhao-DLUT/UniMRSeg.

Authors:Vatsal Malaviya, Agneet Chatterjee, Maitreya Patel, Yezhou Yang, Chitta Baral
Title: AcT2I: Evaluating and Improving Action Depiction in Text-to-Image Models
Abstract:
Text-to-Image (T2I) models have recently achieved remarkable success in generating images from textual descriptions. However, challenges still persist in accurately rendering complex scenes where actions and interactions form the primary semantic focus. Our key observation in this work is that T2I models frequently struggle to capture nuanced and often implicit attributes inherent in action depiction, leading to generating images that lack key contextual details. To enable systematic evaluation, we introduce AcT2I, a benchmark designed to evaluate the performance of T2I models in generating images from action-centric prompts. We experimentally validate that leading T2I models do not fare well on AcT2I. We further hypothesize that this shortcoming arises from the incomplete representation of the inherent attributes and contextual dependencies in the training corpora of existing T2I models. We build upon this by developing a training-free, knowledge distillation technique utilizing Large Language Models to address this limitation. Specifically, we enhance prompts by incorporating dense information across three dimensions, observing that injecting prompts with temporal details significantly improves image generation accuracy, with our best model achieving an increase of 72%. Our findings highlight the limitations of current T2I methods in generating images that require complex reasoning and demonstrate that integrating linguistic knowledge in a systematic way can notably advance the generation of nuanced and contextually accurate images.

Authors:Sheng Zhang, Yifan Ding, Shuquan Lian, Shun Song, Hui Li
Title: CodeRAG: Finding Relevant and Necessary Knowledge for Retrieval-Augmented Repository-Level Code Completion
Abstract:
Repository-level code completion automatically predicts the unfinished code based on the broader information from the repository. Recent strides in Code Large Language Models (code LLMs) have spurred the development of repository-level code completion methods, yielding promising results. Nevertheless, they suffer from issues such as inappropriate query construction, single-path code retrieval, and misalignment between code retriever and code LLM. To address these problems, we introduce CodeRAG, a framework tailored to identify relevant and necessary knowledge for retrieval-augmented repository-level code completion. Its core components include log probability guided query construction, multi-path code retrieval, and preference-aligned BestFit reranking. Extensive experiments on benchmarks ReccEval and CCEval demonstrate that CodeRAG significantly and consistently outperforms state-of-the-art methods. The implementation of CodeRAG is available at https://github.com/KDEGroup/CodeRAG.

Authors:Shen Cheng, Haipeng Li, Haibin Huang, Xiaohong Liu, Shuaicheng Liu
Title: Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
Abstract:
In this work, we present Blind-Spot Guided Diffusion, a novel self-supervised framework for real-world image denoising. Our approach addresses two major challenges: the limitations of blind-spot networks (BSNs), which often sacrifice local detail and introduce pixel discontinuities due to spatial independence assumptions, and the difficulty of adapting diffusion models to self-supervised denoising. We propose a dual-branch diffusion framework that combines a BSN-based diffusion branch, generating semi-clean images, with a conventional diffusion branch that captures underlying noise distributions. To enable effective training without paired data, we use the BSN-based branch to guide the sampling process, capturing noise structure while preserving local details. Extensive experiments on the SIDD and DND datasets demonstrate state-of-the-art performance, establishing our method as a highly effective self-supervised solution for real-world denoising. Code and pre-trained models are released at: https://github.com/Sumching/BSGD.

Authors:Clemence Grislain, Hamed Rahimi, Olivier Sigaud, Mohamed Chetouani
Title: I-FailSense: Towards General Robotic Failure Detection with Vision-Language Models
Abstract:
Language-conditioned robotic manipulation in open-world settings requires not only accurate task execution but also the ability to detect failures for robust deployment in real-world environments. Although recent advances in vision-language models (VLMs) have significantly improved the spatial reasoning and task-planning capabilities of robots, they remain limited in their ability to recognize their own failures. In particular, a critical yet underexplored challenge lies in detecting semantic misalignment errors, where the robot executes a task that is semantically meaningful but inconsistent with the given instruction. To address this, we propose a method for building datasets targeting Semantic Misalignment Failures detection, from existing language-conditioned manipulation datasets. We also present I-FailSense, an open-source VLM framework with grounded arbitration designed specifically for failure detection. Our approach relies on post-training a base VLM, followed by training lightweight classification heads, called FS blocks, attached to different internal layers of the VLM and whose predictions are aggregated using an ensembling mechanism. Experiments show that I-FailSense outperforms state-of-the-art VLMs, both comparable in size and larger, in detecting semantic misalignment errors. Notably, despite being trained only on semantic misalignment detection, I-FailSense generalizes to broader robotic failure categories and effectively transfers to other simulation environments and real-world with zero-shot or minimal post-training. The datasets and models are publicly released on HuggingFace (Webpage: https://clemgris.github.io/I-FailSense/).

Authors:Yue Su, Chubin Zhang, Sijin Chen, Liufan Tan, Yansong Tang, Jianan Wang, Xihui Liu
Title: DSPv2: Improved Dense Policy for Effective and Generalizable Whole-body Mobile Manipulation
Abstract:
Learning whole-body mobile manipulation via imitation is essential for generalizing robotic skills to diverse environments and complex tasks. However, this goal is hindered by significant challenges, particularly in effectively processing complex observation, achieving robust generalization, and generating coherent actions. To address these issues, we propose DSPv2, a novel policy architecture. DSPv2 introduces an effective encoding scheme that aligns 3D spatial features with multi-view 2D semantic features. This fusion enables the policy to achieve broad generalization while retaining the fine-grained perception necessary for precise control. Furthermore, we extend the Dense Policy paradigm to the whole-body mobile manipulation domain, demonstrating its effectiveness in generating coherent and precise actions for the whole-body robotic platform. Extensive experiments show that our method significantly outperforms existing approaches in both task performance and generalization ability. Project page is available at: https://selen-suyue.github.io/DSPv2Net/.

Authors:Maciej Stępień, Rafael Kourdis, Constant Roux, Olivier Stasse
Title: Latent Conditioned Loco-Manipulation Using Motion Priors
Abstract:
Although humanoid and quadruped robots provide a wide range of capabilities, current control methods, such as Deep Reinforcement Learning, focus mainly on single skills. This approach is inefficient for solving more complicated tasks where high-level goals, physical robot limitations and desired motion style might all need to be taken into account. A more effective approach is to first train a multipurpose motion policy that acquires low-level skills through imitation, while providing latent space control over skill execution. Then, this policy can be used to efficiently solve downstream tasks. This method has already been successful for controlling characters in computer graphics. In this work, we apply the approach to humanoid and quadrupedal loco-manipulation by imitating either simple synthetic motions or kinematically retargeted dog motions. We extend the original formulation to handle constraints, ensuring deployment safety, and use a diffusion discriminator for better imitation quality. We verify our methods by performing loco-manipulation in simulation for the H1 humanoid and Solo12 quadruped, as well as deploying policies on Solo12 hardware. Videos and code are available at https://gepetto.github.io/LaCoLoco/

Authors:Maithili Joshi, Palash Nandi, Tanmoy Chakraborty
Title: SABER: Uncovering Vulnerabilities in Safety Alignment via Cross-Layer Residual Connection
Abstract:
Large Language Models (LLMs) with safe-alignment training are powerful instruments with robust language comprehension capabilities. These models typically undergo meticulous alignment procedures involving human feedback to ensure the acceptance of safe inputs while rejecting harmful or unsafe ones. However, despite their massive scale and alignment efforts, LLMs remain vulnerable to jailbreak attacks, where malicious users manipulate the model to produce harmful outputs that it was explicitly trained to avoid. In this study, we find that the safety mechanisms in LLMs are predominantly embedded in the middle-to-late layers. Building on this insight, we introduce a novel white-box jailbreak method, SABER (Safety Alignment Bypass via Extra Residuals), which connects two intermediate layers $s$ and $e$ such that $s < e$, through a residual connection. Our approach achieves a 51% improvement over the best-performing baseline on the HarmBench test set. Furthermore, SABER induces only a marginal shift in perplexity when evaluated on the HarmBench validation set. The source code is publicly available at https://github.com/PalGitts/SABER.

Authors:Sang Hoon Woo, Sehun Lee, Kang-wook Kim, Gunhee Kim
Title: Think, Verbalize, then Speak: Bridging Complex Thoughts and Comprehensible Speech
Abstract:
Spoken dialogue systems increasingly employ large language models (LLMs) to leverage their advanced reasoning capabilities. However, direct application of LLMs in spoken communication often yield suboptimal results due to mismatches between optimal textual and verbal delivery. While existing approaches adapt LLMs to produce speech-friendly outputs, their impact on reasoning performance remains underexplored. In this work, we propose Think-Verbalize-Speak, a framework that decouples reasoning from spoken delivery to preserve the full reasoning capacity of LLMs. Central to our method is verbalizing, an intermediate step that translates thoughts into natural, speech-ready text. We also introduce ReVerT, a latency-efficient verbalizer based on incremental and asynchronous summarization. Experiments across multiple benchmarks show that our method enhances speech naturalness and conciseness with minimal impact on reasoning. The project page with the dataset and the source code is available at https://yhytoto12.github.io/TVS-ReVerT

Authors:Bhavesh Sandbhor, Bheeshm Sharma, Balamurugan Palaniappan
Title: SLaM-DiMM: Shared Latent Modeling for Diffusion Based Missing Modality Synthesis in MRI
Abstract:
Brain MRI scans are often found in four modalities, consisting of T1-weighted with and without contrast enhancement (T1ce and T1w), T2-weighted imaging (T2w), and Flair. Leveraging complementary information from these different modalities enables models to learn richer, more discriminative features for understanding brain anatomy, which could be used in downstream tasks such as anomaly detection. However, in clinical practice, not all MRI modalities are always available due to various reasons. This makes missing modality generation a critical challenge in medical image analysis. In this paper, we propose SLaM-DiMM, a novel missing modality generation framework that harnesses the power of diffusion models to synthesize any of the four target MRI modalities from other available modalities. Our approach not only generates high-fidelity images but also ensures structural coherence across the depth of the volume through a dedicated coherence enhancement mechanism. Qualitative and quantitative evaluations on the BraTS-Lighthouse-2025 Challenge dataset demonstrate the effectiveness of the proposed approach in synthesizing anatomically plausible and structurally consistent results. Code is available at https://github.com/BheeshmSharma/SLaM-DiMM-MICCAI-BraTS-Challenge-2025.

Authors:Yujie Zhu, Charles A. Hepburn, Matthew Thorpe, Giovanni Montana
Title: Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
Abstract:
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.

Authors:Nikita Torgashov, Gustav Eje Henter, Gabriel Skantze
Title: VoXtream: Full-Stream Text-to-Speech with Extremely Low Latency
Abstract:
We present VoXtream, a fully autoregressive, zero-shot streaming text-to-speech (TTS) system for real-time use that begins speaking from the first word. VoXtream directly maps incoming phonemes to audio tokens using a monotonic alignment scheme and a dynamic look-ahead that does not delay onset. Built around an incremental phoneme transformer, a temporal transformer predicting semantic and duration tokens, and a depth transformer producing acoustic tokens, VoXtream achieves, to our knowledge, the lowest initial delay among publicly available streaming TTS: 102 ms on GPU. Despite being trained on a mid-scale 9k-hour corpus, it matches or surpasses larger baselines on several metrics, while delivering competitive quality in both output- and full-streaming settings. Demo and code are available at https://herimor.github.io/voxtream.

Authors:Shiyu Fang, Yiming Cui, Haoyang Liang, Chen Lv, Peng Hang, Jian Sun
Title: CoReVLA: A Dual-Stage End-to-End Autonomous Driving Framework for Long-Tail Scenarios via Collect-and-Refine
Abstract:
Autonomous Driving (AD) systems have made notable progress, but their performance in long-tail, safety-critical scenarios remains limited. These rare cases contribute a disproportionate number of accidents. Vision-Language Action (VLA) models have strong reasoning abilities and offer a potential solution, but their effectiveness is limited by the lack of high-quality data and inefficient learning in such conditions. To address these challenges, we propose CoReVLA, a continual learning end-to-end autonomous driving framework that improves the performance in long-tail scenarios through a dual-stage process of data Collection and behavior Refinement. First, the model is jointly fine-tuned on a mixture of open-source driving QA datasets, allowing it to acquire a foundational understanding of driving scenarios. Next, CoReVLA is deployed within the Cave Automatic Virtual Environment (CAVE) simulation platform, where driver takeover data is collected from real-time interactions. Each takeover indicates a long-tail scenario that CoReVLA fails to handle reliably. Finally, the model is refined via Direct Preference Optimization (DPO), allowing it to learn directly from human preferences and thereby avoid reward hacking caused by manually designed rewards. Extensive open-loop and closed-loop experiments demonstrate that the proposed CoReVLA model can accurately perceive driving scenarios and make appropriate decisions. On the Bench2Drive benchmark, CoReVLA achieves a Driving Score (DS) of 72.18 and a Success Rate (SR) of 50%, outperforming state-of-the-art methods by 7.96 DS and 15% SR under long-tail, safety-critical scenarios. Furthermore, case studies demonstrate the model's ability to continually improve its performance in similar failure-prone scenarios by leveraging past takeover experiences. All codea and preprocessed datasets are available at: https://github.com/FanGShiYuu/CoReVLA

Authors:Chao Yu, Yuanqing Wang, Zhen Guo, Hao Lin, Si Xu, Hongzhi Zang, Quanlu Zhang, Yongji Wu, Chunyang Zhu, Junhao Hu, Zixiao Huang, Mingjie Wei, Yuqing Xie, Ke Yang, Bo Dai, Zhexuan Xu, Xiangyuan Wang, Xu Fu, Zhihao Liu, Kang Chen, Weilin Liu, Gang Liu, Boxun Li, Jianlei Yang, Zhi Yang, Guohao Dai, Yu Wang
Title: RLinf: Flexible and Efficient Large-scale Reinforcement Learning via Macro-to-Micro Flow Transformation
Abstract:
Reinforcement learning (RL) has demonstrated immense potential in advancing artificial general intelligence, agentic intelligence, and embodied intelligence. However, the inherent heterogeneity and dynamicity of RL workflows often lead to low hardware utilization and slow training on existing systems. In this paper, we present RLinf, a high-performance RL training system based on our key observation that the major roadblock to efficient RL training lies in system flexibility. To maximize flexibility and efficiency, RLinf is built atop a novel RL system design paradigm called macro-to-micro flow transformation (M2Flow), which automatically breaks down high-level, easy-to-compose RL workflows at both the temporal and spatial dimensions, and recomposes them into optimized execution flows. Supported by RLinf worker's adaptive communication capability, we devise context switching and elastic pipelining to realize M2Flow transformation, and a profiling-guided scheduling policy to generate optimal execution plans. Extensive evaluations on both reasoning RL and embodied RL tasks demonstrate that RLinf consistently outperforms state-of-the-art systems, achieving 1.1x-2.13x speedup in end-to-end training throughput.

Authors:Zhangqi Jiang, Tingjin Luo, Xu Yang, Xinyan Liang
Title: Adversarial Graph Fusion for Incomplete Multi-view Semi-supervised Learning with Tensorial Imputation
Abstract:
View missing remains a significant challenge in graph-based multi-view semi-supervised learning, hindering their real-world applications. To address this issue, traditional methods introduce a missing indicator matrix and focus on mining partial structure among existing samples in each view for label propagation (LP). However, we argue that these disregarded missing samples sometimes induce discontinuous local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion and degrade classification performance. To alleviate SCP, we propose a novel incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly, we design an adversarial graph fusion scheme to learn a robust consensus graph against the distorted local structure through a min-max framework. By stacking all similarity matrices into a tensor, we further recover the incomplete structure from the high-order consistency information based on the low-rank tensor learning. Additionally, the anchor-based strategy is incorporated to reduce the computational complexity. An efficient alternative optimization algorithm combining a reduced gradient descent method is developed to solve the formulated objective, with theoretical convergence. Extensive experimental results on various datasets validate the superiority of our proposed AGF-TI as compared to state-of-the-art methods. Code is available at https://github.com/ZhangqiJiang07/AGF_TI.

Authors:Gang Yang, Yue Lei, Wenxin Tai, Jin Wu, Jia Chen, Ting Zhong, Fan Zhou
Title: Compose Yourself: Average-Velocity Flow Matching for One-Step Speech Enhancement
Abstract:
Diffusion and flow matching (FM) models have achieved remarkable progress in speech enhancement (SE), yet their dependence on multi-step generation is computationally expensive and vulnerable to discretization errors. Recent advances in one-step generative modeling, particularly MeanFlow, provide a promising alternative by reformulating dynamics through average velocity fields. In this work, we present COSE, a one-step FM framework tailored for SE. To address the high training overhead of Jacobian-vector product (JVP) computations in MeanFlow, we introduce a velocity composition identity to compute average velocity efficiently, eliminating expensive computation while preserving theoretical consistency and achieving competitive enhancement quality. Extensive experiments on standard benchmarks show that COSE delivers up to 5x faster sampling and reduces training cost by 40%, all without compromising speech quality. Code is available at https://github.com/ICDM-UESTC/COSE.

Authors:Katharina Eckstein, Constantin Ulrich, Michael Baumgartner, Jessica Kächele, Dimitrios Bounias, Tassilo Wald, Ralf Floca, Klaus H. Maier-Hein
Title: The Missing Piece: A Case for Pre-Training in 3D Medical Object Detection
Abstract:
Large-scale pre-training holds the promise to advance 3D medical object detection, a crucial component of accurate computer-aided diagnosis. Yet, it remains underexplored compared to segmentation, where pre-training has already demonstrated significant benefits. Existing pre-training approaches for 3D object detection rely on 2D medical data or natural image pre-training, failing to fully leverage 3D volumetric information. In this work, we present the first systematic study of how existing pre-training methods can be integrated into state-of-the-art detection architectures, covering both CNNs and Transformers. Our results show that pre-training consistently improves detection performance across various tasks and datasets. Notably, reconstruction-based self-supervised pre-training outperforms supervised pre-training, while contrastive pre-training provides no clear benefit for 3D medical object detection. Our code is publicly available at: https://github.com/MIC-DKFZ/nnDetection-finetuning.

Authors:Zhengyao Huang, Daniel Zhengyu Huang, Tiannan Xiao, Dina Ma, Zhenyu Ming, Hao Shi, Yuanhui Wen
Title: Improving Monte Carlo Tree Search for Symbolic Regression
Abstract:
Symbolic regression aims to discover concise, interpretable mathematical expressions that satisfy desired objectives, such as fitting data, posing a highly combinatorial optimization problem. While genetic programming has been the dominant approach, recent efforts have explored reinforcement learning methods for improving search efficiency. Monte Carlo Tree Search (MCTS), with its ability to balance exploration and exploitation through guided search, has emerged as a promising technique for symbolic expression discovery. However, its traditional bandit strategies and sequential symbol construction often limit performance. In this work, we propose an improved MCTS framework for symbolic regression that addresses these limitations through two key innovations: (1) an extreme bandit allocation strategy tailored for identifying globally optimal expressions, with finite-time performance guarantees under polynomial reward decay assumptions; and (2) evolution-inspired state-jumping actions such as mutation and crossover, which enable non-local transitions to promising regions of the search space. These state-jumping actions also reshape the reward landscape during the search process, improving both robustness and efficiency. We conduct a thorough numerical study to the impact of these improvements and benchmark our approach against existing symbolic regression methods on a variety of datasets, including both ground-truth and black-box datasets. Our approach achieves competitive performance with state-of-the-art libraries in terms of recovery rate, attains favorable positions on the Pareto frontier of accuracy versus model complexity. Code is available at https://github.com/PKU-CMEGroup/MCTS-4-SR.

Authors:Johannes Köhler, Daniel Zhang, Raffaele Soloperto, Andrea Carron, Melanie Zeilinger
Title: An MPC framework for efficient navigation of mobile robots in cluttered environments
Abstract:
We present a model predictive control (MPC) framework for efficient navigation of mobile robots in cluttered environments. The proposed approach integrates a finite-segment shortest path planner into the finite-horizon trajectory optimization of the MPC. This formulation ensures convergence to dynamically selected targets and guarantees collision avoidance, even under general nonlinear dynamics and cluttered environments. The approach is validated through hardware experiments on a small ground robot, where a human operator dynamically assigns target locations. The robot successfully navigated through complex environments and reached new targets within 2-3 seconds.

Authors:David Calhas, Arlindo L. Oliveira
Title: Deep Feedback Models
Abstract:
Deep Feedback Models (DFMs) are a new class of stateful neural networks that combine bottom up input with high level representations over time. This feedback mechanism introduces dynamics into otherwise static architectures, enabling DFMs to iteratively refine their internal state and mimic aspects of biological decision making. We model this process as a differential equation solved through a recurrent neural network, stabilized via exponential decay to ensure convergence. To evaluate their effectiveness, we measure DFMs under two key conditions: robustness to noise and generalization with limited data. In both object recognition and segmentation tasks, DFMs consistently outperform their feedforward counterparts, particularly in low data or high noise regimes. In addition, DFMs translate to medical imaging settings, while being robust against various types of noise corruption. These findings highlight the importance of feedback in achieving stable, robust, and generalizable learning. Code is available at https://github.com/DCalhas/deep_feedback_models.

Authors:Jiahao Li, Xinhong Chen, Zhengmin Jiang, Qian Zhou, Yung-Hui Li, Jianping Wang
Title: Global Regulation and Excitation via Attention Tuning for Stereo Matching
Abstract:
Stereo matching achieves significant progress with iterative algorithms like RAFT-Stereo and IGEV-Stereo. However, these methods struggle in ill-posed regions with occlusions, textureless, or repetitive patterns, due to a lack of global context and geometric information for effective iterative refinement. To enable the existing iterative approaches to incorporate global context, we propose the Global Regulation and Excitation via Attention Tuning (GREAT) framework which encompasses three attention modules. Specifically, Spatial Attention (SA) captures the global context within the spatial dimension, Matching Attention (MA) extracts global context along epipolar lines, and Volume Attention (VA) works in conjunction with SA and MA to construct a more robust cost-volume excited by global context and geometric details. To verify the universality and effectiveness of this framework, we integrate it into several representative iterative stereo-matching methods and validate it through extensive experiments, collectively denoted as GREAT-Stereo. This framework demonstrates superior performance in challenging ill-posed regions. Applied to IGEV-Stereo, among all published methods, our GREAT-IGEV ranks first on the Scene Flow test set, KITTI 2015, and ETH3D leaderboards, and achieves second on the Middlebury benchmark. Code is available at https://github.com/JarvisLee0423/GREAT-Stereo.

Authors:Liwei Liao, Xufeng Li, Xiaoyun Zheng, Boning Liu, Feng Gao, Ronggang Wang
Title: Zero-Shot Visual Grounding in 3D Gaussians via View Retrieval
Abstract:
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on text prompts, which is essential for applications such as robotics. However, existing 3DVG methods encounter two main challenges: first, they struggle to handle the implicit representation of spatial textures in 3D Gaussian Splatting (3DGS), making per-scene training indispensable; second, they typically require larges amounts of labeled data for effective training. To this end, we propose \underline{G}rounding via \underline{V}iew \underline{R}etrieval (GVR), a novel zero-shot visual grounding framework for 3DGS to transform 3DVG as a 2D retrieval task that leverages object-level view retrieval to collect grounding clues from multiple views, which not only avoids the costly process of 3D annotation, but also eliminates the need for per-scene training. Extensive experiments demonstrate that our method achieves state-of-the-art visual grounding performance while avoiding per-scene training, providing a solid foundation for zero-shot 3DVG research. Video demos can be found in https://github.com/leviome/GVR_demos.

Authors:Alina Kostromina, Kseniia Kuvshinova, Aleksandr Yugay, Andrey Savchenko, Dmitry Simakov
Title: Tsururu: A Python-based Time Series Forecasting Strategies Library
Abstract:
While current time series research focuses on developing new models, crucial questions of selecting an optimal approach for training such models are underexplored. Tsururu, a Python library introduced in this paper, bridges SoTA research and industry by enabling flexible combinations of global and multivariate approaches and multi-step-ahead forecasting strategies. It also enables seamless integration with various forecasting models. Available at https://github.com/sb-ai-lab/tsururu .

Authors:Zhongze Luo, Zhenshuai Yin, Yongxin Guo, Zhichao Wang, Jionghao Zhu, Xiaoying Tang
Title: Multi-Physics: A Comprehensive Benchmark for Multimodal LLMs Reasoning on Chinese Multi-Subject Physics Problems
Abstract:
While multimodal LLMs (MLLMs) demonstrate remarkable reasoning progress, their application in specialized scientific domains like physics reveals significant gaps in current evaluation benchmarks. Specifically, existing benchmarks often lack fine-grained subject coverage, neglect the step-by-step reasoning process, and are predominantly English-centric, failing to systematically evaluate the role of visual information. Therefore, we introduce \textbf {Multi-Physics} for Chinese physics reasoning, a comprehensive benchmark that includes 5 difficulty levels, featuring 1,412 image-associated, multiple-choice questions spanning 11 high-school physics subjects. We employ a dual evaluation framework to evaluate 20 different MLLMs, analyzing both final answer accuracy and the step-by-step integrity of their chain-of-thought. Furthermore, we systematically study the impact of difficulty level and visual information by comparing the model performance before and after changing the input mode. Our work provides not only a fine-grained resource for the community but also offers a robust methodology for dissecting the multimodal reasoning process of state-of-the-art MLLMs, and our dataset and code have been open-sourced: https://github.com/luozhongze/Multi-Physics.

Authors:Xueping Zhang, Liwei Jin, Yechen Wang, Linxi Li, Ming Li
Title: CompSpoof: A Dataset and Joint Learning Framework for Component-Level Audio Anti-spoofing Countermeasures
Abstract:
Component-level audio Spoofing (Comp-Spoof) targets a new form of audio manipulation where only specific components of a signal, such as speech or environmental sound, are forged or substituted while other components remain genuine. Existing anti-spoofing datasets and methods treat an utterance or a segment as entirely bona fide or entirely spoofed, and thus cannot accurately detect component-level spoofing. To address this, we construct a new dataset, CompSpoof, covering multiple combinations of bona fide and spoofed speech and environmental sound. We further propose a separation-enhanced joint learning framework that separates audio components apart and applies anti-spoofing models to each one. Joint learning is employed, preserving information relevant for detection. Extensive experiments demonstrate that our method outperforms the baseline, highlighting the necessity of separate components and the importance of detecting spoofing for each component separately. Datasets and code are available at: https://github.com/XuepingZhang/CompSpoof.

Authors:Haotian Zhang, Han Guo, Keyan Chen, Hao Chen, Zhengxia Zou, Zhenwei Shi
Title: FoBa: A Foreground-Background co-Guided Method and New Benchmark for Remote Sensing Semantic Change Detection
Abstract:
Despite the remarkable progress achieved in remote sensing semantic change detection (SCD), two major challenges remain. At the data level, existing SCD datasets suffer from limited change categories, insufficient change types, and a lack of fine-grained class definitions, making them inadequate to fully support practical applications. At the methodological level, most current approaches underutilize change information, typically treating it as a post-processing step to enhance spatial consistency, which constrains further improvements in model performance. To address these issues, we construct a new benchmark for remote sensing SCD, LevirSCD. Focused on the Beijing area, the dataset covers 16 change categories and 210 specific change types, with more fine-grained class definitions (e.g., roads are divided into unpaved and paved roads). Furthermore, we propose a foreground-background co-guided SCD (FoBa) method, which leverages foregrounds that focus on regions of interest and backgrounds enriched with contextual information to guide the model collaboratively, thereby alleviating semantic ambiguity while enhancing its ability to detect subtle changes. Considering the requirements of bi-temporal interaction and spatial consistency in SCD, we introduce a Gated Interaction Fusion (GIF) module along with a simple consistency loss to further enhance the model's detection performance. Extensive experiments on three datasets (SECOND, JL1, and the proposed LevirSCD) demonstrate that FoBa achieves competitive results compared to current SOTA methods, with improvements of 1.48%, 3.61%, and 2.81% in the SeK metric, respectively. Our code and dataset are available at https://github.com/zmoka-zht/FoBa.

Authors:Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Title: Enriched Feature Representation and Motion Prediction Module for MOSEv2 Track of 7th LSVOS Challenge: 3rd Place Solution
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.

Authors:Yang Li, Tingfa Xu, Shuyan Bai, Peifu Liu, Jianan Li
Title: MCOD: The First Challenging Benchmark for Multispectral Camouflaged Object Detection
Abstract:
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into natural scenes. Although RGB-based methods have advanced, their performance remains limited under challenging conditions. Multispectral imagery, providing rich spectral information, offers a promising alternative for enhanced foreground-background discrimination. However, existing COD benchmark datasets are exclusively RGB-based, lacking essential support for multispectral approaches, which has impeded progress in this area. To address this gap, we introduce MCOD, the first challenging benchmark dataset specifically designed for multispectral camouflaged object detection. MCOD features three key advantages: (i) Comprehensive challenge attributes: It captures real-world difficulties such as small object sizes and extreme lighting conditions commonly encountered in COD tasks. (ii) Diverse real-world scenarios: The dataset spans a wide range of natural environments to better reflect practical applications. (iii) High-quality pixel-level annotations: Each image is manually annotated with precise object masks and corresponding challenge attribute labels. We benchmark eleven representative COD methods on MCOD, observing a consistent performance drop due to increased task difficulty. Notably, integrating multispectral modalities substantially alleviates this degradation, highlighting the value of spectral information in enhancing detection robustness. We anticipate MCOD will provide a strong foundation for future research in multispectral camouflaged object detection. The dataset is publicly accessible at https://github.com/yl2900260-bit/MCOD.

Authors:Yongsheng Feng, Yuetonghui Xu, Jiehui Luo, Hongjia Liu, Xiaobing Li, Feng Yu, Wei Li
Title: TISDiSS: A Training-Time and Inference-Time Scalable Framework for Discriminative Source Separation
Abstract:
Source separation is a fundamental task in speech, music, and audio processing, and it also provides cleaner and larger data for training generative models. However, improving separation performance in practice often depends on increasingly large networks, inflating training and deployment costs. Motivated by recent advances in inference-time scaling for generative modeling, we propose Training-Time and Inference-Time Scalable Discriminative Source Separation (TISDiSS), a unified framework that integrates early-split multi-loss supervision, shared-parameter design, and dynamic inference repetitions. TISDiSS enables flexible speed-performance trade-offs by adjusting inference depth without retraining additional models. We further provide systematic analyses of architectural and training choices and show that training with more inference repetitions improves shallow-inference performance, benefiting low-latency applications. Experiments on standard speech separation benchmarks demonstrate state-of-the-art performance with a reduced parameter count, establishing TISDiSS as a scalable and practical framework for adaptive source separation. Code is available at https://github.com/WingSingFung/TISDiSS.

Authors:Fangyuan Mao, Shuo Wang, Jilin Mei, Chen Min, Shun Lu, Fuyang Liu, Yu Hu
Title: UNIV: Unified Foundation Model for Infrared and Visible Modalities
Abstract:
The demand for joint RGB-visible and infrared perception is growing rapidly, particularly to achieve robust performance under diverse weather conditions. Although pre-trained models for RGB-visible and infrared data excel in their respective domains, they often underperform in multimodal scenarios, such as autonomous vehicles equipped with both sensors. To address this challenge, we propose a biologically inspired UNified foundation model for Infrared and Visible modalities (UNIV), featuring two key innovations. First, we introduce Patch-wise Cross-modality Contrastive Learning (PCCL), an attention-guided distillation framework that mimics retinal horizontal cells' lateral inhibition, which enables effective cross-modal feature alignment while remaining compatible with any transformer-based architecture. Second, our dual-knowledge preservation mechanism emulates the retina's bipolar cell signal routing - combining LoRA adapters (2% added parameters) with synchronous distillation to prevent catastrophic forgetting, thereby replicating the retina's photopic (cone-driven) and scotopic (rod-driven) functionality. To support cross-modal learning, we introduce the MVIP dataset, the most comprehensive visible-infrared benchmark to date. It contains 98,992 precisely aligned image pairs spanning diverse scenarios. Extensive experiments demonstrate UNIV's superior performance on infrared tasks (+1.7 mIoU in semantic segmentation and +0.7 mAP in object detection) while maintaining 99%+ of the baseline performance on visible RGB tasks. Our code is available at https://github.com/fangyuanmao/UNIV.

Authors:Pan Tang, Shixiang Tang, Huanqi Pu, Zhiqing Miao, Zhixing Wang
Title: MicroRCA-Agent: Microservice Root Cause Analysis Method Based on Large Language Model Agents
Abstract:
This paper presents MicroRCA-Agent, an innovative solution for microservice root cause analysis based on large language model agents, which constructs an intelligent fault root cause localization system with multimodal data fusion. The technical innovations are embodied in three key aspects: First, we combine the pre-trained Drain log parsing algorithm with multi-level data filtering mechanism to efficiently compress massive logs into high-quality fault features. Second, we employ a dual anomaly detection approach that integrates Isolation Forest unsupervised learning algorithms with status code validation to achieve comprehensive trace anomaly identification. Third, we design a statistical symmetry ratio filtering mechanism coupled with a two-stage LLM analysis strategy to enable full-stack phenomenon summarization across node-service-pod hierarchies. The multimodal root cause analysis module leverages carefully designed cross-modal prompts to deeply integrate multimodal anomaly information, fully exploiting the cross-modal understanding and logical reasoning capabilities of large language models to generate structured analysis results encompassing fault components, root cause descriptions, and reasoning trace. Comprehensive ablation studies validate the complementary value of each modal data and the effectiveness of the system architecture. The proposed solution demonstrates superior performance in complex microservice fault scenarios, achieving a final score of 50.71. The code has been released at: https://github.com/tangpan360/MicroRCA-Agent.

Authors:Zheng Wang, Hong Liu, Zheng Wang, Danyi Li, Min Cen, Baptiste Magnier, Li Liang, Liansheng Wang
Title: Enhancing WSI-Based Survival Analysis with Report-Auxiliary Self-Distillation
Abstract:
Survival analysis based on Whole Slide Images (WSIs) is crucial for evaluating cancer prognosis, as they offer detailed microscopic information essential for predicting patient outcomes. However, traditional WSI-based survival analysis usually faces noisy features and limited data accessibility, hindering their ability to capture critical prognostic features effectively. Although pathology reports provide rich patient-specific information that could assist analysis, their potential to enhance WSI-based survival analysis remains largely unexplored. To this end, this paper proposes a novel Report-auxiliary self-distillation (Rasa) framework for WSI-based survival analysis. First, advanced large language models (LLMs) are utilized to extract fine-grained, WSI-relevant textual descriptions from original noisy pathology reports via a carefully designed task prompt. Next, a self-distillation-based pipeline is designed to filter out irrelevant or redundant WSI features for the student model under the guidance of the teacher model's textual knowledge. Finally, a risk-aware mix-up strategy is incorporated during the training of the student model to enhance both the quantity and diversity of the training data. Extensive experiments carried out on our collected data (CRC) and public data (TCGA-BRCA) demonstrate the superior effectiveness of Rasa against state-of-the-art methods. Our code is available at https://github.com/zhengwang9/Rasa.

Authors:Jun-Wei Yeow, Ee-Leng Tan, Santi Peksi, Woon-Seng Gan
Title: MAGENTA: Magnitude and Geometry-ENhanced Training Approach for Robust Long-Tailed Sound Event Localization and Detection
Abstract:
Deep learning-based Sound Event Localization and Detection (SELD) systems degrade significantly on real-world, long-tailed datasets. Standard regression losses bias learning toward frequent classes, causing rare events to be systematically under-recognized. To address this challenge, we introduce MAGENTA (Magnitude And Geometry-ENhanced Training Approach), a unified loss function that counteracts this bias within a physically interpretable vector space. MAGENTA geometrically decomposes the regression error into radial and angular components, enabling targeted, rarity-aware penalties and strengthened directional modeling. Empirically, MAGENTA substantially improves SELD performance on imbalanced real-world data, providing a principled foundation for a new class of geometry-aware SELD objectives. Code is available at: https://github.com/itsjunwei/MAGENTA_ICASSP

Authors:Zinan Lin, Enshu Liu, Xuefei Ning, Junyi Zhu, Wenyu Wang, Sergey Yekhanin
Title: Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification
Abstract:
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.

Authors:Tsz Ting Chung, Lemao Liu, Mo Yu, Dit-Yan Yeung
Title: DivLogicEval: A Framework for Benchmarking Logical Reasoning Evaluation in Large Language Models
Abstract:
Logic reasoning in natural language has been recognized as an important measure of human intelligence for Large Language Models (LLMs). Popular benchmarks may entangle multiple reasoning skills and thus provide unfaithful evaluations on the logic reasoning skill. Meanwhile, existing logic reasoning benchmarks are limited in language diversity and their distributions are deviated from the distribution of an ideal logic reasoning benchmark, which may lead to biased evaluation results. This paper thereby proposes a new classical logic benchmark DivLogicEval, consisting of natural sentences composed of diverse statements in a counterintuitive way. To ensure a more reliable evaluation, we also introduce a new evaluation metric that mitigates the influence of bias and randomness inherent in LLMs. Through experiments, we demonstrate the extent to which logical reasoning is required to answer the questions in DivLogicEval and compare the performance of different popular LLMs in conducting logical reasoning.

Authors:Runxin Zhao, Chunxiang Wang, Hanyang Zhuang, Ming Yang
Title: Bench-RNR: Dataset for Benchmarking Repetitive and Non-repetitive Scanning LiDAR for Infrastructure-based Vehicle Localization
Abstract:
Vehicle localization using roadside LiDARs can provide centimeter-level accuracy for cloud-controlled vehicles while simultaneously serving multiple vehicles, enhanc-ing safety and efficiency. While most existing studies rely on repetitive scanning LiDARs, non-repetitive scanning LiDAR offers advantages such as eliminating blind zones and being more cost-effective. However, its application in roadside perception and localization remains limited. To address this, we present a dataset for infrastructure-based vehicle localization, with data collected from both repetitive and non-repetitive scanning LiDARs, in order to benchmark the performance of different LiDAR scanning patterns. The dataset contains 5,445 frames of point clouds across eight vehicle trajectory sequences, with diverse trajectory types. Our experiments establish base-lines for infrastructure-based vehicle localization and compare the performance of these methods using both non-repetitive and repetitive scanning LiDARs. This work offers valuable insights for selecting the most suitable LiDAR scanning pattern for infrastruc-ture-based vehicle localization. Our dataset is a signifi-cant contribution to the scientific community, supporting advancements in infrastructure-based perception and vehicle localization. The dataset and source code are publicly available at: https://github.com/sjtu-cyberc3/BenchRNR.

Authors:Shilong Bao, Qianqian Xu, Feiran Li, Boyu Han, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Abstract:
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.

Authors:Tian Lan, Yiming Zheng, Jianxin Yin
Title: Diffusion-Based Cross-Modal Feature Extraction for Multi-Label Classification
Abstract:
Multi-label classification has broad applications and depends on powerful representations capable of capturing multi-label interactions. We introduce \textit{Diff-Feat}, a simple but powerful framework that extracts intermediate features from pre-trained diffusion-Transformer models for images and text, and fuses them for downstream tasks. We observe that for vision tasks, the most discriminative intermediate feature along the diffusion process occurs at the middle step and is located in the middle block in Transformer. In contrast, for language tasks, the best feature occurs at the noise-free step and is located in the deepest block. In particular, we observe a striking phenomenon across varying datasets: a mysterious "Layer $12$" consistently yields the best performance on various downstream classification tasks for images (under DiT-XL/2-256$\times$256). We devise a heuristic local-search algorithm that pinpoints the locally optimal "image-text"$\times$"block-timestep" pair among a few candidates, avoiding an exhaustive grid search. A simple fusion-linear projection followed by addition-of the selected representations yields state-of-the-art performance: 98.6\% mAP on MS-COCO-enhanced and 45.7\% mAP on Visual Genome 500, surpassing strong CNN, graph, and Transformer baselines by a wide margin. t-SNE and clustering metrics further reveal that \textit{Diff-Feat} forms tighter semantic clusters than unimodal counterparts. The code is available at https://github.com/lt-0123/Diff-Feat.

Authors:Xiaowei Zhu, Yubing Ren, Fang Fang, Qingfeng Tan, Shi Wang, Yanan Cao
Title: DNA-DetectLLM: Unveiling AI-Generated Text via a DNA-Inspired Mutation-Repair Paradigm
Abstract:
The rapid advancement of large language models (LLMs) has blurred the line between AI-generated and human-written text. This progress brings societal risks such as misinformation, authorship ambiguity, and intellectual property concerns, highlighting the urgent need for reliable AI-generated text detection methods. However, recent advances in generative language modeling have resulted in significant overlap between the feature distributions of human-written and AI-generated text, blurring classification boundaries and making accurate detection increasingly challenging. To address the above challenges, we propose a DNA-inspired perspective, leveraging a repair-based process to directly and interpretably capture the intrinsic differences between human-written and AI-generated text. Building on this perspective, we introduce DNA-DetectLLM, a zero-shot detection method for distinguishing AI-generated and human-written text. The method constructs an ideal AI-generated sequence for each input, iteratively repairs non-optimal tokens, and quantifies the cumulative repair effort as an interpretable detection signal. Empirical evaluations demonstrate that our method achieves state-of-the-art detection performance and exhibits strong robustness against various adversarial attacks and input lengths. Specifically, DNA-DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1 score across multiple public benchmark datasets. Code and data are available at https://github.com/Xiaoweizhu57/DNA-DetectLLM.

Authors:Wei Chen, Tongguan Wang, Feiyue Xue, Junkai Li, Hui Liu, Ying Sha
Title: Beyond Words: Enhancing Desire, Emotion, and Sentiment Recognition with Non-Verbal Cues
Abstract:
Desire, as an intention that drives human behavior, is closely related to both emotion and sentiment. Multimodal learning has advanced sentiment and emotion recognition, but multimodal approaches specially targeting human desire understanding remain underexplored. And existing methods in sentiment analysis predominantly emphasize verbal cues and overlook images as complementary non-verbal cues. To address these gaps, we propose a Symmetrical Bidirectional Multimodal Learning Framework for Desire, Emotion, and Sentiment Recognition, which enforces mutual guidance between text and image modalities to effectively capture intention-related representations in the image. Specifically, low-resolution images are used to obtain global visual representations for cross-modal alignment, while high resolution images are partitioned into sub-images and modeled with masked image modeling to enhance the ability to capture fine-grained local features. A text-guided image decoder and an image-guided text decoder are introduced to facilitate deep cross-modal interaction at both local and global representations of image information. Additionally, to balance perceptual gains with computation cost, a mixed-scale image strategy is adopted, where high-resolution images are cropped into sub-images for masked modeling. The proposed approach is evaluated on MSED, a multimodal dataset that includes a desire understanding benchmark, as well as emotion and sentiment recognition. Experimental results indicate consistent improvements over other state-of-the-art methods, validating the effectiveness of our proposed method. Specifically, our method outperforms existing approaches, achieving F1-score improvements of 1.1% in desire understanding, 0.6% in emotion recognition, and 0.9% in sentiment analysis. Our code is available at: https://github.com/especiallyW/SyDES.

Authors:Xinlei Niu, Jianbo Ma, Dylan Harper-Harris, Xiangyu Zhang, Charles Patrick Martin, Jing Zhang
Title: Beyond Video-to-SFX: Video to Audio Synthesis with Environmentally Aware Speech
Abstract:
The generation of realistic, context-aware audio is important in real-world applications such as video game development. While existing video-to-audio (V2A) methods mainly focus on Foley sound generation, they struggle to produce intelligible speech. Meanwhile, current environmental speech synthesis approaches remain text-driven and fail to temporally align with dynamic video content. In this paper, we propose Beyond Video-to-SFX (BVS), a method to generate synchronized audio with environmentally aware intelligible speech for given videos. We introduce a two-stage modeling method: (1) stage one is a video-guided audio semantic (V2AS) model to predict unified audio semantic tokens conditioned on phonetic cues; (2) stage two is a video-conditioned semantic-to-acoustic (VS2A) model that refines semantic tokens into detailed acoustic tokens. Experiments demonstrate the effectiveness of BVS in scenarios such as video-to-context-aware speech synthesis and immersive audio background conversion, with ablation studies further validating our design. Our demonstration is available at~\href{https://xinleiniu.github.io/BVS-demo/}{BVS-Demo}.

Authors:Abdarahmane Traore, Éric Hervet, Andy Couturier
Title: SmolRGPT: Efficient Spatial Reasoning for Warehouse Environments with 600M Parameters
Abstract:
Recent advances in vision-language models (VLMs) have enabled powerful multimodal reasoning, but state-of-the-art approaches typically rely on extremely large models with prohibitive computational and memory requirements. This makes their deployment challenging in resource-constrained environments such as warehouses, robotics, and industrial applications, where both efficiency and robust spatial understanding are critical. In this work, we present SmolRGPT, a compact vision-language architecture that explicitly incorporates region-level spatial reasoning by integrating both RGB and depth cues. SmolRGPT employs a three-stage curriculum that progressively align visual and language features, enables spatial relationship understanding, and adapts to task-specific datasets. We demonstrate that with only 600M parameters, SmolRGPT achieves competitive results on challenging warehouse spatial reasoning benchmarks, matching or exceeding the performance of much larger alternatives. These findings highlight the potential for efficient, deployable multimodal intelligence in real-world settings without sacrificing core spatial reasoning capabilities. The code of the experimentation will be available at: https://github.com/abtraore/SmolRGPT

Authors:Lioz Berman, Sharon Gannot, Tom Tirer
Title: (SP)$^2$-Net: A Neural Spatial Spectrum Method for DOA Estimation
Abstract:
We consider the problem of estimating the directions of arrival (DOAs) of multiple sources from a single snapshot of an antenna array, a task with many practical applications. In such settings, the classical Bartlett beamformer is commonly used, as maximum likelihood estimation becomes impractical when the number of sources is unknown or large, and spectral methods based on the sample covariance are not applicable due to the lack of multiple snapshots. However, the accuracy and resolution of the Bartlett beamformer are fundamentally limited by the array aperture. In this paper, we propose a deep learning technique, comprising a novel architecture and training strategy, for generating a high-resolution spatial spectrum from a single snapshot. Specifically, we train a deep neural network that takes the measurements and a hypothesis angle as input and learns to output a score consistent with the capabilities of a much wider array. At inference time, a heatmap can be produced by scanning an arbitrary set of angles. We demonstrate the advantages of our trained model, named (SP)$^2$-Net, over the Bartlett beamformer and sparsity-based DOA estimation methods.

Authors:Daniyal Kabir Dar, Qiben Yan, Li Xiao, Arun Ross
Title: Impact of Phonetics on Speaker Identity in Adversarial Voice Attack
Abstract:
Adversarial perturbations in speech pose a serious threat to automatic speech recognition (ASR) and speaker verification by introducing subtle waveform modifications that remain imperceptible to humans but can significantly alter system outputs. While targeted attacks on end-to-end ASR models have been widely studied, the phonetic basis of these perturbations and their effect on speaker identity remain underexplored. In this work, we analyze adversarial audio at the phonetic level and show that perturbations exploit systematic confusions such as vowel centralization and consonant substitutions. These distortions not only mislead transcription but also degrade phonetic cues critical for speaker verification, leading to identity drift. Using DeepSpeech as our ASR target, we generate targeted adversarial examples and evaluate their impact on speaker embeddings across genuine and impostor samples. Results across 16 phonetically diverse target phrases demonstrate that adversarial audio induces both transcription errors and identity drift, highlighting the need for phonetic-aware defenses to ensure the robustness of ASR and speaker recognition systems.

Authors:Kevin Ren, Santiago Cortes-Gomez, Carlos Miguel Patiño, Ananya Joshi, Ruiqi Lyu, Jingjing Tang, Alistair Turcan, Khurram Yamin, Steven Wu, Bryan Wilder
Title: Predicting Language Models' Success at Zero-Shot Probabilistic Prediction
Abstract:
Recent work has investigated the capabilities of large language models (LLMs) as zero-shot models for generating individual-level characteristics (e.g., to serve as risk models or augment survey datasets). However, when should a user have confidence that an LLM will provide high-quality predictions for their particular task? To address this question, we conduct a large-scale empirical study of LLMs' zero-shot predictive capabilities across a wide range of tabular prediction tasks. We find that LLMs' performance is highly variable, both on tasks within the same dataset and across different datasets. However, when the LLM performs well on the base prediction task, its predicted probabilities become a stronger signal for individual-level accuracy. Then, we construct metrics to predict LLMs' performance at the task level, aiming to distinguish between tasks where LLMs may perform well and where they are likely unsuitable. We find that some of these metrics, each of which are assessed without labeled data, yield strong signals of LLMs' predictive performance on new tasks.

Authors:Yulin Wang, Yang Yue, Yang Yue, Huanqian Wang, Haojun Jiang, Yizeng Han, Zanlin Ni, Yifan Pu, Minglei Shi, Rui Lu, Qisen Yang, Andrew Zhao, Zhuofan Xia, Shiji Song, Gao Huang
Title: Emulating Human-like Adaptive Vision for Efficient and Flexible Machine Visual Perception
Abstract:
Human vision is highly adaptive, efficiently sampling intricate environments by sequentially fixating on task-relevant regions. In contrast, prevailing machine vision models passively process entire scenes at once, resulting in excessive resource demands scaling with spatial-temporal input resolution and model size, yielding critical limitations impeding both future advancements and real-world application. Here we introduce AdaptiveNN, a general framework aiming to drive a paradigm shift from 'passive' to 'active, adaptive' vision models. AdaptiveNN formulates visual perception as a coarse-to-fine sequential decision-making process, progressively identifying and attending to regions pertinent to the task, incrementally combining information across fixations, and actively concluding observation when sufficient. We establish a theory integrating representation learning with self-rewarding reinforcement learning, enabling end-to-end training of the non-differentiable AdaptiveNN without additional supervision on fixation locations. We assess AdaptiveNN on 17 benchmarks spanning 9 tasks, including large-scale visual recognition, fine-grained discrimination, visual search, processing images from real driving and medical scenarios, language-driven embodied AI, and side-by-side comparisons with humans. AdaptiveNN achieves up to 28x inference cost reduction without sacrificing accuracy, flexibly adapts to varying task demands and resource budgets without retraining, and provides enhanced interpretability via its fixation patterns, demonstrating a promising avenue toward efficient, flexible, and interpretable computer vision. Furthermore, AdaptiveNN exhibits closely human-like perceptual behaviors in many cases, revealing its potential as a valuable tool for investigating visual cognition. Code is available at https://github.com/LeapLabTHU/AdaptiveNN.

Authors:Dinura Dissanayake, Ahmed Heakl, Omkar Thawakar, Noor Ahsan, Ritesh Thawkar, Ketan More, Jean Lahoud, Rao Anwer, Hisham Cholakkal, Ivan Laptev, Fahad Shahbaz Khan, Salman Khan
Title: How Good are Foundation Models in Step-by-Step Embodied Reasoning?
Abstract:
Embodied agents operating in the physical world must make decisions that are not only effective but also safe, spatially coherent, and grounded in context. While recent advances in large multimodal models (LMMs) have shown promising capabilities in visual understanding and language generation, their ability to perform structured reasoning for real-world embodied tasks remains underexplored. In this work, we aim to understand how well foundation models can perform step-by-step reasoning in embodied environments. To this end, we propose the Foundation Model Embodied Reasoning (FoMER) benchmark, designed to evaluate the reasoning capabilities of LMMs in complex embodied decision-making scenarios. Our benchmark spans a diverse set of tasks that require agents to interpret multimodal observations, reason about physical constraints and safety, and generate valid next actions in natural language. We present (i) a large-scale, curated suite of embodied reasoning tasks, (ii) a novel evaluation framework that disentangles perceptual grounding from action reasoning, and (iii) empirical analysis of several leading LMMs under this setting. Our benchmark includes over 1.1k samples with detailed step-by-step reasoning across 10 tasks and 8 embodiments, covering three different robot types. Our results highlight both the potential and current limitations of LMMs in embodied reasoning, pointing towards key challenges and opportunities for future research in robot intelligence. Our data and code will be made publicly available.

Authors:Emilie Kibsgaard, Anita Sue Jwa, Christopher J Markiewicz, David Rodriguez Gonzalez, Judith Sainz Pardo, Russell A. Poldrack, Cyril R. Pernet
Title: Assessing metadata privacy in neuroimaging
Abstract:
The ethical and legal imperative to share research data without causing harm requires careful attention to privacy risks. While mounting evidence demonstrates that data sharing benefits science, legitimate concerns persist regarding the potential leakage of personal information that could lead to reidentification and subsequent harm. We reviewed metadata accompanying neuroimaging datasets from six heterogeneous studies openly available on OpenNeuro, involving participants across the lifespan, from children to older adults, with and without clinical diagnoses, and including associated clinical score data. Using metaprivBIDS (https://github.com/CPernet/metaprivBIDS), a novel tool for the systematic assessment of privacy in tabular data, we found that privacy is generally well maintained, with serious vulnerabilities being rare. Nonetheless, minor issues were identified in nearly all datasets and warrant mitigation. Notably, clinical score data (e.g., neuropsychological results) posed minimal reidentification risk, whereas demographic variables (age, sex, race, income, and geolocation) represented the principal privacy vulnerabilities. We outline practical measures to address these risks, enabling safer data sharing practices.

Authors:Yujia Hu, Ming Shan Hee, Preslav Nakov, Roy Ka-Wei Lee
Title: Toxicity Red-Teaming: Benchmarking LLM Safety in Singapore's Low-Resource Languages
Abstract:
The advancement of Large Language Models (LLMs) has transformed natural language processing; however, their safety mechanisms remain under-explored in low-resource, multilingual settings. Here, we aim to bridge this gap. In particular, we introduce \textsf{SGToxicGuard}, a novel dataset and evaluation framework for benchmarking LLM safety in Singapore's diverse linguistic context, including Singlish, Chinese, Malay, and Tamil. SGToxicGuard adopts a red-teaming approach to systematically probe LLM vulnerabilities in three real-world scenarios: \textit{conversation}, \textit{question-answering}, and \textit{content composition}. We conduct extensive experiments with state-of-the-art multilingual LLMs, and the results uncover critical gaps in their safety guardrails. By offering actionable insights into cultural sensitivity and toxicity mitigation, we lay the foundation for safer and more inclusive AI systems in linguistically diverse environments.\footnote{Link to the dataset: https://github.com/Social-AI-Studio/SGToxicGuard.} \textcolor{red}{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}

Authors:Wenda Qin, Andrea Burns, Bryan A. Plummer, Margrit Betke
Title: Walk and Read Less: Improving the Efficiency of Vision-and-Language Navigation via Tuning-Free Multimodal Token Pruning
Abstract:
Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.

Authors:Di Wen, Kunyu Peng, Junwei Zheng, Yufan Chen, Yitain Shi, Jiale Wei, Ruiping Liu, Kailun Yang, Rainer Stiefelhagen
Title: MICA: Multi-Agent Industrial Coordination Assistant
Abstract:
Industrial workflows demand adaptive and trustworthy assistance that can operate under limited computing, connectivity, and strict privacy constraints. In this work, we present MICA (Multi-Agent Industrial Coordination Assistant), a perception-grounded and speech-interactive system that delivers real-time guidance for assembly, troubleshooting, part queries, and maintenance. MICA coordinates five role-specialized language agents, audited by a safety checker, to ensure accurate and compliant support. To achieve robust step understanding, we introduce Adaptive Step Fusion (ASF), which dynamically blends expert reasoning with online adaptation from natural speech feedback. Furthermore, we establish a new multi-agent coordination benchmark across representative task categories and propose evaluation metrics tailored to industrial assistance, enabling systematic comparison of different coordination topologies. Our experiments demonstrate that MICA consistently improves task success, reliability, and responsiveness over baseline structures, while remaining deployable on practical offline hardware. Together, these contributions highlight MICA as a step toward deployable, privacy-preserving multi-agent assistants for dynamic factory environments. The source code will be made publicly available at https://github.com/Kratos-Wen/MICA.

Authors:Jialiang Kang, Han Shu, Wenshuo Li, Yingjie Zhai, Xinghao Chen
Title: ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.

Authors:Abhishek Basu, Fahad Shamshad, Ashshak Sharifdeen, Karthik Nandakumar, Muhammad Haris Khan
Title: Calibration-Aware Prompt Learning for Medical Vision-Language Models
Abstract:
Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable performance across diverse medical imaging tasks by leveraging large-scale image-text pretraining. However, their confidence calibration is largely unexplored, and so remains a significant challenge. As such, miscalibrated predictions can lead to overconfident errors, undermining clinical trust and decision-making reliability. To address this, we introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt tuning. CalibPrompt optimizes a small set of learnable prompts with carefully designed calibration objectives under scarce labeled data regime. First, we study a regularizer that attempts to align the smoothed accuracy with the predicted model confidences. Second, we introduce an angular separation loss to maximize textual feature proximity toward improving the reliability in confidence estimates of multimodal Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five diverse medical imaging datasets reveal that CalibPrompt consistently improves calibration without drastically affecting clean accuracy. Our code is available at https://github.com/iabh1shekbasu/CalibPrompt.

Authors:Silvio Mazzucco, Carl Persson, Mattia Segu, Pier Luigi Dovesi, Federico Tombari, Luc Van Gool, Matteo Poggi
Title: Lost in Translation? Vocabulary Alignment for Source-Free Adaptation in Open-Vocabulary Semantic Segmentation
Abstract:
We introduce VocAlign, a novel source-free domain adaptation framework specifically designed for VLMs in open-vocabulary semantic segmentation. Our method adopts a student-teacher paradigm enhanced with a vocabulary alignment strategy, which improves pseudo-label generation by incorporating additional class concepts. To ensure efficiency, we use Low-Rank Adaptation (LoRA) to fine-tune the model, preserving its original capabilities while minimizing computational overhead. In addition, we propose a Top-K class selection mechanism for the student model, which significantly reduces memory requirements while further improving adaptation performance. Our approach achieves a notable 6.11 mIoU improvement on the CityScapes dataset and demonstrates superior performance on zero-shot segmentation benchmarks, setting a new standard for source-free adaptation in the open-vocabulary setting.

Authors:Luca Bartolomei, Enrico Mannocci, Fabio Tosi, Matteo Poggi, Stefano Mattoccia
Title: Depth AnyEvent: A Cross-Modal Distillation Paradigm for Event-Based Monocular Depth Estimation
Abstract:
Event cameras capture sparse, high-temporal-resolution visual information, making them particularly suitable for challenging environments with high-speed motion and strongly varying lighting conditions. However, the lack of large datasets with dense ground-truth depth annotations hinders learning-based monocular depth estimation from event data. To address this limitation, we propose a cross-modal distillation paradigm to generate dense proxy labels leveraging a Vision Foundation Model (VFM). Our strategy requires an event stream spatially aligned with RGB frames, a simple setup even available off-the-shelf, and exploits the robustness of large-scale VFMs. Additionally, we propose to adapt VFMs, either a vanilla one like Depth Anything v2 (DAv2), or deriving from it a novel recurrent architecture to infer depth from monocular event cameras. We evaluate our approach with synthetic and real-world datasets, demonstrating that i) our cross-modal paradigm achieves competitive performance compared to fully supervised methods without requiring expensive depth annotations, and ii) our VFM-based models achieve state-of-the-art performance.

Authors:Zhaoyang Liu, Jingjing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang, Qiushi Sun, Shi Liu, Weiyun Wang, Shenglong Ye, Qingyun Li, Xuan Dong, Yue Yu, Chenyu Lu, YunXiang Mo, Yao Yan, Zeyue Tian, Xiao Zhang, Yuan Huang, Yiqian Liu, Weijie Su, Gen Luo, Xiangyu Yue, Biqing Qi, Kai Chen, Bowen Zhou, Yu Qiao, Qifeng Chen, Wenhai Wang
Title: ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data
Abstract:
Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously, showing great potential, yet progress is limited by the lack of large-scale, open-source computer use data and foundation models. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning 6 operating systems and 3 task domains, built via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers strong gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose computer use agents. We will release data, models, and code to advance future research: https://github.com/OpenGVLab/ScaleCUA.

Authors:Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys
Title: Lightweight and Accurate Multi-View Stereo with Confidence-Aware Diffusion Model
Abstract:
To reconstruct the 3D geometry from calibrated images, learning-based multi-view stereo (MVS) methods typically perform multi-view depth estimation and then fuse depth maps into a mesh or point cloud. To improve the computational efficiency, many methods initialize a coarse depth map and then gradually refine it in higher resolutions. Recently, diffusion models achieve great success in generation tasks. Starting from a random noise, diffusion models gradually recover the sample with an iterative denoising process. In this paper, we propose a novel MVS framework, which introduces diffusion models in MVS. Specifically, we formulate depth refinement as a conditional diffusion process. Considering the discriminative characteristic of depth estimation, we design a condition encoder to guide the diffusion process. To improve efficiency, we propose a novel diffusion network combining lightweight 2D U-Net and convolutional GRU. Moreover, we propose a novel confidence-based sampling strategy to adaptively sample depth hypotheses based on the confidence estimated by diffusion model. Based on our novel MVS framework, we propose two novel MVS methods, DiffMVS and CasDiffMVS. DiffMVS achieves competitive performance with state-of-the-art efficiency in run-time and GPU memory. CasDiffMVS achieves state-of-the-art performance on DTU, Tanks & Temples and ETH3D. Code is available at: https://github.com/cvg/diffmvs.

Authors:Ruijie Hou, Yueyang Jiao, Hanxu Hu, Yingming Li, Wai Lam, Huajian Zhang, Hongyuan Lu
Title: LNE-Blocking: An Efficient Framework for Contamination Mitigation Evaluation on Large Language Models
Abstract:
The problem of data contamination is now almost inevitable during the development of large language models (LLMs), with the training data commonly integrating those evaluation benchmarks even unintentionally. This problem subsequently makes it hard to benchmark LLMs fairly. Instead of constructing contamination-free datasets (quite hard), we propose a novel framework, \textbf{LNE-Blocking}, to restore model performance prior to contamination on potentially leaked datasets. Our framework consists of two components: contamination detection and disruption operation. For the prompt, the framework first uses the contamination detection method, \textbf{LNE}, to assess the extent of contamination in the model. Based on this, it adjusts the intensity of the disruption operation, \textbf{Blocking}, to elicit non-memorized responses from the model. Our framework is the first to efficiently restore the model's greedy decoding performance. This comes with a strong performance on multiple datasets with potential leakage risks, and it consistently achieves stable recovery results across different models and varying levels of data contamination. We release the code at https://github.com/RuijieH/LNE-Blocking to facilitate research.

Authors:Sreejato Chatterjee, Linh Tran, Quoc Duy Nguyen, Roni Kirson, Drue Hamlin, Harvest Aquino, Hanjia Lyu, Jiebo Luo, Timothy Dye
Title: Assessing Historical Structural Oppression Worldwide via Rule-Guided Prompting of Large Language Models
Abstract:
Traditional efforts to measure historical structural oppression struggle with cross-national validity due to the unique, locally specified histories of exclusion, colonization, and social status in each country, and often have relied on structured indices that privilege material resources while overlooking lived, identity-based exclusion. We introduce a novel framework for oppression measurement that leverages Large Language Models (LLMs) to generate context-sensitive scores of lived historical disadvantage across diverse geopolitical settings. Using unstructured self-identified ethnicity utterances from a multilingual COVID-19 global study, we design rule-guided prompting strategies that encourage models to produce interpretable, theoretically grounded estimations of oppression. We systematically evaluate these strategies across multiple state-of-the-art LLMs. Our results demonstrate that LLMs, when guided by explicit rules, can capture nuanced forms of identity-based historical oppression within nations. This approach provides a complementary measurement tool that highlights dimensions of systemic exclusion, offering a scalable, cross-cultural lens for understanding how oppression manifests in data-driven research and public health contexts. To support reproducible evaluation, we release an open-sourced benchmark dataset for assessing LLMs on oppression measurement (https://github.com/chattergpt/llm-oppression-benchmark).

Authors:Yuming Jiang, Siteng Huang, Shengke Xue, Yaxi Zhao, Jun Cen, Sicong Leng, Kehan Li, Jiayan Guo, Kexiang Wang, Mingxiu Chen, Fan Wang, Deli Zhao, Xin Li
Title: RynnVLA-001: Using Human Demonstrations to Improve Robot Manipulation
Abstract:
This paper presents RynnVLA-001, a vision-language-action(VLA) model built upon large-scale video generative pretraining from human demonstrations. We propose a novel two-stage pretraining methodology. The first stage, Ego-Centric Video Generative Pretraining, trains an Image-to-Video model on 12M ego-centric manipulation videos to predict future frames conditioned on an initial frame and a language instruction. The second stage, Human-Centric Trajectory-Aware Modeling, extends this by jointly predicting future keypoint trajectories, thereby effectively bridging visual frame prediction with action prediction. Furthermore, to enhance action representation, we propose ActionVAE, a variational autoencoder that compresses sequences of actions into compact latent embeddings, reducing the complexity of the VLA output space. When finetuned on the same downstream robotics datasets, RynnVLA-001 achieves superior performance over state-of-the-art baselines, demonstrating that the proposed pretraining strategy provides a more effective initialization for VLA models.

Authors:Pierre Fernandez, Tomáš Souček, Nikola Jovanović, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko
Title: Geometric Image Synchronization with Deep Watermarking
Abstract:
Synchronization is the task of estimating and inverting geometric transformations (e.g., crop, rotation) applied to an image. This work introduces SyncSeal, a bespoke watermarking method for robust image synchronization, which can be applied on top of existing watermarking methods to enhance their robustness against geometric transformations. It relies on an embedder network that imperceptibly alters images and an extractor network that predicts the geometric transformation to which the image was subjected. Both networks are end-to-end trained to minimize the error between the predicted and ground-truth parameters of the transformation, combined with a discriminator to maintain high perceptual quality. We experimentally validate our method on a wide variety of geometric and valuemetric transformations, demonstrating its effectiveness in accurately synchronizing images. We further show that our synchronization can effectively upgrade existing watermarking methods to withstand geometric transformations to which they were previously vulnerable.

Authors:Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian Yu, Xiangliang Zhang, Haitao Mi, Dong Yu
Title: Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation
Abstract:
Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing self-improvement approaches primarily rely on self-confirmation signals (e.g., confidence, entropy, or consistency) to generate rewards. This reliance drives models toward over-confident, majority-favored solutions, causing an entropy collapse that degrades pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-free framework that mirrors the evolutionary principle of balancing selection with variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor for stability, but adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from other concurrently generated responses. This majority-for-stability + novelty-for-exploration rule mirrors the variation-selection principle: selection prevents drift, while novelty prevents collapse. Evaluation results show that EVOL-RL consistently outperforms the majority-only baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from baseline's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents in-domain diversity collapse but also improves out-of-domain generalization (from math reasoning to broader tasks, e.g., GPQA, MMLU-Pro, and BBEH). The code is available at: https://github.com/YujunZhou/EVOL-RL.

Authors:Zaiquan Yang, Yuhao Liu, Gerhard Hancke, Rynson W. H. Lau
Title: Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding
Abstract:
Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as \textit{grounding tokens}, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (\textit{e.g.}, attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.

Authors:Ali Nazari, Bardiya Kariminia, Mohsen Ebrahimi Moghaddam
Title: A Race Bias Free Face Aging Model for Reliable Kinship Verification
Abstract:
The age gap in kinship verification addresses the time difference between the photos of the parent and the child. Moreover, their same-age photos are often unavailable, and face aging models are racially biased, which impacts the likeness of photos. Therefore, we propose a face aging GAN model, RA-GAN, consisting of two new modules, RACEpSp and a feature mixer, to produce racially unbiased images. The unbiased synthesized photos are used in kinship verification to investigate the results of verifying same-age parent-child images. The experiments demonstrate that our RA-GAN outperforms SAM-GAN on an average of 13.14\% across all age groups, and CUSP-GAN in the 60+ age group by 9.1\% in terms of racial accuracy. Moreover, RA-GAN can preserve subjects' identities better than SAM-GAN and CUSP-GAN across all age groups. Additionally, we demonstrate that transforming parent and child images from the KinFaceW-I and KinFaceW-II datasets to the same age can enhance the verification accuracy across all age groups. The accuracy increases with our RA-GAN for the kinship relationships of father-son and father-daughter, mother-son, and mother-daughter, which are 5.22, 5.12, 1.63, and 0.41, respectively, on KinFaceW-I. Additionally, the accuracy for the relationships of father-daughter, father-son, and mother-son is 2.9, 0.39, and 1.6 on KinFaceW-II, respectively. The code is available at~\href{https://github.com/bardiya2254kariminia/An-Age-Transformation-whitout-racial-bias-for-Kinship-verification}{Github}

Authors:Pak-Hei Yeung, Jayroop Ramesh, Pengfei Lyu, Ana Namburete, Jagath Rajapakse
Title: Semi-Supervised 3D Medical Segmentation from 2D Natural Images Pretrained Model
Abstract:
This paper explores the transfer of knowledge from general vision models pretrained on 2D natural images to improve 3D medical image segmentation. We focus on the semi-supervised setting, where only a few labeled 3D medical images are available, along with a large set of unlabeled images. To tackle this, we propose a model-agnostic framework that progressively distills knowledge from a 2D pretrained model to a 3D segmentation model trained from scratch. Our approach, M&N, involves iterative co-training of the two models using pseudo-masks generated by each other, along with our proposed learning rate guided sampling that adaptively adjusts the proportion of labeled and unlabeled data in each training batch to align with the models' prediction accuracy and stability, minimizing the adverse effect caused by inaccurate pseudo-masks. Extensive experiments on multiple publicly available datasets demonstrate that M&N achieves state-of-the-art performance, outperforming thirteen existing semi-supervised segmentation approaches under all different settings. Importantly, ablation studies show that M&N remains model-agnostic, allowing seamless integration with different architectures. This ensures its adaptability as more advanced models emerge. The code is available at https://github.com/pakheiyeung/M-N.

Authors:Shiwan Zhao, Xuyang Zhao, Jiaming Zhou, Aobo Kong, Qicheng Li, Yong Qin
Title: Mind the Gap: Data Rewriting for Stable Off-Policy Supervised Fine-Tuning
Abstract:
Supervised fine-tuning (SFT) of large language models can be viewed as an off-policy learning problem, where expert demonstrations come from a fixed behavior policy while training aims to optimize a target policy. Importance sampling is the standard tool for correcting this distribution mismatch, but large policy gaps lead to skewed weights, high variance, and unstable optimization. Existing methods mitigate this issue with KL penalties or clipping, which passively restrict updates rather than actively reducing the gap. We propose a simple yet effective data rewriting framework that proactively shrinks the policy gap before training. For each problem, correct model-generated solutions are kept as on-policy data, while incorrect ones are rewritten through guided re-solving, falling back to expert demonstrations only when needed. This aligns the training distribution with the target policy, reducing variance and improving stability. To handle residual mismatch after rewriting, we additionally apply importance sampling during training, forming a two-stage approach that combines data-level alignment with lightweight optimization-level correction. Experiments on five mathematical reasoning benchmarks show consistent and significant gains over both vanilla SFT and the state-of-the-art Dynamic Fine-Tuning (DFT) approach. Data and code will be released at https://github.com/NKU-HLT/Off-Policy-SFT.

Authors:Gengliang Li, Rongyu Chen, Bin Li, Linlin Yang, Guodong Ding
Title: MedFact-R1: Towards Factual Medical Reasoning via Pseudo-Label Augmentation
Abstract:
Ensuring factual consistency and reliable reasoning remains a critical challenge for medical vision-language models. We introduce MEDFACT-R1, a two-stage framework that integrates external knowledge grounding with reinforcement learning to improve the factual medical reasoning. The first stage uses pseudo-label supervised fine-tuning (SFT) to incorporate external factual expertise; while the second stage applies Group Relative Policy Optimization (GRPO) with four tailored factual reward signals to encourage self-consistent reasoning. Across three public medical QA benchmarks, MEDFACT-R1 delivers up to 22.5% absolute improvement in factual accuracy over previous state-of-the-art methods. Ablation studies highlight the necessity of pseudo-label SFT cold start and validate the contribution of each GRPO reward, underscoring the synergy between knowledge grounding and RL-driven reasoning for trustworthy medical AI. Codes are released at https://github.com/Garfieldgengliang/MEDFACT-R1.

Authors:Stelios Katsis, Vassilis Lyberatos, Spyridon Kantarelis, Edmund Dervakos, Giorgos Stamou
Title: Exploring How Audio Effects Alter Emotion with Foundation Models
Abstract:
Audio effects (FX) such as reverberation, distortion, modulation, and dynamic range processing play a pivotal role in shaping emotional responses during music listening. While prior studies have examined links between low-level audio features and affective perception, the systematic impact of audio FX on emotion remains underexplored. This work investigates how foundation models - large-scale neural architectures pretrained on multimodal data - can be leveraged to analyze these effects. Such models encode rich associations between musical structure, timbre, and affective meaning, offering a powerful framework for probing the emotional consequences of sound design techniques. By applying various probing methods to embeddings from deep learning models, we examine the complex, nonlinear relationships between audio FX and estimated emotion, uncovering patterns tied to specific effects and evaluating the robustness of foundation audio models. Our findings aim to advance understanding of the perceptual impact of audio production practices, with implications for music cognition, performance, and affective computing.

Authors:Jing Xiong, Qiujiang Chen, Fanghua Ye, Zhongwei Wan, Chuanyang Zheng, Chenyang Zhao, Hui Shen, Alexander Hanbo Li, Chaofan Tao, Haochen Tan, Haoli Bai, Lifeng Shang, Lingpeng Kong, Ngai Wong
Title: ATTS: Asynchronous Test-Time Scaling via Conformal Prediction
Abstract:
Large language models (LLMs) benefit from test-time scaling but are often hampered by high inference latency. Speculative decoding is a natural way to accelerate the scaling process; however, scaling along both the parallel and sequential dimensions poses significant challenges, including substantial memory-bound execution and synchronization overhead. We introduce ATTS (Asynchronous Test-Time Scaling), a statistically guaranteed adaptive scaling framework that follows the hypothesis testing process to address these challenges. By revisiting arithmetic intensity, ATTS identifies synchronization as the primary bottleneck. It enables asynchronous inference through online calibration and proposes an ordinal classification algorithm that supports a three-stage rejection sampling pipeline, scaling along both the sequential and parallel axes. Across experiments on the MATH, AMC23, AIME24, and AIME25 datasets and across multiple draft-target model families, we show that ATTS delivers up to 56.7x speedup in test-time scaling and a 4.14x throughput improvement, while maintaining accurate control of the rejection rate, reducing latency and memory overhead, and incurring no accuracy loss. By scaling both in parallel and sequential dimensions, we enable the 1.5B/70B draft/target model combination to achieve the performance of the state-of-the-art reasoning model o3-mini (high) on the AIME dataset. We have released the code at https://github.com/menik1126/asynchronous-test-time-scaling.

Authors:Yuxin Luo, Ruoyi Zhang, Lu-Chuan Liu, Tianyu Li, Hangyu Liu
Title: FCPE: A Fast Context-based Pitch Estimation Model
Abstract:
Pitch estimation (PE) in monophonic audio is crucial for MIDI transcription and singing voice conversion (SVC), but existing methods suffer significant performance degradation under noise. In this paper, we propose FCPE, a fast context-based pitch estimation model that employs a Lynx-Net architecture with depth-wise separable convolutions to effectively capture mel spectrogram features while maintaining low computational cost and robust noise tolerance. Experiments show that our method achieves 96.79\% Raw Pitch Accuracy (RPA) on the MIR-1K dataset, on par with the state-of-the-art methods. The Real-Time Factor (RTF) is 0.0062 on a single RTX 4090 GPU, which significantly outperforms existing algorithms in efficiency. Code is available at https://github.com/CNChTu/FCPE.

Authors:Dan Zhang, Min Cai, Jonathan Light, Ziniu Hu, Yisong Yue, Jie Tang
Title: TDRM: Smooth Reward Models with Temporal Difference for LLM RL and Inference
Abstract:
Reward models are central to both reinforcement learning (RL) with language models and inference-time verification. However, existing reward models often lack temporal consistency, leading to ineffective policy updates and unstable RL training. We introduce TDRM, a method for learning smoother and more reliable reward models by minimizing temporal differences (TD) for training-time reinforcement learning and inference-time verification. Experiments show that TD-trained process reward models (PRMs) improve performance across Best-of-N (up to 6.6%) and tree-search (up to 23.7%) settings. When combined with Reinforcement Learning with Verifiable Rewards (RLVR), TD-trained PRMs lead to more data-efficient RL -- achieving comparable performance with just 2.5k data to what baseline methods require 50.1k data to attain -- and yield higher-quality language model policies in 8 model variants (5 series), e.g., Qwen2.5-(0.5B, 1,5B), GLM4-9B-0414, GLM-Z1-9B-0414, Qwen2.5-Math-(1.5B, 7B), and DeepSeek-R1-Distill-Qwen-(1.5B, 7B). We release all code at https://github.com/THUDM/TDRM.

Authors:Liran Nochumsohn, Raz Marshanski, Hedi Zisling, Omri Azencot
Title: Super-Linear: A Lightweight Pretrained Mixture of Linear Experts for Time Series Forecasting
Abstract:
Time series forecasting (TSF) is critical in domains like energy, finance, healthcare, and logistics, requiring models that generalize across diverse datasets. Large pre-trained models such as Chronos and Time-MoE show strong zero-shot (ZS) performance but suffer from high computational costs. In this work, We introduce Super-Linear, a lightweight and scalable mixture-of-experts (MoE) model for general forecasting. It replaces deep architectures with simple frequency-specialized linear experts, trained on resampled data across multiple frequency regimes. A lightweight spectral gating mechanism dynamically selects relevant experts, enabling efficient, accurate forecasting. Despite its simplicity, Super-Linear matches state-of-the-art performance while offering superior efficiency, robustness to various sampling rates, and enhanced interpretability. The implementation of Super-Linear is available at \href{https://github.com/azencot-group/SuperLinear}{https://github.com/azencot-group/SuperLinear}

Authors:Hongyao Tu, Liang Zhang, Yujie Lin, Xin Lin, Haibo Zhang, Long Zhang, Jinsong Su
Title: LLM-OREF: An Open Relation Extraction Framework Based on Large Language Models
Abstract:
The goal of open relation extraction (OpenRE) is to develop an RE model that can generalize to new relations not encountered during training. Existing studies primarily formulate OpenRE as a clustering task. They first cluster all test instances based on the similarity between the instances, and then manually assign a new relation to each cluster. However, their reliance on human annotation limits their practicality. In this paper, we propose an OpenRE framework based on large language models (LLMs), which directly predicts new relations for test instances by leveraging their strong language understanding and generation abilities, without human intervention. Specifically, our framework consists of two core components: (1) a relation discoverer (RD), designed to predict new relations for test instances based on \textit{demonstrations} formed by training instances with known relations; and (2) a relation predictor (RP), used to select the most likely relation for a test instance from $n$ candidate relations, guided by \textit{demonstrations} composed of their instances. To enhance the ability of our framework to predict new relations, we design a self-correcting inference strategy composed of three stages: relation discovery, relation denoising, and relation prediction. In the first stage, we use RD to preliminarily predict new relations for all test instances. Next, we apply RP to select some high-reliability test instances for each new relation from the prediction results of RD through a cross-validation method. During the third stage, we employ RP to re-predict the relations of all test instances based on the demonstrations constructed from these reliable test instances. Extensive experiments on three OpenRE datasets demonstrate the effectiveness of our framework. We release our code at https://github.com/XMUDeepLIT/LLM-OREF.git.

Authors:Lukas Silvester Barth, Paulo von Petersenn
Title: Probabilistic and nonlinear compressive sensing
Abstract:
We present a smooth probabilistic reformulation of $\ell_0$ regularized regression that does not require Monte Carlo sampling and allows for the computation of exact gradients, facilitating rapid convergence to local optima of the best subset selection problem. The method drastically improves convergence speed compared to similar Monte Carlo based approaches. Furthermore, we empirically demonstrate that it outperforms compressive sensing algorithms such as IHT and (Relaxed-) Lasso across a wide range of settings and signal-to-noise ratios. The implementation runs efficiently on both CPUs and GPUs and is freely available at https://github.com/L0-and-behold/probabilistic-nonlinear-cs. We also contribute to research on nonlinear generalizations of compressive sensing by investigating when parameter recovery of a nonlinear teacher network is possible through compression of a student network. Building upon theorems of Fefferman and Markel, we show theoretically that the global optimum in the infinite-data limit enforces recovery up to certain symmetries. For empirical validation, we implement a normal-form algorithm that selects a canonical representative within each symmetry class. However, while compression can help to improve test loss, we find that exact parameter recovery is not even possible up to symmetries. In particular, we observe a surprising rebound effect where teacher and student configurations initially converge but subsequently diverge despite continuous decrease in test loss. These findings indicate fundamental differences between linear and nonlinear compressive sensing.

Authors:Chau Pham, Quan Dao, Mahesh Bhosale, Yunjie Tian, Dimitris Metaxas, David Doermann
Title: AutoEdit: Automatic Hyperparameter Tuning for Image Editing
Abstract:
Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification. This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world. Codes can be found at https://github.com/chaupham1709/AutoEdit.git.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Shuo Jiang, Guanyu Zhou, Yuanhan Wang, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: No Modality Left Behind: Adapting to Missing Modalities via Knowledge Distillation for Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation is essential for preoperative evaluation and personalized treatment. Multi-modal MRI is widely used due to its ability to capture complementary tumor features across different sequences. However, in clinical practice, missing modalities are common, limiting the robustness and generalizability of existing deep learning methods that rely on complete inputs, especially under non-dominant modality combinations. To address this, we propose AdaMM, a multi-modal brain tumor segmentation framework tailored for missing-modality scenarios, centered on knowledge distillation and composed of three synergistic modules. The Graph-guided Adaptive Refinement Module explicitly models semantic associations between generalizable and modality-specific features, enhancing adaptability to modality absence. The Bi-Bottleneck Distillation Module transfers structural and textural knowledge from teacher to student models via global style matching and adversarial feature alignment. The Lesion-Presence-Guided Reliability Module predicts prior probabilities of lesion types through an auxiliary classification task, effectively suppressing false positives under incomplete inputs. Extensive experiments on the BraTS 2018 and 2024 datasets demonstrate that AdaMM consistently outperforms existing methods, exhibiting superior segmentation accuracy and robustness, particularly in single-modality and weak-modality configurations. In addition, we conduct a systematic evaluation of six categories of missing-modality strategies, confirming the superiority of knowledge distillation and offering practical guidance for method selection and future research. Our source code is available at https://github.com/Quanato607/AdaMM.

Authors:Facundo Domínguez, Arnaud Spiwack
Title: Refinement-Types Driven Development: A study
Abstract:
This paper advocates for the broader application of SMT solvers in everyday programming, challenging the conventional wisdom that these tools are solely for formal methods and verification. We claim that SMT solvers, when seamlessly integrated into a compiler's static checks, significantly enhance the capabilities of ordinary type checkers in program composition. Specifically, we argue that refinement types, as embodied by Liquid Haskell, enable the use of SMT solvers in mundane programming tasks. Through a case study on handling binder scopes in compilers, we envision a future where ordinary programming is made simpler and more enjoyable with the aid of refinement types and SMT solvers. As a secondary contribution, we present a prototype implementation of a theory of finite maps for Liquid Haskell's solver, developed to support our case study.

Authors:Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, Yanyuan Qiao, Imran Razzak, Yutong Xie
Title: A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making
Abstract:
Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.

Authors:Chaoyin She, Ruifang Lu, Lida Chen, Wei Wang, Qinghua Huang
Title: EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence
Abstract:
Ultrasound imaging has become the preferred imaging modality for early cancer screening due to its advantages of non-ionizing radiation, low cost, and real-time imaging capabilities. However, conventional ultrasound diagnosis heavily relies on physician expertise, presenting challenges of high subjectivity and low diagnostic efficiency. Vision-language models (VLMs) offer promising solutions for this issue, but existing general-purpose models demonstrate limited knowledge in ultrasound medical tasks, with poor generalization in multi-organ lesion recognition and low efficiency across multi-task diagnostics. To address these limitations, we propose EchoVLM, a vision-language model specifically designed for ultrasound medical imaging. The model employs a Mixture of Experts (MoE) architecture trained on data spanning seven anatomical regions. This design enables the model to perform multiple tasks, including ultrasound report generation, diagnosis and visual question-answering (VQA). The experimental results demonstrated that EchoVLM achieved significant improvements of 10.15 and 4.77 points in BLEU-1 scores and ROUGE-1 scores respectively compared to Qwen2-VL on the ultrasound report generation task. These findings suggest that EchoVLM has substantial potential to enhance diagnostic accuracy in ultrasound imaging, thereby providing a viable technical solution for future clinical applications. Source code and model weights are available at https://github.com/Asunatan/EchoVLM.

Authors:Xingwu Zhang, Guanxuan Li, Zhuocheng Zhang, Zijun Long
Title: RoboEye: Enhancing 2D Robotic Object Identification with Selective 3D Geometric Keypoint Matching
Abstract:
The rapidly growing number of product categories in large-scale e-commerce makes accurate object identification for automated packing in warehouses substantially more difficult. As the catalog grows, intra-class variability and a long tail of rare or visually similar items increase, and when combined with diverse packaging, cluttered containers, frequent occlusion, and large viewpoint changes-these factors amplify discrepancies between query and reference images, causing sharp performance drops for methods that rely solely on 2D appearance features. Thus, we propose RoboEye, a two-stage identification framework that dynamically augments 2D semantic features with domain-adapted 3D reasoning and lightweight adapters to bridge training deployment gaps. In the first stage, we train a large vision model to extract 2D features for generating candidate rankings. A lightweight 3D-feature-awareness module then estimates 3D feature quality and predicts whether 3D re-ranking is necessary, preventing performance degradation and avoiding unnecessary computation. When invoked, the second stage uses our robot 3D retrieval transformer, comprising a 3D feature extractor that produces geometry-aware dense features and a keypoint-based matcher that computes keypoint-correspondence confidences between query and reference images instead of conventional cosine-similarity scoring. Experiments show that RoboEye improves Recall@1 by 7.1% over the prior state of the art (RoboLLM). Moreover, RoboEye operates using only RGB images, avoiding reliance on explicit 3D inputs and reducing deployment costs. The code used in this paper is publicly available at: https://github.com/longkukuhi/RoboEye.

Authors:Zhuokang Shen, Kaisen Zhang, Bohan Jia, Yuan Fang, Zhou Yu, Shaohui Lin
Title: DF-LLaVA: Unlocking MLLM's potential for Synthetic Image Detection via Prompt-Guided Knowledge Injection
Abstract:
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a simple yet effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first extracts latent knowledge from MLLMs and then injects it into training via prompts. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of our DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.

Authors:Bingsong Bai, Qihang Lu, Wenbing Yang, Zihan Sun, Yueran Hou, Peilei Jia, Songbai Pu, Ruibo Fu, Yingming Gao, Ya Li, Jun Gao
Title: SynParaSpeech: Automated Synthesis of Paralinguistic Datasets for Speech Generation and Understanding
Abstract:
Paralinguistic sounds, like laughter and sighs, are crucial for synthesizing more realistic and engaging speech. However, existing methods typically depend on proprietary datasets, while publicly available resources often suffer from incomplete speech, inaccurate or missing timestamps, and limited real-world relevance. To address these problems, we propose an automated framework for generating large-scale paralinguistic data and apply it to construct the SynParaSpeech dataset. The dataset comprises 6 paralinguistic categories with 118.75 hours of data and precise timestamps, all derived from natural conversational speech. Our contributions lie in introducing the first automated method for constructing large-scale paralinguistic datasets and releasing the SynParaSpeech corpus, which advances speech generation through more natural paralinguistic synthesis and enhances speech understanding by improving paralinguistic event detection. The dataset and audio samples are available at https://github.com/ShawnPi233/SynParaSpeech.

Authors:Kangdi Wang, Zhiyue Wu, Dinghao Zhou, Rui Lin, Junyu Dai, Tao Jiang
Title: Back to Ear: Perceptually Driven High Fidelity Music Reconstruction
Abstract:
Variational Autoencoders (VAEs) are essential for large-scale audio tasks like diffusion-based generation. However, existing open-source models often neglect auditory perceptual aspects during training, leading to weaknesses in phase accuracy and stereophonic spatial representation. To address these challenges, we propose εar-VAE, an open-source music signal reconstruction model that rethinks and optimizes the VAE training paradigm. Our contributions are threefold: (i) A K-weighting perceptual filter applied prior to loss calculation to align the objective with auditory perception. (ii) Two novel phase losses: a Correlation Loss for stereo coherence, and a Phase Loss using its derivatives--Instantaneous Frequency and Group Delay--for precision. (iii) A new spectral supervision paradigm where magnitude is supervised by all four Mid/Side/Left/Right components, while phase is supervised only by the LR components. Experiments show εar-VAE at 44.1kHz substantially outperforms leading open-source models across diverse metrics, showing particular strength in reconstructing high-frequency harmonics and the spatial characteristics.

Authors:Keanu Sisouk, Eloi Tanguy, Julie Delon, Julien Tierny
Title: Robust Barycenters of Persistence Diagrams
Abstract:
This short paper presents a general approach for computing robust Wasserstein barycenters of persistence diagrams. The classical method consists in computing assignment arithmetic means after finding the optimal transport plans between the barycenter and the persistence diagrams. However, this procedure only works for the transportation cost related to the $q$-Wasserstein distance $W_q$ when $q=2$. We adapt an alternative fixed-point method to compute a barycenter diagram for generic transportation costs ($q > 1$), in particular those robust to outliers, $q \in (1,2)$. We show the utility of our work in two applications: \emph{(i)} the clustering of persistence diagrams on their metric space and \emph{(ii)} the dictionary encoding of persistence diagrams. In both scenarios, we demonstrate the added robustness to outliers provided by our generalized framework. Our Python implementation is available at this address: https://github.com/Keanu-Sisouk/RobustBarycenter .

Authors:Jonas Geiger, Marta Moscati, Shah Nawaz, Markus Schedl
Title: Music4All A+A: A Multimodal Dataset for Music Information Retrieval Tasks
Abstract:
Music is characterized by aspects related to different modalities, such as the audio signal, the lyrics, or the music video clips. This has motivated the development of multimodal datasets and methods for Music Information Retrieval (MIR) tasks such as genre classification or autotagging. Music can be described at different levels of granularity, for instance defining genres at the level of artists or music albums. However, most datasets for multimodal MIR neglect this aspect and provide data at the level of individual music tracks. We aim to fill this gap by providing Music4All Artist and Album (Music4All A+A), a dataset for multimodal MIR tasks based on music artists and albums. Music4All A+A is built on top of the Music4All-Onion dataset, an existing track-level dataset for MIR tasks. Music4All A+A provides metadata, genre labels, image representations, and textual descriptors for 6,741 artists and 19,511 albums. Furthermore, since Music4All A+A is built on top of Music4All-Onion, it allows access to other multimodal data at the track level, including user--item interaction data. This renders Music4All A+A suitable for a broad range of MIR tasks, including multimodal music recommendation, at several levels of granularity. To showcase the use of Music4All A+A, we carry out experiments on multimodal genre classification of artists and albums, including an analysis in missing-modality scenarios, and a quantitative comparison with genre classification in the movie domain. Our experiments show that images are more informative for classifying the genres of artists and albums, and that several multimodal models for genre classification struggle in generalizing across domains. We provide the code to reproduce our experiments at https://github.com/hcai-mms/Music4All-A-A, the dataset is linked in the repository and provided open-source under a CC BY-NC-SA 4.0 license.

Authors:Qianyang Li, Xingjun Zhang, Shaoxun Wang, Jia Wei
Title: DPANet: Dual Pyramid Attention Network for Multivariate Time Series Forecasting
Abstract:
Long-term time series forecasting (LTSF) is hampered by the challenge of modeling complex dependencies that span multiple temporal scales and frequency resolutions. Existing methods, including Transformer and MLP-based models, often struggle to capture these intertwined characteristics in a unified and structured manner. We propose the Dual Pyramid Attention Network (DPANet), a novel architecture that explicitly decouples and concurrently models temporal multi-scale dynamics and spectral multi-resolution periodicities. DPANet constructs two parallel pyramids: a Temporal Pyramid built on progressive downsampling, and a Frequency Pyramid built on band-pass filtering. The core of our model is the Cross-Pyramid Fusion Block, which facilitates deep, interactive information exchange between corresponding pyramid levels via cross-attention. This fusion proceeds in a coarse-to-fine hierarchy, enabling global context to guide local representation learning. Extensive experiments on public benchmarks show that DPANet achieves state-of-the-art performance, significantly outperforming prior models. Code is available at https://github.com/hit636/DPANet.

Authors:Duojia Li, Shenghui Lu, Hongchen Pan, Zongyi Zhan, Qingyang Hong, Lin Li
Title: MeanFlowSE: one-step generative speech enhancement via conditional mean flow
Abstract:
Multistep inference is a bottleneck for real-time generative speech enhancement because flow- and diffusion-based systems learn an instantaneous velocity field and therefore rely on iterative ordinary differential equation (ODE) solvers. We introduce MeanFlowSE, a conditional generative model that learns the average velocity over finite intervals along a trajectory. Using a Jacobian-vector product (JVP) to instantiate the MeanFlow identity, we derive a local training objective that directly supervises finite-interval displacement while remaining consistent with the instantaneous-field constraint on the diagonal. At inference, MeanFlowSE performs single-step generation via a backward-in-time displacement, removing the need for multistep solvers; an optional few-step variant offers additional refinement. On VoiceBank-DEMAND, the single-step model achieves strong intelligibility, fidelity, and perceptual quality with substantially lower computational cost than multistep baselines. The method requires no knowledge distillation or external teachers, providing an efficient, high-fidelity framework for real-time generative speech enhancement. The proposed method is open-sourced at https://github.com/liduojia1/MeanFlowSE.

Authors:Qidong Wang, Junjie Hu, Ming Jiang
Title: V-SEAM: Visual Semantic Editing and Attention Modulating for Causal Interpretability of Vision-Language Models
Abstract:
Recent advances in causal interpretability have extended from language models to vision-language models (VLMs), seeking to reveal their internal mechanisms through input interventions. While textual interventions often target semantics, visual interventions typically rely on coarse pixel-level perturbations, limiting semantic insights on multimodal integration. In this study, we introduce V-SEAM, a novel framework that combines Visual Semantic Editing and Attention Modulating for causal interpretation of VLMs. V-SEAM enables concept-level visual manipulations and identifies attention heads with positive or negative contributions to predictions across three semantic levels: objects, attributes, and relationships. We observe that positive heads are often shared within the same semantic level but vary across levels, while negative heads tend to generalize broadly. Finally, we introduce an automatic method to modulate key head embeddings, demonstrating enhanced performance for both LLaVA and InstructBLIP across three diverse VQA benchmarks. Our data and code are released at: https://github.com/petergit1/V-SEAM.

Authors:Humphrey Munn, Brendan Tidd, Peter Böhm, Marcus Gallagher, David Howard
Title: Scalable Multi-Objective Robot Reinforcement Learning through Gradient Conflict Resolution
Abstract:
Reinforcement Learning (RL) robot controllers usually aggregate many task objectives into one scalar reward. While large-scale proximal policy optimisation (PPO) has enabled impressive results such as robust robot locomotion in the real world, many tasks still require careful reward tuning and are brittle to local optima. Tuning cost and sub-optimality grow with the number of objectives, limiting scalability. Modelling reward vectors and their trade-offs can address these issues; however, multi-objective methods remain underused in RL for robotics because of computational cost and optimisation difficulty. In this work, we investigate the conflict between gradient contributions for each objective that emerge from scalarising the task objectives. In particular, we explicitly address the conflict between task-based rewards and terms that regularise the policy towards realistic behaviour. We propose GCR-PPO, a modification to actor-critic optimisation that decomposes the actor update into objective-wise gradients using a multi-headed critic and resolves conflicts based on the objective priority. Our methodology, GCR-PPO, is evaluated on the well-known IsaacLab manipulation and locomotion benchmarks and additional multi-objective modifications on two related tasks. We show superior scalability compared to parallel PPO (p = 0.04), without significant computational overhead. We also show higher performance with more conflicting tasks. GCR-PPO improves on large-scale PPO with an average improvement of 9.5%, with high-conflict tasks observing a greater improvement. The code is available at https://github.com/humphreymunn/GCR-PPO.

Authors:Hannah Sterz, Fabian David Schmidt, Goran Glavaš, Ivan Vulić
Title: ReCoVeR the Target Language: Language Steering without Sacrificing Task Performance
Abstract:
As they become increasingly multilingual, Large Language Models (LLMs) exhibit more language confusion, i.e., they tend to generate answers in a language different from the language of the prompt or the answer language explicitly requested by the user. In this work, we propose ReCoVeR (REducing language COnfusion in VEctor Representations), a novel lightweight approach for reducing language confusion based on language-specific steering vectors. We first isolate language vectors with the help of multi-parallel corpus and then effectively leverage those vectors for effective LLM steering via fixed (i.e., unsupervised) as well as trainable steering functions. Our extensive evaluation, encompassing three benchmarks and 18 languages, shows that ReCoVeR effectively mitigates language confusion in both monolingual and cross-lingual setups while at the same time -- and in contrast to prior language steering methods -- retaining task performance. Our data code is available at https://github.com/hSterz/recover.

Authors:Yuanyuan Yao, Simon Geirnaert, Tinne Tuytelaars, Alexander Bertrand
Title: Efficient Solutions for Mitigating Initialization Bias in Unsupervised Self-Adaptive Auditory Attention Decoding
Abstract:
Decoding the attended speaker in a multi-speaker environment from electroencephalography (EEG) has attracted growing interest in recent years, with neuro-steered hearing devices as a driver application. Current approaches typically rely on ground-truth labels of the attended speaker during training, necessitating calibration sessions for each user and each EEG set-up to achieve optimal performance. While unsupervised self-adaptive auditory attention decoding (AAD) for stimulus reconstruction has been developed to eliminate the need for labeled data, it suffers from an initialization bias that can compromise performance. Although an unbiased variant has been proposed to address this limitation, it introduces substantial computational complexity that scales with data size. This paper presents three computationally efficient alternatives that achieve comparable performance, but with a significantly lower and constant computational cost. The code for the proposed algorithms is available at https://github.com/YYao-42/Unsupervised_AAD.

Authors:Haoran Zhang, Yafu Li, Xuyang Hu, Dongrui Liu, Zhilin Wang, Bo Li, Yu Cheng
Title: Reasoning over Boundaries: Enhancing Specification Alignment via Test-time Deliberation
Abstract:
Large language models (LLMs) are increasingly applied in diverse real-world scenarios, each governed by bespoke behavioral and safety specifications (spec) custom-tailored by users or organizations. These spec, categorized into safety-spec and behavioral-spec, vary across scenarios and evolve with changing preferences and requirements. We formalize this challenge as specification alignment, focusing on LLMs' ability to follow dynamic, scenario-specific spec from both behavioral and safety perspectives. To address this challenge, we propose Align3, a lightweight method that employs Test-Time Deliberation (TTD) with hierarchical reflection and revision to reason over the specification boundaries. We further present SpecBench, a unified benchmark for measuring specification alignment, covering 5 scenarios, 103 spec, and 1,500 prompts. Experiments on 15 reasoning and 18 instruct models with several TTD methods, including Self-Refine, TPO, and MoreThink, yield three key findings: (i) test-time deliberation enhances specification alignment; (ii) Align3 advances the safety-helpfulness trade-off frontier with minimal overhead; (iii) SpecBench effectively reveals alignment gaps. These results highlight the potential of test-time deliberation as an effective strategy for reasoning over the real-world specification boundaries.

Authors:Shangrong Wu, Yanghong Zhou, Yang Chen, Feng Zhang, P. Y. Mok
Title: Chain-of-Thought Re-ranking for Image Retrieval Tasks
Abstract:
Image retrieval remains a fundamental yet challenging problem in computer vision. While recent advances in Multimodal Large Language Models (MLLMs) have demonstrated strong reasoning capabilities, existing methods typically employ them only for evaluation, without involving them directly in the ranking process. As a result, their rich multimodal reasoning abilities remain underutilized, leading to suboptimal performance. In this paper, we propose a novel Chain-of-Thought Re-Ranking (CoTRR) method to address this issue. Specifically, we design a listwise ranking prompt that enables MLLM to directly participate in re-ranking candidate images. This ranking process is grounded in an image evaluation prompt, which assesses how well each candidate aligns with users query. By allowing MLLM to perform listwise reasoning, our method supports global comparison, consistent reasoning, and interpretable decision-making - all of which are essential for accurate image retrieval. To enable structured and fine-grained analysis, we further introduce a query deconstruction prompt, which breaks down the original query into multiple semantic components. Extensive experiments on five datasets demonstrate the effectiveness of our CoTRR method, which achieves state-of-the-art performance across three image retrieval tasks, including text-to-image retrieval (TIR), composed image retrieval (CIR) and chat-based image retrieval (Chat-IR). Our code is available at https://github.com/freshfish15/CoTRR .

Authors:Pengyu Wang, Shaojun Zhou, Chenkun Tan, Xinghao Wang, Wei Huang, Zhen Ye, Zhaowei Li, Botian Jiang, Dong Zhang, Xipeng Qiu
Title: UnifiedVisual: A Framework for Constructing Unified Vision-Language Datasets
Abstract:
Unified vision large language models (VLLMs) have recently achieved impressive advancements in both multimodal understanding and generation, powering applications such as visual question answering and text-guided image synthesis. However, progress in unified VLLMs remains constrained by the lack of datasets that fully exploit the synergistic potential between these two core abilities. Existing datasets typically address understanding and generation in isolation, thereby limiting the performance of unified VLLMs. To bridge this critical gap, we introduce a novel dataset construction framework, UnifiedVisual, and present UnifiedVisual-240K, a high-quality dataset meticulously designed to facilitate mutual enhancement between multimodal understanding and generation. UnifiedVisual-240K seamlessly integrates diverse visual and textual inputs and outputs, enabling comprehensive cross-modal reasoning and precise text-to-image alignment. Our dataset encompasses a wide spectrum of tasks and data sources, ensuring rich diversity and addressing key shortcomings of prior resources. Extensive experiments demonstrate that models trained on UnifiedVisual-240K consistently achieve strong performance across a wide range of tasks. Notably, these models exhibit significant mutual reinforcement between multimodal understanding and generation, further validating the effectiveness of our framework and dataset. We believe UnifiedVisual represents a new growth point for advancing unified VLLMs and unlocking their full potential. Our code and datasets is available at https://github.com/fnlp-vision/UnifiedVisual.

Authors:Chenkun Tan, Pengyu Wang, Shaojun Zhou, Botian Jiang, Zhaowei Li, Dong Zhang, Xinghao Wang, Yaqian Zhou, Xipeng Qiu
Title: Decoupled Proxy Alignment: Mitigating Language Prior Conflict for Multimodal Alignment in MLLM
Abstract:
Multimodal large language models (MLLMs) have gained significant attention due to their impressive ability to integrate vision and language modalities. Recent advancements in MLLMs have primarily focused on improving performance through high-quality datasets, novel architectures, and optimized training strategies. However, in this paper, we identify a previously overlooked issue, language prior conflict, a mismatch between the inherent language priors of large language models (LLMs) and the language priors in training datasets. This conflict leads to suboptimal vision-language alignment, as MLLMs are prone to adapting to the language style of training samples. To address this issue, we propose a novel training method called Decoupled Proxy Alignment (DPA). DPA introduces two key innovations: (1) the use of a proxy LLM during pretraining to decouple the vision-language alignment process from language prior interference, and (2) dynamic loss adjustment based on visual relevance to strengthen optimization signals for visually relevant tokens. Extensive experiments demonstrate that DPA significantly mitigates the language prior conflict, achieving superior alignment performance across diverse datasets, model families, and scales. Our method not only improves the effectiveness of MLLM training but also shows exceptional generalization capabilities, making it a robust approach for vision-language alignment. Our code is available at https://github.com/fnlp-vision/DPA.

Authors:Fangguo Zhao, Xin Guan, Shuo Li
Title: Rethinking Reference Trajectories in Agile Drone Racing: A Unified Reference-Free Model-Based Controller via MPPI
Abstract:
While model-based controllers have demonstrated remarkable performance in autonomous drone racing, their performance is often constrained by the reliance on pre-computed reference trajectories. Conventional approaches, such as trajectory tracking, demand a dynamically feasible, full-state reference, whereas contouring control relaxes this requirement to a geometric path but still necessitates a reference. Recent advancements in reinforcement learning (RL) have revealed that many model-based controllers optimize surrogate objectives, such as trajectory tracking, rather than the primary racing goal of directly maximizing progress through gates. Inspired by these findings, this work introduces a reference-free method for time-optimal racing by incorporating this gate progress objective, derived from RL reward shaping, directly into the Model Predictive Path Integral (MPPI) formulation. The sampling-based nature of MPPI makes it uniquely capable of optimizing the discontinuous and non-differentiable objective in real-time. We also establish a unified framework that leverages MPPI to systematically and fairly compare three distinct objective functions with a consistent dynamics model and parameter set: classical trajectory tracking, contouring control, and the proposed gate progress objective. We compare the performance of these three objectives when solved via both MPPI and a traditional gradient-based solver. Our results demonstrate that the proposed reference-free approach achieves competitive racing performance, rivaling or exceeding reference-based methods. Videos are available at https://zhaofangguo.github.io/racing_mppi/

Authors:Yue Xu, Litao Wei, Pengyu An, Qingyu Zhang, Yong-Lu Li
Title: exUMI: Extensible Robot Teaching System with Action-aware Task-agnostic Tactile Representation
Abstract:
Tactile-aware robot learning faces critical challenges in data collection and representation due to data scarcity and sparsity, and the absence of force feedback in existing systems. To address these limitations, we introduce a tactile robot learning system with both hardware and algorithm innovations. We present exUMI, an extensible data collection device that enhances the vanilla UMI with robust proprioception (via AR MoCap and rotary encoder), modular visuo-tactile sensing, and automated calibration, achieving 100% data usability. Building on an efficient collection of over 1 M tactile frames, we propose Tactile Prediction Pretraining (TPP), a representation learning framework through action-aware temporal tactile prediction, capturing contact dynamics and mitigating tactile sparsity. Real-world experiments show that TPP outperforms traditional tactile imitation learning. Our work bridges the gap between human tactile intuition and robot learning through co-designed hardware and algorithms, offering open-source resources to advance contact-rich manipulation research. Project page: https://silicx.github.io/exUMI.

Authors:Cong Tai, Zhaoyu Zheng, Haixu Long, Hansheng Wu, Haodong Xiang, Zhengbin Long, Jun Xiong, Rong Shi, Shizhuang Zhang, Gang Qiu, He Wang, Ruifeng Li, Jun Huang, Bin Chang, Shuai Feng, Tao Shen
Title: RealMirror: A Comprehensive, Open-Source Vision-Language-Action Platform for Embodied AI
Abstract:
The emerging field of Vision-Language-Action (VLA) for humanoid robots faces several fundamental challenges, including the high cost of data acquisition, the lack of a standardized benchmark, and the significant gap between simulation and the real world. To overcome these obstacles, we propose RealMirror, a comprehensive, open-source embodied AI VLA platform. RealMirror builds an efficient, low-cost data collection, model training, and inference system that enables end-to-end VLA research without requiring a real robot. To facilitate model evolution and fair comparison, we also introduce a dedicated VLA benchmark for humanoid robots, featuring multiple scenarios, extensive trajectories, and various VLA models. Furthermore, by integrating generative models and 3D Gaussian Splatting to reconstruct realistic environments and robot models, we successfully demonstrate zero-shot Sim2Real transfer, where models trained exclusively on simulation data can perform tasks on a real robot seamlessly, without any fine-tuning. In conclusion, with the unification of these critical components, RealMirror provides a robust framework that significantly accelerates the development of VLA models for humanoid robots. Project page: https://terminators2025.github.io/RealMirror.github.io

Authors:Kazuma Nagata, Naoshi Kaneko
Title: DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.

Authors:Siyu Yan, Long Zeng, Xuecheng Wu, Chengcheng Han, Kongcheng Zhang, Chong Peng, Xuezhi Cao, Xunliang Cai, Chenjuan Guo
Title: MUSE: MCTS-Driven Red Teaming Framework for Enhanced Multi-Turn Dialogue Safety in Large Language Models
Abstract:
As large language models~(LLMs) become widely adopted, ensuring their alignment with human values is crucial to prevent jailbreaks where adversaries manipulate models to produce harmful content. While most defenses target single-turn attacks, real-world usage often involves multi-turn dialogues, exposing models to attacks that exploit conversational context to bypass safety measures. We introduce MUSE, a comprehensive framework tackling multi-turn jailbreaks from both attack and defense angles. For attacks, we propose MUSE-A, a method that uses frame semantics and heuristic tree search to explore diverse semantic trajectories. For defense, we present MUSE-D, a fine-grained safety alignment approach that intervenes early in dialogues to reduce vulnerabilities. Extensive experiments on various models show that MUSE effectively identifies and mitigates multi-turn vulnerabilities. Code is available at \href{https://github.com/yansiyu02/MUSE}{https://github.com/yansiyu02/MUSE}.

Authors:Weihan Peng, Yuling Shi, Yuhang Wang, Xinyun Zhang, Beijun Shen, Xiaodong Gu
Title: SWE-QA: Can Language Models Answer Repository-level Code Questions?
Abstract:
Understanding and reasoning about entire software repositories is an essential capability for intelligent software engineering tools. While existing benchmarks such as CoSQA and CodeQA have advanced the field, they predominantly focus on small, self-contained code snippets. These setups fail to capture the complexity of real-world repositories, where effective understanding and reasoning often require navigating multiple files, understanding software architecture, and grounding answers in long-range code dependencies. In this paper, we present SWE-QA, a repository-level code question answering (QA) benchmark designed to facilitate research on automated QA systems in realistic code environments. SWE-QA involves 576 high-quality question-answer pairs spanning diverse categories, including intention understanding, cross-file reasoning, and multi-hop dependency analysis. To construct SWE-QA, we first crawled 77,100 GitHub issues from 11 popular repositories. Based on an analysis of naturally occurring developer questions extracted from these issues, we developed a two-level taxonomy of repository-level questions and constructed a set of seed questions for each category. For each category, we manually curated and validated questions and collected their corresponding answers. As a prototype application, we further develop SWE-QA-Agent, an agentic framework in which LLM agents reason and act to find answers automatically. We evaluate six advanced LLMs on SWE-QA under various context augmentation strategies. Experimental results highlight the promise of LLMs, particularly our SWE-QA-Agent framework, in addressing repository-level QA, while also revealing open challenges and pointing to future research directions.

Authors:Anzhe Chen, Yifei Yang, Zhenjie Zhu, Kechun Xu, Zhongxiang Zhou, Rong Xiong, Yue Wang
Title: Toward Embodiment Equivariant Vision-Language-Action Policy
Abstract:
Vision-language-action policies learn manipulation skills across tasks, environments and embodiments through large-scale pre-training. However, their ability to generalize to novel robot configurations remains limited. Most approaches emphasize model size, dataset scale and diversity while paying less attention to the design of action spaces. This leads to the configuration generalization problem, which requires costly adaptation. We address this challenge by formulating cross-embodiment pre-training as designing policies equivariant to embodiment configuration transformations. Building on this principle, we propose a framework that (i) establishes a embodiment equivariance theory for action space and policy design, (ii) introduces an action decoder that enforces configuration equivariance, and (iii) incorporates a geometry-aware network architecture to enhance embodiment-agnostic spatial reasoning. Extensive experiments in both simulation and real-world settings demonstrate that our approach improves pre-training effectiveness and enables efficient fine-tuning on novel robot embodiments. Our code is available at https://github.com/hhcaz/e2vla

Authors:Taesoo Kim, Yongsik Jo, Hyunmin Song, Taehwan Kim
Title: Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Abstract:
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC

Authors:Hanlong Wan, Xing Lu, Yan Chen, Karthik Devaprasad, Laura Hinkle
Title: Automating Modelica Module Generation Using Large Language Models: A Case Study on Building Control Description Language
Abstract:
Dynamic energy systems and controls require advanced modeling frameworks to design and test supervisory and fault tolerant strategies. Modelica is a widely used equation based language, but developing control modules is labor intensive and requires specialized expertise. This paper examines the use of large language models (LLMs) to automate the generation of Control Description Language modules in the Building Modelica Library as a case study. We developed a structured workflow that combines standardized prompt scaffolds, library aware grounding, automated compilation with OpenModelica, and human in the loop evaluation. Experiments were carried out on four basic logic tasks (And, Or, Not, and Switch) and five control modules (chiller enable/disable, bypass valve control, cooling tower fan speed, plant requests, and relief damper control). The results showed that GPT 4o failed to produce executable Modelica code in zero shot mode, while Claude Sonnet 4 achieved up to full success for basic logic blocks with carefully engineered prompts. For control modules, success rates reached 83 percent, and failed outputs required medium level human repair (estimated one to eight hours). Retrieval augmented generation often produced mismatches in module selection (for example, And retrieved as Or), while a deterministic hard rule search strategy avoided these errors. Human evaluation also outperformed AI evaluation, since current LLMs cannot assess simulation results or validate behavioral correctness. Despite these limitations, the LLM assisted workflow reduced the average development time from 10 to 20 hours down to 4 to 6 hours per module, corresponding to 40 to 60 percent time savings. These results highlight both the potential and current limitations of LLM assisted Modelica generation, and point to future research in pre simulation validation, stronger grounding, and closed loop evaluation.

Authors:Feng Ding, Haisheng Fu, Soroush Oraki, Jie Liang
Title: LSTC-MDA: A Unified Framework for Long-Short Term Temporal Convolution and Mixed Data Augmentation in Skeleton-Based Action Recognition
Abstract:
Skeleton-based action recognition faces two longstanding challenges: the scarcity of labeled training samples and difficulty modeling short- and long-range temporal dependencies. To address these issues, we propose a unified framework, LSTC-MDA, which simultaneously improves temporal modeling and data diversity. We introduce a novel Long-Short Term Temporal Convolution (LSTC) module with parallel short- and long-term branches, these two feature branches are then aligned and fused adaptively using learned similarity weights to preserve critical long-range cues lost by conventional stride-2 temporal convolutions. We also extend Joint Mixing Data Augmentation (JMDA) with an Additive Mixup at the input level, diversifying training samples and restricting mixup operations to the same camera view to avoid distribution shifts. Ablation studies confirm each component contributes. LSTC-MDA achieves state-of-the-art results: 94.1% and 97.5% on NTU 60 (X-Sub and X-View), 90.4% and 92.0% on NTU 120 (X-Sub and X-Set),97.2% on NW-UCLA. Code: https://github.com/xiaobaoxia/LSTC-MDA.

Authors:Jianglan Wei, Zhenyu Zhang, Pengcheng Wang, Mingjie Zeng, Zhigang Zeng
Title: HDC-X: Efficient Medical Data Classification for Embedded Devices
Abstract:
Energy-efficient medical data classification is essential for modern disease screening, particularly in home and field healthcare where embedded devices are prevalent. While deep learning models achieve state-of-the-art accuracy, their substantial energy consumption and reliance on GPUs limit deployment on such platforms. We present HDC-X, a lightweight classification framework designed for low-power devices. HDC-X encodes data into high-dimensional hypervectors, aggregates them into multiple cluster-specific prototypes, and performs classification through similarity search in hyperspace. We evaluate HDC-X across three medical classification tasks; on heart sound classification, HDC-X is $350\times$ more energy-efficient than Bayesian ResNet with less than 1% accuracy difference. Moreover, HDC-X demonstrates exceptional robustness to noise, limited training data, and hardware error, supported by both theoretical analysis and empirical results, highlighting its potential for reliable deployment in real-world settings. Code is available at https://github.com/jianglanwei/HDC-X.

Authors:Xinyue Wu, Zixuan Li, Fan Hu, Ting Lin, Xiaotian Zhao, Runxi Wang, Xinfei Guo
Title: Shift-Left Techniques in Electronic Design Automation: A Survey
Abstract:
The chip design process involves numerous steps, beginning with defining product requirements and progressing through architectural planning, system-level design, and the physical layout of individual circuit blocks. As the enablers of large-scale chip development, Electronic Design Automation (EDA) tools play a vital role in helping designers achieve high-quality results. The Shift-Left methodology introduces a pathway toward creating digital twins and fusing multiple design steps, thereby transitioning traditionally sequential, physically-aware processes into virtual design environments. This shift allows designers to establish stronger correlations earlier and optimize designs more effectively. However, challenges remain, especially in accurately replicating downstream behaviors and determining the right scope and timing for adoption. These challenges, in turn, have revealed new opportunities for EDA vendors, physical designers, and logic designers alike. As the industry advances toward intelligent EDA tools and techniques, it is timely to reflect on Shift-Left progress made and the challenges that remain. The rise of AI techniques and the momentum of open-source design flows have significantly strengthened prediction and modeling capabilities, making data-driven methods increasingly relevant to the EDA community. This, in turn, enhances the ''Shift-Left'' features embedded in current tools. In this paper, we present a comprehensive survey of existing and emerging paradigms in Shift-Left research within EDA and the broader design ecosystem. Our goal is to provide a unique perspective on the state of the field and its future directions. Relevant papers mentioned are organized in https://github.com/iCAS-SJTU/Shift-Left-EDA-Papers.

Authors:Yin Chen, Jia Li, Jinpeng Hu, Zhenzhen Hu, Richang Hong
Title: CLAIP-Emo: Parameter-Efficient Adaptation of Language-supervised models for In-the-Wild Audiovisual Emotion Recognition
Abstract:
Audiovisual emotion recognition (AVER) in the wild is still hindered by pose variation, occlusion, and background noise. Prevailing methods primarily rely on large-scale domain-specific pre-training, which is costly and often mismatched to real-world affective data. To address this, we present CLAIP-Emo, a modular framework that reframes in-the-wild AVER as a parameter-efficient adaptation of language-supervised foundation models (CLIP/CLAP). Specifically, it (i) preserves language-supervised priors by freezing CLIP/CLAP backbones and performing emotion-oriented adaptation via LoRA (updating \ensuremath{\le}4.0\% of the total parameters), (ii) allocates temporal modeling asymmetrically, employing a lightweight Transformer for visual dynamics while applying mean pooling for audio prosody, and (iii) applies a simple fusion head for prediction. On DFEW and MAFW, CLAIP-Emo (ViT-L/14) achieves 80.14\% and 61.18\% weighted average recall with only 8M training parameters, setting a new state of the art. Our findings suggest that parameter-efficient adaptation of language-supervised foundation models provides a scalable alternative to domain-specific pre-training for real-world AVER. The code and models will be available at \href{https://github.com/MSA-LMC/CLAIP-Emo}{https://github.com/MSA-LMC/CLAIP-Emo}.

Authors:Gaifan Zhang, Yi Zhou, Danushka Bollegala
Title: Annotating Training Data for Conditional Semantic Textual Similarity Measurement using Large Language Models
Abstract:
Semantic similarity between two sentences depends on the aspects considered between those sentences. To study this phenomenon, Deshpande et al. (2023) proposed the Conditional Semantic Textual Similarity (C-STS) task and annotated a human-rated similarity dataset containing pairs of sentences compared under two different conditions. However, Tu et al. (2024) found various annotation issues in this dataset and showed that manually re-annotating a small portion of it leads to more accurate C-STS models. Despite these pioneering efforts, the lack of large and accurately annotated C-STS datasets remains a blocker for making progress on this task as evidenced by the subpar performance of the C-STS models. To address this training data need, we resort to Large Language Models (LLMs) to correct the condition statements and similarity ratings in the original dataset proposed by Deshpande et al. (2023). Our proposed method is able to re-annotate a large training dataset for the C-STS task with minimal manual effort. Importantly, by training a supervised C-STS model on our cleaned and re-annotated dataset, we achieve a 5.4% statistically significant improvement in Spearman correlation. The re-annotated dataset is available at https://LivNLP.github.io/CSTS-reannotation.

Authors:Dvij Kalaria, Sudarshan S Harithas, Pushkal Katara, Sangkyung Kwak, Sarthak Bhagat, Shankar Sastry, Srinath Sridhar, Sai Vemprala, Ashish Kapoor, Jonathan Chung-Kuan Huang
Title: DreamControl: Human-Inspired Whole-Body Humanoid Control for Scene Interaction via Guided Diffusion
Abstract:
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/

Authors:Xinran Zheng, Xingzhi Qian, Yiling He, Shuo Yang, Lorenzo Cavallaro
Title: Beyond Classification: Evaluating LLMs for Fine-Grained Automatic Malware Behavior Auditing
Abstract:
Automated malware classification has achieved strong detection performance. Yet, malware behavior auditing seeks causal and verifiable explanations of malicious activities -- essential not only to reveal what malware does but also to substantiate such claims with evidence. This task is challenging, as adversarial intent is often hidden within complex, framework-heavy applications, making manual auditing slow and costly. Large Language Models (LLMs) could help address this gap, but their auditing potential remains largely unexplored due to three limitations: (1) scarce fine-grained annotations for fair assessment; (2) abundant benign code obscuring malicious signals; and (3) unverifiable, hallucination-prone outputs undermining attribution credibility. To close this gap, we introduce MalEval, a comprehensive framework for fine-grained Android malware auditing, designed to evaluate how effectively LLMs support auditing under real-world constraints. MalEval provides expert-verified reports and an updated sensitive API list to mitigate ground truth scarcity and reduce noise via static reachability analysis. Function-level structural representations serve as intermediate attribution units for verifiable evaluation. Building on this, we define four analyst-aligned tasks -- function prioritization, evidence attribution, behavior synthesis, and sample discrimination -- together with domain-specific metrics and a unified workload-oriented score. We evaluate seven widely used LLMs on a curated dataset of recent malware and misclassified benign apps, offering the first systematic assessment of their auditing capabilities. MalEval reveals both promising potential and critical limitations across audit stages, providing a reproducible benchmark and foundation for future research on LLM-enhanced malware behavior auditing. MalEval is publicly available at https://github.com/ZhengXR930/MalEval.git

Authors:Hao Jiang, Zhipeng Zhang, Yu Gao, Zhigang Sun, Yiru Wang, Yuwen Heng, Shuo Wang, Jinhao Chai, Zhuo Chen, Hao Zhao, Hao Sun, Xi Zhang, Anqing Jiang, Chuan Hu
Title: FlowDrive: Energy Flow Field for End-to-End Autonomous Driving
Abstract:
Recent advances in end-to-end autonomous driving leverage multi-view images to construct BEV representations for motion planning. In motion planning, autonomous vehicles need considering both hard constraints imposed by geometrically occupied obstacles (e.g., vehicles, pedestrians) and soft, rule-based semantics with no explicit geometry (e.g., lane boundaries, traffic priors). However, existing end-to-end frameworks typically rely on BEV features learned in an implicit manner, lacking explicit modeling of risk and guidance priors for safe and interpretable planning. To address this, we propose FlowDrive, a novel framework that introduces physically interpretable energy-based flow fields-including risk potential and lane attraction fields-to encode semantic priors and safety cues into the BEV space. These flow-aware features enable adaptive refinement of anchor trajectories and serve as interpretable guidance for trajectory generation. Moreover, FlowDrive decouples motion intent prediction from trajectory denoising via a conditional diffusion planner with feature-level gating, alleviating task interference and enhancing multimodal diversity. Experiments on the NAVSIM v2 benchmark demonstrate that FlowDrive achieves state-of-the-art performance with an EPDMS of 86.3, surpassing prior baselines in both safety and planning quality. The project is available at https://astrixdrive.github.io/FlowDrive.github.io/.

Authors:Justin Lovelace, Rithesh Kumar, Jiaqi Su, Ke Chen, Kilian Q Weinberger, Zeyu Jin
Title: SpeechOp: Inference-Time Task Composition for Generative Speech Processing
Abstract:
While generative Text-to-Speech (TTS) systems leverage vast ``in-the-wild" data to achieve remarkable success, speech-to-speech processing tasks like enhancement face data limitations, which lead data-hungry generative approaches to distort speech content and speaker identity. To bridge this gap, we present SpeechOp, a multi-task latent diffusion model that transforms pre-trained TTS models into a universal speech processor capable of performing a wide range of speech tasks and composing them in novel ways at inference time. By adapting a pre-trained TTS model, SpeechOp inherits a rich understanding of natural speech, accelerating training and improving S2S task quality, while simultaneously enhancing core TTS performance. Finally, we introduce Implicit Task Composition (ITC), a novel pipeline where ASR-derived transcripts (e.g., from Whisper) guide SpeechOp's enhancement via our principled inference-time task composition. ITC achieves state-of-the-art content preservation by robustly combining web-scale speech understanding with SpeechOp's generative capabilities. Audio samples are available at https://justinlovelace.github.io/projects/speechop

Authors:Fanqi Kong, Ruijie Zhang, Huaxiao Yin, Guibin Zhang, Xiaofei Zhang, Ziang Chen, Zhaowei Zhang, Xiaoyuan Zhang, Song-Chun Zhu, Xue Feng
Title: Aegis: Automated Error Generation and Identification for Multi-Agent Systems
Abstract:
As Multi-Agent Systems (MAS) become increasingly autonomous and complex, understanding their error modes is critical for ensuring their reliability and safety. However, research in this area has been severely hampered by the lack of large-scale, diverse datasets with precise, ground-truth error labels. To address this bottleneck, we introduce \textbf{AEGIS}, a novel framework for \textbf{A}utomated \textbf{E}rror \textbf{G}eneration and \textbf{I}dentification for Multi-Agent \textbf{S}ystems. By systematically injecting controllable and traceable errors into initially successful trajectories, we create a rich dataset of realistic failures. This is achieved using a context-aware, LLM-based adaptive manipulator that performs sophisticated attacks like prompt injection and response corruption to induce specific, predefined error modes. We demonstrate the value of our dataset by exploring three distinct learning paradigms for the error identification task: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. Our comprehensive experiments show that models trained on AEGIS data achieve substantial improvements across all three learning paradigms. Notably, several of our fine-tuned models demonstrate performance competitive with or superior to proprietary systems an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems. Our project website is available at https://kfq20.github.io/AEGIS-Website.

Authors:Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal
Title: The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
Abstract:
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

Authors:Kazumi Kasaura, Naoto Onda, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, Sho Sonoda
Title: Discovering New Theorems via LLMs with In-Context Proof Learning in Lean
Abstract:
Large Language Models have demonstrated significant promise in formal theorem proving. However, previous works mainly focus on solving existing problems. In this paper, we focus on the ability of LLMs to find novel theorems. We propose Conjecturing-Proving Loop pipeline for automatically generating mathematical conjectures and proving them in Lean 4 format. A feature of our approach is that we generate and prove further conjectures with context including previously generated theorems and their proofs, which enables the generation of more difficult proofs by in-context learning of proof strategies without changing parameters of LLMs. We demonstrated that our framework rediscovered theorems with verification, which were published in past mathematical papers and have not yet formalized. Moreover, at least one of these theorems could not be proved by the LLM without in-context learning, even in natural language, which means that in-context learning was effective for neural theorem proving. The source code is available at https://github.com/auto-res/ConjecturingProvingLoop.

Authors:Jiachen Fu, Chun-Le Guo, Chongyi Li
Title: DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models
Abstract:
The rapid advancement of large language models (LLMs) has drawn urgent attention to the task of machine-generated text detection (MGTD). However, existing approaches struggle in complex real-world scenarios: zero-shot detectors rely heavily on scoring model's output distribution while training-based detectors are often constrained by overfitting to the training data, limiting generalization. We found that the performance bottleneck of training-based detectors stems from the misalignment between training objective and task needs. To address this, we propose Direct Discrepancy Learning (DDL), a novel optimization strategy that directly optimizes the detector with task-oriented knowledge. DDL enables the detector to better capture the core semantics of the detection task, thereby enhancing both robustness and generalization. Built upon this, we introduce DetectAnyLLM, a unified detection framework that achieves state-of-the-art MGTD performance across diverse LLMs. To ensure a reliable evaluation, we construct MIRAGE, the most diverse multi-task MGTD benchmark. MIRAGE samples human-written texts from 10 corpora across 5 text-domains, which are then re-generated or revised using 17 cutting-edge LLMs, covering a wide spectrum of proprietary models and textual styles. Extensive experiments on MIRAGE reveal the limitations of existing methods in complex environment. In contrast, DetectAnyLLM consistently outperforms them, achieving over a 70% performance improvement under the same training data and base scoring model, underscoring the effectiveness of our DDL. Project page: {https://fjc2005.github.io/detectanyllm}.

Authors:Ivan Ternovtsii
Title: Opening the Black Box: Interpretable LLMs via Semantic Resonance Architecture
Abstract:
Large language models (LLMs) achieve remarkable performance but remain difficult to interpret. Mixture-of-Experts (MoE) models improve efficiency through sparse activation, yet typically rely on opaque, learned gating functions. While similarity-based routing (Cosine Routers) has been explored for training stabilization, its potential for inherent interpretability remains largely untapped. We introduce the Semantic Resonance Architecture (SRA), an MoE approach designed to ensure that routing decisions are inherently interpretable. SRA replaces learned gating with a Chamber of Semantic Resonance (CSR) module, which routes tokens based on cosine similarity with trainable semantic anchors. We also introduce a novel Dispersion Loss that encourages orthogonality among anchors to enforce diverse specialization. Experiments on WikiText-103 demonstrate that SRA achieves a validation perplexity of 13.41, outperforming both a dense baseline (14.13) and a Standard MoE baseline (13.53) under matched active parameter constraints (29.0M). Crucially, SRA exhibits superior expert utilization (1.0% dead experts vs. 14.8% in the Standard MoE) and develops distinct, semantically coherent specialization patterns, unlike the noisy specialization observed in standard MoEs. This work establishes semantic routing as a robust methodology for building more transparent and controllable language models.

Authors:Hai Huang, Yann LeCun, Randall Balestriero
Title: LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Abstract:
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.

Authors:Happymore Masoka
Title: Advancing Conversational AI with Shona Slang: A Dataset and Hybrid Model for Digital Inclusion
Abstract:
African languages remain underrepresented in natural language processing (NLP), with most corpora limited to formal registers that fail to capture the vibrancy of everyday communication. This work addresses this gap for Shona, a Bantu language spoken in Zimbabwe and Zambia, by introducing a novel Shona--English slang dataset curated from anonymized social media conversations. The dataset is annotated for intent, sentiment, dialogue acts, code-mixing, and tone, and is publicly available at https://github.com/HappymoreMasoka/Working_with_shona-slang. We fine-tuned a multilingual DistilBERT classifier for intent recognition, achieving 96.4\% accuracy and 96.3\% F1-score, hosted at https://huggingface.co/HappymoreMasoka. This classifier is integrated into a hybrid chatbot that combines rule-based responses with retrieval-augmented generation (RAG) to handle domain-specific queries, demonstrated through a use case assisting prospective students with graduate program information at Pace University. Qualitative evaluation shows the hybrid system outperforms a RAG-only baseline in cultural relevance and user engagement. By releasing the dataset, model, and methodology, this work advances NLP resources for African languages, promoting inclusive and culturally resonant conversational AI.

Authors:Zhaokai Wang, Penghao Yin, Xiangyu Zhao, Changyao Tian, Yu Qiao, Wenhai Wang, Jifeng Dai, Gen Luo
Title: GenExam: A Multidisciplinary Text-to-Image Exam
Abstract:
Exams are a fundamental test of expert-level intelligence and require integrated understanding, reasoning, and generation. Existing exam-style benchmarks mainly focus on understanding and reasoning tasks, and current generation benchmarks emphasize the illustration of world knowledge and visual concepts, neglecting the evaluation of rigorous drawing exams. We introduce GenExam, the first benchmark for multidisciplinary text-to-image exams, featuring 1,000 samples across 10 subjects with exam-style prompts organized under a four-level taxonomy. Each problem is equipped with ground-truth images and fine-grained scoring points to enable a precise evaluation of semantic correctness and visual plausibility. Experiments show that even state-of-the-art models such as GPT-Image-1 and Gemini-2.5-Flash-Image achieve less than 15% strict scores, and most models yield almost 0%, suggesting the great challenge of our benchmark. By framing image generation as an exam, GenExam offers a rigorous assessment of models' ability to integrate understanding, reasoning, and generation, providing insights on the path to general AGI. Our benchmark and evaluation code are released at https://github.com/OpenGVLab/GenExam.

Authors:Mengting Ai, Tianxin Wei, Sirui Chen, Jingrui He
Title: NIRVANA: Structured pruning reimagined for large language models compression
Abstract:
Structured pruning of large language models (LLMs) offers substantial efficiency improvements by removing entire hidden units, yet current approaches often suffer from significant performance degradation, particularly in zero-shot settings, and necessitate costly recovery techniques such as supervised fine-tuning (SFT) or adapter insertion. To address these critical shortcomings, we introduce NIRVANA, a novel pruning method explicitly designed to balance immediate zero-shot accuracy preservation with robust fine-tuning capability. Leveraging a first-order saliency criterion derived from the Neural Tangent Kernel under Adam optimization dynamics, NIRVANA provides a theoretically grounded pruning strategy that respects essential model training behaviors. To further address the unique challenges posed by structured pruning, NIRVANA incorporates an adaptive sparsity allocation mechanism across layers and modules (attention vs. MLP), which adjusts pruning intensity between modules in a globally balanced manner. Additionally, to mitigate the high sensitivity of pruning decisions to calibration data quality, we propose a simple yet effective KL divergence-based calibration data selection strategy, ensuring more reliable and task-agnostic pruning outcomes. Comprehensive experiments conducted on Llama3, Qwen, and T5 models demonstrate that NIRVANA outperforms existing structured pruning methods under equivalent sparsity constraints, providing a theoretically sound and practical approach to LLM compression. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/NIRVANA.

Authors:Yifan Hu, Jie Yang, Tian Zhou, Peiyuan Liu, Yujin Tang, Rong Jin, Liang Sun
Title: Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Abstract:
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.

Authors:Peng Xu, Shengwu Xiong, Jiajun Zhang, Yaxiong Chen, Bowen Zhou, Chen Change Loy, David A. Clifton, Kyoung Mu Lee, Luc Van Gool, Ruiming He, Ruilin Yao, Xinwei Long, Jirui Huang, Kai Tian, Sa Yang, Yihua Shao, Jin Feng, Yue Zhong, Jiakai Zhou, Cheng Tang, Tianyu Zou, Yifang Zhang, Junming Liang, Guoyou Li, Zhaoxiang Wang, Qiang Zhou, Yichen Zhao, Shili Xiong, Hyeongjin Nam, Jaerin Lee, Jaeyoung Chung, JoonKyu Park, Junghun Oh, Kanggeon Lee, Wooseok Lee, Juneyoung Ro, Turghun Osman, Can Hu, Chaoyang Liao, Cheng Chen, Chengcheng Han, Chenhao Qiu, Chong Peng, Cong Xu, Dailin Li, Feiyu Wang, Feng Gao, Guibo Zhu, Guopeng Tang, Haibo Lu, Han Fang, Han Qi, Hanxiao Wu, Haobo Cheng, Hongbo Sun, Hongyao Chen, Huayong Hu, Hui Li, Jiaheng Ma, Jiang Yu, Jianing Wang, Jie Yang, Jing He, Jinglin Zhou, Jingxuan Li, Josef Kittler, Lihao Zheng, Linnan Zhao, Mengxi Jia, Muyang Yan, Nguyen Thanh Thien, Pu Luo, Qi Li, Shien Song, Shijie Dong, Shuai Shao, Shutao Li, Taofeng Xue, Tianyang Xu, Tianyi Gao, Tingting Li, Wei Zhang, Weiyang Su, Xiaodong Dong, Xiao-Jun Wu, Xiaopeng Zhou, Xin Chen, Xin Wei, Xinyi You, Xudong Kang, Xujie Zhou, Xusheng Liu, Yanan Wang, Yanbin Huang, Yang Liu, Yang Yang, Yanglin Deng, Yashu Kang, Ye Yuan, Yi Wen, Yicen Tian, Yilin Tao, Yin Tang, Yipeng Lin, Yiqing Wang, Yiting Xi, Yongkang Yu, Yumei Li, Yuxin Qin, Yuying Chen, Yuzhe Cen, Zhaofan Zou, Zhaohong Liu, Zhehao Shen, Zhenglin Du, Zhengyang Li, Zhenni Huang, Zhenwei Shao, Zhilong Song, Zhiyong Feng, Zhiyu Wang, Zhou Yu, Ziang Li, Zihan Zhai, Zijian Zhang, Ziyang Peng, Ziyun Xiao, Zongshu Li
Title: MARS2 2025 Challenge on Multimodal Reasoning: Datasets, Methods, Results, Discussion, and Outlook
Abstract:
This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's MARS2 focuses on real-world and specialized scenarios to broaden the multimodal reasoning applications of MLLMs. Our organizing team released two tailored datasets Lens and AdsQA as test sets, which support general reasoning in 12 daily scenarios and domain-specific reasoning in advertisement videos, respectively. We evaluated 40+ baselines that include both generalist MLLMs and task-specific models, and opened up three competition tracks, i.e., Visual Grounding in Real-world Scenarios (VG-RS), Visual Question Answering with Spatial Awareness (VQA-SA), and Visual Reasoning in Creative Advertisement Videos (VR-Ads). Finally, 76 teams from the renowned academic and industrial institutions have registered and 40+ valid submissions (out of 1200+) have been included in our ranking lists. Our datasets, code sets (40+ baselines and 15+ participants' methods), and rankings are publicly available on the MARS2 workshop website and our GitHub organization page https://github.com/mars2workshop/, where our updates and announcements of upcoming events will be continuously provided.

Authors:Jingyi Yuan, Jianxiong Ye, Wenkang Chen, Chenqiang Gao
Title: AD-DINOv3: Enhancing DINOv3 for Zero-Shot Anomaly Detection with Anomaly-Aware Calibration
Abstract:
Zero-Shot Anomaly Detection (ZSAD) seeks to identify anomalies from arbitrary novel categories, offering a scalable and annotation-efficient solution. Traditionally, most ZSAD works have been based on the CLIP model, which performs anomaly detection by calculating the similarity between visual and text embeddings. Recently, vision foundation models such as DINOv3 have demonstrated strong transferable representation capabilities. In this work, we are the first to adapt DINOv3 for ZSAD. However, this adaptation presents two key challenges: (i) the domain bias between large-scale pretraining data and anomaly detection tasks leads to feature misalignment; and (ii) the inherent bias toward global semantics in pretrained representations often leads to subtle anomalies being misinterpreted as part of the normal foreground objects, rather than being distinguished as abnormal regions. To overcome these challenges, we introduce AD-DINOv3, a novel vision-language multimodal framework designed for ZSAD. Specifically, we formulate anomaly detection as a multimodal contrastive learning problem, where DINOv3 is employed as the visual backbone to extract patch tokens and a CLS token, and the CLIP text encoder provides embeddings for both normal and abnormal prompts. To bridge the domain gap, lightweight adapters are introduced in both modalities, enabling their representations to be recalibrated for the anomaly detection task. Beyond this baseline alignment, we further design an Anomaly-Aware Calibration Module (AACM), which explicitly guides the CLS token to attend to anomalous regions rather than generic foreground semantics, thereby enhancing discriminability. Extensive experiments on eight industrial and medical benchmarks demonstrate that AD-DINOv3 consistently matches or surpasses state-of-the-art methods.The code will be available at https://github.com/Kaisor-Yuan/AD-DINOv3.

Authors:Gang Cheng, Xin Gao, Li Hu, Siqi Hu, Mingyang Huang, Chaonan Ji, Ju Li, Dechao Meng, Jinwei Qi, Penchong Qiao, Zhen Shen, Yafei Song, Ke Sun, Linrui Tian, Feng Wang, Guangyuan Wang, Qi Wang, Zhongjian Wang, Jiayu Xiao, Sheng Xu, Bang Zhang, Peng Zhang, Xindi Zhang, Zhe Zhang, Jingren Zhou, Lian Zhuo
Title: Wan-Animate: Unified Character Animation and Replacement with Holistic Replication
Abstract:
We introduce Wan-Animate, a unified framework for character animation and replacement. Given a character image and a reference video, Wan-Animate can animate the character by precisely replicating the expressions and movements of the character in the video to generate high-fidelity character videos. Alternatively, it can integrate the animated character into the reference video to replace the original character, replicating the scene's lighting and color tone to achieve seamless environmental integration. Wan-Animate is built upon the Wan model. To adapt it for character animation tasks, we employ a modified input paradigm to differentiate between reference conditions and regions for generation. This design unifies multiple tasks into a common symbolic representation. We use spatially-aligned skeleton signals to replicate body motion and implicit facial features extracted from source images to reenact expressions, enabling the generation of character videos with high controllability and expressiveness. Furthermore, to enhance environmental integration during character replacement, we develop an auxiliary Relighting LoRA. This module preserves the character's appearance consistency while applying the appropriate environmental lighting and color tone. Experimental results demonstrate that Wan-Animate achieves state-of-the-art performance. We are committed to open-sourcing the model weights and its source code.

Authors:Maosheng Qin, Renyu Zhu, Mingxuan Xia, Chenkai Chen, Zhen Zhu, Minmin Lin, Junbo Zhao, Lu Xu, Changjie Fan, Runze Wu, Haobo Wang
Title: CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
Abstract:
High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources-including Large Language Models (LLMs), Small Language Models (SLMs), and human experts-they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.

Authors:Sunkyung Lee, Seongmin Park, Jonghyo Kim, Mincheol Yoon, Jongwuk Lee
Title: Enhancing Time Awareness in Generative Recommendation
Abstract:
Generative recommendation has emerged as a promising paradigm that formulates the recommendations into a text-to-text generation task, harnessing the vast knowledge of large language models. However, existing studies focus on considering the sequential order of items and neglect to handle the temporal dynamics across items, which can imply evolving user preferences. To address this limitation, we propose a novel model, Generative Recommender Using Time awareness (GRUT), effectively capturing hidden user preferences via various temporal signals. We first introduce Time-aware Prompting, consisting of two key contexts. The user-level temporal context models personalized temporal patterns across timestamps and time intervals, while the item-level transition context provides transition patterns across users. We also devise Trend-aware Inference, a training-free method that enhances rankings by incorporating trend information about items with generation likelihood. Extensive experiments demonstrate that GRUT outperforms state-of-the-art models, with gains of up to 15.4% and 14.3% in Recall@5 and NDCG@5 across four benchmark datasets. The source code is available at https://github.com/skleee/GRUT.

Authors:Harvey Mannering, Zhiwu Huang, Adam Prugel-Bennett
Title: Noise-Level Diffusion Guidance: Well Begun is Half Done
Abstract:
Diffusion models have achieved state-of-the-art image generation. However, the random Gaussian noise used to start the diffusion process influences the final output, causing variations in image quality and prompt adherence. Existing noise-level optimization approaches generally rely on extra dataset construction, additional networks, or backpropagation-based optimization, limiting their practicality. In this paper, we propose Noise Level Guidance (NLG), a simple, efficient, and general noise-level optimization approach that refines initial noise by increasing the likelihood of its alignment with general guidance - requiring no additional training data, auxiliary networks, or backpropagation. The proposed NLG approach provides a unified framework generalizable to both conditional and unconditional diffusion models, accommodating various forms of diffusion-level guidance. Extensive experiments on five standard benchmarks demonstrate that our approach enhances output generation quality and input condition adherence. By seamlessly integrating with existing guidance methods while maintaining computational efficiency, our method establishes NLG as a practical and scalable enhancement to diffusion models. Code can be found at https://github.com/harveymannering/NoiseLevelGuidance.

Authors:Mariano Barone, Antonio Romano, Giuseppe Riccio, Marco Postiglione, Vincenzo Moscato
Title: Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification
Abstract:
Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https://github.com/PRAISELab-PicusLab/CER

Authors:Zhen Xu, Guorui Lu, Chang Gao, Qinyu Chen
Title: EvHand-FPV: Efficient Event-Based 3D Hand Tracking from First-Person View
Abstract:
Hand tracking holds great promise for intuitive interaction paradigms, but frame-based methods often struggle to meet the requirements of accuracy, low latency, and energy efficiency, especially in resource-constrained settings such as Extended Reality (XR) devices. Event cameras provide $μ$s-level temporal resolution at mW-level power by asynchronously sensing brightness changes. In this work, we present EvHand-FPV, a lightweight framework for egocentric First-Person-View 3D hand tracking from a single event camera. We construct an event-based FPV dataset that couples synthetic training data with 3D labels and real event data with 2D labels for evaluation to address the scarcity of egocentric benchmarks. EvHand-FPV also introduces a wrist-based region of interest (ROI) that localizes the hand region via geometric cues, combined with an end-to-end mapping strategy that embeds ROI offsets into the network to reduce computation without explicit reconstruction, and a multi-task learning strategy with an auxiliary geometric feature head that improves representations without test-time overhead. On our real FPV test set, EvHand-FPV improves 2D-AUCp from 0.77 to 0.85 while reducing parameters from 11.2M to 1.2M by 89% and FLOPs per inference from 1.648G to 0.185G by 89%. It also maintains a competitive 3D-AUCp of 0.84 on synthetic data. These results demonstrate accurate and efficient egocentric event-based hand tracking suitable for on-device XR applications. The dataset and code are available at https://github.com/zen5x5/EvHand-FPV.

Authors:Jovana Videnovic, Matej Kristan, Alan Lukezic
Title: Distractor-Aware Memory-Based Visual Object Tracking
Abstract:
Recent emergence of memory-based video segmentation methods such as SAM2 has led to models with excellent performance in segmentation tasks, achieving leading results on numerous benchmarks. However, these modes are not fully adjusted for visual object tracking, where distractors (i.e., objects visually similar to the target) pose a key challenge. In this paper we propose a distractor-aware drop-in memory module and introspection-based management method for SAM2, leading to DAM4SAM. Our design effectively reduces the tracking drift toward distractors and improves redetection capability after object occlusion. To facilitate the analysis of tracking in the presence of distractors, we construct DiDi, a Distractor-Distilled dataset. DAM4SAM outperforms SAM2.1 on thirteen benchmarks and sets new state-of-the-art results on ten. Furthermore, integrating the proposed distractor-aware memory into a real-time tracker EfficientTAM leads to 11% improvement and matches tracking quality of the non-real-time SAM2.1-L on multiple tracking and segmentation benchmarks, while integration with edge-based tracker EdgeTAM delivers 4% performance boost, demonstrating a very good generalization across architectures.

Authors:Qianxin Xia, Jiawei Du, Guoming Lu, Zhiyong Shu, Jielei Wang
Title: EDITS: Enhancing Dataset Distillation with Implicit Textual Semantics
Abstract:
Dataset distillation aims to synthesize a compact dataset from the original large-scale one, enabling highly efficient learning while preserving competitive model performance. However, traditional techniques primarily capture low-level visual features, neglecting the high-level semantic and structural information inherent in images. In this paper, we propose EDITS, a novel framework that exploits the implicit textual semantics within the image data to achieve enhanced distillation. First, external texts generated by a Vision Language Model (VLM) are fused with image features through a Global Semantic Query module, forming the prior clustered buffer. Local Semantic Awareness then selects representative samples from the buffer to construct image and text prototypes, with the latter produced by guiding a Large Language Model (LLM) with meticulously crafted prompt. Ultimately, Dual Prototype Guidance strategy generates the final synthetic dataset through a diffusion model. Extensive experiments confirm the effectiveness of our method.Source code is available in: https://github.com/einsteinxia/EDITS.

Authors:Puru Vaish, Felix Meister, Tobias Heimann, Christoph Brune, Jelmer M. Wolterink
Title: Consistent View Alignment Improves Foundation Models for 3D Medical Image Segmentation
Abstract:
Many recent approaches in representation learning implicitly assume that uncorrelated views of a data point are sufficient to learn meaningful representations for various downstream tasks. In this work, we challenge this assumption and demonstrate that meaningful structure in the latent space does not emerge naturally. Instead, it must be explicitly induced. We propose a method that aligns representations from different views of the data to align complementary information without inducing false positives. Our experiments show that our proposed self-supervised learning method, Consistent View Alignment, improves performance for downstream tasks, highlighting the critical role of structured view alignment in learning effective representations. Our method achieved first and second place in the MICCAI 2025 SSL3D challenge when using a Primus vision transformer and ResEnc convolutional neural network, respectively. The code and pretrained model weights are released at https://github.com/Tenbatsu24/LatentCampus.

Authors:Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Thien Nguyen, Daisuke Kihara, Tianyang Wang, Xingjian Li, Min Xu
Title: Semi-MoE: Mixture-of-Experts meets Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised learning has been employed to alleviate the need for extensive labeled data for histopathology image segmentation, but existing methods struggle with noisy pseudo-labels due to ambiguous gland boundaries and morphological misclassification. This paper introduces Semi-MOE, to the best of our knowledge, the first multi-task Mixture-of-Experts framework for semi-supervised histopathology image segmentation. Our approach leverages three specialized expert networks: A main segmentation expert, a signed distance field regression expert, and a boundary prediction expert, each dedicated to capturing distinct morphological features. Subsequently, the Multi-Gating Pseudo-labeling module dynamically aggregates expert features, enabling a robust fuse-and-refine pseudo-labeling mechanism. Furthermore, to eliminate manual tuning while dynamically balancing multiple learning objectives, we propose an Adaptive Multi-Objective Loss. Extensive experiments on GlaS and CRAG benchmarks show that our method outperforms state-of-the-art approaches in low-label settings, highlighting the potential of MoE-based architectures in advancing semi-supervised segmentation. Our code is available at https://github.com/vnlvi2k3/Semi-MoE.

Authors:Kartik Shinde, Laurent Besacier, Ondrej Bojar, Thibaut Thonet, Tirthankar Ghosal
Title: Findings of the Third Automatic Minuting (AutoMin) Challenge
Abstract:
This paper presents the third edition of AutoMin, a shared task on automatic meeting summarization into minutes. In 2025, AutoMin featured the main task of minuting, the creation of structured meeting minutes, as well as a new task: question answering (QA) based on meeting transcripts. The minuting task covered two languages, English and Czech, and two domains: project meetings and European Parliament sessions. The QA task focused solely on project meetings and was available in two settings: monolingual QA in English, and cross-lingual QA, where questions were asked and answered in Czech based on English meetings. Participation in 2025 was more limited compared to previous years, with only one team joining the minuting task and two teams participating in QA. However, as organizers, we included multiple baseline systems to enable a comprehensive evaluation of current (2025) large language models (LLMs) on both tasks.

Authors:Jiayu Yuan, Ming Dai, Enhui Zheng, Chao Su, Nanxing Chen, Qiming Hu, Shibo Zhu, Yibin Cao
Title: SWA-PF: Semantic-Weighted Adaptive Particle Filter for Memory-Efficient 4-DoF UAV Localization in GNSS-Denied Environments
Abstract:
Vision-based Unmanned Aerial Vehicle (UAV) localization systems have been extensively investigated for Global Navigation Satellite System (GNSS)-denied environments. However, existing retrieval-based approaches face limitations in dataset availability and persistent challenges including suboptimal real-time performance, environmental sensitivity, and limited generalization capability, particularly in dynamic or temporally varying environments. To overcome these limitations, we present a large-scale Multi-Altitude Flight Segments dataset (MAFS) for variable altitude scenarios and propose a novel Semantic-Weighted Adaptive Particle Filter (SWA-PF) method. This approach integrates robust semantic features from both UAV-captured images and satellite imagery through two key innovations: a semantic weighting mechanism and an optimized particle filtering architecture. Evaluated using our dataset, the proposed method achieves 10x computational efficiency gain over feature extraction methods, maintains global positioning errors below 10 meters, and enables rapid 4 degree of freedom (4-DoF) pose estimation within seconds using accessible low-resolution satellite maps. Code and dataset will be available at https://github.com/YuanJiayuuu/SWA-PF.

Authors:Huichun Liu, Xiaosong Li, Yang Liu, Xiaoqi Cheng, Haishu Tan
Title: NDLPNet: A Location-Aware Nighttime Deraining Network and a Real-World Benchmark Dataset
Abstract:
Visual degradation caused by rain streak artifacts in low-light conditions significantly hampers the performance of nighttime surveillance and autonomous navigation. Existing image deraining techniques are primarily designed for daytime conditions and perform poorly under nighttime illumination due to the spatial heterogeneity of rain distribution and the impact of light-dependent stripe visibility. In this paper, we propose a novel Nighttime Deraining Location-enhanced Perceptual Network(NDLPNet) that effectively captures the spatial positional information and density distribution of rain streaks in low-light environments. Specifically, we introduce a Position Perception Module (PPM) to capture and leverage spatial contextual information from input data, enhancing the model's capability to identify and recalibrate the importance of different feature channels. The proposed nighttime deraining network can effectively remove the rain streaks as well as preserve the crucial background information. Furthermore, We construct a night scene rainy (NSR) dataset comprising 900 image pairs, all based on real-world nighttime scenes, providing a new benchmark for nighttime deraining task research. Extensive qualitative and quantitative experimental evaluations on both existing datasets and the NSR dataset consistently demonstrate our method outperform the state-of-the-art (SOTA) methods in nighttime deraining tasks. The source code and dataset is available at https://github.com/Feecuin/NDLPNet.

Authors:Qikai Chang, Zhenrong Zhang, Pengfei Hu, Jun Du, Jiefeng Ma, Yicheng Pan, Jianshu Zhang, Quan Liu, Jianqing Gao
Title: THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Abstract:
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

Authors:Jinwoo Jeon, JunHyeok Oh, Hayeong Lee, Byung-Jun Lee
Title: Iterative Prompt Refinement for Safer Text-to-Image Generation
Abstract:
Text-to-Image (T2I) models have made remarkable progress in generating images from text prompts, but their output quality and safety still depend heavily on how prompts are phrased. Existing safety methods typically refine prompts using large language models (LLMs), but they overlook the images produced, which can result in unsafe outputs or unnecessary changes to already safe prompts. To address this, we propose an iterative prompt refinement algorithm that uses Vision Language Models (VLMs) to analyze both the input prompts and the generated images. By leveraging visual feedback, our method refines prompts more effectively, improving safety while maintaining user intent and reliability comparable to existing LLM-based approaches. Additionally, we introduce a new dataset labeled with both textual and visual safety signals using off-the-shelf multi-modal LLM, enabling supervised fine-tuning. Experimental results demonstrate that our approach produces safer outputs without compromising alignment with user intent, offering a practical solution for generating safer T2I content. Our code is available at https://github.com/ku-dmlab/IPR. \textbf{\textcolor{red}WARNING: This paper contains examples of harmful or inappropriate images generated by models.

Authors:Hao Yin, Xin Man, Feiyu Chen, Jie Shao, Heng Tao Shen
Title: Cross-modal Full-mode Fine-grained Alignment for Text-to-Image Person Retrieval
Abstract:
Text-to-Image Person Retrieval (TIPR) is a cross-modal matching task that aims to retrieve the most relevant person images based on a given text query. The key challenge in TIPR lies in achieving effective alignment between textual and visual modalities within a common latent space. To address this challenge, prior approaches incorporate attention mechanisms for implicit cross-modal local alignment. However, they lack the ability to verify whether all local features are correctly aligned. Moreover, existing methods primarily focus on hard negative samples during model updates, with the goal of refining distinctions between positive and negative pairs, often neglecting incorrectly matched positive pairs. To alleviate these issues, we propose FMFA, a cross-modal Full-Mode Fine-grained Alignment framework, which enhances global matching through explicit fine-grained alignment and existing implicit relational reasoning -- hence the term ``full-mode" -- without requiring additional supervision. Specifically, we design an Adaptive Similarity Distribution Matching (A-SDM) module to rectify unmatched positive sample pairs. A-SDM adaptively pulls the unmatched positive pairs closer in the joint embedding space, thereby achieving more precise global alignment. Additionally, we introduce an Explicit Fine-grained Alignment (EFA) module, which makes up for the lack of verification capability of implicit relational reasoning. EFA strengthens explicit cross-modal fine-grained interactions by sparsifying the similarity matrix and employs a hard coding method for local alignment. Our proposed method is evaluated on three public datasets, achieving state-of-the-art performance among all global matching methods. Our code is available at https://github.com/yinhao1102/FMFA.

Authors:Hyotaek Jeon, Hyunwook Lee, Juwon Kim, Sungahn Ko
Title: ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting
Abstract:
Traffic forecasting represents a crucial problem within intelligent transportation systems. In recent research, Large Language Models (LLMs) have emerged as a promising method, but their intrinsic design, tailored primarily for sequential token processing, introduces notable challenges in effectively capturing spatial dependencies. Specifically, the inherent limitations of LLMs in modeling spatial relationships and their architectural incompatibility with graph-structured spatial data remain largely unaddressed. To overcome these limitations, we introduce ST-LINK, a novel framework that enhances the capability of Large Language Models to capture spatio-temporal dependencies. Its key components are Spatially-Enhanced Attention (SE-Attention) and the Memory Retrieval Feed-Forward Network (MRFFN). SE-Attention extends rotary position embeddings to integrate spatial correlations as direct rotational transformations within the attention mechanism. This approach maximizes spatial learning while preserving the LLM's inherent sequential processing structure. Meanwhile, MRFFN dynamically retrieves and utilizes key historical patterns to capture complex temporal dependencies and improve the stability of long-term forecasting. Comprehensive experiments on benchmark datasets demonstrate that ST-LINK surpasses conventional deep learning and LLM approaches, and effectively captures both regular traffic patterns and abrupt changes.

Authors:Ming Dai, Wenxuan Cheng, Jiang-Jiang Liu, Lingfeng Yang, Zhenhua Feng, Wankou Yang, Jingdong Wang
Title: Improving Generalized Visual Grounding with Instance-aware Joint Learning
Abstract:
Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process. Moreover, current methods often treat GRES as a semantic segmentation task, neglecting the crucial role of instance-aware capabilities and the necessity of ensuring consistent predictions between instance-level boxes and masks. To address these limitations, we propose InstanceVG, a multi-task generalized visual grounding framework equipped with instance-aware capabilities, which leverages instance queries to unify the joint and consistency predictions of instance-level boxes and masks. To the best of our knowledge, InstanceVG is the first framework to simultaneously tackle both GREC and GRES while incorporating instance-aware capabilities into generalized visual grounding. To instantiate the framework, we assign each instance query a prior reference point, which also serves as an additional basis for target matching. This design facilitates consistent predictions of points, boxes, and masks for the same instance. Extensive experiments obtained on ten datasets across four tasks demonstrate that InstanceVG achieves state-of-the-art performance, significantly surpassing the existing methods in various evaluation metrics. The code and model will be publicly available at https://github.com/Dmmm1997/InstanceVG.

Authors:Tianle Zeng, Jianwei Peng, Hanjing Ye, Guangcheng Chen, Senzi Luo, Hong Zhang
Title: EZREAL: Enhancing Zero-Shot Outdoor Robot Navigation toward Distant Targets under Varying Visibility
Abstract:
Zero-shot object navigation (ZSON) in large-scale outdoor environments faces many challenges; we specifically address a coupled one: long-range targets that reduce to tiny projections and intermittent visibility due to partial or complete occlusion. We present a unified, lightweight closed-loop system built on an aligned multi-scale image tile hierarchy. Through hierarchical target-saliency fusion, it summarizes localized semantic contrast into a stable coarse-layer regional saliency that provides the target direction and indicates target visibility. This regional saliency supports visibility-aware heading maintenance through keyframe memory, saliency-weighted fusion of historical headings, and active search during temporary invisibility. The system avoids whole-image rescaling, enables deterministic bottom-up aggregation, supports zero-shot navigation, and runs efficiently on a mobile robot. Across simulation and real-world outdoor trials, the system detects semantic targets beyond 150m, maintains a correct heading through visibility changes with 82.6% probability, and improves overall task success by 17.5% compared with the SOTA methods, demonstrating robust ZSON toward distant and intermittently observable targets.

Authors:Zirun Guo, Feng Zhang, Kai Jia, Tao Jin
Title: LLM-I: LLMs are Naturally Interleaved Multimodal Creators
Abstract:
We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.

Authors:Jeremy Oon, Rakhi Manohar Mepparambath, Ling Feng
Title: DeepLogit: A sequentially constrained explainable deep learning modeling approach for transport policy analysis
Abstract:
Despite the significant progress of deep learning models in multitude of applications, their adaption in planning and policy related areas remains challenging due to the black-box nature of these models. In this work, we develop a set of DeepLogit models that follow a novel sequentially constrained approach in estimating deep learning models for transport policy analysis. In the first step of the proposed approach, we estimate a convolutional neural network (CNN) model with only linear terms, which is equivalent of a linear-in-parameter multinomial logit model. We then estimate other deep learning models by constraining the parameters that need interpretability at the values obtained in the linear-in-parameter CNN model and including higher order terms or by introducing advanced deep learning architectures like Transformers. Our approach can retain the interpretability of the selected parameters, yet provides significantly improved model accuracy than the discrete choice model. We demonstrate our approach on a transit route choice example using real-world transit smart card data from Singapore. This study shows the potential for a unifying approach, where theory-based discrete choice model (DCM) and data-driven AI models can leverage each other's strengths in interpretability and predictive power. With the availability of larger datasets and more complex constructions, such approach can lead to more accurate models using discrete choice models while maintaining its applicability in planning and policy-related areas. Our code is available on https://github.com/jeremyoon/route-choice/ .

Authors:Zongru Wu, Rui Mao, Zhiyuan Tian, Pengzhou Cheng, Tianjie Ju, Zheng Wu, Lingzhong Dong, Haiyue Sheng, Zhuosheng Zhang, Gongshen Liu
Title: See, Think, Act: Teaching Multimodal Agents to Effectively Interact with GUI by Identifying Toggles
Abstract:
The advent of multimodal agents facilitates effective interaction within graphical user interface (GUI), especially in ubiquitous GUI control. However, their inability to reliably execute toggle control instructions remains a key bottleneck. To investigate this, we construct a state control benchmark with binary toggle instructions from public datasets. Evaluations of existing agents demonstrate their unreliability, particularly when the current toggle state already matches the desired state. To address the challenge, we propose State-aware Reasoning (StaR), a training method that teaches agents to perceive the current toggle state, analyze the desired state from the instruction, and act accordingly. Experiments on three multimodal agents demonstrate that StaR can improve toggle instruction execution accuracy by over 30\%. Further evaluations on three public benchmarks show that StaR also enhances general task performance. Finally, evaluations on a dynamic environment highlight the potential of StaR for real-world applications. Code, benchmark, and StaR-enhanced agents are available at https://github.com/ZrW00/StaR.

Authors:Amir-Hossein Shahidzadeh, Jiyue Zhu, Kezhou Chen, Sha Yi, Cornelia Fermüller, Yiannis Aloimonos, Xiaolong Wang
Title: Object Pose Estimation through Dexterous Touch
Abstract:
Robust object pose estimation is essential for manipulation and interaction tasks in robotics, particularly in scenarios where visual data is limited or sensitive to lighting, occlusions, and appearances. Tactile sensors often offer limited and local contact information, making it challenging to reconstruct the pose from partial data. Our approach uses sensorimotor exploration to actively control a robot hand to interact with the object. We train with Reinforcement Learning (RL) to explore and collect tactile data. The collected 3D point clouds are used to iteratively refine the object's shape and pose. In our setup, one hand holds the object steady while the other performs active exploration. We show that our method can actively explore an object's surface to identify critical pose features without prior knowledge of the object's geometry. Supplementary material and more demonstrations will be provided at https://amirshahid.github.io/BimanualTactilePose .

Authors:Jiangbei Yue, Shuonan Yang, Tailin Chen, Jianbo Jiao, Zeyu Fu
Title: Multimodal Hate Detection Using Dual-Stream Graph Neural Networks
Abstract:
Hateful videos present serious risks to online safety and real-world well-being, necessitating effective detection methods. Although multimodal classification approaches integrating information from several modalities outperform unimodal ones, they typically neglect that even minimal hateful content defines a video's category. Specifically, they generally treat all content uniformly, instead of emphasizing the hateful components. Additionally, existing multimodal methods cannot systematically capture structured information in videos, limiting the effectiveness of multimodal fusion. To address these limitations, we propose a novel multimodal dual-stream graph neural network model. It constructs an instance graph by separating the given video into several instances to extract instance-level features. Then, a complementary weight graph assigns importance weights to these features, highlighting hateful instances. Importance weights and instance features are combined to generate video labels. Our model employs a graph-based framework to systematically model structured relationships within and across modalities. Extensive experiments on public datasets show that our model is state-of-the-art in hateful video classification and has strong explainability. Code is available: https://github.com/Multimodal-Intelligence-Lab-MIL/MultiHateGNN.

Authors:Uriel Garcilazo-Cruz, Joseph O. Okeme, Rodrigo A. Vargas--Hernández
Title: LivePyxel: Accelerating image annotations with a Python-integrated webcam live streaming
Abstract:
The lack of flexible annotation tools has hindered the deployment of AI models in some scientific areas. Most existing image annotation software requires users to upload a precollected dataset, which limits support for on-demand pipelines and introduces unnecessary steps to acquire images. This constraint is particularly problematic in laboratory environments, where real-time data acquisition from instruments such as microscopes is increasingly common. In this work, we introduce \texttt{LivePixel}, a Python-based graphical user interface that integrates with imaging systems, such as webcams, microscopes, and others, to enable real-time image annotation. LivePyxel is designed to be easy to use through a simple interface that allows users to precisely delimit areas for annotation using tools commonly found in commercial graphics editing software. Of particular interest is the availability of Bézier splines and binary masks, and the software's capacity to work with non-destructive layers that enable high-performance editing. LivePyxel also integrates a wide compatibility across video devices, and it's optimized for object detection operations via the use of OpenCV in combination with high-performance libraries designed to handle matrix and linear algebra operations via Numpy effectively. LivePyxel facilitates seamless data collection and labeling, accelerating the development of AI models in experimental workflows. LivePyxel freely available at https://github.com/UGarCil/LivePyxel

Authors:Hao Xu, Xiaolin Wu, Xi Zhang
Title: Improving 3D Gaussian Splatting Compression by Scene-Adaptive Lattice Vector Quantization
Abstract:
3D Gaussian Splatting (3DGS) is rapidly gaining popularity for its photorealistic rendering quality and real-time performance, but it generates massive amounts of data. Hence compressing 3DGS data is necessary for the cost effectiveness of 3DGS models. Recently, several anchor-based neural compression methods have been proposed, achieving good 3DGS compression performance. However, they all rely on uniform scalar quantization (USQ) due to its simplicity. A tantalizing question is whether more sophisticated quantizers can improve the current 3DGS compression methods with very little extra overhead and minimal change to the system. The answer is yes by replacing USQ with lattice vector quantization (LVQ). To better capture scene-specific characteristics, we optimize the lattice basis for each scene, improving LVQ's adaptability and R-D efficiency. This scene-adaptive LVQ (SALVQ) strikes a balance between the R-D efficiency of vector quantization and the low complexity of USQ. SALVQ can be seamlessly integrated into existing 3DGS compression architectures, enhancing their R-D performance with minimal modifications and computational overhead. Moreover, by scaling the lattice basis vectors, SALVQ can dynamically adjust lattice density, enabling a single model to accommodate multiple bit rate targets. This flexibility eliminates the need to train separate models for different compression levels, significantly reducing training time and memory consumption.

Authors:Vincent Siu, Nicholas Crispino, David Park, Nathan W. Henry, Zhun Wang, Yang Liu, Dawn Song, Chenguang Wang
Title: SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
Abstract:
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.

Authors:Tianyu Chen, Yasi Zhang, Zhi Zhang, Peiyu Yu, Shu Wang, Zhendong Wang, Kevin Lin, Xiaofei Wang, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Jianwen Xie, Oscar Leong, Lijuan Wang, Ying Nian Wu, Mingyuan Zhou
Title: EdiVal-Agent: An Object-Centric Framework for Automated, Scalable, Fine-Grained Evaluation of Multi-Turn Editing
Abstract:
Instruction-based image editing has advanced rapidly, yet reliable and interpretable evaluation remains a bottleneck. Current protocols either (i) depend on paired reference images -- resulting in limited coverage and inheriting biases from prior generative models -- or (ii) rely solely on zero-shot vision-language models (VLMs), whose prompt-based assessments of instruction following, content consistency, and visual quality are often imprecise. To address this, we introduce EdiVal-Agent, an automated, scalable, and fine-grained evaluation framework for multi-turn instruction-based editing from an object-centric perspective, supported by a suite of expert tools. Given an image, EdiVal-Agent first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions. For evaluation, it integrates VLMs with open-vocabulary object detectors to assess instruction following, uses semantic-level feature extractors to evaluate content consistency, and leverages human preference models to judge visual quality. We show that combining VLMs with object detectors yields stronger agreement with human judgments in instruction-following evaluation compared to using VLMs alone and CLIP-based metrics. Furthermore, the pipeline's modular design allows future tools to be seamlessly integrated, enhancing evaluation accuracy over time. Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing benchmark covering 9 instruction types and 11 state-of-the-art editing models spanning autoregressive (AR) (including Nano Banana, GPT-Image-1), flow-matching, and diffusion paradigms. We demonstrate that EdiVal-Agent can be used to identify existing failure modes, thereby informing the development of the next generation of editing models. Project page: https://tianyucodings.github.io/EdiVAL-page/.

Authors:Zixi Li
Title: Asterisk Operator
Abstract:
We propose the \textbf{Asterisk Operator} ($\ast$-operator), a novel unified framework for abstract reasoning based on Adjacency-Structured Parallel Propagation (ASPP). The operator formalizes structured reasoning tasks as local, parallel state evolution processes guided by implicit relational graphs. We prove that the $\ast$-operator maintains local computational constraints while achieving global reasoning capabilities, providing an efficient and convergent computational paradigm for abstract reasoning problems. Through rigorous mathematical analysis and comprehensive experiments on ARC2 challenges and Conway's Game of Life, we demonstrate the operator's universality, convergence properties, and superior performance. Our innovative Embedding-Asterisk distillation method achieves 100\% accuracy on ARC2 validation with only 6M parameters, representing a significant breakthrough in neural-symbolic reasoning. \textbf{Keywords:} Abstract Reasoning, Adjacency Structure, Parallel Propagation, Asterisk Operator, Convergence, Universal Approximation

Authors:Zihao Wang, Muyao Li, Kaichen He, Xiangyu Wang, Zhancun Mu, Anji Liu, Yitao Liang
Title: OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft
Abstract:
The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

Authors:Anand Swaroop, Akshat Nallani, Saksham Uboweja, Adiliia Uzdenova, Michael Nguyen, Kevin Zhu, Sunishchal Dev, Ashwinee Panda, Vasu Sharma, Maheep Chaudhary
Title: FRIT: Using Causal Importance to Improve Chain-of-Thought Faithfulness
Abstract:
Chain-of-thought (CoT) reasoning has emerged as a powerful tool for improving large language model performance on complex tasks, but recent work shows that reasoning steps often fail to causally influence the final answer, creating brittle and untrustworthy outputs. Prior approaches focus primarily on measuring faithfulness, while methods for systematically improving it remain limited. We introduce Faithful Reasoning via Intervention Training (FRIT), a scalable alignment method that trains models to produce causally consistent reasoning by learning from systematically corrupted examples. FRIT generates synthetic training data by intervening on individual reasoning steps in model-generated CoTs, creating faithful/unfaithful pairs that highlight when reasoning breaks down. We then apply Direct Preference Optimization to teach models to prefer causally consistent reasoning paths. Evaluating on Qwen3-8B and Mistral-7B-v0.1 across factual and symbolic reasoning tasks, FRIT increases faithful reasoning by $3.4$ percentage points for Mistral on GSM8K while improving accuracy by $7.6$ percentage points. Our approach provides the first scalable, supervision-free method for training language models to produce more reliable and interpretable reasoning, addressing a critical gap between reasoning performance and trustworthiness. We release our code at \href{https://github.com/Anut-py/frit}.

Authors:Xixi Wu, Kuan Li, Yida Zhao, Liwen Zhang, Litu Ou, Huifeng Yin, Zhongwang Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Minhao Cheng, Shuai Wang, Hong Cheng, Jingren Zhou
Title: ReSum: Unlocking Long-Horizon Search Intelligence via Context Summarization
Abstract:
Large Language Model (LLM)-based web agents demonstrate strong performance on knowledge-intensive tasks but are hindered by context window limitations in paradigms like ReAct. Complex queries involving multiple entities, intertwined relationships, and high uncertainty demand extensive search cycles that rapidly exhaust context budgets before reaching complete solutions. To overcome this challenge, we introduce ReSum, a novel paradigm that enables indefinite exploration through periodic context summarization. ReSum converts growing interaction histories into compact reasoning states, maintaining awareness of prior discoveries while bypassing context constraints. For paradigm adaptation, we propose ReSum-GRPO, integrating GRPO with segmented trajectory training and advantage broadcasting to familiarize agents with summary-conditioned reasoning. Extensive experiments on web agents of varying scales across three benchmarks demonstrate that ReSum delivers an average absolute improvement of 4.5\% over ReAct, with further gains of up to 8.2\% following ReSum-GRPO training. Notably, with only 1K training samples, our WebResummer-30B (a ReSum-GRPO-trained version of WebSailor-30B) achieves 33.3\% Pass@1 on BrowseComp-zh and 18.3\% on BrowseComp-en, surpassing existing open-source web agents.

Authors:Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xiaobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: Towards General Agentic Intelligence via Environment Scaling
Abstract:
Advanced agentic intelligence is a prerequisite for deploying Large Language Models in practical, real-world applications. Diverse real-world APIs demand precise, robust function-calling intelligence, which needs agents to develop these capabilities through interaction in varied environments. The breadth of function-calling competence is closely tied to the diversity of environments in which agents are trained. In this work, we scale up environments as a step towards advancing general agentic intelligence. This gives rise to two central challenges: (i) how to scale environments in a principled manner, and (ii) how to effectively train agentic capabilities from experiences derived through interactions with these environments. To address these, we design a scalable framework that automatically constructs heterogeneous environments that are fully simulated, systematically broadening the space of function-calling scenarios. We further adapt a two-phase agent fine-tuning strategy: first endowing agents with fundamental agentic capabilities, then specializing them for domain-specific contexts. Extensive experiments on agentic benchmarks, tau-bench, tau2-Bench, and ACEBench, demonstrate that our trained model, AgentScaler, significantly enhances the function-calling capability of models.

Authors:Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan Li, Jialong Wu, Xuanzhong Chen, Zile Qiao, Zhongwang Zhang, Huifeng Yin, Shihao Cai, Runnan Fang, Zhengwei Tao, Wenbiao Yin, Chenxiong Qian, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: Scaling Agents via Continual Pre-training
Abstract:
Large language models (LLMs) have evolved into agentic systems capable of autonomous tool use and multi-step reasoning for complex problem-solving. However, post-training approaches building upon general-purpose foundation models consistently underperform in agentic tasks, particularly in open-source implementations. We identify the root cause: the absence of robust agentic foundation models forces models during post-training to simultaneously learn diverse agentic behaviors while aligning them to expert demonstrations, thereby creating fundamental optimization tensions. To this end, we are the first to propose incorporating Agentic Continual Pre-training (Agentic CPT) into the deep research agents training pipeline to build powerful agentic foundational models. Based on this approach, we develop a deep research agent model named AgentFounder. We evaluate our AgentFounder-30B on 10 benchmarks and achieve state-of-the-art performance while retains strong tool-use ability, notably 39.9% on BrowseComp-en, 43.3% on BrowseComp-zh, and 31.5% Pass@1 on HLE.

Authors:Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen Zhang, Baixuan Li, Huifeng Yin, Kuan Li, Rui Min, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: WebResearcher: Unleashing unbounded reasoning capability in Long-Horizon Agents
Abstract:
Recent advances in deep-research systems have demonstrated the potential for AI agents to autonomously discover and synthesize knowledge from external sources. In this paper, we introduce WebResearcher, a novel framework for building such agents through two key components: (1) WebResearcher, an iterative deep-research paradigm that reformulates deep research as a Markov Decision Process, where agents periodically consolidate findings into evolving reports while maintaining focused workspaces, overcoming the context suffocation and noise contamination that plague existing mono-contextual approaches; and (2) WebFrontier, a scalable data synthesis engine that generates high-quality training data through tool-augmented complexity escalation, enabling systematic creation of research tasks that bridge the gap between passive knowledge recall and active knowledge construction. Notably, we find that the training data from our paradigm significantly enhances tool-use capabilities even for traditional mono-contextual methods. Furthermore, our paradigm naturally scales through parallel thinking, enabling concurrent multi-agent exploration for more comprehensive conclusions. Extensive experiments across 6 challenging benchmarks demonstrate that WebResearcher achieves state-of-the-art performance, even surpassing frontier proprietary systems.

Authors:Zeyu Ma, Adam Finkelstein, Jia Deng
Title: Temporally Smooth Mesh Extraction for Procedural Scenes with Long-Range Camera Trajectories using Spacetime Octrees
Abstract:
The procedural occupancy function is a flexible and compact representation for creating 3D scenes. For rasterization and other tasks, it is often necessary to extract a mesh that represents the shape. Unbounded scenes with long-range camera trajectories, such as flying through a forest, pose a unique challenge for mesh extraction. A single static mesh representing all the geometric detail necessary for the full camera path can be prohibitively large. Therefore, independent meshes can be extracted for different camera views, but this approach may lead to popping artifacts during transitions. We propose a temporally coherent method for extracting meshes suitable for long-range camera trajectories in unbounded scenes represented by an occupancy function. The key idea is to perform 4D mesh extraction using a new spacetime tree structure called a binary-octree. Experiments show that, compared to existing baseline methods, our method offers superior visual consistency at a comparable cost. The code and the supplementary video for this paper are available at https://github.com/princeton-vl/BinocMesher.

Authors:Kuan Li, Zhongwang Zhang, Huifeng Yin, Rui Ye, Yida Zhao, Liwen Zhang, Litu Ou, Dingchu Zhang, Xixi Wu, Jialong Wu, Xinyu Wang, Zile Qiao, Zhen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: WebSailor-V2: Bridging the Chasm to Proprietary Agents via Synthetic Data and Scalable Reinforcement Learning
Abstract:
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all open-source agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.

Authors:Rodrigo M Carrillo-Larco
Title: LLMs for energy and macronutrients estimation using only text data from 24-hour dietary recalls: a parameter-efficient fine-tuning experiment using a 10-shot prompt
Abstract:
BACKGROUND: Most artificial intelligence tools used to estimate nutritional content rely on image input. However, whether large language models (LLMs) can accurately predict nutritional values based solely on text descriptions of foods consumed remains unknown. If effective, this approach could enable simpler dietary monitoring without the need for photographs. METHODS: We used 24-hour dietary recalls from adolescents aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES). An open-source quantized LLM was prompted using a 10-shot, chain-of-thought approach to estimate energy and five macronutrients based solely on text strings listing foods and their quantities. We then applied parameter-efficient fine-tuning (PEFT) to evaluate whether predictive accuracy improved. NHANES-calculated values served as the ground truth for energy, proteins, carbohydrates, total sugar, dietary fiber and total fat. RESULTS: In a pooled dataset of 11,281 adolescents (49.9% male, mean age 15.4 years), the vanilla LLM yielded poor predictions. The mean absolute error (MAE) was 652.08 for energy and the Lin's CCC <0.46 across endpoints. In contrast, the fine-tuned model performed substantially better, with energy MAEs ranging from 171.34 to 190.90 across subsets, and Lin's CCC exceeding 0.89 for all outcomes. CONCLUSIONS: When prompted using a chain-of-thought approach and fine-tuned with PEFT, open-source LLMs exposed solely to text input can accurately predict energy and macronutrient values from 24-hour dietary recalls. This approach holds promise for low-burden, text-based dietary monitoring tools.

Authors:Zhizhong Zhao, Ke Chen
Title: Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning
Abstract:
Uncertainty quantification (UQ) is vital for trustworthy deep learning, yet existing methods are either computationally intensive, such as Bayesian or ensemble methods, or provide only partial, task-specific estimates, such as single-forward-pass techniques. In this paper, we propose a post-hoc single-forward-pass framework that jointly captures aleatoric and epistemic uncertainty without modifying or retraining pretrained models. Our method applies \emph{Split-Point Analysis} (SPA) to decompose predictive residuals into upper and lower subsets, computing \emph{Mean Absolute Residuals} (MARs) on each side. We prove that, under ideal conditions, the total MAR equals the harmonic mean of subset MARs; deviations define a novel \emph{Self-consistency Discrepancy Score} (SDS) for fine-grained epistemic estimation across regression and classification. For regression, side-specific quantile regression yields prediction intervals with improved empirical coverage, which are further calibrated via SDS. For classification, when calibration data are available, we apply SPA-based calibration identities to adjust the softmax outputs and then compute predictive entropy on these calibrated probabilities. Extensive experiments on diverse regression and classification benchmarks demonstrate that our framework matches or exceeds several state-of-the-art UQ methods while incurring minimal overhead. Our source code is available at https://github.com/zzz0527/SPC-UQ.

Authors:Hugo Carlesso, Josiane Mothe, Radu Tudor Ionescu
Title: Curriculum Multi-Task Self-Supervision Improves Lightweight Architectures for Onboard Satellite Hyperspectral Image Segmentation
Abstract:
Hyperspectral imaging (HSI) captures detailed spectral signatures across hundreds of contiguous bands per pixel, being indispensable for remote sensing applications such as land-cover classification, change detection, and environmental monitoring. Due to the high dimensionality of HSI data and the slow rate of data transfer in satellite-based systems, compact and efficient models are required to support onboard processing and minimize the transmission of redundant or low-value data, e.g. cloud-covered areas. To this end, we introduce a novel curriculum multi-task self-supervised learning (CMTSSL) framework designed for lightweight architectures for HSI analysis. CMTSSL integrates masked image modeling with decoupled spatial and spectral jigsaw puzzle solving, guided by a curriculum learning strategy that progressively increases data complexity during self-supervision. This enables the encoder to jointly capture fine-grained spectral continuity, spatial structure, and global semantic features. Unlike prior dual-task SSL methods, CMTSSL simultaneously addresses spatial and spectral reasoning within a unified and computationally efficient design, being particularly suitable for training lightweight models for onboard satellite deployment. We validate our approach on four public benchmark datasets, demonstrating consistent gains in downstream segmentation tasks, using architectures that are over 16,000x lighter than some state-of-the-art models. These results highlight the potential of CMTSSL in generalizable representation learning with lightweight architectures for real-world HSI applications. Our code is publicly available at https://github.com/hugocarlesso/CMTSSL.

Authors:Jiahao Xu, Zikai Zhang, Rui Hu
Title: On the Out-of-Distribution Backdoor Attack for Federated Learning
Abstract:
Traditional backdoor attacks in federated learning (FL) operate within constrained attack scenarios, as they depend on visible triggers and require physical modifications to the target object, which limits their practicality. To address this limitation, we introduce a novel backdoor attack prototype for FL called the out-of-distribution (OOD) backdoor attack ($\mathtt{OBA}$), which uses OOD data as both poisoned samples and triggers simultaneously. Our approach significantly broadens the scope of backdoor attack scenarios in FL. To improve the stealthiness of $\mathtt{OBA}$, we propose $\mathtt{SoDa}$, which regularizes both the magnitude and direction of malicious local models during local training, aligning them closely with their benign versions to evade detection. Empirical results demonstrate that $\mathtt{OBA}$ effectively circumvents state-of-the-art defenses while maintaining high accuracy on the main task. To address this security vulnerability in the FL system, we introduce $\mathtt{BNGuard}$, a new server-side defense method tailored against $\mathtt{SoDa}$. $\mathtt{BNGuard}$ leverages the observation that OOD data causes significant deviations in the running statistics of batch normalization layers. This allows $\mathtt{BNGuard}$ to identify malicious model updates and exclude them from aggregation, thereby enhancing the backdoor robustness of FL. Extensive experiments across various settings show the effectiveness of $\mathtt{BNGuard}$ on defending against $\mathtt{SoDa}$. The code is available at https://github.com/JiiahaoXU/SoDa-BNGuard.

Authors:Salvatore Esposito, Matías Mattamala, Daniel Rebain, Francis Xiatian Zhang, Kevin Dhaliwal, Mohsen Khadem, Subramanian Ramamoorthy
Title: ROOM: A Physics-Based Continuum Robot Simulator for Photorealistic Medical Datasets Generation
Abstract:
Continuum robots are advancing bronchoscopy procedures by accessing complex lung airways and enabling targeted interventions. However, their development is limited by the lack of realistic training and test environments: Real data is difficult to collect due to ethical constraints and patient safety concerns, and developing autonomy algorithms requires realistic imaging and physical feedback. We present ROOM (Realistic Optical Observation in Medicine), a comprehensive simulation framework designed for generating photorealistic bronchoscopy training data. By leveraging patient CT scans, our pipeline renders multi-modal sensor data including RGB images with realistic noise and light specularities, metric depth maps, surface normals, optical flow and point clouds at medically relevant scales. We validate the data generated by ROOM in two canonical tasks for medical robotics -- multi-view pose estimation and monocular depth estimation, demonstrating diverse challenges that state-of-the-art methods must overcome to transfer to these medical settings. Furthermore, we show that the data produced by ROOM can be used to fine-tune existing depth estimation models to overcome these challenges, also enabling other downstream applications such as navigation. We expect that ROOM will enable large-scale data generation across diverse patient anatomies and procedural scenarios that are challenging to capture in clinical settings. Code and data: https://github.com/iamsalvatore/room.

Authors:Yingtai Li, Haoran Lai, Xiaoqian Zhou, Shuai Ming, Wenxin Ma, Wei Wei, Shaohua Kevin Zhou
Title: More performant and scalable: Rethinking contrastive vision-language pre-training of radiology in the LLM era
Abstract:
The emergence of Large Language Models (LLMs) presents unprecedented opportunities to revolutionize medical contrastive vision-language pre-training. In this paper, we show how LLMs can facilitate large-scale supervised pre-training, thereby advancing vision-language alignment. We begin by demonstrate that modern LLMs can automatically extract diagnostic labels from radiology reports with remarkable precision (>96\% AUC in our experiments) without complex prompt engineering, enabling the creation of large-scale "silver-standard" datasets at a minimal cost (~\$3 for 50k CT image-report pairs). Further, we find that vision encoder trained on this "silver-standard" dataset achieves performance comparable to those trained on labels extracted by specialized BERT-based models, thereby democratizing the access to large-scale supervised pre-training. Building on this foundation, we proceed to reveal that supervised pre-training fundamentally improves contrastive vision-language alignment. Our approach achieves state-of-the-art performance using only a 3D ResNet-18 with vanilla CLIP training, including 83.8\% AUC for zero-shot diagnosis on CT-RATE, 77.3\% AUC on RAD-ChestCT, and substantial improvements in cross-modal retrieval (MAP@50=53.7\% for image-image, Recall@100=52.2\% for report-image). These results demonstrate the potential of utilizing LLMs to facilitate {\bf more performant and scalable} medical AI systems. Our code is avaiable at https://github.com/SadVoxel/More-performant-and-scalable.

Authors:Ruifei Ding, Zhe Chen, Wen Fan, Chen Long, Huijuan Xiao, Yelu Zeng, Zhen Dong, Bisheng Yang
Title: WHU-STree: A Multi-modal Benchmark Dataset for Street Tree Inventory
Abstract:
Street trees are vital to urban livability, providing ecological and social benefits. Establishing a detailed, accurate, and dynamically updated street tree inventory has become essential for optimizing these multifunctional assets within space-constrained urban environments. Given that traditional field surveys are time-consuming and labor-intensive, automated surveys utilizing Mobile Mapping Systems (MMS) offer a more efficient solution. However, existing MMS-acquired tree datasets are limited by small-scale scene, limited annotation, or single modality, restricting their utility for comprehensive analysis. To address these limitations, we introduce WHU-STree, a cross-city, richly annotated, and multi-modal urban street tree dataset. Collected across two distinct cities, WHU-STree integrates synchronized point clouds and high-resolution images, encompassing 21,007 annotated tree instances across 50 species and 2 morphological parameters. Leveraging the unique characteristics, WHU-STree concurrently supports over 10 tasks related to street tree inventory. We benchmark representative baselines for two key tasks--tree species classification and individual tree segmentation. Extensive experiments and in-depth analysis demonstrate the significant potential of multi-modal data fusion and underscore cross-domain applicability as a critical prerequisite for practical algorithm deployment. In particular, we identify key challenges and outline potential future works for fully exploiting WHU-STree, encompassing multi-modal fusion, multi-task collaboration, cross-domain generalization, spatial pattern learning, and Multi-modal Large Language Model for street tree asset management. The WHU-STree dataset is accessible at: https://github.com/WHU-USI3DV/WHU-STree.

Authors:Zhihao Zhang, Chunyu Lin, Lang Nie, Jiyuan Wang, Yao Zhao
Title: Advancing Real-World Parking Slot Detection with Large-Scale Dataset and Semi-Supervised Baseline
Abstract:
As automatic parking systems evolve, the accurate detection of parking slots has become increasingly critical. This study focuses on parking slot detection using surround-view cameras, which offer a comprehensive bird's-eye view of the parking environment. However, the current datasets are limited in scale, and the scenes they contain are seldom disrupted by real-world noise (e.g., light, occlusion, etc.). Moreover, manual data annotation is prone to errors and omissions due to the complexity of real-world conditions, significantly increasing the cost of annotating large-scale datasets. To address these issues, we first construct a large-scale parking slot detection dataset (named CRPS-D), which includes various lighting distributions, diverse weather conditions, and challenging parking slot variants. Compared with existing datasets, the proposed dataset boasts the largest data scale and consists of a higher density of parking slots, particularly featuring more slanted parking slots. Additionally, we develop a semi-supervised baseline for parking slot detection, termed SS-PSD, to further improve performance by exploiting unlabeled data. To our knowledge, this is the first semi-supervised approach in parking slot detection, which is built on the teacher-student model with confidence-guided mask consistency and adaptive feature perturbation. Experimental results demonstrate the superiority of SS-PSD over the existing state-of-the-art (SoTA) solutions on both the proposed dataset and the existing dataset. Particularly, the more unlabeled data there is, the more significant the gains brought by our semi-supervised scheme. The relevant source codes and the dataset have been made publicly available at https://github.com/zzh362/CRPS-D.

Authors:Sijia Cui, Shuai Xu, Aiyao He, Yanna Wang, Bo Xu
Title: Empowering LLMs with Parameterized Skills for Adversarial Long-Horizon Planning
Abstract:
Recent advancements in Large Language Models(LLMs) have led to the development of LLM-based AI agents. A key challenge is the creation of agents that can effectively ground themselves in complex, adversarial long-horizon environments. Existing methods mainly focus on (1) using LLMs as policies to interact with the environment through generating low-level feasible actions, and (2) utilizing LLMs to generate high-level tasks or language guides to stimulate action generation. However, the former struggles to generate reliable actions, while the latter relies heavily on expert experience to translate high-level tasks into specific action sequences. To address these challenges, we introduce the Plan with Language, Act with Parameter (PLAP) planning framework that facilitates the grounding of LLM-based agents in long-horizon environments. The PLAP method comprises three key components: (1) a skill library containing environment-specific parameterized skills, (2) a skill planner powered by LLMs, and (3) a skill executor converting the parameterized skills into executable action sequences. We implement PLAP in MicroRTS, a long-horizon real-time strategy game that provides an unfamiliar and challenging environment for LLMs. The experimental results demonstrate the effectiveness of PLAP. In particular, GPT-4o-driven PLAP in a zero-shot setting outperforms 80% of baseline agents, and Qwen2-72B-driven PLAP, with carefully crafted few-shot examples, surpasses the top-tier scripted agent, CoacAI. Additionally, we design comprehensive evaluation metrics and test 6 closed-source and 2 open-source LLMs within the PLAP framework, ultimately releasing an LLM leaderboard ranking long-horizon skill planning ability. Our code is available at https://github.com/AI-Research-TeamX/PLAP.

Authors:Yujie Guo, Jiaming Zhou, Yuhang Jia, Shiwan Zhao, Yong Qin
Title: GLAD: Global-Local Aware Dynamic Mixture-of-Experts for Multi-Talker ASR
Abstract:
End-to-end multi-talker automatic speech recognition (MTASR) faces significant challenges in accurately transcribing overlapping speech, especially under high-overlap conditions. To address these challenges, we proposed Global-Local Aware Dynamic (GLAD) Mixture-of-Experts, which dynamically fuse speaker-aware global information and fine-grained local features to guide expert selection. This mechanism enables speaker-specific routing by leveraging both global context and local acoustic cues. Experiments on LibriSpeechMix show that GLAD outperforms existing MTASR approaches, particularly in challenging multi-talker scenarios. To our best knowledge, this is the first work to apply Mixture-of-Experts (MoE) to end-to-end MTASR with a global-local fusion strategy. Our code and train dataset can be found at https://github.com/NKU-HLT/GLAD.

Authors:Yan Xingyang, Huang Xiaohong, Zhang Zhao, You Tian, Xu Ziheng
Title: Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Abstract:
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc

Authors:Yukun Chen, Zhaoxi Mu, Andong Li, Peilin Li, Xinyu Yang
Title: Spiking Vocos: An Energy-Efficient Neural Vocoder
Abstract:
Despite the remarkable progress in the synthesis speed and fidelity of neural vocoders, their high energy consumption remains a critical barrier to practical deployment on computationally restricted edge devices. Spiking Neural Networks (SNNs), widely recognized for their high energy efficiency due to their event-driven nature, offer a promising solution for low-resource scenarios. In this paper, we propose Spiking Vocos, a novel spiking neural vocoder with ultra-low energy consumption, built upon the efficient Vocos framework. To mitigate the inherent information bottleneck in SNNs, we design a Spiking ConvNeXt module to reduce Multiply-Accumulate (MAC) operations and incorporate an amplitude shortcut path to preserve crucial signal dynamics. Furthermore, to bridge the performance gap with its Artificial Neural Network (ANN) counterpart, we introduce a self-architectural distillation strategy to effectively transfer knowledge. A lightweight Temporal Shift Module is also integrated to enhance the model's ability to fuse information across the temporal dimension with negligible computational overhead. Experiments demonstrate that our model achieves performance comparable to its ANN counterpart, with UTMOS and PESQ scores of 3.74 and 3.45 respectively, while consuming only 14.7% of the energy. The source code is available at https://github.com/pymaster17/Spiking-Vocos.

Authors:Eyal German, Daniel Samira, Yuval Elovici, Asaf Shabtai
Title: MIA-EPT: Membership Inference Attack via Error Prediction for Tabular Data
Abstract:
Synthetic data generation plays an important role in enabling data sharing, particularly in sensitive domains like healthcare and finance. Recent advances in diffusion models have made it possible to generate realistic, high-quality tabular data, but they may also memorize training records and leak sensitive information. Membership inference attacks (MIAs) exploit this vulnerability by determining whether a record was used in training. While MIAs have been studied in images and text, their use against tabular diffusion models remains underexplored despite the unique risks of structured attributes and limited record diversity. In this paper, we introduce MIAEPT, Membership Inference Attack via Error Prediction for Tabular Data, a novel black-box attack specifically designed to target tabular diffusion models. MIA-EPT constructs errorbased feature vectors by masking and reconstructing attributes of target records, disclosing membership signals based on how well these attributes are predicted. MIA-EPT operates without access to the internal components of the generative model, relying only on its synthetic data output, and was shown to generalize across multiple state-of-the-art diffusion models. We validate MIA-EPT on three diffusion-based synthesizers, achieving AUC-ROC scores of up to 0.599 and TPR@10% FPR values of 22.0% in our internal tests. Under the MIDST 2025 competition conditions, MIA-EPT achieved second place in the Black-box Multi-Table track (TPR@10% FPR = 20.0%). These results demonstrate that our method can uncover substantial membership leakage in synthetic tabular data, challenging the assumption that synthetic data is inherently privacy-preserving. Our code is publicly available at https://github.com/eyalgerman/MIA-EPT.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Sicong Li, Qingming Huang
Title: Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Abstract:
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.

Authors:Heng Zhang, Chengzhi Zhang
Title: Automated Generation of Research Workflows from Academic Papers: A Full-text Mining Framework
Abstract:
The automated generation of research workflows is essential for improving the reproducibility of research and accelerating the paradigm of "AI for Science". However, existing methods typically extract merely fragmented procedural components and thus fail to capture complete research workflows. To address this gap, we propose an end-to-end framework that generates comprehensive, structured research workflows by mining full-text academic papers. As a case study in the Natural Language Processing (NLP) domain, our paragraph-centric approach first employs Positive-Unlabeled (PU) Learning with SciBERT to identify workflow-descriptive paragraphs, achieving an F1-score of 0.9772. Subsequently, we utilize Flan-T5 with prompt learning to generate workflow phrases from these paragraphs, yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 0.4543, 0.2877, and 0.4427, respectively. These phrases are then systematically categorized into data preparation, data processing, and data analysis stages using ChatGPT with few-shot learning, achieving a classification precision of 0.958. By mapping categorized phrases to their document locations in the documents, we finally generate readable visual flowcharts of the entire research workflows. This approach facilitates the analysis of workflows derived from an NLP corpus and reveals key methodological shifts over the past two decades, including the increasing emphasis on data analysis and the transition from feature engineering to ablation studies. Our work offers a validated technical framework for automated workflow generation, along with a novel, process-oriented perspective for the empirical investigation of evolving scientific paradigms. Source code and data are available at: https://github.com/ZH-heng/research_workflow.

Authors:Hojat Ardi, Amir Jahanshahi, Ali Diba
Title: T-SiamTPN: Temporal Siamese Transformer Pyramid Networks for Robust and Efficient UAV Tracking
Abstract:
Aerial object tracking remains a challenging task due to scale variations, dynamic backgrounds, clutter, and frequent occlusions. While most existing trackers emphasize spatial cues, they often overlook temporal dependencies, resulting in limited robustness in long-term tracking and under occlusion. Furthermore, correlation-based Siamese trackers are inherently constrained by the linear nature of correlation operations, making them ineffective against complex, non-linear appearance changes. To address these limitations, we introduce T-SiamTPN, a temporal-aware Siamese tracking framework that extends the SiamTPN architecture with explicit temporal modeling. Our approach incorporates temporal feature fusion and attention-based interactions, strengthening temporal consistency and enabling richer feature representations. These enhancements yield significant improvements over the baseline and achieve performance competitive with state-of-the-art trackers. Crucially, despite the added temporal modules, T-SiamTPN preserves computational efficiency. Deployed on the resource-constrained Jetson Nano, the tracker runs in real time at 7.1 FPS, demonstrating its suitability for real-world embedded applications without notable runtime overhead. Experimental results highlight substantial gains: compared to the baseline, T-SiamTPN improves success rate by 13.7% and precision by 14.7%. These findings underscore the importance of temporal modeling in Siamese tracking frameworks and establish T-SiamTPN as a strong and efficient solution for aerial object tracking. Code is available at: https://github.com/to/be/released

Authors:Weiming Chen, Zhihan Zhu, Yijia Wang, Zhihai He
Title: Runge-Kutta Approximation and Decoupled Attention for Rectified Flow Inversion and Semantic Editing
Abstract:
Rectified flow (RF) models have recently demonstrated superior generative performance compared to DDIM-based diffusion models. However, in real-world applications, they suffer from two major challenges: (1) low inversion accuracy that hinders the consistency with the source image, and (2) entangled multimodal attention in diffusion transformers, which hinders precise attention control. To address the first challenge, we propose an efficient high-order inversion method for rectified flow models based on the Runge-Kutta solver of differential equations. To tackle the second challenge, we introduce Decoupled Diffusion Transformer Attention (DDTA), a novel mechanism that disentangles text and image attention inside the multimodal diffusion transformers, enabling more precise semantic control. Extensive experiments on image reconstruction and text-guided editing tasks demonstrate that our method achieves state-of-the-art performance in terms of fidelity and editability. Code is available at https://github.com/wmchen/RKSovler_DDTA.

Authors:Qifei Jia, Yu Liu, Yajie Chai, Xintong Yao, Qiming Lu, Yasen Zhang, Runyu Shi, Ying Huang, Guoquan Zhang
Title: Lego-Edit: A General Image Editing Framework with Model-Level Bricks and MLLM Builder
Abstract:
Instruction-based image editing has garnered significant attention due to its direct interaction with users. However, real-world user instructions are immensely diverse, and existing methods often fail to generalize effectively to instructions outside their training domain, limiting their practical application. To address this, we propose Lego-Edit, which leverages the generalization capability of Multi-modal Large Language Model (MLLM) to organize a suite of model-level editing tools to tackle this challenge. Lego-Edit incorporates two key designs: (1) a model-level toolkit comprising diverse models efficiently trained on limited data and several image manipulation functions, enabling fine-grained composition of editing actions by the MLLM; and (2) a three-stage progressive reinforcement learning approach that uses feedback on unannotated, open-domain instructions to train the MLLM, equipping it with generalized reasoning capabilities for handling real-world instructions. Experiments demonstrate that Lego-Edit achieves state-of-the-art performance on GEdit-Bench and ImgBench. It exhibits robust reasoning capabilities for open-domain instructions and can utilize newly introduced editing tools without additional fine-tuning. Code is available: https://github.com/xiaomi-research/lego-edit.

Authors:Yabo Zhang, Yihan Zeng, Qingyun Li, Zhen Hu, Kavin Han, Wangmeng Zuo
Title: Tool-R1: Sample-Efficient Reinforcement Learning for Agentic Tool Use
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.

Authors:Yidan Lu, Rurui Yang, Qiran Kou, Mengting Chen, Tao Fan, Peter Cui, Yinzhao Dong, Peng Lu
Title: Contrastive Representation Learning for Robust Sim-to-Real Transfer of Adaptive Humanoid Locomotion
Abstract:
Reinforcement learning has produced remarkable advances in humanoid locomotion, yet a fundamental dilemma persists for real-world deployment: policies must choose between the robustness of reactive proprioceptive control or the proactivity of complex, fragile perception-driven systems. This paper resolves this dilemma by introducing a paradigm that imbues a purely proprioceptive policy with proactive capabilities, achieving the foresight of perception without its deployment-time costs. Our core contribution is a contrastive learning framework that compels the actor's latent state to encode privileged environmental information from simulation. Crucially, this ``distilled awareness" empowers an adaptive gait clock, allowing the policy to proactively adjust its rhythm based on an inferred understanding of the terrain. This synergy resolves the classic trade-off between rigid, clocked gaits and unstable clock-free policies. We validate our approach with zero-shot sim-to-real transfer to a full-sized humanoid, demonstrating highly robust locomotion over challenging terrains, including 30 cm high steps and 26.5° slopes, proving the effectiveness of our method. Website: https://lu-yidan.github.io/cra-loco.

Authors:Moritz Heinlein, Florian Messerer, Moritz Diehl, Sergio Lucia
Title: Ellipsoidal partitions for improved multi-stage robust model predictive control
Abstract:
Ellipsoidal tube-based model predictive control methods effectively account for the propagation of the reachable set, typically employing linear feedback policies. In contrast, scenario-based approaches offer more flexibility in the feedback structure by considering different control actions for different branches of a scenario tree. However, they face challenges in ensuring rigorous guarantees. This work aims to integrate the strengths of both methodologies by enhancing ellipsoidal tube-based MPC with a scenario tree formulation. The uncertainty ellipsoids are partitioned by halfspaces such that each partitioned set can be controlled independently. The proposed ellipsoidal multi-stage approach is demonstrated in a human-robot system, highlighting its advantages in handling uncertainty while maintaining computational tractability.

Authors:Julien Walther, Rémi Giraud, Michaël Clément
Title: Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation
Abstract:
Superpixels are widely used in computer vision to simplify image representation and reduce computational complexity. While traditional methods rely on low-level features, deep learning-based approaches leverage high-level features but also tend to sacrifice regularity of superpixels to capture complex objects, leading to accurate but less interpretable segmentations. In this work, we introduce SPAM (SuperPixel Anything Model), a versatile framework for segmenting images into accurate yet regular superpixels. We train a model to extract image features for superpixel generation, and at inference, we leverage a large-scale pretrained model for semantic-agnostic segmentation to ensure that superpixels align with object masks. SPAM can handle any prior high-level segmentation, resolving uncertainty regions, and is able to interactively focus on specific objects. Comprehensive experiments demonstrate that SPAM qualitatively and quantitatively outperforms state-of-the-art methods on segmentation tasks, making it a valuable and robust tool for various applications. Code and pre-trained models are available here: https://github.com/waldo-j/spam.

Authors:Zhehao Li, Yucheng Qian, Chong Wang, Yinghao Lu, Zhihao Yang, Jiafei Wu
Title: Contextualized Representation Learning for Effective Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to simultaneously localize human-object pairs and recognize their interactions. While recent two-stage approaches have made significant progress, they still face challenges due to incomplete context modeling. In this work, we introduce a Contextualized Representation Learning that integrates both affordance-guided reasoning and contextual prompts with visual cues to better capture complex interactions. We enhance the conventional HOI detection framework by expanding it beyond simple human-object pairs to include multivariate relationships involving auxiliary entities like tools. Specifically, we explicitly model the functional role (affordance) of these auxiliary objects through triplet structures . This enables our model to identify tool-dependent interactions such as 'filling'. Furthermore, the learnable prompt is enriched with instance categories and subsequently integrated with contextual visual features using an attention mechanism. This process aligns language with image content at both global and regional levels. These contextualized representations equip the model with enriched relational cues for more reliable reasoning over complex, context-dependent interactions. Our proposed method demonstrates superior performance on both the HICO-Det and V-COCO datasets in most scenarios. The source code is available at https://github.com/lzzhhh1019/CRL.

Authors:Alexis Yihong Hao, Yufei Wang, Navin Sriram Ravie, Bharath Hegde, David Held, Zackory Erickson
Title: Force-Modulated Visual Policy for Robot-Assisted Dressing with Arm Motions
Abstract:
Robot-assisted dressing has the potential to significantly improve the lives of individuals with mobility impairments. To ensure an effective and comfortable dressing experience, the robot must be able to handle challenging deformable garments, apply appropriate forces, and adapt to limb movements throughout the dressing process. Prior work often makes simplifying assumptions -- such as static human limbs during dressing -- which limits real-world applicability. In this work, we develop a robot-assisted dressing system capable of handling partial observations with visual occlusions, as well as robustly adapting to arm motions during the dressing process. Given a policy trained in simulation with partial observations, we propose a method to fine-tune it in the real world using a small amount of data and multi-modal feedback from vision and force sensing, to further improve the policy's adaptability to arm motions and enhance safety. We evaluate our method in simulation with simplified articulated human meshes and in a real world human study with 12 participants across 264 dressing trials. Our policy successfully dresses two long-sleeve everyday garments onto the participants while being adaptive to various kinds of arm motions, and greatly outperforms prior baselines in terms of task completion and user feedback. Video are available at https://dressing-motion.github.io/.

Authors:Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, Shoubin Chen, David Filait
Title: NAMOUnc: Navigation Among Movable Obstacles with Decision Making on Uncertainty Interval
Abstract:
Navigation among movable obstacles (NAMO) is a critical task in robotics, often challenged by real-world uncertainties such as observation noise, model approximations, action failures, and partial observability. Existing solutions frequently assume ideal conditions, leading to suboptimal or risky decisions. This paper introduces NAMOUnc, a novel framework designed to address these uncertainties by integrating them into the decision-making process. We first estimate them and compare the corresponding time cost intervals for removing and bypassing obstacles, optimizing both the success rate and time efficiency, ensuring safer and more efficient navigation. We validate our method through extensive simulations and real-world experiments, demonstrating significant improvements over existing NAMO frameworks. More details can be found in our website: https://kai-zhang-er.github.io/namo-uncertainty/

Authors:Siju Ma, Changsiyu Gong, Xiaofeng Fan, Yong Ma, Chengjie Jiang
Title: RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation
Abstract:
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome. We observe that referring image segmentation (RIS) and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose RIS-FUSION, a cascaded framework that unifies fusion and RIS through joint optimization. At its core is the LangGatedFusion module, which injects textual features into the fusion backbone to enhance semantic alignment. To support multimodal referring image segmentation task, we introduce MM-RIS, a large-scale benchmark with 12.5k training and 3.5k testing triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression. Extensive experiments show that RIS-FUSION achieves state-of-the-art performance, outperforming existing methods by over 11% in mIoU. Code and dataset will be released at https://github.com/SijuMa2003/RIS-FUSION.

Authors:Pratik Nag
Title: Spatio-temporal DeepKriging in PyTorch: A Supplementary Application to Precipitation Data for Interpolation and Probabilistic Forecasting
Abstract:
A detailed analysis of precipitation data over Europe is presented, with a focus on interpolation and forecasting applications. A Spatio-temporal DeepKriging (STDK) framework has been implemented using the PyTorch platform to achieve these objectives. The proposed model is capable of handling spatio-temporal irregularities while generating high-resolution interpolations and multi-step forecasts. Reproducible code modules have been developed as standalone PyTorch implementations for the interpolation\footnote[2]{Interpolation - https://github.com/pratiknag/Spatio-temporalDeepKriging-Pytorch.git} and forecasting\footnote[3]{Forecasting - https://github.com/pratiknag/pytorch-convlstm.git}, facilitating broader application to similar climate datasets. The effectiveness of this approach is demonstrated through extensive evaluation on daily precipitation measurements, highlighting predictive performance and robustness.

Authors:Wenzhuo Jin, Qianfeng Yang, Xianhao Wu, Hongming Chen, Pengpeng Li, Xiang Chen
Title: SmokeBench: A Real-World Dataset for Surveillance Image Desmoking in Early-Stage Fire Scenes
Abstract:
Early-stage fire scenes (0-15 minutes after ignition) represent a crucial temporal window for emergency interventions. During this stage, the smoke produced by combustion significantly reduces the visibility of surveillance systems, severely impairing situational awareness and hindering effective emergency response and rescue operations. Consequently, there is an urgent need to remove smoke from images to obtain clear scene information. However, the development of smoke removal algorithms remains limited due to the lack of large-scale, real-world datasets comprising paired smoke-free and smoke-degraded images. To address these limitations, we present a real-world surveillance image desmoking benchmark dataset named SmokeBench, which contains image pairs captured under diverse scenes setup and smoke concentration. The curated dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of desmoking methods on our dataset. Our dataset provides a valuable foundation for advancing robust and practical image desmoking in real-world fire scenes. This dataset has been released to the public and can be downloaded from https://github.com/ncfjd/SmokeBench.

Authors:Xianda Guo, Chenming Zhang, Ruilin Wang, Youmin Zhang, Wenzhao Zheng, Matteo Poggi, Hao Zhao, Qin Zou, Long Chen
Title: StereoCarla: A High-Fidelity Driving Dataset for Generalizable Stereo
Abstract:
Stereo matching plays a crucial role in enabling depth perception for autonomous driving and robotics. While recent years have witnessed remarkable progress in stereo matching algorithms, largely driven by learning-based methods and synthetic datasets, the generalization performance of these models remains constrained by the limited diversity of existing training data. To address these challenges, we present StereoCarla, a high-fidelity synthetic stereo dataset specifically designed for autonomous driving scenarios. Built on the CARLA simulator, StereoCarla incorporates a wide range of camera configurations, including diverse baselines, viewpoints, and sensor placements as well as varied environmental conditions such as lighting changes, weather effects, and road geometries. We conduct comprehensive cross-domain experiments across four standard evaluation datasets (KITTI2012, KITTI2015, Middlebury, ETH3D) and demonstrate that models trained on StereoCarla outperform those trained on 11 existing stereo datasets in terms of generalization accuracy across multiple benchmarks. Furthermore, when integrated into multi-dataset training, StereoCarla contributes substantial improvements to generalization accuracy, highlighting its compatibility and scalability. This dataset provides a valuable benchmark for developing and evaluating stereo algorithms under realistic, diverse, and controllable settings, facilitating more robust depth perception systems for autonomous vehicles. Code can be available at https://github.com/XiandaGuo/OpenStereo, and data can be available at https://xiandaguo.net/StereoCarla.

Authors:Ziyun Liu, Chris Donahue
Title: Osu2MIR: Beat Tracking Dataset Derived From Osu! Data
Abstract:
In this work, we explore the use of Osu!, a community-based rhythm game, as an alternative source of beat and downbeat annotations. Osu! beatmaps are created and refined by a large, diverse community and span underrepresented genres such as anime, Vocaloid, and video game music. We introduce a pipeline for extracting annotations from Osu! beatmaps and partition them into meaningful subsets. Through manual analysis, we find that beatmaps with a single timing point or widely spaced multiple timing points (>=5 seconds apart) provide reliable annotations, while closely spaced timing points (<5 seconds apart) often require additional curation. We also observe high consistency across multiple annotations of the same song. This study demonstrates the potential of Osu! data as a scalable, diverse, and community-driven resource for MIR research. We release our pipeline and a high-quality subset osu2beat2025 to support further exploration: https://github.com/ziyunliu4444/osu2mir.

Authors:Jinjie Shen, Yaxiong Wang, Lechao Cheng, Nan Pu, Zhun Zhong
Title: Beyond Artificial Misalignment: Detecting and Grounding Semantic-Coordinated Multimodal Manipulations
Abstract:
The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.

Authors:Liming Lu, Shuchao Pang, Xu Zheng, Xiang Gu, Anan Du, Yunhuai Liu, Yongbin Zhou
Title: CIARD: Cyclic Iterative Adversarial Robustness Distillation
Abstract:
Adversarial robustness distillation (ARD) aims to transfer both performance and robustness from teacher model to lightweight student model, enabling resilient performance on resource-constrained scenarios. Though existing ARD approaches enhance student model's robustness, the inevitable by-product leads to the degraded performance on clean examples. We summarize the causes of this problem inherent in existing methods with dual-teacher framework as: 1. The divergent optimization objectives of dual-teacher models, i.e., the clean and robust teachers, impede effective knowledge transfer to the student model, and 2. The iteratively generated adversarial examples during training lead to performance deterioration of the robust teacher model. To address these challenges, we propose a novel Cyclic Iterative ARD (CIARD) method with two key innovations: a. A multi-teacher framework with contrastive push-loss alignment to resolve conflicts in dual-teacher optimization objectives, and b. Continuous adversarial retraining to maintain dynamic teacher robustness against performance degradation from the varying adversarial examples. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CIARD achieves remarkable performance with an average 3.53 improvement in adversarial defense rates across various attack scenarios and a 5.87 increase in clean sample accuracy, establishing a new benchmark for balancing model robustness and generalization. Our code is available at https://github.com/eminentgu/CIARD

Authors:Titong Jiang, Xuefeng Jiang, Yuan Ma, Xin Wen, Bailin Li, Kun Zhan, Peng Jia, Yahui Liu, Sheng Sun, Xianpeng Lang
Title: The Better You Learn, The Smarter You Prune: Towards Efficient Vision-language-action Models via Differentiable Token Pruning
Abstract:
We present LightVLA, a simple yet effective differentiable token pruning framework for vision-language-action (VLA) models. While VLA models have shown impressive capability in executing real-world robotic tasks, their deployment on resource-constrained platforms is often bottlenecked by the heavy attention-based computation over large sets of visual tokens. LightVLA addresses this challenge through adaptive, performance-driven pruning of visual tokens: It generates dynamic queries to evaluate visual token importance, and adopts Gumbel softmax to enable differentiable token selection. Through fine-tuning, LightVLA learns to preserve the most informative visual tokens while pruning tokens which do not contribute to task execution, thereby improving efficiency and performance simultaneously. Notably, LightVLA requires no heuristic magic numbers and introduces no additional trainable parameters, making it compatible with modern inference frameworks. Experimental results demonstrate that LightVLA outperforms different VLA models and existing token pruning methods across diverse tasks on the LIBERO benchmark, achieving higher success rates with substantially reduced computational overhead. Specifically, LightVLA reduces FLOPs and latency by 59.1% and 38.2% respectively, with a 2.6% improvement in task success rate. Meanwhile, we also investigate the learnable query-based token pruning method LightVLA* with additional trainable parameters, which also achieves satisfactory performance. Our work reveals that as VLA pursues optimal performance, LightVLA spontaneously learns to prune tokens from a performance-driven perspective. To the best of our knowledge, LightVLA is the first work to apply adaptive visual token pruning to VLA tasks with the collateral goals of efficiency and performance, marking a significant step toward more efficient, powerful and practical real-time robotic systems.

Authors:Xiang Xue, Yatu Ji, Qing-dao-er-ji Ren, Bao Shi, Min Lu, Nier Wu, Xufei Zhuang, Haiteng Xu, Gan-qi-qi-ge Cha
Title: iCD: A Implicit Clustering Distillation Mathod for Structural Information Mining
Abstract:
Logit Knowledge Distillation has gained substantial research interest in recent years due to its simplicity and lack of requirement for intermediate feature alignment; however, it suffers from limited interpretability in its decision-making process. To address this, we propose implicit Clustering Distillation (iCD): a simple and effective method that mines and transfers interpretable structural knowledge from logits, without requiring ground-truth labels or feature-space alignment. iCD leverages Gram matrices over decoupled local logit representations to enable student models to learn latent semantic structural patterns. Extensive experiments on benchmark datasets demonstrate the effectiveness of iCD across diverse teacher-student architectures, with particularly strong performance in fine-grained classification tasks -- achieving a peak improvement of +5.08% over the baseline. The code is available at: https://github.com/maomaochongaa/iCD.

Authors:Yifan Lan, Yuanpu Cao, Weitong Zhang, Lu Lin, Jinghui Chen
Title: Phi: Preference Hijacking in Multi-modal Large Language Models at Inference Time
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have gained significant attention across various domains. However, their widespread adoption has also raised serious safety concerns. In this paper, we uncover a new safety risk of MLLMs: the output preference of MLLMs can be arbitrarily manipulated by carefully optimized images. Such attacks often generate contextually relevant yet biased responses that are neither overtly harmful nor unethical, making them difficult to detect. Specifically, we introduce a novel method, Preference Hijacking (Phi), for manipulating the MLLM response preferences using a preference hijacked image. Our method works at inference time and requires no model modifications. Additionally, we introduce a universal hijacking perturbation -- a transferable component that can be embedded into different images to hijack MLLM responses toward any attacker-specified preferences. Experimental results across various tasks demonstrate the effectiveness of our approach. The code for Phi is accessible at https://github.com/Yifan-Lan/Phi.

Authors:Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu
Title: DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification
Abstract:
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.

Authors:Ryan Lucas, Kayhan Behdin, Zhipeng Wang, Qingquan Song, Shao Tang, Rahul Mazumder
Title: Reasoning Models Can be Accurately Pruned Via Chain-of-Thought Reconstruction
Abstract:
Reasoning language models such as DeepSeek-R1 produce long chain-of-thought traces during inference time which make them costly to deploy at scale. We show that using compression techniques such as neural network pruning produces greater performance loss than in typical language modeling tasks, and in some cases can make the model slower since they cause the model to produce more thinking tokens but with worse performance. We show that this is partly due to the fact that standard LLM pruning methods often focus on input reconstruction, whereas reasoning is a decode-dominated task. We introduce a simple, drop-in fix: during pruning we jointly reconstruct activations from the input and the model's on-policy chain-of-thought traces. This "Reasoning-Aware Compression" (RAC) integrates seamlessly into existing pruning workflows such as SparseGPT, and boosts their performance significantly. Code reproducing the results in the paper can be found at: https://github.com/RyanLucas3/RAC

Authors:Wonbin Kweon, SeongKu Kang, Runchu Tian, Pengcheng Jiang, Jiawei Han, Hwanjo Yu
Title: Topic Coverage-based Demonstration Retrieval for In-Context Learning
Abstract:
The effectiveness of in-context learning relies heavily on selecting demonstrations that provide all the necessary information for a given test input. To achieve this, it is crucial to identify and cover fine-grained knowledge requirements. However, prior methods often retrieve demonstrations based solely on embedding similarity or generation probability, resulting in irrelevant or redundant examples. In this paper, we propose TopicK, a topic coverage-based retrieval framework that selects demonstrations to comprehensively cover topic-level knowledge relevant to both the test input and the model. Specifically, TopicK estimates the topics required by the input and assesses the model's knowledge on those topics. TopicK then iteratively selects demonstrations that introduce previously uncovered required topics, in which the model exhibits low topical knowledge. We validate the effectiveness of TopicK through extensive experiments across various datasets and both open- and closed-source LLMs. Our source code is available at https://github.com/WonbinKweon/TopicK_EMNLP2025.

Authors:Rui-Feng Wang, Mingrui Xu, Matthew C Bauer, Iago Beffart Schardong, Xiaowen Ma, Kangning Cui
Title: Cott-ADNet: Lightweight Real-Time Cotton Boll and Flower Detection Under Field Conditions
Abstract:
Cotton is one of the most important natural fiber crops worldwide, yet harvesting remains limited by labor-intensive manual picking, low efficiency, and yield losses from missing the optimal harvest window. Accurate recognition of cotton bolls and their maturity is therefore essential for automation, yield estimation, and breeding research. We propose Cott-ADNet, a lightweight real-time detector tailored to cotton boll and flower recognition under complex field conditions. Building on YOLOv11n, Cott-ADNet enhances spatial representation and robustness through improved convolutional designs, while introducing two new modules: a NeLU-enhanced Global Attention Mechanism to better capture weak and low-contrast features, and a Dilated Receptive Field SPPF to expand receptive fields for more effective multi-scale context modeling at low computational cost. We curate a labeled dataset of 4,966 images, and release an external validation set of 1,216 field images to support future research. Experiments show that Cott-ADNet achieves 91.5% Precision, 89.8% Recall, 93.3% mAP50, 71.3% mAP, and 90.6% F1-Score with only 7.5 GFLOPs, maintaining stable performance under multi-scale and rotational variations. These results demonstrate Cott-ADNet as an accurate and efficient solution for in-field deployment, and thus provide a reliable basis for automated cotton harvesting and high-throughput phenotypic analysis. Code and dataset is available at https://github.com/SweefongWong/Cott-ADNet.

Authors:Yifan Zhang
Title: Exact Coset Sampling for Quantum Lattice Algorithms
Abstract:
We give a simple and provably correct replacement for the contested ``domain-extension'' in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~\citep{chen2024quantum}. As acknowledged by the author, the reported issue is due to a periodicity/support mismatch when applying domain extension to only the first coordinate in the presence of offsets. Our drop-in subroutine replaces domain extension by a pair-shift difference that cancels all unknown offsets exactly and synthesizes a uniform cyclic subgroup (a zero-offset coset) of order $P$ inside $(\mathbb{Z}_{M_2})^n$. A subsequent QFT enforces the intended modular linear relation by plain character orthogonality. The sole structural assumption is a residue-accessibility condition enabling coherent auxiliary cleanup; no amplitude periodicity is used. The unitary is reversible, uses $\mathrm{poly}(\log M_2)$ gates, and preserves upstream asymptotics.

Authors:Christian Zhou-Zheng, John Backsund, Dun Li Chan, Alex Coventry, Avid Eslami, Jyotin Goel, Xingwen Han, Danysh Soomro, Galen Wei
Title: A Traditional Approach to Symbolic Piano Continuation
Abstract:
We present a traditional approach to symbolic piano music continuation for the MIREX 2025 Symbolic Music Generation challenge. While computational music generation has recently focused on developing large foundation models with sophisticated architectural modifications, we argue that simpler approaches remain more effective for constrained, single-instrument tasks. We thus return to a simple, unaugmented next-token-prediction objective on tokenized raw MIDI, aiming to outperform large foundation models by using better data and better fundamentals. We release model weights and code at https://github.com/christianazinn/mirex2025.

Authors:Kenneth G. Young
Title: Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) for Diabetes Risk Prediction
Abstract:
The Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) is an innovative machine learning framework that harnesses quantum-inspired techniques to predict diabetes risk with exceptional accuracy and efficiency. Utilizing the PIMA Indians Diabetes dataset augmented with 2,000 synthetic samples to mitigate class imbalance (total: 2,768 samples, 1,949 positives), QISICGM integrates a self-improving concept graph with a stacked ensemble comprising Random Forests (RF), Extra Trees (ET), transformers, convolutional neural networks (CNNs), and feed-forward neural networks (FFNNs). This approach achieves an out-of-fold (OOF) F1 score of 0.8933 and an AUC of 0.8699, outperforming traditional methods. Quantum inspired elements, such as phase feature mapping and neighborhood sequence modeling, enrich feature representations, enabling CPU-efficient inference at 8.5 rows per second. This paper presents a detailed architecture, theoretical foundations, code insights, and performance evaluations, including visualizations from the outputs subfolder. The open-source implementation (v1.0.0) is available at https://github.com/keninayoung/QISICGM, positioning QISICGM as a potential benchmark for AI-assisted clinical triage in diabetes and beyond. Ultimately, this work emphasizes trustworthy AI through calibration, interpretability, and open-source reproducibility.

Authors:Hangzhan Jin, Sitao Luan, Sicheng Lyu, Guillaume Rabusseau, Reihaneh Rabbany, Doina Precup, Mohammad Hamdaqa
Title: RL Fine-Tuning Heals OOD Forgetting in SFT
Abstract:
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reasoning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT

Authors:Yang Zhou, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Haoyu Guo, Zizun Li, Kaijing Ma, Xinyue Li, Yating Wang, Haoyi Zhu, Mingyu Liu, Dingning Liu, Jiange Yang, Zhoujie Fu, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Kaipeng Zhang, Tong He
Title: OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
Abstract:
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.

Authors:Salma Galaaoui, Eduardo Valle, David Picard, Nermin Samet
Title: 3D Human Pose and Shape Estimation from LiDAR Point Clouds: A Review
Abstract:
In this paper, we present a comprehensive review of 3D human pose estimation and human mesh recovery from in-the-wild LiDAR point clouds. We compare existing approaches across several key dimensions, and propose a structured taxonomy to classify these methods. Following this taxonomy, we analyze each method's strengths, limitations, and design choices. In addition, (i) we perform a quantitative comparison of the three most widely used datasets, detailing their characteristics; (ii) we compile unified definitions of all evaluation metrics; and (iii) we establish benchmark tables for both tasks on these datasets to enable fair comparisons and promote progress in the field. We also outline open challenges and research directions critical for advancing LiDAR-based 3D human understanding. Moreover, we maintain an accompanying webpage that organizes papers according to our taxonomy and continuously update it with new studies: https://github.com/valeoai/3D-Human-Pose-Shape-Estimation-from-LiDAR

Authors:Felix B. Mueller, Timo Lueddecke, Richard Vogg, Alexander S. Ecker
Title: Domain-Adaptive Pretraining Improves Primate Behavior Recognition
Abstract:
Computer vision for animal behavior offers promising tools to aid research in ecology, cognition, and to support conservation efforts. Video camera traps allow for large-scale data collection, but high labeling costs remain a bottleneck to creating large-scale datasets. We thus need data-efficient learning approaches. In this work, we show that we can utilize self-supervised learning to considerably improve action recognition on primate behavior. On two datasets of great ape behavior (PanAf and ChimpACT), we outperform published state-of-the-art action recognition models by 6.1 %pt. accuracy and 6.3 %pt. mAP, respectively. We achieve this by utilizing a pretrained V-JEPA model and applying domain-adaptive pretraining (DAP), i.e. continuing the pretraining with in-domain data. We show that most of the performance gain stems from the DAP. Our method promises great potential for improving the recognition of animal behavior, as DAP does not require labeled samples. Code is available at https://github.com/ecker-lab/dap-behavior

Authors:Alireza Mohamadi, Ali Yavari
Title: Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
Abstract:
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM

Authors:Johanna Karras, Yingwei Li, Yasamin Jafarian, Ira Kemelmacher-Shlizerman
Title: HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Abstract:
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360° novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360° NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment

Authors:Jingyu Xiao, Zhongyi Zhang, Yuxuan Wan, Yintong Huo, Yang Liu, Michael R. Lyu
Title: EfficientUICoder: Efficient MLLM-based UI Code Generation via Input and Output Token Compression
Abstract:
Multimodal Large Language Models have demonstrated exceptional performance in UI2Code tasks, significantly enhancing website development efficiency. However, these tasks incur substantially higher computational overhead than traditional code generation due to the large number of input image tokens and extensive output code tokens required. Our comprehensive study identifies significant redundancies in both image and code tokens that exacerbate computational complexity and hinder focus on key UI elements, resulting in excessively lengthy and often invalid HTML files. We propose EfficientUICoder, a compression framework for efficient UI code generation with three key components. First, Element and Layout-aware Token Compression preserves essential UI information by detecting element regions and constructing UI element trees. Second, Region-aware Token Refinement leverages attention scores to discard low-attention tokens from selected regions while integrating high-attention tokens from unselected regions. Third, Adaptive Duplicate Token Suppression dynamically reduces repetitive generation by tracking HTML/CSS structure frequencies and applying exponential penalties. Extensive experiments show EfficientUICoderachieves a 55%-60% compression ratio without compromising webpage quality and delivers superior efficiency improvements: reducing computational cost by 44.9%, generated tokens by 41.4%, prefill time by 46.6%, and inference time by 48.8% on 34B-level MLLMs. Code is available at https://github.com/WebPAI/EfficientUICoder.

Authors:Tomer Bitan, Tal Kadosh, Erel Kaplan, Shira Meiri, Le Chen, Peter Morales, Niranjan Hasabnis, Gal Oren
Title: UniPar: A Unified LLM-Based Framework for Parallel and Accelerated Code Translation in HPC
Abstract:
Translating programs between various parallel programming languages is an important problem in the high-performance computing (HPC) community. Existing tools for this problem are either too narrow in scope and/or outdated. Recent explosive growth in the popularity of large language models (LLMs) and their ability to generate and translate code offers a potential alternative approach. Toward that end, we first need to systematically evaluate the ability of LLMs to translate between parallel languages. In this work, we introduce UniPar, a systematic evaluation framework for LLM-based parallel code translation. Specifically, in this work, we target translations between serial code, CUDA, and OpenMP. Our goal is to assess how well current instruction-tuned LLMs -- specifically GPT-4o-mini and LLaMA-3.3-70B-Instruct -- can be used out of the box or enhanced through known strategies. We evaluated four major usage modes: hyperparameter optimization for decoding, zero- and few-shot prompting, supervised fine-tuning, and iterative feedback through compiler-based repair. As a part of the evaluation, we construct a new dataset called PARATRANS, covering both serial-to-parallel translation and cross-paradigm transformations. Our findings reveal that while off-the-shelf models struggle under the default settings (e.g., GPT-4o-mini achieves only 46% compilation and 15% functional correctness), our UniPar methodology -- combining fine-tuning, hyperparameter tuning, and compiler-guided repair -- improves performance by up to 2X (69% compilation and 33% correctness). We believe that our findings will provide useful insights for researchers to further improve LLMs for the parallel language translation problem. UniPar source code and PARATRANS dataset are available at our GitHub repository https://github.com/Scientific-Computing-Lab/UniPar_AI.

Authors:Jiazhao Zhang, Anqi Li, Yunpeng Qi, Minghan Li, Jiahang Liu, Shaoan Wang, Haoran Liu, Gengze Zhou, Yuze Wu, Xingxing Li, Yuxin Fan, Wenjun Li, Zhibo Chen, Fei Gao, Qi Wu, Zhizheng Zhang, He Wang
Title: Embodied Navigation Foundation Model
Abstract:
Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical environments following language instructions. Despite significant progress in large Vision-Language Models (VLMs), which exhibit remarkable zero-shot performance on general vision-language tasks, their generalization ability in embodied navigation remains largely confined to narrow task settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. NavFoM employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons. To accommodate diverse camera setups and temporal horizons, NavFoM incorporates identifier tokens that embed camera view information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM controls all observation tokens using a dynamically adjusted sampling strategy under a limited token length budget. Extensive evaluations on public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across multiple navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm the strong generalization capability and practical applicability of our approach.

Authors:Ondřej Valach, Ivan Gruber
Title: RailSafeNet: Visual Scene Understanding for Tram Safety
Abstract:
Tram-human interaction safety is an important challenge, given that trams frequently operate in densely populated areas, where collisions can range from minor injuries to fatal outcomes. This paper addresses the issue from the perspective of designing a solution leveraging digital image processing, deep learning, and artificial intelligence to improve the safety of pedestrians, drivers, cyclists, pets, and tram passengers. We present RailSafeNet, a real-time framework that fuses semantic segmentation, object detection and a rule-based Distance Assessor to highlight track intrusions. Using only monocular video, the system identifies rails, localises nearby objects and classifies their risk by comparing projected distances with the standard 1435mm rail gauge. Experiments on the diverse RailSem19 dataset show that a class-filtered SegFormer B3 model achieves 65% intersection-over-union (IoU), while a fine-tuned YOLOv8 attains 75.6% mean average precision (mAP) calculated at an intersection over union (IoU) threshold of 0.50. RailSafeNet therefore delivers accurate, annotation-light scene understanding that can warn drivers before dangerous situations escalate. Code available at https://github.com/oValach/RailSafeNet.

Authors:Bernardo Forni, Gabriele Lombardi, Federico Pozzi, Mirco Planamente
Title: FS-SAM2: Adapting Segment Anything Model 2 for Few-Shot Semantic Segmentation via Low-Rank Adaptation
Abstract:
Few-shot semantic segmentation has recently attracted great attention. The goal is to develop a model capable of segmenting unseen classes using only a few annotated samples. Most existing approaches adapt a pre-trained model by training from scratch an additional module. Achieving optimal performance with these approaches requires extensive training on large-scale datasets. The Segment Anything Model 2 (SAM2) is a foundational model for zero-shot image and video segmentation with a modular design. In this paper, we propose a Few-Shot segmentation method based on SAM2 (FS-SAM2), where SAM2's video capabilities are directly repurposed for the few-shot task. Moreover, we apply a Low-Rank Adaptation (LoRA) to the original modules in order to handle the diverse images typically found in standard datasets, unlike the temporally connected frames used in SAM2's pre-training. With this approach, only a small number of parameters is meta-trained, which effectively adapts SAM2 while benefiting from its impressive segmentation performance. Our method supports any K-shot configuration. We evaluate FS-SAM2 on the PASCAL-5$^i$, COCO-20$^i$ and FSS-1000 datasets, achieving remarkable results and demonstrating excellent computational efficiency during inference. Code is available at https://github.com/fornib/FS-SAM2

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Abstract:
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Authors:Farahdiba Zarin, Nicolas Padoy, Jérémy Dana, Vinkle Srivastav
Title: End-to-End Learning of Multi-Organ Implicit Surfaces from 3D Medical Imaging Data
Abstract:
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe

Authors:Sebastian Diaz, Benjamin Billot, Neel Dey, Molin Zhang, Esra Abaci Turk, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
Title: Robust Fetal Pose Estimation across Gestational Ages via Cross-Population Augmentation
Abstract:
Fetal motion is a critical indicator of neurological development and intrauterine health, yet its quantification remains challenging, particularly at earlier gestational ages (GA). Current methods track fetal motion by predicting the location of annotated landmarks on 3D echo planar imaging (EPI) time-series, primarily in third-trimester fetuses. The predicted landmarks enable simplification of the fetal body for downstream analysis. While these methods perform well within their training age distribution, they consistently fail to generalize to early GAs due to significant anatomical changes in both mother and fetus across gestation, as well as the difficulty of obtaining annotated early GA EPI data. In this work, we develop a cross-population data augmentation framework that enables pose estimation models to robustly generalize to younger GA clinical cohorts using only annotated images from older GA cohorts. Specifically, we introduce a fetal-specific augmentation strategy that simulates the distinct intrauterine environment and fetal positioning of early GAs. Our experiments find that cross-population augmentation yields reduced variability and significant improvements across both older GA and challenging early GA cases. By enabling more reliable pose estimation across gestation, our work potentially facilitates early clinical detection and intervention in challenging 4D fetal imaging settings. Code is available at https://github.com/sebodiaz/cross-population-pose.

Authors:Bingyu Li, Haocheng Dong, Da Zhang, Zhiyuan Zhao, Junyu Gao, Xuelong Li
Title: Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Abstract:
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.

Authors:Zilong Zhang, Chujie Qin, Chunle Guo, Yong Zhang, Chao Xue, Ming-Ming Cheng, Chongyi Li
Title: RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
Abstract:
This work presents Robust Representation Learning via Adaptive Mask (RAM++), a two-stage framework for all-in-one image restoration. RAM++ integrates high-level semantic understanding with low-level texture generation to achieve content-oriented robust restoration. It addresses the limitations of existing degradation-oriented methods in extreme scenarios (e.g., degradations strongly coupled with image structures). RAM++ also mitigates common challenges such as unbalanced performance across tasks, overfitting to seen degradations, and weak generalization to unseen ones through three key designs: 1) Adaptive Semantic-Aware Mask (AdaSAM): a pretraining strategy that applies pixel-level masks to semantically rich and textured regions. This design enables the network to learn both generative priors and image content priors from various degradations. 2) Mask Attribute Conductance (MAC): a selective fine-tuning strategy that adjusts the layers with higher contributions to bridge the integrity gap between masked pretraining and full-image fine-tuning while retaining learned priors. 3) Robust Feature Regularization (RFR): a strategy that leverages DINOv2's semantically consistent and degradation-invariant representations, together with efficient feature fusion, to achieve faithful and semantically coherent restoration. With these designs, RAM++ achieves robust, well-balanced, and state-of-the-art performance across seen, unseen, extreme, and mixed degradations. Our code and model will be released at https://github.com/DragonisCV/RAM

Authors:Sangjun Lee, Seung-taek Woo, Jungyu Jin, Changhun Lee, Eunhyeok Park
Title: AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
Abstract:
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.

Authors:Junyoung Kim, Minsik Jeon, Jihong Min, Kiho Kwak, Junwon Seo
Title: E2-BKI: Evidential Ellipsoidal Bayesian Kernel Inference for Uncertainty-aware Gaussian Semantic Mapping
Abstract:
Semantic mapping aims to construct a 3D semantic representation of the environment, providing essential knowledge for robots operating in complex outdoor settings. While Bayesian Kernel Inference (BKI) addresses discontinuities of map inference from sparse sensor data, existing semantic mapping methods suffer from various sources of uncertainties in challenging outdoor environments. To address these issues, we propose an uncertainty-aware semantic mapping framework that handles multiple sources of uncertainties, which significantly degrade mapping performance. Our method estimates uncertainties in semantic predictions using Evidential Deep Learning and incorporates them into BKI for robust semantic inference. It further aggregates noisy observations into coherent Gaussian representations to mitigate the impact of unreliable points, while employing geometry-aligned kernels that adapt to complex scene structures. These Gaussian primitives effectively fuse local geometric and semantic information, enabling robust, uncertainty-aware mapping in complex outdoor scenarios. Comprehensive evaluation across diverse off-road and urban outdoor environments demonstrates consistent improvements in mapping quality, uncertainty calibration, representational flexibility, and robustness, while maintaining real-time efficiency.

Authors:Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
Title: TabStruct: Measuring Structural Fidelity of Tabular Data
Abstract:
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, $\textbf{global utility}$, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present $\textbf{TabStruct}$, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.

Authors:Alexandre Sallinen, Stefan Krsteski, Paul Teiletche, Marc-Antoine Allard, Baptiste Lecoeur, Michael Zhang, Fabrice Nemo, David Kalajdzic, Matthias Meyer, Mary-Anne Hartley
Title: MMORE: Massive Multimodal Open RAG & Extraction
Abstract:
We introduce MMORE, an open-source pipeline for Massive Multimodal Open RetrievalAugmented Generation and Extraction, designed to ingest, transform, and retrieve knowledge from heterogeneous document formats at scale. MMORE supports more than fifteen file types, including text, tables, images, emails, audio, and video, and processes them into a unified format to enable downstream applications for LLMs. The architecture offers modular, distributed processing, enabling scalable parallelization across CPUs and GPUs. On processing benchmarks, MMORE demonstrates a 3.8-fold speedup over single-node baselines and 40% higher accuracy than Docling on scanned PDFs. The pipeline integrates hybrid dense-sparse retrieval and supports both interactive APIs and batch RAG endpoints. Evaluated on PubMedQA, MMORE-augmented medical LLMs improve biomedical QA accuracy with increasing retrieval depth. MMORE provides a robust, extensible foundation for deploying task-agnostic RAG systems on diverse, real-world multimodal data. The codebase is available at https://github.com/swiss-ai/mmore.

Authors:Marian Renz, Felix Igelbrink, Martin Atzmueller
Title: Integrating Prior Observations for Incremental 3D Scene Graph Prediction
Abstract:
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.

Authors:Zhenni Yu, Li Zhao, Guobao Xiao, Xiaoqin Zhang
Title: SAM-TTT: Segment Anything Model via Reverse Parameter Configuration and Test-Time Training for Camouflaged Object Detection
Abstract:
This paper introduces a new Segment Anything Model (SAM) that leverages reverse parameter configuration and test-time training to enhance its performance on Camouflaged Object Detection (COD), named SAM-TTT. While most existing SAM-based COD models primarily focus on enhancing SAM by extracting favorable features and amplifying its advantageous parameters, a crucial gap is identified: insufficient attention to adverse parameters that impair SAM's semantic understanding in downstream tasks. To tackle this issue, the Reverse SAM Parameter Configuration Module is proposed to effectively mitigate the influence of adverse parameters in a train-free manner by configuring SAM's parameters. Building on this foundation, the T-Visioner Module is unveiled to strengthen advantageous parameters by integrating Test-Time Training layers, originally developed for language tasks, into vision tasks. Test-Time Training layers represent a new class of sequence modeling layers characterized by linear complexity and an expressive hidden state. By integrating two modules, SAM-TTT simultaneously suppresses adverse parameters while reinforcing advantageous ones, significantly improving SAM's semantic understanding in COD task. Our experimental results on various COD benchmarks demonstrate that the proposed approach achieves state-of-the-art performance, setting a new benchmark in the field. The code will be available at https://github.com/guobaoxiao/SAM-TTT.

Authors:Meng Luo, Shengqiong Wu, Liqiang Jing, Tianjie Ju, Li Zheng, Jinxiang Lai, Tianlong Wu, Xinya Du, Jian Li, Siyuan Yan, Jiebo Luo, William Yang Wang, Hao Fei, Mong-Li Lee, Wynne Hsu
Title: Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding
Abstract:
Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V.

Authors:Jiacheng Liu, Pengxiang Ding, Qihang Zhou, Yuxuan Wu, Da Huang, Zimian Peng, Wei Xiao, Weinan Zhang, Lixin Yang, Cewu Lu, Donglin Wang
Title: TrajBooster: Boosting Humanoid Whole-Body Manipulation via Trajectory-Centric Learning
Abstract:
Recent Vision-Language-Action models show potential to generalize across embodiments but struggle to quickly align with a new robot's action space when high-quality demonstrations are scarce, especially for bipedal humanoids. We present TrajBooster, a cross-embodiment framework that leverages abundant wheeled-humanoid data to boost bipedal VLA. Our key idea is to use end-effector trajectories as a morphology-agnostic interface. TrajBooster (i) extracts 6D dual-arm end-effector trajectories from real-world wheeled humanoids, (ii) retargets them in simulation to Unitree G1 with a whole-body controller trained via a heuristic-enhanced harmonized online DAgger to lift low-dimensional trajectory references into feasible high-dimensional whole-body actions, and (iii) forms heterogeneous triplets that couple source vision/language with target humanoid-compatible actions to post-pre-train a VLA, followed by only 10 minutes of teleoperation data collection on the target humanoid domain. Deployed on Unitree G1, our policy achieves beyond-tabletop household tasks, enabling squatting, cross-height manipulation, and coordinated whole-body motion with markedly improved robustness and generalization. Results show that TrajBooster allows existing wheeled-humanoid data to efficiently strengthen bipedal humanoid VLA performance, reducing reliance on costly same-embodiment data while enhancing action space understanding and zero-shot skill transfer capabilities. For more details, For more details, please refer to our \href{https://jiachengliu3.github.io/TrajBooster/}.

Authors:Taichi Aida, Danushka Bollegala
Title: SCDTour: Embedding Axis Ordering and Merging for Interpretable Semantic Change Detection
Abstract:
In Semantic Change Detection (SCD), it is a common problem to obtain embeddings that are both interpretable and high-performing. However, improving interpretability often leads to a loss in the SCD performance, and vice versa. To address this problem, we propose SCDTour, a method that orders and merges interpretable axes to alleviate the performance degradation of SCD. SCDTour considers both (a) semantic similarity between axes in the embedding space, as well as (b) the degree to which each axis contributes to semantic change. Experimental results show that SCDTour preserves performance in semantic change detection while maintaining high interpretability. Moreover, agglomerating the sorted axes produces a more refined set of word senses, which achieves comparable or improved performance against the original full-dimensional embeddings in the SCD task. These findings demonstrate that SCDTour effectively balances interpretability and SCD performance, enabling meaningful interpretation of semantic shifts through a small number of refined axes. Source code is available at https://github.com/LivNLP/svp-tour .

Authors:Liying Wang, Xiaoli Zhang, Chuanmin Jia, Siwei Ma
Title: MAFS: Masked Autoencoder for Infrared-Visible Image Fusion and Semantic Segmentation
Abstract:
Infrared-visible image fusion methods aim at generating fused images with good visual quality and also facilitate the performance of high-level tasks. Indeed, existing semantic-driven methods have considered semantic information injection for downstream applications. However, none of them investigates the potential for reciprocal promotion between pixel-wise image fusion and cross-modal feature fusion perception tasks from a macroscopic task-level perspective. To address this limitation, we propose a unified network for image fusion and semantic segmentation. MAFS is a parallel structure, containing a fusion sub-network and a segmentation sub-network. On the one hand, We devise a heterogeneous feature fusion strategy to enhance semantic-aware capabilities for image fusion. On the other hand, by cascading the fusion sub-network and a segmentation backbone, segmentation-related knowledge is transferred to promote feature-level fusion-based segmentation. Within the framework, we design a novel multi-stage Transformer decoder to aggregate fine-grained multi-scale fused features efficiently. Additionally, a dynamic factor based on the max-min fairness allocation principle is introduced to generate adaptive weights of two tasks and guarantee smooth training in a multi-task manner. Extensive experiments demonstrate that our approach achieves competitive results compared with state-of-the-art methods. The code is available at https://github.com/Abraham-Einstein/MAFS/.

Authors:Haiduo Huang, Fuwei Yang, Zhenhua Liu, Xuanwu Yin, Dong Li, Pengju Ren, Emad Barsoum
Title: SpecVLM: Fast Speculative Decoding in Vision-Language Models
Abstract:
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.

Authors:Mehwish Mehmood, Shahzaib Iqbal, Tariq Mahmood Khan, Ivor Spence, Muhammad Fahim
Title: LFRA-Net: A Lightweight Focal and Region-Aware Attention Network for Retinal Vessel Segmentatio
Abstract:
Retinal vessel segmentation is critical for the early diagnosis of vision-threatening and systemic diseases, especially in real-world clinical settings with limited computational resources. Although significant improvements have been made in deep learning-based segmentation methods, current models still face challenges in extracting tiny vessels and suffer from high computational costs. In this study, we present LFRA-Net by incorporating focal modulation attention at the encoder-decoder bottleneck and region-aware attention in the selective skip connections. LFRA-Net is a lightweight network optimized for precise and effective retinal vascular segmentation. It enhances feature representation and regional focus by efficiently capturing local and global dependencies. LFRA-Net outperformed many state-of-the-art models while maintaining lightweight characteristics with only 0.17 million parameters, 0.66 MB memory size, and 10.50 GFLOPs. We validated it on three publicly available datasets: DRIVE, STARE, and CHASE\_DB. It performed better in terms of Dice score (84.28\%, 88.44\%, and 85.50\%) and Jaccard index (72.86\%, 79.31\%, and 74.70\%) on the DRIVE, STARE, and CHASE\_DB datasets, respectively. LFRA-Net provides an ideal ratio between segmentation accuracy and computational cost compared to existing deep learning methods, which makes it suitable for real-time clinical applications in areas with limited resources. The code can be found at https://github.com/Mehwish4593/LFRA-Net.

Authors:Eden Mama, Liel Sheri, Yehudit Aperstein, Alexander Apartsin
Title: From Fuzzy Speech to Medical Insight: Benchmarking LLMs on Noisy Patient Narratives
Abstract:
The widespread adoption of large language models (LLMs) in healthcare raises critical questions about their ability to interpret patient-generated narratives, which are often informal, ambiguous, and noisy. Existing benchmarks typically rely on clean, structured clinical text, offering limited insight into model performance under realistic conditions. In this work, we present a novel synthetic dataset designed to simulate patient self-descriptions characterized by varying levels of linguistic noise, fuzzy language, and layperson terminology. Our dataset comprises clinically consistent scenarios annotated with ground-truth diagnoses, spanning a spectrum of communication clarity to reflect diverse real-world reporting styles. Using this benchmark, we fine-tune and evaluate several state-of-the-art models (LLMs), including BERT-based and encoder-decoder T5 models. To support reproducibility and future research, we release the Noisy Diagnostic Benchmark (NDB), a structured dataset of noisy, synthetic patient descriptions designed to stress-test and compare the diagnostic capabilities of large language models (LLMs) under realistic linguistic conditions. We made the benchmark available for the community: https://github.com/lielsheri/PatientSignal

Authors:Dvora Goncharok, Arbel Shifman, Alexander Apartsin, Yehudit Aperstein
Title: When Curiosity Signals Danger: Predicting Health Crises Through Online Medication Inquiries
Abstract:
Online medical forums are a rich and underutilized source of insight into patient concerns, especially regarding medication use. Some of the many questions users pose may signal confusion, misuse, or even the early warning signs of a developing health crisis. Detecting these critical questions that may precede severe adverse events or life-threatening complications is vital for timely intervention and improving patient safety. This study introduces a novel annotated dataset of medication-related questions extracted from online forums. Each entry is manually labelled for criticality based on clinical risk factors. We benchmark the performance of six traditional machine learning classifiers using TF-IDF textual representations, alongside three state-of-the-art large language model (LLM)-based classification approaches that leverage deep contextual understanding. Our results highlight the potential of classical and modern methods to support real-time triage and alert systems in digital health spaces. The curated dataset is made publicly available to encourage further research at the intersection of patient-generated data, natural language processing, and early warning systems for critical health events. The dataset and benchmark are available at: https://github.com/Dvora-coder/LLM-Medication-QA-Risk-Classifier-MediGuard.

Authors:Diogo Mendonça, Tiago Barros, Cristiano Premebida, Urbano J. Nunes
Title: Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization
Abstract:
Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

Authors:Lauri Seppäläinen, Jakub Kubečka, Jonas Elm, Kai Puolamäki
Title: Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
Abstract:
Understanding how atmospheric molecular clusters form and grow is key to resolving one of the biggest uncertainties in climate modelling: the formation of new aerosol particles. While quantum chemistry offers accurate insights into these early-stage clusters, its steep computational costs limit large-scale exploration. In this work, we present a fast, interpretable, and surprisingly powerful alternative: $k$-nearest neighbour ($k$-NN) regression model. By leveraging chemically informed distance metrics, including a kernel-induced metric and one learned via metric learning for kernel regression (MLKR), we show that simple $k$-NN models can rival more complex kernel ridge regression (KRR) models in accuracy, while reducing computational time by orders of magnitude. We perform this comparison with the well-established Faber-Christensen-Huang-Lilienfeld (FCHL19) molecular descriptor, but other descriptors (e.g., FCHL18, MBDF, and CM) can be shown to have similar performance. Applied to both simple organic molecules in the QM9 benchmark set and large datasets of atmospheric molecular clusters (sulphuric acid-water and sulphuric-multibase -base systems), our $k$-NN models achieve near-chemical accuracy, scale seamlessly to datasets with over 250,000 entries, and even appears to extrapolate to larger unseen clusters with minimal error (often nearing 1 kcal/mol). With built-in interpretability and straightforward uncertainty estimation, this work positions $k$-NN as a potent tool for accelerating discovery in atmospheric chemistry and beyond.

Authors:Wa-Kin Lei, Jun-Cheng Chen, Shang-Tse Chen
Title: DRAG: Data Reconstruction Attack using Guided Diffusion
Abstract:
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.

Authors:Yuqian Wu, Yuhong Peng, Jiapeng Yu, Xiangyu Liu, Zeting Yan, Kang Lin, Weifeng Su, Bingqing Qu, Raymond Lee, Dingqi Yang
Title: Beyond Regularity: Modeling Chaotic Mobility Patterns for Next Location Prediction
Abstract:
Next location prediction is a key task in human mobility analysis, crucial for applications like smart city resource allocation and personalized navigation services. However, existing methods face two significant challenges: first, they fail to address the dynamic imbalance between periodic and chaotic mobile patterns, leading to inadequate adaptation over sparse trajectories; second, they underutilize contextual cues, such as temporal regularities in arrival times, which persist even in chaotic patterns and offer stronger predictability than spatial forecasts due to reduced search spaces. To tackle these challenges, we propose \textbf{\method}, a \underline{\textbf{C}}h\underline{\textbf{A}}otic \underline{\textbf{N}}eural \underline{\textbf{O}}scillator n\underline{\textbf{E}}twork for next location prediction, which introduces a biologically inspired Chaotic Neural Oscillatory Attention mechanism to inject adaptive variability into traditional attention, enabling balanced representation of evolving mobility behaviors, and employs a Tri-Pair Interaction Encoder along with a Cross Context Attentive Decoder to fuse multimodal ``who-when-where'' contexts in a joint framework for enhanced prediction performance. Extensive experiments on two real-world datasets demonstrate that CANOE consistently and significantly outperforms a sizeable collection of state-of-the-art baselines, yielding 3.17\%-13.11\% improvement over the best-performing baselines across different cases. In particular, CANOE can make robust predictions over mobility trajectories of different mobility chaotic levels. A series of ablation studies also supports our key design choices. Our code is available at: https://github.com/yuqian2003/CANOE.

Authors:Chuang Liu, Nan Guo
Title: Joint-octamamba:an octa joint segmentation network based on feature enhanced mamba
Abstract:
OCTA is a crucial non-invasive imaging technique for diagnosing and monitoring retinal diseases like diabetic retinopathy, age-related macular degeneration, and glaucoma. Current 2D-based methods for retinal vessel (RV) segmentation offer insufficient accuracy. To address this, we propose RVMamba, a novel architecture integrating multiple feature extraction modules with the Mamba state-space model. Moreover, existing joint segmentation models for OCTA data exhibit performance imbalance between different tasks. To simultaneously improve the segmentation of the foveal avascular zone (FAZ) and mitigate this imbalance, we introduce FAZMamba and a unified Joint-OCTAMamba framework. Experimental results on the OCTA-500 dataset demonstrate that Joint-OCTAMamba outperforms existing models across evaluation metrics.The code is available at https://github.com/lc-sfis/Joint-OCTAMamba.

Authors:Qiyuan Guan, Qianfeng Yang, Xiang Chen, Tianyu Song, Guiyue Jin, Jiyu Jin
Title: WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration
Abstract:
Existing all-in-one image restoration approaches, which aim to handle multiple weather degradations within a single framework, are predominantly trained and evaluated using mixed single-weather synthetic datasets. However, these datasets often differ significantly in resolution, style, and domain characteristics, leading to substantial domain gaps that hinder the development and fair evaluation of unified models. Furthermore, the lack of a large-scale, real-world all-in-one weather restoration dataset remains a critical bottleneck in advancing this field. To address these limitations, we present a real-world all-in-one adverse weather image restoration benchmark dataset, which contains image pairs captured under various weather conditions, including rain, snow, and haze, as well as diverse outdoor scenes and illumination settings. The resulting dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of task-specific, task-general, and all-in-one restoration methods on our dataset. Our dataset offers a valuable foundation for advancing robust and practical all-in-one image restoration in real-world scenarios. The dataset has been publicly released and is available at https://github.com/guanqiyuan/WeatherBench.

Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Title: SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}

Authors:Qi Zheng, Chaoran Zhang, Zijian Liang, EnTe Lin, Shubo Cui, Qinghongbing Xie, Zhaobo Xu, Long Zeng
Title: AssemMate: Graph-Based LLM for Robotic Assembly Assistance
Abstract:
Large Language Model (LLM)-based robotic assembly assistance has gained significant research attention. It requires the injection of domain-specific knowledge to guide the assembly process through natural language interaction with humans. Despite some progress, existing methods represent knowledge in the form of natural language text. Due to the long context and redundant content, they struggle to meet the robots' requirements for real-time and precise reasoning. In order to bridge this gap, we present AssemMate, which utilizes the graph\textemdash a concise and accurate form of knowledge representation\textemdash as input. This graph-based LLM enables knowledge graph question answering (KGQA), supporting human-robot interaction and assembly task planning for specific products. Beyond interactive QA, AssemMate also supports sensing stacked scenes and executing grasping to assist with assembly. Specifically, a self-supervised Graph Convolutional Network (GCN) encodes knowledge graph entities and relations into a latent space and aligns them with LLM's representation, enabling the LLM to understand graph information. In addition, a vision-enhanced strategy is employed to address stacked scenes in grasping. Through training and evaluation, AssemMate outperforms existing methods, achieving 6.4\% higher accuracy, 3 times faster inference, and 28 times shorter context length, while demonstrating strong generalization ability on random graphs. And our approach further demonstrates superiority through robotic grasping experiments in both simulated and real-world settings. More details can be found on the project page: https://github.com/cristina304/AssemMate.git

Authors:Yanyun Pu, Kehan Li, Zeyi Huang, Zhijie Zhong, Kaixiang Yang
Title: MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
Abstract:
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K

Authors:Haonan Shi, Yubin Wang, De Cheng, Lingfeng He, Nannan Wang, Xinbo Gao
Title: Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.

Authors:Ching Chang, Yidan Shi, Defu Cao, Wei Yang, Jeehyun Hwang, Haixin Wang, Jiacheng Pang, Wei Wang, Yan Liu, Wen-Chih Peng, Tien-Fu Chen
Title: A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Abstract:
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.

Authors:Sampoorna Poria, Xiaolei Huang
Title: Bhaasha, Bhasa, Zaban: A Survey for Low-Resourced Languages in South Asia -- Current Stage and Challenges
Abstract:
Rapid developments of large language models have revolutionized many NLP tasks for English data. Unfortunately, the models and their evaluations for low-resource languages are being overlooked, especially for languages in South Asia. Although there are more than 650 languages in South Asia, many of them either have very limited computational resources or are missing from existing language models. Thus, a concrete question to be answered is: Can we assess the current stage and challenges to inform our NLP community and facilitate model developments for South Asian languages? In this survey, we have comprehensively examined current efforts and challenges of NLP models for South Asian languages by retrieving studies since 2020, with a focus on transformer-based models, such as BERT, T5, & GPT. We present advances and gaps across 3 essential aspects: data, models, & tasks, such as available data sources, fine-tuning strategies, & domain applications. Our findings highlight substantial issues, including missing data in critical domains (e.g., health), code-mixing, and lack of standardized evaluation benchmarks. Our survey aims to raise awareness within the NLP community for more targeted data curation, unify benchmarks tailored to cultural and linguistic nuances of South Asia, and encourage an equitable representation of South Asian languages. The complete list of resources is available at: https://github.com/trust-nlp/LM4SouthAsia-Survey.

Authors:Zhengxi Lu, Jiabo Ye, Fei Tang, Yongliang Shen, Haiyang Xu, Ziwei Zheng, Weiming Lu, Ming Yan, Fei Huang, Jun Xiao, Yueting Zhuang
Title: UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Abstract:
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.

Authors:Dezhen Wang, Haixiang Zhao, Xiang Shen, Sheng Miao
Title: SFGNet: Semantic and Frequency Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) aims to segment objects that blend into their surroundings. However, most existing studies overlook the semantic differences among textual prompts of different targets as well as fine-grained frequency features. In this work, we propose a novel Semantic and Frequency Guided Network (SFGNet), which incorporates semantic prompts and frequency-domain features to capture camouflaged objects and improve boundary perception. We further design Multi-Band Fourier Module(MBFM) to enhance the ability of the network in handling complex backgrounds and blurred boundaries. In addition, we design an Interactive Structure Enhancement Block (ISEB) to ensure structural integrity and boundary details in the predictions. Extensive experiments conducted on three COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches. The core code of the model is available at the following link: https://github.com/winter794444/SFGNetICASSP2026.

Authors:Wenhao Tang, Sheng Huang, Heng Fang, Fengtao Zhou, Bo Liu, Qingshan Liu
Title: Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis
Abstract:
Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Know What You Don't Know: Selective Prediction for Early Exit DNNs
Abstract:
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED

Authors:Rodrigo M. Carrillo-Larco, Jesus Lovón Melgarejo, Manuel Castillo-Cara, Gusseppe Bravo-Rocca
Title: PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
Abstract:
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.

Authors:Takahiro Hattori, Kento Kawaharazuka, Kei Okada
Title: Design and Development of a Remotely Wire-Driven Walking Robot
Abstract:
Operating in environments too harsh or inaccessible for humans is one of the critical roles expected of robots. However, such environments often pose risks to electronic components as well. To overcome this, various approaches have been developed, including autonomous mobile robots without electronics, hydraulic remotely actuated mobile robots, and long-reach robot arms driven by wires. Among these, electronics-free autonomous robots cannot make complex decisions, while hydraulically actuated mobile robots and wire-driven robot arms are used in harsh environments such as nuclear power plants. Mobile robots offer greater reach and obstacle avoidance than robot arms, and wire mechanisms offer broader environmental applicability than hydraulics. However, wire-driven systems have not been used for remote actuation of mobile robots. In this study, we propose a novel mechanism called Remote Wire Drive that enables remote actuation of mobile robots via wires. This mechanism is a series connection of decoupled joints, a mechanism used in wire-driven robot arms, adapted for power transmission. We experimentally validated its feasibility by actuating a wire-driven quadruped robot, which we also developed in this study, through Remote Wire Drive.

Authors:Fabrycio Leite Nakano Almada, Kauan Divino Pouso Mariano, Maykon Adriell Dutra, Victor Emanuel da Silva Monteiro, Juliana Resplande Sant'Anna Gomes, Arlindo Rodrigues Galvão Filho, Anderson da Silva Soares
Title: AKCIT-FN at CheckThat! 2025: Switching Fine-Tuned SLMs and LLM Prompting for Multilingual Claim Normalization
Abstract:
Claim normalization, the transformation of informal social media posts into concise, self-contained statements, is a crucial step in automated fact-checking pipelines. This paper details our submission to the CLEF-2025 CheckThat! Task~2, which challenges systems to perform claim normalization across twenty languages, divided into thirteen supervised (high-resource) and seven zero-shot (no training data) tracks. Our approach, leveraging fine-tuned Small Language Models (SLMs) for supervised languages and Large Language Model (LLM) prompting for zero-shot scenarios, achieved podium positions (top three) in fifteen of the twenty languages. Notably, this included second-place rankings in eight languages, five of which were among the seven designated zero-shot languages, underscoring the effectiveness of our LLM-based zero-shot strategy. For Portuguese, our initial development language, our system achieved an average METEOR score of 0.5290, ranking third. All implementation artifacts, including inference, training, evaluation scripts, and prompt configurations, are publicly available at https://github.com/ju-resplande/checkthat2025_normalization.

Authors:Ayhan Can Erdur, Christian Beischl, Daniel Scholz, Jiazhen Pan, Benedikt Wiestler, Daniel Rueckert, Jan C Peeken
Title: MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder
Abstract:
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.

Authors:Jeanny Pan, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Jennifer Straub, Lucian Beer, Helmut Prosch, Georg Langs
Title: Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery
Abstract:
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.

Authors:Md Mubtasim Ahasan, Rafat Hasan Khan, Tasnim Mohiuddin, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Amin Ahsan Ali, Md Mofijul Islam, A K M Mahbubur Rahman
Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Abstract:
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.

Authors:Yijia Xiao, Edward Sun, Tong Chen, Fang Wu, Di Luo, Wei Wang
Title: Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Abstract:
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.

Authors:Jian Song, Wei Mei, Yunfeng Xu, Qiang Fu, Renke Kou, Lina Bu, Yucheng Long
Title: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
Abstract:
Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).

Authors:Ziling Liu, Ziwei Chen, Mingqi Gao, Jinyu Yang, Feng Zheng
Title: Leveraging Geometric Priors for Unaligned Scene Change Detection
Abstract:
Unaligned Scene Change Detection aims to detect scene changes between image pairs captured at different times without assuming viewpoint alignment. To handle viewpoint variations, current methods rely solely on 2D visual cues to establish cross-image correspondence to assist change detection. However, large viewpoint changes can alter visual observations, causing appearance-based matching to drift or fail. Additionally, supervision limited to 2D change masks from small-scale SCD datasets restricts the learning of generalizable multi-view knowledge, making it difficult to reliably identify visual overlaps and handle occlusions. This lack of explicit geometric reasoning represents a critical yet overlooked limitation. In this work, we introduce geometric priors for the first time to address the core challenges of unaligned SCD, for reliable identification of visual overlaps, robust correspondence establishment, and explicit occlusion detection. Building on these priors, we propose a training-free framework that integrates them with the powerful representations of a visual foundation model to enable reliable change detection under viewpoint misalignment. Through extensive evaluation on the PSCD, ChangeSim, and PASLCD datasets, we demonstrate that our approach achieves superior and robust performance. Our code will be released at https://github.com/ZilingLiu/GeoSCD.

Authors:Yifan Lu, Ziqi Zhang, Chunfeng Yuan, Jun Gao, Congxuan Zhang, Xiaojuan Qi, Bing Li, Weiming Hu
Title: Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Abstract:
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.

Authors:Kerun Mi, Guoliang Kang, Guangyu Li, Lin Zhao, Tao Zhou, Chen Gong
Title: Cross-Domain Attribute Alignment with CLIP: A Rehearsal-Free Approach for Class-Incremental Unsupervised Domain Adaptation
Abstract:
Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where the sets of potential target classes appearing at different time steps are disjoint and are subsets of the source classes. The key to solving this problem lies in avoiding catastrophic forgetting of knowledge about previous target classes during continuously mitigating the domain shift. Most previous works cumbersomely combine two technical components. On one hand, they need to store and utilize rehearsal target sample from previous time steps to avoid catastrophic forgetting; on the other hand, they perform alignment only between classes shared across domains at each time step. Consequently, the memory will continuously increase and the asymmetric alignment may inevitably result in knowledge forgetting. In this paper, we propose to mine and preserve domain-invariant and class-agnostic knowledge to facilitate the CI-UDA task. Specifically, via using CLIP, we extract the class-agnostic properties which we name as "attribute". In our framework, we learn a "key-value" pair to represent an attribute, where the key corresponds to the visual prototype and the value is the textual prompt. We maintain two attribute dictionaries, each corresponding to a different domain. Then we perform attribute alignment across domains to mitigate the domain shift, via encouraging visual attention consistency and prediction consistency. Through attribute modeling and cross-domain alignment, we effectively reduce catastrophic knowledge forgetting while mitigating the domain shift, in a rehearsal-free way. Experiments on three CI-UDA benchmarks demonstrate that our method outperforms previous state-of-the-art methods and effectively alleviates catastrophic forgetting. Code is available at https://github.com/RyunMi/VisTA.

Authors:Chengze li, Yitong Zhang, Jia Li, Liyi Cai, Ge Li
Title: Beyond Autoregression: An Empirical Study of Diffusion Large Language Models for Code Generation
Abstract:
LLMs have become the mainstream approaches to code generation. Existing LLMs mainly employ autoregressive generation, i.e. generating code token-by-token from left to right. However, the underlying autoregressive generation has two limitations in code generation. First, autoregressive LLMs only generate a token at each step, showing low efficiency in practice. Second, programming is a non-sequential process involving back-and-forth editing, while autoregressive LLMs only employ the left-to-right generation order. These two intrinsic limitations hinder the further development of LLMs in code generation. Recently, diffusion LLMs have emerged as a promising alternative. Diffusion LLMs address the above limitations with two advances, including multi-token prediction (i.e. generating multiple tokens at each step) and flexible generation order (i.e. flexibly determining which positions to generate tokens). However, there is no systematic study exploring diffusion LLMs in code generation. To bridge the knowledge gap, we present the first empirical study of diffusion LLMs for code generation. Our study involves 9 representative diffusion LLMs and conduct experiments on 4 widely used benchmarks. Based on the results, we summarize the following findings. (1) Existing diffusion LLMs are competitive with autoregressive LLMs with similar sizes. (2) Diffusion LLMs have a stronger length extrapolation ability than autoregressive LLMs and perform better in long code understanding. (3) We explore factors impacting the effectiveness and efficiency of diffusion LLMs, and provide practical guidance. (4) We discuss several promising further directions to improve diffusion LLMs on code generation. We open-source all source code, data, and results to facilitate the following research. The code is publicly available at https://github.com/zhangyitonggg/dllm4code.

Authors:Yitong Zhang, Ximo Li, Liyi Cai, Jia Li
Title: Realistic Environmental Injection Attacks on GUI Agents
Abstract:
GUI agents built on LVLMs are increasingly used to interact with websites. However, their exposure to open-world content makes them vulnerable to Environmental Injection Attacks (EIAs) that hijack agent behavior via webpage elements. Many recent studies assume the attacker to be a regular user who can only upload a single trigger image, which is more realistic than earlier assumptions of website-level administrative control. However, these works still fall short of realism: (1) the trigger's position and surrounding context remain largely fixed between training and testing, failing to capture the dynamic nature of real webpages and (2) the trigger often occupies an unrealistically large area, whereas real-world images are typically small. To better reflect real-world scenarios, we introduce a more realistic threat model where the attacker is a regular user and the trigger image is small and embedded within a dynamically changing environment. As a result, existing attacks prove largely ineffective under this threat model. To better expose the vulnerabilities of GUI agents, we propose Chameleon, an attack framework with two main novelties. The first is LLM-Driven Environment Simulation, which automatically generates diverse and high-fidelity webpage simulations. The second is Attention Black Hole, which transforms attention weights into explicit supervisory signals that guide the agent's focus toward the trigger region. We evaluate Chameleon on 6 realistic websites and 4 representative LVLM-powered GUI agents, where it significantly outperforms existing methods. Ablation studies confirm that both novelties are critical to performance. Our findings reveal underexplored vulnerabilities in modern GUI agents and establish a robust foundation for future research on defense in open-world GUI agent systems. The code is publicly available at https://github.com/zhangyitonggg/attack2gui.

Authors:Yechen Zhang, Bin Gao, Gang Wang, Jian Sun, Zhuo Li
Title: CORB-Planner: Corridor as Observations for RL Planning in High-Speed Flight
Abstract:
Reinforcement learning (RL) has shown promise in a large number of robotic control tasks. Nevertheless, its deployment on unmanned aerial vehicles (UAVs) remains challenging, mainly because of reliance on accurate dynamic models and platform-specific sensing, which hinders cross-platform transfer. This paper presents the CORB-Planner (Corridor-as-Observations for RL B-spline planner), a real-time, RL-based trajectory planning framework for high-speed autonomous UAV flight across heterogeneous platforms. The key idea is to combine B-spline trajectory generation with the RL policy producing successive control points with a compact safe flight corridor (SFC) representation obtained via heuristic search. The SFC abstracts obstacle information in a low-dimensional form, mitigating overfitting to platform-specific details and reducing sensitivity to model inaccuracies. To narrow the sim-to-real gap, we adopt an easy-to-hard progressive training pipeline in simulation. A value-based soft decomposed-critic Q (SDCQ) algorithm is used to learn effective policies within approximately ten minutes of training. Benchmarks in simulation and real-world tests demonstrate real-time planning on lightweight onboard hardware and support maximum flight speeds up to 8.2m/s in dense, cluttered environments without external positioning. Compatibility with various UAV configurations (quadrotors, hexarotors) and modest onboard compute underlines the generality and robustness of CORB-Planner for practical deployment.

Authors:Gao Yu Lee, Tanmoy Dam, Md Meftahul Ferdaus, Daniel Puiu Poenar, Vu N. Duong
Title: ANROT-HELANet: Adverserially and Naturally Robust Attention-Based Aggregation Network via The Hellinger Distance for Few-Shot Classification
Abstract:
Few-Shot Learning (FSL), which involves learning to generalize using only a few data samples, has demonstrated promising and superior performances to ordinary CNN methods. While Bayesian based estimation approaches using Kullback-Leibler (KL) divergence have shown improvements, they remain vulnerable to adversarial attacks and natural noises. We introduce ANROT-HELANet, an Adversarially and Naturally RObusT Hellinger Aggregation Network that significantly advances the state-of-the-art in FSL robustness and performance. Our approach implements an adversarially and naturally robust Hellinger distance-based feature class aggregation scheme, demonstrating resilience to adversarial perturbations up to $ε=0.30$ and Gaussian noise up to $σ=0.30$. The network achieves substantial improvements across benchmark datasets, including gains of 1.20\% and 1.40\% for 1-shot and 5-shot scenarios on miniImageNet respectively. We introduce a novel Hellinger Similarity contrastive loss function that generalizes cosine similarity contrastive loss for variational few-shot inference scenarios. Our approach also achieves superior image reconstruction quality with a FID score of 2.75, outperforming traditional VAE (3.43) and WAE (3.38) approaches. Extensive experiments conducted on four few-shot benchmarked datasets verify that ANROT-HELANet's combination of Hellinger distance-based feature aggregation, attention mechanisms, and our novel loss function establishes new state-of-the-art performance while maintaining robustness against both adversarial and natural perturbations. Our code repository will be available at https://github.com/GreedYLearner1146/ANROT-HELANet/tree/main.

Authors:Yihang She, Andrew Blake, David Coomes, Srinivasan Keshav
Title: Scaling Up Forest Vision with Synthetic Data
Abstract:
Accurate tree segmentation is a key step in extracting individual tree metrics from forest laser scans, and is essential to understanding ecosystem functions in carbon cycling and beyond. Over the past decade, tree segmentation algorithms have advanced rapidly due to developments in AI. However existing, public, 3D forest datasets are not large enough to build robust tree segmentation systems. Motivated by the success of synthetic data in other domains such as self-driving, we investigate whether similar approaches can help with tree segmentation. In place of expensive field data collection and annotation, we use synthetic data during pretraining, and then require only minimal, real forest plot annotation for fine-tuning. We have developed a new synthetic data generation pipeline to do this for forest vision tasks, integrating advances in game-engines with physics-based LiDAR simulation. As a result, we have produced a comprehensive, diverse, annotated 3D forest dataset on an unprecedented scale. Extensive experiments with a state-of-the-art tree segmentation algorithm and a popular real dataset show that our synthetic data can substantially reduce the need for labelled real data. After fine-tuning on just a single, real, forest plot of less than 0.1 hectare, the pretrained model achieves segmentations that are competitive with a model trained on the full scale real data. We have also identified critical factors for successful use of synthetic data: physics, diversity, and scale, paving the way for more robust 3D forest vision systems in the future. Our data generation pipeline and the resulting dataset are available at https://github.com/yihshe/CAMP3D.git.

Authors:Chengde Lin, Xuezhu Gong, Shuxue Ding, Mingzhe Yang, Xijun Lu, Chengjun Mo
Title: StegOT: Trade-offs in Steganography via Optimal Transport
Abstract:
Image hiding is often referred to as steganography, which aims to hide a secret image in a cover image of the same resolution. Many steganography models are based on genera-tive adversarial networks (GANs) and variational autoencoders (VAEs). However, most existing models suffer from mode collapse. Mode collapse will lead to an information imbalance between the cover and secret images in the stego image and further affect the subsequent extraction. To address these challenges, this paper proposes StegOT, an autoencoder-based steganography model incorporating optimal transport theory. We designed the multiple channel optimal transport (MCOT) module to transform the feature distribution, which exhibits multiple peaks, into a single peak to achieve the trade-off of information. Experiments demonstrate that we not only achieve a trade-off between the cover and secret images but also enhance the quality of both the stego and recovery images. The source code will be released on https://github.com/Rss1124/StegOT.

Authors:Zhiwen Yang, Yuxin Peng
Title: SPHERE: Semantic-PHysical Engaged REpresentation for 3D Semantic Scene Completion
Abstract:
Camera-based 3D Semantic Scene Completion (SSC) is a critical task in autonomous driving systems, assessing voxel-level geometry and semantics for holistic scene perception. While existing voxel-based and plane-based SSC methods have achieved considerable progress, they struggle to capture physical regularities for realistic geometric details. On the other hand, neural reconstruction methods like NeRF and 3DGS demonstrate superior physical awareness, but suffer from high computational cost and slow convergence when handling large-scale, complex autonomous driving scenes, leading to inferior semantic accuracy. To address these issues, we propose the Semantic-PHysical Engaged REpresentation (SPHERE) for camera-based SSC, which integrates voxel and Gaussian representations for joint exploitation of semantic and physical information. First, the Semantic-guided Gaussian Initialization (SGI) module leverages dual-branch 3D scene representations to locate focal voxels as anchors to guide efficient Gaussian initialization. Then, the Physical-aware Harmonics Enhancement (PHE) module incorporates semantic spherical harmonics to model physical-aware contextual details and promote semantic-geometry consistency through focal distribution alignment, generating SSC results with realistic details. Extensive experiments and analyses on the popular SemanticKITTI and SSCBench-KITTI-360 benchmarks validate the effectiveness of SPHERE. The code is available at https://github.com/PKU-ICST-MIPL/SPHERE_ACMMM2025.

Authors:Pouria Mahdavinia, Hamed Mahdavi, Niloofar Mireshghallah, Mehrdad Mahdavi
Title: Harnessing Optimization Dynamics for Curvature-Informed Model Merging
Abstract:
Model merging is an effective post-training strategy for composing capabilities in large language models without joint retraining. We study this in the supervised fine-tuning (SFT) stage, where multiple capability-based SFT checkpoints -- spanning math, code, precise instruction following, general instruction following, and knowledge recall -- must be consolidated into a single model. We introduce Optimization Trajectory Aware (OTA) Merging, a curvature-aware aggregation that leverages optimizer second-moment statistics as a diagonal curvature proxy to reweight parameter edits and mitigate interference. Complementing OTA, we propose Fast Fisher Grafting (FFG), a curvature-driven task-localization step that sparsifies conflicting or low-importance edits. FFG induces extremely low-rank masks concentrated in early attention query/key projections and token embeddings, exploiting shared curvature across capabilities. We further develop a memory-light compression of the second moments that preserves OTA's effect. Across diverse capability-based SFT checkpoints, OTA+FFG improves merged-model quality over strong weight-space baselines, reduces negative transfer, and remains robust across sparsity levels. Analyses reveal substantial curvature overlap between checkpoints, offering a novel lens on why simple linear merging can be effective in practice. Ablations confirm that FFG is critical for reducing task interference and that the compressed second moments retain the gains of the full formulation. To facilitate reproducibility, we open-source all code, training and evaluation scripts, visualization artifacts, and capability-specific SFT checkpoints at https://github.com/pmahdavi/ota-merge.

Authors:Youquan Xian, Xueying Zeng, Mei Huang, Aoxiang Zhou, Xiaoyu Cui, Peng Liu, Lei Cui
Title: UDFS: Lightweight Representation-Driven Robust Network Traffic Classification
Abstract:
In recent years, sequence features such as packet length have received considerable attention due to their central role in encrypted traffic analysis. Existing sequence modeling approaches can be broadly categorized into flow-level and trace-level methods: the former suffer from high feature redundancy, limiting their discriminative power, whereas the latter preserve complete information but incur substantial computational and storage overhead. To address these limitations, we propose the \textbf{U}p-\textbf{D}own \textbf{F}low \textbf{S}equence (\textbf{UDFS}) representation, which compresses an entire trace into a two-dimensional sequence and characterizes each flow by the aggregate of its upstream and downstream traffic, reducing complexity while maintaining high discriminability. Furthermore, to address the challenge of class-specific discriminability differences, we propose an adaptive threshold mechanism that dynamically adjusts training weights and rejection boundaries, enhancing the model's classification performance. Experimental results demonstrate that the proposed method achieves superior classification performance and robustness on both coarse-grained and fine-grained datasets, as well as under concept drift and open-world scenarios. Code and Dataset are available at https://github.com/kid1999/UDFS.

Authors:Mintae Kim, Jiaze Cai, Koushil Sreenath
Title: RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Abstract:
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.

Authors:Jing Xiao, Chang You, Zhiyu Chen
Title: AlignKT: Explicitly Modeling Knowledge State for Knowledge Tracing with Ideal State Alignment
Abstract:
Knowledge Tracing (KT) serves as a fundamental component of Intelligent Tutoring Systems (ITS), enabling these systems to monitor and understand learners' progress by modeling their knowledge state. However, many existing KT models primarily focus on fitting the sequences of learners' interactions, and often overlook the knowledge state itself. This limitation leads to reduced interpretability and insufficient instructional support from the ITS. To address this challenge, we propose AlignKT, which employs a frontend-to-backend architecture to explicitly model a stable knowledge state. In this approach, the preliminary knowledge state is aligned with an additional criterion. Specifically, we define an ideal knowledge state based on pedagogical theories as the alignment criterion, providing a foundation for interpretability. We utilize five encoders to implement this set-up, and incorporate a contrastive learning module to enhance the robustness of the alignment process. Through extensive experiments, AlignKT demonstrates superior performance, outperforming seven KT baselines on three real-world datasets. It achieves state-of-the-art results on two of these datasets and exhibits competitive performance on the third. The code of this work is available at https://github.com/SCNU203/AlignKT.

Authors:Zheng Li, Pei Qu, Yufei Jia, Shihui Zhou, Haizhou Ge, Jiahang Cao, Jinni Zhou, Guyue Zhou, Jun Ma
Title: ManiVID-3D: Generalizable View-Invariant Reinforcement Learning for Robotic Manipulation via Disentangled 3D Representations
Abstract:
Deploying visual reinforcement learning (RL) policies in real-world manipulation is often hindered by camera viewpoint changes. A policy trained from a fixed front-facing camera may fail when the camera is shifted--an unavoidable situation in real-world settings where sensor placement is hard to manage appropriately. Existing methods often rely on precise camera calibration or struggle with large perspective changes. To address these limitations, we propose ManiVID-3D, a novel 3D RL architecture designed for robotic manipulation, which learns view-invariant representations through self-supervised disentangled feature learning. The framework incorporates ViewNet, a lightweight yet effective module that automatically aligns point cloud observations from arbitrary viewpoints into a unified spatial coordinate system without the need for extrinsic calibration. Additionally, we develop an efficient GPU-accelerated batch rendering module capable of processing over 5000 frames per second, enabling large-scale training for 3D visual RL at unprecedented speeds. Extensive evaluation across 10 simulated and 5 real-world tasks demonstrates that our approach achieves a 44.7% higher success rate than state-of-the-art methods under viewpoint variations while using 80% fewer parameters. The system's robustness to severe perspective changes and strong sim-to-real performance highlight the effectiveness of learning geometrically consistent representations for scalable robotic manipulation in unstructured environments. Our project website can be found in https://zheng-joe-lee.github.io/manivid3d/.

Authors:Yuqiu Liu, Jialin Song, Manolis Savva, Wuyang Chen
Title: WildSmoke: Ready-to-Use Dynamic 3D Smoke Assets from a Single Video in the Wild
Abstract:
We propose a pipeline to extract and reconstruct dynamic 3D smoke assets from a single in-the-wild video, and further integrate interactive simulation for smoke design and editing. Recent developments in 3D vision have significantly improved reconstructing and rendering fluid dynamics, supporting realistic and temporally consistent view synthesis. However, current fluid reconstructions rely heavily on carefully controlled clean lab environments, whereas real-world videos captured in the wild are largely underexplored. We pinpoint three key challenges of reconstructing smoke in real-world videos and design targeted techniques, including smoke extraction with background removal, initialization of smoke particles and camera poses, and inferring multi-view videos. Our method not only outperforms previous reconstruction and generation methods with high-quality smoke reconstructions (+2.22 average PSNR on wild videos), but also enables diverse and realistic editing of fluid dynamics by simulating our smoke assets. We provide our models, data, and 4D smoke assets at [https://autumnyq.github.io/WildSmoke](https://autumnyq.github.io/WildSmoke).

Authors:Zhi Chen, Le Zhang
Title: UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Abstract:
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet

Authors:Binhao Wang, Yutian Xiao, Maolin Wang, Zhiqi Li, Tianshuo Wei, Ruocheng Guo, Xiangyu Zhao
Title: SPARK: Adaptive Low-Rank Knowledge Graph Modeling in Hybrid Geometric Spaces for Recommendation
Abstract:
Knowledge Graphs (KGs) enhance recommender systems but face challenges from inherent noise, sparsity, and Euclidean geometry's inadequacy for complex relational structures, critically impairing representation learning, especially for long-tail entities. Existing methods also often lack adaptive multi-source signal fusion tailored to item popularity. This paper introduces SPARK, a novel multi-stage framework systematically tackling these issues. SPARK first employs Tucker low-rank decomposition to denoise KGs and generate robust entity representations. Subsequently, an SVD-initialized hybrid geometric GNN concurrently learns representations in Euclidean and Hyperbolic spaces; the latter is strategically leveraged for its aptitude in modeling hierarchical structures, effectively capturing semantic features of sparse, long-tail items. A core contribution is an item popularity-aware adaptive fusion strategy that dynamically weights signals from collaborative filtering, refined KG embeddings, and diverse geometric spaces for precise modeling of both mainstream and long-tail items. Finally, contrastive learning aligns these multi-source representations. Extensive experiments demonstrate SPARK's significant superiority over state-of-the-art methods, particularly in improving long-tail item recommendation, offering a robust, principled approach to knowledge-enhanced recommendation. Implementation code is available at https://github.com/Applied-Machine-Learning-Lab/SPARK.

Authors:Chao Chen, Shunyu Yao, Yuanwu He, Tao Feng, Ruojing Song, Yuliang Guo, Xinyu Huang, Chenxu Wu, Ren Liu, Chen Feng
Title: End-to-End Visual Autonomous Parking via Control-Aided Attention
Abstract:
Precise parking requires an end-to-end system where perception adaptively provides policy-relevant details-especially in critical areas where fine control decisions are essential. End-to-end learning offers a unified framework by directly mapping sensor inputs to control actions, but existing approaches lack effective synergy between perception and control. We find that transformer-based self-attention, when used alone, tends to produce unstable and temporally inconsistent spatial attention, which undermines the reliability of downstream policy decisions over time. Instead, we propose CAA-Policy, an end-to-end imitation learning system that allows control signal to guide the learning of visual attention via a novel Control-Aided Attention (CAA) mechanism. For the first time, we train such an attention module in a self-supervised manner, using backpropagated gradients from the control outputs instead of from the training loss. This strategy encourages the attention to focus on visual features that induce high variance in action outputs, rather than merely minimizing the training loss-a shift we demonstrate leads to a more robust and generalizable policy. To further enhance stability, CAA-Policy integrates short-horizon waypoint prediction as an auxiliary task, and introduces a separately trained motion prediction module to robustly track the target spot over time. Extensive experiments in the CARLA simulator show that \titlevariable~consistently surpasses both the end-to-end learning baseline and the modular BEV segmentation + hybrid A* pipeline, achieving superior accuracy, robustness, and interpretability. Code is released at https://github.com/Joechencc/CAAPolicy.

Authors:Xiaoyu Huang, Lauren M Maxson, Trang Nguyen, Cheng Jack Song, Yuankai Huo
Title: Organoid Tracker: A SAM2-Powered Platform for Zero-shot Cyst Analysis in Human Kidney Organoid Videos
Abstract:
Recent advances in organoid models have revolutionized the study of human kidney disease mechanisms and drug discovery by enabling scalable, cost-effective research without the need for animal sacrifice. Here, we present a kidney organoid platform optimized for efficient screening in polycystic kidney disease (PKD). While these systems generate rich spatial-temporal microscopy video datasets, current manual approaches to analysis remain limited to coarse classifications (e.g., hit vs. non-hit), often missing valuable pixel-level and longitudinal information. To help overcome this bottleneck, we developed Organoid Tracker, a graphical user interface (GUI) platform designed with a modular plugin architecture, which empowers researchers to extract detailed, quantitative metrics without programming expertise. Built on the cutting-edge vision foundation model Segment Anything Model 2 (SAM2), Organoid Tracker enables zero-shot segmentation and automated analysis of spatial-temporal microscopy videos. It quantifies key metrics such as cyst formation rate, growth velocity, and morphological changes, while generating comprehensive reports. By providing an extensible, open-source framework, Organoid Tracker offers a powerful solution for improving and accelerating research in kidney development, PKD modeling, and therapeutic discovery. The platform is publicly available as open-source software at https://github.com/hrlblab/OrganoidTracker.

Authors:Gurutva Patle, Nilay Girgaonkar, Nagabhushan Somraj, Rajiv Soundararajan
Title: AD-GS: Alternating Densification for Sparse-Input 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has shown impressive results in real-time novel view synthesis. However, it often struggles under sparse-view settings, producing undesirable artifacts such as floaters, inaccurate geometry, and overfitting due to limited observations. We find that a key contributing factor is uncontrolled densification, where adding Gaussian primitives rapidly without guidance can harm geometry and cause artifacts. We propose AD-GS, a novel alternating densification framework that interleaves high and low densification phases. During high densification, the model densifies aggressively, followed by photometric loss based training to capture fine-grained scene details. Low densification then primarily involves aggressive opacity pruning of Gaussians followed by regularizing their geometry through pseudo-view consistency and edge-aware depth smoothness. This alternating approach helps reduce overfitting by carefully controlling model capacity growth while progressively refining the scene representation. Extensive experiments on challenging datasets demonstrate that AD-GS significantly improves rendering quality and geometric consistency compared to existing methods. The source code for our model can be found on our project page: https://gurutvapatle.github.io/publications/2025/ADGS.html .

Authors:Paul Irofti, Luis Romero-Ben, Florin Stoican, Vicenç Puig
Title: Factor Graph Optimization for Leak Localization in Water Distribution Networks
Abstract:
Detecting and localizing leaks in water distribution network systems is an important topic with direct environmental, economic, and social impact. Our paper is the first to explore the use of factor graph optimization techniques for leak localization in water distribution networks, enabling us to perform sensor fusion between pressure and demand sensor readings and to estimate the network's temporal and structural state evolution across all network nodes. The methodology introduces specific water network factors and proposes a new architecture composed of two factor graphs: a leak-free state estimation factor graph and a leak localization factor graph. When a new sensor reading is obtained, unlike Kalman and other interpolation-based methods, which estimate only the current network state, factor graphs update both current and past states. Results on Modena, L-TOWN and synthetic networks show that factor graphs are much faster than nonlinear Kalman-based alternatives such as the UKF, while also providing improvements in localization compared to state-of-the-art estimation-localization approaches. Implementation and benchmarks are available at https://github.com/pirofti/FGLL.

Authors:Lihi Nofar, Tomer Portal, Aviv Elbaz, Alexander Apartsin, Yehudit Aperstein
Title: An Interpretable Benchmark for Clickbait Detection and Tactic Attribution
Abstract:
The proliferation of clickbait headlines poses significant challenges to the credibility of information and user trust in digital media. While recent advances in machine learning have improved the detection of manipulative content, the lack of explainability limits their practical adoption. This paper presents a model for explainable clickbait detection that not only identifies clickbait titles but also attributes them to specific linguistic manipulation strategies. We introduce a synthetic dataset generated by systematically augmenting real news headlines using a predefined catalogue of clickbait strategies. This dataset enables controlled experimentation and detailed analysis of model behaviour. We present a two-stage framework for automatic clickbait analysis comprising detection and tactic attribution. In the first stage, we compare a fine-tuned BERT classifier with large language models (LLMs), specifically GPT-4.0 and Gemini 2.4 Flash, under both zero-shot prompting and few-shot prompting enriched with illustrative clickbait headlines and their associated persuasive tactics. In the second stage, a dedicated BERT-based classifier predicts the specific clickbait strategies present in each headline. This work advances the development of transparent and trustworthy AI systems for combating manipulative media content. We share the dataset with the research community at https://github.com/LLM-HITCS25S/ClickbaitTacticsDetection

Authors:Wenbo Lu, Shaoyi Zheng, Yuxuan Xia, Shengjie Wang
Title: ToMA: Token Merge with Attention for Diffusion Models
Abstract:
Diffusion models excel in high-fidelity image generation but face scalability limits due to transformers' quadratic attention complexity. Plug-and-play token reduction methods like ToMeSD and ToFu reduce FLOPs by merging redundant tokens in generated images but rely on GPU-inefficient operations (e.g., sorting, scattered writes), introducing overheads that negate theoretical speedups when paired with optimized attention implementations (e.g., FlashAttention). To bridge this gap, we propose Token Merge with Attention (ToMA), an off-the-shelf method that redesigns token reduction for GPU-aligned efficiency, with three key contributions: 1) a reformulation of token merge as a submodular optimization problem to select diverse tokens; 2) merge/unmerge as an attention-like linear transformation via GPU-friendly matrix operations; and 3) exploiting latent locality and sequential redundancy (pattern reuse) to minimize overhead. ToMA reduces SDXL/Flux generation latency by 24%/23%, respectively (with DINO $Δ< 0.07$), outperforming prior methods. This work bridges the gap between theoretical and practical efficiency for transformers in diffusion.

Authors:Ali Hedayatnia, Mostafa Tavassolipour, Babak Nadjar Araabi, Abdol-Hossein Vahabie
Title: Robustifying Diffusion-Denoised Smoothing Against Covariate Shift
Abstract:
Randomized smoothing is a well-established method for achieving certified robustness against l2-adversarial perturbations. By incorporating a denoiser before the base classifier, pretrained classifiers can be seamlessly integrated into randomized smoothing without significant performance degradation. Among existing methods, Diffusion Denoised Smoothing - where a pretrained denoising diffusion model serves as the denoiser - has produced state-of-the-art results. However, we show that employing a denoising diffusion model introduces a covariate shift via misestimation of the added noise, ultimately degrading the smoothed classifier's performance. To address this issue, we propose a novel adversarial objective function focused on the added noise of the denoising diffusion model. This approach is inspired by our understanding of the origin of the covariate shift. Our goal is to train the base classifier to ensure it is robust against the covariate shift introduced by the denoiser. Our method significantly improves certified accuracy across three standard classification benchmarks - MNIST, CIFAR-10, and ImageNet - achieving new state-of-the-art performance in l2-adversarial perturbations. Our implementation is publicly available at https://github.com/ahedayat/Robustifying-DDS-Against-Covariate-Shift

Authors:Weiqiang Zhao, Tianzhu Liu, Yuzhe Gui, Yanfeng Gu
Title: Total Variation Subgradient Guided Image Fusion for Dual-Camera CASSI System
Abstract:
Spectral imaging technology has long-faced fundamental challenges in balancing spectral, spatial, and temporal resolutions. While compressive sensing-based Coded Aperture Snapshot Spectral Imaging (CASSI) mitigates this trade-off through optical encoding, high compression ratios result in ill-posed reconstruction problems. Traditional model-based methods exhibit limited performance due to reliance on handcrafted inherent image priors, while deep learning approaches are constrained by their black-box nature, which compromises physical interpretability. To address these limitations, we propose a dual-camera CASSI reconstruction framework that integrates total variation (TV) subgradient theory. By establishing an end-to-end SD-CASSI mathematical model, we reduce the computational complexity of solving the inverse problem and provide a mathematically well-founded framework for analyzing multi-camera systems. A dynamic regularization strategy is introduced, incorporating normalized gradient constraints from RGB/panchromatic-derived reference images, which constructs a TV subgradient similarity function with strict convex optimization guarantees. Leveraging spatial priors from auxiliary cameras, an adaptive reference generation and updating mechanism is designed to provide subgradient guidance. Experimental results demonstrate that the proposed method effectively preserves spatial-spectral structural consistency. The theoretical framework establishes an interpretable mathematical foundation for computational spectral imaging, demonstrating robust performance across diverse reconstruction scenarios. The source code is available at https://github.com/bestwishes43/ADMM-TVDS.

Authors:Aryan Kashyap Naveen, Bhuvanesh Singla, Raajan Wankhade, Shreesha M, Ramu S, Ram Mohana Reddy Guddeti
Title: AutoOEP -- A Multi-modal Framework for Online Exam Proctoring
Abstract:
The burgeoning of online education has created an urgent need for robust and scalable systems to ensure academic integrity during remote examinations. Traditional human proctoring is often not feasible at scale, while existing automated solutions can be intrusive or fail to detect a wide range of cheating behaviors. This paper introduces AutoOEP (Automated Online Exam Proctoring), a comprehensive, multi-modal framework that leverages computer vision and machine learning to provide effective, automated proctoring. The system utilizes a dual-camera setup to capture both a frontal view of the examinee and a side view of the workspace, minimizing blind spots. Our approach integrates several parallel analyses: the Face Module performs continuous identity verification using ArcFace, along with head pose estimation, gaze tracking, and mouth movement analysis to detect suspicious cues. Concurrently, the Hand Module employs a fine-tuned YOLOv11 model for detecting prohibited items (e.g., mobile phones, notes) and tracks hand proximity to these objects. Features from these modules are aggregated and fed into a Long Short-Term Memory (LSTM) network that analyzes temporal patterns to calculate a real-time cheating probability score. We evaluate AutoOEP on a custom-collected dataset simulating diverse exam conditions. Our system achieves an accuracy of 90.7% in classifying suspicious activities. The object detection component obtains a mean Average Precision (mAP@.5) of 0.57 for prohibited items, and the entire framework processes video streams at approximately 2.4 frames per second without a GPU. The results demonstrate that AutoOEP is an effective and resource-efficient solution for automated proctoring, significantly reducing the need for human intervention and enhancing the integrity of online assessments. The code is public and can be accessed at https://github.com/05kashyap/AutoOEP.

Authors:Xinyu Zhang, Pei Zhang, Shuang Luo, Jialong Tang, Yu Wan, Baosong Yang, Fei Huang
Title: CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis
Abstract:
Cultural competence, defined as the ability to understand and adapt to multicultural contexts, is increasingly vital for large language models (LLMs) in global environments. While several cultural benchmarks exist to assess LLMs' cultural competence, current evaluations suffer from fragmented taxonomies, domain specificity, and heavy reliance on manual data annotation. To address these limitations, we introduce CultureSynth, a novel framework comprising (1) a comprehensive hierarchical multilingual cultural taxonomy covering 12 primary and 130 secondary topics, and (2) a Retrieval-Augmented Generation (RAG)-based methodology leveraging factual knowledge to synthesize culturally relevant question-answer pairs. The CultureSynth-7 synthetic benchmark contains 19,360 entries and 4,149 manually verified entries across 7 languages. Evaluation of 14 prevalent LLMs of different sizes reveals clear performance stratification led by ChatGPT-4o-Latest and Qwen2.5-72B-Instruct. The results demonstrate that a 3B-parameter threshold is necessary for achieving basic cultural competence, models display varying architectural biases in knowledge processing, and significant geographic disparities exist across models. We believe that CultureSynth offers a scalable framework for developing culturally aware AI systems while reducing reliance on manual annotation\footnote{Benchmark is available at https://github.com/Eyr3/CultureSynth.}.

Authors:Qingxiang Liu, Ting Huang, Zeyu Zhang, Hao Tang
Title: Nav-R1: Reasoning and Navigation in Embodied Scenes
Abstract:
Embodied navigation requires agents to integrate perception, reasoning, and action for robust interaction in complex 3D environments. Existing approaches often suffer from incoherent and unstable reasoning traces that hinder generalization across diverse environments, and difficulty balancing long-horizon semantic reasoning with low-latency control for real-time navigation. To address these challenges, we propose Nav-R1, an embodied foundation model that unifies reasoning in embodied environments. We first construct Nav-CoT-110K, a large-scale dataset of step-by-step Chains-of-Thought (CoT) for embodied tasks, which enables cold-start initialization with structured reasoning. Building on this foundation, we design a GRPO-based reinforcement learning framework with three complementary rewards: format, understanding, and navigation, to improve structural adherence, semantic grounding, and path fidelity. Furthermore, we introduce a Fast-in-Slow reasoning paradigm, decoupling deliberate semantic reasoning from low-latency reactive control for efficient yet coherent navigation. Extensive evaluations on embodied AI benchmarks demonstrate that Nav-R1 consistently outperforms strong baselines, with over 8% average improvement in reasoning and navigation performance. Real-world deployment on a mobile robot further validates its robustness under limited onboard resources. Code: https://github.com/AIGeeksGroup/Nav-R1. Website: https://aigeeksgroup.github.io/Nav-R1.

Authors:Jing Xiao, Hongfei Liu, Ruiqi Dong, Jimin Liu, Haoyong Yu
Title: Automated Radiology Report Generation Based on Topic-Keyword Semantic Guidance
Abstract:
Automated radiology report generation is essential in clinical practice. However, diagnosing radiological images typically requires physicians 5-10 minutes, resulting in a waste of valuable healthcare resources. Existing studies have not fully leveraged knowledge from historical radiology reports, lacking sufficient and accurate prior information. To address this, we propose a Topic-Keyword Semantic Guidance (TKSG) framework. This framework uses BiomedCLIP to accurately retrieve historical similar cases. Supported by multimodal, TKSG accurately detects topic words (disease classifications) and keywords (common symptoms) in diagnoses. The probabilities of topic terms are aggregated into a topic vector, serving as global information to guide the entire decoding process. Additionally, a semantic-guided attention module is designed to refine local decoding with keyword content, ensuring report accuracy and relevance. Experimental results show that our model achieves excellent performance on both IU X-Ray and MIMIC-CXR datasets. The code is available at https://github.com/SCNU203/TKSG.

Authors:Temma Suzuki, Kento Kawaharazuka, Kei Okada
Title: A Universal Wire Testing Machine for Enhancing the Performance of Wire-Driven Robots
Abstract:
Compared with gears and linkages, wires constitute a lightweight, low-friction transmission mechanism. However, because wires are flexible materials, they tend to introduce large modeling errors, and their adoption in industrial and research robots remains limited.In this study, we built a Universal Wire Testing Machine that enables measurement and adjustment of wire characteristics to improve the performance of wire-driven mechanisms. Using this testing machine, we carried out removal of initial wire stretch, measurement of tension transmission efficiency for eight different diameters of passive pulleys, and measurement of the dynamic behavior of variable-length wires. Finally, we applied the data obtained from this testing machine to the force control of an actual wire-driven robot, reducing the end-effector force error.

Authors:Tien-En Chang, Argon Chen
Title: Variable Selection Using Relative Importance Rankings
Abstract:
Although conceptually related, variable selection and relative importance (RI) analysis have been treated quite differently in the literature. While RI is typically used for post-hoc model explanation, this paper explores its potential for variable ranking and filter-based selection before model creation. Specifically, we anticipate strong performance from the RI measures because they incorporate both direct and combined effects of predictors, addressing a key limitation of marginal correlation that ignores dependencies among predictors. We implement and evaluate the RI-based variable selection methods using general dominance (GD), comprehensive relative importance (CRI), and a newly proposed, computationally efficient variant termed CRI.Z. We first demonstrate how the RI measures more accurately rank the variables than the marginal correlation, especially when there are suppressed or weak predictors. We then show that predictive models built on these rankings are highly competitive, often outperforming state-of-the-art methods such as the lasso and relaxed lasso. The proposed RI-based methods are particularly effective in challenging cases involving clusters of highly correlated predictors, a setting known to cause failures in many benchmark methods. Although lasso methods have dominated the recent literature on variable selection, our study reveals that the RI-based method is a powerful and competitive alternative. We believe these underutilized tools deserve greater attention in statistics and machine learning communities. The code is available at: https://github.com/tien-endotchang/RI-variable-selection.

Authors:Sangyeop Kim, Yohan Lee, Sanghwa Kim, Hyunjong Kim, Sungzoon Cho
Title: Pre-Storage Reasoning for Episodic Memory: Shifting Inference Burden to Memory for Personalized Dialogue
Abstract:
Effective long-term memory in conversational AI requires synthesizing information across multiple sessions. However, current systems place excessive reasoning burden on response generation, making performance significantly dependent on model sizes. We introduce PREMem (Pre-storage Reasoning for Episodic Memory), a novel approach that shifts complex reasoning processes from inference to memory construction. PREMem extracts fine-grained memory fragments categorized into factual, experiential, and subjective information; it then establishes explicit relationships between memory items across sessions, capturing evolution patterns like extensions, transformations, and implications. By performing this reasoning during pre-storage rather than when generating a response, PREMem creates enriched representations while reducing computational demands during interactions. Experiments show significant performance improvements across all model sizes, with smaller models achieving results comparable to much larger baselines while maintaining effectiveness even with constrained token budgets. Code and dataset are available at https://github.com/sangyeop-kim/PREMem.

Authors:Yixuan Tang, Yi Yang
Title: GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Abstract:
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.

Authors:Simone Mosco, Daniel Fusaro, Wanmeng Li, Emanuele Menegatti, Alberto Pretto
Title: Point-Plane Projections for Accurate LiDAR Semantic Segmentation in Small Data Scenarios
Abstract:
LiDAR point cloud semantic segmentation is essential for interpreting 3D environments in applications such as autonomous driving and robotics. Recent methods achieve strong performance by exploiting different point cloud representations or incorporating data from other sensors, such as cameras or external datasets. However, these approaches often suffer from high computational complexity and require large amounts of training data, limiting their generalization in data-scarce scenarios. In this paper, we improve the performance of point-based methods by effectively learning features from 2D representations through point-plane projections, enabling the extraction of complementary information while relying solely on LiDAR data. Additionally, we introduce a geometry-aware technique for data augmentation that aligns with LiDAR sensor properties and mitigates class imbalance. We implemented and evaluated our method that applies point-plane projections onto multiple informative 2D representations of the point cloud. Experiments demonstrate that this approach leads to significant improvements in limited-data scenarios, while also achieving competitive results on two publicly available standard datasets, as SemanticKITTI and PandaSet. The code of our method is available at https://github.com/SiMoM0/3PNet

Authors:Eli Baum, Sam Buxbaum, Nitin Mathai, Muhammad Faisal, Vasiliki Kalavri, Mayank Varia, John Liagouris
Title: ORQ: Complex Analytics on Private Data with Strong Security Guarantees
Abstract:
We present ORQ, a system that enables collaborative analysis of large private datasets using cryptographically secure multi-party computation (MPC). ORQ protects data against semi-honest or malicious parties and can efficiently evaluate relational queries with multi-way joins and aggregations that have been considered notoriously expensive under MPC. To do so, ORQ eliminates the quadratic cost of secure joins by leveraging the fact that, in practice, the structure of many real queries allows us to join records and apply the aggregations "on the fly" while keeping the result size bounded. On the system side, ORQ contributes generic oblivious operators, a data-parallel vectorized query engine, a communication layer that amortizes MPC network costs, and a dataflow API for expressing relational analytics -- all built from the ground up. We evaluate ORQ in LAN and WAN deployments on a diverse set of workloads, including complex queries with multiple joins and custom aggregations. When compared to state-of-the-art solutions, ORQ significantly reduces MPC execution times and can process one order of magnitude larger datasets. For our most challenging workload, the full TPC-H benchmark, we report results entirely under MPC with Scale Factor 10 -- a scale that had previously been achieved only with information leakage or the use of trusted third parties.

Authors:Clemens Schwarke, Mayank Mittal, Nikita Rudin, David Hoeller, Marco Hutter
Title: RSL-RL: A Learning Library for Robotics Research
Abstract:
RSL-RL is an open-source Reinforcement Learning library tailored to the specific needs of the robotics community. Unlike broad general-purpose frameworks, its design philosophy prioritizes a compact and easily modifiable codebase, allowing researchers to adapt and extend algorithms with minimal overhead. The library focuses on algorithms most widely adopted in robotics, together with auxiliary techniques that address robotics-specific challenges. Optimized for GPU-only training, RSL-RL achieves high-throughput performance in large-scale simulation environments. Its effectiveness has been validated in both simulation benchmarks and in real-world robotic experiments, demonstrating its utility as a lightweight, extensible, and practical framework to develop learning-based robotic controllers. The library is open-sourced at: https://github.com/leggedrobotics/rsl_rl.

Authors:Iman Barati, Mostafa Amiri, Heshaam Faili
Title: SearchInstruct: Enhancing Domain Adaptation via Retrieval-Based Instruction Dataset Creation
Abstract:
Supervised Fine-Tuning (SFT) is essential for training large language models (LLMs), significantly enhancing critical capabilities such as instruction following and in-context learning. Nevertheless, creating suitable training datasets tailored for specific domains remains challenging due to unique domain constraints and data scarcity. In this paper, we propose SearchInstruct, an innovative method explicitly designed to construct high quality instruction datasets for SFT. Our approach begins with a limited set of domain specific, human generated questions, which are systematically expanded using a large language model. Subsequently, domain relevant resources are dynamically retrieved to generate accurate and contextually appropriate answers for each augmented question. Experimental evaluation demonstrates that SearchInstruct enhances both the diversity and quality of SFT datasets, leading to measurable improvements in LLM performance within specialized domains. Additionally, we show that beyond dataset generation, the proposed method can also effectively facilitate tasks such as model editing, enabling efficient updates to existing models. To facilitate reproducibility and community adoption, we provide full implementation details, the complete set of generated instruction response pairs, and the source code in a publicly accessible Git repository: [https://github.com/mostafaamiri/SearchInstruct](https://github.com/mostafaamiri/SearchInstruct)

Authors:Chin-Yun Yu, György Fazekas
Title: Sound Matching an Analogue Levelling Amplifier Using the Newton-Raphson Method
Abstract:
Automatic differentiation through digital signal processing algorithms for virtual analogue modelling has recently gained popularity. These algorithms are typically more computationally efficient than black-box neural networks that rely on dense matrix multiplications. Due to their differentiable nature, they can be integrated with neural networks and jointly trained using gradient descent algorithms, resulting in more efficient systems. Furthermore, signal processing algorithms have significantly fewer parameters than neural networks, allowing the application of the Newton-Raphson method. This method offers faster and more robust convergence than gradient descent at the cost of quadratic storage. This paper presents a method to emulate analogue levelling amplifiers using a feed-forward digital compressor with parameters optimised via the Newton-Raphson method. We demonstrate that a digital compressor can successfully approximate the behaviour of our target unit, the Teletronix LA-2A. Different strategies for computing the Hessian matrix are benchmarked. We leverage parallel algorithms for recursive filters to achieve efficient training on modern GPUs. The resulting model is made into a VST plugin and is open-sourced at https://github.com/aim-qmul/4a2a.

Authors:Chirayu Nimonkar, Shlok Shah, Catherine Ji, Benjamin Eysenbach
Title: Self-Supervised Goal-Reaching Results in Multi-Agent Cooperation and Exploration
Abstract:
For groups of autonomous agents to achieve a particular goal, they must engage in coordination and long-horizon reasoning. However, designing reward functions to elicit such behavior is challenging. In this paper, we study how self-supervised goal-reaching techniques can be leveraged to enable agents to cooperate. The key idea is that, rather than have agents maximize some scalar reward, agents aim to maximize the likelihood of visiting a certain goal. This problem setting enables human users to specify tasks via a single goal state rather than implementing a complex reward function. While the feedback signal is quite sparse, we will demonstrate that self-supervised goal-reaching techniques enable agents to learn from such feedback. On MARL benchmarks, our proposed method outperforms alternative approaches that have access to the same sparse reward signal as our method. While our method has no explicit mechanism for exploration, we observe that self-supervised multi-agent goal-reaching leads to emergent cooperation and exploration in settings where alternative approaches never witness a single successful trial.

Authors:Xiaoyang Ma, Yiyang Chai, Xinran Qu, Hong Sun
Title: USCTNet: A deep unfolding nuclear-norm optimization solver for physically consistent HSI reconstruction
Abstract:
Reconstructing hyperspectral images (HSIs) from a single RGB image is ill-posed and can become physically inconsistent when the camera spectral sensitivity (CSS) and scene illumination are misspecified. We formulate RGB-to-HSI reconstruction as a physics-grounded inverse problem regularized by a nuclear norm in a learnable transform domain, and we explicitly estimate CSS and illumination to define the forward operator embedded in each iteration, ensuring colorimetric consistency. To avoid the cost and instability of full singular-value decompositions (SVDs) required by singular-value thresholding (SVT), we introduce a data-adaptive low-rank subspace SVT operator. Building on these components, we develop USCTNet, a deep unfolding solver tailored to HSI that couples a parameter estimation module with learnable proximal updates. Extensive experiments on standard benchmarks show consistent improvements over state-of-the-art RGB-based methods in reconstruction accuracy. Code: https://github.com/psykheXX/USCTNet-Code-Implementation.git

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: Building a General SimCLR Self-Supervised Foundation Model Across Neurological Diseases to Advance 3D Brain MRI Diagnoses
Abstract:
3D structural Magnetic Resonance Imaging (MRI) brain scans are commonly acquired in clinical settings to monitor a wide range of neurological conditions, including neurodegenerative disorders and stroke. While deep learning models have shown promising results analyzing 3D MRI across a number of brain imaging tasks, most are highly tailored for specific tasks with limited labeled data, and are not able to generalize across tasks and/or populations. The development of self-supervised learning (SSL) has enabled the creation of large medical foundation models that leverage diverse, unlabeled datasets ranging from healthy to diseased data, showing significant success in 2D medical imaging applications. However, even the very few foundation models for 3D brain MRI that have been developed remain limited in resolution, scope, or accessibility. In this work, we present a general, high-resolution SimCLR-based SSL foundation model for 3D brain structural MRI, pre-trained on 18,759 patients (44,958 scans) from 11 publicly available datasets spanning diverse neurological diseases. We compare our model to Masked Autoencoders (MAE), as well as two supervised baselines, on four diverse downstream prediction tasks in both in-distribution and out-of-distribution settings. Our fine-tuned SimCLR model outperforms all other models across all tasks. Notably, our model still achieves superior performance when fine-tuned using only 20% of labeled training samples for predicting Alzheimer's disease. We use publicly available code and data, and release our trained model at https://github.com/emilykaczmarek/3D-Neuro-SimCLR, contributing a broadly applicable and accessible foundation model for clinical brain MRI analysis.

Authors:Nina Wiedemann, Dianne de Korte-de Boer, Matthias Richter, Sjors van de Weijer, Charlotte Buhre, Franz A. M. Eggert, Sophie Aarnoudse, Lotte Grevendonk, Steffen Röber, Carlijn M. E. Remie, Wolfgang Buhre, Ronald Henry, Jannis Born
Title: COVID-BLUeS -- A Prospective Study on the Value of AI in Lung Ultrasound Analysis
Abstract:
As a lightweight and non-invasive imaging technique, lung ultrasound (LUS) has gained importance for assessing lung pathologies. The use of Artificial intelligence (AI) in medical decision support systems is promising due to the time- and expertise-intensive interpretation, however, due to the poor quality of existing data used for training AI models, their usability for real-world applications remains unclear. In a prospective study, we analyze data from 63 COVID-19 suspects (33 positive) collected at Maastricht University Medical Centre. Ultrasound recordings at six body locations were acquired following the BLUE protocol and manually labeled for severity of lung involvement. Several AI models were applied and trained for detection and severity of pulmonary infection. The severity of the lung infection, as assigned by human annotators based on the LUS videos, is not significantly different between COVID-19 positive and negative patients (p = 0.89). Nevertheless, the predictions of image-based AI models identify a COVID-19 infection with 65% accuracy when applied zero-shot (i.e., trained on other datasets), and up to 79% with targeted training, whereas the accuracy based on human annotations is at most 65%. Multi-modal models combining images and CBC improve significantly over image-only models. Although our analysis generally supports the value of AI in LUS assessment, the evaluated models fall short of the performance expected from previous work. We find this is due to 1) the heterogeneity of LUS datasets, limiting the generalization ability to new data, 2) the frame-based processing of AI models ignoring video-level information, and 3) lack of work on multi-modal models that can extract the most relevant information from video-, image- and variable-based inputs. To aid future research, we publish the dataset at: https://github.com/NinaWie/COVID-BLUES.

Authors:Miaoge Li, Yang Chen, Zhijie Rao, Can Jiang, Jingcai Guo
Title: Semantic-guided LoRA Parameters Generation
Abstract:
Low-Rank Adaptation (LoRA) has demonstrated strong generalization capabilities across a variety of tasks for efficiently fine-tuning AI models, especially on resource-constrained edges. However, in real-world applications, edge users often exhibit task-specific preferences that are difficult to handle with a unified model trained under a closed-world assumption, and the challenge may further increase when there are significant domain shifts between training and deployment. Meanwhile, retraining/fine-tuning models for each user is also impractical due to its cost-intensive nature and privacy concerns over raw data utilization from edges. To address these challenges, we propose Semantic-guided LoRA Parameter Generation (SG-LoRA), the first of its kind framework to efficiently produce user-specific LoRA parameters without any additional training on user tasks or access to user-specific data. Concretely, SG-LoRA uses task descriptions as the semantic bridge, measuring their proximity to a set of known expert tasks in a shared embedding space. Based on this semantic guidance, it models the target task's LoRA parameter distribution to generate high-performing parameters for novel tasks. SG-LoRA enables the real-time construction of LoRA models aligned with individual intents by distilling knowledge from prominent LoRA experts and, meanwhile, offering a privacy-preserving solution for personalized model adaptation in a novel zero-shot open-world setting proposed in this work. Extensive experiments on multiple challenging tasks confirm the superior performance and remarkable adaptability of SG-LoRA. Code is available at https://github.com/keepgoingjkg/SG-LoRA.

Authors:Amirhossein Ghaffari, Huong Nguyen, Lauri Lovén, Ekaterina Gilman
Title: STM-Graph: A Python Framework for Spatio-Temporal Mapping and Graph Neural Network Predictions
Abstract:
Urban spatio-temporal data present unique challenges for predictive analytics due to their dynamic and complex nature. We introduce STM-Graph, an open-source Python framework that transforms raw spatio-temporal urban event data into graph representations suitable for Graph Neural Network (GNN) training and prediction. STM-Graph integrates diverse spatial mapping methods, urban features from OpenStreetMap, multiple GNN models, comprehensive visualization tools, and a graphical user interface (GUI) suitable for professional and non-professional users. This modular and extensible framework facilitates rapid experimentation and benchmarking. It allows integration of new mapping methods and custom models, making it a valuable resource for researchers and practitioners in urban computing. The source code of the framework and GUI are available at: https://github.com/Ahghaffari/stm_graph and https://github.com/tuminguyen/stm_graph_gui.

Authors:Prajit Sengupta, Islem Rekik
Title: FireGNN: Neuro-Symbolic Graph Neural Networks with Trainable Fuzzy Rules for Interpretable Medical Image Classification
Abstract:
Medical image classification requires not only high predictive performance but also interpretability to ensure clinical trust and adoption. Graph Neural Networks (GNNs) offer a powerful framework for modeling relational structures within datasets; however, standard GNNs often operate as black boxes, limiting transparency and usability, particularly in clinical settings. In this work, we present an interpretable graph-based learning framework named FireGNN that integrates trainable fuzzy rules into GNNs for medical image classification. These rules embed topological descriptors - node degree, clustering coefficient, and label agreement - using learnable thresholds and sharpness parameters to enable intrinsic symbolic reasoning. Additionally, we explore auxiliary self-supervised tasks (e.g., homophily prediction, similarity entropy) as a benchmark to evaluate the contribution of topological learning. Our fuzzy-rule-enhanced model achieves strong performance across five MedMNIST benchmarks and the synthetic dataset MorphoMNIST, while also generating interpretable rule-based explanations. To our knowledge, this is the first integration of trainable fuzzy rules within a GNN. Source Code: https://github.com/basiralab/FireGNN

Authors:Sai Teja Reddy Adapala
Title: The Anti-Ouroboros Effect: Emergent Resilience in Large Language Models from Recursive Selective Feedback
Abstract:
The stability of recursively trained large language models (LLMs) is a foundational problem for AI safety. Prevailing theory predicts model collapse, a progressive degradation when models are trained on their own output. We challenge this narrative by introducing a selective feedback mechanism. Contrary to expectation, instead of merely slowing decay, our experiments provide strong evidence that this pressure reverses it, inducing a statistically significant performance improvement in a Gemma 2B model on a complex summarization task. We name this phenomenon the Anti-Ouroboros Effect. We contrast this with a foundational experiment using a simple classifier, where the theoretical degenerative loop was validated, highlighting the unique dynamics of high-dimensional models. Our findings establish that systemic resilience can be an emergent property of LLMs under simple selection pressure, suggesting a powerful and scalable principle for developing safer and more robust AI systems. Across five generations, a quality-filtered condition improved by 6.6% in ROUGE-L F1 score, whereas an unfiltered control degraded by 3.5% and a random-filter control degraded by 4.2%

Authors:Ning Yang, Junrui Wen, Meng Zhang, Ming Tang
Title: Generalizable Pareto-Optimal Offloading with Reinforcement Learning in Mobile Edge Computing
Abstract:
Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy efficiency. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we formulate a multi-objective offloading problem for MEC with multiple edges to minimize the sum of expected long-term energy consumption and delay while considering unknown preferences. To address the challenge of unknown preferences and the potentially diverse MEC systems, we propose a generalizable multi-objective (deep) reinforcement learning (GMORL)-based tasks offloading framework, which employs the Discrete Soft Actor-Critic (Discrete-SAC) method. Our method uses a single policy model to efficiently schedule tasks based on varying preferences and adapt to heterogeneous MEC systems with different CPU frequencies and server quantities. Under the proposed framework, we introduce a histogram-based state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption, and a novel neural network architecture for improving generalization. Simulation results demonstrate that our proposed GMORL scheme enhances the hypervolume of the Pareto front by up to $121.0\%$ compared to benchmarks. Our code are avavilable at https://github.com/gracefulning/Generalizable-Pareto-Optimal-Offloading-with-Reinforcement-Learning-in-Mobile-Edge-Computing

Authors:Christian Fane
Title: A Real-Time Diminished Reality Approach to Privacy in MR Collaboration
Abstract:
Diminished reality (DR) refers to the digital removal of real-world objects by compositing background content in their place. This thesis presents a real-time, inpainting-based DR system designed to enable privacy control in shared-space mixed reality (MR) meetings. The system allows a primary headset user to selectively remove personal or sensitive items from their environment, ensuring that those objects are no longer visible to other participants. Removal is achieved through semantic segmentation and precise object selection, followed by real-time inpainting from the viewpoint of a secondary observer, implemented using a mobile ZED 2i depth camera. The solution is designed to be portable and robust, requiring neither a fixed secondary viewpoint nor prior 3D scanning of the environment. The system utilises YOLOv11 for object detection and a modified Decoupled Spatial-Temporal Transformer (DSTT) model for high-quality video inpainting. At 720p resolution, the pipeline sustains frame rates exceeding 20 fps, demonstrating the feasibility of real-time diminished reality for practical privacy-preserving MR applications.

Authors:Hang Yin, Haoyu Wei, Xiuwei Xu, Wenxuan Guo, Jie Zhou, Jiwen Lu
Title: GC-VLN: Instruction as Graph Constraints for Training-free Vision-and-Language Navigation
Abstract:
In this paper, we propose a training-free framework for vision-and-language navigation (VLN). Existing zero-shot VLN methods are mainly designed for discrete environments or involve unsupervised training in continuous simulator environments, which makes it challenging to generalize and deploy them in real-world scenarios. To achieve a training-free framework in continuous environments, our framework formulates navigation guidance as graph constraint optimization by decomposing instructions into explicit spatial constraints. The constraint-driven paradigm decodes spatial semantics through constraint solving, enabling zero-shot adaptation to unseen environments. Specifically, we construct a spatial constraint library covering all types of spatial relationship mentioned in VLN instructions. The human instruction is decomposed into a directed acyclic graph, with waypoint nodes, object nodes and edges, which are used as queries to retrieve the library to build the graph constraints. The graph constraint optimization is solved by the constraint solver to determine the positions of waypoints, obtaining the robot's navigation path and final goal. To handle cases of no solution or multiple solutions, we construct a navigation tree and the backtracking mechanism. Extensive experiments on standard benchmarks demonstrate significant improvements in success rate and navigation efficiency compared to state-of-the-art zero-shot VLN methods. We further conduct real-world experiments to show that our framework can effectively generalize to new environments and instruction sets, paving the way for a more robust and autonomous navigation framework.

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: SSL-AD: Spatiotemporal Self-Supervised Learning for Generalizability and Adaptability Across Alzheimer's Prediction Tasks and Datasets
Abstract:
Alzheimer's disease is a progressive, neurodegenerative disorder that causes memory loss and cognitive decline. While there has been extensive research in applying deep learning models to Alzheimer's prediction tasks, these models remain limited by lack of available labeled data, poor generalization across datasets, and inflexibility to varying numbers of input scans and time intervals between scans. In this study, we adapt three state-of-the-art temporal self-supervised learning (SSL) approaches for 3D brain MRI analysis, and add novel extensions designed to handle variable-length inputs and learn robust spatial features. We aggregate four publicly available datasets comprising 3,161 patients for pre-training, and show the performance of our model across multiple Alzheimer's prediction tasks including diagnosis classification, conversion detection, and future conversion prediction. Importantly, our SSL model implemented with temporal order prediction and contrastive learning outperforms supervised learning on six out of seven downstream tasks. It demonstrates adaptability and generalizability across tasks and number of input images with varying time intervals, highlighting its capacity for robust performance across clinical applications. We release our code and model publicly at https://github.com/emilykaczmarek/SSL-AD.

Authors:Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, Yuxiao Dong
Title: DeepDive: Advancing Deep Search Agents with Knowledge Graphs and Multi-Turn RL
Abstract:
Augmenting large language models (LLMs) with browsing tools substantially improves their potential as deep search agents to solve complex, real-world tasks. Yet, open LLMs still perform poorly in such settings due to limited long-horizon reasoning capacity with browsing tools and the lack of sufficiently difficult supervised data. To address these challenges, we present DeepDive to advance deep search agents. First, we propose a strategy to automatically synthesize complex, difficult, and hard-to-find questions from open knowledge graphs. Second, we apply end-to-end multi-turn reinforcement learning (RL) to enhance LLMs' long-horizon reasoning with deep search. Experiments show that DeepDive-32B achieves a new open-source competitive result on BrowseComp, outperforming WebSailor, DeepSeek-R1-Browse, and Search-o1. We demonstrate that multi-turn RL training improves deep search ability and significantly contributes to the performance improvements across multiple benchmarks. We observe that DeepDive enables test-time scaling of tool calls and parallel sampling. All datasets, models, and code are publicly available at https://github.com/THUDM/DeepDive.

Authors:Ze Fu, Pinhao Song, Yutong Hu, Renaud Detry
Title: TASC: Task-Aware Shared Control for Teleoperated Manipulation
Abstract:
We present TASC, a Task-Aware Shared Control framework for teleoperated manipulation that infers task-level user intent and provides assistance throughout the task. To support everyday tasks without predefined knowledge, TASC constructs an open-vocabulary interaction graph from visual input to represent functional object relationships, and infers user intent accordingly. A shared control policy then provides rotation assistance during both grasping and object interaction, guided by spatial constraints predicted by a vision-language model. Our method addresses two key challenges in general-purpose, long-horizon shared control: (1) understanding and inferring task-level user intent, and (2) generalizing assistance across diverse objects and tasks. Experiments in both simulation and the real world demonstrate that TASC improves task efficiency and reduces user input effort compared to prior methods. To the best of our knowledge, this is the first shared control framework that supports everyday manipulation tasks with zero-shot generalization. The code that supports our experiments is publicly available at https://github.com/fitz0401/tasc.

Authors:Iacopo Curti, Pierluigi Zama Ramirez, Alioscia Petrelli, Luigi Di Stefano
Title: Multimodal SAM-adapter for Semantic Segmentation
Abstract:
Semantic segmentation, a key task in computer vision with broad applications in autonomous driving, medical imaging, and robotics, has advanced substantially with deep learning. Nevertheless, current approaches remain vulnerable to challenging conditions such as poor lighting, occlusions, and adverse weather. To address these limitations, multimodal methods that integrate auxiliary sensor data (e.g., LiDAR, infrared) have recently emerged, providing complementary information that enhances robustness. In this work, we present MM SAM-adapter, a novel framework that extends the capabilities of the Segment Anything Model (SAM) for multimodal semantic segmentation. The proposed method employs an adapter network that injects fused multimodal features into SAM's rich RGB features. This design enables the model to retain the strong generalization ability of RGB features while selectively incorporating auxiliary modalities only when they contribute additional cues. As a result, MM SAM-adapter achieves a balanced and efficient use of multimodal information. We evaluate our approach on three challenging benchmarks, DeLiVER, FMB, and MUSES, where MM SAM-adapter delivers state-of-the-art performance. To further analyze modality contributions, we partition DeLiVER and FMB into RGB-easy and RGB-hard subsets. Results consistently demonstrate that our framework outperforms competing methods in both favorable and adverse conditions, highlighting the effectiveness of multimodal adaptation for robust scene understanding. The code is available at the following link: https://github.com/iacopo97/Multimodal-SAM-Adapter.

Authors:Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, Zhiyuan Ning, Yue Zhang
Title: Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Abstract:
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this \emph{counterfactual inference gap}, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85$\times$ improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43$\times$ improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.

Authors:Seokjin Go, Joongun Park, Spandan More, Hanjiang Wu, Irene Wang, Aaron Jezghani, Tushar Krishna, Divya Mahajan
Title: Characterizing the Efficiency of Distributed Training: A Power, Performance, and Thermal Perspective
Abstract:
The rapid scaling of Large Language Models (LLMs) has pushed training workloads far beyond the limits of single-node analysis, demanding a deeper understanding of how these models behave across large-scale, multi-GPU systems. In this paper, we present a comprehensive characterization of LLM training across diverse real-world workloads and hardware platforms, including NVIDIA H100/H200 and AMD MI250 GPUs. We analyze dense and sparse models under various parallelism strategies -- tensor, pipeline, data, and expert -- and evaluate their effects on hardware utilization, power consumption, and thermal behavior. We further evaluate the effectiveness of optimizations such as activation recomputation and compute-communication overlap. Our findings show that performance is not determined solely by scaling hardware capacity. Scale-up systems with fewer, higher-memory GPUs can outperform scale-out systems in communication-bound regimes, but only under carefully tuned configurations; in other cases, scale-out deployments achieve superior throughput. We also show that certain parallelism combinations, such as tensor with pipeline, lead to bandwidth underutilization due to inefficient data chunking, while increasing microbatch sizes beyond a certain point induces bursty execution and peak power excursions that worsen thermal throttling. These insights reveal how training performance is shaped by complex interactions between hardware, system topology, and model execution. We conclude by offering recommendations for system and hardware design to improve the scalability and reliability of future LLM systems and workloads. The source code of this project is available at https://github.com/sitar-lab/CharLLM-PPT.

Authors:Fabien Allemand, Attilio Fiandrotti, Sumanta Chaudhuri, Alaa Eddine Mazouz
Title: Efficient Learned Image Compression Through Knowledge Distillation
Abstract:
Learned image compression sits at the intersection of machine learning and image processing. With advances in deep learning, neural network-based compression methods have emerged. In this process, an encoder maps the image to a low-dimensional latent space, which is then quantized, entropy-coded into a binary bitstream, and transmitted to the receiver. At the receiver end, the bitstream is entropy-decoded, and a decoder reconstructs an approximation of the original image. Recent research suggests that these models consistently outperform conventional codecs. However, they require significant processing power, making them unsuitable for real-time use on resource-constrained platforms, which hinders their deployment in mainstream applications. This study aims to reduce the resource requirements of neural networks used for image compression by leveraging knowledge distillation, a training paradigm where smaller neural networks, partially trained on the outputs of larger, more complex models, can achieve better performance than when trained independently. Our work demonstrates that knowledge distillation can be effectively applied to image compression tasks: i) across various architecture sizes, ii) to achieve different image quality/bit rate tradeoffs, and iii) to save processing and energy resources. This approach introduces new settings and hyperparameters, and future research could explore the impact of different teacher models, as well as alternative loss functions. Knowledge distillation could also be extended to transformer-based models. The code is publicly available at: https://github.com/FABallemand/PRIM .

Authors:Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
Title: Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Abstract:
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.

Authors:Marco Artiano, Oswald Knoth, Peter Spichtinger, Hendrik Ranocha
Title: Structure-Preserving High-Order Methods for the Compressible Euler Equations in Potential Temperature Formulation for Atmospheric Flows
Abstract:
We develop structure-preserving numerical methods for the compressible Euler equations, employing potential temperature as a prognostic variable. We construct three numerical fluxes designed to ensure the conservation of entropy and total energy within the discontinuous Galerkin framework on general curvilinear meshes. Furthermore, we introduce a generalization for the kinetic energy preservation property and total energy conservation in the presence of a gravitational potential term. To this end, we adopt a flux-differencing approach for the discretization of the source term, treated as non-conservative product. We present well-balanced schemes for different constant background states for both formulations (total energy and potential temperature) on curvilinear meshes. Finally, we validate the methods by comparing the potential temperature formulation with the traditional Euler equations formulation across a range of classical atmospheric scenarios.

Authors:Evan Murphy, Marco Viola, Vladimir A. Krylov
Title: A Stochastic Birth-and-Death Approach for Street Furniture Geolocation in Urban Environments
Abstract:
In this paper we address the problem of precise geolocation of street furniture in complex urban environments, which is a critical task for effective monitoring and maintenance of public infrastructure by local authorities and private stakeholders. To this end, we propose a probabilistic framework based on energy maps that encode the spatial likelihood of object locations. Representing the energy in a map-based geopositioned format allows the optimisation process to seamlessly integrate external geospatial information, such as GIS layers, road maps, or placement constraints, which improves contextual awareness and localisation accuracy. A stochastic birth-and-death optimisation algorithm is introduced to infer the most probable configuration of assets. We evaluate our approach using a realistic simulation informed by a geolocated dataset of street lighting infrastructure in Dublin city centre, demonstrating its potential for scalable and accurate urban asset mapping. The implementation of the algorithm will be made available in the GitHub repository https://github.com/EMurphy0108/SBD_Street_Furniture.

Authors:Joshua Dimasaka, Christian Geiß, Robert Muir-Wood, Emily So
Title: GraphCSVAE: Graph Categorical Structured Variational Autoencoder for Spatiotemporal Auditing of Physical Vulnerability Towards Sustainable Post-Disaster Risk Reduction
Abstract:
In the aftermath of disasters, many institutions worldwide face challenges in continually monitoring changes in disaster risk, limiting the ability of key decision-makers to assess progress towards the UN Sendai Framework for Disaster Risk Reduction 2015-2030. While numerous efforts have substantially advanced the large-scale modeling of hazard and exposure through Earth observation and data-driven methods, progress remains limited in modeling another equally important yet challenging element of the risk equation: physical vulnerability. To address this gap, we introduce Graph Categorical Structured Variational Autoencoder (GraphCSVAE), a novel probabilistic data-driven framework for modeling physical vulnerability by integrating deep learning, graph representation, and categorical probabilistic inference, using time-series satellite-derived datasets and prior expert belief systems. We introduce a weakly supervised first-order transition matrix that reflects the changes in the spatiotemporal distribution of physical vulnerability in two disaster-stricken and socioeconomically disadvantaged areas: (1) the cyclone-impacted coastal Khurushkul community in Bangladesh and (2) the mudslide-affected city of Freetown in Sierra Leone. Our work reveals post-disaster regional dynamics in physical vulnerability, offering valuable insights into localized spatiotemporal auditing and sustainable strategies for post-disaster risk reduction.

Authors:Zeyneddin Oz, Jonas Knoche, Alireza Yazdani, Bernd Engel, Kristof Van Laerhoven
Title: TubeBEND: A Real-World Dataset for Geometry Prediction in Rotary Draw Bending
Abstract:
This paper presents TubeBEND, a real-world dataset comprising 318 rotary tube bending processes, which were collected and sorted by experts from various fields to evaluate machine learning and signal analysis methods. The dataset addresses the industrial challenge of predicting the geometry of a first-stage bend, which can be beneficial for designing machine clamping molds for the second-stage bend in two-stage rotary draw bending. Some geometry criteria, such as the tube's final bent angle (or springback) and its cross-sectional deformation, are being recorded in this dataset. This dataset gives us the possibility to build and test machine learning models that can predict the geometry and help the machine operators with a better machine setup to optimize the tube's springback and deformation. Moreover, by recording some process parameters, such as tool movements and forces or torques applied to them, we deliver detailed information about their impacts on the final tube geometry. The focus of our work is to discover solutions that can replace traditional methods, such as trial-and-error or simulation-based predictions, by including experimental process variables in ML algorithms. Our dataset is publicly available at https://github.com/zeyneddinoz/tubebend and https://zenodo.org/records/16614082 as a benchmark to improve data-driven methods in this field.

Authors:Jia Wang, Jie Hu, Xiaoqi Ma, Hanghang Ma, Yanbing Zeng, Xiaoming Wei
Title: MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation
Abstract:
Text-to-image (T2I) generation has achieved remarkable progress in instruction following and aesthetics. However, a persistent challenge is the prevalence of physical artifacts, such as anatomical and structural flaws, which severely degrade perceptual quality and limit application. Given the diversity and complexity of these artifacts, a systematic and fine-grained evaluation framework is required, which is lacking in current benchmarks. To fill this gap, we introduce MagicMirror, a comprehensive framework for artifacts assessment. We first establish a detailed taxonomy of generated image artifacts. Guided by this taxonomy, we manually annotate MagicData340K, the first human-annotated large-scale dataset of 340K generated images with fine-grained artifact labels. Building on this dataset, we train MagicAssessor, a Vision-Language Model (VLM) that provides detailed assessments and corresponding labels. To overcome challenges like class imbalance and reward hacking, we design a novel data sampling strategy and a multi-level reward system for Group Relative Policy Optimization (GRPO). Finally, we leverage MagicAssessor to construct MagicBench, an automated benchmark for evaluating the image artifacts of current T2I models. Our evaluation with MagicBench reveals that despite their widespread adoption, even top-tier models like GPT-image-1 are consistently plagued by significant artifacts, highlighting artifact reduction as a critical frontier for future T2I development. Project page: https://wj-inf.github.io/MagicMirror-page/.

Authors:Xinhong Zhang, Runqing Wang, Yunfan Ren, Jian Sun, Hao Fang, Jie Chen, Gang Wang
Title: DiffAero: A GPU-Accelerated Differentiable Simulation Framework for Efficient Quadrotor Policy Learning
Abstract:
This letter introduces DiffAero, a lightweight, GPU-accelerated, and fully differentiable simulation framework designed for efficient quadrotor control policy learning. DiffAero supports both environment-level and agent-level parallelism and integrates multiple dynamics models, customizable sensor stacks (IMU, depth camera, and LiDAR), and diverse flight tasks within a unified, GPU-native training interface. By fully parallelizing both physics and rendering on the GPU, DiffAero eliminates CPU-GPU data transfer bottlenecks and delivers orders-of-magnitude improvements in simulation throughput. In contrast to existing simulators, DiffAero not only provides high-performance simulation but also serves as a research platform for exploring differentiable and hybrid learning algorithms. Extensive benchmarks and real-world flight experiments demonstrate that DiffAero and hybrid learning algorithms combined can learn robust flight policies in hours on consumer-grade hardware. The code is available at https://github.com/flyingbitac/diffaero.

Authors:Shiwei Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Jianbin Lin, Wenliang Zhong
Title: FedBiF: Communication-Efficient Federated Learning via Bits Freezing
Abstract:
Federated learning (FL) is an emerging distributed machine learning paradigm that enables collaborative model training without sharing local data. Despite its advantages, FL suffers from substantial communication overhead, which can affect training efficiency. Recent efforts have mitigated this issue by quantizing model updates to reduce communication costs. However, most existing methods apply quantization only after local training, introducing quantization errors into the trained parameters and potentially degrading model accuracy. In this paper, we propose Federated Bit Freezing (FedBiF), a novel FL framework that directly learns quantized model parameters during local training. In each communication round, the server first quantizes the model parameters and transmits them to the clients. FedBiF then allows each client to update only a single bit of the multi-bit parameter representation, freezing the remaining bits. This bit-by-bit update strategy reduces each parameter update to one bit while maintaining high precision in parameter representation. Extensive experiments are conducted on five widely used datasets under both IID and Non-IID settings. The results demonstrate that FedBiF not only achieves superior communication compression but also promotes sparsity in the resulting models. Notably, FedBiF attains accuracy comparable to FedAvg, even when using only 1 bit-per-parameter (bpp) for uplink and 3 bpp for downlink communication. The code is available at https://github.com/Leopold1423/fedbif-tpds25.

Authors:Santiago Montiel-Marín, Angel Llamazares, Miguel Antunes-García, Fabio Sánchez-García, Luis M. Bergasa
Title: CaR1: A Multi-Modal Baseline for BEV Vehicle Segmentation via Camera-Radar Fusion
Abstract:
Camera-radar fusion offers a robust and cost-effective alternative to LiDAR-based autonomous driving systems by combining complementary sensing capabilities: cameras provide rich semantic cues but unreliable depth, while radar delivers sparse yet reliable position and motion information. We introduce CaR1, a novel camera-radar fusion architecture for BEV vehicle segmentation. Built upon BEVFusion, our approach incorporates a grid-wise radar encoding that discretizes point clouds into structured BEV features and an adaptive fusion mechanism that dynamically balances sensor contributions. Experiments on nuScenes demonstrate competitive segmentation performance (57.6 IoU), on par with state-of-the-art methods. Code is publicly available \href{https://www.github.com/santimontiel/car1}{online}.

Authors:Rini Smita Thakur, Rajeev Ranjan Dwivedi, Vinod K Kurmi
Title: Grad-CL: Source Free Domain Adaptation with Gradient Guided Feature Disalignment
Abstract:
Accurate segmentation of the optic disc and cup is critical for the early diagnosis and management of ocular diseases such as glaucoma. However, segmentation models trained on one dataset often suffer significant performance degradation when applied to target data acquired under different imaging protocols or conditions. To address this challenge, we propose \textbf{Grad-CL}, a novel source-free domain adaptation framework that leverages a pre-trained source model and unlabeled target data to robustly adapt segmentation performance without requiring access to the original source data. Grad-CL combines a gradient-guided pseudolabel refinement module with a cosine similarity-based contrastive learning strategy. In the first stage, salient class-specific features are extracted via a gradient-based mechanism, enabling more accurate uncertainty quantification and robust prototype estimation for refining noisy pseudolabels. In the second stage, a contrastive loss based on cosine similarity is employed to explicitly enforce inter-class separability between the gradient-informed features of the optic cup and disc. Extensive experiments on challenging cross-domain fundus imaging datasets demonstrate that Grad-CL outperforms state-of-the-art unsupervised and source-free domain adaptation methods, achieving superior segmentation accuracy and improved boundary delineation. Project and code are available at https://visdomlab.github.io/GCL/.

Authors:Minsang Kong, Myeongjun Kim, Sang Gu Kang, Sang Hun Lee
Title: BEVTraj: Map-Free End-to-End Trajectory Prediction in Bird's-Eye View with Deformable Attention and Sparse Goal Proposals
Abstract:
In autonomous driving, trajectory prediction is essential for ensuring safe and efficient navigation. To improve prediction accuracy, recent approaches often rely on pre-built high-definition (HD) maps or real-time local map construction modules to incorporate static environmental information. However, pre-built HD maps are limited to specific regions and cannot adapt to transient changes. In addition, local map construction modules, which recognize only predefined elements, may fail to capture critical scene details or introduce errors that degrade prediction performance. To overcome these limitations, we propose Bird's-Eye View Trajectory Prediction (BEVTraj), a novel trajectory prediction framework that operates directly in the bird's-eye view (BEV) space utilizing real-time sensor data without relying on any pre-built maps. The BEVTraj leverages deformable attention to efficiently extract relevant context from dense BEV features. Furthermore, we introduce a Sparse Goal Candidate Proposal (SGCP) module, which enables full end-to-end prediction without requiring any post-processing steps. Extensive experiments demonstrate that the BEVTraj achieves performance comparable to state-of-the-art HD map-based models while offering greater flexibility by eliminating the dependency on pre-built maps. The source code is available at https://github.com/Kongminsang/bevtraj.

Authors:Yue Zhou, Litong Feng, Mengcheng Lan, Xue Yang, Qingyun Li, Yiping Ke, Xue Jiang, Wayne Zhang
Title: Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Abstract:
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math

Authors:Hailong Yang, Mingxian Gu, Jianqi Wang, Guanjin Wang, Zhaohong Deng
Title: XAgents: A Unified Framework for Multi-Agent Cooperation via IF-THEN Rules and Multipolar Task Processing Graph
Abstract:
The rapid advancement of Large Language Models (LLMs) has significantly enhanced the capabilities of Multi-Agent Systems (MAS) in supporting humans with complex, real-world tasks. However, MAS still face challenges in effective task planning when handling highly complex tasks with uncertainty, often resulting in misleading or incorrect outputs that hinder task execution. To address this, we propose XAgents, a unified multi-agent cooperative framework built on a multipolar task processing graph and IF-THEN rules. XAgents uses the multipolar task processing graph to enable dynamic task planning and handle task uncertainty. During subtask processing, it integrates domain-specific IF-THEN rules to constrain agent behaviors, while global rules enhance inter-agent collaboration. We evaluate the performance of XAgents across three distinct datasets, demonstrating that it consistently surpasses state-of-the-art single-agent and multi-agent approaches in both knowledge-typed and logic-typed question-answering tasks. The codes for XAgents are available at: https://github.com/AGI-FHBC/XAgents.

Authors:Jing Huang, Zhiya Tan, Shutao Gong, Fanwei Zeng, Joey Tianyi Zhou, Jianshu Li
Title: LaV-CoT: Language-Aware Visual CoT with Multi-Aspect Reward Optimization for Real-World Multilingual VQA
Abstract:
As large vision language models (VLMs) advance, their capabilities in multilingual visual question answering (mVQA) have significantly improved. Chain-of-thought (CoT) reasoning has been proven to enhance interpretability and complex reasoning. However, most existing approaches rely primarily on textual CoT and provide limited support for multilingual multimodal reasoning, constraining their deployment in real-world applications. To address this gap, we introduce \textbf{LaV-CoT}, the first Language-aware Visual CoT framework with Multi-Aspect Reward Optimization. LaV-CoT incorporates an interpretable multi-stage reasoning pipeline consisting of Text Summary with Bounding Box (BBox), Language Identification, Spatial Object-level Captioning, and Step-by-step Logical Reasoning. Following this reasoning pipeline, we design an automated data curation method that generates multilingual CoT annotations through iterative generation, correction, and refinement, enabling scalable and high-quality training data. To improve reasoning and generalization, LaV-CoT adopts a two-stage training paradigm combining Supervised Fine-Tuning (SFT) with Language-aware Group Relative Policy Optimization (GRPO), guided by verifiable multi-aspect rewards including language consistency, structural accuracy, and semantic alignment. Extensive evaluations on public datasets including MMMB, Multilingual MMBench, and MTVQA show that LaV-CoT achieves up to ~9.5% accuracy improvements over open-source baselines of similar size and even surpasses models with 2$\times$ larger scales by ~2.6%. Moreover, LaV-CoT outperforms advanced proprietary models such as GPT-4o-0513 and Gemini-2.5-flash. We further conducted an online A/B test to validate our method on real-world data, highlighting its effectiveness for industrial deployment. Our code is available at this link: \href{https://github.com/HJNVR/LaV-CoT}

Authors:Xiaodong Guo, Tong Liu, Yike Li, Zi'ang Lin, Zhihong Deng
Title: TUNI: Real-time RGB-T Semantic Segmentation with Unified Multi-Modal Feature Extraction and Cross-Modal Feature Fusion
Abstract:
RGB-thermal (RGB-T) semantic segmentation improves the environmental perception of autonomous platforms in challenging conditions. Prevailing models employ encoders pre-trained on RGB images to extract features from both RGB and infrared inputs, and design additional modules to achieve cross-modal feature fusion. This results in limited thermal feature extraction and suboptimal cross-modal fusion, while the redundant encoders further compromises the model's real-time efficiency. To address the above issues, we propose TUNI, with an RGB-T encoder consisting of multiple stacked blocks that simultaneously perform multi-modal feature extraction and cross-modal fusion. By leveraging large-scale pre-training with RGB and pseudo-thermal data, the RGB-T encoder learns to integrate feature extraction and fusion in a unified manner. By slimming down the thermal branch, the encoder achieves a more compact architecture. Moreover, we introduce an RGB-T local module to strengthen the encoder's capacity for cross-modal local feature fusion. The RGB-T local module employs adaptive cosine similarity to selectively emphasize salient consistent and distinct local features across RGB-T modalities. Experimental results show that TUNI achieves competitive performance with state-of-the-art models on FMB, PST900 and CART, with fewer parameters and lower computational cost. Meanwhile, it achieves an inference speed of 27 FPS on a Jetson Orin NX, demonstrating its real-time capability in deployment. Codes are available at https://github.com/xiaodonguo/TUNI.

Authors:Siying Liu, Zikai Wang, Hanle Zheng, Yifan Hu, Xilin Wang, Qingkai Yang, Jibin Wu, Hao Guo, Lei Deng
Title: ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking
Abstract:
RGB-Event tracking has become a promising trend in visual object tracking to leverage the complementary strengths of both RGB images and dynamic spike events for improved performance. However, existing artificial neural networks (ANNs) struggle to fully exploit the sparse and asynchronous nature of event streams. Recent efforts toward hybrid architectures combining ANNs and spiking neural networks (SNNs) have emerged as a promising solution in RGB-Event perception, yet effectively fusing features across heterogeneous paradigms remains a challenge. In this work, we propose ISTASTrack, the first transformer-based \textbf{A}NN-\textbf{S}NN hybrid \textbf{Track}er equipped with \textbf{ISTA} adapters for RGB-Event tracking. The two-branch model employs a vision transformer to extract spatial context from RGB inputs and a spiking transformer to capture spatio-temporal dynamics from event streams. To bridge the modality and paradigm gap between ANN and SNN features, we systematically design a model-based ISTA adapter for bidirectional feature interaction between the two branches, derived from sparse representation theory by unfolding the iterative shrinkage thresholding algorithm. Additionally, we incorporate a temporal downsampling attention module within the adapter to align multi-step SNN features with single-step ANN features in the latent space, improving temporal fusion. Experimental results on RGB-Event tracking benchmarks, such as FE240hz, VisEvent, COESOT, and FELT, have demonstrated that ISTASTrack achieves state-of-the-art performance while maintaining high energy efficiency, highlighting the effectiveness and practicality of hybrid ANN-SNN designs for robust visual tracking. The code is publicly available at https://github.com/lsying009/ISTASTrack.git.

Authors:Zhitian Hou, Zihan Ye, Nanli Zeng, Tianyong Hao, Kun Zeng
Title: Large Language Models Meet Legal Artificial Intelligence: A Survey
Abstract:
Large Language Models (LLMs) have significantly advanced the development of Legal Artificial Intelligence (Legal AI) in recent years, enhancing the efficiency and accuracy of legal tasks. To advance research and applications of LLM-based approaches in legal domain, this paper provides a comprehensive review of 16 legal LLMs series and 47 LLM-based frameworks for legal tasks, and also gather 15 benchmarks and 29 datasets to evaluate different legal capabilities. Additionally, we analyse the challenges and discuss future directions for LLM-based approaches in the legal domain. We hope this paper provides a systematic introduction for beginners and encourages future research in this field. Resources are available at https://github.com/ZhitianHou/LLMs4LegalAI.

Authors:Anne Marthe Sophie Ngo Bibinbe, Chiron Bang, Patrick Gagnon, Jamie Ahloy-Dallaire, Eric R. Paquet
Title: An HMM-based framework for identity-aware long-term multi-object tracking from sparse and uncertain identification: use case on long-term tracking in livestock
Abstract:
The need for long-term multi-object tracking (MOT) is growing due to the demand for analyzing individual behaviors in videos that span several minutes. Unfortunately, due to identity switches between objects, the tracking performance of existing MOT approaches decreases over time, making them difficult to apply for long-term tracking. However, in many real-world applications, such as in the livestock sector, it is possible to obtain sporadic identifications for some of the animals from sources like feeders. To address the challenges of long-term MOT, we propose a new framework that combines both uncertain identities and tracking using a Hidden Markov Model (HMM) formulation. In addition to providing real-world identities to animals, our HMM framework improves the F1 score of ByteTrack, a leading MOT approach even with re-identification, on a 10 minute pig tracking dataset with 21 identifications at the pen's feeding station. We also show that our approach is robust to the uncertainty of identifications, with performance increasing as identities are provided more frequently. The improved performance of our HMM framework was also validated on the MOT17 and MOT20 benchmark datasets using both ByteTrack and FairMOT. The code for this new HMM framework and the new 10-minute pig tracking video dataset are available at: https://github.com/ngobibibnbe/uncertain-identity-aware-tracking

Authors:Zhi Ying, Boxiang Rong, Jingyu Wang, Maoyuan Xu
Title: Chord: Chain of Rendering Decomposition for PBR Material Estimation from Generated Texture Images
Abstract:
Material creation and reconstruction are crucial for appearance modeling but traditionally require significant time and expertise from artists. While recent methods leverage visual foundation models to synthesize PBR materials from user-provided inputs, they often fall short in quality, flexibility, and user control. We propose a novel two-stage generate-and-estimate framework for PBR material generation. In the generation stage, a fine-tuned diffusion model synthesizes shaded, tileable texture images aligned with user input. In the estimation stage, we introduce a chained decomposition scheme that sequentially predicts SVBRDF channels by passing previously extracted representation as input into a single-step image-conditional diffusion model. Our method is efficient, high quality, and enables flexible user control. We evaluate our approach against existing material generation and estimation methods, demonstrating superior performance. Our material estimation method shows strong robustness on both generated textures and in-the-wild photographs. Furthermore, we highlight the flexibility of our framework across diverse applications, including text-to-material, image-to-material, structure-guided generation, and material editing.

Authors:Tim Broedermannn, Christos Sakaridis, Luigi Piccinelli, Wim Abbeloos, Luc Van Gool
Title: DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Abstract:
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DELIVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion

Authors:Francisco M. López, Miles Lenz, Marco G. Fedozzi, Arthur Aubret, Jochen Triesch
Title: MIMo grows! Simulating body and sensory development in a multimodal infant model
Abstract:
Infancy is characterized by rapid body growth and an explosive change of sensory and motor abilities. However, developmental robots and simulation platforms are typically designed in the image of a specific age, which limits their ability to capture the changing abilities and constraints of developing infants. To address this issue, we present MIMo v2, a new version of the multimodal infant model. It includes a growing body with increasing actuation strength covering the age range from birth to 24 months. It also features foveated vision with developing visual acuity as well as sensorimotor delays modeling finite signal transmission speeds to and from an infant's brain. Further enhancements of this MIMo version include an inverse kinematics module, a random environment generator and updated compatiblity with third-party simulation and learning libraries. Overall, this new MIMo version permits increased realism when modeling various aspects of sensorimotor development. The code is available on the official repository (https://github.com/trieschlab/MIMo).

Authors:Jackson Eshbaugh, Chetan Tiwari, Jorge Silveyra
Title: A Modular and Multimodal Generative AI Framework for Urban Building Energy Data: Generating Synthetic Homes
Abstract:
Computational models have emerged as powerful tools for energy modeling research, touting scalability and quantitative results. However, these models require a plethora of data, some of which is inaccessible, expensive, or raises privacy concerns. We introduce a modular multimodal framework to produce this data from publicly accessible residential information and images using generative artificial intelligence (AI). Additionally, we provide a pipeline demonstrating this framework, and we evaluate its generative AI components. Our experiments show that our framework's use of AI avoids common issues with generative models. Our framework produces realistic, labeled data. By reducing dependence on costly or restricted data sources, we pave a path towards more accessible and reproducible research.

Authors:Moslem Yazdanpanah, Ali Bahri, Mehrdad Noori, Sahar Dastani, Gustavo Adolfo Vargas Hakim, David Osowiechi, Ismail Ben Ayed, Christian Desrosiers
Title: Purge-Gate: Backpropagation-Free Test-Time Adaptation for Point Clouds Classification via Token Purging
Abstract:
Test-time adaptation (TTA) is crucial for mitigating performance degradation caused by distribution shifts in 3D point cloud classification. In this work, we introduce Token Purging (PG), a novel backpropagation-free approach that removes tokens highly affected by domain shifts before they reach attention layers. Unlike existing TTA methods, PG operates at the token level, ensuring robust adaptation without iterative updates. We propose two variants: PG-SP, which leverages source statistics, and PG-SF, a fully source-free version relying on CLS-token-driven adaptation. Extensive evaluations on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C demonstrate that PG-SP achieves an average of +10.3\% higher accuracy than state-of-the-art backpropagation-free methods, while PG-SF sets new benchmarks for source-free adaptation. Moreover, PG is 12.4 times faster and 5.5 times more memory efficient than our baseline, making it suitable for real-world deployment. Code is available at \hyperlink{https://github.com/MosyMosy/Purge-Gate}{https://github.com/MosyMosy/Purge-Gate}

Authors:Yiqun Shen, Song Yuan, Zhengze Zhang, Xiaoliang Wang, Daxin Jiang, Nguyen Cam-Tu
Title: LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation
Abstract:
KV Cache is commonly used to accelerate LLM inference with long contexts, yet its high memory demand drives the need for cache compression. Existing compression methods, however, are largely heuristic and lack dynamic budget allocation. To address this limitation, we introduce a unified framework for cache compression by minimizing information loss in Transformer residual streams. Building on it, we analyze the layer attention output loss and derive a new metric to compare cache entries across heads, enabling layer-wise compression with dynamic head budgets. Additionally, by contrasting cross-layer information, we also achieve dynamic layer budgets. LAVa is the first unified strategy for cache eviction and dynamic budget allocation that, unlike prior methods, does not rely on training or the combination of multiple strategies. Experiments with benchmarks (LongBench, Needle-In-A-Haystack, Ruler, and InfiniteBench) demonstrate its superiority. Moreover, our experiments reveal a new insight: dynamic layer budgets are crucial for generation tasks (e.g., code completion), while dynamic head budgets play a key role in extraction tasks (e.g., extractive QA). As a fully dynamic compression method, LAVa consistently maintains top performance across task types. Our code is available at https://github.com/MGDDestiny/Lava.

Authors:Leen Daher, Zhaobo Wang, Malcolm Mielle
Title: D-CAT: Decoupled Cross-Attention Transfer between Sensor Modalities for Unimodal Inference
Abstract:
Cross-modal transfer learning is used to improve multi-modal classification models (e.g., for human activity recognition in human-robot collaboration). However, existing methods require paired sensor data at both training and inference, limiting deployment in resource-constrained environments where full sensor suites are not economically and technically usable. To address this, we propose Decoupled Cross-Attention Transfer (D-CAT), a framework that aligns modality-specific representations without requiring joint sensor modality during inference. Our approach combines a self-attention module for feature extraction with a novel cross-attention alignment loss, which enforces the alignment of sensors' feature spaces without requiring the coupling of the classification pipelines of both modalities. We evaluate D-CAT on three multi-modal human activity datasets (IMU, video, and audio) under both in-distribution and out-of-distribution scenarios, comparing against uni-modal models. Results show that in in-distribution scenarios, transferring from high-performing modalities (e.g., video to IMU) yields up to 10% F1-score gains over uni-modal training. In out-of-distribution scenarios, even weaker source modalities (e.g., IMU to video) improve target performance, as long as the target model isn't overfitted on the training data. By enabling single-sensor inference with cross-modal knowledge, D-CAT reduces hardware redundancy for perception systems while maintaining accuracy, which is critical for cost-sensitive or adaptive deployments (e.g., assistive robots in homes with variable sensor availability). Code is available at https://github.com/Schindler-EPFL-Lab/D-CAT.

Authors:Mujie Liu, Chenze Wang, Liping Chen, Nguyen Linh Dan Le, Niharika Tewari, Ting Dang, Jiangang Ma, Feng Xia
Title: Structure Matters: Brain Graph Augmentation via Learnable Edge Masking for Data-efficient Psychiatric Diagnosis
Abstract:
The limited availability of labeled brain network data makes it challenging to achieve accurate and interpretable psychiatric diagnoses. While self-supervised learning (SSL) offers a promising solution, existing methods often rely on augmentation strategies that can disrupt crucial structural semantics in brain graphs. To address this, we propose SAM-BG, a two-stage framework for learning brain graph representations with structural semantic preservation. In the pre-training stage, an edge masker is trained on a small labeled subset to capture key structural semantics. In the SSL stage, the extracted structural priors guide a structure-aware augmentation process, enabling the model to learn more semantically meaningful and robust representations. Experiments on two real-world psychiatric datasets demonstrate that SAM-BG outperforms state-of-the-art methods, particularly in small-labeled data settings, and uncovers clinically relevant connectivity patterns that enhance interpretability. Our code is available at https://github.com/mjliu99/SAM-BG.

Authors:Chunyu Li, Xindi Zheng, Siqi Liu
Title: BIBERT-Pipe on Biomedical Nested Named Entity Linking at BioASQ 2025
Abstract:
Entity linking (EL) for biomedical text is typically benchmarked on English-only corpora with flat mentions, leaving the more realistic scenario of nested and multilingual mentions largely unexplored. We present our system for the BioNNE 2025 Multilingual Biomedical Nested Named Entity Linking shared task (English & Russian), closing this gap with a lightweight pipeline that keeps the original EL model intact and modifies only three task-aligned components: Two-stage retrieval-ranking. We leverage the same base encoder model in both stages: the retrieval stage uses the original pre-trained model, while the ranking stage applies domain-specific fine-tuning. Boundary cues. In the ranking stage, we wrap each mention with learnable [Ms] / [Me] tags, providing the encoder with an explicit, language-agnostic span before robustness to overlap and nesting. Dataset augmentation. We also automatically expand the ranking training corpus with three complementary data sources, enhancing coverage without extra manual annotation. On the BioNNE 2025 leaderboard, our two stage system, bilingual bert (BIBERT-Pipe), ranks third in the multilingual track, demonstrating the effectiveness and competitiveness of these minimal yet principled modifications. Code are publicly available at https://github.com/Kaggle-Competitions-Code/BioNNE-L.

Authors:Jun Zhan, Mingyang Han, Yuxuan Xie, Chen Wang, Dong Zhang, Kexin Huang, Haoxiang Shi, DongXiao Wang, Tengtao Song, Qinyuan Cheng, Shimin Li, Jun Song, Xipeng Qiu, Bo Zheng
Title: VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Abstract:
Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at \href{https://junzhan2000.github.io/VStyle.github.io/}{project's homepage}.

Authors:Zhenhua Xu, Xixiang Zhao, Xubin Yue, Shengwei Tian, Changting Lin, Meng Han
Title: CTCC: A Robust and Stealthy Fingerprinting Framework for Large Language Models via Cross-Turn Contextual Correlation Backdoor
Abstract:
The widespread deployment of large language models (LLMs) has intensified concerns around intellectual property (IP) protection, as model theft and unauthorized redistribution become increasingly feasible. To address this, model fingerprinting aims to embed verifiable ownership traces into LLMs. However, existing methods face inherent trade-offs between stealthness, robustness, and generalizability, being either detectable via distributional shifts, vulnerable to adversarial modifications, or easily invalidated once the fingerprint is revealed. In this work, we introduce CTCC, a novel rule-driven fingerprinting framework that encodes contextual correlations across multiple dialogue turns, such as counterfactual, rather than relying on token-level or single-turn triggers. CTCC enables fingerprint verification under black-box access while mitigating false positives and fingerprint leakage, supporting continuous construction under a shared semantic rule even if partial triggers are exposed. Extensive experiments across multiple LLM architectures demonstrate that CTCC consistently achieves stronger stealth and robustness than prior work. Our findings position CTCC as a reliable and practical solution for ownership verification in real-world LLM deployment scenarios. Our code and data are publicly available at .

Authors:Bingxin Xu, Zhen Dong, Oussama Elachqar, Yuzhang Shang
Title: ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Abstract:
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $μ= 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. In this work, we propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and thus prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. For LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 37.3 for QuIP. \href{https://github.com/42Shawn/Butterflyquant-llm}{Codes} are available.

Authors:Jiahao Wang, Yufeng Yuan, Rujie Zheng, Youtian Lin, Jian Gao, Lin-Zhuo Chen, Yajie Bao, Yi Zhang, Chang Zeng, Yanxi Zhou, Xiaoxiao Long, Hao Zhu, Zhaoxiang Zhang, Xun Cao, Yao Yao
Title: SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Abstract:
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect \textbf{SpatialVID}, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.

Authors:Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen Zhang, Tianxing Chen, Ganqu Cui, Dehui Wang, Dingxiang Luo, Yuchen Fan, Youbang Sun, Jia Zeng, Jiangmiao Pang, Shanghang Zhang, Yu Wang, Yao Mu, Bowen Zhou, Ning Ding
Title: SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Abstract:
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $π_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL

Authors:Bingkui Tong, Jiaer Xia, Sifeng Shang, Kaiyang Zhou
Title: Measuring Epistemic Humility in Multimodal Large Language Models
Abstract:
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.

Authors:Zakaria El Kassimi, Fares Fourati, Mohamed-Slim Alouini
Title: Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Abstract:
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.

Authors:Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming Zhu, Liangwei Yang, Juntao Tan, Zhepeng Cen, Cheng Qian, Shelby Heinecke, Weiran Yao, Silvio Savarese, Caiming Xiong, Huan Wang
Title: LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Abstract:
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.

Authors:Sijun Dong, Yuxuan Hu, LiBo Wang, Geng Chen, Xiaoliang Meng
Title: PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
Abstract:
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.

Authors:Akshit Achara, Esther Puyol Anton, Alexander Hammers, Andrew P. King
Title: Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
Abstract:
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR

Authors:Sirui Xu, Dongting Li, Yucheng Zhang, Xiyan Xu, Qi Long, Ziyin Wang, Yunzhi Lu, Shuchang Dong, Hezi Jiang, Akshat Gupta, Yu-Xiong Wang, Liang-Yan Gui
Title: InterAct: Advancing Large-Scale Versatile 3D Human-Object Interaction Generation
Abstract:
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.

Authors:Dohun Lee, Hyeonho Jeong, Jiwook Kim, Duygu Ceylan, Jong Chul Ye
Title: Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Abstract:
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/

Authors:Jian Zhu, Xin Zou, Xi Wang, Ning Zhang, Bian Wu, Yao Yang, Ying Zhou, Lingfang Zeng, Chang Tang, Cheng Luo
Title: Generative Diffusion Contrastive Network for Multi-View Clustering
Abstract:
In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.

Authors:Cynthia Moreira Maia, Lucas B. V. de Amorim, George D. C. Cavalcanti, Rafael M. O. Cruz
Title: PIPES: A Meta-dataset of Machine Learning Pipelines
Abstract:
Solutions to the Algorithm Selection Problem (ASP) in machine learning face the challenge of high computational costs associated with evaluating various algorithms' performances on a given dataset. To mitigate this cost, the meta-learning field can leverage previously executed experiments shared in online repositories such as OpenML. OpenML provides an extensive collection of machine learning experiments. However, an analysis of OpenML's records reveals limitations. It lacks diversity in pipelines, specifically when exploring data preprocessing steps/blocks, such as scaling or imputation, resulting in limited representation. Its experiments are often focused on a few popular techniques within each pipeline block, leading to an imbalanced sample. To overcome the observed limitations of OpenML, we propose PIPES, a collection of experiments involving multiple pipelines designed to represent all combinations of the selected sets of techniques, aiming at diversity and completeness. PIPES stores the results of experiments performed applying 9,408 pipelines to 300 datasets. It includes detailed information on the pipeline blocks, training and testing times, predictions, performances, and the eventual error messages. This comprehensive collection of results allows researchers to perform analyses across diverse and representative pipelines and datasets. PIPES also offers potential for expansion, as additional data and experiments can be incorporated to support the meta-learning community further. The data, code, supplementary material, and all experiments can be found at https://github.com/cynthiamaia/PIPES.git.

Authors:Ha Linh Nguyen, Tze Ho Elden Tse, Angela Yao
Title: Improving Human Motion Plausibility with Body Momentum
Abstract:
Many studies decompose human motion into local motion in a frame attached to the root joint and global motion of the root joint in the world frame, treating them separately. However, these two components are not independent. Global movement arises from interactions with the environment, which are, in turn, driven by changes in the body configuration. Motion models often fail to precisely capture this physical coupling between local and global dynamics, while deriving global trajectories from joint torques and external forces is computationally expensive and complex. To address these challenges, we propose using whole-body linear and angular momentum as a constraint to link local motion with global movement. Since momentum reflects the aggregate effect of joint-level dynamics on the body's movement through space, it provides a physically grounded way to relate local joint behavior to global displacement. Building on this insight, we introduce a new loss term that enforces consistency between the generated momentum profiles and those observed in ground-truth data. Incorporating our loss reduces foot sliding and jitter, improves balance, and preserves the accuracy of the recovered motion. Code and data are available at the project page https://hlinhn.github.io/momentum_bmvc.

Authors:Peisong Wen, Qianqian Xu, Siran Dai, Runmin Cong, Qingming Huang
Title: Semantic Concentration for Self-Supervised Dense Representations Learning
Abstract:
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.

Authors:Yuchan Jie, Yushen Xu, Xiaosong Li, Fuqiang Zhou, Jianming Lv, Huafeng Li
Title: FS-Diff: Semantic guidance and clarity-aware simultaneous multimodal image fusion and super-resolution
Abstract:
As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.

Authors:Umaima Rahman, Raza Imam, Mohammad Yaqub, Dwarikanath Mahapatra
Title: Decoupling Clinical and Class-Agnostic Features for Reliable Few-Shot Adaptation under Shift
Abstract:
Medical vision-language models (VLMs) offer promise for clinical decision support, yet their reliability under distribution shifts remains a major concern for safe deployment. These models often learn task-agnostic correlations due to variability in imaging protocols and free-text reports, limiting their generalizability and increasing the risk of failure in real-world settings. We propose DRiFt, a structured feature decoupling framework that explicitly separates clinically relevant signals from task-agnostic noise using parameter-efficient tuning (LoRA) and learnable prompt tokens. To enhance cross-modal alignment and reduce uncertainty, we curate high-quality, clinically grounded image-text pairs by generating captions for a diverse medical dataset. Our approach improves in-distribution performance by +11.4% Top-1 accuracy and +3.3% Macro-F1 over prior prompt-based methods, while maintaining strong robustness across unseen datasets. Ablation studies reveal that disentangling task-relevant features and careful alignment significantly enhance model generalization and reduce unpredictable behavior under domain shift. These insights contribute toward building safer, more trustworthy VLMs for clinical use. The code is available at https://github.com/rumaima/DRiFt.

Authors:Harry Mayne, Ryan Othniel Kearns, Yushi Yang, Andrew M. Bean, Eoin Delaney, Chris Russell, Adam Mahdi
Title: LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
Abstract:
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.

Authors:Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han Zhao, Wei Zhao, Pengxu Hou, Siteng Huang, Yifan Tang, Wenhui Wang, Ru Zhang, Jianyi Liu, Donglin Wang
Title: VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
Abstract:
Vision-Language-Action (VLA) models typically bridge the gap between perceptual and action spaces by pre-training a large-scale Vision-Language Model (VLM) on robotic data. While this approach greatly enhances performance, it also incurs significant training costs. In this paper, we investigate how to effectively bridge vision-language (VL) representations to action (A). We introduce VLA-Adapter, a novel paradigm designed to reduce the reliance of VLA models on large-scale VLMs and extensive pre-training. To this end, we first systematically analyze the effectiveness of various VL conditions and present key findings on which conditions are essential for bridging perception and action spaces. Based on these insights, we propose a lightweight Policy module with Bridge Attention, which autonomously injects the optimal condition into the action space. In this way, our method achieves high performance using only a 0.5B-parameter backbone, without any robotic data pre-training. Extensive experiments on both simulated and real-world robotic benchmarks demonstrate that VLA-Adapter not only achieves state-of-the-art level performance, but also offers the fast inference speed reported to date. Furthermore, thanks to the proposed advanced bridging paradigm, VLA-Adapter enables the training of a powerful VLA model in just 8 hours on a single consumer-grade GPU, greatly lowering the barrier to deploying the VLA model. Project page: https://vla-adapter.github.io/.

Authors:Dimitrios Anastasiou, Razvan Caramalau, Nazir Sirajudeen, Matthew Boal, Philip Edwards, Justin Collins, John Kelly, Ashwin Sridhar, Maxine Tran, Faiz Mumtaz, Nevil Pavithran, Nader Francis, Danail Stoyanov, Evangelos B. Mazomenos
Title: Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment
Abstract:
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.

Authors:Hui Li, Yi You, Qiqi Chen, Bingfeng Zhang, George Q. Huang
Title: Fine-Grained Customized Fashion Design with Image-into-Prompt benchmark and dataset from LMM
Abstract:
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.

Authors:Weixing Wei, Kazuyoshi Yoshii
Title: Efficient Transformer-Based Piano Transcription With Sparse Attention Mechanisms
Abstract:
This paper investigates automatic piano transcription based on computationally-efficient yet high-performant variants of the Transformer that can capture longer-term dependency over the whole musical piece. Recently, transformer-based sequence-to-sequence models have demonstrated excellent performance in piano transcription. These models, however, fail to deal with the whole piece at once due to the quadratic complexity of the self-attention mechanism, and music signals are thus typically processed in a sliding-window manner in practice. To overcome this limitation, we propose an efficient architecture with sparse attention mechanisms. Specifically, we introduce sliding-window self-attention mechanisms for both the encoder and decoder, and a hybrid global-local cross-attention mechanism that attends to various spans according to the MIDI token types. We also use a hierarchical pooling strategy between the encoder and decoder to further reduce computational load. Our experiments on the MAESTRO dataset showed that the proposed model achieved a significant reduction in computational cost and memory usage, accelerating inference speed, while maintaining transcription performance comparable to the full-attention baseline. This allows for training with longer audio contexts on the same hardware, demonstrating the viability of sparse attention for building efficient and high-performance piano transcription systems. The code is available at https://github.com/WX-Wei/efficient-seq2seq-piano-trans.

Authors:Illia Volkov, Nikita Kisel, Klara Janouskova, Jiri Matas
Title: Image Recognition with Vision and Language Embeddings of VLMs
Abstract:
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.

Authors:Zhengzhao Lai, Youbin Zheng, Zhenyang Cai, Haonan Lyu, Jinpu Yang, Hongqing Liang, Yan Hu, Benyou Wang
Title: Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Abstract:
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.

Authors:Weige Cai, Tong Zhu, Jinyi Niu, Ruiqi Hu, Lingyao Li, Tenglong Wang, Xiaowu Dai, Weining Shen, Liwen Zhang
Title: LightAgent: Production-level Open-source Agentic AI Framework
Abstract:
With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}

Authors:Anthony P. Addison, Felix Wagner, Wentian Xu, Natalie Voets, Konstantinos Kamnitsas
Title: Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training
Abstract:
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG

Authors:Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H. Ai, Lun M. Wong, Hao Tang, Kuo Feng Hung
Title: Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Abstract:
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.

Authors:Jiesi Hu, Jianfeng Cao, Yanwu Yang, Chenfei Ye, Yixuan Zhang, Hanyang Peng, Ting Ma
Title: Medverse: A Universal Model for Full-Resolution 3D Medical Image Segmentation, Transformation and Enhancement
Abstract:
In-context learning (ICL) offers a promising paradigm for universal medical image analysis, enabling models to perform diverse image processing tasks without retraining. However, current ICL models for medical imaging remain limited in two critical aspects: they cannot simultaneously achieve high-fidelity predictions and global anatomical understanding, and there is no unified model trained across diverse medical imaging tasks (e.g., segmentation and enhancement) and anatomical regions. As a result, the full potential of ICL in medical imaging remains underexplored. Thus, we present \textbf{Medverse}, a universal ICL model for 3D medical imaging, trained on 22 datasets covering diverse tasks in universal image segmentation, transformation, and enhancement across multiple organs, imaging modalities, and clinical centers. Medverse employs a next-scale autoregressive in-context learning framework that progressively refines predictions from coarse to fine, generating consistent, full-resolution volumetric outputs and enabling multi-scale anatomical awareness. We further propose a blockwise cross-attention module that facilitates long-range interactions between context and target inputs while preserving computational efficiency through spatial sparsity. Medverse is extensively evaluated on a broad collection of held-out datasets covering previously unseen clinical centers, organs, species, and imaging modalities. Results demonstrate that Medverse substantially outperforms existing ICL baselines and establishes a novel paradigm for in-context learning. Code and model weights will be made publicly available. Our model are publicly available at https://github.com/jiesihu/Medverse.

Authors:Chin Yuen Kwok, Jia Qi Yip, Zhen Qiu, Chi Hung Chi, Kwok Yan Lam
Title: Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Abstract:
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.

Authors:Xiaoxue Luo, Jinwei Huang, Runyan Yang, Yingying Gao, Junlan Feng, Chao Deng, Shilei Zhang
Title: DeCodec: Rethinking Audio Codecs as Universal Disentangled Representation Learners
Abstract:
Universal audio codecs learn entangled representations across audio types, whereas some specific codecs offer decoupled representations but are limited to speech. Real-world audio, however, often contains mixed speech and background sounds, and downstream tasks require selective access to these components. Therefore, we rethink the audio codec as a universal disentangled representation learner to enable controllable feature selection across different audio tasks. To this end, we introduce DeCodec, a novel neural codec that learns to decouple audio representations into orthogonal subspaces dedicated to speech and background sound, and within speech, representations are further decomposed into semantic and paralinguistic components. This hierarchical disentanglement allows flexible feature selection, making DeCodec a universal front-end for multiple audio applications. Technically, built upon a codec framework, DeCodec incorporates two key innovations: a subspace orthogonal projection module that factorizes the input into two decoupled orthogonal subspaces, and a representation swap training procedure that ensures these two subspaces are correlate to the speech and background sound, respectively. These allows parallel RVQs to quantize speech and background sound components independently. Furthermore, we employ semantic guidance to the speech RVQ to achieve semantic and paralinguistic decomposition. Experimental results show that DeCodec maintains advanced signal reconstruction while enabling new capabilities: superior speech enhancement and effective one-shot voice conversion on noisy speech via representation recombination, improved ASR robustness through clean semantic features, and controllable background sound preservation/suppression in TTS. Demo Page: https://luo404.github.io/DeCodecV2/

Authors:Yuhao Zhang, Yuhao Du, Zhanchen Dai, Xiangnan Ma, Kaiqi Kou, Benyou Wang, Haizhou Li
Title: EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Abstract:
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.

Authors:Yuiko Uchida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama
Title: Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation
Abstract:
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.

Authors:Jianping Li, Xinhang Xu, Zhongyuan Liu, Shenghai Yuan, Muqing Cao, Lihua Xie
Title: AEOS: Active Environment-aware Optimal Scanning Control for UAV LiDAR-Inertial Odometry in Complex Scenes
Abstract:
LiDAR-based 3D perception and localization on unmanned aerial vehicles (UAVs) are fundamentally limited by the narrow field of view (FoV) of compact LiDAR sensors and the payload constraints that preclude multi-sensor configurations. Traditional motorized scanning systems with fixed-speed rotations lack scene awareness and task-level adaptability, leading to degraded odometry and mapping performance in complex, occluded environments. Inspired by the active sensing behavior of owls, we propose AEOS (Active Environment-aware Optimal Scanning), a biologically inspired and computationally efficient framework for adaptive LiDAR control in UAV-based LiDAR-Inertial Odometry (LIO). AEOS combines model predictive control (MPC) and reinforcement learning (RL) in a hybrid architecture: an analytical uncertainty model predicts future pose observability for exploitation, while a lightweight neural network learns an implicit cost map from panoramic depth representations to guide exploration. To support scalable training and generalization, we develop a point cloud-based simulation environment with real-world LiDAR maps across diverse scenes, enabling sim-to-real transfer. Extensive experiments in both simulation and real-world environments demonstrate that AEOS significantly improves odometry accuracy compared to fixed-rate, optimization-only, and fully learned baselines, while maintaining real-time performance under onboard computational constraints. The project page can be found at https://kafeiyin00.github.io/AEOS/.

Authors:Liqun He, Jiaqi Xu
Title: Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
Abstract:
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.

Authors:Junhao Xing, Ryohei Miyakawa, Yang Yang, Xinpeng Liu, Risa Shinoda, Hiroaki Santo, Yosuke Toda, Fumio Okura
Title: Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention
Abstract:
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.

Authors:Kelin Ren, Chan-Yang Ju, Dong-Ho Lee
Title: Modality Alignment with Multi-scale Bilateral Attention for Multimodal Recommendation
Abstract:
Multimodal recommendation systems are increasingly becoming foundational technologies for e-commerce and content platforms, enabling personalized services by jointly modeling users' historical behaviors and the multimodal features of items (e.g., visual and textual). However, most existing methods rely on either static fusion strategies or graph-based local interaction modeling, facing two critical limitations: (1) insufficient ability to model fine-grained cross-modal associations, leading to suboptimal fusion quality; and (2) a lack of global distribution-level consistency, causing representational bias. To address these, we propose MambaRec, a novel framework that integrates local feature alignment and global distribution regularization via attention-guided learning. At its core, we introduce the Dilated Refinement Attention Module (DREAM), which uses multi-scale dilated convolutions with channel-wise and spatial attention to align fine-grained semantic patterns between visual and textual modalities. This module captures hierarchical relationships and context-aware associations, improving cross-modal semantic modeling. Additionally, we apply Maximum Mean Discrepancy (MMD) and contrastive loss functions to constrain global modality alignment, enhancing semantic consistency. This dual regularization reduces mode-specific deviations and boosts robustness. To improve scalability, MambaRec employs a dimensionality reduction strategy to lower the computational cost of high-dimensional multimodal features. Extensive experiments on real-world e-commerce datasets show that MambaRec outperforms existing methods in fusion quality, generalization, and efficiency. Our code has been made publicly available at https://github.com/rkl71/MambaRec.

Authors:Jianqin Gao, Tianqi Wang, Yu Zhang, Yishu Zhang, Chenyuan Wang, Allan Dong, Zihao Wang
Title: FPI-Det: a face--phone Interaction Dataset for phone-use detection and understanding
Abstract:
The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.

Authors:Jifeng Shen, Haibo Zhan, Xin Zuo, Heng Fan, Xiaohui Yuan, Jun Li, Wankou Yang
Title: IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Abstract:
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance. To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference. Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.

Authors:Ahmed Adnan, Mushfiqur Rahman, Saad Sakib Noor, Kazi Sakib
Title: CLARA: A Developer's Companion for Code Comprehension and Analysis
Abstract:
Code comprehension and analysis of open-source project codebases is a task frequently performed by developers and researchers. However, existing tools that practitioners use for assistance with such tasks often require prior project setup, lack context-awareness, and involve significant manual effort. To address this, we present CLARA, a browser extension that utilizes a state-of-the-art inference model to assist developers and researchers in: (i) comprehending code files and code fragments, (ii) code refactoring, and (iii) code quality attribute detection. We qualitatively evaluated CLARA's inference model using existing datasets and methodology, and performed a comprehensive user study with 10 developers and academic researchers to assess its usability and usefulness. The results show that CLARA is useful, accurate, and practical in code comprehension and analysis tasks. CLARA is an open-source tool available at https://github.com/SaadNoor555/CLARA_tool_demo. A video showing the full capabilities of CLARA can be found at https://youtu.be/VDKVXvIH41Q?si=qBFsmS_Y4m_9x3YH.

Authors:Qiuhui Chen, Xuancheng Yao, Huping Ye, Yi Hong
Title: Enhancing 3D Medical Image Understanding with Pretraining Aided by 2D Multimodal Large Language Models
Abstract:
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.

Authors:Piyush Pant
Title: Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
Abstract:
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.

Authors:Umair Hassan
Title: COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Abstract:
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.

Authors:Marianna Nezhurina, Jörg Franke, Taishi Nakamura, Timur Carstensen, Niccolò Ajroldi, Ville Komulainen, David Salinas, Jenia Jitsev
Title: Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
Abstract:
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.

Authors:Andrew Bell, Yan Kit Choi, Steffen E Petersen, Andrew King, Muhummad Sohaib Nazir, Alistair A Young
Title: Implicit Neural Representations of Intramyocardial Motion and Strain
Abstract:
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets. The code can be found at https://github.com/andrewjackbell/Displacement-INR

Authors:Magdalena Wysocki, Felix Duelmer, Ananya Bal, Nassir Navab, Mohammad Farid Azampour
Title: UltrON: Ultrasound Occupancy Networks
Abstract:
In free-hand ultrasound imaging, sonographers rely on expertise to mentally integrate partial 2D views into 3D anatomical shapes. Shape reconstruction can assist clinicians in this process. Central to this task is the choice of shape representation, as it determines how accurately and efficiently the structure can be visualized, analyzed, and interpreted. Implicit representations, such as SDF and occupancy function, offer a powerful alternative to traditional voxel- or mesh-based methods by modeling continuous, smooth surfaces with compact storage, avoiding explicit discretization. Recent studies demonstrate that SDF can be effectively optimized using annotations derived from segmented B-mode ultrasound images. Yet, these approaches hinge on precise annotations, overlooking the rich acoustic information embedded in B-mode intensity. Moreover, implicit representation approaches struggle with the ultrasound's view-dependent nature and acoustic shadowing artifacts, which impair reconstruction. To address the problems resulting from occlusions and annotation dependency, we propose an occupancy-based representation and introduce \gls{UltrON} that leverages acoustic features to improve geometric consistency in weakly-supervised optimization regime. We show that these features can be obtained from B-mode images without additional annotation cost. Moreover, we propose a novel loss function that compensates for view-dependency in the B-mode images and facilitates occupancy optimization from multiview ultrasound. By incorporating acoustic properties, \gls{UltrON} generalizes to shapes of the same anatomy. We show that \gls{UltrON} mitigates the limitations of occlusions and sparse labeling and paves the way for more accurate 3D reconstruction. Code and dataset will be available at https://github.com/magdalena-wysocki/ultron.

Authors:Nima Karimian Kakolaki
Title: A Comparative Analysis of Identifier Schemes: UUIDv4, UUIDv7, and ULID for Distributed Systems
Abstract:
Distributed systems require robust, scalable identifier schemes to ensure data uniqueness and efficient indexing across multiple nodes. This paper presents a comprehensive analysis of the evolution of distributed identifiers, comparing traditional auto-increment keys with UUIDv4, UUIDv7, and ULIDs. We combine mathematical calculation of collision probabilities with empirical experiments measuring generation speed and network transmission overhead in a simulated distributed environment. Results demonstrate that ULIDs significantly outperform UUIDv4 and UUIDv7, reducing network overhead by 83.7% and increasing generation speed by 97.32%. statistical analysis further shows ULIDs offer a 98.42% lower collision risk compared to UUIDv7, while maintaining negligible collision probabilities even at high generation rates. These findings highlight ULIDs as an optimal choice for high-performance distributed systems, providing efficient, time-ordered, and lexicographically sortable identifiers suitable for scalable applications. All source code, datasets, and analysis scripts utilized in this research are publicly available in our dedicated repository at https://github.com/nimakarimiank/uids-comparison. This repository contains comprehensive documentation of the experimental setup, including configuration files for the distributed environment, producer and consumer implementations, and message broker integration. Additionally, it provides the data scripts and datasets. Researchers and practitioners are encouraged to explore the repository for full reproducibility of the experiments and to facilitate further investigation or extension of the presented work.

Authors:Puskal Khadka, Rodrigue Rizk, Longwei Wang, KC Santosh
Title: CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision
Abstract:
Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin

Authors:Lisa Dunlap, Joseph E. Gonzalez, Trevor Darrell, Fabian Caba Heilbron, Josef Sivic, Bryan Russell
Title: Discovering Divergent Representations between Text-to-Image Models
Abstract:
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon

Authors:Rogerio Guimaraes, Frank Xiao, Pietro Perona, Markus Marks
Title: Diffusion-Based Action Recognition Generalizes to Untrained Domains
Abstract:
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: https://www.vision.caltech.edu/actiondiff. Code: https://github.com/frankyaoxiao/ActionDiff

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence Meets Transformers for Universal Multimodal Retrieval
Abstract:
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2

Authors:Wenqi Marshall Guo, Yiyang Du, Heidi J. S. Tworek, Shan Du
Title: Position: The Pitfalls of Over-Alignment: Overly Caution Health-Related Responses From LLMs are Unethical and Dangerous
Abstract:
Large Language Models (LLMs) are usually aligned with "human values/preferences" to prevent harmful output. Discussions around the alignment of Large Language Models (LLMs) generally focus on preventing harmful outputs. However, in this paper, we argue that in health-related queries, over-alignment-leading to overly cautious responses-can itself be harmful, especially for people with anxiety and obsessive-compulsive disorder (OCD). This is not only unethical but also dangerous to the user, both mentally and physically. We also showed qualitative results that some LLMs exhibit varying degrees of alignment. Finally, we call for the development of LLMs with stronger reasoning capabilities that provide more tailored and nuanced responses to health queries. Warning: This paper contains materials that could trigger health anxiety or OCD. Dataset and full results can be found in https://github.com/weathon/over-alignment.

Authors:David Stotko, Reinhard Klein
Title: SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
Abstract:
The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.

Authors:Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, Bowen Zhou
Title: A Survey of Reinforcement Learning for Large Reasoning Models
Abstract:
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs

Authors:Zongzheng Zhang, Chenghao Yue, Haobo Xu, Minwen Liao, Xianglin Qi, Huan-ang Gao, Ziwei Wang, Hao Zhao
Title: RoboChemist: Long-Horizon and Safety-Compliant Robotic Chemical Experimentation
Abstract:
Robotic chemists promise to both liberate human experts from repetitive tasks and accelerate scientific discovery, yet remain in their infancy. Chemical experiments involve long-horizon procedures over hazardous and deformable substances, where success requires not only task completion but also strict compliance with experimental norms. To address these challenges, we propose \textit{RoboChemist}, a dual-loop framework that integrates Vision-Language Models (VLMs) with Vision-Language-Action (VLA) models. Unlike prior VLM-based systems (e.g., VoxPoser, ReKep) that rely on depth perception and struggle with transparent labware, and existing VLA systems (e.g., RDT, pi0) that lack semantic-level feedback for complex tasks, our method leverages a VLM to serve as (1) a planner to decompose tasks into primitive actions, (2) a visual prompt generator to guide VLA models, and (3) a monitor to assess task success and regulatory compliance. Notably, we introduce a VLA interface that accepts image-based visual targets from the VLM, enabling precise, goal-conditioned control. Our system successfully executes both primitive actions and complete multi-step chemistry protocols. Results show 23.57% higher average success rate and a 0.298 average increase in compliance rate over state-of-the-art VLA baselines, while also demonstrating strong generalization to objects and tasks.

Authors:Hailay Kidu Teklehaymanot, Dren Fazlija, Wolfgang Nejdl
Title: MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Abstract:
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC

Authors:Tristan Montoya, Andrés M. Rueda-Ramírez, Gregor J. Gassner
Title: Entropy-Stable Discontinuous Spectral-Element Methods for the Spherical Shallow Water Equations in Covariant Form
Abstract:
We introduce discontinuous spectral-element methods of arbitrary order that are well balanced, conservative of mass, and conservative or dissipative of total energy (i.e., a mathematical entropy function) for a covariant flux formulation of the rotating shallow water equations with variable bottom topography on curved manifolds such as the sphere. The proposed methods are based on a skew-symmetric splitting of the tensor divergence in covariant form, which we implement and analyze within a general flux-differencing framework using tensor-product summation-by-parts operators. Such schemes are proven to satisfy semi-discrete mass and energy conservation on general unstructured quadrilateral grids in addition to well balancing for arbitrary continuous bottom topographies, with energy dissipation resulting from a suitable choice of numerical interface flux. Furthermore, the proposed covariant formulation permits an analytical representation of the geometry and associated metric terms while satisfying the aforementioned entropy stability, conservation, and well-balancing properties without the need to approximate the metric terms so as to enforce discrete metric identities. Numerical experiments on cubed-sphere grids are presented in order to verify the schemes' structure-preservation properties as well as to assess their accuracy and robustness within the context of several standard test cases characteristic of idealized atmospheric flows. Our theoretical and numerical results support the further development of the proposed methodology towards a full dynamical core for numerical weather prediction and climate modelling, as well as broader applications to other hyperbolic and advection-dominated systems of partial differential equations on curved manifolds.

Authors:Wonsuhk Jung, Utkarsh A. Mishra, Nadun Ranawaka Arachchige, Yongxin Chen, Danfei Xu, Shreyas Kousik
Title: Joint Model-based Model-free Diffusion for Planning with Constraints
Abstract:
Model-free diffusion planners have shown great promise for robot motion planning, but practical robotic systems often require combining them with model-based optimization modules to enforce constraints, such as safety. Naively integrating these modules presents compatibility challenges when diffusion's multi-modal outputs behave adversarially to optimization-based modules. To address this, we introduce Joint Model-based Model-free Diffusion (JM2D), a novel generative modeling framework. JM2D formulates module integration as a joint sampling problem to maximize compatibility via an interaction potential, without additional training. Using importance sampling, JM2D guides modules outputs based only on evaluations of the interaction potential, thus handling non-differentiable objectives commonly arising from non-convex optimization modules. We evaluate JM2D via application to aligning diffusion planners with safety modules on offline RL and robot manipulation. JM2D significantly improves task performance compared to conventional safety filters without sacrificing safety. Further, we show that conditional generation is a special case of JM2D and elucidate key design choices by comparing with SOTA gradient-based and projection-based diffusion planners. More details at: https://jm2d-corl25.github.io/.

Authors:Mikhail Khodak, Min Ki Jung, Brian Wynne, Edmond Chow, Egemen Kolemen
Title: PCGBandit: One-shot acceleration of transient PDE solvers via online-learned preconditioners
Abstract:
Data-driven acceleration of scientific computing workflows has been a high-profile aim of machine learning (ML) for science, with numerical simulation of transient partial differential equations (PDEs) being one of the main applications. The focus thus far has been on methods that require classical simulations to train, which when combined with the data-hungriness and optimization challenges of neural networks has caused difficulties in demonstrating a convincing advantage against strong classical baselines. We consider an alternative paradigm in which the learner uses a classical solver's own data to accelerate it, enabling a one-shot speedup of the simulation. Concretely, since transient PDEs often require solving a sequence of related linear systems, the feedback from repeated calls to a linear solver such as preconditioned conjugate gradient (PCG) can be used by a bandit algorithm to online-learn an adaptive sequence of solver configurations (e.g. preconditioners). The method we develop, PCGBandit, is implemented directly on top of the popular open source software OpenFOAM, which we use to show its effectiveness on a set of fluid and magnetohydrodynamics (MHD) problems.

Authors:Lena Wild, Rafael Valencia, Patric Jensfelt
Title: ArgoTweak: Towards Self-Updating HD Maps through Structured Priors
Abstract:
Reliable integration of prior information is crucial for self-verifying and self-updating HD maps. However, no public dataset includes the required triplet of prior maps, current maps, and sensor data. As a result, existing methods must rely on synthetic priors, which create inconsistencies and lead to a significant sim2real gap. To address this, we introduce ArgoTweak, the first dataset to complete the triplet with realistic map priors. At its core, ArgoTweak employs a bijective mapping framework, breaking down large-scale modifications into fine-grained atomic changes at the map element level, thus ensuring interpretability. This paradigm shift enables accurate change detection and integration while preserving unchanged elements with high fidelity. Experiments show that training models on ArgoTweak significantly reduces the sim2real gap compared to synthetic priors. Extensive ablations further highlight the impact of structured priors and detailed change annotations. By establishing a benchmark for explainable, prior-aided HD mapping, ArgoTweak advances scalable, self-improving mapping solutions. The dataset, baselines, map modification toolbox, and further resources are available at https://kth-rpl.github.io/ArgoTweak/.

Authors:Michael J. Munje, Chen Tang, Shuijing Liu, Zichao Hu, Yifeng Zhu, Jiaxun Cui, Garrett Warnell, Joydeep Biswas, Peter Stone
Title: SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
Abstract:
Robot navigation in dynamic, human-centered environments requires socially-compliant decisions grounded in robust scene understanding. Recent Vision-Language Models (VLMs) exhibit promising capabilities such as object recognition, common-sense reasoning, and contextual understanding-capabilities that align with the nuanced requirements of social robot navigation. However, it remains unclear whether VLMs can accurately understand complex social navigation scenes (e.g., inferring the spatial-temporal relations among agents and human intentions), which is essential for safe and socially compliant robot navigation. While some recent works have explored the use of VLMs in social robot navigation, no existing work systematically evaluates their ability to meet these necessary conditions. In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. Through experiments with state-of-the-art VLMs, we find that while the best-performing VLM achieves an encouraging probability of agreeing with human answers, it still underperforms simpler rule-based approach and human consensus baselines, indicating critical gaps in social scene understanding of current VLMs. Our benchmark sets the stage for further research on foundation models for social robot navigation, offering a framework to explore how VLMs can be tailored to meet real-world social robot navigation needs. An overview of this paper along with the code and data can be found at https://larg.github.io/socialnav-sub .

Authors:Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Junjie Ye, Jiazheng Zhang, Wenxiang Chen, Wei He, Yiwen Ding, Guanyu Li, Zehui Chen, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Title: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Abstract:
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.

Authors:Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard Grave, Patrick Pérez, Laurent Mazaré, Alexandre Défossez
Title: Streaming Sequence-to-Sequence Learning with Delayed Streams Modeling
Abstract:
We introduce Delayed Streams Modeling (DSM), a flexible formulation for streaming, multimodal sequence-to-sequence learning. Sequence-to-sequence generation is often cast in an offline manner, where the model consumes the complete input sequence before generating the first output timestep. Alternatively, streaming sequence-to-sequence rely on learning a policy for choosing when to advance on the input stream, or write to the output stream. DSM instead models already time-aligned streams with a decoder-only language model. By moving the alignment to a pre-processing step,and introducing appropriate delays between streams, DSM provides streaming inference of arbitrary output sequences, from any input combination, making it applicable to many sequence-to-sequence problems. In particular, given text and audio streams, automatic speech recognition (ASR) corresponds to the text stream being delayed, while the opposite gives a text-to-speech (TTS) model. We perform extensive experiments for these two major sequence-to-sequence tasks, showing that DSM provides state-of-the-art performance and latency while supporting arbitrary long sequences, being even competitive with offline baselines. Code, samples and demos are available at https://github.com/kyutai-labs/delayed-streams-modeling

Authors:Vivek Oommen, Siavash Khodakarami, Aniruddha Bora, Zhicheng Wang, George Em Karniadakis
Title: Learning Turbulent Flows with Generative Models: Super-resolution, Forecasting, and Sparse Flow Reconstruction
Abstract:
Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/

Authors:Marius Dähling, Sebastian Krebs, J. Marius Zöllner
Title: CrowdQuery: Density-Guided Query Module for Enhanced 2D and 3D Detection in Crowded Scenes
Abstract:
This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Abstract:
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $θ= 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Authors:Sike Xiang, Shuang Chen, Amir Atapour-Abarghouei
Title: BcQLM: Efficient Vision-Language Understanding with Distilled Q-Gated Cross-Modal Fusion
Abstract:
As multimodal large language models (MLLMs) advance, their large-scale architectures pose challenges for deployment in resource-constrained environments. In the age of large models, where energy efficiency, computational scalability and environmental sustainability are paramount, the development of lightweight and high-performance models is critical for real-world applications. As such, we propose a lightweight MLLM framework for end-to-end visual question answering. Our proposed approach centres on BreezeCLIP, a compact yet powerful vision-language encoder optimised for efficient multimodal understanding. With only 1.2 billion parameters overall, our model significantly reduces computational cost while achieving performance comparable to standard-size MLLMs. Experiments conducted on multiple datasets further validate its effectiveness in balancing accuracy and efficiency. The modular and extensible design enables generalisation to broader multimodal tasks. The proposed lightweight vision-language framework is denoted as BcQLM (BreezeCLIP-enhanced Q-Gated Multimodal Language Model). It offers a promising path toward deployable MLLMs under practical hardware constraints. The source code is available at https://github.com/thico0224/BcQLM.

Authors:Ada Fang, Robert G. Alberstein, Simon Kelow, Frédéric A. Dreyer
Title: Tokenizing Loops of Antibodies
Abstract:
The complementarity-determining regions of antibodies are loop structures that are key to their interactions with antigens, and of high importance to the design of novel biologics. Since the 1980s, categorizing the diversity of CDR structures into canonical clusters has enabled the identification of key structural motifs of antibodies. However, existing approaches have limited coverage and cannot be readily incorporated into protein foundation models. Here we introduce ImmunoGlobulin LOOp Tokenizer, Igloo, a multimodal antibody loop tokenizer that encodes backbone dihedral angles and sequence. Igloo is trained using a contrastive learning objective to map loops with similar backbone dihedral angles closer together in latent space. Igloo can efficiently retrieve the closest matching loop structures from a structural antibody database, outperforming existing methods on identifying similar H3 loops by 5.9\%. Igloo assigns tokens to all loops, addressing the limited coverage issue of canonical clusters, while retaining the ability to recover canonical loop conformations. To demonstrate the versatility of Igloo tokens, we show that they can be incorporated into protein language models with IglooLM and IglooALM. On predicting binding affinity of heavy chain variants, IglooLM outperforms the base protein language model on 8 out of 10 antibody-antigen targets. Additionally, it is on par with existing state-of-the-art sequence-based and multimodal protein language models, performing comparably to models with $7\times$ more parameters. IglooALM samples antibody loops which are diverse in sequence and more consistent in structure than state-of-the-art antibody inverse folding models. Igloo demonstrates the benefit of introducing multimodal tokens for antibody loops for encoding the diverse landscape of antibody loops, improving protein foundation models, and for antibody CDR design.

Authors:Stefan Podgorski, Sourav Garg, Mehdi Hosseinzadeh, Lachlan Mares, Feras Dayoub, Ian Reid
Title: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
Abstract:
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.

Authors:Siratish Sakpiboonchit
Title: Accelerating Diffusion Transformer-Based Text-to-Speech with Transformer Layer Caching
Abstract:
This paper presents a method to accelerate the inference process of diffusion transformer (DiT)-based text-to-speech (TTS) models by applying a selective caching mechanism to transformer layers. Specifically, I integrate SmoothCache into the F5-TTS architecture, focusing on caching outputs of self-attention and feed-forward network layers to reduce redundant computations during the denoising process. A calibration phase is introduced to analyze L1 relative errors between timesteps, guiding the selection of cache schedules that minimize quality degradation. To address the problem of inter-layer dependency, a unified caching schedule is adopted, applying the cache pattern derived from self-attention layers to both layer types. Experiments on LibriSpeech-PC and Seed-TTS datasets evaluate various cache thresholds and denoising step configurations. Results show that caching at higher denoising steps reduces inference time without compromising output quality, whereas caching at lower steps can negatively impact synthesis quality similarly to reducing the total number of denoising steps. Objective and subjective metrics confirm the effectiveness of SmoothCache in maintaining performance while improving computational efficiency. Comparisons between cached inference and reduced-step inference further highlight the benefits of selective caching, especially under high-step configurations. This work demonstrates that transformer layer caching is a practical solution for optimizing diffusion transformer-based TTS models without requiring architectural changes or retraining. Example inference results can be heard at https://siratish.github.io/F5-TTS_SmoothCache/ .

Authors:Zhen Tian, Christos Anagnostopoulos, Qiyuan Wang, Zhiwei Gao
Title: Multi-Modal Robust Enhancement for Coastal Water Segmentation: A Systematic HSV-Guided Framework
Abstract:
Coastal water segmentation from satellite imagery presents unique challenges due to complex spectral characteristics and irregular boundary patterns. Traditional RGB-based approaches often suffer from training instability and poor generalization in diverse maritime environments. This paper introduces a systematic robust enhancement framework, referred to as Robust U-Net, that leverages HSV color space supervision and multi-modal constraints for improved coastal water segmentation. Our approach integrates five synergistic components: HSV-guided color supervision, gradient-based coastline optimization, morphological post-processing, sea area cleanup, and connectivity control. Through comprehensive ablation studies, we demonstrate that HSV supervision provides the highest impact (0.85 influence score), while the complete framework achieves superior training stability (84\% variance reduction) and enhanced segmentation quality. Our method shows consistent improvements across multiple evaluation metrics while maintaining computational efficiency. For reproducibility, our training configurations and code are available here: https://github.com/UofgCoastline/ICASSP-2026-Robust-Unet.

Authors:Amirali Rayegan, Tim Menzies
Title: Minimal Data, Maximum Clarity: A Heuristic for Explaining Optimization
Abstract:
Efficient, interpretable optimization is a critical but underexplored challenge in software engineering, where practitioners routinely face vast configuration spaces and costly, error-prone labeling processes. This paper introduces EZR, a novel and modular framework for multi-objective optimization that unifies active sampling, learning, and explanation within a single, lightweight pipeline. Departing from conventional wisdom, our Maximum Clarity Heuristic demonstrates that using less (but more informative) data can yield optimization models that are both effective and deeply understandable. EZR employs an active learning strategy based on Naive Bayes sampling to efficiently identify high-quality configurations with a fraction of the labels required by fully supervised approaches. It then distills optimization logic into concise decision trees, offering transparent, actionable explanations for both global and local decision-making. Extensive experiments across 60 real-world datasets establish that EZR reliably achieves over 90% of the best-known optimization performance in most cases, while providing clear, cohort-based rationales that surpass standard attribution-based explainable AI (XAI) methods (LIME, SHAP, BreakDown) in clarity and utility. These results endorse "less but better"; it is both possible and often preferable to use fewer (but more informative) examples to generate label-efficient optimization and explanations in software systems. To support transparency and reproducibility, all code and experimental materials are publicly available at https://github.com/amiiralii/Minimal-Data-Maximum-Clarity.

Authors:Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Zeqiang Lai, Yunfei Zhao, Zhuo Chen, Chunchao Guo
Title: X-Part: high fidelity and structure coherent shape decomposition
Abstract:
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.

Authors:Liyang Chen, Tianxiang Ma, Jiawei Liu, Bingchuan Li, Zhuowei Chen, Lijie Liu, Xu He, Gen Li, Qian He, Zhiyong Wu
Title: HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Abstract:
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.

Authors:Piyush Bagad, Andrew Zisserman
Title: Chirality in Action: Time-Aware Video Representation Learning by Latent Straightening
Abstract:
Our objective is to develop compact video representations that are sensitive to visual change over time. To measure such time-sensitivity, we introduce a new task: chiral action recognition, where one needs to distinguish between a pair of temporally opposite actions, such as "opening vs. closing a door", "approaching vs. moving away from something", "folding vs. unfolding paper", etc. Such actions (i) occur frequently in everyday life, (ii) require understanding of simple visual change over time (in object state, size, spatial position, count . . . ), and (iii) are known to be poorly represented by many video embeddings. Our goal is to build time aware video representations which offer linear separability between these chiral pairs. To that end, we propose a self-supervised adaptation recipe to inject time-sensitivity into a sequence of frozen image features. Our model is based on an auto-encoder with a latent space with inductive bias inspired by perceptual straightening. We show that this results in a compact but time-sensitive video representation for the proposed task across three datasets: Something-Something, EPIC-Kitchens, and Charade. Our method (i) outperforms much larger video models pre-trained on large-scale video datasets, and (ii) leads to an improvement in classification performance on standard benchmarks when combined with these existing models.

Authors:Fanzhen Liu, Alsharif Abuadbba, Kristen Moore, Surya Nepal, Cecile Paris, Jia Wu, Jian Yang, Quan Z. Sheng
Title: Adversarial Attacks Against Automated Fact-Checking: A Survey
Abstract:
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.

Authors:Yujian Ma, Jinqiu Sang, Ruizhe Li
Title: Behind the Scenes: Mechanistic Interpretability of LoRA-adapted Whisper for Speech Emotion Recognition
Abstract:
Large pre-trained speech models such as Whisper offer strong generalization but pose significant challenges for resource-efficient adaptation. Low-Rank Adaptation (LoRA) has become a popular parameter-efficient fine-tuning method, yet its underlying mechanisms in speech tasks remain poorly understood. In this work, we conduct the first systematic mechanistic interpretability study of LoRA within the Whisper encoder for speech emotion recognition (SER). Using a suite of analytical tools, including layer contribution probing, logit-lens inspection, and representational similarity via singular value decomposition (SVD) and centered kernel alignment (CKA), we reveal two key mechanisms: a delayed specialization process that preserves general features in early layers before consolidating task-specific information, and a forward alignment, backward differentiation dynamic between LoRA's matrices. Our findings clarify how LoRA reshapes encoder hierarchies, providing both empirical insights and a deeper mechanistic understanding for designing efficient and interpretable adaptation strategies in large speech models. Our code is available at https://github.com/harryporry77/Behind-the-Scenes.

Authors:Jinzhong Ning, Paerhati Tulajiang, Yingying Le, Yijia Zhang, Yuanyuan Sun, Hongfei Lin, Haifeng Liu
Title: CommonVoice-SpeechRE and RPG-MoGe: Advancing Speech Relation Extraction with a New Dataset and Multi-Order Generative Framework
Abstract:
Speech Relation Extraction (SpeechRE) aims to extract relation triplets directly from speech. However, existing benchmark datasets rely heavily on synthetic data, lacking sufficient quantity and diversity of real human speech. Moreover, existing models also suffer from rigid single-order generation templates and weak semantic alignment, substantially limiting their performance. To address these challenges, we introduce CommonVoice-SpeechRE, a large-scale dataset comprising nearly 20,000 real-human speech samples from diverse speakers, establishing a new benchmark for SpeechRE research. Furthermore, we propose the Relation Prompt-Guided Multi-Order Generative Ensemble (RPG-MoGe), a novel framework that features: (1) a multi-order triplet generation ensemble strategy, leveraging data diversity through diverse element orders during both training and inference, and (2) CNN-based latent relation prediction heads that generate explicit relation prompts to guide cross-modal alignment and accurate triplet generation. Experiments show our approach outperforms state-of-the-art methods, providing both a benchmark dataset and an effective solution for real-world SpeechRE. The source code and dataset are publicly available at https://github.com/NingJinzhong/SpeechRE_RPG_MoGe.

Authors:Lei Ye, Haibo Gao, Peng Xu, Zhelin Zhang, Junqi Shan, Ao Zhang, Wei Zhang, Ruyi Zhou, Zongquan Deng, Liang Ding
Title: PegasusFlow: Parallel Rolling-Denoising Score Sampling for Robot Diffusion Planner Flow Matching
Abstract:
Diffusion models offer powerful generative capabilities for robot trajectory planning, yet their practical deployment on robots is hindered by a critical bottleneck: a reliance on imitation learning from expert demonstrations. This paradigm is often impractical for specialized robots where data is scarce and creates an inefficient, theoretically suboptimal training pipeline. To overcome this, we introduce PegasusFlow, a hierarchical rolling-denoising framework that enables direct and parallel sampling of trajectory score gradients from environmental interaction, completely bypassing the need for expert data. Our core innovation is a novel sampling algorithm, Weighted Basis Function Optimization (WBFO), which leverages spline basis representations to achieve superior sample efficiency and faster convergence compared to traditional methods like MPPI. The framework is embedded within a scalable, asynchronous parallel simulation architecture that supports massively parallel rollouts for efficient data collection. Extensive experiments on trajectory optimization and robotic navigation tasks demonstrate that our approach, particularly Action-Value WBFO (AVWBFO) combined with a reinforcement learning warm-start, significantly outperforms baselines. In a challenging barrier-crossing task, our method achieved a 100% success rate and was 18% faster than the next-best method, validating its effectiveness for complex terrain locomotion planning. https://masteryip.github.io/pegasusflow.github.io/

Authors:Parastoo Pashmchi, Jerome Benoit, Motonobu Kanagawa
Title: kNNSampler: Stochastic Imputations for Recovering Missing Value Distributions
Abstract:
We study a missing-value imputation method, termed kNNSampler, that imputes a given unit's missing response by randomly sampling from the observed responses of the $k$ most similar units to the given unit in terms of the observed covariates. This method can sample unknown missing values from their distributions, quantify the uncertainties of missing values, and be readily used for multiple imputation. Unlike popular kNNImputer, which estimates the conditional mean of a missing response given an observed covariate, kNNSampler is theoretically shown to estimate the conditional distribution of a missing response given an observed covariate. Experiments demonstrate its effectiveness in recovering the distribution of missing values. The code for kNNSampler is made publicly available (https://github.com/SAP/knn-sampler).

Authors:Rongsheng Wang, Fenghe Tang, Qingsong Yao, Rui Yan, Xu Zhang, Zhen Huang, Haoran Lai, Zhiyang He, Xiaodong Tao, Zihang Jiang, Shaohua Kevin Zhou
Title: SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training
Abstract:
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.

Authors:Yuelin Guo, Haoyu He, Zhiyuan Chen, Zitong Huang, Renhao Lu, Lu Shi, Zejun Wang, Weizhe Zhang
Title: Dual-Thresholding Heatmaps to Cluster Proposals for Weakly Supervised Object Detection
Abstract:
Weakly supervised object detection (WSOD) has attracted significant attention in recent years, as it does not require box-level annotations. State-of-the-art methods generally adopt a multi-module network, which employs WSDDN as the multiple instance detection network module and multiple instance refinement modules to refine performance. However, these approaches suffer from three key limitations. First, existing methods tend to generate pseudo GT boxes that either focus only on discriminative parts, failing to capture the whole object, or cover the entire object but fail to distinguish between adjacent intra-class instances. Second, the foundational WSDDN architecture lacks a crucial background class representation for each proposal and exhibits a large semantic gap between its branches. Third, prior methods discard ignored proposals during optimization, leading to slow convergence. To address these challenges, we first design a heatmap-guided proposal selector (HGPS) algorithm, which utilizes dual thresholds on heatmaps to pre-select proposals, enabling pseudo GT boxes to both capture the full object extent and distinguish between adjacent intra-class instances. We then present a weakly supervised basic detection network (WSBDN), which augments each proposal with a background class representation and uses heatmaps for pre-supervision to bridge the semantic gap between matrices. At last, we introduce a negative certainty supervision loss on ignored proposals to accelerate convergence. Extensive experiments on the challenging PASCAL VOC 2007 and 2012 datasets demonstrate the effectiveness of our framework. We achieve mAP/mCorLoc scores of 58.5%/81.8% on VOC 2007 and 55.6%/80.5% on VOC 2012, performing favorably against the state-of-the-art WSOD methods. Our code is publicly available at https://github.com/gyl2565309278/DTH-CP.

Authors:Ziyuan Wang, Bin Cheng, Longxiang Yuan, Zhengfeng Ji
Title: FeynmanDD: Quantum Circuit Analysis with Classical Decision Diagrams
Abstract:
Applications of decision diagrams in quantum circuit analysis have been an active research area. Our work introduces FeynmanDD, a new method utilizing standard and multi-terminal decision diagrams for quantum circuit simulation and equivalence checking. Unlike previous approaches that exploit patterns in quantum states and operators, our method explores useful structures in the path integral formulation, essentially transforming the analysis into a counting problem. The method then employs efficient counting algorithms using decision diagrams as its underlying computational engine. Through comprehensive theoretical analysis and numerical experiments, we demonstrate FeynmanDD's capabilities and limitations in quantum circuit analysis, highlighting the value of this new BDD-based approach.

Authors:Yisong Zhang, Ran Cheng, Guoxing Yi, Kay Chen Tan
Title: A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Abstract:
Large Language Models (LLMs), with their strong understanding and reasoning capabilities, are increasingly being explored for tackling optimization problems, especially in synergy with evolutionary computation. Despite rapid progress, however, the field still lacks a unified synthesis and a systematic taxonomy. This survey addresses this gap by providing a comprehensive review of recent developments and organizing them within a structured framework. We classify existing research into two main stages: LLMs for optimization modeling and LLMs for optimization solving. The latter is further divided into three paradigms according to the role of LLMs in the optimization workflow: LLMs as stand-alone optimizers, low-level LLMs embedded within optimization algorithms, and high-level LLMs for algorithm selection and generation. For each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. We also review interdisciplinary applications spanning the natural sciences, engineering, and machine learning. By contrasting LLM-driven and conventional methods, we highlight key limitations and research gaps, and point toward future directions for developing self-evolving agentic ecosystems for optimization. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.

Authors:Long Gao, Yunhe Zhang, Yan Jiang, Weiying Xie, Yunsong Li
Title: Hyperspectral Mamba for Hyperspectral Object Tracking
Abstract:
Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.

Authors:Seongho Kim, Sejong Ryu, Hyoukjun You, Je Hyeong Hong
Title: GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Abstract:
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.

Authors:Jingjing Liu, Yinchao Han, Xianchao Xiu, Jianhua Zhang, Wanquan Liu
Title: Lightweight Deep Unfolding Networks with Enhanced Robustness for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.

Authors:Paul Curry
Title: The Domain Mixed Unit: A New Neural Arithmetic Layer
Abstract:
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict/nalm-benchmark

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Mohammad Sabokrou, Miguel Bordallo López
Title: APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Abstract:
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.

Authors:Hyungjin Chung, Hyelin Nam, Jiyeon Kim, Hyojun Go, Byeongjun Park, Junho Kim, Joonseok Lee, Seongsu Ha, Byung-Hoon Kim
Title: Video Parallel Scaling: Aggregating Diverse Frame Subsets for VideoLLMs
Abstract:
Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.

Authors:Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu, Wei Yin, Xiaotao Hu, Mingkai Jia, Junyuan Deng, Kaiwen Zhang, Yang Wu, Tianyi Yan, Shenyuan Gao, Song Wang, Linfeng Li, Liang Pan, Yong Liu, Jianke Zhu, Wei Tsang Ooi, Steven C. H. Hoi, Ziwei Liu
Title: 3D and 4D World Modeling: A Survey
Abstract:
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey

Authors:Tong Zheng, Hongming Zhang, Wenhao Yu, Xiaoyang Wang, Runpeng Dai, Rui Liu, Huiwen Bao, Chengsong Huang, Heng Huang, Dong Yu
Title: Parallel-R1: Towards Parallel Thinking via Reinforcement Learning
Abstract:
Parallel thinking has emerged as a novel approach for enhancing the reasoning capabilities of large language models (LLMs) by exploring multiple reasoning paths concurrently. However, activating such capabilities through training remains challenging, as existing methods predominantly rely on supervised fine-tuning (SFT) over synthetic data, which encourages teacher-forced imitation rather than exploration and generalization. Different from them, we propose \textbf{Parallel-R1}, the first reinforcement learning (RL) framework that enables parallel thinking behaviors for complex real-world reasoning tasks. Our framework employs a progressive curriculum that explicitly addresses the cold-start problem in training parallel thinking with RL. We first use SFT on prompt-generated trajectories from easier tasks to instill the parallel thinking ability, then transition to RL to explore and generalize this skill on harder problems. Experiments on various math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1 successfully instills parallel thinking, leading to 8.4% accuracy improvements over the sequential thinking model trained directly on challenging tasks with RL. Further analysis reveals a clear shift in the model's thinking behavior: at an early stage, it uses parallel thinking as an exploration strategy, while in a later stage, it uses the same capability for multi-perspective verification. Most significantly, we validate parallel thinking as a \textbf{mid-training exploration scaffold}, where this temporary exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9% improvement over the baseline on AIME25. Our model, data, and code will be open-source at https://github.com/zhengkid/Parallel-R1.

Authors:Heeji Yoon, Jaewoo Jung, Junwan Kim, Hyungyu Choi, Heeseong Shin, Sangbeom Lim, Honggyu An, Chaehyun Kim, Jisang Han, Donghyun Kim, Chanho Eom, Sunghwan Hong, Seungryong Kim
Title: Visual Representation Alignment for Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) trained with visual instruction tuning have achieved strong performance across diverse tasks, yet they remain limited in vision-centric tasks such as object counting or spatial reasoning. We attribute this gap to the prevailing text-only supervision paradigm, which provides only indirect guidance for the visual pathway and often leads MLLMs to discard fine-grained visual details during training. In this paper, we present VIsual Representation ALignment (VIRAL), a simple yet effective regularization strategy that aligns the internal visual representations of MLLMs with those of pre-trained vision foundation models (VFMs). By explicitly enforcing this alignment, VIRAL enables the model not only to retain critical visual details from the input vision encoder but also to complement additional visual knowledge from VFMs, thereby enhancing its ability to reason over complex visual inputs. Our experiments demonstrate consistent improvements across all tasks on widely adopted multimodal benchmarks. Furthermore, we conduct comprehensive ablation studies to validate the key design choices underlying our framework. We believe this simple finding opens up an important direction for the effective integration of visual information in training MLLMs.

Authors:Zheng Geng, Nan Wang, Shaocong Xu, Chongjie Ye, Bohan Li, Zhaoxi Chen, Sida Peng, Hao Zhao
Title: One View, Many Worlds: Single-Image to 3D Object Meets Generative Domain Randomization for One-Shot 6D Pose Estimation
Abstract:
Estimating the 6D pose of arbitrary unseen objects from a single reference image is critical for robotics operating in the long-tail of real-world instances. However, this setting is notoriously challenging: 3D models are rarely available, single-view reconstructions lack metric scale, and domain gaps between generated models and real-world images undermine robustness. We propose OnePoseViaGen, a pipeline that tackles these challenges through two key components. First, a coarse-to-fine alignment module jointly refines scale and pose by combining multi-view feature matching with render-and-compare refinement. Second, a text-guided generative domain randomization strategy diversifies textures, enabling effective fine-tuning of pose estimators with synthetic data. Together, these steps allow high-fidelity single-view 3D generation to support reliable one-shot 6D pose estimation. On challenging benchmarks (YCBInEOAT, Toyota-Light, LM-O), OnePoseViaGen achieves state-of-the-art performance far surpassing prior approaches. We further demonstrate robust dexterous grasping with a real robot hand, validating the practicality of our method in real-world manipulation. Project page: https://gzwsama.github.io/OnePoseviaGen.github.io/

Authors:Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, Hengshuang Zhao
Title: Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Abstract:
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Authors:Boammani Aser Lompo, Marc Haraoui
Title: Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Abstract:
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.

Authors:Yilun Kuang, Noah Amsel, Sanae Lotfi, Shikai Qiu, Andres Potapczynski, Andrew Gordon Wilson
Title: Customizing the Inductive Biases of Softmax Attention using Structured Matrices
Abstract:
The core component of attention is the scoring function, which transforms the inputs into low-dimensional queries and keys and takes the dot product of each pair. While the low-dimensional projection improves efficiency, it causes information loss for certain tasks that have intrinsically high-dimensional inputs. Additionally, attention uses the same scoring function for all input pairs, without imposing a distance-dependent compute bias for neighboring tokens in the sequence. In this work, we address these shortcomings by proposing new scoring functions based on computationally efficient structured matrices with high ranks, including Block Tensor-Train (BTT) and Multi-Level Low Rank (MLR) matrices. On in-context regression tasks with high-dimensional inputs, our proposed scoring functions outperform standard attention for any fixed compute budget. On language modeling, a task that exhibits locality patterns, our MLR-based attention method achieves improved scaling laws compared to both standard attention and variants of sliding window attention. Additionally, we show that both BTT and MLR fall under a broader family of efficient structured matrices capable of encoding either full-rank or distance-dependent compute biases, thereby addressing significant shortcomings of standard attention. Finally, we show that MLR attention has promising results for long-range time-series forecasting.

Authors:Zongzheng Zhang, Haobo Xu, Zhuo Yang, Chenghao Yue, Zehao Lin, Huan-ang Gao, Ziwei Wang, Hao Zhao
Title: TA-VLA: Elucidating the Design Space of Torque-aware Vision-Language-Action Models
Abstract:
Many robotic manipulation tasks require sensing and responding to force signals such as torque to assess whether the task has been successfully completed and to enable closed-loop control. However, current Vision-Language-Action (VLA) models lack the ability to integrate such subtle physical feedback. In this work, we explore Torque-aware VLA models, aiming to bridge this gap by systematically studying the design space for incorporating torque signals into existing VLA architectures. We identify and evaluate several strategies, leading to three key findings. First, introducing torque adapters into the decoder consistently outperforms inserting them into the encoder.Third, inspired by joint prediction and planning paradigms in autonomous driving, we propose predicting torque as an auxiliary output, which further improves performance. This strategy encourages the model to build a physically grounded internal representation of interaction dynamics. Extensive quantitative and qualitative experiments across contact-rich manipulation benchmarks validate our findings.

Authors:Zheyuan Hu, Robyn Wu, Naveen Enock, Jasmine Li, Riya Kadakia, Zackory Erickson, Aviral Kumar
Title: RaC: Robot Learning for Long-Horizon Tasks by Scaling Recovery and Correction
Abstract:
Modern paradigms for robot imitation train expressive policy architectures on large amounts of human demonstration data. Yet performance on contact-rich, deformable-object, and long-horizon tasks plateau far below perfect execution, even with thousands of expert demonstrations. This is due to the inefficiency of existing ``expert'' data collection procedures based on human teleoperation. To address this issue, we introduce RaC, a new phase of training on human-in-the-loop rollouts after imitation learning pre-training. In RaC, we fine-tune a robotic policy on human intervention trajectories that illustrate recovery and correction behaviors. Specifically, during a policy rollout, human operators intervene when failure appears imminent, first rewinding the robot back to a familiar, in-distribution state and then providing a corrective segment that completes the current sub-task. Training on this data composition expands the robotic skill repertoire to include retry and adaptation behaviors, which we show are crucial for boosting both efficiency and robustness on long-horizon tasks. Across three real-world bimanual control tasks: shirt hanging, airtight container lid sealing, takeout box packing, and a simulated assembly task, RaC outperforms the prior state-of-the-art using 10$\times$ less data collection time and samples. We also show that RaC enables test-time scaling: the performance of the trained RaC policy scales linearly in the number of recovery maneuvers it exhibits. Videos of the learned policy are available at https://rac-scaling-robot.github.io/.

Authors:Yuan Pu, Yazhe Niu, Jia Tang, Junyu Xiong, Shuai Hu, Hongsheng Li
Title: One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning
Abstract:
In heterogeneous multi-task decision-making, tasks not only exhibit diverse observation and action spaces but also vary substantially in their underlying complexities. While conventional multi-task world models like UniZero excel in single-task settings, we find that when handling a broad and diverse suite of tasks, gradient conflicts and the loss of model plasticity often constrain their sample efficiency. In this work, we address these challenges from two complementary perspectives: the single learning iteration and the overall learning process. First, to mitigate the gradient conflicts, we systematically investigate key architectural designs for extending UniZero. Our investigation identifies a Mixture-of-Experts (MoE) architecture as the most effective approach. We demonstrate, both theoretically and empirically, that this architecture alleviates gradient conflicts by routing task-specific representations to specialized sub-networks. This finding leads to our proposed model, \textit{ScaleZero}. Second, to dynamically allocate model capacity throughout the learning process, we introduce an online Dynamic Parameter Scaling (DPS) strategy. This strategy progressively integrates LoRA adapters in response to task-specific progress, enabling adaptive knowledge retention and parameter expansion. Evaluations on a diverse set of standard benchmarks (Atari, DMC, Jericho) demonstrate that ScaleZero, utilizing solely online reinforcement learning with one model, performs on par with specialized single-task agents. With the DPS strategy, it remains competitive while using just 71.5% of the environment interactions. These findings underscore the potential of ScaleZero for effective multi-task planning. Our code is available at \textcolor{magenta}{https://github.com/opendilab/LightZero}.

Authors:Kimiaki Shirahama, Miki Yanobu, Kaduki Yamashita, Miho Ohsaki
Title: Feature Space Analysis by Guided Diffusion Model
Abstract:
One of the key issues in Deep Neural Networks (DNNs) is the black-box nature of their internal feature extraction process. Targeting vision-related domains, this paper focuses on analysing the feature space of a DNN by proposing a decoder that can generate images whose features are guaranteed to closely match a user-specified feature. Owing to this guarantee that is missed in past studies, our decoder allows us to evidence which of various image attributes are encoded into the user-specified feature. Our decoder is implemented as a guided diffusion model that guides the reverse image generation of a pre-trained diffusion model to minimise the Euclidean distance between the feature of a clean image estimated at each step and the user-specified feature. One practical advantage of our decoder is that it can analyse feature spaces of different DNNs with no additional training and run on a single COTS GPU. The experimental results targeting CLIP's image encoder, ResNet-50 and vision transformer demonstrate that images generated by our decoder have features remarkably similar to the user-specified ones and reveal valuable insights into these DNNs' feature spaces.

Authors:Tuo Wang, Adithya Kulkarni, Tyler Cody, Peter A. Beling, Yujun Yan, Dawei Zhou
Title: GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Abstract:
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.

Authors:Fangchen Yu, Haiyuan Wan, Qianjia Cheng, Yuchen Zhang, Jiacheng Chen, Fujun Han, Yulun Wu, Junchi Yao, Ruilizhen Hu, Ning Ding, Yu Cheng, Tao Chen, Lei Bai, Dongzhan Zhou, Yun Luo, Ganqu Cui, Peng Ye
Title: HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Abstract:
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with multiple golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight the performance gap between open-source models and top students, the strong reasoning abilities of closed-source models, and the remaining room for improvement. HiPhO, a human-aligned Olympiad benchmark for multimodal physical reasoning, is open-source at https://github.com/SciYu/HiPhO with a public leaderboard at https://phyarena.github.io/.

Authors:Decheng Duan, Yingyi Zhang, Jitong Peng, Chengzhi Zhang
Title: SciNLP: A Domain-Specific Benchmark for Full-Text Scientific Entity and Relation Extraction in NLP
Abstract:
Structured information extraction from scientific literature is crucial for capturing core concepts and emerging trends in specialized fields. While existing datasets aid model development, most focus on specific publication sections due to domain complexity and the high cost of annotating scientific texts. To address this limitation, we introduce SciNLP--a specialized benchmark for full-text entity and relation extraction in the Natural Language Processing (NLP) domain. The dataset comprises 60 manually annotated full-text NLP publications, covering 7,072 entities and 1,826 relations. Compared to existing research, SciNLP is the first dataset providing full-text annotations of entities and their relationships in the NLP domain. To validate the effectiveness of SciNLP, we conducted comparative experiments with similar datasets and evaluated the performance of state-of-the-art supervised models on this dataset. Results reveal varying extraction capabilities of existing models across academic texts of different lengths. Cross-comparisons with existing datasets show that SciNLP achieves significant performance improvements on certain baseline models. Using models trained on SciNLP, we implemented automatic construction of a fine-grained knowledge graph for the NLP domain. Our KG has an average node degree of 3.2 per entity, indicating rich semantic topological information that enhances downstream applications. The dataset is publicly available at: https://github.com/AKADDC/SciNLP.

Authors:Maja Schlereth, Moritz Schillinger, Katharina Breininger
Title: Faster, Self-Supervised Super-Resolution for Anisotropic Multi-View MRI Using a Sparse Coordinate Loss
Abstract:
Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.

Authors:Hugo Blanc, Jean-Emmanuel Deschaud, Alexis Paljic
Title: RayGaussX: Accelerating Gaussian-Based Ray Marching for Real-Time and High-Quality Novel View Synthesis
Abstract:
RayGauss has achieved state-of-the-art rendering quality for novel-view synthesis on synthetic and indoor scenes by representing radiance and density fields with irregularly distributed elliptical basis functions, rendered via volume ray casting using a Bounding Volume Hierarchy (BVH). However, its computational cost prevents real-time rendering on real-world scenes. Our approach, RayGaussX, builds on RayGauss by introducing key contributions that accelerate both training and inference. Specifically, we incorporate volumetric rendering acceleration strategies such as empty-space skipping and adaptive sampling, enhance ray coherence, and introduce scale regularization to reduce false-positive intersections. Additionally, we propose a new densification criterion that improves density distribution in distant regions, leading to enhanced graphical quality on larger scenes. As a result, RayGaussX achieves 5x to 12x faster training and 50x to 80x higher rendering speeds (FPS) on real-world datasets while improving visual quality by up to +0.56 dB in PSNR. Project page with videos and code: https://raygaussx.github.io/.

Authors:Yimin Pan, Matthias Nießner, Tobias Kirschstein
Title: HairGS: Hair Strand Reconstruction based on 3D Gaussian Splatting
Abstract:
Human hair reconstruction is a challenging problem in computer vision, with growing importance for applications in virtual reality and digital human modeling. Recent advances in 3D Gaussians Splatting (3DGS) provide efficient and explicit scene representations that naturally align with the structure of hair strands. In this work, we extend the 3DGS framework to enable strand-level hair geometry reconstruction from multi-view images. Our multi-stage pipeline first reconstructs detailed hair geometry using a differentiable Gaussian rasterizer, then merges individual Gaussian segments into coherent strands through a novel merging scheme, and finally refines and grows the strands under photometric supervision. While existing methods typically evaluate reconstruction quality at the geometric level, they often neglect the connectivity and topology of hair strands. To address this, we propose a new evaluation metric that serves as a proxy for assessing topological accuracy in strand reconstruction. Extensive experiments on both synthetic and real-world datasets demonstrate that our method robustly handles a wide range of hairstyles and achieves efficient reconstruction, typically completing within one hour. The project page can be found at: https://yimin-pan.github.io/hair-gs/

Authors:Shusen Ma, Tianhao Zhang, Qijiu Xia, Yun-Bo Zhao
Title: IBN: An Interpretable Bidirectional-Modeling Network for Multivariate Time Series Forecasting with Variable Missing
Abstract:
Multivariate time series forecasting (MTSF) often faces challenges from missing variables, which hinder conventional spatial-temporal graph neural networks in modeling inter-variable correlations. While GinAR addresses variable missing using attention-based imputation and adaptive graph learning for the first time, it lacks interpretability and fails to capture more latent temporal patterns due to its simple recursive units (RUs). To overcome these limitations, we propose the Interpretable Bidirectional-modeling Network (IBN), integrating Uncertainty-Aware Interpolation (UAI) and Gaussian kernel-based Graph Convolution (GGCN). IBN estimates the uncertainty of reconstructed values using MC Dropout and applies an uncertainty-weighted strategy to mitigate high-risk reconstructions. GGCN explicitly models spatial correlations among variables, while a bidirectional RU enhances temporal dependency modeling. Extensive experiments show that IBN achieves state-of-the-art forecasting performance under various missing-rate scenarios, providing a more reliable and interpretable framework for MTSF with missing variables. Code is available at: https://github.com/zhangth1211/NICLab-IBN.

Authors:Chunhang Zheng, Zichang Ren, Dou Li
Title: SEEC: Segmentation-Assisted Multi-Entropy Models for Learned Lossless Image Compression
Abstract:
Recently, learned image compression has attracted considerable attention due to its superior performance over traditional methods. However, most existing approaches employ a single entropy model to estimate the probability distribution of pixel values across the entire image, which limits their ability to capture the diverse statistical characteristics of different semantic regions. To overcome this limitation, we propose Segmentation-Assisted Multi-Entropy Models for Lossless Image Compression (SEEC). Our framework utilizes semantic segmentation to guide the selection and adaptation of multiple entropy models, enabling more accurate probability distribution estimation for distinct semantic regions. Specifically, SEEC first extracts image features and then applies semantic segmentation to identify different regions, each assigned a specialized entropy model to better capture its unique statistical properties. Finally, a multi-channel discrete logistic mixture likelihood is employed to model the pixel value distributions effectively. Experimental results on benchmark datasets demonstrate that SEEC achieves state-of-the-art compression ratios while introducing only minimal encoding and decoding latency. With superior performance, the proposed model also supports Regions of Interest (ROIs) coding condition on the provided segmentation mask. Our code is available at https://github.com/chunbaobao/SEEC.

Authors:Xiaoming Chen
Title: HYLU: Hybrid Parallel Sparse LU Factorization
Abstract:
This article introduces HYLU, a hybrid parallel LU factorization-based general-purpose solver designed for efficiently solving sparse linear systems (Ax=b) on multi-core shared-memory architectures. The key technical feature of HYLU is the integration of hybrid numerical kernels so that it can adapt to various sparsity patterns of coefficient matrices. Tests on 34 sparse matrices from SuiteSparse Matrix Collection reveal that HYLU outperforms Intel MKL PARDISO in the numerical factorization phase by geometric means of 1.74X (for one-time solving) and 2.26X (for repeated solving). HYLU can be downloaded from https://github.com/chenxm1986/hylu.

Authors:Xixi Wu, Yanchao Tan, Nan Hou, Ruiyang Zhang, Hong Cheng
Title: MoLoRAG: Bootstrapping Document Understanding via Multi-modal Logic-aware Retrieval
Abstract:
Document Understanding is a foundational AI capability with broad applications, and Document Question Answering (DocQA) is a key evaluation task. Traditional methods convert the document into text for processing by Large Language Models (LLMs), but this process strips away critical multi-modal information like figures. While Large Vision-Language Models (LVLMs) address this limitation, their constrained input size makes multi-page document comprehension infeasible. Retrieval-augmented generation (RAG) methods mitigate this by selecting relevant pages, but they rely solely on semantic relevance, ignoring logical connections between pages and the query, which is essential for reasoning. To this end, we propose MoLoRAG, a logic-aware retrieval framework for multi-modal, multi-page document understanding. By constructing a page graph that captures contextual relationships between pages, a lightweight VLM performs graph traversal to retrieve relevant pages, including those with logical connections often overlooked. This approach combines semantic and logical relevance to deliver more accurate retrieval. After retrieval, the top-$K$ pages are fed into arbitrary LVLMs for question answering. To enhance flexibility, MoLoRAG offers two variants: a training-free solution for easy deployment and a fine-tuned version to improve logical relevance checking. Experiments on four DocQA datasets demonstrate average improvements of 9.68% in accuracy over LVLM direct inference and 7.44% in retrieval precision over baselines. Codes and datasets are released at https://github.com/WxxShirley/MoLoRAG.

Authors:Yuheng Jiang, Chengcheng Guo, Yize Wu, Yu Hong, Shengkun Zhu, Zhehao Shen, Yingliang Zhang, Shaohui Jiao, Zhuo Su, Lan Xu, Marc Habermann, Christian Theobalt
Title: Topology-Aware Optimization of Gaussian Primitives for Human-Centric Volumetric Videos
Abstract:
Volumetric video is emerging as a key medium for digitizing the dynamic physical world, creating the virtual environments with six degrees of freedom to deliver immersive user experiences. However, robustly modeling general dynamic scenes, especially those involving topological changes while maintaining long-term tracking remains a fundamental challenge. In this paper, we present TaoGS, a novel topology-aware dynamic Gaussian representation that disentangles motion and appearance to support, both, long-range tracking and topological adaptation. We represent scene motion with a sparse set of motion Gaussians, which are continuously updated by a spatio-temporal tracker and photometric cues that detect structural variations across frames. To capture fine-grained texture, each motion Gaussian anchors and dynamically activates a set of local appearance Gaussians, which are non-rigidly warped to the current frame to provide strong initialization and significantly reduce training time. This activation mechanism enables efficient modeling of detailed textures and maintains temporal coherence, allowing high-fidelity rendering even under challenging scenarios such as changing clothes. To enable seamless integration into codec-based volumetric formats, we introduce a global Gaussian Lookup Table that records the lifespan of each Gaussian and organizes attributes into a lifespan-aware 2D layout. This structure aligns naturally with standard video codecs and supports up to 40 compression. TaoGS provides a unified, adaptive solution for scalable volumetric video under topological variation, capturing moments where "elegance in motion" and "Power in Stillness", delivering immersive experiences that harmonize with the physical world.

Authors:Sung Ju Lee, Nam Ik Cho
Title: Semantic Watermarking Reinvented: Enhancing Robustness and Generation Quality with Fourier Integrity
Abstract:
Semantic watermarking techniques for latent diffusion models (LDMs) are robust against regeneration attacks, but often suffer from detection performance degradation due to the loss of frequency integrity. To tackle this problem, we propose a novel embedding method called Hermitian Symmetric Fourier Watermarking (SFW), which maintains frequency integrity by enforcing Hermitian symmetry. Additionally, we introduce a center-aware embedding strategy that reduces the vulnerability of semantic watermarking due to cropping attacks by ensuring robust information retention. To validate our approach, we apply these techniques to existing semantic watermarking schemes, enhancing their frequency-domain structures for better robustness and retrieval accuracy. Extensive experiments demonstrate that our methods achieve state-of-the-art verification and identification performance, surpassing previous approaches across various attack scenarios. Ablation studies confirm the impact of SFW on detection capabilities, the effectiveness of the center-aware embedding against cropping, and how message capacity influences identification accuracy. Notably, our method achieves the highest detection accuracy while maintaining superior image fidelity, as evidenced by FID and CLIP scores. Conclusively, our proposed SFW is shown to be an effective framework for balancing robustness and image fidelity, addressing the inherent trade-offs in semantic watermarking. Code available at https://github.com/thomas11809/SFWMark

Authors:Zhiyuan He, Xufang Luo, Yike Zhang, Yuqing Yang, Lili Qiu
Title: $ΔL$ Normalization: Rethink Loss Aggregation in RLVR
Abstract:
We propose $ΔL$ Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed $ΔL$ Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.

Authors:Zheng Wu, Heyuan Huang, Xingyu Lou, Xiangmou Qu, Pengzhou Cheng, Zongru Wu, Weiwen Liu, Weinan Zhang, Jun Wang, Zhaoxiang Wang, Zhuosheng Zhang
Title: VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
Abstract:
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.

Authors:Peijin Xie, Shun Qian, Bingquan Liu, Dexin Wang, Lin Sun, Xiangzheng Zhang
Title: TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Abstract:
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag

Authors:Kiet T. Nguyen, Chanhuyk Lee, Donggyun Kim, Dong Hoon Lee, Seunghoon Hong
Title: Universal Few-Shot Spatial Control for Diffusion Models
Abstract:
Spatial conditioning in pretrained text-to-image diffusion models has significantly improved fine-grained control over the structure of generated images. However, existing control adapters exhibit limited adaptability and incur high training costs when encountering novel spatial control conditions that differ substantially from the training tasks. To address this limitation, we propose Universal Few-Shot Control (UFC), a versatile few-shot control adapter capable of generalizing to novel spatial conditions. Given a few image-condition pairs of an unseen task and a query condition, UFC leverages the analogy between query and support conditions to construct task-specific control features, instantiated by a matching mechanism and an update on a small set of task-specific parameters. Experiments on six novel spatial control tasks show that UFC, fine-tuned with only 30 annotated examples of novel tasks, achieves fine-grained control consistent with the spatial conditions. Notably, when fine-tuned with 0.1% of the full training data, UFC achieves competitive performance with the fully supervised baselines in various control tasks. We also show that UFC is applicable agnostically to various diffusion backbones and demonstrate its effectiveness on both UNet and DiT architectures. Code is available at https://github.com/kietngt00/UFC.

Authors:Saad Lahlali, Alexandre Fournier Montgieux, Nicolas Granger, Hervé Le Borgne, Quoc Cuong Pham
Title: MVAT: Multi-View Aware Teacher for Weakly Supervised 3D Object Detection
Abstract:
Annotating 3D data remains a costly bottleneck for 3D object detection, motivating the development of weakly supervised annotation methods that rely on more accessible 2D box annotations. However, relying solely on 2D boxes introduces projection ambiguities since a single 2D box can correspond to multiple valid 3D poses. Furthermore, partial object visibility under a single viewpoint setting makes accurate 3D box estimation difficult. We propose MVAT, a novel framework that leverages temporal multi-view present in sequential data to address these challenges. Our approach aggregates object-centric point clouds across time to build 3D object representations as dense and complete as possible. A Teacher-Student distillation paradigm is employed: The Teacher network learns from single viewpoints but targets are derived from temporally aggregated static objects. Then the Teacher generates high quality pseudo-labels that the Student learns to predict from a single viewpoint for both static and moving objects. The whole framework incorporates a multi-view 2D projection loss to enforce consistency between predicted 3D boxes and all available 2D annotations. Experiments on the nuScenes and Waymo Open datasets demonstrate that MVAT achieves state-of-the-art performance for weakly supervised 3D object detection, significantly narrowing the gap with fully supervised methods without requiring any 3D box annotations. % \footnote{Code available upon acceptance} Our code is available in our public repository (\href{https://github.com/CEA-LIST/MVAT}{code}).

Authors:Jeongwoo Na, Jun Kwon, Eunseong Choi, Jongwuk Lee
Title: Multi-view-guided Passage Reranking with Large Language Models
Abstract:
Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP

Authors:Wenshuo Gao, Xicheng Lan, Luyao Zhang, Shuai Yang
Title: LINR Bridge: Vector Graphic Animation via Neural Implicits and Video Diffusion Priors
Abstract:
Vector graphics, known for their scalability and user-friendliness, provide a unique approach to visual content compared to traditional pixel-based images. Animation of these graphics, driven by the motion of their elements, offers enhanced comprehensibility and controllability but often requires substantial manual effort. To automate this process, we propose a novel method that integrates implicit neural representations with text-to-video diffusion models for vector graphic animation. Our approach employs layered implicit neural representations to reconstruct vector graphics, preserving their inherent properties such as infinite resolution and precise color and shape constraints, which effectively bridges the large domain gap between vector graphics and diffusion models. The neural representations are then optimized using video score distillation sampling, which leverages motion priors from pretrained text-to-video diffusion models. Finally, the vector graphics are warped to match the representations resulting in smooth animation. Experimental results validate the effectiveness of our method in generating vivid and natural vector graphic animations, demonstrating significant improvement over existing techniques that suffer from limitations in flexibility and animation quality.

Authors:Patrick Wienholt, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
Title: MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
Abstract:
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet

Authors:Wenshuo Gao, Xicheng Lan, Shuai Yang
Title: ANYPORTAL: Zero-Shot Consistent Video Background Replacement
Abstract:
Despite the rapid advancements in video generation technology, creating high-quality videos that precisely align with user intentions remains a significant challenge. Existing methods often fail to achieve fine-grained control over video details, limiting their practical applicability. We introduce ANYPORTAL, a novel zero-shot framework for video background replacement that leverages pre-trained diffusion models. Our framework collaboratively integrates the temporal prior of video diffusion models with the relighting capabilities of image diffusion models in a zero-shot setting. To address the critical challenge of foreground consistency, we propose a Refinement Projection Algorithm, which enables pixel-level detail manipulation to ensure precise foreground preservation. ANYPORTAL is training-free and overcomes the challenges of achieving foreground consistency and temporally coherent relighting. Experimental results demonstrate that ANYPORTAL achieves high-quality results on consumer-grade GPUs, offering a practical and efficient solution for video content creation and editing.

Authors:Rui Yang, Lei Zheng, Shuzhi Sam Ge, Jun Ma
Title: Safe and Non-Conservative Contingency Planning for Autonomous Vehicles via Online Learning-Based Reachable Set Barriers
Abstract:
Autonomous vehicles must navigate dynamically uncertain environments while balancing the safety and driving efficiency. This challenge is exacerbated by the unpredictable nature of surrounding human-driven vehicles (HVs) and perception inaccuracies, which require planners to adapt to evolving uncertainties while maintaining safe trajectories. Overly conservative planners degrade driving efficiency, while deterministic approaches may encounter serious issues and risks of failure when faced with sudden and unexpected maneuvers. To address these issues, we propose a real-time contingency trajectory optimization framework in this paper. By employing event-triggered online learning of HV control-intent sets, our method dynamically quantifies multi-modal HV uncertainties and refines the forward reachable set (FRS) incrementally. Crucially, we enforce invariant safety through FRS-based barrier constraints that ensure safety without reliance on accurate trajectory prediction of HVs. These constraints are embedded in contingency trajectory optimization and solved efficiently through consensus alternative direction method of multipliers (ADMM). The system continuously adapts to the uncertainties in HV behaviors, preserving feasibility and safety without resorting to excessive conservatism. High-fidelity simulations on highway and urban scenarios, as well as a series of real-world experiments demonstrate significant improvements in driving efficiency and passenger comfort while maintaining safety under uncertainty. The project page is available at https://pathetiue.github.io/frscp.github.io/.

Authors:Pooya Khosravi, Kun Han, Anthony T. Wu, Arghavan Rezvani, Zexin Feng, Xiaohui Xie
Title: XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning
Abstract:
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.

Authors:Xudong Lu, Zhi Zheng, Yi Wan, Yongxiang Yao, Annan Wang, Renrui Zhang, Panwang Xia, Qiong Wu, Qingyun Li, Weifeng Lin, Xiangyu Zhao, Peifeng Ma, Xue Yang, Hongsheng Li
Title: GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Abstract:
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they only determine whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.

Authors:Harrison Field, Max Yang, Yijiong Lin, Efi Psomopoulou, David Barton, Nathan F. Lepora
Title: Text2Touch: Tactile In-Hand Manipulation with LLM-Designed Reward Functions
Abstract:
Large language models (LLMs) are beginning to automate reward design for dexterous manipulation. However, no prior work has considered tactile sensing, which is known to be critical for human-like dexterity. We present Text2Touch, bringing LLM-crafted rewards to the challenging task of multi-axis in-hand object rotation with real-world vision based tactile sensing in palm-up and palm-down configurations. Our prompt engineering strategy scales to over 70 environment variables, and sim-to-real distillation enables successful policy transfer to a tactile-enabled fully actuated four-fingered dexterous robot hand. Text2Touch significantly outperforms a carefully tuned human-engineered baseline, demonstrating superior rotation speed and stability while relying on reward functions that are an order of magnitude shorter and simpler. These results illustrate how LLM-designed rewards can significantly reduce the time from concept to deployable dexterous tactile skills, supporting more rapid and scalable multimodal robot learning. Project website: https://hpfield.github.io/text2touch-website

Authors:Ze-Xin Yin, Jiaxiong Qiu, Liu Liu, Xinjie Wang, Wei Sui, Zhizhong Su, Jian Yang, Jin Xie
Title: DreamLifting: A Plug-in Module Lifting MV Diffusion Models for 3D Asset Generation
Abstract:
The labor- and experience-intensive creation of 3D assets with physically based rendering (PBR) materials demands an autonomous 3D asset creation pipeline. However, most existing 3D generation methods focus on geometry modeling, either baking textures into simple vertex colors or leaving texture synthesis to post-processing with image diffusion models. To achieve end-to-end PBR-ready 3D asset generation, we present Lightweight Gaussian Asset Adapter (LGAA), a novel framework that unifies the modeling of geometry and PBR materials by exploiting multi-view (MV) diffusion priors from a novel perspective. The LGAA features a modular design with three components. Specifically, the LGAA Wrapper reuses and adapts network layers from MV diffusion models, which encapsulate knowledge acquired from billions of images, enabling better convergence in a data-efficient manner. To incorporate multiple diffusion priors for geometry and PBR synthesis, the LGAA Switcher aligns multiple LGAA Wrapper layers encapsulating different knowledge. Then, a tamed variational autoencoder (VAE), termed LGAA Decoder, is designed to predict 2D Gaussian Splatting (2DGS) with PBR channels. Finally, we introduce a dedicated post-processing procedure to effectively extract high-quality, relightable mesh assets from the resulting 2DGS. Extensive quantitative and qualitative experiments demonstrate the superior performance of LGAA with both text-and image-conditioned MV diffusion models. Additionally, the modular design enables flexible incorporation of multiple diffusion priors, and the knowledge-preserving scheme leads to efficient convergence trained on merely 69k multi-view instances. Our code, pre-trained weights, and the dataset used will be publicly available via our project page: https://zx-yin.github.io/dreamlifting/.

Authors:Weichu Liu, Jing Xiong, Yuxuan Hu, Zixuan Li, Minghuan Tan, Ningning Mao, Chenyang Zhao, Zhongwei Wan, Chaofan Tao, Wendong Xu, Hui Shen, Chengming Li, Lingpeng Kong, Ngai Wong
Title: LongEmotion: Measuring Emotional Intelligence of Large Language Models in Long-Context Interaction
Abstract:
Large language models (LLMs) make significant progress in Emotional Intelligence (EI) and long-context understanding. However, existing benchmarks tend to overlook certain aspects of EI in long-context scenarios, especially under realistic, practical settings where interactions are lengthy, diverse, and often noisy. To move towards such realistic settings, we present LongEmotion, a benchmark specifically designed for long-context EI tasks. It covers a diverse set of tasks, including Emotion Classification, Emotion Detection, Emotion QA, Emotion Conversation, Emotion Summary, and Emotion Expression. On average, the input length for these tasks reaches 8,777 tokens, with long-form generation required for Emotion Expression. To enhance performance under realistic constraints, we incorporate Retrieval-Augmented Generation (RAG) and Collaborative Emotional Modeling (CoEM), and compare them with standard prompt-based methods. Unlike conventional approaches, our RAG method leverages both the conversation context and the large language model itself as retrieval sources, avoiding reliance on external knowledge bases. The CoEM method further improves performance by decomposing the task into five stages, integrating both retrieval augmentation and limited knowledge injection. Experimental results show that both RAG and CoEM consistently enhance EI-related performance across most long-context tasks, advancing LLMs toward more practical and real-world EI applications. Furthermore, we conducted a comparative case study experiment on the GPT series to demonstrate the differences among various models in terms of EI. Code is available on GitHub at https://github.com/LongEmotion/LongEmotion, and the project page can be found at https://longemotion.github.io/.

Authors:Yi-Jie Cheng, Oscar Chew, Yun-Nung Chen
Title: The Role of Exploration Modules in Small Language Models for Knowledge Graph Question Answering
Abstract:
Integrating knowledge graphs (KGs) into the reasoning processes of large language models (LLMs) has emerged as a promising approach to mitigate hallucination. However, existing work in this area often relies on proprietary or extremely large models, limiting accessibility and scalability. In this study, we investigate the capabilities of existing integration methods for small language models (SLMs) in KG-based question answering and observe that their performance is often constrained by their limited ability to traverse and reason over knowledge graphs. To address this limitation, we propose leveraging simple and efficient exploration modules to handle knowledge graph traversal in place of the language model itself. Experiment results demonstrate that these lightweight modules effectively improve the performance of small language models on knowledge graph question answering tasks. Source code: https://github.com/yijie-cheng/SLM-ToG/.

Authors:Ze Sheng, Qingxiao Xu, Jianwei Huang, Matthew Woodcock, Heqing Huang, Alastair F. Donaldson, Guofei Gu, Jeff Huang
Title: All You Need Is A Fuzzing Brain: An LLM-Powered System for Automated Vulnerability Detection and Patching
Abstract:
Our team, All You Need Is A Fuzzing Brain, was one of seven finalists in DARPA's Artificial Intelligence Cyber Challenge (AIxCC), placing fourth in the final round. During the competition, we developed a Cyber Reasoning System (CRS) that autonomously discovered 28 security vulnerabilities - including six previously unknown zero-days - in real-world open-source C and Java projects, and successfully patched 14 of them. The complete CRS is open source at https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain. This paper provides a detailed technical description of our CRS, with an emphasis on its LLM-powered components and strategies. Building on AIxCC, we further introduce a public leaderboard for benchmarking state-of-the-art LLMs on vulnerability detection and patching tasks, derived from the AIxCC dataset. The leaderboard is available at https://o2lab.github.io/FuzzingBrain-Leaderboard/.

Authors:Erencem Ozbey, Dimitrios I. Diochnos
Title: Dimensionally Reduced Open-World Clustering: DROWCULA
Abstract:
Working with annotated data is the cornerstone of supervised learning. Nevertheless, providing labels to instances is a task that requires significant human effort. Several critical real-world applications make things more complicated because no matter how many labels may have been identified in a task of interest, it could be the case that examples corresponding to novel classes may appear in the future. Not unsurprisingly, prior work in this, so-called, `open-world' context has focused a lot on semi-supervised approaches. Focusing on image classification, somehow paradoxically, we propose a fully unsupervised approach to the problem of determining the novel categories in a particular dataset. Our approach relies on estimating the number of clusters using Vision Transformers, which utilize attention mechanisms to generate vector embeddings. Furthermore, we incorporate manifold learning techniques to refine these embeddings by exploiting the intrinsic geometry of the data, thereby enhancing the overall image clustering performance. Overall, we establish new State-of-the-Art results on single-modal clustering and Novel Class Discovery on CIFAR-10, CIFAR-100, ImageNet-100, and Tiny ImageNet. We do so, both when the number of clusters is known or unknown ahead of time. The code is available at: https://github.com/DROWCULA/DROWCULA.

Authors:Heng Hao, Wenjun Hu, Oxana Verkholyak, Davoud Ataee Tarzanagh, Baruch Gutow, Sima Didari, Masoud Faraki, Hankyu Moon, Seungjai Min
Title: PaVeRL-SQL: Text-to-SQL via Partial-Match Rewards and Verbal Reinforcement Learning
Abstract:
Text-to-SQL models allow users to interact with a database more easily by generating executable SQL statements from natural-language questions. Despite recent successes on simpler databases and questions, current Text-to-SQL methods still suffer from low execution accuracy on industry-scale databases and complex questions involving domain-specific business logic. We present \emph{PaVeRL-SQL}, a framework that combines \emph{Partial-Match Rewards} and \emph{Verbal Reinforcement Learning} to drive self-improvement in reasoning language models (RLMs) for Text-to-SQL. To handle practical use cases, we adopt two pipelines: (1) a newly designed in-context learning framework with group self-evaluation (verbal-RL), using capable open- and closed-source large language models (LLMs) as backbones; and (2) a chain-of-thought (CoT) RL pipeline with a small backbone model (OmniSQL-7B) trained with a specially designed reward function and two-stage RL. These pipelines achieve state-of-the-art (SOTA) results on popular Text-to-SQL benchmarks -- Spider, Spider 2.0, and BIRD. For the industrial-level Spider2.0-SQLite benchmark, the verbal-RL pipeline achieves an execution accuracy 7.4\% higher than SOTA, and the CoT pipeline is 1.4\% higher. RL training with mixed SQL dialects yields strong, threefold gains, particularly for dialects with limited training data. Overall, \emph{PaVeRL-SQL} delivers reliable, SOTA Text-to-SQL under realistic industrial constraints. The code is available at https://github.com/PaVeRL-SQL/PaVeRL-SQL.

Authors:Zhiyin Tan, Jennifer D'Souza
Title: Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
Abstract:
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.

Authors:Ziheng Chen, Xiao-Jun Wu, Bernhard Schölkopf, Nicu Sebe
Title: Riemannian Batch Normalization: A Gyro Approach
Abstract:
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely \emph{pseudo-reduction} and \emph{gyroisometric gyrations}, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.

Authors:Sergey Pozdnyakov, Philippe Schwaller
Title: Lookup multivariate Kolmogorov-Arnold Networks
Abstract:
High-dimensional linear mappings, or linear layers, dominate both the parameter count and the computational cost of most modern deep-learning models. We introduce a general drop-in replacement, lookup multivariate Kolmogorov-Arnold Networks (lmKANs), which deliver a substantially better trade-off between capacity and inference cost. Our construction expresses a general high-dimensional mapping through trainable low-dimensional multivariate functions. These functions can carry dozens or hundreds of trainable parameters each, and yet it takes only a few multiplications to compute them because they are implemented as spline lookup tables. Empirically, lmKANs reduce inference FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-dimensional function approximation. In another feedforward fully connected benchmark, on the tabular-like dataset of randomly displaced methane configurations, lmKANs enable more than 10x higher H100 throughput at equal accuracy. Within frameworks of Convolutional Neural Networks, lmKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively. Our code, including dedicated CUDA kernels, is available online at https://github.com/schwallergroup/lmkan.

Authors:Kapil Madan
Title: ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
Abstract:
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.

Authors:Yingsheng Wang, Shuo Lu, Jian Liang, Aihua Zheng, Ran He
Title: Frustratingly Easy Feature Reconstruction for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection helps models identify data outside the training categories, crucial for security applications. While feature-based post-hoc methods address this by evaluating data differences in the feature space without changing network parameters, they often require access to training data, which may not be suitable for some data privacy scenarios. This may not be suitable in scenarios where data privacy protection is a concern. In this paper, we propose a simple yet effective post-hoc method, termed Classifier-based Feature Reconstruction (ClaFR), from the perspective of subspace projection. It first performs an orthogonal decomposition of the classifier's weights to extract the class-known subspace, then maps the original data features into this subspace to obtain new data representations. Subsequently, the OOD score is determined by calculating the feature reconstruction error of the data within the subspace. Compared to existing OOD detection algorithms, our method does not require access to training data while achieving leading performance on multiple OOD benchmarks. Our code is released at https://github.com/Aie0923/ClaFR.

Authors:Cedric Caruzzo, Jong Chul Ye
Title: CellPainTR: Generalizable Representation Learning for Cross-Dataset Cell Painting Analysis
Abstract:
Large-scale biological discovery requires integrating massive, heterogeneous datasets like those from the JUMP Cell Painting consortium, but technical batch effects and a lack of generalizable models remain critical roadblocks. To address this, we introduce CellPainTR, a Transformer-based architecture designed to learn foundational representations of cellular morphology that are robust to batch effects. Unlike traditional methods that require retraining on new data, CellPainTR's design, featuring source-specific context tokens, allows for effective out-of-distribution (OOD) generalization to entirely unseen datasets without fine-tuning. We validate CellPainTR on the large-scale JUMP dataset, where it outperforms established methods like ComBat and Harmony in both batch integration and biological signal preservation. Critically, we demonstrate its robustness through a challenging OOD task on the unseen Bray et al. dataset, where it maintains high performance despite significant domain and feature shifts. Our work represents a significant step towards creating truly foundational models for image-based profiling, enabling more reliable and scalable cross-study biological analysis.

Authors:Jiajun Chai, Guojun Yin, Zekun Xu, Chuhuai Yue, Yi Jia, Siyu Xia, Xiaohan Wang, Jiwen Jiang, Xiaoguang Li, Chengqi Dong, Hang He, Wei Lin
Title: RLFactory: A Plug-and-Play Reinforcement Learning Post-Training Framework for LLM Multi-Turn Tool-Use
Abstract:
Large language models excel at basic reasoning but struggle with tasks that require interaction with external tools. We present RLFactory, a plug-and-play reinforcement learning post-training framework for multi-round tool use. RLFactory tackles (i) tool-call stability and adaptability amid tool heterogeneity and interface issues via an asyncio-based asynchronous caller and a decoupled tool/training architecture, and (ii) diverse evaluation needs via a reward layer supporting rule-based, model-judgment, and tool-verification signals. It reconstructs the MDP by introducing observation markers from tool feedback, closing the loop among model, tools, and environment, and implements a generate-parse-invoke-update workflow for dynamic policy optimization. On Search-R1 with Qwen3-4B, RLFactory achieves a 0.486 test score on the Natural Questions (NQ) dataset, surpassing larger models trained with similar techniques (e.g., Qwen2.5-7B-Instruct-GRPO at 0.473), and increases training throughput by 6.8x. RLFactory provides a low-barrier, highly adaptable framework for strengthening multi-round tool use of LLMs in real-world scenarios. Code: https://github.com/Simple-Efficient/RL-Factory.

Authors:Zehua Li
Title: Toward Reproducible Cross-Backend Compatibility for Deep Learning: A Configuration-First Framework with Three-Tier Verification
Abstract:
This paper presents a configuration-first framework for evaluating cross-backend compatibility in deep learning systems deployed on CPU, GPU, and compiled runtimes. The framework decouples experiments from code using YAML, supports both library and repository models, and employs a three-tier verification protocol covering tensor-level closeness, activation alignment, and task-level metrics. Through 672 checks across multiple models and tolerance settings, we observe that 72.0% of runs pass, with most discrepancies occurring under stricter thresholds. Our results show that detection models and compiled backends are particularly prone to drift, often due to nondeterministic post-processing. We further demonstrate that deterministic adapters and selective fallbacks can substantially improve agreement without significant performance loss. To our knowledge, this is the first unified framework that systematically quantifies and mitigates cross-backend drift in deep learning, providing a reproducible methodology for dependable deployment across heterogeneous runtimes.

Authors:Yu Song, Zhigang Hua, Yan Xie, Jingzhe Liu, Bo Long, Hui Liu
Title: GSTBench: A Benchmark Study on the Transferability of Graph Self-Supervised Learning
Abstract:
Self-supervised learning (SSL) has shown great promise in graph representation learning. However, most existing graph SSL methods are developed and evaluated under a single-dataset setting, leaving their cross-dataset transferability largely unexplored and limiting their ability to leverage knowledge transfer and large-scale pretraining, factors that are critical for developing generalized intelligence beyond fitting training data. To address this gap and advance foundation model research for graphs, we present GSTBench, the first systematic benchmark for evaluating the transferability of graph SSL methods. We conduct large-scale pretraining on ogbn-papers100M and evaluate five representative SSL methods across a diverse set of target graphs. Our standardized experimental setup decouples confounding factors such as model architecture, dataset characteristics, and adaptation protocols, enabling rigorous comparisons focused solely on pretraining objectives. Surprisingly, we observe that most graph SSL methods struggle to generalize, with some performing worse than random initialization. In contrast, GraphMAE, a masked autoencoder approach, consistently improves transfer performance. We analyze the underlying factors that drive these differences and offer insights to guide future research on transferable graph SSL, laying a solid foundation for the "pretrain-then-transfer" paradigm in graph learning. Our code is available at https://github.com/SongYYYY/GSTBench.

Authors:Wenhao Li, Mengyuan Liu, Hong Liu, Pichao Wang, Shijian Lu, Nicu Sebe
Title: H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Abstract:
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.

Authors:Qi Lv, Weijie Kong, Hao Li, Jia Zeng, Zherui Qiu, Delin Qu, Haoming Song, Qizhi Chen, Xiang Deng, Jiangmiao Pang
Title: F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions
Abstract:
Executing language-conditioned tasks in dynamic visual environments remains a central challenge in embodied AI. Existing Vision-Language-Action (VLA) models predominantly adopt reactive state-to-action mappings, often leading to short-sighted behaviors and poor robustness in dynamic scenes. In this paper, we introduce F1, a pretrained VLA framework which integrates the visual foresight generation into decision-making pipeline. F1 adopts a Mixture-of-Transformer architecture with dedicated modules for perception, foresight generation, and control, thereby bridging understanding, generation, and actions. At its core, F1 employs a next-scale prediction mechanism to synthesize goal-conditioned visual foresight as explicit planning targets. By forecasting plausible future visual states, F1 reformulates action generation as a foresight-guided inverse dynamics problem, enabling actions that implicitly achieve visual goals. To endow F1 with robust and generalizable capabilities, we propose a three-stage training recipe on an extensive dataset comprising over 330k trajectories across 136 diverse tasks. This training scheme enhances modular reasoning and equips the model with transferable visual foresight, which is critical for complex and dynamic environments. Extensive evaluations on real-world tasks and simulation benchmarks demonstrate F1 consistently outperforms existing approaches, achieving substantial gains in both task success rate and generalization ability.

Authors:Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, Mengdi Wang
Title: Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models
Abstract:
We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL

Authors:Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin
Title: Interleaving Reasoning for Better Text-to-Image Generation
Abstract:
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .

Authors:Bing Han, Chen Zhu, Dong Han, Rui Yu, Songliang Cao, Jianhui Wu, Scott Chapman, Zijian Wang, Bangyou Zheng, Wei Guo, Marie Weiss, Benoit de Solan, Andreas Hund, Lukas Roth, Kirchgessner Norbert, Andrea Visioni, Yufeng Ge, Wenjuan Li, Alexis Comar, Dong Jiang, Dejun Han, Fred Baret, Yanfeng Ding, Hao Lu, Shouyang Liu
Title: FoMo4Wheat: Toward reliable crop vision foundation models with globally curated data
Abstract:
Vision-driven field monitoring is central to digital agriculture, yet models built on general-domain pretrained backbones often fail to generalize across tasks, owing to the interaction of fine, variable canopy structures with fluctuating field conditions. We present FoMo4Wheat, one of the first crop-domain vision foundation model pretrained with self-supervision on ImAg4Wheat, the largest and most diverse wheat image dataset to date (2.5 million high-resolution images collected over a decade at 30 global sites, spanning >2,000 genotypes and >500 environmental conditions). This wheat-specific pretraining yields representations that are robust for wheat and transferable to other crops and weeds. Across ten in-field vision tasks at canopy and organ levels, FoMo4Wheat models consistently outperform state-of-the-art models pretrained on general-domain dataset. These results demonstrate the value of crop-specific foundation models for reliable in-field perception and chart a path toward a universal crop foundation model with cross-species and cross-task capabilities. FoMo4Wheat models and the ImAg4Wheat dataset are publicly available online: https://github.com/PheniX-Lab/FoMo4Wheat and https://huggingface.co/PheniX-Lab/FoMo4Wheat. The demonstration website is: https://fomo4wheat.phenix-lab.com/.

Authors:Morteza Kiani Haftlang, Mohammadhossein Malmir, Foroutan Parand, Umberto Michelucci, Safouane El Ghazouali
Title: Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Abstract:
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

Authors:James Xu Zhao, Bryan Hooi, See-Kiong Ng
Title: Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Abstract:
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge

Authors:Matteo Muratori, Joël Seytre
Title: ToonOut: Fine-tuned Background-Removal for Anime Characters
Abstract:
While state-of-the-art background removal models excel at realistic imagery, they frequently underperform in specialized domains such as anime-style content, where complex features like hair and transparency present unique challenges. To address this limitation, we collected and annotated a custom dataset of 1,228 high-quality anime images of characters and objects, and fine-tuned the open-sourced BiRefNet model on this dataset. This resulted in marked improvements in background removal accuracy for anime-style images, increasing from 95.3% to 99.5% for our newly introduced Pixel Accuracy metric. We are open-sourcing the code, the fine-tuned model weights, as well as the dataset at: https://github.com/MatteoKartoon/BiRefNet.

Authors:Mohammad Reza Mirbagheri, Mohammad Mahdi Mirkamali, Zahra Motoshaker Arani, Ali Javeri, Amir Mahdi Sadeghzadeh, Rasool Jalili
Title: EPT Benchmark: Evaluation of Persian Trustworthiness in Large Language Models
Abstract:
Large Language Models (LLMs), trained on extensive datasets using advanced deep learning architectures, have demonstrated remarkable performance across a wide range of language tasks, becoming a cornerstone of modern AI technologies. However, ensuring their trustworthiness remains a critical challenge, as reliability is essential not only for accurate performance but also for upholding ethical, cultural, and social values. Careful alignment of training data and culturally grounded evaluation criteria are vital for developing responsible AI systems. In this study, we introduce the EPT (Evaluation of Persian Trustworthiness) metric, a culturally informed benchmark specifically designed to assess the trustworthiness of LLMs across six key aspects: truthfulness, safety, fairness, robustness, privacy, and ethical alignment. We curated a labeled dataset and evaluated the performance of several leading models - including ChatGPT, Claude, DeepSeek, Gemini, Grok, LLaMA, Mistral, and Qwen - using both automated LLM-based and human assessments. Our results reveal significant deficiencies in the safety dimension, underscoring the urgent need for focused attention on this critical aspect of model behavior. Furthermore, our findings offer valuable insights into the alignment of these models with Persian ethical-cultural values and highlight critical gaps and opportunities for advancing trustworthy and culturally responsible AI. The dataset is publicly available at: https://github.com/Rezamirbagheri110/EPT-Benchmark.

Authors:Simon Pezold, Jérôme A. Kurylec, Jan S. Liechti, Beat P. Müller, Joël L. Lavanchy
Title: Leveraging Generic Foundation Models for Multimodal Surgical Data Analysis
Abstract:
We investigate how both the adaptation of a generic foundation model via transfer learning and the integration of complementary modalities from the operating room (OR) can support surgical data science. To this end, we use V-JEPA as the single-modality foundation of a multimodal model for minimally invasive surgery support. We analyze how the model's downstream performance can benefit (a) from finetuning on unlabeled surgical video data and (b) from providing additional time-resolved data streams from the OR in a multimodal setup. In an in-house dataset of liver surgery videos, we analyze the tasks of predicting hospital length of stay and postoperative complications. In videos of the public HeiCo dataset, we analyze the task of surgical phase recognition. As a baseline, we apply pretrained V-JEPA to all tasks. We then finetune it on unlabeled, held-out videos to investigate its change in performance after domain adaptation. Following the idea of modular decision support networks, we integrate additional data streams from the OR by training a separate encoder to form a shared representation space with V-JEPA's embeddings. Our experiments show that finetuning on domain-specific data increases model performance. On the in-house data, integrating additional time-resolved data likewise benefits the model. On the HeiCo data, accuracy of the pretrained video-only, single-modality baseline setup is on par with the top-performing submissions of the EndoVis2017 challenge, while finetuning on domain-specific data increases accuracy further. Our results thus demonstrate how surgical data science can leverage public, generic foundation models. Likewise, they indicate the potential of domain adaptation and of integrating suitable complementary data streams from the OR. To support further research, we release our code and model weights at https://github.com/DigitalSurgeryLab-Basel/ML-CDS-2025.

Authors:Daniel San José Pro, Oliver Hausdörfer, Ralf Römer, Maximilian Dösch, Martin Schuck, Angela P. Schöllig
Title: CRISP -- Compliant ROS2 Controllers for Learning-Based Manipulation Policies and Teleoperation
Abstract:
Learning-based controllers, such as diffusion policies and vision-language action models, often generate low-frequency or discontinuous robot state changes. Achieving smooth reference tracking requires a low-level controller that converts high-level targets commands into joint torques, enabling compliant behavior during contact interactions. We present CRISP, a lightweight C++ implementation of compliant Cartesian and joint-space controllers for the ROS2 control standard, designed for seamless integration with high-level learning-based policies as well as teleoperation. The controllers are compatible with any manipulator that exposes a joint-torque interface. Through our Python and Gymnasium interfaces, CRISP provides a unified pipeline for recording data from hardware and simulation and deploying high-level learning-based policies seamlessly, facilitating rapid experimentation. The system has been validated on hardware with the Franka Robotics FR3 and in simulation with the Kuka IIWA14 and Kinova Gen3. Designed for rapid integration, flexible deployment, and real-time performance, our implementation provides a unified pipeline for data collection and policy execution, lowering the barrier to applying learning-based methods on ROS2-compatible manipulators. Detailed documentation is available at the project website - https://utiasDSL.github.io/crisp_controllers.

Authors:Yufeng Cheng, Wenxu Wu, Shaojin Wu, Mengqi Huang, Fei Ding, Qian He
Title: UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Abstract:
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO

Authors:Max Malyi, Jonathan Shek, Alasdair McDonald, Andre Biscaya
Title: A Comparative Benchmark of Large Language Models for Labelling Wind Turbine Maintenance Logs
Abstract:
Effective Operation and Maintenance (O&M) is critical to reducing the Levelised Cost of Energy (LCOE) from wind power, yet the unstructured, free-text nature of turbine maintenance logs presents a significant barrier to automated analysis. Our paper addresses this by presenting a novel and reproducible framework for benchmarking Large Language Models (LLMs) on the task of classifying these complex industrial records. To promote transparency and encourage further research, this framework has been made publicly available as an open-source tool. We systematically evaluate a diverse suite of state-of-the-art proprietary and open-source LLMs, providing a foundational assessment of their trade-offs in reliability, operational efficiency, and model calibration. Our results quantify a clear performance hierarchy, identifying top models that exhibit high alignment with a benchmark standard and trustworthy, well-calibrated confidence scores. We also demonstrate that classification performance is highly dependent on the task's semantic ambiguity, with all models showing higher consensus on objective component identification than on interpretive maintenance actions. Given that no model achieves perfect accuracy and that calibration varies dramatically, we conclude that the most effective and responsible near-term application is a Human-in-the-Loop system, where LLMs act as a powerful assistant to accelerate and standardise data labelling for human experts, thereby enhancing O&M data quality and downstream reliability analysis.

Authors:Valentin Quesnel, Damien Sileo
Title: Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
Abstract:
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1

Authors:Yuntao Du, Yuetian Chen, Hanshen Xiao, Bruno Ribeiro, Ninghui Li
Title: Imitative Membership Inference Attack
Abstract:
A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.

Authors:Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yanwen Guo, Zhuo Chen, Chunchao Guo
Title: P3-SAM: Native 3D Part Segmentation
Abstract:
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P$^3$-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P$^3$-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our project page is available at https://murcherful.github.io/P3-SAM/.

Authors:Sai Kartheek Reddy Kasu, Mohammad Zia Ur Rehman, Shahid Shafi Dar, Rishi Bharat Junghare, Dhanvin Sanjay Namboodiri, Nagendra Kumar
Title: D-HUMOR: Dark Humor Understanding via Multimodal Open-ended Reasoning
Abstract:
Dark humor in online memes poses unique challenges due to its reliance on implicit, sensitive, and culturally contextual cues. To address the lack of resources and methods for detecting dark humor in multimodal content, we introduce a novel dataset of 4,379 Reddit memes annotated for dark humor, target category (gender, mental health, violence, race, disability, and other), and a three-level intensity rating (mild, moderate, severe). Building on this resource, we propose a reasoning-augmented framework that first generates structured explanations for each meme using a Large Vision-Language Model (VLM). Through a Role-Reversal Self-Loop, VLM adopts the author's perspective to iteratively refine its explanations, ensuring completeness and alignment. We then extract textual features from both the OCR transcript and the self-refined reasoning via a text encoder, while visual features are obtained using a vision transformer. A Tri-stream Cross-Reasoning Network (TCRNet) fuses these three streams, text, image, and reasoning, via pairwise attention mechanisms, producing a unified representation for classification. Experimental results demonstrate that our approach outperforms strong baselines across three tasks: dark humor detection, target identification, and intensity prediction. The dataset, annotations, and code are released to facilitate further research in multimodal humor understanding and content moderation. Code and Dataset are available at: https://github.com/Sai-Kartheek-Reddy/D-Humor-Dark-Humor-Understanding-via-Multimodal-Open-ended-Reasoning

Authors:Qing Xu, Wenting Duan, Zhen Chen
Title: Co-Seg: Mutual Prompt-Guided Collaborative Learning for Tissue and Nuclei Segmentation
Abstract:
Histopathology image analysis is critical yet challenged by the demand of segmenting tissue regions and nuclei instances for tumor microenvironment and cellular morphology analysis. Existing studies focused on tissue semantic segmentation or nuclei instance segmentation separately, but ignored the inherent relationship between these two tasks, resulting in insufficient histopathology understanding. To address this issue, we propose a Co-Seg framework for collaborative tissue and nuclei segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing tissue and nuclei segmentation tasks to mutually enhance each other. To this end, we first devise a region-aware prompt encoder (RP-Encoder) to provide high-quality semantic and instance region prompts as prior constraints. Moreover, we design a mutual prompt mask decoder (MP-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, collaboratively computing semantic and instance segmentation masks. Extensive experiments on the PUMA dataset demonstrate that the proposed Co-Seg surpasses state-of-the-arts in the semantic, instance and panoptic segmentation of tumor tissues and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg.

Authors:Jie Yang, Jiajun Chen, Zhangyue Yin, Shuo Chen, Yuxin Wang, Yiran Guo, Yuan Li, Yining Zheng, Xuanjing Huang, Xipeng Qiu
Title: VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Abstract:
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.

Authors:Xiaobei Zhao, Xingqi Lyu, Xiang Li
Title: T-araVLN: Translator for Agricultural Robotic Agents on Vision-and-Language Navigation
Abstract:
Agricultural robotic agents have been becoming powerful helpers in a wide range of agricultural tasks, however, still heavily rely on manual operation or fixed railways for movement. To address this limitation, the AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling agents to navigate to the target positions following the natural language instructions. AgriVLN effectively understands the simple instructions, but often misunderstands the complex ones. To bridge this gap, we propose the method of Translator for Agricultural Robotic Agents on Vision-and-Language Navigation (T-araVLN), in which the Instruction Translator module translates the original instruction to be more refined and precise. When evaluated on the A2A benchmark, our T-araVLN effectively improves Success Rate from 0.47 to 0.63 and reduces Navigation Error from 2.91m to 2.28m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/T-araVLN.

Authors:Xin Kong, Daniel Watson, Yannick Strümpler, Michael Niemeyer, Federico Tombari
Title: CausNVS: Autoregressive Multi-view Diffusion for Flexible 3D Novel View Synthesis
Abstract:
Multi-view diffusion models have shown promise in 3D novel view synthesis, but most existing methods adopt a non-autoregressive formulation. This limits their applicability in world modeling, as they only support a fixed number of views and suffer from slow inference due to denoising all frames simultaneously. To address these limitations, we propose CausNVS, a multi-view diffusion model in an autoregressive setting, which supports arbitrary input-output view configurations and generates views sequentially. We train CausNVS with causal masking and per-frame noise, using pairwise-relative camera pose encodings (CaPE) for precise camera control. At inference time, we combine a spatially-aware sliding-window with key-value caching and noise conditioning augmentation to mitigate drift. Our experiments demonstrate that CausNVS supports a broad range of camera trajectories, enables flexible autoregressive novel view synthesis, and achieves consistently strong visual quality across diverse settings. Project page: https://kxhit.github.io/CausNVS.html.

Authors:Jack Wilkie, Hanan Hindy, Christos Tachtatzis, Robert Atkinson
Title: Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
Abstract:
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.

Authors:Junjie Chen, Yao Hu, Junjie Li, Kangyue Li, Kun Liu, Wenpeng Li, Xu Li, Ziyuan Li, Feiyu Shen, Xu Tang, Manzhen Wei, Yichen Wu, Fenglong Xie, Kaituo Xu, Kun Xie
Title: FireRedChat: A Pluggable, Full-Duplex Voice Interaction System with Cascaded and Semi-Cascaded Implementations
Abstract:
Full-duplex voice interaction allows users and agents to speak simultaneously with controllable barge-in, enabling lifelike assistants and customer service. Existing solutions are either end-to-end, difficult to design and hard to control, or modular pipelines governed by turn-taking controllers that ease upgrades and per-module optimization; however, prior modular frameworks depend on non-open components and external providers, limiting holistic optimization. In this work, we present a complete, practical full-duplex voice interaction system comprising a turn-taking controller, an interaction module, and a dialogue manager. The controller integrates streaming personalized VAD (pVAD) to suppress false barge-ins from noise and non-primary speakers, precisely timestamp primary-speaker segments, and explicitly enable primary-speaker barge-ins; a semantic end-of-turn detector improves stop decisions. It upgrades heterogeneous half-duplex pipelines, cascaded, semi-cascaded, and speech-to-speech, to full duplex. Using internal models, we implement cascaded and semi-cascaded variants; the semi-cascaded one captures emotional and paralinguistic cues, yields more coherent responses, lowers latency and error propagation, and improves robustness. A dialogue manager extends capabilities via tool invocation and context management. We also propose three system-level metrics, barge-in, end-of-turn detection accuracy, and end-to-end latency, to assess naturalness, control accuracy, and efficiency. Experiments show fewer false interruptions, more accurate semantic ends, and lower latency approaching industrial systems, enabling robust, natural, real-time full-duplex interaction. Demos: https://fireredteam.github.io/demos/firered_chat.

Authors:Jibai Lin, Bo Ma, Yating Yang, Xi Zhou, Rong Ma, Turghun Osman, Ahtamjan Ahmat, Rui Dong, Lei Wang
Title: TIDE: Achieving Balanced Subject-Driven Image Generation via Target-Instructed Diffusion Enhancement
Abstract:
Subject-driven image generation (SDIG) aims to manipulate specific subjects within images while adhering to textual instructions, a task crucial for advancing text-to-image diffusion models. SDIG requires reconciling the tension between maintaining subject identity and complying with dynamic edit instructions, a challenge inadequately addressed by existing methods. In this paper, we introduce the Target-Instructed Diffusion Enhancing (TIDE) framework, which resolves this tension through target supervision and preference learning without test-time fine-tuning. TIDE pioneers target-supervised triplet alignment, modelling subject adaptation dynamics using a (reference image, instruction, target images) triplet. This approach leverages the Direct Subject Diffusion (DSD) objective, training the model with paired "winning" (balanced preservation-compliance) and "losing" (distorted) targets, systematically generated and evaluated via quantitative metrics. This enables implicit reward modelling for optimal preservation-compliance balance. Experimental results on standard benchmarks demonstrate TIDE's superior performance in generating subject-faithful outputs while maintaining instruction compliance, outperforming baseline methods across multiple quantitative metrics. TIDE's versatility is further evidenced by its successful application to diverse tasks, including structural-conditioned generation, image-to-image generation, and text-image interpolation. Our code is available at https://github.com/KomJay520/TIDE.

Authors:Zhongxiang Xie, Shuangxi Miao, Yuhan Jiang, Zhewei Zhang, Jing Yao, Xuecao Li, Jianxi Huang, Pedram Ghamisi
Title: FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection
Abstract:
Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.

Authors:Song Yu, Xiaofei Xu, Ke Deng, Li Li, Lin Tian
Title: Tree of Agents: Improving Long-Context Capabilities of Large Language Models through Multi-Perspective Reasoning
Abstract:
Large language models (LLMs) face persistent challenges when handling long-context tasks, most notably the lost in the middle issue, where information located in the middle of a long input tends to be underutilized. Some existing methods that reduce input have the risk of discarding key information, while others that extend context windows often lead to attention dispersion. To address these limitations, we propose Tree of Agents (TOA), a multi-agent reasoning framework that segments the input into chunks processed by independent agents. Each agent generates its local cognition, then agents dynamically exchange information for collaborative reasoning along tree-structured paths. TOA enables agents to probe different reasoning orders for multi-perspective understanding, effectively mitigating position bias and reducing hallucinations. To improve processing efficiency, we incorporate prefix-hash caching and adaptive pruning strategies, achieving significant performance improvements with comparable API overhead. Experiments show that TOA, powered by compact LLaMA3.1-8B, significantly outperforms multiple baselines and demonstrates comparable performance to the latest and much larger commercial models, such as Gemini1.5-pro, on various long-context tasks. Code is available at https://github.com/Aireduce952/Tree-of-Agents.

Authors:Xudong Mou, Rui Wang, Tiejun Wang, Renyu Yang, Shiru Chen, Jie Sun, Tianyu Wo, Xudong Liu
Title: CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Abstract:
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.

Authors:Yixiao Li, Xin Li, Chris Wei Zhou, Shuo Xing, Hadi Amirpour, Xiaoshuai Hao, Guanghui Yue, Baoquan Zhao, Weide Liu, Xiaoyuan Yang, Zhengzhong Tu, Xinyu Li, Chuanbiao Song, Chenqi Zhang, Jun Lan, Huijia Zhu, Weiqiang Wang, Xiaoyan Sun, Shishun Tian, Dongyang Yan, Weixia Zhang, Junlin Chen, Wei Sun, Zhihua Wang, Zhuohang Shi, Zhizun Luo, Hang Ouyang, Tianxin Xiao, Fan Yang, Zhaowang Wu, Kaixin Deng
Title: VQualA 2025 Challenge on Image Super-Resolution Generated Content Quality Assessment: Methods and Results
Abstract:
This paper presents the ISRGC-Q Challenge, built upon the Image Super-Resolution Generated Content Quality Assessment (ISRGen-QA) dataset, and organized as part of the Visual Quality Assessment (VQualA) Competition at the ICCV 2025 Workshops. Unlike existing Super-Resolution Image Quality Assessment (SR-IQA) datasets, ISRGen-QA places a greater emphasis on SR images generated by the latest generative approaches, including Generative Adversarial Networks (GANs) and diffusion models. The primary goal of this challenge is to analyze the unique artifacts introduced by modern super-resolution techniques and to evaluate their perceptual quality effectively. A total of 108 participants registered for the challenge, with 4 teams submitting valid solutions and fact sheets for the final testing phase. These submissions demonstrated state-of-the-art (SOTA) performance on the ISRGen-QA dataset. The project is publicly available at: https://github.com/Lighting-YXLI/ISRGen-QA.

Authors:Hiroya Makino, Seigo Ito
Title: MAPF-HD: Multi-Agent Path Finding in High-Density Environments
Abstract:
Multi-agent path finding (MAPF) involves planning efficient paths for multiple agents to move simultaneously while avoiding collisions. In typical warehouse environments, agents are often sparsely distributed along aisles. However, increasing the agent density can improve space efficiency. When the agent density is high, we must optimize the paths not only for goal-assigned agents but also for those obstructing them. This study proposes a novel MAPF framework for high-density environments (MAPF-HD). Several studies have explored MAPF in similar settings using integer linear programming (ILP). However, ILP-based methods require substantial computation time to optimize all agent paths simultaneously. Even in small grid-based environments with fewer than $100$ cells, these computations can incur tens to hundreds of seconds. These high computational costs render these methods impractical for large-scale applications such as automated warehouses and valet parking. To address these limitations, we introduce the phased null-agent swapping (PHANS) method. PHANS employs a heuristic approach to incrementally swap positions between agents and empty vertices. This method solves the MAPF-HD problem within seconds to tens of seconds, even in large environments containing more than $700$ cells. The proposed method can potentially improve efficiency in various real-world applications such as warehouse logistics, traffic management, or crowd control. Code is available at https://github.com/ToyotaCRDL/MAPF-in-High-Density-Envs.

Authors:Jianpeng Zhao, Chenyu Yuan, Weiming Luo, Haoling Xie, Guangwei Zhang, Steven Jige Quan, Zixuan Yuan, Pengyang Wang, Denghui Zhang
Title: Large Language Models as Virtual Survey Respondents: Evaluating Sociodemographic Response Generation
Abstract:
Questionnaire-based surveys are foundational to social science research and public policymaking, yet traditional survey methods remain costly, time-consuming, and often limited in scale. This paper explores a new paradigm: simulating virtual survey respondents using Large Language Models (LLMs). We introduce two novel simulation settings, namely Partial Attribute Simulation (PAS) and Full Attribute Simulation (FAS), to systematically evaluate the ability of LLMs to generate accurate and demographically coherent responses. In PAS, the model predicts missing attributes based on partial respondent profiles, whereas FAS involves generating complete synthetic datasets under both zero-context and context-enhanced conditions. We curate a comprehensive benchmark suite, LLM-S^3 (Large Language Model-based Sociodemographic Survey Simulation), that spans 11 real-world public datasets across four sociological domains. Our evaluation of multiple mainstream LLMs (GPT-3.5/4 Turbo, LLaMA 3.0/3.1-8B) reveals consistent trends in prediction performance, highlights failure modes, and demonstrates how context and prompt design impact simulation fidelity. This work establishes a rigorous foundation for LLM-driven survey simulations, offering scalable and cost-effective tools for sociological research and policy evaluation. Our code and dataset are available at: https://github.com/dart-lab-research/LLM-S-Cube-Benchmark

Authors:Jeongmin Yu, Susang Kim, Kisu Lee, Taekyoung Kwon, Won-Yong Shin, Ha Young Kim
Title: Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing
Abstract:
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.

Authors:Ruiming Du, Guangxun Zhai, Tian Qiu, Yu Jiang
Title: Towards scalable organ level 3D plant segmentation: Bridging the data algorithm computing gap
Abstract:
The precise characterization of plant morphology provides valuable insights into plant environment interactions and genetic evolution. A key technology for extracting this information is 3D segmentation, which delineates individual plant organs from complex point clouds. Despite significant progress in general 3D computer vision domains, the adoption of 3D segmentation for plant phenotyping remains limited by three major challenges: i) the scarcity of large-scale annotated datasets, ii) technical difficulties in adapting advanced deep neural networks to plant point clouds, and iii) the lack of standardized benchmarks and evaluation protocols tailored to plant science. This review systematically addresses these barriers by: i) providing an overview of existing 3D plant datasets in the context of general 3D segmentation domains, ii) systematically summarizing deep learning-based methods for point cloud semantic and instance segmentation, iii) introducing Plant Segmentation Studio (PSS), an open-source framework for reproducible benchmarking, and iv) conducting extensive quantitative experiments to evaluate representative networks and sim-to-real learning strategies. Our findings highlight the efficacy of sparse convolutional backbones and transformer-based instance segmentation, while also emphasizing the complementary role of modeling-based and augmentation-based synthetic data generation for sim-to-real learning in reducing annotation demands. In general, this study bridges the gap between algorithmic advances and practical deployment, providing immediate tools for researchers and a roadmap for developing data-efficient and generalizable deep learning solutions in 3D plant phenotyping. Data and code are available at https://github.com/perrydoremi/PlantSegStudio.

Authors:Hang Fan, Yu Shi, Zongliang Fu, Shuo Chen, Wei Wei, Wei Xu, Jian Li
Title: WindFM: An Open-Source Foundation Model for Zero-Shot Wind Power Forecasting
Abstract:
High-quality wind power forecasting is crucial for the operation of modern power grids. However, prevailing data-driven paradigms either train a site-specific model which cannot generalize to other locations or rely on fine-tuning of general-purpose time series foundation models which are difficult to incorporate domain-specific data in the energy sector. This paper introduces WindFM, a lightweight and generative Foundation Model designed specifically for probabilistic wind power forecasting. WindFM employs a discretize-and-generate framework. A specialized time-series tokenizer first converts continuous multivariate observations into discrete, hierarchical tokens. Subsequently, a decoder-only Transformer learns a universal representation of wind generation dynamics by autoregressively pre-training on these token sequences. Using the comprehensive WIND Toolkit dataset comprising approximately 150 billion time steps from more than 126,000 sites, WindFM develops a foundational understanding of the complex interplay between atmospheric conditions and power output. Extensive experiments demonstrate that our compact 8.1M parameter model achieves state-of-the-art zero-shot performance on both deterministic and probabilistic tasks, outperforming specialized models and larger foundation models without any fine-tuning. In particular, WindFM exhibits strong adaptiveness under out-of-distribution data from a different continent, demonstrating the robustness and transferability of its learned representations. Our pre-trained model is publicly available at https://github.com/shiyu-coder/WindFM.

Authors:Jiangnan Xie, Xiaolong Zheng, Liang Zheng
Title: Prototype-Aware Multimodal Alignment for Open-Vocabulary Visual Grounding
Abstract:
Visual Grounding (VG) aims to utilize given natural language queries to locate specific target objects within images. While current transformer-based approaches demonstrate strong localization performance in standard scene (i.e, scenarios without any novel objects), they exhibit notable limitations in open-vocabulary scene (i.e, both familiar and novel object categories during testing). These limitations primarily stem from three key factors: (1) imperfect alignment between visual and linguistic modalities, (2) insufficient cross-modal feature fusion, and (3) ineffective utilization of semantic prototype information. To overcome these challenges, we present Prototype-Aware Multimodal Learning (PAML), an innovative framework that systematically addresses these issues through several key components: First, we leverage ALBEF to establish robust cross-modal alignment during initial feature encoding. Subsequently, our Visual Discriminative Feature Encoder selectively enhances salient object representations while suppressing irrelevant visual context. The framework then incorporates a novel prototype discovering and inheriting mechanism that extracts and aggregates multi-neighbor semantic prototypes to facilitate open-vocabulary recognition. These enriched features undergo comprehensive multimodal integration through our Multi-stage Decoder before final bounding box regression. Extensive experiments across five benchmark datasets validate our approach, showing competitive performance in standard scene while achieving state-of-the-art results in open-vocabulary scene. Our code is available at https://github.com/plankXie/PAML.

Authors:Xiangcheng Hu, Xieyuanli Chen, Mingkai Jia, Jin Wu, Ping Tan, Steven L. Waslander
Title: DCReg: Decoupled Characterization for Efficient Degenerate LiDAR Registration
Abstract:
LiDAR point cloud registration is fundamental to robotic perception and navigation. However, in geometrically degenerate or narrow environments, registration problems become ill-conditioned, leading to unstable solutions and degraded accuracy. While existing approaches attempt to handle these issues, they fail to address the core challenge: accurately detection, interpret, and resolve this ill-conditioning, leading to missed detections or corrupted solutions. In this study, we introduce DCReg, a principled framework that systematically addresses the ill-conditioned registration problems through three integrated innovations. First, DCReg achieves reliable ill-conditioning detection by employing a Schur complement decomposition to the hessian matrix. This technique decouples the registration problem into clean rotational and translational subspaces, eliminating coupling effects that mask degeneracy patterns in conventional analyses. Second, within these cleanly subspaces, we develop quantitative characterization techniques that establish explicit mappings between mathematical eigenspaces and physical motion directions, providing actionable insights about which specific motions lack constraints. Finally, leveraging this clean subspace, we design a targeted mitigation strategy: a novel preconditioner that selectively stabilizes only the identified ill-conditioned directions while preserving all well-constrained information in observable space. This enables efficient and robust optimization via the Preconditioned Conjugate Gradient method with a single physical interpretable parameter. Extensive experiments demonstrate DCReg achieves at least 20% - 50% improvement in localization accuracy and 5-100 times speedup over state-of-the-art methods across diverse environments. Our implementation will be available at https://github.com/JokerJohn/DCReg.

Authors:Nitin Gupta, Bapi Dutta, Anupam Yadav
Title: An Explainable Framework for Particle Swarm Optimization using Landscape Analysis and Machine Learning
Abstract:
Swarm intelligence algorithms have demonstrated remarkable success in solving complex optimization problems across diverse domains. However, their widespread adoption is often hindered by limited transparency in how algorithmic components influence performance. This work presents a multi-faceted investigation of Particle Swarm Optimization (PSO) to further understand the key role of different topologies for better interpretability and explainability. To achieve this objective, we first develop a comprehensive landscape characterization framework using Exploratory Landscape Analysis (ELA) to quantify problem difficulty and identify critical features affecting the optimization performance of PSO. Next, we conduct a rigorous empirical study comparing three fundamental swarm communication architectures -- Ring, Star, and Von Neumann topologies -- analysing their distinct impacts on exploration-exploitation balance, convergence behaviour, and solution quality and eventually develop an explainable benchmarking framework for PSO, to decode how swarm topologies affects information flow, diversity, and convergence. Based on this, a novel machine learning approach for automated algorithm configuration is introduced for training predictive models on extensive Area over the Convergence Curve (AOCC) data to recommend optimal settings based on problem characteristics. Through systematic experimentation across twenty four benchmark functions in multiple dimensions, we establish practical guidelines for topology selection and parameter configuration. These findings advance the development of more transparent and reliable swarm intelligence systems. The source codes of this work can be accessed at https://github.com/GitNitin02/ioh_pso.

Authors:Honggang Jia, Xiucheng Wang, Nan Cheng, Ruijin Sun, Changle Li
Title: UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks
Abstract:
Sixth generation (6G) systems require environment-aware communication, driven by native artificial intelligence (AI) and integrated sensing and communication (ISAC). Radio maps (RMs), providing spatially continuous channel information, are key enablers. However, generating high-fidelity RM ground truth via electromagnetic (EM) simulations is computationally intensive, motivating machine learning (ML)-based RM construction. The effectiveness of these data-driven methods depends on large-scale, high-quality training data. Current public datasets often focus on single-input single-output (SISO) and limited information, such as path loss, which is insufficient for advanced multi-input multi-output (MIMO) systems requiring detailed channel state information (CSI). To address this gap, this paper presents UrbanMIMOMap, a novel large-scale urban MIMO CSI dataset generated using high-precision ray tracing. UrbanMIMOMap offers comprehensive complex CSI matrices across a dense spatial grid, going beyond traditional path loss data. This rich CSI is vital for constructing high-fidelity RMs and serves as a fundamental resource for data-driven RM generation, including deep learning. We demonstrate the dataset's utility through baseline performance evaluations of representative ML methods for RM construction. This work provides a crucial dataset and reference for research in high-precision RM generation, MIMO spatial performance, and ML for 6G environment awareness. The code and data for this work are available at: https://github.com/UNIC-Lab/UrbanMIMOMap.

Authors:Vishal Raman, Vijai Aravindh R, Abhijith Ragav
Title: REMI: A Novel Causal Schema Memory Architecture for Personalized Lifestyle Recommendation Agents
Abstract:
Personalized AI assistants often struggle to incorporate complex personal data and causal knowledge, leading to generic advice that lacks explanatory power. We propose REMI, a Causal Schema Memory architecture for a multimodal lifestyle agent that integrates a personal causal knowledge graph, a causal reasoning engine, and a schema based planning module. The idea is to deliver explainable, personalized recommendations in domains like fashion, personal wellness, and lifestyle planning. Our architecture uses a personal causal graph of the user's life events and habits, performs goal directed causal traversals enriched with external knowledge and hypothetical reasoning, and retrieves adaptable plan schemas to generate tailored action plans. A Large Language Model orchestrates these components, producing answers with transparent causal explanations. We outline the CSM system design and introduce new evaluation metrics for personalization and explainability, including Personalization Salience Score and Causal Reasoning Accuracy, to rigorously assess its performance. Results indicate that CSM based agents can provide more context aware, user aligned recommendations compared to baseline LLM agents. This work demonstrates a novel approach to memory augmented, causal reasoning in personalized agents, advancing the development of transparent and trustworthy AI lifestyle assistants.

Authors:Qin Yang, Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J Quinn, Yan Yan, Ashish Kundu, Yuan Hong
Title: PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
Abstract:
Differentially Private Stochastic Gradient Descent (DP-SGD) is a standard method for enforcing privacy in deep learning, typically using the Gaussian mechanism to perturb gradient updates. However, conventional mechanisms such as Gaussian and Laplacian noise are parameterized only by variance or scale. This single degree of freedom ties the magnitude of noise directly to both privacy loss and utility degradation, preventing independent control of these two factors. The problem becomes more pronounced when the number of composition rounds T and batch size B vary across tasks, as these variations induce task-dependent shifts in the privacy-utility trade-off, where small changes in noise parameters can disproportionately affect model accuracy. To address this limitation, we introduce PLRV-O, a framework that defines a broad search space of parameterized DP-SGD noise distributions, where privacy loss moments are tightly characterized yet can be optimized more independently with respect to utility loss. This formulation enables systematic adaptation of noise to task-specific requirements, including (i) model size, (ii) training duration, (iii) batch sampling strategies, and (iv) clipping thresholds under both training and fine-tuning settings. Empirical results demonstrate that PLRV-O substantially improves utility under strict privacy constraints. On CIFAR-10, a fine-tuned ViT achieves 94.03% accuracy at epsilon approximately 0.5, compared to 83.93% with Gaussian noise. On SST-2, RoBERTa-large reaches 92.20% accuracy at epsilon approximately 0.2, versus 50.25% with Gaussian.

Authors:Lucas Wojcik, Luiz Coelho, Roger Granada, David Menotti
Title: Exploring Light-Weight Object Recognition for Real-Time Document Detection
Abstract:
Object Recognition and Document Skew Estimation have come a long way in terms of performance and efficiency. New models follow one of two directions: improving performance using larger models, and improving efficiency using smaller models. However, real-time document detection and rectification is a niche that is largely unexplored by the literature, yet it remains a vital step for automatic information retrieval from visual documents. In this work, we strive towards an efficient document detection pipeline that is satisfactory in terms of Optical Character Recognition (OCR) retrieval and faster than other available solutions. We adapt IWPOD-Net, a license plate detection network, and train it for detection on NBID, a synthetic ID card dataset. We experiment with data augmentation and cross-dataset validation with MIDV (another synthetic ID and passport document dataset) to find the optimal scenario for the model. Other methods from both the Object Recognition and Skew Estimation state-of-the-art are evaluated for comparison with our approach. We use each method to detect and rectify the document, which is then read by an OCR system. The OCR output is then evaluated using a novel OCR quality metric based on the Levenshtein distance. Since the end goal is to improve automatic information retrieval, we use the overall OCR quality as a performance metric. We observe that with a promising model, document rectification does not have to be perfect to attain state-of-the-art performance scores. We show that our model is smaller and more efficient than current state-of-the-art solutions while retaining a competitive OCR quality metric. All code is available at https://github.com/BOVIFOCR/iwpod-doc-corners.git

Authors:Olivier Schipper, Yudi Zhang, Yali Du, Mykola Pechenizkiy, Meng Fang
Title: PillagerBench: Benchmarking LLM-Based Agents in Competitive Minecraft Team Environments
Abstract:
LLM-based agents have shown promise in various cooperative and strategic reasoning tasks, but their effectiveness in competitive multi-agent environments remains underexplored. To address this gap, we introduce PillagerBench, a novel framework for evaluating multi-agent systems in real-time competitive team-vs-team scenarios in Minecraft. It provides an extensible API, multi-round testing, and rule-based built-in opponents for fair, reproducible comparisons. We also propose TactiCrafter, an LLM-based multi-agent system that facilitates teamwork through human-readable tactics, learns causal dependencies, and adapts to opponent strategies. Our evaluation demonstrates that TactiCrafter outperforms baseline approaches and showcases adaptive learning through self-play. Additionally, we analyze its learning process and strategic evolution over multiple game episodes. To encourage further research, we have open-sourced PillagerBench, fostering advancements in multi-agent AI for competitive environments.

Authors:Vedran Novaković
Title: Recursive vectorized computation of the Frobenius norm
Abstract:
Recursive algorithms for computing the Frobenius norm of a real array are proposed, based on hypot, a hypotenuse function. Comparing their relative accuracy bounds with those of the BLAS routine DNRM2 it is shown that the proposed algorithms could in many cases be significantly more accurate. The scalar recursive algorithms are vectorized with the Intel's vector instructions to achieve performance comparable to xNRM2, and are further parallelized with OpenCilk. Some scalar algorithms are unconditionally bitwise reproducible, while the reproducibility of the vector ones depends on the vector width.

Authors:Duomin Wang, Wei Zuo, Aojie Li, Ling-Hao Chen, Xinyao Liao, Deyu Zhou, Zixin Yin, Xili Dai, Daxin Jiang, Gang Yu
Title: UniVerse-1: Unified Audio-Video Generation via Stitching of Experts
Abstract:
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.

Authors:Hao Liang, Ruitao Wu, Bohan Zeng, Junbo Niu, Wentao Zhang, Bin Dong
Title: Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Abstract:
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.

Authors:Zhenqi Jia, Rui Liu, Berrak Sisman, Haizhou Li
Title: Multimodal Fine-grained Context Interaction Graph Modeling for Conversational Speech Synthesis
Abstract:
Conversational Speech Synthesis (CSS) aims to generate speech with natural prosody by understanding the multimodal dialogue history (MDH). The latest work predicts the accurate prosody expression of the target utterance by modeling the utterance-level interaction characteristics of MDH and the target utterance. However, MDH contains fine-grained semantic and prosody knowledge at the word level. Existing methods overlook the fine-grained semantic and prosodic interaction modeling. To address this gap, we propose MFCIG-CSS, a novel Multimodal Fine-grained Context Interaction Graph-based CSS system. Our approach constructs two specialized multimodal fine-grained dialogue interaction graphs: a semantic interaction graph and a prosody interaction graph. These two interaction graphs effectively encode interactions between word-level semantics, prosody, and their influence on subsequent utterances in MDH. The encoded interaction features are then leveraged to enhance synthesized speech with natural conversational prosody. Experiments on the DailyTalk dataset demonstrate that MFCIG-CSS outperforms all baseline models in terms of prosodic expressiveness. Code and speech samples are available at https://github.com/AI-S2-Lab/MFCIG-CSS.

Authors:Fei Wang, Yujie Li, Zezhi Shao, Chengqing Yu, Yisong Fu, Zhulin An, Yongjun Xu, Xueqi Cheng
Title: ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Abstract:
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.

Authors:Yuming Li, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
Title: BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Abstract:
Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to \textbf{16\%} over DanceGRPO, while reducing per-iteration training time by nearly \textbf{55\%}. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at \href{https://fredreic1849.github.io/BranchGRPO-Webpage/}{BranchGRPO}.

Authors:Yi Yuan, Xubo Liu, Haohe Liu, Xiyuan Kang, Zhuo Chen, Yuxuan Wang, Mark D. Plumbley, Wenwu Wang
Title: DreamAudio: Customized Text-to-Audio Generation with Diffusion Models
Abstract:
With the development of large-scale diffusion-based and language-modeling-based generative models, impressive progress has been achieved in text-to-audio generation. Despite producing high-quality outputs, existing text-to-audio models mainly aim to generate semantically aligned sound and fall short on precisely controlling fine-grained acoustic characteristics of specific sounds. As a result, users that need specific sound content may find it challenging to generate the desired audio clips. In this paper, we present DreamAudio for customized text-to-audio generation (CTTA). Specifically, we introduce a new framework that is designed to enable the model to identify auditory information from user-provided reference concepts for audio generation. Given a few reference audio samples containing personalized audio events, our system can generate new audio samples that include these specific events. In addition, two types of datasets are developed for training and testing the customized systems. The experiments show that the proposed model, DreamAudio, generates audio samples that are highly consistent with the customized audio features and aligned well with the input text prompts. Furthermore, DreamAudio offers comparable performance in general text-to-audio tasks. We also provide a human-involved dataset containing audio events from real-world CTTA cases as the benchmark for customized generation tasks.

Authors:Xinyu Gao, Xiangtao Meng, Yingkai Dong, Zheng Li, Shanqing Guo
Title: DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
Abstract:
While Retrieval-Augmented Generation (RAG) effectively reduces hallucinations by integrating external knowledge bases, it introduces vulnerabilities to membership inference attacks (MIAs), particularly in systems handling sensitive data. Existing MIAs targeting RAG's external databases often rely on model responses but ignore the interference of non-member-retrieved documents on RAG outputs, limiting their effectiveness. To address this, we propose DCMI, a differential calibration MIA that mitigates the negative impact of non-member-retrieved documents. Specifically, DCMI leverages the sensitivity gap between member and non-member retrieved documents under query perturbation. It generates perturbed queries for calibration to isolate the contribution of member-retrieved documents while minimizing the interference from non-member-retrieved documents. Experiments under progressively relaxed assumptions show that DCMI consistently outperforms baselines--for example, achieving 97.42% AUC and 94.35% Accuracy against the RAG system with Flan-T5, exceeding the MBA baseline by over 40%. Furthermore, on real-world RAG platforms such as Dify and MaxKB, DCMI maintains a 10%-20% advantage over the baseline. These results highlight significant privacy risks in RAG systems and emphasize the need for stronger protection mechanisms. We appeal to the community's consideration of deeper investigations, like ours, against the data leakage risks in rapidly evolving RAG systems. Our code is available at https://github.com/Xinyu140203/RAG_MIA.

Authors:Haoyang He, Zihua Rong, Kun Ji, Chenyang Li, Qing Huang, Chong Xia, Lan Yang, Honggang Zhang
Title: Rethinking Reasoning Quality in Large Language Models through Enhanced Chain-of-Thought via RL
Abstract:
Reinforcement learning (RL) has recently become the dominant paradigm for strengthening the reasoning abilities of large language models (LLMs). Yet the rule-based reward functions commonly used on mathematical or programming benchmarks assess only answer format and correctness, providing no signal as to whether the induced Chain-of-Thought (CoT) actually improves the answer. Furthermore, such task-specific training offers limited control over logical depth and therefore may fail to reveal a model's genuine reasoning capacity. We propose Dynamic Reasoning Efficiency Reward (DRER) -- a plug-and-play RL reward framework that reshapes both reward and advantage signals. (i) A Reasoning Quality Reward assigns fine-grained credit to those reasoning chains that demonstrably raise the likelihood of the correct answer, directly incentivising the trajectories with beneficial CoT tokens. (ii) A Dynamic Length Advantage decays the advantage of responses whose length deviates from a validation-derived threshold, stabilising training. To facilitate rigorous assessment, we also release Logictree, a dynamically constructed deductive reasoning dataset that functions both as RL training data and as a comprehensive benchmark. Experiments confirm the effectiveness of DRER: our 7B model attains GPT-o3-mini level performance on Logictree with 400 trianing steps, while the average confidence of CoT-augmented answers rises by 30%. The model further exhibits generalisation across diverse logical-reasoning datasets, and the mathematical benchmark AIME24. These results illuminate how RL shapes CoT behaviour and chart a practical path toward enhancing formal-reasoning skills in large language models. All code and data are available in repository https://github.com/Henryhe09/DRER.

Authors:Zhiwen Shao, Yifan Cheng, Fan Zhang, Xuehuai Shi, Canlin Li, Lizhuang Ma, Dit-yan Yeung
Title: Micro-Expression Recognition via Fine-Grained Dynamic Perception
Abstract:
Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions (MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order, in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and (ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous best results in terms of F1-score on the CASME II, SAMM, CAS(ME)^2, and CAS(ME)^3 datasets, respectively. The code is available at https://github.com/CYF-cuber/FDP.

Authors:Wanyin Cheng, Zanxi Ruan
Title: BLaVe-CoT: Consistency-Aware Visual Question Answering for Blind and Low Vision Users
Abstract:
Visual Question Answering (VQA) holds great potential for assisting Blind and Low Vision (BLV) users, yet real-world usage remains challenging. Due to visual impairments, BLV users often take blurry or poorly framed photos and face difficulty in articulating specific questions about what they cannot fully see. As a result, their visual questions are frequently ambiguous, and different users may interpret them in diverse ways. This leads to multiple valid answers, each grounded in different image regions-posing a mismatch with conventional VQA systems that assume a single answer and region. To bridge this gap, we present BLaVe-CoT, a VQA framework designed to reason about answer consistency in the face of ambiguity. Our method proposes diverse candidate answers using a LoRA-tuned BLIP-2 model, then grounds each answer spatially using PolyFormer, and finally applies a chain-of-thought reasoning module to assess whether the answers refer to the same or different regions. Evaluated on the VQA-AnswerTherapy benchmark, BLaVe-CoT outperforms previous methods and proves more robust to the ambiguity and visual noise common in assistive settings. This work highlights the need for VQA systems that can adapt to real human uncertainty and provide inclusive support for BLV users. To foster further research and accessibility applications, we have made the code publicly available at https://github.com/Accecwan/BLaVe-CoT.

Authors:Mohamed Mohamed, Brennan Nichyporuk, Douglas L. Arnold, Tal Arbel
Title: Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Abstract:
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however, the success of these models is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained models do not exist for 3D, significantly limiting progress. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language remains unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression, and enhanced medical training by visualizing hypothetical conditions in realistic detail. Our work takes a step toward this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this is the first demonstration of a language-guided native-3D diffusion model applied to neurological imaging, where faithful three-dimensional modeling is essential. On two neurological MRI datasets, our framework simulates varying counterfactual lesion loads in Multiple Sclerosis and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity. Our results lay the groundwork for prompt-driven disease progression analysis in 3D medical imaging. Project link - https://lesupermomo.github.io/imagining-alternatives/.

Authors:Ye Wang, Zili Yi, Yibo Zhang, Peng Zheng, Xuping Xie, Jiang Lin, Yilin Wang, Rui Ma
Title: OmniStyle2: Scalable and High Quality Artistic Style Transfer Data Generation via Destylization
Abstract:
OmniStyle2 introduces a novel approach to artistic style transfer by reframing it as a data problem. Our key insight is destylization, reversing style transfer by removing stylistic elements from artworks to recover natural, style-free counterparts. This yields DST-100K, a large-scale dataset that provides authentic supervision signals by aligning real artistic styles with their underlying content. To build DST-100K, we develop (1) DST, a text-guided destylization model that reconstructs stylefree content, and (2) DST-Filter, a multi-stage evaluation model that employs Chain-of-Thought reasoning to automatically discard low-quality pairs while ensuring content fidelity and style accuracy. Leveraging DST-100K, we train OmniStyle2, a simple feed-forward model based on FLUX.1-dev. Despite its simplicity, OmniStyle2 consistently surpasses state-of-the-art methods across both qualitative and quantitative benchmarks. Our results demonstrate that scalable data generation via destylization provides a reliable supervision paradigm, overcoming the fundamental challenge posed by the lack of ground-truth data in artistic style transfer.

Authors:Jeonghyun Noh, Wangsu Jeon, Jinsun Park
Title: Dual Interaction Network with Cross-Image Attention for Medical Image Segmentation
Abstract:
Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies, such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively. Code available at: https://github.com/JJeong-Gari/DIN

Authors:Feng Wang, Zihao Yu
Title: Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS

Authors:Chaoqian Ouyang, Ling Yue, Shimin Di, Libin Zheng, Linan Yue, Shaowu Pan, Jian Yin, Min-Ling Zhang
Title: Code2MCP: Transforming Code Repositories into MCP Services
Abstract:
The Model Context Protocol (MCP) aims to create a standard for how Large Language Models use tools. However, most current research focuses on selecting tools from an existing pool. A more fundamental, yet largely overlooked, problem is how to populate this pool by converting the vast number of existing software projects into MCP-compatible services. To bridge this gap, we introduce Code2MCP, an agent-based framework that automatically transforms a GitHub repository into a functional MCP service with minimal human intervention. Code2MCP employs a multi-agent workflow for code analysis, environment setup, tool function design, and service generation, enhanced by a self-correcting loop to ensure reliability. We demonstrate that Code2MCP successfully transforms open-source computing libraries in scientific fields such as bioinformatics, mathematics, and fluid dynamics that are not available in existing MCP servers. By providing a novel automated pathway to unlock GitHub, the world's largest code repository, for the MCP ecosystem, Code2MCP serves as a catalyst to significantly accelerate the protocol's adoption and practical application. The code is public at https://github.com/DEFENSE-SEU/Code2MCP.

Authors:Md Hasebul Hasan, Mahir Labib Dihan, Mohammed Eunus Ali, Md Rizwan Parvez
Title: MapAgent: A Hierarchical Agent for Geospatial Reasoning with Dynamic Map Tool Integration
Abstract:
Agentic AI has significantly extended the capabilities of large language models (LLMs) by enabling complex reasoning and tool use. However, most existing frameworks are tailored to domains such as mathematics, coding, or web automation, and fall short on geospatial tasks that require spatial reasoning, multi-hop planning, and real-time map interaction. To address these challenges, we introduce MapAgent, a hierarchical multi-agent plug-and-play framework with customized toolsets and agentic scaffolds for map-integrated geospatial reasoning. Unlike existing flat agent-based approaches that treat tools uniformly-often overwhelming the LLM when handling similar but subtly different geospatial APIs-MapAgent decouples planning from execution. A high-level planner decomposes complex queries into subgoals, which are routed to specialized modules. For tool-heavy modules-such as map-based services-we then design a dedicated map-tool agent that efficiently orchestrates related APIs adaptively in parallel to effectively fetch geospatial data relevant for the query, while simpler modules (e.g., solution generation or answer extraction) operate without additional agent overhead. This hierarchical design reduces cognitive load, improves tool selection accuracy, and enables precise coordination across similar APIs. We evaluate MapAgent on four diverse geospatial benchmarks-MapEval-Textual, MapEval-API, MapEval-Visual, and MapQA-and demonstrate substantial gains over state-of-the-art tool-augmented and agentic baselines. We open-source our framwork at https://github.com/Hasebul/MapAgent.

Authors:Shuolong Chen, Xingxing Li, Liu Yuan
Title: eKalibr-Inertial: Continuous-Time Spatiotemporal Calibration for Event-Based Visual-Inertial Systems
Abstract:
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the visual-inertial setup is commonly adopted due to complementary characteristics between sensors (e.g., scale perception and low drift). For optimal event-based visual-inertial fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. In this work, we present eKalibr-Inertial, an accurate spatiotemporal calibrator for event-based visual-inertial systems, utilizing the widely used circle grid board. Building upon the grid pattern recognition and tracking methods in eKalibr and eKalibr-Stereo, the proposed method starts with a rigorous and efficient initialization, where all parameters in the estimator would be accurately recovered. Subsequently, a continuous-time-based batch optimization is conducted to refine the initialized parameters toward better states. The results of extensive real-world experiments show that eKalibr-Inertial can achieve accurate event-based visual-inertial spatiotemporal calibration. The implementation of eKalibr-Inertial is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.

Authors:Tyler Ward, Abdullah Imran
Title: A Probabilistic Segment Anything Model for Ambiguity-Aware Medical Image Segmentation
Abstract:
Recent advances in promptable segmentation, such as the Segment Anything Model (SAM), have enabled flexible, high-quality mask generation across a wide range of visual domains. However, SAM and similar models remain fundamentally deterministic, producing a single segmentation per object per prompt, and fail to capture the inherent ambiguity present in many real-world tasks. This limitation is particularly troublesome in medical imaging, where multiple plausible segmentations may exist due to annotation uncertainty or inter-expert variability. In this paper, we introduce Probabilistic SAM, a probabilistic extension of SAM that models a distribution over segmentations conditioned on both the input image and prompt. By incorporating a latent variable space and training with a variational objective, our model learns to generate diverse and plausible segmentation masks reflecting the variability in human annotations. The architecture integrates a prior and posterior network into the SAM framework, allowing latent codes to modulate the prompt embeddings during inference. The latent space allows for efficient sampling during inference, enabling uncertainty-aware outputs with minimal overhead. We evaluate Probabilistic SAM on the public LIDC-IDRI lung nodule dataset and demonstrate its ability to produce diverse outputs that align with expert disagreement, outperforming existing probabilistic baselines on uncertainty-aware metrics. Our code is available at: https://github.com/tbwa233/Probabilistic-SAM/.

Authors:Zijian Chen, Wenjie Hua, Jinhao Li, Lirong Deng, Fan Du, Tingzhu Chen, Guangtao Zhai
Title: PictOBI-20k: Unveiling Large Multimodal Models in Visual Decipherment for Pictographic Oracle Bone Characters
Abstract:
Deciphering oracle bone characters (OBCs), the oldest attested form of written Chinese, has remained the ultimate, unwavering goal of scholars, offering an irreplaceable key to understanding humanity's early modes of production. Current decipherment methodologies of OBC are primarily constrained by the sporadic nature of archaeological excavations and the limited corpus of inscriptions. With the powerful visual perception capability of large multimodal models (LMMs), the potential of using LMMs for visually deciphering OBCs has increased. In this paper, we introduce PictOBI-20k, a dataset designed to evaluate LMMs on the visual decipherment tasks of pictographic OBCs. It includes 20k meticulously collected OBC and real object images, forming over 15k multi-choice questions. We also conduct subjective annotations to investigate the consistency of the reference point between humans and LMMs in visual reasoning. Experiments indicate that general LMMs possess preliminary visual decipherment skills, and LMMs are not effectively using visual information, while most of the time they are limited by language priors. We hope that our dataset can facilitate the evaluation and optimization of visual attention in future OBC-oriented LMMs. The code and dataset will be available at https://github.com/OBI-Future/PictOBI-20k.

Authors:Jinkun Geng, Shuai Mu, Anirudh Sivaraman, Balaji Prabhakar
Title: Tiga: Accelerating Geo-Distributed Transactions with Synchronized Clocks [Technical Report]
Abstract:
This paper presents Tiga, a new design for geo-replicated and scalable transactional databases such as Google Spanner. Tiga aims to commit transactions within 1 wide-area roundtrip time, or 1 WRTT, for a wide range of scenarios, while maintaining high throughput with minimal computational overhead. Tiga consolidates concurrency control and consensus, completing both strictly serializable execution and consistent replication in a single round. It uses synchronized clocks to proactively order transactions by assigning each a future timestamp at submission. In most cases, transactions arrive at servers before their future timestamps and are serialized according to the designated timestamp, requiring 1 WRTT to commit. In rare cases, transactions are delayed and proactive ordering fails, in which case Tiga falls back to a slow path, committing in 1.5--2 WRTTs. Compared to state-of-the-art solutions, Tiga can commit more transactions at 1-WRTT latency, and incurs much less throughput overhead. Evaluation results show that Tiga outperforms all baselines, achieving 1.3--7.2$\times$ higher throughput and 1.4--4.6$\times$ lower latency. Tiga is open-sourced at https://github.com/New-Consensus-Concurrency-Control/Tiga.

Authors:Sarang Patil, Zeyong Zhang, Yiran Huang, Tengfei Ma, Mengjia Xu
Title: Hyperbolic Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

Authors:Leo Ho, Yinghao Huang, Dafei Qin, Mingyi Shi, Wangpok Tse, Wei Liu, Junichi Yamagishi, Taku Komura
Title: InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
Abstract:
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .

Authors:Jiaqi Chen, Ji Shi, Cansu Sancaktar, Jonas Frey, Georg Martius
Title: Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
Abstract:
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.

Authors:Liansheng Wang, Xinke Zhang, Chenhui Li, Dongjiao He, Yihan Pan, Jianjun Yi
Title: Super-LIO: A Robust and Efficient LiDAR-Inertial Odometry System with a Compact Mapping Strategy
Abstract:
LiDAR-Inertial Odometry (LIO) is a foundational technique for autonomous systems, yet its deployment on resource-constrained platforms remains challenging due to computational and memory limitations. We propose Super-LIO, a robust LIO system that demands both high performance and accuracy, ideal for applications such as aerial robots and mobile autonomous systems. At the core of Super-LIO is a compact octo-voxel-based map structure, termed OctVox, that limits each voxel to eight fused subvoxels, enabling strict point density control and incremental denoising during map updates. This design enables a simple yet efficient and accurate map structure, which can be easily integrated into existing LIO frameworks. Additionally, Super-LIO designs a heuristic-guided KNN strategy (HKNN) that accelerates the correspondence search by leveraging spatial locality, further reducing runtime overhead. We evaluated the proposed system using four publicly available datasets and several self-collected datasets, totaling more than 30 sequences. Extensive testing on both X86 and ARM platforms confirms that Super-LIO offers superior efficiency and robustness, while maintaining competitive accuracy. Super-LIO processes each frame approximately 73% faster than SOTA, while consuming less CPU resources. The system is fully open-source and plug-and-play compatible with a wide range of LiDAR sensors and platforms. The implementation is available at: https://github.com/Liansheng-Wang/Super-LIO.git

Authors:Péter Ferenc Gyarmati, Dominik Moritz, Torsten Möller, Laura Koesten
Title: A Composable Agentic System for Automated Visual Data Reporting
Abstract:
To address the brittleness of monolithic AI agents, our prototype for automated visual data reporting explores a Human-AI Partnership model. Its hybrid, multi-agent architecture strategically externalizes logic from LLMs to deterministic modules, leveraging the rule-based system Draco for principled visualization design. The system delivers a dual-output: an interactive Observable report with Mosaic for reader exploration, and executable Marimo notebooks for deep, analyst-facing traceability. This granular architecture yields a fully automatic yet auditable and steerable system, charting a path toward a more synergistic partnership between human experts and AI. For reproducibility, our implementation and examples are available at https://peter-gy.github.io/VISxGenAI-2025/.

Authors:Gašper Podobnik, Tomaž Vrtovec
Title: MeshMetrics: A Precise Implementation of Distance-Based Image Segmentation Metrics
Abstract:
The surge of research in image segmentation has yielded remarkable performance gains but also exposed a reproducibility crisis. A major contributor is performance evaluation, where both selection and implementation of metrics play critical roles. While recent efforts have improved the former, the reliability of metric implementation has received far less attention. Pitfalls in distance-based metric implementation can lead to considerable discrepancies between common open-source tools, for instance, exceeding 100 mm for the Hausdorff distance and 30%pt for the normalized surface distance for the same pair of segmentations. To address these pitfalls, we introduce MeshMetrics, a mesh-based framework that provides a more precise computation of distance-based metrics than conventional grid-based approaches. Through theoretical analysis and empirical validation, we demonstrate that MeshMetrics achieves higher accuracy and precision than established tools, and is substantially less affected by discretization artifacts, such as distance quantization. We release MeshMetrics as an open-source Python package, available at https://github.com/gasperpodobnik/MeshMetrics.

Authors:Xiaomeng Zhu, Changwei Wang, Haozhe Wang, Xinyu Liu, Fangzhen Lin
Title: OOTSM: A Decoupled Linguistic Framework for Effective Scene Graph Anticipation
Abstract:
A scene graph is a structured represention of objects and their relationships in a scene. Scene Graph Anticipation (SGA) involves predicting future scene graphs from video clips, enabling applications as intelligent surveillance and human-machine collaboration. Existing SGA approaches primarily leverage visual cues, often struggling to integrate valuable commonsense knowledge, thereby limiting long-term prediction robustness. To explicitly leverage such commonsense knowledge, we propose a new approach to better understand the objects, concepts, and relationships in a scene graph. Our approach decouples the SGA task in two steps: first a scene graph capturing model is used to convert a video clip into a sequence of scene graphs, then a pure text-based model is used to predict scene graphs in future frames. Our focus in this work is on the second step, and we call it Linguistic Scene Graph Anticipation (LSGA) and believes it should have independent interest beyond the use in SGA discussed here. For LSGA, we introduce an Object-Oriented Two-Staged Method (OOTSM) where an Large Language Model (LLM) first forecasts object appearances and disappearances before generating detailed human-object relations. We conduct extensive experiments to evaluate OOTSM in two settings. For LSGA, we evaluate our fine-tuned open-sourced LLMs against zero-shot APIs (i.e., GPT-4o, GPT-4o-mini, and DeepSeek-V3) on a benchmark constructed from Action Genome annotations. For SGA, we combine our OOTSM with STTran++ from, and our experiments demonstrate effective state-of-the-art performance: short-term mean-Recall (@10) increases by 3.4% while long-term mean-Recall (@50) improves dramatically by 21.9%. Code is available at https://github.com/ZhuXMMM/OOTSM.

Authors:Yuxuan Hu, Jihao Liu, Ke Wang, Jinliang Zhen, Weikang Shi, Manyuan Zhang, Qi Dou, Rui Liu, Aojun Zhou, Hongsheng Li
Title: LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding
Abstract:
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.

Authors:Shay Dahary, Avi Edana, Alexander Apartsin, Yehudit Aperstein
Title: From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics
Abstract:
The emotional content of song lyrics plays a pivotal role in shaping listener experiences and influencing musical preferences. This paper investigates the task of multi-label emotional attribution of song lyrics by predicting six emotional intensity scores corresponding to six fundamental emotions. A manually labeled dataset is constructed using a mean opinion score (MOS) approach, which aggregates annotations from multiple human raters to ensure reliable ground-truth labels. Leveraging this dataset, we conduct a comprehensive evaluation of several publicly available large language models (LLMs) under zero-shot scenarios. Additionally, we fine-tune a BERT-based model specifically for predicting multi-label emotion scores. Experimental results reveal the relative strengths and limitations of zero-shot and fine-tuned models in capturing the nuanced emotional content of lyrics. Our findings highlight the potential of LLMs for emotion recognition in creative texts, providing insights into model selection strategies for emotion-based music information retrieval applications. The labeled dataset is available at https://github.com/LLM-HITCS25S/LyricsEmotionAttribution.

Authors:Jungin Park, Jiyoung Lee, Kwanghoon Sohn
Title: Language-guided Recursive Spatiotemporal Graph Modeling for Video Summarization
Abstract:
Video summarization aims to select keyframes that are visually diverse and can represent the whole story of a given video. Previous approaches have focused on global interlinkability between frames in a video by temporal modeling. However, fine-grained visual entities, such as objects, are also highly related to the main content of the video. Moreover, language-guided video summarization, which has recently been studied, requires a comprehensive linguistic understanding of complex real-world videos. To consider how all the objects are semantically related to each other, this paper regards video summarization as a language-guided spatiotemporal graph modeling problem. We present recursive spatiotemporal graph networks, called VideoGraph, which formulate the objects and frames as nodes of the spatial and temporal graphs, respectively. The nodes in each graph are connected and aggregated with graph edges, representing the semantic relationships between the nodes. To prevent the edges from being configured with visual similarity, we incorporate language queries derived from the video into the graph node representations, enabling them to contain semantic knowledge. In addition, we adopt a recursive strategy to refine initial graphs and correctly classify each frame node as a keyframe. In our experiments, VideoGraph achieves state-of-the-art performance on several benchmarks for generic and query-focused video summarization in both supervised and unsupervised manners. The code is available at https://github.com/park-jungin/videograph.

Authors:Changtao Miao, Yi Zhang, Man Luo, Weiwei Feng, Kaiyuan Zheng, Qi Chu, Tao Gong, Jianshu Li, Yunfeng Diao, Wei Zhou, Joey Tianyi Zhou, Xiaoshuai Hao
Title: MFFI: Multi-Dimensional Face Forgery Image Dataset for Real-World Scenarios
Abstract:
Rapid advances in Artificial Intelligence Generated Content (AIGC) have enabled increasingly sophisticated face forgeries, posing a significant threat to social security. However, current Deepfake detection methods are limited by constraints in existing datasets, which lack the diversity necessary in real-world scenarios. Specifically, these data sets fall short in four key areas: unknown of advanced forgery techniques, variability of facial scenes, richness of real data, and degradation of real-world propagation. To address these challenges, we propose the Multi-dimensional Face Forgery Image (\textbf{MFFI}) dataset, tailored for real-world scenarios. MFFI enhances realism based on four strategic dimensions: 1) Wider Forgery Methods; 2) Varied Facial Scenes; 3) Diversified Authentic Data; 4) Multi-level Degradation Operations. MFFI integrates $50$ different forgery methods and contains $1024K$ image samples. Benchmark evaluations show that MFFI outperforms existing public datasets in terms of scene complexity, cross-domain generalization capability, and detection difficulty gradients. These results validate the technical advance and practical utility of MFFI in simulating real-world conditions. The dataset and additional details are publicly available at {https://github.com/inclusionConf/MFFI}.

Authors:Zixi Li
Title: TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Abstract:
We present TreeGPT, an attention-free neural architecture that explores the potential of pure TreeFFN encoder-decoder design for structured reasoning tasks. Unlike traditional transformer approaches that rely on attention mechanisms, TreeGPT employs bidirectional TreeFFN components that process sequences through adjacent connections in parallel, aiming to achieve computational efficiency while maintaining reasoning capabilities. Our approach centers on a TreeFFN Encoder-Decoder mechanism: $$\text{Encoder TreeFFN (L} \rightarrow \text{R)} + \text{Decoder TreeFFN (R} \leftarrow \text{L)} \rightarrow \text{Parallel Processing}$$ where the encoder processes left-to-right dependencies while the decoder handles right-to-left patterns, both using simple neighbor-to-neighbor connections. This design eliminates attention computation while maintaining sequence modeling capabilities. We evaluate our approach on the ARC Prize 2025 dataset, where TreeGPT achieves 99\% validation accuracy using 3.16M parameters. The model converges within 1500 training steps and demonstrates 100\% token-level accuracy on selected evaluation samples. Our preliminary results suggest that for certain structured reasoning tasks, specialized TreeFFN architectures may offer advantages over attention-based approaches. While these findings are encouraging, we acknowledge that further investigation across diverse tasks and datasets would be valuable to establish the broader applicability of attention-free designs.

Authors:Yanda Yang, Max Sokolich, Fatma Ceren Kirmizitas, Sambeeta Das, Andreas A. Malikopoulos
Title: Microrobot Vascular Parkour: Analytic Geometry-based Path Planning with Real-time Dynamic Obstacle Avoidance
Abstract:
Autonomous microrobots in blood vessels could enable minimally invasive therapies, but navigation is challenged by dense, moving obstacles. We propose a real-time path planning framework that couples an analytic geometry global planner (AGP) with two reactive local escape controllers, one based on rules and one based on reinforcement learning, to handle sudden moving obstacles. Using real-time imaging, the system estimates the positions of the microrobot, obstacles, and targets and computes collision-free motions. In simulation, AGP yields shorter paths and faster planning than weighted A* (WA*), particle swarm optimization (PSO), and rapidly exploring random trees (RRT), while maintaining feasibility and determinism. We extend AGP from 2D to 3D without loss of speed. In both simulations and experiments, the combined global planner and local controllers reliably avoid moving obstacles and reach targets. The average planning time is 40 ms per frame, compatible with 25 fps image acquisition and real-time closed-loop control. These results advance autonomous microrobot navigation and targeted drug delivery in vascular environments.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Learning Tool-Aware Adaptive Compliant Control for Autonomous Regolith Excavation
Abstract:
Autonomous regolith excavation is a cornerstone of in-situ resource utilization for a sustained human presence beyond Earth. However, this task is fundamentally hindered by the complex interaction dynamics of granular media and the operational need for robots to use diverse tools. To address these challenges, this work introduces a framework where a model-based reinforcement learning agent learns within a parallelized simulation. This environment leverages high-fidelity particle physics and procedural generation to create a vast distribution of both lunar terrains and excavation tool geometries. To master this diversity, the agent learns an adaptive interaction strategy by dynamically modulating its own stiffness and damping at each control step through operational space control. Our experiments demonstrate that training with a procedural distribution of tools is critical for generalization and enables the development of sophisticated tool-aware behavior. Furthermore, we show that augmenting the agent with visual feedback significantly improves task success. These results represent a validated methodology for developing the robust and versatile autonomous systems required for the foundational tasks of future space missions.

Authors:Jie Fu, Hong Yuan, Zhili Chen, Wendy Hui Wang
Title: Safeguarding Graph Neural Networks against Topology Inference Attacks
Abstract:
Graph Neural Networks (GNNs) have emerged as powerful models for learning from graph-structured data. However, their widespread adoption has raised serious privacy concerns. While prior research has primarily focused on edge-level privacy, a critical yet underexplored threat lies in topology privacy - the confidentiality of the graph's overall structure. In this work, we present a comprehensive study on topology privacy risks in GNNs, revealing their vulnerability to graph-level inference attacks. To this end, we propose a suite of Topology Inference Attacks (TIAs) that can reconstruct the structure of a target training graph using only black-box access to a GNN model. Our findings show that GNNs are highly susceptible to these attacks, and that existing edge-level differential privacy mechanisms are insufficient as they either fail to mitigate the risk or severely compromise model accuracy. To address this challenge, we introduce Private Graph Reconstruction (PGR), a novel defense framework designed to protect topology privacy while maintaining model accuracy. PGR is formulated as a bi-level optimization problem, where a synthetic training graph is iteratively generated using meta-gradients, and the GNN model is concurrently updated based on the evolving graph. Extensive experiments demonstrate that PGR significantly reduces topology leakage with minimal impact on model accuracy. Our code is available at https://github.com/JeffffffFu/PGR.

Authors:Ashen Rodrigo, Isuru Munasinghe, Asanka Perera
Title: Vision-Based Object Detection for UAV Solar Panel Inspection Using an Enhanced Defects Dataset
Abstract:
Timely and accurate detection of defects and contaminants in solar panels is critical for maintaining the efficiency and reliability of photovoltaic systems. This study presents a comprehensive evaluation of five state-of-the-art object detection models: YOLOv3, Faster R-CNN, RetinaNet, EfficientDet, and Swin Transformer, for identifying physical and electrical defects as well as surface contaminants such as dust, dirt, and bird droppings on solar panels. A custom dataset, annotated in the COCO format and specifically designed for solar panel defect and contamination detection, was developed alongside a user interface to train and evaluate the models. The performance of each model is assessed and compared based on mean Average Precision (mAP), precision, recall, and inference speed. The results demonstrate the trade-offs between detection accuracy and computational efficiency, highlighting the relative strengths and limitations of each model. These findings provide valuable guidance for selecting appropriate detection approaches in practical solar panel monitoring and maintenance scenarios. The dataset will be publicly available at https://github.com/IsuruMunasinghe98/solar-panel-inspection-dataset.

Authors:Gaspard Beaudouin, Minghan Li, Jaeyeon Kim, Sung-Hoon Yoon, Mengyu Wang
Title: Delta Velocity Rectified Flow for Text-to-Image Editing
Abstract:
We propose Delta Velocity Rectified Flow (DVRF), a novel inversion-free, path-aware editing framework within rectified flow models for text-to-image editing. DVRF is a distillation-based method that explicitly models the discrepancy between the source and target velocity fields in order to mitigate over-smoothing artifacts rampant in prior distillation sampling approaches. We further introduce a time-dependent shift term to push noisy latents closer to the target trajectory, enhancing the alignment with the target distribution. We theoretically demonstrate that when this shift is disabled, DVRF reduces to Delta Denoising Score, thereby bridging score-based diffusion optimization and velocity-based rectified-flow optimization. Moreover, when the shift term follows a linear schedule under rectified-flow dynamics, DVRF generalizes the Inversion-free method FlowEdit and provides a principled theoretical interpretation for it. Experimental results indicate that DVRF achieves superior editing quality, fidelity, and controllability while requiring no architectural modifications, making it efficient and broadly applicable to text-to-image editing tasks. Code is available at https://github.com/Harvard-AI-and-Robotics-Lab/DeltaVelocityRectifiedFlow.

Authors:Matteo Poggi, Fabio Tosi
Title: FlowSeek: Optical Flow Made Easier with Depth Foundation Models and Motion Bases
Abstract:
We present FlowSeek, a novel framework for optical flow requiring minimal hardware resources for training. FlowSeek marries the latest advances on the design space of optical flow networks with cutting-edge single-image depth foundation models and classical low-dimensional motion parametrization, implementing a compact, yet accurate architecture. FlowSeek is trained on a single consumer-grade GPU, a hardware budget about 8x lower compared to most recent methods, and still achieves superior cross-dataset generalization on Sintel Final and KITTI, with a relative improvement of 10 and 15% over the previous state-of-the-art SEA-RAFT, as well as on Spring and LayeredFlow datasets.

Authors:Zizun Li, Jianjun Zhou, Yifan Wang, Haoyu Guo, Wenzheng Chang, Yang Zhou, Haoyi Zhu, Junyi Chen, Chunhua Shen, Tong He
Title: WinT3R: Window-Based Streaming Reconstruction with Camera Token Pool
Abstract:
We present WinT3R, a feed-forward reconstruction model capable of online prediction of precise camera poses and high-quality point maps. Previous methods suffer from a trade-off between reconstruction quality and real-time performance. To address this, we first introduce a sliding window mechanism that ensures sufficient information exchange among frames within the window, thereby improving the quality of geometric predictions without large computation. In addition, we leverage a compact representation of cameras and maintain a global camera token pool, which enhances the reliability of camera pose estimation without sacrificing efficiency. These designs enable WinT3R to achieve state-of-the-art performance in terms of online reconstruction quality, camera pose estimation, and reconstruction speed, as validated by extensive experiments on diverse datasets. Code and model are publicly available at https://github.com/LiZizun/WinT3R.

Authors:Henri Doerks, Paul Häusner, Daniel Hernández Escobar, Jens Sjölund
Title: Learning to accelerate distributed ADMM using graph neural networks
Abstract:
Distributed optimization is fundamental in large-scale machine learning and control applications. Among existing methods, the Alternating Direction Method of Multipliers (ADMM) has gained popularity due to its strong convergence guarantees and suitability for decentralized computation. However, ADMM often suffers from slow convergence and sensitivity to hyperparameter choices. In this work, we show that distributed ADMM iterations can be naturally represented within the message-passing framework of graph neural networks (GNNs). Building on this connection, we propose to learn adaptive step sizes and communication weights by a graph neural network that predicts the hyperparameters based on the iterates. By unrolling ADMM for a fixed number of iterations, we train the network parameters end-to-end to minimize the final iterates error for a given problem class, while preserving the algorithm's convergence properties. Numerical experiments demonstrate that our learned variant consistently improves convergence speed and solution quality compared to standard ADMM. The code is available at https://github.com/paulhausner/learning-distributed-admm.

Authors:Zhen Qin, Xuyang Shen, Yiran Zhong
Title: Elucidating the Design Space of Decay in Linear Attention
Abstract:
This paper presents a comprehensive investigation into the decay mechanisms inherent in linear complexity sequence models. We systematically delineate the design space of decay mechanisms across four pivotal dimensions: parameterization strategy, which refers to the computational methodology for decay; parameter sharing, which involves the utilization of supplementary parameters for decay computation; decay granularity, comparing scalar versus vector-based decay; and compatibility with relative positional encoding methods, such as Rotary Position Embedding (RoPE). Through an extensive series of experiments conducted on diverse language modeling tasks, we uncovered several critical insights. Firstly, the design of the parameterization strategy for decay requires meticulous consideration. Our findings indicate that effective configurations are typically confined to a specific range of parameters. Secondly, parameter sharing cannot be used arbitrarily, as it may cause decay values to be too large or too small, thereby significantly impacting performance. Thirdly, under identical parameterization strategies, scalar decay generally underperforms compared to its vector-based counterpart. However, in certain scenarios with alternative parameterization strategies, scalar decay may unexpectedly surpass vector decay in efficacy. Lastly, our analysis reveals that RoPE, a commonly employed relative positional encoding method, typically fails to provide tangible benefits to the majority of linear attention mechanisms.

Authors:Zijian Wang, Wei Tong, Tingxuan Han, Haoyu Chen, Tianling Zhang, Yunlong Mao, Sheng Zhong
Title: On Evaluating the Poisoning Robustness of Federated Learning under Local Differential Privacy
Abstract:
Federated learning (FL) combined with local differential privacy (LDP) enables privacy-preserving model training across decentralized data sources. However, the decentralized data-management paradigm leaves LDPFL vulnerable to participants with malicious intent. The robustness of LDPFL protocols, particularly against model poisoning attacks (MPA), where adversaries inject malicious updates to disrupt global model convergence, remains insufficiently studied. In this paper, we propose a novel and extensible model poisoning attack framework tailored for LDPFL settings. Our approach is driven by the objective of maximizing the global training loss while adhering to local privacy constraints. To counter robust aggregation mechanisms such as Multi-Krum and trimmed mean, we develop adaptive attacks that embed carefully crafted constraints into a reverse training process, enabling evasion of these defenses. We evaluate our framework across three representative LDPFL protocols, three benchmark datasets, and two types of deep neural networks. Additionally, we investigate the influence of data heterogeneity and privacy budgets on attack effectiveness. Experimental results demonstrate that our adaptive attacks can significantly degrade the performance of the global model, revealing critical vulnerabilities and highlighting the need for more robust LDPFL defense strategies against MPA. Our code is available at https://github.com/ZiJW/LDPFL-Attack

Authors:Mohammad Saeid, Amir Salarpour, Pedram MohajerAnsari
Title: Enhancing 3D Point Cloud Classification with ModelNet-R and Point-SkipNet
Abstract:
The classification of 3D point clouds is crucial for applications such as autonomous driving, robotics, and augmented reality. However, the commonly used ModelNet40 dataset suffers from limitations such as inconsistent labeling, 2D data, size mismatches, and inadequate class differentiation, which hinder model performance. This paper introduces ModelNet-R, a meticulously refined version of ModelNet40 designed to address these issues and serve as a more reliable benchmark. Additionally, this paper proposes Point-SkipNet, a lightweight graph-based neural network that leverages efficient sampling, neighborhood grouping, and skip connections to achieve high classification accuracy with reduced computational overhead. Extensive experiments demonstrate that models trained in ModelNet-R exhibit significant performance improvements. Notably, Point-SkipNet achieves state-of-the-art accuracy on ModelNet-R with a substantially lower parameter count compared to contemporary models. This research highlights the crucial role of dataset quality in optimizing model efficiency for 3D point cloud classification. For more details, see the code at: https://github.com/m-saeid/ModeNetR_PointSkipNet.

Authors:Julia Dietlmeier, Oluwabukola Grace Adegboro, Vayangi Ganepola, Claudia Mazo, Noel E. O'Connor
Title: VLSM-Ensemble: Ensembling CLIP-based Vision-Language Models for Enhanced Medical Image Segmentation
Abstract:
Vision-language models and their adaptations to image segmentation tasks present enormous potential for producing highly accurate and interpretable results. However, implementations based on CLIP and BiomedCLIP are still lagging behind more sophisticated architectures such as CRIS. In this work, instead of focusing on text prompt engineering as is the norm, we attempt to narrow this gap by showing how to ensemble vision-language segmentation models (VLSMs) with a low-complexity CNN. By doing so, we achieve a significant Dice score improvement of 6.3% on the BKAI polyp dataset using the ensembled BiomedCLIPSeg, while other datasets exhibit gains ranging from 1% to 6%. Furthermore, we provide initial results on additional four radiology and non-radiology datasets. We conclude that ensembling works differently across these datasets (from outperforming to underperforming the CRIS model), indicating a topic for future investigation by the community. The code is available at https://github.com/juliadietlmeier/VLSM-Ensemble.

Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Chong Feng, Xin Li, Heyan Huang, Yuhang Guo
Title: PRIM: Towards Practical In-Image Multilingual Machine Translation
Abstract:
In-Image Machine Translation (IIMT) aims to translate images containing texts from one language to another. Current research of end-to-end IIMT mainly conducts on synthetic data, with simple background, single font, fixed text position, and bilingual translation, which can not fully reflect real world, causing a significant gap between the research and practical conditions. To facilitate research of IIMT in real-world scenarios, we explore Practical In-Image Multilingual Machine Translation (IIMMT). In order to convince the lack of publicly available data, we annotate the PRIM dataset, which contains real-world captured one-line text images with complex background, various fonts, diverse text positions, and supports multilingual translation directions. We propose an end-to-end model VisTrans to handle the challenge of practical conditions in PRIM, which processes visual text and background information in the image separately, ensuring the capability of multilingual translation while improving the visual quality. Experimental results indicate the VisTrans achieves a better translation quality and visual effect compared to other models. The code and dataset are available at: https://github.com/BITHLP/PRIM.

Authors:Rafael Bischof, Michal Piovarči, Michael A. Kraus, Siddhartha Mishra, Bernd Bickel
Title: HyPINO: Multi-Physics Neural Operators via HyperPINNs and the Method of Manufactured Solutions
Abstract:
We present HyPINO, a multi-physics neural operator designed for zero-shot generalization across a broad class of parametric PDEs without requiring task-specific fine-tuning. Our approach combines a Swin Transformer-based hypernetwork with mixed supervision: (i) labeled data from analytical solutions generated via the Method of Manufactured Solutions (MMS), and (ii) unlabeled samples optimized using physics-informed objectives. The model maps PDE parametrizations to target Physics-Informed Neural Networks (PINNs) and can handle linear elliptic, hyperbolic, and parabolic equations in two dimensions with varying source terms, geometries, and mixed Dirichlet/Neumann boundary conditions, including interior boundaries. HyPINO achieves strong zero-shot accuracy on seven benchmark problems from PINN literature, outperforming U-Nets, Poseidon, and Physics-Informed Neural Operators (PINO). Further, we introduce an iterative refinement procedure that compares the physics of the generated PINN to the requested PDE and uses the discrepancy to generate a "delta" PINN. Summing their contributions and repeating this process forms an ensemble whose combined solution progressively reduces the error on six benchmarks and achieves over 100x gain in average $L_2$ loss in the best case, while retaining forward-only inference. Additionally, we evaluate the fine-tuning behavior of PINNs initialized by HyPINO and show that they converge faster and to lower final error than both randomly initialized and Reptile-meta-learned PINNs on five benchmarks, performing on par on the remaining two. Our results highlight the potential of this scalable approach as a foundation for extending neural operators toward solving increasingly complex, nonlinear, and high-dimensional PDE problems. The code and model weights are publicly available at https://github.com/rbischof/hypino.

Authors:Svetlana Pavlitska, Haixi Fan, Konstantin Ditschuneit, J. Marius Zöllner
Title: Robust Experts: the Effect of Adversarial Training on CNNs with Sparse Mixture-of-Experts Layers
Abstract:
Robustifying convolutional neural networks (CNNs) against adversarial attacks remains challenging and often requires resource-intensive countermeasures. We explore the use of sparse mixture-of-experts (MoE) layers to improve robustness by replacing selected residual blocks or convolutional layers, thereby increasing model capacity without additional inference cost. On ResNet architectures trained on CIFAR-100, we find that inserting a single MoE layer in the deeper stages leads to consistent improvements in robustness under PGD and AutoPGD attacks when combined with adversarial training. Furthermore, we discover that when switch loss is used for balancing, it causes routing to collapse onto a small set of overused experts, thereby concentrating adversarial training on these paths and inadvertently making them more robust. As a result, some individual experts outperform the gated MoE model in robustness, suggesting that robust subpaths emerge through specialization. Our code is available at https://github.com/KASTEL-MobilityLab/robust-sparse-moes.

Authors:Luca Müller, Hassan Ali, Philipp Allgeuer, Lukáš Gajdošech, Stefan Wermter
Title: Pointing-Guided Target Estimation via Transformer-Based Attention
Abstract:
Deictic gestures, like pointing, are a fundamental form of non-verbal communication, enabling humans to direct attention to specific objects or locations. This capability is essential in Human-Robot Interaction (HRI), where robots should be able to predict human intent and anticipate appropriate responses. In this work, we propose the Multi-Modality Inter-TransFormer (MM-ITF), a modular architecture to predict objects in a controlled tabletop scenario with the NICOL robot, where humans indicate targets through natural pointing gestures. Leveraging inter-modality attention, MM-ITF maps 2D pointing gestures to object locations, assigns a likelihood score to each, and identifies the most likely target. Our results demonstrate that the method can accurately predict the intended object using monocular RGB data, thus enabling intuitive and accessible human-robot collaboration. To evaluate the performance, we introduce a patch confusion matrix, providing insights into the model's predictions across candidate object locations. Code available at: https://github.com/lucamuellercode/MMITF.

Authors:Hulin Li, Qiliang Ren, Jun Li, Hanbing Wei, Zheng Liu, Linfang Fan
Title: A biologically inspired separable learning vision model for real-time traffic object perception in Dark
Abstract:
Fast and accurate object perception in low-light traffic scenes has attracted increasing attention. However, due to severe illumination degradation and the lack of reliable visual cues, existing perception models and methods struggle to quickly adapt to and accurately predict in low-light environments. Moreover, there is the absence of available large-scale benchmark specifically focused on low-light traffic scenes. To bridge this gap, we introduce a physically grounded illumination degradation method tailored to real-world low-light settings and construct Dark-traffic, the largest densely annotated dataset to date for low-light traffic scenes, supporting object detection, instance segmentation, and optical flow estimation. We further propose the Separable Learning Vision Model (SLVM), a biologically inspired framework designed to enhance perception under adverse lighting. SLVM integrates four key components: a light-adaptive pupillary mechanism for illumination-sensitive feature extraction, a feature-level separable learning strategy for efficient representation, task-specific decoupled branches for multi-task separable learning, and a spatial misalignment-aware fusion module for precise multi-feature alignment. Extensive experiments demonstrate that SLVM achieves state-of-the-art performance with reduced computational overhead. Notably, it outperforms RT-DETR by 11.2 percentage points in detection, YOLOv12 by 6.1 percentage points in instance segmentation, and reduces endpoint error (EPE) of baseline by 12.37% on Dark-traffic. On the LIS benchmark, the end-to-end trained SLVM surpasses Swin Transformer+EnlightenGAN and ConvNeXt-T+EnlightenGAN by an average of 11 percentage points across key metrics, and exceeds Mask RCNN (with light enhancement) by 3.1 percentage points. The Dark-traffic dataset and complete code is released at https://github.com/alanli1997/slvm.

Authors:Jie Chen, Jinhao Jiang, Yingqian Min, Zican Dong, Shijie Wang, Wayne Xin Zhao, Ji-Rong Wen
Title: Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Abstract:
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

Authors:Moritz Reuss, Hongyi Zhou, Marcel Rühle, Ömer Erdinç Yağmurlu, Fabian Otto, Rudolf Lioutikov
Title: FLOWER: Democratizing Generalist Robot Policies with Efficient Vision-Language-Action Flow Policies
Abstract:
Developing efficient Vision-Language-Action (VLA) policies is crucial for practical robotics deployment, yet current approaches face prohibitive computational costs and resource requirements. Existing diffusion-based VLA policies require multi-billion-parameter models and massive datasets to achieve strong performance. We tackle this efficiency challenge with two contributions: intermediate-modality fusion, which reallocates capacity to the diffusion head by pruning up to $50\%$ of LLM layers, and action-specific Global-AdaLN conditioning, which cuts parameters by $20\%$ through modular adaptation. We integrate these advances into a novel 950 M-parameter VLA called FLOWER. Pretrained in just 200 H100 GPU hours, FLOWER delivers competitive performance with bigger VLAs across $190$ tasks spanning ten simulation and real-world benchmarks and demonstrates robustness across diverse robotic embodiments. In addition, FLOWER achieves a new SoTA of 4.53 on the CALVIN ABC benchmark. Demos, code and pretrained weights are available at https://intuitive-robots.github.io/flower_vla/.

Authors:Midhun Shyam, Jim Basilakis, Kieran Luken, Steven Thomas, John Crozier, Paul M. Middleton, X. Rosalind Wang
Title: Classification of kinetic-related injury in hospital triage data using NLP
Abstract:
Triage notes, created at the start of a patient's hospital visit, contain a wealth of information that can help medical staff and researchers understand Emergency Department patient epidemiology and the degree of time-dependent illness or injury. Unfortunately, applying modern Natural Language Processing and Machine Learning techniques to analyse triage data faces some challenges: Firstly, hospital data contains highly sensitive information that is subject to privacy regulation thus need to be analysed on site; Secondly, most hospitals and medical facilities lack the necessary hardware to fine-tune a Large Language Model (LLM), much less training one from scratch; Lastly, to identify the records of interest, expert inputs are needed to manually label the datasets, which can be time-consuming and costly. We present in this paper a pipeline that enables the classification of triage data using LLM and limited compute resources. We first fine-tuned a pre-trained LLM with a classifier using a small (2k) open sourced dataset on a GPU; and then further fine-tuned the model with a hospital specific dataset of 1000 samples on a CPU. We demonstrated that by carefully curating the datasets and leveraging existing models and open sourced data, we can successfully classify triage data with limited compute resources.

Authors:Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang, Huaizhong Lin, Rui Lv, Chenguang Ma, Lei Zhao
Title: SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing
Abstract:
The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

Authors:Jianghao Chen, Wei Sun, Qixiang Yin, Lingxing Kong, Zhixing Tan, Jiajun Zhang
Title: ACE-RL: Adaptive Constraint-Enhanced Reward for Long-form Generation Reinforcement Learning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable progress in long-context understanding, yet they face significant challenges in high-quality long-form generation. Existing studies primarily suffer from two limitations: (1) A heavy reliance on scarce, high-quality long-form response data for supervised fine-tuning (SFT) or for pairwise preference reward in reinforcement learning (RL). (2) Focus on coarse-grained quality optimization dimensions, such as relevance, coherence, and helpfulness, overlooking the fine-grained specifics inherent to diverse long-form generation scenarios. To address this issue, we propose a framework using Adaptive Constraint-Enhanced reward for long-form generation Reinforcement Learning (ACE-RL). ACE-RL first automatically deconstructs each instruction into a set of fine-grained, adaptive constraint criteria by identifying its underlying intents and demands. Subsequently, we design a reward mechanism that quantifies the quality of long-form responses based on their satisfaction over corresponding constraints, converting subjective quality evaluation into constraint verification. Finally, we utilize reinforcement learning to guide models toward superior long-form generation capabilities. Experimental results demonstrate that our ACE-RL framework significantly outperforms existing SFT and RL baselines by 20.70% and 7.32% on WritingBench, and our top-performing model even surpasses proprietary systems like GPT-4o by 7.10%, providing a more effective training paradigm for LLMs to generate high-quality content across diverse long-form generation scenarios.

Authors:Chengkai Xu, Jiaqi Liu, Yicheng Guo, Peng Hang, Jian Sun
Title: A Knowledge-Driven Diffusion Policy for End-to-End Autonomous Driving Based on Expert Routing
Abstract:
End-to-end autonomous driving remains constrained by the difficulty of producing adaptive, robust, and interpretable decision-making across diverse scenarios. Existing methods often collapse diverse driving behaviors, lack long-horizon consistency, or require task-specific engineering that limits generalization. This paper presents KDP, a knowledge-driven diffusion policy that integrates generative diffusion modeling with a sparse mixture-of-experts routing mechanism. The diffusion component generates temporally coherent action sequences, while the expert routing mechanism activates specialized and reusable experts according to context, enabling modular knowledge composition. Extensive experiments across representative driving scenarios demonstrate that KDP achieves consistently higher success rates, reduced collision risk, and smoother control compared to prevailing paradigms. Ablation studies highlight the effectiveness of sparse expert activation and the Transformer backbone, and activation analyses reveal structured specialization and cross-scenario reuse of experts. These results establish diffusion with expert routing as a scalable and interpretable paradigm for knowledge-driven end-to-end autonomous driving.

Authors:Xinkui Lin, Yongxiu Xu, Minghao Tang, Shilong Zhang, Hongbo Xu, Hao Xu, Yubin Wang
Title: REMOTE: A Unified Multimodal Relation Extraction Framework with Multilevel Optimal Transport and Mixture-of-Experts
Abstract:
Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.

Authors:Ming Dai, Wenxuan Cheng, Jiedong Zhuang, Jiang-jiang Liu, Hongshen Zhao, Zhenhua Feng, Wankou Yang
Title: PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Abstract:
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

Authors:Jiahuan Yu, Aryan Taneja, Junfeng Lin, Minjia Zhang
Title: VoltanaLLM: Feedback-Driven Frequency Control and State-Space Routing for Energy-Efficient LLM Serving
Abstract:
Modern Large Language Model (LLM) serving systems increasingly support interactive applications, like real-time chat assistants, code generation tools, and agentic workflows. However, the soaring energy cost of LLM inference presents a growing challenge for sustainable and cost-effective deployment. This paper introduces VoltanaLLM, a system for SLO-aware, energy-efficient LLM serving, built from a control theory perspective. VoltanaLLM co-designs frequency scaling and request routing in emerging prefill/decode disaggregated architectures, leveraging their decoupled execution to enable fine-grained phase-specific control. It consists of a feedback-driven frequency controller that dynamically adapts GPU frequency for prefill and decode phases, and a state-space router that explores routing decisions across frequency-scaled instances to minimize energy under latency constraints. We implement VoltanaLLM in SGLang and evaluate its performance over multiple state-of-the-art LLMs and real-world datasets. The results demonstrate that VoltanaLLM achieves up to 36.3% energy savings while maintaining near-perfect SLO attainment rate, paving the way for sustainable and intelligent LLM serving. Code of VoltanaLLM is open-sourced on GitHub: https://github.com/Supercomputing-System-AI-Lab/VoltanaLLM.

Authors:Yujie Wang, Yunwei Zhao, Jing Yang, Han Han, Shiguang Shan, Jie Zhang
Title: Evaluating Cognitive-Behavioral Fixation via Multimodal User Viewing Patterns on Social Media
Abstract:
Digital social media platforms frequently contribute to cognitive-behavioral fixation, a phenomenon in which users exhibit sustained and repetitive engagement with narrow content domains. While cognitive-behavioral fixation has been extensively studied in psychology, methods for computationally detecting and evaluating such fixation remain underexplored. To address this gap, we propose a novel framework for assessing cognitive-behavioral fixation by analyzing users' multimodal social media engagement patterns. Specifically, we introduce a multimodal topic extraction module and a cognitive-behavioral fixation quantification module that collaboratively enable adaptive, hierarchical, and interpretable assessment of user behavior. Experiments on existing benchmarks and a newly curated multimodal dataset demonstrate the effectiveness of our approach, laying the groundwork for scalable computational analysis of cognitive fixation. All code in this project is publicly available for research purposes at https://github.com/Liskie/cognitive-fixation-evaluation.

Authors:Svetlana Pavlitska, Beyza Keskin, Alwin Faßbender, Christian Hubschneider, J. Marius Zöllner
Title: Extracting Uncertainty Estimates from Mixtures of Experts for Semantic Segmentation
Abstract:
Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.

Authors:Rochana R. Obadage, Lamia Salsabil, Sawood Alam, Bipasha Banarjee, William A. Ingram, Edward A. Fox, Jian Wu
Title: Toward Robust URL Extraction for Open Science: A Study of arXiv File Formats and Temporal Trends
Abstract:
In this work, we study how URL extraction results depend on input format. We compiled a pilot dataset by extracting URLs from 10 arXiv papers and used the same heuristic method to extract URLs from four formats derived from the PDF files or the source LaTeX files. We found that accurate and complete URL extraction from any single format or a combination of multiple formats is challenging, with the best F1-score of 0.71. Using the pilot dataset, we evaluate extraction performance across formats and show that structured formats like HTML and XML produce more accurate results than PDFs or Text. Combining multiple formats improves coverage, especially when targeting research-critical resources. We further apply URL extraction on two tasks, namely classifying URLs into open-access datasets and software and the others, and analyzing the trend of URLs usage in arXiv papers from 1992 to 2024. These results suggest that using a combination of multiple formats achieves better performance on URL extraction than a single format, and the number of URLs in arXiv papers has been steadily increasing since 1992 to 2014 and has been drastically increasing from 2014 to 2024. The dataset and the Jupyter notebooks used for the preliminary analysis are publicly available at https://github.com/lamps-lab/arxiv-urls

Authors:Kaname Yokoyama, Chihiro Nakatani, Norimichi Ukita
Title: Dynamic Group Detection using VLM-augmented Temporal Groupness Graph
Abstract:
This paper proposes dynamic human group detection in videos. For detecting complex groups, not only the local appearance features of in-group members but also the global context of the scene are important. Such local and global appearance features in each frame are extracted using a Vision-Language Model (VLM) augmented for group detection in our method. For further improvement, the group structure should be consistent over time. While previous methods are stabilized on the assumption that groups are not changed in a video, our method detects dynamically changing groups by global optimization using a graph with all frames' groupness probabilities estimated by our groupness-augmented CLIP features. Our experimental results demonstrate that our method outperforms state-of-the-art group detection methods on public datasets. Code: https://github.com/irajisamurai/VLM-GroupDetection.git

Authors:Rui-Chen Zheng, Wenrui Liu, Hui-Peng Du, Qinglin Zhang, Chong Deng, Qian Chen, Wen Wang, Yang Ai, Zhen-Hua Ling
Title: Say More with Less: Variable-Frame-Rate Speech Tokenization via Adaptive Clustering and Implicit Duration Coding
Abstract:
Existing speech tokenizers typically assign a fixed number of tokens per second, regardless of the varying information density or temporal fluctuations in the speech signal. This uniform token allocation mismatches the intrinsic structure of speech, where information is distributed unevenly over time. To address this, we propose VARSTok, a VAriable-frame-Rate Speech Tokenizer that adapts token allocation based on local feature similarity. VARSTok introduces two key innovations: (1) a temporal-aware density peak clustering algorithm that adaptively segments speech into variable-length units, and (2) a novel implicit duration coding scheme that embeds both content and temporal span into a single token index, eliminating the need for auxiliary duration predictors. Extensive experiments show that VARSTok significantly outperforms strong fixed-rate baselines. Notably, it achieves superior reconstruction naturalness while using up to 23% fewer tokens than a 40 Hz fixed-frame-rate baseline. VARSTok further yields lower word error rates and improved naturalness in zero-shot text-to-speech synthesis. To the best of our knowledge, this is the first work to demonstrate that a fully dynamic, variable-frame-rate acoustic speech tokenizer can be seamlessly integrated into downstream speech language models. Speech samples are available at https://zhengrachel.github.io/VARSTok.

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: VCMamba: Bridging Convolutions with Multi-Directional Mamba for Efficient Visual Representation
Abstract:
Recent advances in Vision Transformers (ViTs) and State Space Models (SSMs) have challenged the dominance of Convolutional Neural Networks (CNNs) in computer vision. ViTs excel at capturing global context, and SSMs like Mamba offer linear complexity for long sequences, yet they do not capture fine-grained local features as effectively as CNNs. Conversely, CNNs possess strong inductive biases for local features but lack the global reasoning capabilities of transformers and Mamba. To bridge this gap, we introduce \textit{VCMamba}, a novel vision backbone that integrates the strengths of CNNs and multi-directional Mamba SSMs. VCMamba employs a convolutional stem and a hierarchical structure with convolutional blocks in its early stages to extract rich local features. These convolutional blocks are then processed by later stages incorporating multi-directional Mamba blocks designed to efficiently model long-range dependencies and global context. This hybrid design allows for superior feature representation while maintaining linear complexity with respect to image resolution. We demonstrate VCMamba's effectiveness through extensive experiments on ImageNet-1K classification and ADE20K semantic segmentation. Our VCMamba-B achieves 82.6% top-1 accuracy on ImageNet-1K, surpassing PlainMamba-L3 by 0.3% with 37% fewer parameters, and outperforming Vision GNN-B by 0.3% with 64% fewer parameters. Furthermore, VCMamba-B obtains 47.1 mIoU on ADE20K, exceeding EfficientFormer-L7 by 2.0 mIoU while utilizing 62% fewer parameters. Code is available at https://github.com/Wertyuui345/VCMamba.

Authors:Aisha Alansari, Hamzah Luqman
Title: AraHalluEval: A Fine-grained Hallucination Evaluation Framework for Arabic LLMs
Abstract:
Recently, extensive research on the hallucination of the large language models (LLMs) has mainly focused on the English language. Despite the growing number of multilingual and Arabic-specific LLMs, evaluating LLMs' hallucination in the Arabic context remains relatively underexplored. The knowledge gap is particularly pressing given Arabic's widespread use across many regions and its importance in global communication and media. This paper presents the first comprehensive hallucination evaluation of Arabic and multilingual LLMs on two critical Arabic natural language generation tasks: generative question answering (GQA) and summarization. This study evaluates a total of 12 LLMs, including 4 Arabic pre-trained models, 4 multilingual models, and 4 reasoning-based models. To assess the factual consistency and faithfulness of LLMs' outputs, we developed a fine-grained hallucination evaluation framework consisting of 12 fine-grained hallucination indicators that represent the varying characteristics of each task. The results reveal that factual hallucinations are more prevalent than faithfulness errors across all models and tasks. Notably, the Arabic pre-trained model Allam consistently demonstrates lower hallucination rates than multilingual models and a comparative performance with reasoning-based models. The code is available at: https://github.com/aishaalansari57/AraHalluEval

Authors:Zhenyu Wu, Jiaoyan Chen, Norman W. Paton
Title: Schema Inference for Tabular Data Repositories Using Large Language Models
Abstract:
Minimally curated tabular data often contain representational inconsistencies across heterogeneous sources, and are accompanied by sparse metadata. Working with such data is intimidating. While prior work has advanced dataset discovery and exploration, schema inference remains difficult when metadata are limited. We present SI-LLM (Schema Inference using Large Language Models), which infers a concise conceptual schema for tabular data using only column headers and cell values. The inferred schema comprises hierarchical entity types, attributes, and inter-type relationships. In extensive evaluation on two datasets from web tables and open data, SI-LLM achieves promising end-to-end results, as well as better or comparable results to state-of-the-art methods at each step. All source code, full prompts, and datasets of SI-LLM are available at https://github.com/PierreWoL/SILLM.

Authors:Jingyi Lu, Kai Han
Title: Inpaint4Drag: Repurposing Inpainting Models for Drag-Based Image Editing via Bidirectional Warping
Abstract:
Drag-based image editing has emerged as a powerful paradigm for intuitive image manipulation. However, existing approaches predominantly rely on manipulating the latent space of generative models, leading to limited precision, delayed feedback, and model-specific constraints. Accordingly, we present Inpaint4Drag, a novel framework that decomposes drag-based editing into pixel-space bidirectional warping and image inpainting. Inspired by elastic object deformation in the physical world, we treat image regions as deformable materials that maintain natural shape under user manipulation. Our method achieves real-time warping previews (0.01s) and efficient inpainting (0.3s) at 512x512 resolution, significantly improving the interaction experience compared to existing methods that require minutes per edit. By transforming drag inputs directly into standard inpainting formats, our approach serves as a universal adapter for any inpainting model without architecture modification, automatically inheriting all future improvements in inpainting technology. Extensive experiments demonstrate that our method achieves superior visual quality and precise control while maintaining real-time performance. Project page: https://visual-ai.github.io/inpaint4drag/

Authors:Zehua Pei, Hui-Ling Zhen, Ying Zhang, Zhiyuan Yang, Xing Li, Xianzhi Yu, Mingxuan Yuan, Bei Yu
Title: Behavioral Fingerprinting of Large Language Models
Abstract:
Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated \textit{Diagnostic Prompt Suite} and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting

Authors:Moeen Nehzati
Title: Universal Representation of Generalized Convex Functions and their Gradients
Abstract:
Solutions to a wide range of optimization problems, from optimal transport theory to mathematical economics, often take the form of generalized convex functions (GCFs). This characterization can be used to convert nested bilevel optimization problems into single-level optimization problems. Despite this, the characterization has not been fully exploited in numerical optimization. When the solution to an optimization problem is known to belong to a particular class of objects, this information can be leveraged by parameterizing that class of objects and optimizing over this parameterization. The hallmark of a good parameterization is the Universal Approximation Property (UAP): that is, the parameterization approximates any object in the class arbitrarily well. For example, neural networks satisfy the UAP with respect to the class of continuous functions. Building on the literature concerned with the parameterization of convex functions, we extend these ideas to GCFs. We present a convex and potentially one-to-one parameterization of GCFs and their gradients that satisfies the UAP. We also compare this class to shallow neural networks and highlight their shared characteristics. The ideas pursued here have been implemented in the Python package \href{https://github.com/MoeenNehzati/gconvex}{\texttt{gconvex}}, available online. Using it, we tackle the problem of finding the revenue-maximizing auction for multiple goods and demonstrate how our parameterization can effectively solve this problem.

Authors:Seojin Kim, Hyeontae Song, Jaehyun Nam, Jinwoo Shin
Title: Training Text-to-Molecule Models with Context-Aware Tokenization
Abstract:
Recently, text-to-molecule models have shown great potential across various chemical applications, e.g., drug-discovery. These models adapt language models to molecular data by representing molecules as sequences of atoms. However, they rely on atom-level tokenizations, which primarily focus on modeling local connectivity, thereby limiting the ability of models to capture the global structural context within molecules. To tackle this issue, we propose a novel text-to-molecule model, coined Context-Aware Molecular T5 (CAMT5). Inspired by the significance of the substructure-level contexts in understanding molecule structures, e.g., ring systems, we introduce substructure-level tokenization for text-to-molecule models. Building on our tokenization scheme, we develop an importance-based training strategy that prioritizes key substructures, enabling CAMT5 to better capture the molecular semantics. Extensive experiments verify the superiority of CAMT5 in various text-to-molecule generation tasks. Intriguingly, we find that CAMT5 outperforms the state-of-the-art methods using only 2% of training tokens. In addition, we propose a simple yet effective ensemble strategy that aggregates the outputs of text-to-molecule models to further boost the generation performance. Code is available at https://github.com/Songhyeontae/CAMT5.git.

Authors:Yihan Chen, Jiawei Chen, Guozhao Mo, Xuanang Chen, Ben He, Xianpei Han, Le Sun
Title: CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection
Abstract:
The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

Authors:Jun-Kun Chen, Aayush Bansal, Minh Phuoc Vo, Yu-Xiong Wang
Title: Virtual Fitting Room: Generating Arbitrarily Long Videos of Virtual Try-On from a Single Image -- Technical Preview
Abstract:
We introduce the Virtual Fitting Room (VFR), a novel video generative model that produces arbitrarily long virtual try-on videos. Our VFR models long video generation tasks as an auto-regressive, segment-by-segment generation process, eliminating the need for resource-intensive generation and lengthy video data, while providing the flexibility to generate videos of arbitrary length. The key challenges of this task are twofold: ensuring local smoothness between adjacent segments and maintaining global temporal consistency across different segments. To address these challenges, we propose our VFR framework, which ensures smoothness through a prefix video condition and enforces consistency with the anchor video -- a 360-degree video that comprehensively captures the human's wholebody appearance. Our VFR generates minute-scale virtual try-on videos with both local smoothness and global temporal consistency under various motions, making it a pioneering work in long virtual try-on video generation.

Authors:Zehong Yan, Peng Qi, Wynne Hsu, Mong Li Lee
Title: TRUST-VL: An Explainable News Assistant for General Multimodal Misinformation Detection
Abstract:
Multimodal misinformation, encompassing textual, visual, and cross-modal distortions, poses an increasing societal threat that is amplified by generative AI. Existing methods typically focus on a single type of distortion and struggle to generalize to unseen scenarios. In this work, we observe that different distortion types share common reasoning capabilities while also requiring task-specific skills. We hypothesize that joint training across distortion types facilitates knowledge sharing and enhances the model's ability to generalize. To this end, we introduce TRUST-VL, a unified and explainable vision-language model for general multimodal misinformation detection. TRUST-VL incorporates a novel Question-Aware Visual Amplifier module, designed to extract task-specific visual features. To support training, we also construct TRUST-Instruct, a large-scale instruction dataset containing 198K samples featuring structured reasoning chains aligned with human fact-checking workflows. Extensive experiments on both in-domain and zero-shot benchmarks demonstrate that TRUST-VL achieves state-of-the-art performance, while also offering strong generalization and interpretability.

Authors:Xin Lin, Xian Ge, Dizhe Zhang, Zhaoliang Wan, Xianshun Wang, Xiangtai Li, Wenjie Jiang, Bo Du, Dacheng Tao, Ming-Hsuan Yang, Lu Qi
Title: One Flight Over the Gap: A Survey from Perspective to Panoramic Vision
Abstract:
Driven by the demand for spatial intelligence and holistic scene perception, omnidirectional images (ODIs), which provide a complete 360\textdegree{} field of view, are receiving growing attention across diverse applications such as virtual reality, autonomous driving, and embodied robotics. Despite their unique characteristics, ODIs exhibit remarkable differences from perspective images in geometric projection, spatial distribution, and boundary continuity, making it challenging for direct domain adaption from perspective methods. This survey reviews recent panoramic vision techniques with a particular emphasis on the perspective-to-panorama adaptation. We first revisit the panoramic imaging pipeline and projection methods to build the prior knowledge required for analyzing the structural disparities. Then, we summarize three challenges of domain adaptation: severe geometric distortions near the poles, non-uniform sampling in Equirectangular Projection (ERP), and periodic boundary continuity. Building on this, we cover 20+ representative tasks drawn from more than 300 research papers in two dimensions. On one hand, we present a cross-method analysis of representative strategies for addressing panoramic specific challenges across different tasks. On the other hand, we conduct a cross-task comparison and classify panoramic vision into four major categories: visual quality enhancement and assessment, visual understanding, multimodal understanding, and visual generation. In addition, we discuss open challenges and future directions in data, models, and applications that will drive the advancement of panoramic vision research. We hope that our work can provide new insight and forward looking perspectives to advance the development of panoramic vision technologies. Our project page is https://insta360-research-team.github.io/Survey-of-Panorama

Authors:Lawrence Y. Zhu, Pranav Kuppili, Ryan Punamiya, Patcharapong Aphiwetsa, Dhruv Patel, Simar Kareer, Sehoon Ha, Danfei Xu
Title: EMMA: Scaling Mobile Manipulation via Egocentric Human Data
Abstract:
Scaling mobile manipulation imitation learning is bottlenecked by expensive mobile robot teleoperation. We present Egocentric Mobile MAnipulation (EMMA), an end-to-end framework training mobile manipulation policies from human mobile manipulation data with static robot data, sidestepping mobile teleoperation. To accomplish this, we co-train human full-body motion data with static robot data. In our experiments across three real-world tasks, EMMA demonstrates comparable performance to baselines trained on teleoperated mobile robot data (Mobile ALOHA), achieving higher or equivalent task performance in full task success. We find that EMMA is able to generalize to new spatial configurations and scenes, and we observe positive performance scaling as we increase the hours of human data, opening new avenues for scalable robotic learning in real-world environments. Details of this project can be found at https://ego-moma.github.io/.

Authors:Zhiqiu Xu, Amish Sethi, Mayur Naik, Ser-Nam Lim
Title: Delta Activations: A Representation for Finetuned Large Language Models
Abstract:
The success of powerful open source Large Language Models (LLMs) has enabled the community to create a vast collection of post-trained models adapted to specific tasks and domains. However, navigating and understanding these models remains challenging due to inconsistent metadata and unstructured repositories. We introduce Delta Activations, a method to represent finetuned models as vector embeddings by measuring shifts in their internal activations relative to a base model. This representation allows for effective clustering by domain and task, revealing structure in the model landscape. Delta Activations also demonstrate desirable properties: it is robust across finetuning settings and exhibits an additive property when finetuning datasets are mixed. In addition, we show that Delta Activations can embed tasks via few-shot finetuning, and further explore its use for model selection and merging. We hope Delta Activations can facilitate the practice of reusing publicly available models. Code is available at https://github.com/OscarXZQ/delta_activations.

Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.

Authors:Sabbir Mollah, Rohit Gupta, Sirnam Swetha, Qingyang Liu, Ahnaf Munir, Mubarak Shah
Title: The Telephone Game: Evaluating Semantic Drift in Unified Models
Abstract:
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

Authors:Hyunsoo Cha, Byungjun Kim, Hanbyul Joo
Title: Durian: Dual Reference Image-Guided Portrait Animation with Attribute Transfer
Abstract:
We present Durian, the first method for generating portrait animation videos with cross-identity attribute transfer from one or more reference images to a target portrait. Training such models typically requires attribute pairs of the same individual, which are rarely available at scale. To address this challenge, we propose a self-reconstruction formulation that leverages ordinary portrait videos to learn attribute transfer without explicit paired data. Two frames from the same video act as a pseudo pair: one serves as an attribute reference and the other as an identity reference. To enable this self-reconstruction training, we introduce a Dual ReferenceNet that processes the two references separately and then fuses their features via spatial attention within a diffusion model. To make sure each reference functions as a specialized stream for either identity or attribute information, we apply complementary masking to the reference images. Together, these two components guide the model to reconstruct the original video, naturally learning cross-identity attribute transfer. To bridge the gap between self-reconstruction training and cross-identity inference, we introduce a mask expansion strategy and augmentation schemes, enabling robust transfer of attributes with varying spatial extent and misalignment. Durian achieves state-of-the-art performance on portrait animation with attribute transfer. Moreover, its dual reference design uniquely supports multi-attribute composition and smooth attribute interpolation within a single generation pass, enabling highly flexible and controllable synthesis.

Authors:Zanwei Zhou, Taoran Yi, Jiemin Fang, Chen Yang, Lingxi Xie, Xinggang Wang, Wei Shen, Qi Tian
Title: Few-step Flow for 3D Generation via Marginal-Data Transport Distillation
Abstract:
Flow-based 3D generation models typically require dozens of sampling steps during inference. Though few-step distillation methods, particularly Consistency Models (CMs), have achieved substantial advancements in accelerating 2D diffusion models, they remain under-explored for more complex 3D generation tasks. In this study, we propose a novel framework, MDT-dist, for few-step 3D flow distillation. Our approach is built upon a primary objective: distilling the pretrained model to learn the Marginal-Data Transport. Directly learning this objective needs to integrate the velocity fields, while this integral is intractable to be implemented. Therefore, we propose two optimizable objectives, Velocity Matching (VM) and Velocity Distillation (VD), to equivalently convert the optimization target from the transport level to the velocity and the distribution level respectively. Velocity Matching (VM) learns to stably match the velocity fields between the student and the teacher, but inevitably provides biased gradient estimates. Velocity Distillation (VD) further enhances the optimization process by leveraging the learned velocity fields to perform probability density distillation. When evaluated on the pioneer 3D generation framework TRELLIS, our method reduces sampling steps of each flow transformer from 25 to 1 or 2, achieving 0.68s (1 step x 2) and 0.94s (2 steps x 2) latency with 9.0x and 6.5x speedup on A800, while preserving high visual and geometric fidelity. Extensive experiments demonstrate that our method significantly outperforms existing CM distillation methods, and enables TRELLIS to achieve superior performance in few-step 3D generation.

Authors:Kyra Wilson, Mattea Sim, Anna-Maria Gueorguieva, Aylin Caliskan
Title: No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy
Abstract:
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.

Authors:Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, Lei Bai
Title: Transition Models: Rethinking the Generative Learning Objective
Abstract:
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.

Authors:Jimin Xu, Bosheng Qin, Tao Jin, Zhou Zhao, Zhenhui Ye, Jun Yu, Fei Wu
Title: SSGaussian: Semantic-Aware and Structure-Preserving 3D Style Transfer
Abstract:
Recent advancements in neural representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have increased interest in applying style transfer to 3D scenes. While existing methods can transfer style patterns onto 3D-consistent neural representations, they struggle to effectively extract and transfer high-level style semantics from the reference style image. Additionally, the stylized results often lack structural clarity and separation, making it difficult to distinguish between different instances or objects within the 3D scene. To address these limitations, we propose a novel 3D style transfer pipeline that effectively integrates prior knowledge from pretrained 2D diffusion models. Our pipeline consists of two key stages: First, we leverage diffusion priors to generate stylized renderings of key viewpoints. Then, we transfer the stylized key views onto the 3D representation. This process incorporates two innovative designs. The first is cross-view style alignment, which inserts cross-view attention into the last upsampling block of the UNet, allowing feature interactions across multiple key views. This ensures that the diffusion model generates stylized key views that maintain both style fidelity and instance-level consistency. The second is instance-level style transfer, which effectively leverages instance-level consistency across stylized key views and transfers it onto the 3D representation. This results in a more structured, visually coherent, and artistically enriched stylization. Extensive qualitative and quantitative experiments demonstrate that our 3D style transfer pipeline significantly outperforms state-of-the-art methods across a wide range of scenes, from forward-facing to challenging 360-degree environments. Visit our project page https://jm-xu.github.io/SSGaussian for immersive visualization.

Authors:JiYuan Wang, Chunyu Lin, Lei Sun, Rongying Liu, Lang Nie, Mingxing Li, Kang Liao, Xiangxiang Chu, Yao Zhao
Title: From Editor to Dense Geometry Estimator
Abstract:
Leveraging visual priors from pre-trained text-to-image (T2I) generative models has shown success in dense prediction. However, dense prediction is inherently an image-to-image task, suggesting that image editing models, rather than T2I generative models, may be a more suitable foundation for fine-tuning. Motivated by this, we conduct a systematic analysis of the fine-tuning behaviors of both editors and generators for dense geometry estimation. Our findings show that editing models possess inherent structural priors, which enable them to converge more stably by ``refining" their innate features, and ultimately achieve higher performance than their generative counterparts. Based on these findings, we introduce \textbf{FE2E}, a framework that pioneeringly adapts an advanced editing model based on Diffusion Transformer (DiT) architecture for dense geometry prediction. Specifically, to tailor the editor for this deterministic task, we reformulate the editor's original flow matching loss into the ``consistent velocity" training objective. And we use logarithmic quantization to resolve the precision conflict between the editor's native BFloat16 format and the high precision demand of our tasks. Additionally, we leverage the DiT's global attention for a cost-free joint estimation of depth and normals in a single forward pass, enabling their supervisory signals to mutually enhance each other. Without scaling up the training data, FE2E achieves impressive performance improvements in zero-shot monocular depth and normal estimation across multiple datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset and outperforms the DepthAnything series, which is trained on 100$\times$ data. The project page can be accessed \href{https://amap-ml.github.io/FE2E/}{here}.

Authors:Silvio Chito, Paolo Rabino, Tatiana Tommasi
Title: Efficient Odd-One-Out Anomaly Detection
Abstract:
The recently introduced odd-one-out anomaly detection task involves identifying the odd-looking instances within a multi-object scene. This problem presents several challenges for modern deep learning models, demanding spatial reasoning across multiple views and relational reasoning to understand context and generalize across varying object categories and layouts. We argue that these challenges must be addressed with efficiency in mind. To this end, we propose a DINO-based model that reduces the number of parameters by one third and shortens training time by a factor of three compared to the current state-of-the-art, while maintaining competitive performance. Our experimental evaluation also introduces a Multimodal Large Language Model baseline, providing insights into its current limitations in structured visual reasoning tasks. The project page can be found at https://silviochito.github.io/EfficientOddOneOut/

Authors:Congbo Ma, Yuxia Wang, Jia Wu, Jian Yang, Jing Du, Zitai Qiu, Qing Li, Hu Wang, Preslav Nakov
Title: Explicit and Implicit Data Augmentation for Social Event Detection
Abstract:
Social event detection involves identifying and categorizing important events from social media, which relies on labeled data, but annotation is costly and labor-intensive. To address this problem, we propose Augmentation framework for Social Event Detection (SED-Aug), a plug-and-play dual augmentation framework, which combines explicit text-based and implicit feature-space augmentation to enhance data diversity and model robustness. The explicit augmentation utilizes large language models to enhance textual information through five diverse generation strategies. For implicit augmentation, we design five novel perturbation techniques that operate in the feature space on structural fused embeddings. These perturbations are crafted to keep the semantic and relational properties of the embeddings and make them more diverse. Specifically, SED-Aug outperforms the best baseline model by approximately 17.67% on the Twitter2012 dataset and by about 15.57% on the Twitter2018 dataset in terms of the average F1 score. The code is available at GitHub: https://github.com/congboma/SED-Aug.

Authors:Safouane El Ghazouali, Umberto Michelucci
Title: VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision
Abstract:
AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.

Authors:Orlando Castaneda, Kevin So-Tang, Kshitij Gurung
Title: Revisiting Simple Baselines for In-The-Wild Deepfake Detection
Abstract:
The widespread adoption of synthetic media demands accessible deepfake detectors and realistic benchmarks. While most existing research evaluates deepfake detectors on highly controlled datasets, we focus on the recently released "in-the-wild" benchmark, Deepfake-Eval-2024. Initial reporting on Deepfake-Eval-2024 showed that three finetuned open-source models achieve accuracies between 61% and 69%, significantly lagging behind the leading commercial deepfake detector with 82% accuracy. Our work revisits one of these baseline approaches, originally introduced by Ojha et al., which adapts standard pretrained vision backbones to produce generalizable deepfake detectors. We demonstrate that with better-tuned hyperparameters, this simple approach actually yields much higher performance -- 81% accuracy on Deepfake-Eval-2024 -- surpassing the previously reported accuracy of this baseline approach by 18% and competing with commercial deepfake detectors. We discuss tradeoffs in accuracy, computational costs, and interpretability, focusing on how practical these deepfake detectors might be when deployed in real-world settings. Our code can be found at https://github.com/Deepfake-Detection-KKO/deepfake-detection.

Authors:Tarik Zaciragic, Aske Plaat, K. Joost Batenburg
Title: Analysis of Bluffing by DQN and CFR in Leduc Hold'em Poker
Abstract:
In the game of poker, being unpredictable, or bluffing, is an essential skill. When humans play poker, they bluff. However, most works on computer-poker focus on performance metrics such as win rates, while bluffing is overlooked. In this paper we study whether two popular algorithms, DQN (based on reinforcement learning) and CFR (based on game theory), exhibit bluffing behavior in Leduc Hold'em, a simplified version of poker. We designed an experiment where we let the DQN and CFR agent play against each other while we log their actions. We find that both DQN and CFR exhibit bluffing behavior, but they do so in different ways. Although both attempt to perform bluffs at different rates, the percentage of successful bluffs (where the opponent folds) is roughly the same. This suggests that bluffing is an essential aspect of the game, not of the algorithm. Future work should look at different bluffing styles and at the full game of poker. Code at https://github.com/TarikZ03/Bluffing-by-DQN-and-CFR-in-Leduc-Hold-em-Poker-Codebase.

Authors:Junqi Liao, Yaojun Wu, Chaoyi Lin, Zhipin Deng, Li Li, Dong Liu, Xiaoyan Sun
Title: EHVC: Efficient Hierarchical Reference and Quality Structure for Neural Video Coding
Abstract:
Neural video codecs (NVCs), leveraging the power of end-to-end learning, have demonstrated remarkable coding efficiency improvements over traditional video codecs. Recent research has begun to pay attention to the quality structures in NVCs, optimizing them by introducing explicit hierarchical designs. However, less attention has been paid to the reference structure design, which fundamentally should be aligned with the hierarchical quality structure. In addition, there is still significant room for further optimization of the hierarchical quality structure. To address these challenges in NVCs, we propose EHVC, an efficient hierarchical neural video codec featuring three key innovations: (1) a hierarchical multi-reference scheme that draws on traditional video codec design to align reference and quality structures, thereby addressing the reference-quality mismatch; (2) a lookahead strategy to utilize an encoder-side context from future frames to enhance the quality structure; (3) a layer-wise quality scale with random quality training strategy to stabilize quality structures during inference. With these improvements, EHVC achieves significantly superior performance to the state-of-the-art NVCs. Code will be released in: https://github.com/bytedance/NEVC.

Authors:Quang-Huy Che, Duc-Khai Lam
Title: TriLiteNet: Lightweight Model for Multi-Task Visual Perception
Abstract:
Efficient perception models are essential for Advanced Driver Assistance Systems (ADAS), as these applications require rapid processing and response to ensure safety and effectiveness in real-world environments. To address the real-time execution needs of such perception models, this study introduces the TriLiteNet model. This model can simultaneously manage multiple tasks related to panoramic driving perception. TriLiteNet is designed to optimize performance while maintaining low computational costs. Experimental results on the BDD100k dataset demonstrate that the model achieves competitive performance across three key tasks: vehicle detection, drivable area segmentation, and lane line segmentation. Specifically, the TriLiteNet_{base} demonstrated a recall of 85.6% for vehicle detection, a mean Intersection over Union (mIoU) of 92.4% for drivable area segmentation, and an Acc of 82.3% for lane line segmentation with only 2.35M parameters and a computational cost of 7.72 GFLOPs. Our proposed model includes a tiny configuration with just 0.14M parameters, which provides a multi-task solution with minimal computational demand. Evaluated for latency and power consumption on embedded devices, TriLiteNet in both configurations shows low latency and reasonable power during inference. By balancing performance, computational efficiency, and scalability, TriLiteNet offers a practical and deployable solution for real-world autonomous driving applications. Code is available at https://github.com/chequanghuy/TriLiteNet.

Authors:Gaspard Michel, Elena V. Epure, Christophe Cerisara
Title: LibriQuote: A Speech Dataset of Fictional Character Utterances for Expressive Zero-Shot Speech Synthesis
Abstract:
Text-to-speech (TTS) systems have recently achieved more expressive and natural speech synthesis by scaling to large speech datasets. However, the proportion of expressive speech in such large-scale corpora is often unclear. Besides, existing expressive speech corpora are typically smaller in scale and primarily used for benchmarking TTS systems. In this paper, we introduce the LibriQuote dataset, an English corpus derived from read audiobooks, designed for both fine-tuning and benchmarking expressive zero-shot TTS system. The training dataset includes 12.7K hours of read, non-expressive speech and 5.3K hours of mostly expressive speech drawn from character quotations. Each utterance in the expressive subset is supplemented with the context in which it was written, along with pseudo-labels of speech verbs and adverbs used to describe the quotation (\textit{e.g. ``he whispered softly''}). Additionally, we provide a challenging 7.5 hour test set intended for benchmarking TTS systems: given a neutral reference speech as input, we evaluate system's ability to synthesize an expressive utterance while preserving reference timbre. We validate qualitatively the test set by showing that it covers a wide range of emotions compared to non-expressive speech, along with various accents. Extensive subjective and objective evaluations show that fine-tuning a baseline TTS system on LibriQuote significantly improves its synthesized speech intelligibility, and that recent systems fail to synthesize speech as expressive and natural as the ground-truth utterances. The dataset and evaluation code are freely available. Audio samples can be found at https://libriquote.github.io/.

Authors:Ashish Tiwari, Satyam Bhardwaj, Yash Bachwana, Parag Sarvoday Sahu, T. M. Feroz Ali, Bhargava Chintalapati, Shanmuganathan Raman
Title: TensoIS: A Step Towards Feed-Forward Tensorial Inverse Subsurface Scattering for Perlin Distributed Heterogeneous Media
Abstract:
Estimating scattering parameters of heterogeneous media from images is a severely under-constrained and challenging problem. Most of the existing approaches model BSSRDF either through an analysis-by-synthesis approach, approximating complex path integrals, or using differentiable volume rendering techniques to account for heterogeneity. However, only a few studies have applied learning-based methods to estimate subsurface scattering parameters, but they assume homogeneous media. Interestingly, no specific distribution is known to us that can explicitly model the heterogeneous scattering parameters in the real world. Notably, procedural noise models such as Perlin and Fractal Perlin noise have been effective in representing intricate heterogeneities of natural, organic, and inorganic surfaces. Leveraging this, we first create HeteroSynth, a synthetic dataset comprising photorealistic images of heterogeneous media whose scattering parameters are modeled using Fractal Perlin noise. Furthermore, we propose Tensorial Inverse Scattering (TensoIS), a learning-based feed-forward framework to estimate these Perlin-distributed heterogeneous scattering parameters from sparse multi-view image observations. Instead of directly predicting the 3D scattering parameter volume, TensoIS uses learnable low-rank tensor components to represent the scattering volume. We evaluate TensoIS on unseen heterogeneous variations over shapes from the HeteroSynth test set, smoke and cloud geometries obtained from open-source realistic volumetric simulations, and some real-world samples to establish its effectiveness for inverse scattering. Overall, this study is an attempt to explore Perlin noise distribution, given the lack of any such well-defined distribution in literature, to potentially model real-world heterogeneous scattering in a feed-forward manner.

Authors:Zeyu Gan, Hao Yi, Yong Liu
Title: CoT-Space: A Theoretical Framework for Internal Slow-Thinking via Reinforcement Learning
Abstract:
Reinforcement Learning (RL) has become a pivotal approach for enhancing the reasoning capabilities of Large Language Models (LLMs). However, a significant theoretical gap persists, as traditional token-level RL frameworks fail to align with the reasoning-level nature of complex, multi-step thought processes like Chain-of-Thought (CoT). To address this challenge, we introduce CoT-Space, a novel theoretical framework that recasts LLM reasoning from a discrete token-prediction task to an optimization process within a continuous, reasoning-level semantic space. This shift in perspective serves as a conceptual bridge, revitalizing foundational principles from classical learning theory to analyze the unique dynamics of LLMs. By analyzing this process from both a noise perspective and a risk perspective, we demonstrate that the convergence to an optimal CoT length is a natural consequence of the fundamental trade-off between underfitting and overfitting. Furthermore, extensive experiments provide strong empirical validation for our theoretical findings. Our framework not only provides a coherent explanation for empirical phenomena such as overthinking but also offers a solid theoretical foundation to guide the future development of more effective and generalizable reasoning agents. We open-source our code at https://github.com/ZyGan1999/CoT-Space.

Authors:Shiku Kaito, Shinnosuke Matsuo, Daiki Suehiro, Ryoma Bise
Title: Learning from Majority Label: A Novel Problem in Multi-class Multiple-Instance Learning
Abstract:
The paper proposes a novel multi-class Multiple-Instance Learning (MIL) problem called Learning from Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag-level label. The goal of LML is to train a classification model that estimates the class of each instance using the majority label. This problem is valuable in a variety of applications, including pathology image segmentation, political voting prediction, customer sentiment analysis, and environmental monitoring. To solve LML, we propose a Counting Network trained to produce bag-level majority labels, estimated by counting the number of instances in each class. Furthermore, analysis experiments on the characteristics of LML revealed that bags with a high proportion of the majority class facilitate learning. Based on this result, we developed a Majority Proportion Enhancement Module (MPEM) that increases the proportion of the majority class by removing minority class instances within the bags. Experiments demonstrate the superiority of the proposed method on four datasets compared to conventional MIL methods. Moreover, ablation studies confirmed the effectiveness of each module. The code is available at \href{https://github.com/Shiku-Kaito/Learning-from-Majority-Label-A-Novel-Problem-in-Multi-class-Multiple-Instance-Learning}{here}.

Authors:Or Shachar, Uri Katz, Yoav Goldberg, Oren Glickman
Title: NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
Abstract:
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever

Authors:Zhaoyan Gong, Juan Li, Zhiqiang Liu, Lei Liang, Huajun Chen, Wen Zhang
Title: RTQA : Recursive Thinking for Complex Temporal Knowledge Graph Question Answering with Large Language Models
Abstract:
Current temporal knowledge graph question answering (TKGQA) methods primarily focus on implicit temporal constraints, lacking the capability of handling more complex temporal queries, and struggle with limited reasoning abilities and error propagation in decomposition frameworks. We propose RTQA, a novel framework to address these challenges by enhancing reasoning over TKGs without requiring training. Following recursive thinking, RTQA recursively decomposes questions into sub-problems, solves them bottom-up using LLMs and TKG knowledge, and employs multi-path answer aggregation to improve fault tolerance. RTQA consists of three core components: the Temporal Question Decomposer, the Recursive Solver, and the Answer Aggregator. Experiments on MultiTQ and TimelineKGQA benchmarks demonstrate significant Hits@1 improvements in "Multiple" and "Complex" categories, outperforming state-of-the-art methods. Our code and data are available at https://github.com/zjukg/RTQA.

Authors:Yijun Zhou, Yikui Zhai, Zilu Ying, Tingfeng Xian, Wenlve Zhou, Zhiheng Zhou, Xiaolin Tian, Xudong Jia, Hongsheng Zhang, C. L. Philip Chen
Title: Multimodal Feature Fusion Network with Text Difference Enhancement for Remote Sensing Change Detection
Abstract:
Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.

Authors:Ruiling Guo, Xinwei Yang, Chen Huang, Tong Zhang, Yong Hu
Title: CANDY: Benchmarking LLMs' Limitations and Assistive Potential in Chinese Misinformation Fact-Checking
Abstract:
The effectiveness of large language models (LLMs) to fact-check misinformation remains uncertain, despite their growing use. To this end, we present CANDY, a benchmark designed to systematically evaluate the capabilities and limitations of LLMs in fact-checking Chinese misinformation. Specifically, we curate a carefully annotated dataset of ~20k instances. Our analysis shows that current LLMs exhibit limitations in generating accurate fact-checking conclusions, even when enhanced with chain-of-thought reasoning and few-shot prompting. To understand these limitations, we develop a taxonomy to categorize flawed LLM-generated explanations for their conclusions and identify factual fabrication as the most common failure mode. Although LLMs alone are unreliable for fact-checking, our findings indicate their considerable potential to augment human performance when deployed as assistive tools in scenarios. Our dataset and code can be accessed at https://github.com/SCUNLP/CANDY

Authors:Minghui Zhang, Yaoyu Liu, Junyang Wu, Xin You, Hanxiao Zhang, Junjun He, Yun Gu
Title: TopoSculpt: Betti-Steered Topological Sculpting of 3D Fine-grained Tubular Shapes
Abstract:
Medical tubular anatomical structures are inherently three-dimensional conduits with lumens, enclosing walls, and complex branching topologies. Accurate reconstruction of their geometry and topology is crucial for applications such as bronchoscopic navigation and cerebral arterial connectivity assessment. Existing methods often rely on voxel-wise overlap measures, which fail to capture topological correctness and completeness. Although topology-aware losses and persistent homology constraints have shown promise, they are usually applied patch-wise and cannot guarantee global preservation or correct geometric errors at inference. To address these limitations, we propose a novel TopoSculpt, a framework for topological refinement of 3D fine-grained tubular structures. TopoSculpt (i) adopts a holistic whole-region modeling strategy to capture full spatial context, (ii) first introduces a Topological Integrity Betti (TIB) constraint that jointly enforces Betti number priors and global integrity, and (iii) employs a curriculum refinement scheme with persistent homology to progressively correct errors from coarse to fine scales. Extensive experiments on challenging pulmonary airway and Circle of Willis datasets demonstrate substantial improvements in both geometry and topology. For instance, $β_{0}$ errors are reduced from 69.00 to 3.40 on the airway dataset and from 1.65 to 0.30 on the CoW dataset, with Tree length detected and branch detected rates improving by nearly 10\%. These results highlight the effectiveness of TopoSculpt in correcting critical topological errors and advancing the high-fidelity modeling of complex 3D tubular anatomy. The project homepage is available at: https://github.com/Puzzled-Hui/TopoSculpt.

Authors:Yuqing Huang, Rongyang Zhang, Qimeng Wang, Chengqiang Lu, Yan Gao, Yi Wu, Yao Hu, Xuyang Zhi, Guiquan Liu, Xin Li, Hao Wang, Enhong Chen
Title: SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment
Abstract:
Recent advancements in large language models (LLMs) have revolutionized natural language processing through their remarkable capabilities in understanding and executing diverse tasks. While supervised fine-tuning, particularly in Retrieval-Augmented Generation (RAG) scenarios, effectively enhances task-specific performance, it often leads to catastrophic forgetting, where models lose their previously acquired knowledge and general capabilities. Existing solutions either require access to general instruction data or face limitations in preserving the model's original distribution. To overcome these limitations, we propose SelfAug, a self-distribution alignment method that aligns input sequence logits to preserve the model's semantic distribution, thereby mitigating catastrophic forgetting and improving downstream performance. Extensive experiments demonstrate that SelfAug achieves a superior balance between downstream learning and general capability retention. Our comprehensive empirical analysis reveals a direct correlation between distribution shifts and the severity of catastrophic forgetting in RAG scenarios, highlighting how the absence of RAG capabilities in general instruction tuning leads to significant distribution shifts during fine-tuning. Our findings not only advance the understanding of catastrophic forgetting in RAG contexts but also provide a practical solution applicable across diverse fine-tuning scenarios. Our code is publicly available at https://github.com/USTC-StarTeam/SelfAug.

Authors:Fengxiao Tang, Yufeng Li, Zongzong Wu, Ming Zhao
Title: Chain or tree? Re-evaluating complex reasoning from the perspective of a matrix of thought
Abstract:
Large Language Models (LLMs) face significant accuracy degradation due to insufficient reasoning ability when dealing with complex and abstract tasks. Thought structures such as Chain of Thought (CoT) and Tree of Thought (ToT) focus on enhancing the reasoning capability of LLMs. However, they suffer from inherent drawbacks such as redundancy within the same layer of the tree structure and the singularity of the paths in the chain structure. Some studies have utilized Retrieval-Augmented Generation (RAG) methods to enhance CoT and ToT in mitigating hallucinations in LLMs, yet the fundamental shortcomings of the thought structures still persist. Furthermore, when dealing with multi-entity and multi-hop information, the retrieved verification knowledge often contains large amounts of fragmented, superficial, or even erroneous data, misleading the reasoning process of LLMs. To address these issues, we propose the Matrix of Thought (MoT), a novel and efficient thought structure for LLMs. MoT explores problems in both horizontal and vertical dimensions through a "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep thinking while reducing redundancy in the thought nodes within the column cells, thereby enhancing the reasoning capability of LLMs. Additionally, through a fact-correction mechanism, it leverages the knowledge graph triples retrieved by RAG and the original text to construct knowledge units and correct erroneous answers. To validate the effectiveness of this method, we conducted extensive experiments in three tasks: 24-point game, question answering evaluation, and proposition writing.The results demonstrate that our framework outperforms state-of-the-art methods, with reasoning time only 14.4\% of that of the baseline method, proving its efficiency and accuracy. The code for framework is available at https://github.com/lyfiter/mtqa.

Authors:Xiaofu Chen, Israfel Salazar, Yova Kementchedjhieva
Title: SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
Abstract:
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.

Authors:Gowen Loo, Chang Liu, Qinghong Yin, Xiang Chen, Jiawei Chen, Jingyuan Zhang, Yu Tian
Title: MobileRAG: Enhancing Mobile Agent with Retrieval-Augmented Generation
Abstract:
Smartphones have become indispensable in people's daily lives, permeating nearly every aspect of modern society. With the continuous advancement of large language models (LLMs), numerous LLM-based mobile agents have emerged. These agents are capable of accurately parsing diverse user queries and automatically assisting users in completing complex or repetitive operations. However, current agents 1) heavily rely on the comprehension ability of LLMs, which can lead to errors caused by misoperations or omitted steps during tasks, 2) lack interaction with the external environment, often terminating tasks when an app cannot fulfill user queries, and 3) lack memory capabilities, requiring each instruction to reconstruct the interface and being unable to learn from and correct previous mistakes. To alleviate the above issues, we propose MobileRAG, a mobile agents framework enhanced by Retrieval-Augmented Generation (RAG), which includes InterRAG, LocalRAG, and MemRAG. It leverages RAG to more quickly and accurately identify user queries and accomplish complex and long-sequence mobile tasks. Additionally, to more comprehensively assess the performance of MobileRAG, we introduce MobileRAG-Eval, a more challenging benchmark characterized by numerous complex, real-world mobile tasks that require external knowledge assistance. Extensive experimental results on MobileRAG-Eval demonstrate that MobileRAG can easily handle real-world mobile tasks, achieving 10.3\% improvement over state-of-the-art methods with fewer operational steps. Our code is publicly available at: https://github.com/liuxiaojieOutOfWorld/MobileRAG_arxiv

Authors:Neha Sunil, Megha Tippur, Arnau Saumell, Edward Adelson, Alberto Rodriguez
Title: Reactive In-Air Clothing Manipulation with Confidence-Aware Dense Correspondence and Visuotactile Affordance
Abstract:
Manipulating clothing is challenging due to complex configurations, variable material dynamics, and frequent self-occlusion. Prior systems often flatten garments or assume visibility of key features. We present a dual-arm visuotactile framework that combines confidence-aware dense visual correspondence and tactile-supervised grasp affordance to operate directly on crumpled and suspended garments. The correspondence model is trained on a custom, high-fidelity simulated dataset using a distributional loss that captures cloth symmetries and generates correspondence confidence estimates. These estimates guide a reactive state machine that adapts folding strategies based on perceptual uncertainty. In parallel, a visuotactile grasp affordance network, self-supervised using high-resolution tactile feedback, determines which regions are physically graspable. The same tactile classifier is used during execution for real-time grasp validation. By deferring action in low-confidence states, the system handles highly occluded table-top and in-air configurations. We demonstrate our task-agnostic grasp selection module in folding and hanging tasks. Moreover, our dense descriptors provide a reusable intermediate representation for other planning modalities, such as extracting grasp targets from human video demonstrations, paving the way for more generalizable and scalable garment manipulation.

Authors:Cheng Wang, Zeming Wei, Qin Liu, Muhao Chen
Title: False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Abstract:
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.

Authors:Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Title: Human Motion Video Generation: A Survey
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.

Authors:Jiajun Song, Xiaoou Liu
Title: SalientFusion: Context-Aware Compositional Zero-Shot Food Recognition
Abstract:
Food recognition has gained significant attention, but the rapid emergence of new dishes requires methods for recognizing unseen food categories, motivating Zero-Shot Food Learning (ZSFL). We propose the task of Compositional Zero-Shot Food Recognition (CZSFR), where cuisines and ingredients naturally align with attributes and objects in Compositional Zero-Shot learning (CZSL). However, CZSFR faces three challenges: (1) Redundant background information distracts models from learning meaningful food features, (2) Role confusion between staple and side dishes leads to misclassification, and (3) Semantic bias in a single attribute can lead to confusion of understanding. Therefore, we propose SalientFusion, a context-aware CZSFR method with two components: SalientFormer, which removes background redundancy and uses depth features to resolve role confusion; DebiasAT, which reduces the semantic bias by aligning prompts with visual features. Using our proposed benchmarks, CZSFood-90 and CZSFood-164, we show that SalientFusion achieves state-of-the-art results on these benchmarks and the most popular general datasets for the general CZSL. The code is avaliable at https://github.com/Jiajun-RUC/SalientFusion.

Authors:Nan Yang, Yang Wang, Zhanwen Liu, Yuchao Dai, Yang Liu, Xiangmo Zhao
Title: Focus Through Motion: RGB-Event Collaborative Token Sparsification for Efficient Object Detection
Abstract:
Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.

Authors:Yanbo Wang, Yongcan Yu, Jian Liang, Ran He
Title: A Comprehensive Survey on Trustworthiness in Reasoning with Large Language Models
Abstract:
The development of Long-CoT reasoning has advanced LLM performance across various tasks, including language understanding, complex problem solving, and code generation. This paradigm enables models to generate intermediate reasoning steps, thereby improving both accuracy and interpretability. However, despite these advancements, a comprehensive understanding of how CoT-based reasoning affects the trustworthiness of language models remains underdeveloped. In this paper, we survey recent work on reasoning models and CoT techniques, focusing on five core dimensions of trustworthy reasoning: truthfulness, safety, robustness, fairness, and privacy. For each aspect, we provide a clear and structured overview of recent studies in chronological order, along with detailed analyses of their methodologies, findings, and limitations. Future research directions are also appended at the end for reference and discussion. Overall, while reasoning techniques hold promise for enhancing model trustworthiness through hallucination mitigation, harmful content detection, and robustness improvement, cutting-edge reasoning models themselves often suffer from comparable or even greater vulnerabilities in safety, robustness, and privacy. By synthesizing these insights, we hope this work serves as a valuable and timely resource for the AI safety community to stay informed on the latest progress in reasoning trustworthiness. A full list of related papers can be found at \href{https://github.com/ybwang119/Awesome-reasoning-safety}{https://github.com/ybwang119/Awesome-reasoning-safety}.

Authors:Haichao Zhang, Haonan Yu, Le Zhao, Andrew Choi, Qinxun Bai, Yiqing Yang, Wei Xu
Title: Learning Multi-Stage Pick-and-Place with a Legged Mobile Manipulator
Abstract:
Quadruped-based mobile manipulation presents significant challenges in robotics due to the diversity of required skills, the extended task horizon, and partial observability. After presenting a multi-stage pick-and-place task as a succinct yet sufficiently rich setup that captures key desiderata for quadruped-based mobile manipulation, we propose an approach that can train a visuo-motor policy entirely in simulation, and achieve nearly 80\% success in the real world. The policy efficiently performs search, approach, grasp, transport, and drop into actions, with emerged behaviors such as re-grasping and task chaining. We conduct an extensive set of real-world experiments with ablation studies highlighting key techniques for efficient training and effective sim-to-real transfer. Additional experiments demonstrate deployment across a variety of indoor and outdoor environments. Demo videos and additional resources are available on the project page: https://horizonrobotics.github.io/gail/SLIM.

Authors:Huhong Xian, Rui Liu, Berrak Sisman, Haizhou Li
Title: NE-PADD: Leveraging Named Entity Knowledge for Robust Partial Audio Deepfake Detection via Attention Aggregation
Abstract:
Different from traditional sentence-level audio deepfake detection (ADD), partial audio deepfake detection (PADD) requires frame-level positioning of the location of fake speech. While some progress has been made in this area, leveraging semantic information from audio, especially named entities, remains an underexplored aspect. To this end, we propose NE-PADD, a novel method for Partial Audio Deepfake Detection (PADD) that leverages named entity knowledge through two parallel branches: Speech Name Entity Recognition (SpeechNER) and PADD. The approach incorporates two attention aggregation mechanisms: Attention Fusion (AF) for combining attention weights and Attention Transfer (AT) for guiding PADD with named entity semantics using an auxiliary loss. Built on the PartialSpoof-NER dataset, experiments show our method outperforms existing baselines, proving the effectiveness of integrating named entity knowledge in PADD. The code is available at https://github.com/AI-S2-Lab/NE-PADD.

Authors:Xiannan Huang, Shuhan Qiu, Jiayuan Du, Chao Yang
Title: Online time series prediction using feature adjustment
Abstract:
Time series forecasting is of significant importance across various domains. However, it faces significant challenges due to distribution shift. This issue becomes particularly pronounced in online deployment scenarios where data arrives sequentially, requiring models to adapt continually to evolving patterns. Current time series online learning methods focus on two main aspects: selecting suitable parameters to update (e.g., final layer weights or adapter modules) and devising suitable update strategies (e.g., using recent batches, replay buffers, or averaged gradients). We challenge the conventional parameter selection approach, proposing that distribution shifts stem from changes in underlying latent factors influencing the data. Consequently, updating the feature representations of these latent factors may be more effective. To address the critical problem of delayed feedback in multi-step forecasting (where true values arrive much later than predictions), we introduce ADAPT-Z (Automatic Delta Adjustment via Persistent Tracking in Z-space). ADAPT-Z utilizes an adapter module that leverages current feature representations combined with historical gradient information to enable robust parameter updates despite the delay. Extensive experiments demonstrate that our method consistently outperforms standard base models without adaptation and surpasses state-of-the-art online learning approaches across multiple datasets. The code is available at https://github.com/xiannanhuang/ADAPT-Z.

Authors:Junhui Li, Chengbin Feng, Zhiwei Yang, Qi Mo, Wei Wang
Title: BIDO: A Unified Approach to Address Obfuscation and Concept Drift Challenges in Image-based Malware Detection
Abstract:
To identify malicious Android applications, various malware detection techniques have been proposed. Among them, image-based approaches are considered potential alternatives due to their efficiency and scalability. Recent studies have reported that these approaches suffer significant performance declines when confronted with obfuscation or concept drift. However, existing solutions often treat these two challenges as different problems, offering independent solutions. These techniques overlook the fact that both challenges share a common statistical root, out-of-distribution, and research from this perspective remains limited. In response, we propose BIDO, a hybrid image-based malware detector designed to enhance robustness against both obfuscation and concept drift simultaneously. Specifically, to improve the discriminative power of image features, we introduce a local feature selection module that identifies informative subregions within malware images. Second, to enhance feature robustness, we model pairwise cross-modal dependencies in an outer product space, enabling the extraction of stable co-occurrence patterns. Third, to ensure feature compactness, we design a learnable metric that pulls samples with identical labels closer while pushing apart those with different labels, regardless of obfuscation or concept drift. Extensive experiments on the real-world datasets demonstrate that BIDO significantly outperforms existing baselines, achieving higher robustness against both concept drift and obfuscation. The source code is available at: https://github.com/whatishope/BIDO/.

Authors:Shakiba Amirshahi, Amin Bigdeli, Charles L. A. Clarke, Amira Ghenai
Title: Evaluating the Robustness of Retrieval-Augmented Generation to Adversarial Evidence in the Health Domain
Abstract:
Retrieval augmented generation (RAG) systems provide a method for factually grounding the responses of a Large Language Model (LLM) by providing retrieved evidence, or context, as support. Guided by this context, RAG systems can reduce hallucinations and expand the ability of LLMs to accurately answer questions outside the scope of their training data. Unfortunately, this design introduces a critical vulnerability: LLMs may absorb and reproduce misinformation present in retrieved evidence. This problem is magnified if retrieved evidence contains adversarial material explicitly intended to promulgate misinformation. This paper presents a systematic evaluation of RAG robustness in the health domain and examines alignment between model outputs and ground-truth answers. We focus on the health domain due to the potential for harm caused by incorrect responses, as well as the availability of evidence-based ground truth for many common health-related questions. We conduct controlled experiments using common health questions, varying both the type and composition of the retrieved documents (helpful, harmful, and adversarial) as well as the framing of the question by the user (consistent, neutral, and inconsistent). Our findings reveal that adversarial documents substantially degrade alignment, but robustness can be preserved when helpful evidence is also present in the retrieval pool. These findings offer actionable insights for designing safer RAG systems in high-stakes domains by highlighting the need for retrieval safeguards. To enable reproducibility and facilitate future research, all experimental results are publicly available in our github repository. https://github.com/shakibaam/RAG_ROBUSTNESS_EVAL

Authors:Joseph Rich, Conrad Oakes, Lior Pachter
Title: Optimizing alluvial plots
Abstract:
Alluvial plots can be effective for visualization of multivariate data, but rely on ordering of alluvia that can be non-trivial to arrange. We formulate two optimization problems that formalize the challenge of ordering and coloring partitions in alluvial plots. While solving these optimization problems is challenging in general, we show that the NeighborNet algorithm from phylogenetics can be adapted to provide excellent results in typical use cases. Our methods are implemented in a freely available R package available on GitHub at https://github.com/pachterlab/wompwomp

Authors:Zongsen Qiu
Title: STA-Net: A Decoupled Shape and Texture Attention Network for Lightweight Plant Disease Classification
Abstract:
Responding to rising global food security needs, precision agriculture and deep learning-based plant disease diagnosis have become crucial. Yet, deploying high-precision models on edge devices is challenging. Most lightweight networks use attention mechanisms designed for generic object recognition, which poorly capture subtle pathological features like irregular lesion shapes and complex textures. To overcome this, we propose a twofold solution: first, using a training-free neural architecture search method (DeepMAD) to create an efficient network backbone for edge devices; second, introducing the Shape-Texture Attention Module (STAM). STAM splits attention into two branches -- one using deformable convolutions (DCNv4) for shape awareness and the other using a Gabor filter bank for texture awareness. On the public CCMT plant disease dataset, our STA-Net model (with 401K parameters and 51.1M FLOPs) reached 89.00% accuracy and an F1 score of 88.96%. Ablation studies confirm STAM significantly improves performance over baseline and standard attention models. Integrating domain knowledge via decoupled attention thus presents a promising path for edge-deployed precision agriculture AI. The source code is available at https://github.com/RzMY/STA-Net.

Authors:Taha Koleilat, Hassan Rivaz, Yiming Xiao
Title: Singular Value Few-shot Adaptation of Vision-Language Models
Abstract:
Vision-language models (VLMs) like CLIP have shown impressive zero-shot and few-shot learning capabilities across diverse applications. However, adapting these models to new fine-grained domains remains difficult due to reliance on prompt engineering and the high cost of full model fine-tuning. Existing adaptation approaches rely on augmented components, such as prompt tokens and adapter modules, which could limit adaptation quality, destabilize the model, and compromise the rich knowledge learned during pretraining. In this work, we present CLIP-SVD, a novel multi-modal and parameter-efficient adaptation technique that leverages Singular Value Decomposition (SVD) to modify the internal parameter space of CLIP without injecting additional modules. Specifically, we fine-tune only the singular values of the CLIP parameter matrices to rescale the basis vectors for domain adaptation while retaining the pretrained model. This design enables enhanced adaptation performance using only 0.04% of the model's total parameters and better preservation of its generalization ability. CLIP-SVD achieves state-of-the-art classification results on 11 natural and 10 biomedical datasets, outperforming previous methods in both accuracy and generalization under few-shot settings. Additionally, we leverage a natural language-based approach to analyze the effectiveness and dynamics of the CLIP adaptation to allow interpretability of CLIP-SVD. The code is publicly available at https://github.com/HealthX-Lab/CLIP-SVD.

Authors:Casper van Engelenburg, Jan van Gemert, Seyran Khademi
Title: LayoutGKN: Graph Similarity Learning of Floor Plans
Abstract:
Floor plans depict building layouts and are often represented as graphs to capture the underlying spatial relationships. Comparison of these graphs is critical for applications like search, clustering, and data visualization. The most successful methods to compare graphs \ie, graph matching networks, rely on costly intermediate cross-graph node-level interactions, therefore being slow in inference time. We introduce \textbf{LayoutGKN}, a more efficient approach that postpones the cross-graph node-level interactions to the end of the joint embedding architecture. We do so by using a differentiable graph kernel as a distance function on the final learned node-level embeddings. We show that LayoutGKN computes similarity comparably or better than graph matching networks while significantly increasing the speed. \href{https://github.com/caspervanengelenburg/LayoutGKN}{Code and data} are open.

Authors:Pengrui Han, Rafal Kocielnik, Peiyang Song, Ramit Debnath, Dean Mobbs, Anima Anandkumar, R. Michael Alvarez
Title: The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Abstract:
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.

Authors:Seth Z. Zhao, Huizhi Zhang, Zhaowei Li, Juntong Peng, Anthony Chui, Zewei Zhou, Zonglin Meng, Hao Xiang, Zhiyu Huang, Fujia Wang, Ran Tian, Chenfeng Xu, Bolei Zhou, Jiaqi Ma
Title: QuantV2X: A Fully Quantized Multi-Agent System for Cooperative Perception
Abstract:
Cooperative perception through Vehicle-to-Everything (V2X) communication offers significant potential for enhancing vehicle perception by mitigating occlusions and expanding the field of view. However, past research has predominantly focused on improving accuracy metrics without addressing the crucial system-level considerations of efficiency, latency, and real-world deployability. Noticeably, most existing systems rely on full-precision models, which incur high computational and transmission costs, making them impractical for real-time operation in resource-constrained environments. In this paper, we introduce \textbf{QuantV2X}, the first fully quantized multi-agent system designed specifically for efficient and scalable deployment of multi-modal, multi-agent V2X cooperative perception. QuantV2X introduces a unified end-to-end quantization strategy across both neural network models and transmitted message representations that simultaneously reduces computational load and transmission bandwidth. Remarkably, despite operating under low-bit constraints, QuantV2X achieves accuracy comparable to full-precision systems. More importantly, when evaluated under deployment-oriented metrics, QuantV2X reduces system-level latency by 3.2$\times$ and achieves a +9.5 improvement in mAP30 over full-precision baselines. Furthermore, QuantV2X scales more effectively, enabling larger and more capable models to fit within strict memory budgets. These results highlight the viability of a fully quantized multi-agent intermediate fusion system for real-world deployment. The system will be publicly released to promote research in this field: https://github.com/ucla-mobility/QuantV2X.

Authors:Payam Abdisarabshali, Fardis Nadimi, Kasra Borazjani, Naji Khosravan, Minghui Liwang, Wei Ni, Dusit Niyato, Michael Langberg, Seyyedali Hosseinalipour
Title: Hierarchical Federated Foundation Models over Wireless Networks for Multi-Modal Multi-Task Intelligence: Integration of Edge Learning with D2D/P2P-Enabled Fog Learning Architectures
Abstract:
The rise of foundation models (FMs) has reshaped the landscape of machine learning. As these models continued to grow, leveraging geo-distributed data from wireless devices has become increasingly critical, giving rise to federated foundation models (FFMs). More recently, FMs have evolved into multi-modal multi-task (M3T) FMs (e.g., GPT-4) capable of processing diverse modalities across multiple tasks, which motivates a new underexplored paradigm: M3T FFMs. In this paper, we unveil an unexplored variation of M3T FFMs by proposing hierarchical federated foundation models (HF-FMs), which in turn expose two overlooked heterogeneity dimensions to fog/edge networks that have a direct impact on these emerging models: (i) heterogeneity in collected modalities and (ii) heterogeneity in executed tasks across fog/edge nodes. HF-FMs strategically align the modular structure of M3T FMs, comprising modality encoders, prompts, mixture-of-experts (MoEs), adapters, and task heads, with the hierarchical nature of fog/edge infrastructures. Moreover, HF-FMs enable the optional usage of device-to-device (D2D) communications, enabling horizontal module relaying and localized cooperative training among nodes when feasible. Through delving into the architectural design of HF-FMs, we highlight their unique capabilities along with a series of tailored future research directions. Finally, to demonstrate their potential, we prototype HF-FMs in a wireless network setting and release the open-source code for the development of HF-FMs with the goal of fostering exploration in this untapped field (GitHub: https://github.com/payamsiabd/M3T-FFM).

Authors:Rajeev Ranjan Dwivedi, Ankur Kumar, Vinod K Kurmi
Title: Multi Attribute Bias Mitigation via Representation Learning
Abstract:
Real world images frequently exhibit multiple overlapping biases, including textures, watermarks, gendered makeup, scene object pairings, etc. These biases collectively impair the performance of modern vision models, undermining both their robustness and fairness. Addressing these biases individually proves inadequate, as mitigating one bias often permits or intensifies others. We tackle this multi bias problem with Generalized Multi Bias Mitigation (GMBM), a lean two stage framework that needs group labels only while training and minimizes bias at test time. First, Adaptive Bias Integrated Learning (ABIL) deliberately identifies the influence of known shortcuts by training encoders for each attribute and integrating them with the main backbone, compelling the classifier to explicitly recognize these biases. Then Gradient Suppression Fine Tuning prunes those very bias directions from the backbone's gradients, leaving a single compact network that ignores all the shortcuts it just learned to recognize. Moreover we find that existing bias metrics break under subgroup imbalance and train test distribution shifts, so we introduce Scaled Bias Amplification (SBA): a test time measure that disentangles model induced bias amplification from distributional differences. We validate GMBM on FB CMNIST, CelebA, and COCO, where we boost worst group accuracy, halve multi attribute bias amplification, and set a new low in SBA even as bias complexity and distribution shifts intensify, making GMBM the first practical, end to end multibias solution for visual recognition. Project page: http://visdomlab.github.io/GMBM/

Authors:Thomas R. Harvey
Title: The Optimiser Hidden in Plain Sight: Training with the Loss Landscape's Induced Metric
Abstract:
We present a class of novel optimisers for training neural networks that makes use of the Riemannian metric naturally induced when the loss landscape is embedded in higher-dimensional space. This is the same metric that underlies common visualisations of loss landscapes. By taking this geometric perspective literally and using the induced metric, we develop a new optimiser and compare it to existing methods, namely: SGD, Adam, AdamW, and Muon, across a range of tasks and architectures. Empirically, we conclude that this new class of optimisers is highly effective in low dimensional examples, and provides slight improvement over state-of-the-art methods for training neural networks. These new optimisers have theoretically desirable properties. In particular, the effective learning rate is automatically decreased in regions of high curvature acting as a smoothed out form of gradient clipping. Similarly, one variant of these optimisers can also be viewed as inducing an effective scheduled learning rate and decoupled weight decay is the natural choice from our geometric perspective. The basic method can be used to modify any existing preconditioning method. The new optimiser has a computational complexity comparable to that of Adam.

Authors:Jigang Fan, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang, Zaixi Zhang
Title: SafeProtein: Red-Teaming Framework and Benchmark for Protein Foundation Models
Abstract:
Proteins play crucial roles in almost all biological processes. The advancement of deep learning has greatly accelerated the development of protein foundation models, leading to significant successes in protein understanding and design. However, the lack of systematic red-teaming for these models has raised serious concerns about their potential misuse, such as generating proteins with biological safety risks. This paper introduces SafeProtein, the first red-teaming framework designed for protein foundation models to the best of our knowledge. SafeProtein combines multimodal prompt engineering and heuristic beam search to systematically design red-teaming methods and conduct tests on protein foundation models. We also curated SafeProtein-Bench, which includes a manually constructed red-teaming benchmark dataset and a comprehensive evaluation protocol. SafeProtein achieved continuous jailbreaks on state-of-the-art protein foundation models (up to 70% attack success rate for ESM3), revealing potential biological safety risks in current protein foundation models and providing insights for the development of robust security protection technologies for frontier models. The codes will be made publicly available at https://github.com/jigang-fan/SafeProtein.

Authors:Spyros Rigas, Dhruv Verma, Georgios Alexandridis, Yixuan Wang
Title: Initialization Schemes for Kolmogorov-Arnold Networks: An Empirical Study
Abstract:
Kolmogorov-Arnold Networks (KANs) are a recently introduced neural architecture that replace fixed nonlinearities with trainable activation functions, offering enhanced flexibility and interpretability. While KANs have been applied successfully across scientific and machine learning tasks, their initialization strategies remain largely unexplored. In this work, we study initialization schemes for spline-based KANs, proposing two theory-driven approaches inspired by LeCun and Glorot, as well as an empirical power-law family with tunable exponents. Our evaluation combines large-scale grid searches on function fitting and forward PDE benchmarks, an analysis of training dynamics through the lens of the Neural Tangent Kernel, and evaluations on a subset of the Feynman dataset. Our findings indicate that the Glorot-inspired initialization significantly outperforms the baseline in parameter-rich models, while power-law initialization achieves the strongest performance overall, both across tasks and for architectures of varying size. All code and data accompanying this manuscript are publicly available at https://github.com/srigas/KAN_Initialization_Schemes.

Authors:Chenlu Ye, Zhou Yu, Ziji Zhang, Hao Chen, Narayanan Sadagopan, Jing Huang, Tong Zhang, Anurag Beniwal
Title: Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over $4\%$ compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.

Authors:Reina Ishikawa, Ryo Fujii, Hideo Saito, Ryo Hachiuma
Title: Human Preference-Aligned Concept Customization Benchmark via Decomposed Evaluation
Abstract:
Evaluating concept customization is challenging, as it requires a comprehensive assessment of fidelity to generative prompts and concept images. Moreover, evaluating multiple concepts is considerably more difficult than evaluating a single concept, as it demands detailed assessment not only for each individual concept but also for the interactions among concepts. While humans can intuitively assess generated images, existing metrics often provide either overly narrow or overly generalized evaluations, resulting in misalignment with human preference. To address this, we propose Decomposed GPT Score (D-GPTScore), a novel human-aligned evaluation method that decomposes evaluation criteria into finer aspects and incorporates aspect-wise assessments using Multimodal Large Language Model (MLLM). Additionally, we release Human Preference-Aligned Concept Customization Benchmark (CC-AlignBench), a benchmark dataset containing both single- and multi-concept tasks, enabling stage-wise evaluation across a wide difficulty range -- from individual actions to multi-person interactions. Our method significantly outperforms existing approaches on this benchmark, exhibiting higher correlation with human preferences. This work establishes a new standard for evaluating concept customization and highlights key challenges for future research. The benchmark and associated materials are available at https://github.com/ReinaIshikawa/D-GPTScore.

Authors:Yiyang Huang, Zixuan Wang, Zishen Wan, Yapeng Tian, Haobo Xu, Yinhe Han, Yiming Gan
Title: ANNIE: Be Careful of Your Robots
Abstract:
The integration of vision-language-action (VLA) models into embodied AI (EAI) robots is rapidly advancing their ability to perform complex, long-horizon tasks in humancentric environments. However, EAI systems introduce critical security risks: a compromised VLA model can directly translate adversarial perturbations on sensory input into unsafe physical actions. Traditional safety definitions and methodologies from the machine learning community are no longer sufficient. EAI systems raise new questions, such as what constitutes safety, how to measure it, and how to design effective attack and defense mechanisms in physically grounded, interactive settings. In this work, we present the first systematic study of adversarial safety attacks on embodied AI systems, grounded in ISO standards for human-robot interactions. We (1) formalize a principled taxonomy of safety violations (critical, dangerous, risky) based on physical constraints such as separation distance, velocity, and collision boundaries; (2) introduce ANNIEBench, a benchmark of nine safety-critical scenarios with 2,400 video-action sequences for evaluating embodied safety; and (3) ANNIE-Attack, a task-aware adversarial framework with an attack leader model that decomposes long-horizon goals into frame-level perturbations. Our evaluation across representative EAI models shows attack success rates exceeding 50% across all safety categories. We further demonstrate sparse and adaptive attack strategies and validate the real-world impact through physical robot experiments. These results expose a previously underexplored but highly consequential attack surface in embodied AI systems, highlighting the urgent need for security-driven defenses in the physical AI era. Code is available at https://github.com/RLCLab/Annie.

Authors:Hui Chen, Liangyu Liu, Xianchao Xiu, Wanquan Liu
Title: Transformer-Guided Content-Adaptive Graph Learning for Hyperspectral Unmixing
Abstract:
Hyperspectral unmixing (HU) targets to decompose each mixed pixel in remote sensing images into a set of endmembers and their corresponding abundances. Despite significant progress in this field using deep learning, most methods fail to simultaneously characterize global dependencies and local consistency, making it difficult to preserve both long-range interactions and boundary details. This letter proposes a novel transformer-guided content-adaptive graph unmixing framework (T-CAGU), which overcomes these challenges by employing a transformer to capture global dependencies and introducing a content-adaptive graph neural network to enhance local relationships. Unlike previous work, T-CAGU integrates multiple propagation orders to dynamically learn the graph structure, ensuring robustness against noise. Furthermore, T-CAGU leverages a graph residual mechanism to preserve global information and stabilize training. Experimental results demonstrate its superiority over the state-of-the-art methods. Our code is available at https://github.com/xianchaoxiu/T-CAGU.

Authors:Yixiong Jing, Cheng Zhang, Haibing Wu, Guangming Wang, Olaf Wysocki, Brian Sheil
Title: InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds
Abstract:
Point clouds are widely used for infrastructure monitoring by providing geometric information, where segmentation is required for downstream tasks such as defect detection. Existing research has automated semantic segmentation of structural components, while brick-level segmentation (identifying defects such as spalling and mortar loss) has been primarily conducted from RGB images. However, acquiring high-resolution images is impractical in low-light environments like masonry tunnels. Point clouds, though robust to dim lighting, are typically unstructured, sparse, and noisy, limiting fine-grained segmentation. We present InfraDiffusion, a zero-shot framework that projects masonry point clouds into depth maps using virtual cameras and restores them by adapting the Denoising Diffusion Null-space Model (DDNM). Without task-specific training, InfraDiffusion enhances visual clarity and geometric consistency of depth maps. Experiments on masonry bridge and tunnel point cloud datasets show significant improvements in brick-level segmentation using the Segment Anything Model (SAM), underscoring its potential for automated inspection of masonry assets. Our code and data is available at https://github.com/Jingyixiong/InfraDiffusion-official-implement.

Authors:Evgenii Kniazev, Arseny Kravchenko, Igor Rekun, James Broadhead, Nikita Shamgunov, Pranav Sah, Pratik Nichite, Ivan Yamshchikov
Title: app.build: A Production Framework for Scaling Agentic Prompt-to-App Generation with Environment Scaffolding
Abstract:
We present app.build (https://github.com/appdotbuild/agent/), an open-source framework that improves LLM-based application generation through systematic validation and structured environments. Our approach combines multi-layered validation pipelines, stack-specific orchestration, and model-agnostic architecture, implemented across three reference stacks. Through evaluation on 30 generation tasks, we demonstrate that comprehensive validation achieves 73.3% viability rate with 30% reaching perfect quality scores, while open-weights models achieve 80.8% of closed-model performance when provided structured environments. The open-source framework has been adopted by the community, with over 3,000 applications generated to date. This work demonstrates that scaling reliable AI agents requires scaling environments, not just models -- providing empirical insights and complete reference implementations for production-oriented agent systems.

Authors:Sophia Bianchi Moyen, Rickmer Krohn, Sophie Lueth, Kay Pompetzki, Jan Peters, Vignesh Prasad, Georgia Chalvatzaki
Title: The Role of Embodiment in Intuitive Whole-Body Teleoperation for Mobile Manipulation
Abstract:
Intuitive Teleoperation interfaces are essential for mobile manipulation robots to ensure high quality data collection while reducing operator workload. A strong sense of embodiment combined with minimal physical and cognitive demands not only enhances the user experience during large-scale data collection, but also helps maintain data quality over extended periods. This becomes especially crucial for challenging long-horizon mobile manipulation tasks that require whole-body coordination. We compare two distinct robot control paradigms: a coupled embodiment integrating arm manipulation and base navigation functions, and a decoupled embodiment treating these systems as separate control entities. Additionally, we evaluate two visual feedback mechanisms: immersive virtual reality and conventional screen-based visualization of the robot's field of view. These configurations were systematically assessed across a complex, multi-stage task sequence requiring integrated planning and execution. Our results show that the use of VR as a feedback modality increases task completion time, cognitive workload, and perceived effort of the teleoperator. Coupling manipulation and navigation leads to a comparable workload on the user as decoupling the embodiments, while preliminary experiments suggest that data acquired by coupled teleoperation leads to better imitation learning performance. Our holistic view on intuitive teleoperation interfaces provides valuable insight into collecting high-quality, high-dimensional mobile manipulation data at scale with the human operator in mind. Project website:https://sophiamoyen.github.io/role-embodiment-wbc-moma-teleop/

Authors:Junhao Jia, Yifei Sun, Yunyou Liu, Cheng Yang, Changmiao Wang, Feiwei Qin, Yong Peng, Wenwen Min
Title: RTGMFF: Enhanced fMRI-based Brain Disorder Diagnosis via ROI-driven Text Generation and Multimodal Feature Fusion
Abstract:
Functional magnetic resonance imaging (fMRI) is a powerful tool for probing brain function, yet reliable clinical diagnosis is hampered by low signal-to-noise ratios, inter-subject variability, and the limited frequency awareness of prevailing CNN- and Transformer-based models. Moreover, most fMRI datasets lack textual annotations that could contextualize regional activation and connectivity patterns. We introduce RTGMFF, a framework that unifies automatic ROI-level text generation with multimodal feature fusion for brain-disorder diagnosis. RTGMFF consists of three components: (i) ROI-driven fMRI text generation deterministically condenses each subject's activation, connectivity, age, and sex into reproducible text tokens; (ii) Hybrid frequency-spatial encoder fuses a hierarchical wavelet-mamba branch with a cross-scale Transformer encoder to capture frequency-domain structure alongside long-range spatial dependencies; and (iii) Adaptive semantic alignment module embeds the ROI token sequence and visual features in a shared space, using a regularized cosine-similarity loss to narrow the modality gap. Extensive experiments on the ADHD-200 and ABIDE benchmarks show that RTGMFF surpasses current methods in diagnostic accuracy, achieving notable gains in sensitivity, specificity, and area under the ROC curve. Code is available at https://github.com/BeistMedAI/RTGMFF.

Authors:Yuchen Yang, Yiming Li, Hongwei Yao, Enhao Huang, Shuo Shao, Bingrun Yang, Zhibo Wang, Dacheng Tao, Zhan Qin
Title: PromptCOS: Towards System Prompt Copyright Auditing for LLMs via Content-level Output Similarity
Abstract:
The rapid progress of large language models (LLMs) has greatly enhanced reasoning tasks and facilitated the development of LLM-based applications. A critical factor in improving LLM-based applications is the design of effective system prompts, which significantly impact the behavior and output quality of LLMs. However, system prompts are susceptible to theft and misuse, which could undermine the interests of prompt owners. Existing methods protect prompt copyrights through watermark injection and verification but face challenges due to their reliance on intermediate LLM outputs (e.g., logits), which limits their practical feasibility. In this paper, we propose PromptCOS, a method for auditing prompt copyright based on content-level output similarity. It embeds watermarks by optimizing the prompt while simultaneously co-optimizing a special verification query and content-level signal marks. This is achieved by leveraging cyclic output signals and injecting auxiliary tokens to ensure reliable auditing in content-only scenarios. Additionally, it incorporates cover tokens to protect the watermark from malicious deletion. For copyright verification, PromptCOS identifies unauthorized usage by comparing the similarity between the suspicious output and the signal mark. Experimental results demonstrate that our method achieves high effectiveness (99.3% average watermark similarity), strong distinctiveness (60.8% greater than the best baseline), high fidelity (accuracy degradation of no more than 0.58%), robustness (resilience against three types of potential attacks), and computational efficiency (up to 98.1% reduction in computational cost). Our code is available at GitHub https://github.com/LianPing-cyber/PromptCOS.

Authors:Xingyue Huang, Rishabh, Gregor Franke, Ziyi Yang, Jiamu Bai, Weijie Bai, Jinhe Bi, Zifeng Ding, Yiqun Duan, Chengyu Fan, Wendong Fan, Xin Gao, Ruohao Guo, Yuan He, Zhuangzhuang He, Xianglong Hu, Neil Johnson, Bowen Li, Fangru Lin, Siyu Lin, Tong Liu, Yunpu Ma, Hao Shen, Hao Sun, Beibei Wang, Fangyijie Wang, Hao Wang, Haoran Wang, Yang Wang, Yifeng Wang, Zhaowei Wang, Ziyang Wang, Yifan Wu, Zikai Xiao, Chengxing Xie, Fan Yang, Junxiao Yang, Qianshuo Ye, Ziyu Ye, Guangtao Zeng, Yuwen Ebony Zhang, Zeyu Zhang, Zihao Zhu, Bernard Ghanem, Philip Torr, Guohao Li
Title: Loong: Synthesize Long Chain-of-Thoughts at Scale through Verifiers
Abstract:
Recent advances in Large Language Models (LLMs) have shown that their reasoning capabilities can be significantly improved through Reinforcement Learning with Verifiable Reward (RLVR), particularly in domains like mathematics and programming, where ground-truth correctness can be automatically evaluated. However, extending this success to other reasoning-intensive domains remains challenging due to the scarcity of high-quality, verifiable datasets and the high cost of human supervision. In this work, we introduce the Loong Project: an open-source framework for scalable synthetic data generation and verification across a diverse range of reasoning-intensive domains. The framework consists of two key components: (1) LoongBench, a curated seed dataset containing 8,729 human-vetted examples across 12 domains (e.g., Advanced Mathematics, Chemistry, Logic), each paired with executable code and rich metadata; and (2) LoongEnv, a modular synthetic data generation environment that supports multiple prompting strategies to produce new question-answer-code triples. Together, these components form an agent-environment loop that enables reinforcement learning, where an LLM-based agent is rewarded for generating Chain-of-Thought (CoT) solutions that align with code-executed answers. Empirically, we benchmark LoongBench on a broad suite of both open-source and proprietary LLMs to evaluate domain coverage and reveal performance bottlenecks. In addition, we conduct a comprehensive analysis of synthetic data generated by LoongEnv, examining correctness, difficulty, and diversity. Code and documentation are available at https://github.com/camel-ai/loong.

Authors:Zhenhua Xu, Meng Han, Wenpeng Xing
Title: EverTracer: Hunting Stolen Large Language Models via Stealthy and Robust Probabilistic Fingerprint
Abstract:
The proliferation of large language models (LLMs) has intensified concerns over model theft and license violations, necessitating robust and stealthy ownership verification. Existing fingerprinting methods either require impractical white-box access or introduce detectable statistical anomalies. We propose EverTracer, a novel gray-box fingerprinting framework that ensures stealthy and robust model provenance tracing. EverTracer is the first to repurpose Membership Inference Attacks (MIAs) for defensive use, embedding ownership signals via memorization instead of artificial trigger-output overfitting. It consists of Fingerprint Injection, which fine-tunes the model on any natural language data without detectable artifacts, and Verification, which leverages calibrated probability variation signal to distinguish fingerprinted models. This approach remains robust against adaptive adversaries, including input level modification, and model-level modifications. Extensive experiments across architectures demonstrate EverTracer's state-of-the-art effectiveness, stealthness, and resilience, establishing it as a practical solution for securing LLM intellectual property. Our code and data are publicly available at https://github.com/Xuzhenhua55/EverTracer.

Authors:Xinzhe Zheng, Zhen-Qun Yang, Haoran Xie, S. Joe Qin, Arlene Chen, Fangzhen Lin
Title: Binary Quantization For LLMs Through Dynamic Grouping
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan

Authors:Tzuhsuan Huang, Cheng Yu Yeo, Tsai-Ling Huang, Hong-Han Shuai, Wen-Huang Cheng, Jun-Cheng Chen
Title: Enhancing Robustness in Post-Processing Watermarking: An Ensemble Attack Network Using CNNs and Transformers
Abstract:
Recent studies on deep watermarking have predominantly focused on in-processing watermarking, which integrates the watermarking process into image generation. However, post-processing watermarking, which embeds watermarks after image generation, offers more flexibility. It can be applied to outputs from any generative model (e.g. GANs, diffusion models) without needing access to the model's internal structure. It also allows users to embed unique watermarks into individual images. Therefore, this study focuses on post-processing watermarking and enhances its robustness by incorporating an ensemble attack network during training. We construct various versions of attack networks using CNN and Transformer in both spatial and frequency domains to investigate how each combination influences the robustness of the watermarking model. Our results demonstrate that combining a CNN-based attack network in the spatial domain with a Transformer-based attack network in the frequency domain yields the highest robustness in watermarking models. Extensive evaluation on the WAVES benchmark, using average bit accuracy as the metric, demonstrates that our ensemble attack network significantly enhances the robustness of baseline watermarking methods under various stress tests. In particular, for the Regeneration Attack defined in WAVES, our method improves StegaStamp by 18.743%. The code is released at:https://github.com/aiiu-lab/DeepRobustWatermark.

Authors:Shuai Jiang, Yunfeng Ma, Jingyu Zhou, Yuan Bian, Yaonan Wang, Min Liu
Title: Resilient Multimodal Industrial Surface Defect Detection with Uncertain Sensors Availability
Abstract:
Multimodal industrial surface defect detection (MISDD) aims to identify and locate defect in industrial products by fusing RGB and 3D modalities. This article focuses on modality-missing problems caused by uncertain sensors availability in MISDD. In this context, the fusion of multiple modalities encounters several troubles, including learning mode transformation and information vacancy. To this end, we first propose cross-modal prompt learning, which includes: i) the cross-modal consistency prompt serves the establishment of information consistency of dual visual modalities; ii) the modality-specific prompt is inserted to adapt different input patterns; iii) the missing-aware prompt is attached to compensate for the information vacancy caused by dynamic modalities-missing. In addition, we propose symmetric contrastive learning, which utilizes text modality as a bridge for fusion of dual vision modalities. Specifically, a paired antithetical text prompt is designed to generate binary text semantics, and triple-modal contrastive pre-training is offered to accomplish multimodal learning. Experiment results show that our proposed method achieves 73.83% I-AUROC and 93.05% P-AUROC with a total missing rate 0.7 for RGB and 3D modalities (exceeding state-of-the-art methods 3.84% and 5.58% respectively), and outperforms existing approaches to varying degrees under different missing types and rates. The source code will be available at https://github.com/SvyJ/MISDD-MM.

Authors:Zeyu Liu, Shengwei Ding
Title: STAR: A Fast and Robust Rigid Registration Framework for Serial Histopathological Images
Abstract:
Registration of serial whole-slide histopathological images (WSIs) is critical for enabling direct comparison across diverse stains and for preparing paired datasets in artificial intelligence (AI) workflows such as virtual staining and biomarker prediction. While existing methods often rely on complex deformable or deep learning approaches that are computationally intensive and difficult to reproduce, lightweight rigid frameworks-sufficient for many consecutive-section scenarios-remain underdeveloped. We introduce STAR (Serial Tissue Alignment for Rigid registration), a fast and robust open-source framework for multi-WSI alignment. STAR integrates stain-conditioned preprocessing with a hierarchical coarse-to-fine correlation strategy, adaptive kernel scaling, and built-in quality control, achieving reliable rigid registration across heterogeneous tissue types and staining protocols, including hematoxylin-eosin (H&E), special histochemical stains (e.g., PAS, PASM, Masson's), and immunohistochemical (IHC) markers (e.g., CD31, KI67). Evaluated on the ANHIR 2019 and ACROBAT 2022 datasets spanning multiple organs and scanning conditions, STAR consistently produced stable alignments within minutes per slide, demonstrating robustness to cross-stain variability and partial tissue overlap. Beyond benchmarks, we present case studies on H&E-IHC alignment, construction of multi-IHC panels, and typical failure modes, underscoring both utility and limitations. Released as an open and lightweight tool, STAR provides a reproducible baseline that lowers the barrier for clinical adoption and enables large-scale paired data preparation for next-generation computational pathology.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Susan Holm, Yuran Wang, Vincent Zhou, Ken Fukuda, Teruko Mitamura
Title: ProMQA-Assembly: Multimodal Procedural QA Dataset on Assembly
Abstract:
Assistants on assembly tasks have a large potential to benefit humans from everyday tasks to industrial settings. However, no testbeds support application-oriented system evaluation in a practical setting, especially in assembly. To foster the development, we propose a new multimodal QA dataset on assembly activities. Our dataset, ProMQA-Assembly, consists of 391 QA pairs that require the multimodal understanding of human-activity recordings and their instruction manuals in an online-style manner. In the development, we adopt a semi-automated QA annotation approach, where LLMs generate candidates and humans verify them, as a cost-effective method, and further improve it by integrating fine-grained action labels to diversify question types. Furthermore, we create instruction task graphs for the target tasks of assembling toy vehicles. These newly created task graphs are used in our benchmarking experiment, as well as to facilitate the human verification process in the QA annotation. Utilizing our dataset, we benchmark models, including competitive proprietary multimodal models. Our results suggest great room for improvement for the current models. We believe our new evaluation dataset can contribute to the further development of procedural-activity assistants.

Authors:Armin Saadat, Nima Hashemi, Hooman Vaseli, Michael Y. Tsang, Christina Luong, Michiel Van de Panne, Teresa S. M. Tsang, Purang Abolmaesumi
Title: PRECISE-AS: Personalized Reinforcement Learning for Efficient Point-of-Care Echocardiography in Aortic Stenosis Diagnosis
Abstract:
Aortic stenosis (AS) is a life-threatening condition caused by a narrowing of the aortic valve, leading to impaired blood flow. Despite its high prevalence, access to echocardiography (echo), the gold-standard diagnostic tool, is often limited due to resource constraints, particularly in rural and underserved areas. Point-of-care ultrasound (POCUS) offers a more accessible alternative but is restricted by operator expertise and the challenge of selecting the most relevant imaging views. To address this, we propose a reinforcement learning (RL)-driven active video acquisition framework that dynamically selects each patient's most informative echo videos. Unlike traditional methods that rely on a fixed set of videos, our approach continuously evaluates whether additional imaging is needed, optimizing both accuracy and efficiency. Tested on data from 2,572 patients, our method achieves 80.6% classification accuracy while using only 47% of the echo videos compared to a full acquisition. These results demonstrate the potential of active feature acquisition to enhance AS diagnosis, making echocardiographic assessments more efficient, scalable, and personalized. Our source code is available at: https://github.com/Armin-Saadat/PRECISE-AS.

Authors:Harsh Muriki, Hong Ray Teo, Ved Sengupta, Ai-Ping Hu
Title: Robotic 3D Flower Pose Estimation for Small-Scale Urban Farms
Abstract:
The small scale of urban farms and the commercial availability of low-cost robots (such as the FarmBot) that automate simple tending tasks enable an accessible platform for plant phenotyping. We have used a FarmBot with a custom camera end-effector to estimate strawberry plant flower pose (for robotic pollination) from acquired 3D point cloud models. We describe a novel algorithm that translates individual occupancy grids along orthogonal axes of a point cloud to obtain 2D images corresponding to the six viewpoints. For each image, 2D object detection models for flowers are used to identify 2D bounding boxes which can be converted into the 3D space to extract flower point clouds. Pose estimation is performed by fitting three shapes (superellipsoids, paraboloids and planes) to the flower point clouds and compared with manually labeled ground truth. Our method successfully finds approximately 80% of flowers scanned using our customized FarmBot platform and has a mean flower pose error of 7.7 degrees, which is sufficient for robotic pollination and rivals previous results. All code will be made available at https://github.com/harshmuriki/flowerPose.git.

Authors:Mennatullah Siam
Title: PixFoundation 2.0: Do Video Multi-Modal LLMs Use Motion in Visual Grounding?
Abstract:
Multi-modal large language models (MLLMs) have shown impressive generalization across tasks using images and text modalities. While their extension to video has enabled tasks such as video question answering and video captioning, their pixel-level visual grounding abilities are less studied. In this work, we raise the pertinent question of whether motion is used in pixel-level visual grounding and whether video MLLMs can segment objects based on natural language expressions describing their motion patterns. We identify the shortcomings in the current benchmarks, where we show that a single frame can often suffice for capturing the motion referring expression without any temporal reasoning. To address this, we introduce four motion-centric probing techniques, particularly designed for the visual grounding task, to study video MLLMs' ability to identify true motion from a fake one and their ability to grasp the motion order. Consequently, we provide a motion-centric benchmark, MoCentric-Bench. It ensures that video MLLMs are evaluated towards leveraging the interaction between motion and language rather than being dominated by static appearance cues emphasized in existing visual grounding datasets. We further establish strong single-image baselines that are on par with or outperform prior methods. Finally, we explore simple motion-centric adaptation techniques that provide state-of-the-art performance on our MoCentric-Bench. Our motion-centric benchmark, evaluation and findings challenge future models to improve dense spatiotemporal grounding and pixel-level understanding within videos. Code and datasets will be made publicly available at https://github.com/MSiam/PixFoundation-2.0.git.

Authors:Jie Xiao, Mengye Lyu, Shaojun Liu
Title: A Two-Stage Strategy for Mitosis Detection Using Improved YOLO11x Proposals and ConvNeXt Classification
Abstract:
MIDOG 2025 Track 1 requires mitosis detection in whole-slideimages (WSIs) containing non-tumor, inflamed, and necrotic re-gions. Due to the complicated and heterogeneous context, aswell as possible artifacts, there are often false positives and falsenegatives, thus degrading the detection F1-score. To addressthis problem, we propose a two-stage framework. Firstly, an im-proved YOLO11x, integrated with EMA attention and LSConv,is employed to generate mitosis candidates. We use a low confi-dence threshold to generate as many proposals as possible, en-suring the detection recall. Then, a ConvNeXt-Tiny classifieris employed to filter out the false positives, ensuring the detec-tion precision. Consequently, the proposed two-stage frame-work can generate a high detection F1-score. Evaluated on afused dataset comprising MIDOG++, MITOS_WSI_CCMCT,and MITOS_WSI_CMC, our framework achieves an F1-scoreof 0.882, which is 0.035 higher than the single-stage YOLO11xbaseline. This performance gain is produced by a significantprecision improvement, from 0.762 to 0.839, and a comparablerecall. On the MIDOG 2025 Track 1 preliminary test set, thealgorithm scores an F1 score of 0.7587. The code is available athttps://github.com/xxiao0304/MIDOG-2025-Track-1-of-SZTU.

Authors:You Shen, Zhipeng Zhang, Yansong Qu, Liujuan Cao
Title: FastVGGT: Training-Free Acceleration of Visual Geometry Transformer
Abstract:
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, scaling these models to long-sequence image inputs remains a significant challenge due to inference-time inefficiency. In this work, we present a detailed analysis of VGGT, a state-of-the-art feed-forward visual geometry model and identify its primary bottleneck. Visualization further reveals a token collapse phenomenon in the attention maps. Motivated by these findings, we explore the potential of token merging in the feed-forward visual geometry model. Owing to the unique architectural and task-specific properties of 3D models, directly applying existing merging techniques proves challenging. To this end, we propose FastVGGT, which, for the first time, leverages token merging in the 3D domain through a training-free mechanism for accelerating VGGT. we devise a unique token partitioning strategy tailored to 3D architectures and tasks, effectively eliminating redundant computation while preserving VGGT's powerful reconstruction capacity. Extensive experiments on multiple 3D geometry benchmarks validate the effectiveness of our approach. Notably, with 1000 input images, FastVGGT achieves a 4x speedup over VGGT while mitigating error accumulation in long-sequence scenarios. These findings underscore the potential of token merging as a principled solution for scalable 3D vision systems. Code is available at: https://mystorm16.github.io/fastvggt/.

Authors:Xinrui Gong, Oliver Hahn, Christoph Reich, Krishnakant Singh, Simone Schaub-Meyer, Daniel Cremers, Stefan Roth
Title: Motion-Refined DINOSAUR for Unsupervised Multi-Object Discovery
Abstract:
Unsupervised multi-object discovery (MOD) aims to detect and localize distinct object instances in visual scenes without any form of human supervision. Recent approaches leverage object-centric learning (OCL) and motion cues from video to identify individual objects. However, these approaches use supervision to generate pseudo labels to train the OCL model. We address this limitation with MR-DINOSAUR -- Motion-Refined DINOSAUR -- a minimalistic unsupervised approach that extends the self-supervised pre-trained OCL model, DINOSAUR, to the task of unsupervised multi-object discovery. We generate high-quality unsupervised pseudo labels by retrieving video frames without camera motion for which we perform motion segmentation of unsupervised optical flow. We refine DINOSAUR's slot representations using these pseudo labels and train a slot deactivation module to assign slots to foreground and background. Despite its conceptual simplicity, MR-DINOSAUR achieves strong multi-object discovery results on the TRI-PD and KITTI datasets, outperforming the previous state of the art despite being fully unsupervised.

Authors:Jiaming Li, Longze Chen, Ze Gong, Yukun Chen, Lu Wang, Wanwei He, Run Luo, Min Yang
Title: Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
Abstract:
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.

Authors:Erfan Baghaei Potraghloo, Seyedarmin Azizi, Souvik Kundu, Massoud Pedram
Title: Top-H Decoding: Adapting the Creativity and Coherence with Bounded Entropy in Text Generation
Abstract:
Large language models (LLMs), despite their impressive performance across a wide range of tasks, often struggle to balance two competing objectives in open-ended text generation: fostering diversity and creativity while preserving logical coherence. Existing truncated sampling techniques, including temperature scaling, top-\$p\$ (nucleus) sampling, and min-\$p\$ sampling, aim to manage this trade-off. However, they exhibit limitations, particularly in the effective incorporation of the confidence of the model into the corresponding sampling strategy. For example, min-\$p\$ sampling relies on a single top token as a heuristic for confidence, eventually underutilizing the information of the probability distribution. Toward effective incorporation of the confidence of the model, in this paper, we present **top-H** decoding. We first establish the theoretical foundation of the interplay between creativity and coherence in truncated sampling by formulating an **entropy-constrained minimum divergence** problem. We then prove this minimization problem to be equivalent to an **entropy-constrained mass maximization** (ECMM) problem, which is NP-hard. Finally, we present top-H decoding, a computationally efficient greedy algorithm to solve the ECMM problem. Extensive empirical evaluations demonstrate that top-H outperforms the state-of-the-art (SoTA) alternative of min-\$p\$ sampling by up to **25.63%** on creative writing benchmarks, while maintaining robustness on question-answering datasets such as GPQA, GSM8K, and MT-Bench. Additionally, an *LLM-as-judge* evaluation confirms that top-H indeed produces coherent outputs even at higher temperatures, where creativity is especially critical. In summary, top-H advances SoTA in open-ended text generation and can be *easily integrated* into creative writing applications. The code is available at https://github.com/ErfanBaghaei/Top-H-Decoding.

Authors:Nishant Tanksale, Tanmay Kokate, Darshan Gohad, Sarvadnyaa Barate, Raviraj Joshi
Title: L3Cube-IndicHeadline-ID: A Dataset for Headline Identification and Semantic Evaluation in Low-Resource Indian Languages
Abstract:
Semantic evaluation in low-resource languages remains a major challenge in NLP. While sentence transformers have shown strong performance in high-resource settings, their effectiveness in Indic languages is underexplored due to a lack of high-quality benchmarks. To bridge this gap, we introduce L3Cube-IndicHeadline-ID, a curated headline identification dataset spanning ten low-resource Indic languages: Marathi, Hindi, Tamil, Gujarati, Odia, Kannada, Malayalam, Punjabi, Telugu, Bengali and English. Each language includes 20,000 news articles paired with four headline variants: the original, a semantically similar version, a lexically similar version, and an unrelated one, designed to test fine-grained semantic understanding. The task requires selecting the correct headline from the options using article-headline similarity. We benchmark several sentence transformers, including multilingual and language-specific models, using cosine similarity. Results show that multilingual models consistently perform well, while language-specific models vary in effectiveness. Given the rising use of similarity models in Retrieval-Augmented Generation (RAG) pipelines, this dataset also serves as a valuable resource for evaluating and improving semantic understanding in such applications. Additionally, the dataset can be repurposed for multiple-choice question answering, headline classification, or other task-specific evaluations of LLMs, making it a versatile benchmark for Indic NLP. The dataset is shared publicly at https://github.com/l3cube-pune/indic-nlp

Authors:Junxi Wu, Jinpeng Wang, Zheng Liu, Bin Chen, Dongjian Hu, Hao Wu, Shu-Tao Xia
Title: MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds
Abstract:
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.

Authors:Aishwarya Sarkar, Autrin Hakimi, Xiaoqiong Chen, Hai Huang, Chaoqun Lu, Ibrahim Demir, Ali Jannesari
Title: HydroGAT: Distributed Heterogeneous Graph Attention Transformer for Spatiotemporal Flood Prediction
Abstract:
Accurate flood forecasting remains a challenge for water-resource management, as it demands modeling of local, time-varying runoff drivers (e.g., rainfall-induced peaks, baseflow trends) and complex spatial interactions across a river network. Traditional data-driven approaches, such as convolutional networks and sequence-based models, ignore topological information about the region. Graph Neural Networks (GNNs) propagate information exactly along the river network, which is ideal for learning hydrological routing. However, state-of-the-art GNN-based flood prediction models collapse pixels to coarse catchment polygons as the cost of training explodes with graph size and higher resolution. Furthermore, most existing methods treat spatial and temporal dependencies separately, either applying GNNs solely on spatial graphs or transformers purely on temporal sequences, thus failing to simultaneously capture spatiotemporal interactions critical for accurate flood prediction. We introduce a heterogenous basin graph where every land and river pixel is a node connected by physical hydrological flow directions and inter-catchment relationships. We propose HydroGAT, a spatiotemporal network that adaptively learns local temporal importance and the most influential upstream locations. Evaluated in two Midwestern US basins and across five baseline architectures, our model achieves higher NSE (up to 0.97), improved KGE (up to 0.96), and low bias (PBIAS within $\pm$5%) in hourly discharge prediction, while offering interpretable attention maps that reveal sparse, structured intercatchment influences. To support high-resolution basin-scale training, we develop a distributed data-parallel pipeline that scales efficiently up to 64 NVIDIA A100 GPUs on NERSC Perlmutter supercomputer, demonstrating up to 15x speedup across machines. Our code is available at https://github.com/swapp-lab/HydroGAT.

Authors:Nina Wiedemann, Sainan Liu, Quentin Leboutet, Katelyn Gao, Benjamin Ummenhofer, Michael Paulitsch, Kai Yuan
Title: Unifi3D: A Study on 3D Representations for Generation and Reconstruction in a Common Framework
Abstract:
Following rapid advancements in text and image generation, research has increasingly shifted towards 3D generation. Unlike the well-established pixel-based representation in images, 3D representations remain diverse and fragmented, encompassing a wide variety of approaches such as voxel grids, neural radiance fields, signed distance functions, point clouds, or octrees, each offering distinct advantages and limitations. In this work, we present a unified evaluation framework designed to assess the performance of 3D representations in reconstruction and generation. We compare these representations based on multiple criteria: quality, computational efficiency, and generalization performance. Beyond standard model benchmarking, our experiments aim to derive best practices over all steps involved in the 3D generation pipeline, including preprocessing, mesh reconstruction, compression with autoencoders, and generation. Our findings highlight that reconstruction errors significantly impact overall performance, underscoring the need to evaluate generation and reconstruction jointly. We provide insights that can inform the selection of suitable 3D models for various applications, facilitating the development of more robust and application-specific solutions in 3D generation. The code for our framework is available at https://github.com/isl-org/unifi3d.

Authors:Lingzhi Shen, Xiaohao Cai, Yunfei Long, Imran Razzak, Guanming Chen, Shoaib Jameel
Title: EmoPerso: Enhancing Personality Detection with Self-Supervised Emotion-Aware Modelling
Abstract:
Personality detection from text is commonly performed by analysing users' social media posts. However, existing methods heavily rely on large-scale annotated datasets, making it challenging to obtain high-quality personality labels. Moreover, most studies treat emotion and personality as independent variables, overlooking their interactions. In this paper, we propose a novel self-supervised framework, EmoPerso, which improves personality detection through emotion-aware modelling. EmoPerso first leverages generative mechanisms for synthetic data augmentation and rich representation learning. It then extracts pseudo-labeled emotion features and jointly optimizes them with personality prediction via multi-task learning. A cross-attention module is employed to capture fine-grained interactions between personality traits and the inferred emotional representations. To further refine relational reasoning, EmoPerso adopts a self-taught strategy to enhance the model's reasoning capabilities iteratively. Extensive experiments on two benchmark datasets demonstrate that EmoPerso surpasses state-of-the-art models. The source code is available at https://github.com/slz0925/EmoPerso.

Authors:Jingru Fan, Yufan Dang, Jingyao Wu, Huatao Li, Runde Yang, Xiyuan Yang, Yuheng Wang, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu, Dahai Li, Chen Qian
Title: AppCopilot: Toward General, Accurate, Long-Horizon, and Efficient Mobile Agent
Abstract:
With the raid evolution of large language models and multimodal foundation models, the mobile-agent landscape has proliferated without converging on the fundamental challenges. This paper identifies four core problems that must be solved for mobile agents to deliver practical, scalable impact: (1) generalization across tasks, modalities, apps, and devices; (2) accuracy, specifically precise on-screen interaction and click targeting; (3) long-horizon capability for sustained, multi-step goals; and (4) efficiency, specifically high-performance runtime on resource-constrained devices. We present AppCopilot, a multimodal, multi-agent, general-purpose on-device assistant that operates across applications and constitutes a full-stack, closed-loop system from data to deployment. AppCopilot operationalizes this position through an end-to-end autonomous pipeline spanning data collection, training, deployment, high-quality and efficient inference, and mobile application development. At the model layer, it integrates multimodal foundation models with robust Chinese-English support. At the reasoning and control layer, it combines chain-of-thought reasoning, hierarchical task planning and decomposition, and multi-agent collaboration. At the execution layer, it enables user personalization and experiential adaptation, voice interaction, function calling, cross-app and cross-device orchestration, and comprehensive mobile app support. The system design incorporates profiling-driven optimization for latency, memory, and energy across heterogeneous hardware. Empirically, AppCopilot achieves significant improvements along all four dimensions: stronger generalization, higher-precision on-screen actions, more reliable long-horizon task completion, and faster, more resource-efficient runtime.

Authors:Yanwen Zou, Zhaoye Zhou, Chenyang Shi, Zewei Ye, Junda Huang, Yan Ding, Bo Zhao
Title: U-ARM : Ultra low-cost general teleoperation interface for robot manipulation
Abstract:
We propose U-Arm, a low-cost and rapidly adaptable leader-follower teleoperation framework designed to interface with most of commercially available robotic arms. Our system supports teleoperation through three structurally distinct 3D-printed leader arms that share consistent control logic, enabling seamless compatibility with diverse commercial robot configurations. Compared with previous open-source leader-follower interfaces, we further optimized both the mechanical design and servo selection, achieving a bill of materials (BOM) cost of only \$50.5 for the 6-DoF leader arm and \$56.8 for the 7-DoF version. To enhance usability, we mitigate the common challenge in controlling redundant degrees of freedom by %engineering methods mechanical and control optimizations. Experimental results demonstrate that U-Arm achieves 39\% higher data collection efficiency and comparable task success rates across multiple manipulation scenarios compared with Joycon, another low-cost teleoperation interface. We have open-sourced all CAD models of three configs and also provided simulation support for validating teleoperation workflows. We also open-sourced real-world manipulation data collected with U-Arm. The project website is https://github.com/MINT-SJTU/LeRobot-Anything-U-Arm.

Authors:Tao Wang, Zhenxuan Zhang, Yuanbo Zhou, Xinlin Zhang, Yuanbin Chen, Tao Tan, Guang Yang, Tong Tong
Title: From Noisy Labels to Intrinsic Structure: A Geometric-Structural Dual-Guided Framework for Noise-Robust Medical Image Segmentation
Abstract:
The effectiveness of convolutional neural networks in medical image segmentation relies on large-scale, high-quality annotations, which are costly and time-consuming to obtain. Even expert-labeled datasets inevitably contain noise arising from subjectivity and coarse delineations, which disrupt feature learning and adversely impact model performance. To address these challenges, this study propose a Geometric-Structural Dual-Guided Network (GSD-Net), which integrates geometric and structural cues to improve robustness against noisy annotations. It incorporates a Geometric Distance-Aware module that dynamically adjusts pixel-level weights using geometric features, thereby strengthening supervision in reliable regions while suppressing noise. A Structure-Guided Label Refinement module further refines labels with structural priors, and a Knowledge Transfer module enriches supervision and improves sensitivity to local details. To comprehensively assess its effectiveness, we evaluated GSD-Net on six publicly available datasets: four containing three types of simulated label noise, and two with multi-expert annotations that reflect real-world subjectivity and labeling inconsistencies. Experimental results demonstrate that GSD-Net achieves state-of-the-art performance under noisy annotations, achieving improvements of 2.52% on Kvasir, 22.76% on Shenzhen, 8.87% on BU-SUC, and 4.59% on BraTS2020 under SR simulated noise. The codes of this study are available at https://github.com/ortonwang/GSD-Net.

Authors:Xiaobao Wei, Changyong Shu, Zhaokun Yue, Chang Huang, Weiwei Liu, Shuai Yang, Lirong Yang, Peng Gao, Wenbin Zhang, Gaochao Zhu, Chengxiang Wang
Title: Decoupling Bidirectional Geometric Representations of 4D cost volume with 2D convolution
Abstract:
High-performance real-time stereo matching methods invariably rely on 3D regularization of the cost volume, which is unfriendly to mobile devices. And 2D regularization based methods struggle in ill-posed regions. In this paper, we present a deployment-friendly 4D cost aggregation network DBStereo, which is based on pure 2D convolutions. Specifically, we first provide a thorough analysis of the decoupling characteristics of 4D cost volume. And design a lightweight bidirectional geometry aggregation block to capture spatial and disparity representation respectively. Through decoupled learning, our approach achieves real-time performance and impressive accuracy simultaneously. Extensive experiments demonstrate that our proposed DBStereo outperforms all existing aggregation-based methods in both inference time and accuracy, even surpassing the iterative-based method IGEV-Stereo. Our study break the empirical design of using 3D convolutions for 4D cost volume and provides a simple yet strong baseline of the proposed decouple aggregation paradigm for further study. Code will be available at (\href{https://github.com/happydummy/DBStereo}{https://github.com/happydummy/DBStereo}) soon.

Authors:Hui Wang, Cheng Liu, Junyang Chen, Haoze Liu, Yuhang Jia, Shiwan Zhao, Jiaming Zhou, Haoqin Sun, Hui Bu, Yong Qin
Title: TTA-Bench: A Comprehensive Benchmark for Evaluating Text-to-Audio Models
Abstract:
Text-to-Audio (TTA) generation has made rapid progress, but current evaluation methods remain narrow, focusing mainly on perceptual quality while overlooking robustness, generalization, and ethical concerns. We present TTA-Bench, a comprehensive benchmark for evaluating TTA models across functional performance, reliability, and social responsibility. It covers seven dimensions including accuracy, robustness, fairness, and toxicity, and includes 2,999 diverse prompts generated through automated and manual methods. We introduce a unified evaluation protocol that combines objective metrics with over 118,000 human annotations from both experts and general users. Ten state-of-the-art models are benchmarked under this framework, offering detailed insights into their strengths and limitations. TTA-Bench establishes a new standard for holistic and responsible evaluation of TTA systems. The dataset and evaluation tools are open-sourced at https://nku-hlt.github.io/tta-bench/.

Authors:Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
Title: MedDINOv3: How to adapt vision foundation models for medical image segmentation?
Abstract:
Accurate segmentation of organs and tumors in CT and MRI scans is essential for diagnosis, treatment planning, and disease monitoring. While deep learning has advanced automated segmentation, most models remain task-specific, lacking generalizability across modalities and institutions. Vision foundation models (FMs) pretrained on billion-scale natural images offer powerful and transferable representations. However, adapting them to medical imaging faces two key challenges: (1) the ViT backbone of most foundation models still underperform specialized CNNs on medical image segmentation, and (2) the large domain gap between natural and medical images limits transferability. We introduce MedDINOv3, a simple and effective framework for adapting DINOv3 to medical segmentation. We first revisit plain ViTs and design a simple and effective architecture with multi-scale token aggregation. Then, we perform domain-adaptive pretraining on CT-3M, a curated collection of 3.87M axial CT slices, using a multi-stage DINOv3 recipe to learn robust dense features. MedDINOv3 matches or exceeds state-of-the-art performance across four segmentation benchmarks, demonstrating the potential of vision foundation models as unified backbones for medical image segmentation. The code is available at https://github.com/ricklisz/MedDINOv3.

Authors:Jinseok Kim, Sukmin Cho, Soyeong Jeong, Sangyeop Kim, Sungzoon Cho
Title: Upcycling Candidate Tokens of Large Language Models for Query Expansion
Abstract:
Query Expansion (QE) improves retrieval performance by enriching queries with related terms. Recently, Large Language Models (LLMs) have been used for QE, but existing methods face a trade-off: generating diverse terms boosts performance but increases computational cost. To address this challenge, we propose Candidate Token Query Expansion (CTQE), which extracts diverse and relevant terms from a single LLM decoding pass by leveraging unselected candidate tokens. These tokens, though not part of the final output, are conditioned on the full query and capture useful information. By aggregating them, CTQE achieves both relevance and diversity without extra inference, reducing overhead and latency. Experiments show that CTQE delivers strong retrieval performance with significantly lower cost, outperforming or comparable to more expensive methods. Code is available at: https://github.com/bluejeans8/CTQE

Authors:Zeren Xiong, Zikun Chen, Zedong Zhang, Xiang Li, Ying Tai, Jian Yang, Jun Li
Title: Category-Aware 3D Object Composition with Disentangled Texture and Shape Multi-view Diffusion
Abstract:
In this paper, we tackle a new task of 3D object synthesis, where a 3D model is composited with another object category to create a novel 3D model. However, most existing text/image/3D-to-3D methods struggle to effectively integrate multiple content sources, often resulting in inconsistent textures and inaccurate shapes. To overcome these challenges, we propose a straightforward yet powerful approach, category+3D-to-3D (C33D), for generating novel and structurally coherent 3D models. Our method begins by rendering multi-view images and normal maps from the input 3D model, then generating a novel 2D object using adaptive text-image harmony (ATIH) with the front-view image and a text description from another object category as inputs. To ensure texture consistency, we introduce texture multi-view diffusion, which refines the textures of the remaining multi-view RGB images based on the novel 2D object. For enhanced shape accuracy, we propose shape multi-view diffusion to improve the 2D shapes of both the multi-view RGB images and the normal maps, also conditioned on the novel 2D object. Finally, these outputs are used to reconstruct a complete and novel 3D model. Extensive experiments demonstrate the effectiveness of our method, yielding impressive 3D creations, such as shark(3D)-crocodile(text) in the first row of Fig. 1. A project page is available at: https://xzr52.github.io/C33D/

Authors:Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, Rex Ying
Title: Implicit Reasoning in Large Language Models: A Comprehensive Survey
Abstract:
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textbf{\textit{how and where internal computation unfolds}}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

Authors:Lan Wei, Lou Genoud, Dandan Zhang
Title: Physics-Informed Machine Learning with Adaptive Grids for Optical Microrobot Depth Estimation
Abstract:
Optical microrobots actuated by optical tweezers (OT) offer great potential for biomedical applications such as cell manipulation and microscale assembly. These tasks demand accurate three-dimensional perception to ensure precise control in complex and dynamic biological environments. However, the transparent nature of microrobots and low-contrast microscopic imaging challenge conventional deep learning methods, which also require large annotated datasets that are costly to obtain. To address these challenges, we propose a physics-informed, data-efficient framework for depth estimation of optical microrobots. Our method augments convolutional feature extraction with physics-based focus metrics, such as entropy, Laplacian of Gaussian, and gradient sharpness, calculated using an adaptive grid strategy. This approach allocates finer grids over microrobot regions and coarser grids over background areas, enhancing depth sensitivity while reducing computational complexity. We evaluate our framework on multiple microrobot types and demonstrate significant improvements over baseline models. Specifically, our approach reduces mean squared error (MSE) by over 60% and improves the coefficient of determination (R^2) across all test cases. Notably, even when trained on only 20% of the available data, our model outperforms ResNet50 trained on the full dataset, highlighting its robustness under limited data conditions. Our code is available at: https://github.com/LannWei/CBS2025.

Authors:Yihong Wu, Jinqiao Wei, Xionghui Zhao, Yidi Li, Shaoyi Du, Bin Ren, Nicu Sebe
Title: DSGC-Net: A Dual-Stream Graph Convolutional Network for Crowd Counting via Feature Correlation Mining
Abstract:
Deep learning-based crowd counting methods have achieved remarkable progress in recent years. However, in complex crowd scenarios, existing models still face challenges when adapting to significant density distribution differences between regions. Additionally, the inconsistency of individual representations caused by viewpoint changes and body posture differences further limits the counting accuracy of the models. To address these challenges, we propose DSGC-Net, a Dual-Stream Graph Convolutional Network based on feature correlation mining. DSGC-Net introduces a Density Approximation (DA) branch and a Representation Approximation (RA) branch. By modeling two semantic graphs, it captures the potential feature correlations in density variations and representation distributions. The DA branch incorporates a density prediction module that generates the density distribution map, and constructs a density-driven semantic graph based on density similarity. The RA branch establishes a representation-driven semantic graph by computing global representation similarity. Then, graph convolutional networks are applied to the two semantic graphs separately to model the latent semantic relationships, which enhance the model's ability to adapt to density variations and improve counting accuracy in multi-view and multi-pose scenarios. Extensive experiments on three widely used datasets demonstrate that DSGC-Net outperforms current state-of-the-art methods. In particular, we achieve MAE of 48.9 and 5.9 in ShanghaiTech Part A and Part B datasets, respectively. The released code is available at: https://github.com/Wu-eon/CrowdCounting-DSGCNet.

Authors:Nils Hoehing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque
Title: Understanding Space Is Rocket Science -- Only Top Reasoning Models Can Solve Spatial Understanding Tasks
Abstract:
We propose RocketScience, an open-source contrastive VLM benchmark that tests for spatial relation understanding. It is comprised of entirely new real-world image-text pairs covering mostly relative spatial understanding and the order of objects. The benchmark is designed to be very easy for humans and hard for the current generation of VLMs, and this is empirically verified. Our results show a striking lack of spatial relation understanding in open source and frontier commercial VLMs and a surprisingly high performance of reasoning models. Additionally, we perform a disentanglement analysis to separate the contributions of object localization and spatial reasoning in chain-of-thought-based models and find that the performance on the benchmark is bottlenecked by spatial reasoning and not object localization capabilities. We release the dataset with a CC-BY-4.0 license and make the evaluation code available at: https://github.com/nilshoehing/rocketscience

Authors:Mohit Mendiratta, Mayur Deshmukh, Kartik Teotia, Vladislav Golyanik, Adam Kortylewski, Christian Theobalt
Title: GRMM: Real-Time High-Fidelity Gaussian Morphable Head Model with Learned Residuals
Abstract:
3D Morphable Models (3DMMs) enable controllable facial geometry and expression editing for reconstruction, animation, and AR/VR, but traditional PCA-based mesh models are limited in resolution, detail, and photorealism. Neural volumetric methods improve realism but remain too slow for interactive use. Recent Gaussian Splatting (3DGS) based facial models achieve fast, high-quality rendering but still depend solely on a mesh-based 3DMM prior for expression control, limiting their ability to capture fine-grained geometry, expressions, and full-head coverage. We introduce GRMM, the first full-head Gaussian 3D morphable model that augments a base 3DMM with residual geometry and appearance components, additive refinements that recover high-frequency details such as wrinkles, fine skin texture, and hairline variations. GRMM provides disentangled control through low-dimensional, interpretable parameters (e.g., identity shape, facial expressions) while separately modelling residuals that capture subject- and expression-specific detail beyond the base model's capacity. Coarse decoders produce vertex-level mesh deformations, fine decoders represent per-Gaussian appearance, and a lightweight CNN refines rasterised images for enhanced realism, all while maintaining 75 FPS real-time rendering. To learn consistent, high-fidelity residuals, we present EXPRESS-50, the first dataset with 60 aligned expressions across 50 identities, enabling robust disentanglement of identity and expression in Gaussian-based 3DMMs. Across monocular 3D face reconstruction, novel-view synthesis, and expression transfer, GRMM surpasses state-of-the-art methods in fidelity and expression accuracy while delivering interactive real-time performance.

Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: SALAD -- Semantics-Aware Logical Anomaly Detection
Abstract:
Recent surface anomaly detection methods excel at identifying structural anomalies, such as dents and scratches, but struggle with logical anomalies, such as irregular or missing object components. The best-performing logical anomaly detection approaches rely on aggregated pretrained features or handcrafted descriptors (most often derived from composition maps), which discard spatial and semantic information, leading to suboptimal performance. We propose SALAD, a semantics-aware discriminative logical anomaly detection method that incorporates a newly proposed composition branch to explicitly model the distribution of object composition maps, consequently learning important semantic relationships. Additionally, we introduce a novel procedure for extracting composition maps that requires no hand-made labels or category-specific information, in contrast to previous methods. By effectively modelling the composition map distribution, SALAD significantly improves upon state-of-the-art methods on the standard benchmark for logical anomaly detection, MVTec LOCO, achieving an impressive image-level AUROC of 96.1%. Code: https://github.com/MaticFuc/SALAD

Authors:Zhichao Shi, Xuhui Jiang, Chengjin Xu, Cangli Yao, Zhenxin Huang, Shengjie Ma, Yinghan Shen, Jian Guo, Yuanzhuo Wang
Title: JudgeAgent: Knowledge-wise and Dynamic LLM Evaluation with Agent-as-Interviewer
Abstract:
Current evaluation paradigms for large language models (LLMs) suffer from overestimated or biased evaluations and mismatched question difficulty, leading to incomplete evaluations of knowledge and capability boundaries, which hinder their effective application and optimization. To address these challenges, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM agents to conduct multi-turn interactions for evaluation. Unlike current benchmarking or dynamic interaction paradigms, Agent-as-Interviewer utilizes agents to invoke knowledge tools for wider and deeper knowledge in the dynamic multi-turn question generation, achieving more comprehensive evaluations of LLM's knowledge boundaries. It also leverages agents to plan query strategies for adjustment of the question difficulty levels, enhancing the difficulty control to match the actual capabilities of target LLMs. Based on this paradigm, we develop JudgeAgent, a knowledge-wise dynamic evaluation framework that employs knowledge-driven synthesis as the agent's tool and uses difficulty scoring as strategy guidance, thereby finally providing valuable suggestions to help targets optimize themselves. Extensive experiments validate the effectiveness of JudgeAgent's suggestions, demonstrating that Agent-as-Interviewer can accurately identify the knowledge and capability boundaries of target models. The source code is available on https://github.com/DataArcTech/JudgeAgent.

Authors:Jian Chen, Jiabao Dou, Jinbao Tian, Yunqi Yang, Zhou Li
Title: Abex-rat: Synergizing Abstractive Augmentation and Adversarial Training for Classification of Occupational Accident Reports
Abstract:
The automatic classification of occupational accident reports is a critical research area for enhancing workplace safety and enabling large-scale risk analysis. However, the severe class imbalance inherent in these real-world datasets often compromises the performance of analytical models, particularly for rare but severe incident types, hindering the development of reliable automated systems. To address this challenge, we propose ABEX-RAT, a novel and efficient framework that synergizes generative data augmentation with robust adversarial training. Our approach first employs a twostep abstractive-expansive (ABEX) pipeline, which leverages a large language model to distill core incident semantics and then uses a generative model to create diverse, highquality synthetic samples for underrepresented classes. Subsequently, a lightweight classifier is trained on the augmented data using a computationally efficient random adversarial training (RAT) protocol, which stochastically applies perturbations to enhance model generalization and robustness without significant overhead. Experimental results on the public OSHA dataset demonstrate that our method achieves new state-of-the-art performance, reaching a macro-F1 score of 90.32% and significantly outperforming previous SOTA and fine-tuned large model baselines. Our work validates that this synergistic strategy is a highly effective and efficient alternative to brute-force fine-tuning for specialized, imbalanced classification tasks. The code is publicly available at:https://github.com/nxcc-lab/ABEX-RAT.

Authors:Kun Xie, Feiyu Shen, Junjie Li, Fenglong Xie, Xu Tang, Yao Hu
Title: FireRedTTS-2: Towards Long Conversational Speech Generation for Podcast and Chatbot
Abstract:
Current dialogue generation approaches typically require the complete dialogue text before synthesis and produce a single, inseparable speech containing all voices, making them unsuitable for interactive chat; moreover, they suffer from unstable synthesis, inaccurate speaker transitions, and incoherent prosody. In this work, we present FireRedTTS-2, a long-form streaming TTS system for multi-speaker dialogue generation, delivering stable, natural speech with reliable speaker switching and context-aware prosody. A new 12.5Hz streaming speech tokenizer accelerates training and inference, extends maximum dialogue length, encodes richer semantics to stabilize text-to-token modeling and supports high-fidelity streaming generation for real-time applications. We adopt a text-speech interleaved format, concatenating speaker-labeled text with aligned speech tokens in chronological order, and model it with a dual-transformer: a large decoder-only transformer predicts tokens at the first layer, and a smaller one completes subsequent layers. Experimental results show that FireRedTTS-2 integrates seamlessly with chat frameworks and, with minimal fine-tuning, produces emotionally expressive speech guided by implicit contextual cues. In podcast generation, it surpasses existing systems including MoonCast, Zipvoice-Dialogue, and MOSS-TTSD in objective intelligibility, speaker-turn reliability, and perceived naturalness with context-consistent prosody. Our demos are available at https://fireredteam.github.io/demos/firered_tts_2.

Authors:Yuhao Wang, Junwei Pan, Xinhang Li, Maolin Wang, Yuan Wang, Yue Liu, Dapeng Liu, Jie Jiang, Xiangyu Zhao
Title: Empowering Large Language Model for Sequential Recommendation via Multimodal Embeddings and Semantic IDs
Abstract:
Sequential recommendation (SR) aims to capture users' dynamic interests and sequential patterns based on their historical interactions. Recently, the powerful capabilities of large language models (LLMs) have driven their adoption in SR. However, we identify two critical challenges in existing LLM-based SR methods: 1) embedding collapse when incorporating pre-trained collaborative embeddings and 2) catastrophic forgetting of quantized embeddings when utilizing semantic IDs. These issues dampen the model scalability and lead to suboptimal recommendation performance. Therefore, based on LLMs like Llama3-8B-instruct, we introduce a novel SR framework named MME-SID, which integrates multimodal embeddings and quantized embeddings to mitigate embedding collapse. Additionally, we propose a Multimodal Residual Quantized Variational Autoencoder (MM-RQ-VAE) with maximum mean discrepancy as the reconstruction loss and contrastive learning for alignment, which effectively preserve intra-modal distance information and capture inter-modal correlations, respectively. To further alleviate catastrophic forgetting, we initialize the model with the trained multimodal code embeddings. Finally, we fine-tune the LLM efficiently using LoRA in a multimodal frequency-aware fusion manner. Extensive experiments on three public datasets validate the superior performance of MME-SID thanks to its capability to mitigate embedding collapse and catastrophic forgetting. The implementation code and datasets are publicly available for reproduction: https://github.com/Applied-Machine-Learning-Lab/MME-SID.

Authors:Ziyun Zeng, Junhao Zhang, Wei Li, Mike Zheng Shou
Title: Draw-In-Mind: Rebalancing Designer-Painter Roles in Unified Multimodal Models Benefits Image Editing
Abstract:
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models are available at https://github.com/showlab/DIM.

Authors:Yilin Guan, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, William Yang Wang, Wenyue Hua
Title: Dynamic Speculative Agent Planning
Abstract:
Despite their remarkable success in complex tasks propelling widespread adoption, large language-model-based agents still face critical deployment challenges due to prohibitive latency and inference costs. While recent work has explored various methods to accelerate inference, existing approaches suffer from significant limitations: they either fail to preserve performance fidelity, require extensive offline training of router modules, or incur excessive operational costs. Moreover, they provide minimal user control over the tradeoff between acceleration and other performance metrics. To address these gaps, we introduce Dynamic Speculative Planning (DSP), an asynchronous online reinforcement learning framework that provides lossless acceleration with substantially reduced costs without requiring additional pre-deployment preparation. DSP explicitly optimizes a joint objective balancing end-to-end latency against dollar cost, allowing practitioners to adjust a single parameter that steers the system toward faster responses, cheaper operation, or any point along this continuum. Experiments on two standard agent benchmarks demonstrate that DSP achieves comparable efficiency to the fastest lossless acceleration method while reducing total cost by 30% and unnecessary cost up to 60%. Our code and data are available through https://github.com/guanyilin428/Dynamic-Speculative-Planning.

Authors:Ranjie Duan, Jiexi Liu, Xiaojun Jia, Shiji Zhao, Ruoxi Cheng, Fengxiang Wang, Cheng Wei, Yong Xie, Chang Liu, Defeng Li, Yinpeng Dong, Yichi Zhang, Yuefeng Chen, Chongwen Wang, Xingjun Ma, Xingxing Wei, Yang Liu, Hang Su, Jun Zhu, Xinfeng Li, Yitong Sun, Jie Zhang, Jinzhao Hu, Sha Xu, Wenchao Yang, Yitong Yang, Xingyao Zhang, Yingshui Tan, Jialing Tao, Hui Xue
Title: Oyster-I: Beyond Refusal - Constructive Safety Alignment for Responsible Language Models
Abstract:
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

Authors:Zhenyuan Chen, Chenxi Wang, Ningyu Zhang, Feng Zhang
Title: RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Abstract:
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.

Authors:Zhipeng Weng, Xiaopeng Liu, Ce Liu, Xingyuan Guo, Yukai Shi, Liang Lin
Title: DroneSR: Rethinking Few-shot Thermal Image Super-Resolution from Drone-based Perspective
Abstract:
Although large scale models achieve significant improvements in performance, the overfitting challenge still frequently undermines their generalization ability. In super resolution tasks on images, diffusion models as representatives of generative models typically adopt large scale architectures. However, few-shot drone-captured infrared training data frequently induces severe overfitting in large-scale architectures. To address this key challenge, our method proposes a new Gaussian quantization representation learning method oriented to diffusion models that alleviates overfitting and enhances robustness. At the same time, an effective monitoring mechanism tracks large scale architectures during training to detect signs of overfitting. By introducing Gaussian quantization representation learning, our method effectively reduces overfitting while maintaining architecture complexity. On this basis, we construct a multi source drone-based infrared image benchmark dataset for detection and use it to emphasize overfitting issues of large scale architectures in few sample, drone-based diverse drone-based image reconstruction scenarios. To verify the efficacy of the method in mitigating overfitting, experiments are conducted on the constructed benchmark. Experimental results demonstrate that our method outperforms existing super resolution approaches and significantly mitigates overfitting of large scale architectures under complex conditions. The code and DroneSR dataset will be available at: https://github.com/wengzp1/GARLSR.

Authors:Yotam Erel, Rishabh Dabral, Vladislav Golyanik, Amit H. Bermano, Christian Theobalt
Title: PractiLight: Practical Light Control Using Foundational Diffusion Models
Abstract:
Light control in generated images is a difficult task, posing specific challenges, spanning over the entire image and frequency spectrum. Most approaches tackle this problem by training on extensive yet domain-specific datasets, limiting the inherent generalization and applicability of the foundational backbones used. Instead, PractiLight is a practical approach, effectively leveraging foundational understanding of recent generative models for the task. Our key insight is that lighting relationships in an image are similar in nature to token interaction in self-attention layers, and hence are best represented there. Based on this and other analyses regarding the importance of early diffusion iterations, PractiLight trains a lightweight LoRA regressor to produce the direct irradiance map for a given image, using a small set of training images. We then employ this regressor to incorporate the desired lighting into the generation process of another image using Classifier Guidance. This careful design generalizes well to diverse conditions and image domains. We demonstrate state-of-the-art performance in terms of quality and control with proven parameter and data efficiency compared to leading works over a wide variety of scenes types. We hope this work affirms that image lighting can feasibly be controlled by tapping into foundational knowledge, enabling practical and general relighting.

Authors:Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, Yan Liu
Title: When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
Abstract:
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.

Authors:Mingxuan Cui, Yilan Jiang, Duo Zhou, Cheng Qian, Yuji Zhang, Qiong Wang
Title: ShortageSim: Simulating Drug Shortages under Information Asymmetry
Abstract:
Drug shortages pose critical risks to patient care and healthcare systems worldwide, yet the effectiveness of regulatory interventions remains poorly understood due to fundamental information asymmetries in pharmaceutical supply chains. We present \textbf{ShortageSim}, the first Large Language Model (LLM)-based multi-agent simulation framework that captures the complex, strategic interactions between drug manufacturers, institutional buyers, and regulatory agencies in response to shortage alerts. Unlike traditional game-theoretic models that assume perfect rationality and complete information, \textbf{ShortageSim} leverages LLMs to simulate bounded-rational decision-making under uncertainty. Through a sequential production game spanning multiple quarters, we model how FDA announcements, both reactive alerts about existing shortages and proactive warnings about potential disruptions, propagate through the supply chain and influence capacity investment and procurement decisions. Our experiments on historical shortage events reveal that \textbf{ShortageSim} reduces the resolution-lag percentage for discontinued-disclosed cases by 83\%, bringing simulated durations more aligned to ground truth than the zero-shot baseline. We open-source \textbf{ShortageSim} and a dataset of 2,925 FDA shortage events at https://github.com/Lemutisme/Sortage_Management, providing a novel computational framework for designing and testing interventions in complex, information-scarce supply chains.

Authors:Aryan Amit Barsainyan, Jing Yu Lim, Dianbo Liu
Title: STORI: A Benchmark and Taxonomy for Stochastic Environments
Abstract:
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.

Authors:Austin Meek, Carlos H. Mendoza-Cardenas, Austin J. Brockmeier
Title: Convolutional Monge Mapping between EEG Datasets to Support Independent Component Labeling
Abstract:
EEG recordings contain rich information about neural activity but are subject to artifacts, noise, and superficial differences due to sensors, amplifiers, and filtering. Independent component analysis and automatic labeling of independent components (ICs) enable artifact removal in EEG pipelines. Convolutional Monge Mapping Normalization (CMMN) is a recent tool used to achieve spectral conformity of EEG signals, which was shown to improve deep neural network approaches for sleep staging. Here we propose a novel extension of the CMMN method with two alternative approaches to computing the source reference spectrum the target signals are mapped to: (1) channel-averaged and $l_1$-normalized barycenter, and (2) a subject-to-subject mapping that finds the source subject with the closest spectrum to the target subject. Notably, our extension yields space-time separable filters that can be used to map between datasets with different numbers of EEG channels. We apply these filters in an IC classification task, and show significant improvement in recognizing brain versus non-brain ICs. Clinical relevance - EEG recordings are used in the diagnosis and monitoring of multiple neuropathologies, including epilepsy and psychosis. While EEG analysis can benefit from automating artifact removal through independent component analysis and labeling, differences in recording equipment and context (the presence of noise from electrical wiring and other devices) may impact the performance of machine learning models, but these differences can be minimized by appropriate spectral normalization through filtering.

Authors:Jiahao Qiu, Jingzhe Shi, Xinzhe Juan, Zelin Zhao, Jiayi Geng, Shilong Liu, Hongru Wang, Sanfeng Wu, Mengdi Wang
Title: Physics Supernova: AI Agent Matches Elite Gold Medalists at IPhO 2025
Abstract:
Physics provides fundamental laws that describe and predict the natural world. AI systems aspiring toward more general, real-world intelligence must therefore demonstrate strong physics problem-solving abilities: to formulate and apply physical laws for explaining and predicting physical processes. The International Physics Olympiad (IPhO)--the world's most prestigious physics competition--offers a rigorous benchmark for this purpose. We introduce Physics Supernova, an AI agent system with superior physics problem-solving abilities that match elite IPhO gold medalists. In IPhO 2025 theory problems, Physics Supernova attains 23.5/30 points, ranking 14th of 406 contestants and surpassing the median performance of human gold medalists. We extensively analyzed Physics Supernova's capabilities and flexibility across diverse physics tasks. These results show that principled tool integration within agent systems can deliver competitive improvements in solving challenging science problems. The codes are available at https://github.com/CharlesQ9/Physics-Supernova.

Authors:Zhenyu Wu, Angyuan Ma, Xiuwei Xu, Hang Yin, Yinan Liang, Ziwei Wang, Jiwen Lu, Haibin Yan
Title: MoTo: A Zero-shot Plug-in Interaction-aware Navigation for General Mobile Manipulation
Abstract:
Mobile manipulation stands as a core challenge in robotics, enabling robots to assist humans across varied tasks and dynamic daily environments. Conventional mobile manipulation approaches often struggle to generalize across different tasks and environments due to the lack of large-scale training. However, recent advances in manipulation foundation models demonstrate impressive generalization capability on a wide range of fixed-base manipulation tasks, which are still limited to a fixed setting. Therefore, we devise a plug-in module named MoTo, which can be combined with any off-the-shelf manipulation foundation model to empower them with mobile manipulation ability. Specifically, we propose an interaction-aware navigation policy to generate robot docking points for generalized mobile manipulation. To enable zero-shot ability, we propose an interaction keypoints framework via vision-language models (VLM) under multi-view consistency for both target object and robotic arm following instructions, where fixed-base manipulation foundation models can be employed. We further propose motion planning objectives for the mobile base and robot arm, which minimize the distance between the two keypoints and maintain the physical feasibility of trajectories. In this way, MoTo guides the robot to move to the docking points where fixed-base manipulation can be successfully performed, and leverages VLM generation and trajectory optimization to achieve mobile manipulation in a zero-shot manner, without any requirement on mobile manipulation expert data. Extensive experimental results on OVMM and real-world demonstrate that MoTo achieves success rates of 2.68% and 16.67% higher than the state-of-the-art mobile manipulation methods, respectively, without requiring additional training data.

Authors:Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou Zhao, Ranjay Krishna
Title: Reinforced Visual Perception with Tools
Abstract:
Visual reasoning, a cornerstone of human intelligence, encompasses complex perceptual and logical processes essential for solving diverse visual problems. While advances in computer vision have produced powerful models for various perceptual tasks, leveraging these for general visual reasoning remains challenging. Prior work demonstrates that augmenting LLMs with vision models via supervised finetuning improves performance, but faces key limitations such as expensive data generation, reliance on careful data filtering, and poor generalization. To address these issues, we propose ReVPT to enhance multi-modal LLMs' abilities to reason about and use visual tools through reinforcement learning. We introduce a novel RL algorithm based on GRPO, designed to train models to reason with a suite of four visual tools. Through extensive experiments, we show that our method achieves state-of-the-art performance on several perception-heavy benchmarks, including SAT, CV-Bench, BLINK and MMStar, significantly outperforming the supervised and text-based RL finetuning baselines. Notably, Our ReVPT-3B and ReVPT-7B outperform the instruct models by 9.03% and 9.44% on CV-Bench. Finally, we bring to the community new insights on RL-based visual tool-usage through extensive ablations. Our code is available at https://github.com/ls-kelvin/REVPT.

Authors:Dominic Plein
Title: Parallel Needleman-Wunsch on CUDA to measure word similarity based on phonetic transcriptions
Abstract:
We present a method to calculate the similarity between words based on their phonetic transcription (their pronunciation) using the Needleman-Wunsch algorithm. We implement this algorithm in Rust and parallelize it on both CPU and GPU to handle large datasets efficiently. The GPU implementation leverages CUDA and the cudarc Rust library to achieve significant performance improvements. We validate our approach by constructing a fully-connected graph where nodes represent words and edges have weights according to the similarity between the words. This graph is then analyzed using clustering algorithms to identify groups of phonetically similar words. Our results demonstrate the feasibility and effectiveness of the proposed method in analyzing the phonetic structure of languages. It might be easily expanded to other languages.

Authors:Yuqing Chen, Junjie Wang, Lin Liu, Ruihang Chu, Xiaopeng Zhang, Qi Tian, Yujiu Yang
Title: O-DisCo-Edit: Object Distortion Control for Unified Realistic Video Editing
Abstract:
Diffusion models have recently advanced video editing, yet controllable editing remains challenging due to the need for precise manipulation of diverse object properties. Current methods require different control signal for diverse editing tasks, which complicates model design and demands significant training resources. To address this, we propose O-DisCo-Edit, a unified framework that incorporates a novel object distortion control (O-DisCo). This signal, based on random and adaptive noise, flexibly encapsulates a wide range of editing cues within a single representation. Paired with a "copy-form" preservation module for preserving non-edited regions, O-DisCo-Edit enables efficient, high-fidelity editing through an effective training paradigm. Extensive experiments and comprehensive human evaluations consistently demonstrate that O-DisCo-Edit surpasses both specialized and multitask state-of-the-art methods across various video editing tasks. https://cyqii.github.io/O-DisCo-Edit.github.io/

Authors:Ganlin Zhang, Shenhan Qian, Xi Wang, Daniel Cremers
Title: ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association
Abstract:
We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35\% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam

Authors:Biao Yang, Bin Wen, Boyang Ding, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Guowang Zhang, Han Shen, Hao Peng, Haojie Ding, Hao Wang, Haonan Fan, Hengrui Ju, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Muhao Wei, Qiang Wang, Ruitao Wang, Sen Na, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zeyi Lu, Zhenhua Wu, Zhixin Ling, Zhuoran Yang, Ziming Li, Di Xu, Haixuan Gao, Hang Li, Jing Wang, Lejian Ren, Qigen Hu, Qianqian Wang, Shiyao Wang, Xinchen Luo, Yan Li, Yuhang Hu, Zixing Zhang
Title: Kwai Keye-VL 1.5 Technical Report
Abstract:
In recent years, the development of Large Language Models (LLMs) has significantly advanced, extending their capabilities to multimodal tasks through Multimodal Large Language Models (MLLMs). However, video understanding remains a challenging area due to the dynamic and information-dense nature of videos. Existing models struggle with the trade-off between spatial resolution and temporal coverage when processing video content. We present Keye-VL-1.5, which addresses fundamental challenges in video comprehension through three key innovations. First, we introduce a novel Slow-Fast video encoding strategy that dynamically allocates computational resources based on inter-frame similarity, processing key frames with significant visual changes at higher resolution (Slow pathway) while handling relatively static frames with increased temporal coverage at lower resolution (Fast pathway). Second, we implement a progressive four-stage pre-training methodology that systematically extends the model's context length from 8K to 128K tokens, enabling processing of longer videos and more complex visual content. Third, we develop a comprehensive post-training pipeline focusing on reasoning enhancement and human preference alignment, incorporating a 5-step chain-of-thought data construction process, iterative GSPO-based reinforcement learning with progressive prompt hinting for difficult cases, and alignment training. Through extensive evaluation on public benchmarks and rigorous internal human assessment, Keye-VL-1.5 demonstrates significant improvements over existing models, particularly excelling in video understanding tasks while maintaining competitive performance on general multimodal benchmarks.

Authors:Junjie Chen, Xuyang Liu, Zichen Wen, Yiyu Wang, Siteng Huang, Honggang Chen
Title: Variation-aware Vision Token Dropping for Faster Large Vision-Language Models
Abstract:
Large vision-language models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding tasks. However, the increasing demand for high-resolution image and long-video understanding results in substantial token counts, leading to reduced inference efficiency. Token compression offers a direct solution by reducing the number of tokens to be processed, thereby improving computational efficiency. Through extensive analysis, we identify two critical limitations in existing inner-LLM token compression methods: positional bias and incompatibility with efficient operators, which hinder their practical deployment for LVLM acceleration. This paper presents the first approach from a token variation perspective, revealing that visual token variations within LLMs exhibit task-agnostic properties. We propose Variation-aware Vision Token Dropping (\textit{i.e.}, \textbf{V$^2$Drop}), which progressively removes visual tokens with minimal variation during LVLM inference, thereby enhancing computational efficiency. Extensive experiments across multiple models and benchmarks demonstrate that our V$^2$Drop is able to maintain \textbf{94.0\%} and \textbf{98.6\%} of the original model performance for image and video understanding tasks respectively, while reducing LLM generation latency by \textbf{31.5\%} and \textbf{74.2\%}. When combined with efficient operators, V$^2$Drop further reduces GPU peak memory usage.

Authors:Zihao Wang, Enneng Yang, Lu Yin, Shiwei Liu, Li Shen
Title: Model Unmerging: Making Your Models Unmergeable for Secure Model Sharing
Abstract:
Model merging leverages multiple finetuned expert models to construct a multi-task model with low cost, and is gaining increasing attention. However, as a growing number of finetuned models become publicly available, concerns about the safety of model merging have emerged. Unauthorized merging may infringe on developers' rights and risk leaking sensitive personal information. Most existing methods focus on detecting whether a merged model originates from a specific source model, but fail to effectively prevent illegal merging. In this paper, we propose MergeLock, an active protection mechanism that disrupts model parameters to render them unmergeable, thereby directly preventing unauthorized model merging. Specifically, leveraging the inherent symmetry of the attention mechanism in Transformer-based models, we randomly sample two pairs of invertible matrices and apply them to the Query-Key (QK) and Value-Output (VO) branches. This transformation keeps the model's output unchanged while pushing it away from the shared parameter space of other finetuned models. Extensive experiments across both vision and language tasks demonstrate that MergeLock can degrade the performance of merged models by over 95% when a protected model is involved in most cases, demonstrating its effectiveness. Moreover, we further demonstrate that merged models protected by MergeLock cannot be effectively recovered using low-cost restoration methods, further enhancing robustness against unauthorized merging. The code is available at https://github.com/hetailang/Merge-Lock.

Authors:Konstantin Mark, Leonard Galustian, Maximilian P. -P. Kovar, Esther Heid
Title: Feynman-Kac-Flow: Inference Steering of Conditional Flow Matching to an Energy-Tilted Posterior
Abstract:
Conditional Flow Matching(CFM) represents a fast and high-quality approach to generative modelling, but in many applications it is of interest to steer the generated samples towards precise requirements. While steering approaches like gradient-based guidance, sequential Monte Carlo steering or Feynman-Kac steering are well established for diffusion models, they have not been extended to flow matching approaches yet. In this work, we formulate this requirement as tilting the output with an energy potential. We derive, for the first time, Feynman-Kac steering for CFM. We evaluate our approach on a set of synthetic tasks, including the generation of tilted distributions in a high-dimensional space, which is a particularly challenging case for steering approaches. We then demonstrate the impact of Feynman-Kac steered CFM on the previously unsolved challenge of generated transition states of chemical reactions with the correct chirality, where the reactants or products can have a different handedness, leading to geometric constraints of the viable reaction pathways connecting reactants and products. Code to reproduce this study is avaiable open-source at https://github.com/heid-lab/fkflow.

Authors:Kairong Han, Wenshuo Zhao, Ziyu Zhao, JunJian Ye, Lujia Pan, Kun Kuang
Title: CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.

Authors:Liu Qifeng, Zhao Dawei, Dong Yabo, Xiao Liang, Wang Juan, Min Chen, Li Fuyang, Jiang Weizhong, Lu Dongming, Nie Yiming
Title: PointSlice: Accurate and Efficient Slice-Based Representation for 3D Object Detection from Point Clouds
Abstract:
3D object detection from point clouds plays a critical role in autonomous driving. Currently, the primary methods for point cloud processing are voxel-based and pillarbased approaches. Voxel-based methods offer high accuracy through fine-grained spatial segmentation but suffer from slower inference speeds. Pillar-based methods enhance inference speed but still fall short of voxel-based methods in accuracy. To address these issues, we propose a novel point cloud processing method, PointSlice, which slices point clouds along the horizontal plane and includes a dedicated detection network. The main contributions of PointSlice are: (1) A new point cloud processing technique that converts 3D point clouds into multiple sets of 2D (x-y) data slices. The model only learns 2D data distributions, treating the 3D point cloud as separate batches of 2D data, which reduces the number of model parameters and enhances inference speed; (2) The introduction of a Slice Interaction Network (SIN). To maintain vertical relationships across slices, we incorporate SIN into the 2D backbone network, which improves the model's 3D object perception capability. Extensive experiments demonstrate that PointSlice achieves high detection accuracy and inference speed. On the Waymo dataset, PointSlice is 1.13x faster and has 0.79x fewer parameters than the state-of-the-art voxel-based method (SAFDNet), with only a 1.2 mAPH accuracy reduction. On the nuScenes dataset, we achieve a state-of-the-art detection result of 66.74 mAP. On the Argoverse 2 dataset, PointSlice is 1.10x faster, with 0.66x fewer parameters and a 1.0 mAP accuracy reduction. The code will be available at https://github.com/qifeng22/PointSlice2.

Authors:Artur Díaz-Juan, Coloma Ballester, Gloria Haro
Title: SoccerHigh: A Benchmark Dataset for Automatic Soccer Video Summarization
Abstract:
Video summarization aims to extract key shots from longer videos to produce concise and informative summaries. One of its most common applications is in sports, where highlight reels capture the most important moments of a game, along with notable reactions and specific contextual events. Automatic summary generation can support video editors in the sports media industry by reducing the time and effort required to identify key segments. However, the lack of publicly available datasets poses a challenge in developing robust models for sports highlight generation. In this paper, we address this gap by introducing a curated dataset for soccer video summarization, designed to serve as a benchmark for the task. The dataset includes shot boundaries for 237 matches from the Spanish, French, and Italian leagues, using broadcast footage sourced from the SoccerNet dataset. Alongside the dataset, we propose a baseline model specifically designed for this task, which achieves an F1 score of 0.3956 in the test set. Furthermore, we propose a new metric constrained by the length of each target summary, enabling a more objective evaluation of the generated content. The dataset and code are available at https://ipcv.github.io/SoccerHigh/.

Authors:Mo Wang, Kaining Peng, Jingsheng Tang, Hongkai Wen, Quanying Liu
Title: DCA: Graph-Guided Deep Embedding Clustering for Brain Atlases
Abstract:
Brain atlases are essential for reducing the dimensionality of neuroimaging data and enabling interpretable analysis. However, most existing atlases are predefined, group-level templates with limited flexibility and resolution. We present Deep Cluster Atlas (DCA), a graph-guided deep embedding clustering framework for generating individualized, voxel-wise brain parcellations. DCA combines a pretrained autoencoder with spatially regularized deep clustering to produce functionally coherent and spatially contiguous regions. Our method supports flexible control over resolution and anatomical scope, and generalizes to arbitrary brain structures. We further introduce a standardized benchmarking platform for atlas evaluation, using multiple large-scale fMRI datasets. Across multiple datasets and scales, DCA outperforms state-of-the-art atlases, improving functional homogeneity by 98.8% and silhouette coefficient by 29%, and achieves superior performance in downstream tasks such as autism diagnosis and cognitive decoding. We also observe that a fine-tuned pretrained model achieves superior results on the corresponding task. Codes and models are available at https://github.com/ncclab-sustech/DCA .

Authors:Yang Liu, Masahiro Kaneko, Chenhui Chu
Title: On the Alignment of Large Language Models with Global Human Opinion
Abstract:
Today's large language models (LLMs) are capable of supporting multilingual scenarios, allowing users to interact with LLMs in their native languages. When LLMs respond to subjective questions posed by users, they are expected to align with the views of specific demographic groups or historical periods, shaped by the language in which the user interacts with the model. Existing studies mainly focus on researching the opinions represented by LLMs among demographic groups in the United States or a few countries, lacking worldwide country samples and studies on human opinions in different historical periods, as well as lacking discussion on using language to steer LLMs. Moreover, they also overlook the potential influence of prompt language on the alignment of LLMs' opinions. In this study, our goal is to fill these gaps. To this end, we create an evaluation framework based on the World Values Survey (WVS) to systematically assess the alignment of LLMs with human opinions across different countries, languages, and historical periods around the world. We find that LLMs appropriately or over-align the opinions with only a few countries while under-aligning the opinions with most countries. Furthermore, changing the language of the prompt to match the language used in the questionnaire can effectively steer LLMs to align with the opinions of the corresponding country more effectively than existing steering methods. At the same time, LLMs are more aligned with the opinions of the contemporary population. To our knowledge, our study is the first comprehensive investigation of the topic of opinion alignment in LLMs across global, language, and temporal dimensions. Our code and data are publicly available at https://github.com/nlply/global-opinion-alignment.

Authors:Runduo Han, Yanxin Hu, Yihui Fu, Zihan Zhang, Yukai Jv, Li Chen, Lei Xie
Title: CabinSep: IR-Augmented Mask-Based MVDR for Real-Time In-Car Speech Separation with Distributed Heterogeneous Arrays
Abstract:
Separating overlapping speech from multiple speakers is crucial for effective human-vehicle interaction. This paper proposes CabinSep, a lightweight neural mask-based minimum variance distortionless response (MVDR) speech separation approach, to reduce speech recognition errors in back-end automatic speech recognition (ASR) models. Our contributions are threefold: First, we utilize channel information to extract spatial features, which improves the estimation of speech and noise masks. Second, we employ MVDR during inference, reducing speech distortion to make it more ASR-friendly. Third, we introduce a data augmentation method combining simulated and real-recorded impulse responses (IRs), improving speaker localization at zone boundaries and further reducing speech recognition errors. With a computational complexity of only 0.4 GMACs, CabinSep achieves a 17.5% relative reduction in speech recognition error rate in a real-recorded dataset compared to the state-of-the-art DualSep model. Demos are available at: https://cabinsep.github.io/cabinsep/.

Authors:Wei Lu, Lingyu Zhu, Si-Bao Chen
Title: Unsupervised Ultra-High-Resolution UAV Low-Light Image Enhancement: A Benchmark, Metric and Framework
Abstract:
Low light conditions significantly degrade Unmanned Aerial Vehicles (UAVs) performance in critical applications. Existing Low-light Image Enhancement (LIE) methods struggle with the unique challenges of aerial imagery, including Ultra-High Resolution (UHR), lack of paired data, severe non-uniform illumination, and deployment constraints. To address these issues, we propose three key contributions. First, we present U3D, the first unsupervised UHR UAV dataset for LIE, with a unified evaluation toolkit. Second, we introduce the Edge Efficiency Index (EEI), a novel metric balancing perceptual quality with key deployment factors: speed, resolution, model complexity, and memory footprint. Third, we develop U3LIE, an efficient framework with two training-only designs-Adaptive Pre-enhancement Augmentation (APA) for input normalization and a Luminance Interval Loss (L_int) for exposure control. U3LIE achieves SOTA results, processing 4K images at 23.8 FPS on a single GPU, making it ideal for real-time on-board deployment. In summary, these contributions provide a holistic solution (dataset, metric, and method) for advancing robust 24/7 UAV vision. The code and datasets are available at https://github.com/lwCVer/U3D_Toolkit.

Authors:Jiayi Gao, Changcheng Hua, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Identity-Preserving Text-to-Video Generation via Training-Free Prompt, Image, and Guidance Enhancement
Abstract:
Identity-preserving text-to-video (IPT2V) generation creates videos faithful to both a reference subject image and a text prompt. While fine-tuning large pretrained video diffusion models on ID-matched data achieves state-of-the-art results on IPT2V, data scarcity and high tuning costs hinder broader improvement. We thus introduce a Training-Free Prompt, Image, and Guidance Enhancement (TPIGE) framework that bridges the semantic gap between the video description and the reference image and design sampling guidance that enhances identity preservation and video quality, achieving performance gains at minimal cost.Specifically, we first propose Face Aware Prompt Enhancement, using GPT-4o to enhance the text prompt with facial details derived from the reference image. We then propose Prompt Aware Reference Image Enhancement, leveraging an identity-preserving image generator to refine the reference image, rectifying conflicts with the text prompt. The above mutual refinement significantly improves input quality before video generation. Finally, we propose ID-Aware Spatiotemporal Guidance Enhancement, utilizing unified gradients to optimize identity preservation and video quality jointly during generation.Our method outperforms prior work and is validated by automatic and human evaluations on a 1000 video test set, winning first place in the ACM Multimedia 2025 Identity-Preserving Video Generation Challenge, demonstrating state-of-the-art performance and strong generality. The code is available at https://github.com/Andyplus1/IPT2V.git.

Authors:Qianrui Zhou, Hua Xu, Yifan Wang, Xinzhi Dong, Hanlei Zhang
Title: LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
Abstract:
Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models' relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR's superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.

Authors:Oussama Messai, Abbass Zein-Eddine, Abdelouahid Bentamou, Mickaël Picq, Nicolas Duquesne, Stéphane Puydarrieux, Yann Gavet
Title: Image Quality Enhancement and Detection of Small and Dense Objects in Industrial Recycling Processes
Abstract:
This paper tackles two key challenges: detecting small, dense, and overlapping objects (a major hurdle in computer vision) and improving the quality of noisy images, especially those encountered in industrial environments. [1, 2]. Our focus is on evaluating methods built on supervised deep learning. We perform an analysis of these methods, using a newly developed dataset comprising over 10k images and 120k instances. By evaluating their performance, accuracy, and computational efficiency, we identify the most reliable detection systems and highlight the specific challenges they address in industrial applications. This paper also examines the use of deep learning models to improve image quality in noisy industrial environments. We introduce a lightweight model based on a fully connected convolutional network. Additionally, we suggest potential future directions for further enhancing the effectiveness of the model. The repository of the dataset and proposed model can be found at: https://github.com/o-messai/SDOOD, https://github.com/o-messai/DDSRNet

Authors:Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu, Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong, Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan, Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao Li, Tefeng Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei Shi, Wei Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xiang Mei, Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao Wei, Xiaodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili Wang, Xin Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi Cao, Xunliang Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui Sun, Yifan Lu, Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lv, Yongwei Zhou, Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhuai Wei, Yulei Qian, Yunfan Liang, Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang, Zhikang Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang, Zixu Jiang, Zizhe Zhao, Zongyu Wang, Zunhai Su
Title: LongCat-Flash Technical Report
Abstract:
We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat

Authors:Thinh-Phuc Nguyen, Thanh-Hai Nguyen, Gia-Huy Dinh, Lam-Huy Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: ReCap: Event-Aware Image Captioning with Article Retrieval and Semantic Gaussian Normalization
Abstract:
Image captioning systems often produce generic descriptions that fail to capture event-level semantics which are crucial for applications like news reporting and digital archiving. We present ReCap, a novel pipeline for event-enriched image retrieval and captioning that incorporates broader contextual information from relevant articles to generate narrative-rich, factually grounded captions. Our approach addresses the limitations of standard vision-language models that typically focus on visible content while missing temporal, social, and historical contexts. ReCap comprises three integrated components: (1) a robust two-stage article retrieval system using DINOv2 embeddings with global feature similarity for initial candidate selection followed by patch-level mutual nearest neighbor similarity re-ranking; (2) a context extraction framework that synthesizes information from article summaries, generic captions, and original source metadata; and (3) a large language model-based caption generation system with Semantic Gaussian Normalization to enhance fluency and relevance. Evaluated on the OpenEvents V1 dataset as part of Track 1 in the EVENTA 2025 Grand Challenge, ReCap achieved a strong overall score of 0.54666, ranking 2nd on the private test set. These results highlight ReCap's effectiveness in bridging visual perception with real-world knowledge, offering a practical solution for context-aware image understanding in high-stakes domains. The code is available at https://github.com/Noridom1/EVENTA2025-Event-Enriched-Image-Captioning.

Authors:Xiangdong Zhang, Shaofeng Zhang, Junchi Yan
Title: Towards More Diverse and Challenging Pre-training for Point Cloud Learning: Self-Supervised Cross Reconstruction with Decoupled Views
Abstract:
Point cloud learning, especially in a self-supervised way without manual labels, has gained growing attention in both vision and learning communities due to its potential utility in a wide range of applications. Most existing generative approaches for point cloud self-supervised learning focus on recovering masked points from visible ones within a single view. Recognizing that a two-view pre-training paradigm inherently introduces greater diversity and variance, it may thus enable more challenging and informative pre-training. Inspired by this, we explore the potential of two-view learning in this domain. In this paper, we propose Point-PQAE, a cross-reconstruction generative paradigm that first generates two decoupled point clouds/views and then reconstructs one from the other. To achieve this goal, we develop a crop mechanism for point cloud view generation for the first time and further propose a novel positional encoding to represent the 3D relative position between the two decoupled views. The cross-reconstruction significantly increases the difficulty of pre-training compared to self-reconstruction, which enables our method to surpass previous single-modal self-reconstruction methods in 3D self-supervised learning. Specifically, it outperforms the self-reconstruction baseline (Point-MAE) by 6.5%, 7.0%, and 6.7% in three variants of ScanObjectNN with the Mlp-Linear evaluation protocol. The code is available at https://github.com/aHapBean/Point-PQAE.

Authors:Yusheng Zheng, Yanpeng Hu, Wei Zhang, Andi Quinn
Title: Towards Agentic OS: An LLM Agent Framework for Linux Schedulers
Abstract:
Operating system schedulers suffer from a fundamental semantic gap, where kernel policies fail to understand application-specific needs, leading to suboptimal performance. We introduce SchedCP, the first framework that enables fully autonomous Large Language Model (LLM) agents to safely and efficiently optimize Linux schedulers without human involvement. Our core insight is that the challenge is not merely to apply a better LLM, but to architect a decoupled control plane that separates the AI's role of semantic reasoning ("what to optimize") from the system's role of execution ("how to observe and act"), thereby separating the optimization problem into two stages: goal-inference and policy-synthesis. Implemented as Model Context Protocol(MCP) server, SchedCP provides a stable interface with three key services: a Workload Analysis Engine, an evolving Scheduler Policy Repository, and an Execution Verifier that validates all AI-generated code and configure before deployment with static and dynamic analysis. We demonstrate this architecture's power with sched-agent, a multi-agent system that autonomously analyzes workloads, synthesizes custom eBPF scheduling policies, and deploys them via the sched\_ext infrastructure. Our evaluation shows that SchedCP achieves up to an 1.79x performance improvement, and a 13x cost reduction compared to naive agentic approaches, all while maintaining high success rate. By bridging the semantic gap, SchedCP democratizes expert-level system optimization and represents a step towards creating truly self-optimizing, application-aware operating systems. The code is open-sourced in https://github.com/eunomia-bpf/schedcp

Authors:Lee Chae-Yeon, Nam Hyeon-Woo, Tae-Hyun Oh
Title: Learning Correlation-aware Aleatoric Uncertainty for 3D Hand Pose Estimation
Abstract:
3D hand pose estimation is a fundamental task in understanding human hands. However, accurately estimating 3D hand poses remains challenging due to the complex movement of hands, self-similarity, and frequent occlusions. In this work, we address two limitations: the inability of existing 3D hand pose estimation methods to estimate aleatoric (data) uncertainty, and the lack of uncertainty modeling that incorporates joint correlation knowledge, which has not been thoroughly investigated. To this end, we introduce aleatoric uncertainty modeling into the 3D hand pose estimation framework, aiming to achieve a better trade-off between modeling joint correlations and computational efficiency. We propose a novel parameterization that leverages a single linear layer to capture intrinsic correlations among hand joints. This is enabled by formulating the hand joint output space as a probabilistic distribution, allowing the linear layer to capture joint correlations. Our proposed parameterization is used as a task head layer, and can be applied as an add-on module on top of the existing models. Our experiments demonstrate that our parameterization for uncertainty modeling outperforms existing approaches. Furthermore, the 3D hand pose estimation model equipped with our uncertainty head achieves favorable accuracy in 3D hand pose estimation while introducing new uncertainty modeling capability to the model. The project page is available at https://hand-uncertainty.github.io/.

Authors:Lingzhou Mu, Qiang Wang, Fan Jiang, Mengchao Wang, Yaqi Fan, Mu Xu, Kai Zhang
Title: FantasyHSI: Video-Generation-Centric 4D Human Synthesis In Any Scene through A Graph-based Multi-Agent Framework
Abstract:
Human-Scene Interaction (HSI) seeks to generate realistic human behaviors within complex environments, yet it faces significant challenges in handling long-horizon, high-level tasks and generalizing to unseen scenes. To address these limitations, we introduce FantasyHSI, a novel HSI framework centered on video generation and multi-agent systems that operates without paired data. We model the complex interaction process as a dynamic directed graph, upon which we build a collaborative multi-agent system. This system comprises a scene navigator agent for environmental perception and high-level path planning, and a planning agent that decomposes long-horizon goals into atomic actions. Critically, we introduce a critic agent that establishes a closed-loop feedback mechanism by evaluating the deviation between generated actions and the planned path. This allows for the dynamic correction of trajectory drifts caused by the stochasticity of the generative model, thereby ensuring long-term logical consistency. To enhance the physical realism of the generated motions, we leverage Direct Preference Optimization (DPO) to train the action generator, significantly reducing artifacts such as limb distortion and foot-sliding. Extensive experiments on our custom SceneBench benchmark demonstrate that FantasyHSI significantly outperforms existing methods in terms of generalization, long-horizon task completion, and physical realism. Ours project page: https://fantasy-amap.github.io/fantasy-hsi/

Authors:Jianyu Dou, Yinan Deng, Jiahui Wang, Xingsi Tang, Yi Yang, Yufeng Yue
Title: OpenMulti: Open-Vocabulary Instance-Level Multi-Agent Distributed Implicit Mapping
Abstract:
Multi-agent distributed collaborative mapping provides comprehensive and efficient representations for robots. However, existing approaches lack instance-level awareness and semantic understanding of environments, limiting their effectiveness for downstream applications. To address this issue, we propose OpenMulti, an open-vocabulary instance-level multi-agent distributed implicit mapping framework. Specifically, we introduce a Cross-Agent Instance Alignment module, which constructs an Instance Collaborative Graph to ensure consistent instance understanding across agents. To alleviate the degradation of mapping accuracy due to the blind-zone optimization trap, we leverage Cross Rendering Supervision to enhance distributed learning of the scene. Experimental results show that OpenMulti outperforms related algorithms in both fine-grained geometric accuracy and zero-shot semantic accuracy. In addition, OpenMulti supports instance-level retrieval tasks, delivering semantic annotations for downstream applications. The project website of OpenMulti is publicly available at https://openmulti666.github.io/.

Authors:Yuan Liu, Zhongyin Zhao, Le Tian, Haicheng Wang, Xubing Ye, Yangxiu You, Zilin Yu, Chuhan Wu, Xiao Zhou, Yang Yu, Jie Zhou
Title: POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
Abstract:
High-quality labeled data is essential for training accurate document conversion models, particularly in domains with complex formats such as tables, formulas, and multi-column text. However, manual annotation is both costly and time-consuming, while automatic labeling using existing models often lacks accuracy in handling such challenging scenarios. Consequently, training student models by distilling outputs from teacher models can significantly limit their performance in real-world applications. In this paper, we propose a fully automated, distillation-free framework comprising two stages for constructing high-quality document extraction datasets and models capable of handling diverse document formats and layouts. In the first stage, we introduce a method for generating large-scale, diverse synthetic data, which enables a model to extract key elements in a unified format with strong initial performance. In the second stage, we present a self-improvement approach that further adapts the model, initially trained on synthetic data, to real-world documents. Specifically, we first use the fine-tuned model to annotate real documents, then apply a suite of filtering strategies to verify annotation quality, and finally retrain the model on the verified dataset. By iteratively repeating this process, we progressively enhance both the model's conversion capabilities and the quality of the generated data. We train a public POINTS-1.5 model to obtain POINTS-Reader, which surpasses many existing public and proprietary models of comparable or larger size. Our model is available at https://github.com/Tencent/POINTS-Reader.

Authors:Tianwei Ye, Yong Ma, Xiaoguang Mei
Title: DcMatch: Unsupervised Multi-Shape Matching with Dual-Level Consistency
Abstract:
Establishing point-to-point correspondences across multiple 3D shapes is a fundamental problem in computer vision and graphics. In this paper, we introduce DcMatch, a novel unsupervised learning framework for non-rigid multi-shape matching. Unlike existing methods that learn a canonical embedding from a single shape, our approach leverages a shape graph attention network to capture the underlying manifold structure of the entire shape collection. This enables the construction of a more expressive and robust shared latent space, leading to more consistent shape-to-universe correspondences via a universe predictor. Simultaneously, we represent these correspondences in both the spatial and spectral domains and enforce their alignment in the shared universe space through a novel cycle consistency loss. This dual-level consistency fosters more accurate and coherent mappings. Extensive experiments on several challenging benchmarks demonstrate that our method consistently outperforms previous state-of-the-art approaches across diverse multi-shape matching scenarios. Code is available at https://github.com/YeTianwei/DcMatch.

Authors:Xiaoran Yang, Yuyang Du, Kexin Chen, Soung Chang Liew, Jiamin Lu, Ziyu Guo, Xiaoyan Liu, Qun Yang, Shiqi Xu, Xingyu Fan, Yuchen Pan, Taoyong Cui, Hongyu Deng, Boris Dudder, Jianzhang Pan, Qun Fang, Pheng Ann Heng
Title: IndusGCC: A Data Benchmark and Evaluation Framework for GUI-Based General Computer Control in Industrial Automation
Abstract:
As Industry 4.0 progresses, flexible manufacturing has become a cornerstone of modern industrial systems, with equipment automation playing a pivotal role. However, existing control software for industrial equipment, typically reliant on graphical user interfaces (GUIs) that require human interactions such as mouse clicks or screen touches, poses significant barriers to the adoption of code-based equipment automation. Recently, Large Language Model-based General Computer Control (LLM-GCC) has emerged as a promising approach to automate GUI-based operations. However, industrial settings pose unique challenges, including visually diverse, domain-specific interfaces and mission-critical tasks demanding high precision. This paper introduces IndusGCC, the first dataset and benchmark tailored to LLM-GCC in industrial environments, encompassing 448 real-world tasks across seven domains, from robotic arm control to production line configuration. IndusGCC features multimodal human interaction data with the equipment software, providing robust supervision for GUI-level code generation. Additionally, we propose a novel evaluation framework with functional and structural metrics to assess LLM-generated control scripts. Experimental results on mainstream LLMs demonstrate both the potential of LLM-GCC and the challenges it faces, establishing a strong foundation for future research toward fully automated factories. Our data and code are publicly available at: \href{https://github.com/Golden-Arc/IndustrialLLM}{https://github.com/Golden-Arc/IndustrialLLM.

Authors:Yutian Xiao, Shukuan Wang, Binhao Wang, Zhao Zhang, Yanze Zhang, Shanqi Liu, Chao Feng, Xiang Li, Fuzhen Zhuang
Title: MARS: Modality-Aligned Retrieval for Sequence Augmented CTR Prediction
Abstract:
Click-through rate (CTR) prediction serves as a cornerstone of recommender systems. Despite the strong performance of current CTR models based on user behavior modeling, they are still severely limited by interaction sparsity, especially in low-active user scenarios. To address this issue, data augmentation of user behavior is a promising research direction. However, existing data augmentation methods heavily rely on collaborative signals while overlooking the rich multimodal features of items, leading to insufficient modeling of low-active users. To alleviate this problem, we propose a novel framework \textbf{MARS} (\textbf{M}odality-\textbf{A}ligned \textbf{R}etrieval for \textbf{S}equence Augmented CTR Prediction). MARS utilizes a Stein kernel-based approach to align text and image features into a unified and unbiased semantic space to construct multimodal user embeddings. Subsequently, each low-active user's behavior sequence is augmented by retrieving, filtering, and concentrating the most similar behavior sequence of high-active users via multimodal user embeddings. Validated by extensive offline experiments and online A/B tests, our framework MARS consistently outperforms state-of-the-art baselines and achieves substantial growth on core business metrics within Kuaishou~\footnote{https://www.kuaishou.com/}. Consequently, MARS has been successfully deployed, serving the main traffic for hundreds of millions of users. To ensure reproducibility, we provide anonymous access to the implementation code~\footnote{https://github.com/wangshukuan/MARS}.

Authors:Bingnan Yang, Mi Zhang, Zhili Zhang, Zhan Zhang, Yuanxin Zhao, Xiangyun Hu, Jianya Gong
Title: SegAssess: Panoramic quality mapping for robust and transferable unsupervised segmentation assessment
Abstract:
High-quality image segmentation is fundamental to pixel-level geospatial analysis in remote sensing, necessitating robust segmentation quality assessment (SQA), particularly in unsupervised settings lacking ground truth. Although recent deep learning (DL) based unsupervised SQA methods show potential, they often suffer from coarse evaluation granularity, incomplete assessments, and poor transferability. To overcome these limitations, this paper introduces Panoramic Quality Mapping (PQM) as a new paradigm for comprehensive, pixel-wise SQA, and presents SegAssess, a novel deep learning framework realizing this approach. SegAssess distinctively formulates SQA as a fine-grained, four-class panoramic segmentation task, classifying pixels within a segmentation mask under evaluation into true positive (TP), false positive (FP), true negative (TN), and false negative (FN) categories, thereby generating a complete quality map. Leveraging an enhanced Segment Anything Model (SAM) architecture, SegAssess uniquely employs the input mask as a prompt for effective feature integration via cross-attention. Key innovations include an Edge Guided Compaction (EGC) branch with an Aggregated Semantic Filter (ASF) module to refine predictions near challenging object edges, and an Augmented Mixup Sampling (AMS) training strategy integrating multi-source masks to significantly boost cross-domain robustness and zero-shot transferability. Comprehensive experiments across 32 datasets derived from 6 sources demonstrate that SegAssess achieves state-of-the-art (SOTA) performance and exhibits remarkable zero-shot transferability to unseen masks, establishing PQM via SegAssess as a robust and transferable solution for unsupervised SQA. The code is available at https://github.com/Yangbn97/SegAssess.

Authors:Yun Chu, Qiuhao Wang, Enze Zhou, Qian Liu, Gang Zheng
Title: EZhouNet:A framework based on graph neural network and anchor interval for the respiratory sound event detection
Abstract:
Auscultation is a key method for early diagnosis of respiratory and pulmonary diseases, relying on skilled healthcare professionals. However, the process is often subjective, with variability between experts. As a result, numerous deep learning-based automatic classification methods have emerged, most of which focus on respiratory sound classification. In contrast, research on respiratory sound event detection remains limited. Existing sound event detection methods typically rely on frame-level predictions followed by post-processing to generate event-level outputs, making interval boundaries challenging to learn directly. Furthermore, many approaches can only handle fixed-length audio, limiting their applicability to variable-length respiratory sounds. Additionally, the impact of respiratory sound location information on detection performance has not been extensively explored. To address these issues, we propose a graph neural network-based framework with anchor intervals, capable of handling variable-length audio and providing more precise temporal localization for abnormal respiratory sound events. Our method improves both the flexibility and applicability of respiratory sound detection. Experiments on the SPRSound 2024 and HF Lung V1 datasets demonstrate the effectiveness of the proposed approach, and incorporating respiratory position information enhances the discrimination between abnormal sounds. The reference implementation is available at https://github.com/chumingqian/EzhouNet.

Authors:Weiren Zhao, Lanfeng Zhong, Xin Liao, Wenjun Liao, Sichuan Zhang, Shaoting Zhang, Guotai Wang
Title: MetaSSL: A General Heterogeneous Loss for Semi-Supervised Medical Image Segmentation
Abstract:
Semi-Supervised Learning (SSL) is important for reducing the annotation cost for medical image segmentation models. State-of-the-art SSL methods such as Mean Teacher, FixMatch and Cross Pseudo Supervision (CPS) are mainly based on consistency regularization or pseudo-label supervision between a reference prediction and a supervised prediction. Despite the effectiveness, they have overlooked the potential noise in the labeled data, and mainly focus on strategies to generate the reference prediction, while ignoring the heterogeneous values of different unlabeled pixels. We argue that effectively mining the rich information contained by the two predictions in the loss function, instead of the specific strategy to obtain a reference prediction, is more essential for SSL, and propose a universal framework MetaSSL based on a spatially heterogeneous loss that assigns different weights to pixels by simultaneously leveraging the uncertainty and consistency information between the reference and supervised predictions. Specifically, we split the predictions on unlabeled data into four regions with decreasing weights in the loss: Unanimous and Confident (UC), Unanimous and Suspicious (US), Discrepant and Confident (DC), and Discrepant and Suspicious (DS), where an adaptive threshold is proposed to distinguish confident predictions from suspicious ones. The heterogeneous loss is also applied to labeled images for robust learning considering the potential annotation noise. Our method is plug-and-play and general to most existing SSL methods. The experimental results showed that it improved the segmentation performance significantly when integrated with existing SSL frameworks on different datasets. Code is available at https://github.com/HiLab-git/MetaSSL.

Authors:Guangli Li, Canbiao Wu, Zhehao Zhou, Na Tian, Zhen Liang
Title: MATL-DC: A Multi-domain Aggregation Transfer Learning Framework for EEG Emotion Recognition with Domain-Class Prototype under Unseen Targets
Abstract:
Emotion recognition based on electroencephalography (EEG) signals is increasingly becoming a key research hotspot in affective Brain-Computer Interfaces (aBCIs). However, the current transfer learning model greatly depends on the source domain and target domain data, which hinder the practical application of emotion recognition. Therefore, we propose a Multi-domain Aggregation Transfer Learning framework for EEG emotion recognition with Domain-Class prototype under unseen targets (MATL-DC). We design the feature decoupling module to decouple class-invariant domain features from domain-invariant class features from shallow features. In the model training stage, the multi-domain aggregation mechanism aggregates the domain feature space to form a superdomain, which enhances the characteristics of emotional EEG signals. In each superdomain, we further extract the class prototype representation by class features. In addition, we adopt the pairwise learning strategy to transform the sample classification problem into the similarity problem between sample pairs, which effectively alleviates the influence of label noise. It is worth noting that the target domain is completely unseen during the training process. In the inference stage, we use the trained domain-class prototypes for inference, and then realize emotion recognition. We rigorously validate it on the publicly available databases (SEED, SEED-IV and SEED-V). The results show that the accuracy of MATL-DC model is 84.70\%, 68.11\% and 61.08\%, respectively. MATL-DC achieves comparable or even better performance than methods that rely on both source and target domains. The source code is available at https://github.com/WuCB-BCI/MATL-DC.

Authors:Zhengqiang Zhang, Rongyuan Wu, Lingchen Sun, Lei Zhang
Title: GPSToken: Gaussian Parameterized Spatially-adaptive Tokenization for Image Representation and Generation
Abstract:
Effective and efficient tokenization plays an important role in image representation and generation. Conventional methods, constrained by uniform 2D/1D grid tokenization, are inflexible to represent regions with varying shapes and textures and at different locations, limiting their efficacy of feature representation. In this work, we propose $\textbf{GPSToken}$, a novel $\textbf{G}$aussian $\textbf{P}$arameterized $\textbf{S}$patially-adaptive $\textbf{Token}$ization framework, to achieve non-uniform image tokenization by leveraging parametric 2D Gaussians to dynamically model the shape, position, and textures of different image regions. We first employ an entropy-driven algorithm to partition the image into texture-homogeneous regions of variable sizes. Then, we parameterize each region as a 2D Gaussian (mean for position, covariance for shape) coupled with texture features. A specialized transformer is trained to optimize the Gaussian parameters, enabling continuous adaptation of position/shape and content-aware feature extraction. During decoding, Gaussian parameterized tokens are reconstructed into 2D feature maps through a differentiable splatting-based renderer, bridging our adaptive tokenization with standard decoders for end-to-end training. GPSToken disentangles spatial layout (Gaussian parameters) from texture features to enable efficient two-stage generation: structural layout synthesis using lightweight networks, followed by structure-conditioned texture generation. Experiments demonstrate the state-of-the-art performance of GPSToken, which achieves rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks using 128 tokens, respectively. Codes and models of GPSToken can be found at $\href{https://github.com/xtudbxk/GPSToken}{https://github.com/xtudbxk/GPSToken}$.

Authors:Huang Fang, Mengxi Zhang, Heng Dong, Wei Li, Zixuan Wang, Qifeng Zhang, Xueyun Tian, Yucheng Hu, Hang Li
Title: Robix: A Unified Model for Robot Interaction, Reasoning and Planning
Abstract:
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

Authors:Shuangyuan Chen, Shuang Wei, Dongxing Xu, Yanhua Long
Title: Noisy Disentanglement with Tri-stage Training for Noise-Robust Speech Recognition
Abstract:
To enhance the performance of end-to-end (E2E) speech recognition systems in noisy or low signal-to-noise ratio (SNR) conditions, this paper introduces NoisyD-CT, a novel tri-stage training framework built on the Conformer-Transducer architecture. The core of NoisyD-CT is a especially designed compact noisy disentanglement (NoisyD) module (adding only 1.71M parameters), integrated between the Conformer blocks and Transducer Decoder to perform deep noise suppression and improve ASR robustness in challenging acoustic noise environments. To fully exploit the noise suppression capability of the NoisyD-CT, we further propose a clean representation consistency loss to align high-level representations derived from noisy speech with those obtained from corresponding clean speech. Together with a noisy reconstruction loss, this consistency alignment enables the NoisyD module to effectively suppress noise while preserving essential acoustic and linguistic features consistent across both clean and noisy conditions, thereby producing cleaner internal representations that enhance ASR performance. Moreover, our tri-stage training strategy is designed to fully leverage the functionalities of both the noisy disentanglement and speech recognition modules throughout the model training process, ultimately maximizing performance gains under noisy conditions. Our experiments are performed on the LibriSpeech and CHiME-4 datasets, extensive results demonstrate that our proposed NoisyD-CT significantly outperforms the competitive Conformer-Transducer baseline, achieving up to 25.7% and 10.6% relative word error rate reductions on simulated and real-world noisy test sets, respectively, while maintaining or even improving performance on clean speech test sets. The source code, model checkpoint and data simulation scripts will be available at https://github.com/litchimo/NoisyD-CT.

Authors:Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi, Shahd Gaben, Mutaz Al-Khatib, Mohammed Ghaly
Title: Assessing Large Language Models on Islamic Legal Reasoning: Evidence from Inheritance Law Evaluation
Abstract:
This paper evaluates the knowledge and reasoning capabilities of Large Language Models in Islamic inheritance law, known as 'ilm al-mawarith. We assess the performance of seven LLMs using a benchmark of 1,000 multiple-choice questions covering diverse inheritance scenarios, designed to test models' ability to understand the inheritance context and compute the distribution of shares prescribed by Islamic jurisprudence. The results reveal a significant performance gap: o3 and Gemini 2.5 achieved accuracies above 90%, whereas ALLaM, Fanar, LLaMA, and Mistral scored below 50%. These disparities reflect important differences in reasoning ability and domain adaptation. We conduct a detailed error analysis to identify recurring failure patterns across models, including misunderstandings of inheritance scenarios, incorrect application of legal rules, and insufficient domain knowledge. Our findings highlight limitations in handling structured legal reasoning and suggest directions for improving performance in Islamic legal reasoning. Code: https://github.com/bouchekif/inheritance_evaluation

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Jaewoo Ahn, Junseo Kim, Heeseung Yun, Jaehyeon Son, Dongmin Park, Jaewoong Cho, Gunhee Kim
Title: FlashAdventure: A Benchmark for GUI Agents Solving Full Story Arcs in Diverse Adventure Games
Abstract:
GUI agents powered by LLMs show promise in interacting with diverse digital environments. Among these, video games offer a valuable testbed due to their varied interfaces, with adventure games posing additional challenges through complex, narrative-driven interactions. Existing game benchmarks, however, lack diversity and rarely evaluate agents on completing entire storylines. To address this, we introduce FlashAdventure, a benchmark of 34 Flash-based adventure games designed to test full story arc completion and tackle the observation-behavior gap: the challenge of remembering and acting on earlier gameplay information. We also propose CUA-as-a-Judge, an automated gameplay evaluator, and COAST, an agentic framework leveraging long-term clue memory to better plan and solve sequential tasks. Experiments show current GUI agents struggle with full story arcs, while COAST improves milestone completion by bridging the observation-behavior gap. Nonetheless, a marked discrepancy between humans and best-performing agents warrants continued research efforts to narrow this divide.

Authors:Josef Grün, Lukas Meyer, Maximilian Weiherer, Bernhard Egger, Marc Stamminger, Linus Franke
Title: Towards Integrating Multi-Spectral Imaging with Gaussian Splatting
Abstract:
We present a study of how to integrate color (RGB) and multi-spectral imagery (red, green, red-edge, and near-infrared) into the 3D Gaussian Splatting (3DGS) framework, a state-of-the-art explicit radiance-field-based method for fast and high-fidelity 3D reconstruction from multi-view images. While 3DGS excels on RGB data, naive per-band optimization of additional spectra yields poor reconstructions due to inconsistently appearing geometry in the spectral domain. This problem is prominent, even though the actual geometry is the same, regardless of spectral modality. To investigate this, we evaluate three strategies: 1) Separate per-band reconstruction with no shared structure. 2) Splitting optimization, in which we first optimize RGB geometry, copy it, and then fit each new band to the model by optimizing both geometry and band representation. 3) Joint, in which the modalities are jointly optimized, optionally with an initial RGB-only phase. We showcase through quantitative metrics and qualitative novel-view renderings on multi-spectral datasets the effectiveness of our dedicated optimized Joint strategy, increasing overall spectral reconstruction as well as enhancing RGB results through spectral cross-talk. We therefore suggest integrating multi-spectral data directly into the spherical harmonics color components to compactly model each Gaussian's multi-spectral reflectance. Moreover, our analysis reveals several key trade-offs in when and how to introduce spectral bands during optimization, offering practical insights for robust multi-modal 3DGS reconstruction.

Authors:Lun Ai, Johannes Langer, Ute Schmid, Stephen Muggleton
Title: Ultra Strong Machine Learning: Teaching Humans Active Learning Strategies via Automated AI Explanations
Abstract:
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. In this work, we present LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic method that combines symbolic program synthesis with large language models (LLMs) to automate the explanation of machine-learned logic programs in natural language. LENS addresses a key limitation of prior USML approaches by replacing hand-crafted explanation templates with scalable automated generation. Through systematic evaluation using multiple LLM judges and human validation, we demonstrate that LENS generates superior explanations compared to direct LLM prompting and hand-crafted templates. To investigate whether LENS can teach transferable active learning strategies, we carried out a human learning experiment across three related domains. Our results show no significant human performance improvements, suggesting that comprehensive LLM responses may overwhelm users for simpler problems rather than providing learning support. Our work provides a solid foundation for building effective USML systems to support human learning. The source code is available on: https://github.com/lun-ai/LENS.git.

Authors:Yutong Gao, Maoyuan Shao, Xinyang Huang, Chuang Zhu, Lijuan Sun, Yu Weng, Xuan Liu, Guoshun Nan
Title: Spotlighter: Revisiting Prompt Tuning from a Representative Mining View
Abstract:
CLIP's success has demonstrated that prompt tuning can achieve robust cross-modal semantic alignment for tasks ranging from open-domain recognition to fine-grained classification. However, redundant or weakly relevant feature components introduce noise and incur unnecessary computational costs. In this work, we propose Spotlighter, a lightweight token-selection framework that simultaneously enhances accuracy and efficiency in prompt tuning. Spotlighter evaluates each visual token's activation from both sample-wise and semantic-wise perspectives and retains only the top-scoring tokens for downstream prediction. A class-specific semantic memory bank of learned prototypes refines this selection, ensuring semantic representativeness and compensating for discarded features. To further prioritize informative signals, we introduce a two-level ranking mechanism that dynamically weights token--prototype interactions. Across 11 few-shot benchmarks, Spotlighter outperforms CLIP by up to 11.19\% in harmonic mean accuracy and achieves up to 0.8K additional FPS, with only 21 extra parameters. These results establish Spotlighter as an effective and scalable baseline for prompt tuning. Code for our method will be available at https://github.com/greatest-gourmet/Spotlighter.

Authors:Zirui Zhou, Zizhao Peng, Dongyang Jin, Chao Fan, Fengwei An, Shiqi Yu
Title: Pose as Clinical Prior: Learning Dual Representations for Scoliosis Screening
Abstract:
Recent AI-based scoliosis screening methods primarily rely on large-scale silhouette datasets, often neglecting clinically relevant postural asymmetries-key indicators in traditional screening. In contrast, pose data provide an intuitive skeletal representation, enhancing clinical interpretability across various medical applications. However, pose-based scoliosis screening remains underexplored due to two main challenges: (1) the scarcity of large-scale, annotated pose datasets; and (2) the discrete and noise-sensitive nature of raw pose coordinates, which hinders the modeling of subtle asymmetries. To address these limitations, we introduce Scoliosis1K-Pose, a 2D human pose annotation set that extends the original Scoliosis1K dataset, comprising 447,900 frames of 2D keypoints from 1,050 adolescents. Building on this dataset, we introduce the Dual Representation Framework (DRF), which integrates a continuous skeleton map to preserve spatial structure with a discrete Postural Asymmetry Vector (PAV) that encodes clinically relevant asymmetry descriptors. A novel PAV-Guided Attention (PGA) module further uses the PAV as clinical prior to direct feature extraction from the skeleton map, focusing on clinically meaningful asymmetries. Extensive experiments demonstrate that DRF achieves state-of-the-art performance. Visualizations further confirm that the model leverages clinical asymmetry cues to guide feature extraction and promote synergy between its dual representations. The dataset and code are publicly available at https://zhouzi180.github.io/Scoliosis1K/.

Authors:Yong Su, Yiyi Chen, Shenghong Yi, Hui Feng, Yuedong Xu, Wang Xiang, Bo Hu
Title: A Modular and Scalable Simulator for Connected-UAVs Communication in 5G Networks
Abstract:
Cellular-connected UAV systems have enabled a wide range of low-altitude aerial services. However, these systems still face many challenges, such as frequent handovers and the inefficiency of traditional transport protocols. To better study these issues, we develop a modular and scalable simulation platform specifically designed for UAVs communication leveraging the research ecology in wireless communication of MATLAB. The platform supports flexible 5G NR node deployment, customizable UAVs mobility models, and multi-network-interface extensions. It also supports multiple transport protocols including TCP, UDP, QUIC, etc., allowing to investigate how different transport protocols affect UAVs communication performance. In addition, the platform includes a handover management module, enabling the evaluation of both traditional and learning-based handover strategies. Our platform can serve as a testbed for the development and evaluation of advanced transmission strategies in cellular-connected UAV systems.

Authors:Shaina Raza, Maximus Powers, Partha Pratim Saha, Mahveen Raza, Rizwan Qureshi
Title: Prompting Away Stereotypes? Evaluating Bias in Text-to-Image Models for Occupations
Abstract:
Text-to-Image (TTI) models are powerful creative tools but risk amplifying harmful social biases. We frame representational societal bias assessment as an image curation and evaluation task and introduce a pilot benchmark of occupational portrayals spanning five socially salient roles (CEO, Nurse, Software Engineer, Teacher, Athlete). Using five state-of-the-art models: closed-source (DALLE 3, Gemini Imagen 4.0) and open-source (FLUX.1-dev, Stable Diffusion XL Turbo, Grok-2 Image), we compare neutral baseline prompts against fairness-aware controlled prompts designed to encourage demographic diversity. All outputs are annotated for gender (male, female) and race (Asian, Black, White), enabling structured distributional analysis. Results show that prompting can substantially shift demographic representations, but with highly model-specific effects: some systems diversify effectively, others overcorrect into unrealistic uniformity, and some show little responsiveness. These findings highlight both the promise and the limitations of prompting as a fairness intervention, underscoring the need for complementary model-level strategies. We release all code and data for transparency and reproducibility https://github.com/maximus-powers/img-gen-bias-analysis.

Authors:Xueyang Kang, Zhengkang Xiang, Zezheng Zhang, Kourosh Khoshelham
Title: Look Beyond: Two-Stage Scene View Generation via Panorama and Video Diffusion
Abstract:
Novel view synthesis (NVS) from a single image is highly ill-posed due to large unobserved regions, especially for views that deviate significantly from the input. While existing methods focus on consistency between the source and generated views, they often fail to maintain coherence and correct view alignment across long-range or looped trajectories. We propose a model that addresses this by decomposing single-view NVS into a 360-degree scene extrapolation followed by novel view interpolation. This design ensures long-term view and scene consistency by conditioning on keyframes extracted and warped from a generated panoramic representation. In the first stage, a panorama diffusion model learns the scene prior from the input perspective image. Perspective keyframes are then sampled and warped from the panorama and used as anchor frames in a pre-trained video diffusion model, which generates novel views through a proposed spatial noise diffusion process. Compared to prior work, our method produces globally consistent novel views -- even in loop closure scenarios -- while enabling flexible camera control. Experiments on diverse scene datasets demonstrate that our approach outperforms existing methods in generating coherent views along user-defined trajectories. Our implementation is available at https://github.com/YiGuYT/LookBeyond.

Authors:Sicheng Yang, Hongqiu Wang, Zhaohu Xing, Sixiang Chen, Lei Zhu
Title: SegDINO: An Efficient Design for Medical and Natural Image Segmentation with DINO-V3
Abstract:
The DINO family of self-supervised vision models has shown remarkable transferability, yet effectively adapting their representations for segmentation remains challenging. Existing approaches often rely on heavy decoders with multi-scale fusion or complex upsampling, which introduce substantial parameter overhead and computational cost. In this work, we propose SegDINO, an efficient segmentation framework that couples a frozen DINOv3 backbone with a lightweight decoder. SegDINO extracts multi-level features from the pretrained encoder, aligns them to a common resolution and channel width, and utilizes a lightweight MLP head to directly predict segmentation masks. This design minimizes trainable parameters while preserving the representational power of foundation features. Extensive experiments across six benchmarks, including three medical datasets (TN3K, Kvasir-SEG, ISIC) and three natural image datasets (MSD, VMD-D, ViSha), demonstrate that SegDINO consistently achieves state-of-the-art performance compared to existing methods. Code is available at https://github.com/script-Yang/SegDINO.

Authors:Xinlei Liu, Tao Hu, Peng Yi, Weitao Han, Jichao Xie, Baolin Li
Title: Sequential Difference Maximization: Generating Adversarial Examples via Multi-Stage Optimization
Abstract:
Efficient adversarial attack methods are critical for assessing the robustness of computer vision models. In this paper, we reconstruct the optimization objective for generating adversarial examples as "maximizing the difference between the non-true labels' probability upper bound and the true label's probability," and propose a gradient-based attack method termed Sequential Difference Maximization (SDM). SDM establishes a three-layer optimization framework of "cycle-stage-step." The processes between cycles and between iterative steps are respectively identical, while optimization stages differ in terms of loss functions: in the initial stage, the negative probability of the true label is used as the loss function to compress the solution space; in subsequent stages, we introduce the Directional Probability Difference Ratio (DPDR) loss function to gradually increase the non-true labels' probability upper bound by compressing the irrelevant labels' probabilities. Experiments demonstrate that compared with previous SOTA methods, SDM not only exhibits stronger attack performance but also achieves higher attack cost-effectiveness. Additionally, SDM can be combined with adversarial training methods to enhance their defensive effects. The code is available at https://github.com/X-L-Liu/SDM.

Authors:Zhenhua Xu, Zhaokun Yan, Binhan Xu, Xin Tong, Haitao Xu, Yourong Chen, Meng Han
Title: Unlocking the Effectiveness of LoRA-FP for Seamless Transfer Implantation of Fingerprints in Downstream Models
Abstract:
With the rapid advancement of large language models (LLMs), safeguarding intellectual property (IP) has become increasingly critical. To address the challenges of high costs and potential contamination in fingerprint integration, we propose LoRA-FP, a lightweight, plug-and-play framework that embeds backdoor fingerprints into LoRA adapters through constrained fine-tuning. This design enables seamless fingerprint transplantation via parameter fusion, eliminating the need for full-parameter updates while preserving model integrity. Experimental results demonstrate that LoRA-FP not only significantly reduces computational overhead compared to conventional approaches but also achieves superior robustness across diverse scenarios, including incremental training and model fusion. Our code and datasets are publicly available at https://github.com/Xuzhenhua55/LoRA-FP.

Authors:Zeyu Li, Annan Shu
Title: Aligned Anchor Groups Guided Line Segment Detector
Abstract:
This paper introduces a novel line segment detector, the Aligned Anchor Groups guided Line Segment Detector (AAGLSD), designed to detect line segments from images with high precision and completeness. The algorithm employs a hierarchical approach to extract candidate pixels with different saliency levels, including regular anchors and aligned anchor groups. AAGLSD initiates from these aligned anchor groups, sequentially linking anchors and updating the currently predicted line segment simultaneously. The final predictions are derived through straightforward validation and merging of adjacent line segments, avoiding complex refinement strategies. AAGLSD is evaluated on various datasets and quantitative experiments demonstrate that the proposed method can effectively extract complete line segments from input images compared to other advanced line segment detectors. The implementation is available at https://github.com/LLiDaBao/AAGLSD.

Authors:Yangsong Zhang, Abdul Ahad Butt, Gül Varol, Ivan Laptev
Title: InterPose: Learning to Generate Human-Object Interactions from Large-Scale Web Videos
Abstract:
Human motion generation has shown great advances thanks to the recent diffusion models trained on large-scale motion capture data. Most of existing works, however, currently target animation of isolated people in empty scenes. Meanwhile, synthesizing realistic human-object interactions in complex 3D scenes remains a critical challenge in computer graphics and robotics. One obstacle towards generating versatile high-fidelity human-object interactions is the lack of large-scale datasets with diverse object manipulations. Indeed, existing motion capture data is typically restricted to single people and manipulations of limited sets of objects. To address this issue, we propose an automatic motion extraction pipeline and use it to collect interaction-rich human motions. Our new dataset InterPose contains 73.8K sequences of 3D human motions and corresponding text captions automatically obtained from 45.8K videos with human-object interactions. We perform extensive experiments and demonstrate InterPose to bring significant improvements to state-of-the-art methods for human motion generation. Moreover, using InterPose we develop an LLM-based agent enabling zero-shot animation of people interacting with diverse objects and scenes.

Authors:Xiufeng Huang, Ziyuan Luo, Qi Song, Ruofei Wang, Renjie Wan
Title: MarkSplatter: Generalizable Watermarking for 3D Gaussian Splatting Model via Splatter Image Structure
Abstract:
The growing popularity of 3D Gaussian Splatting (3DGS) has intensified the need for effective copyright protection. Current 3DGS watermarking methods rely on computationally expensive fine-tuning procedures for each predefined message. We propose the first generalizable watermarking framework that enables efficient protection of Splatter Image-based 3DGS models through a single forward pass. We introduce GaussianBridge that transforms unstructured 3D Gaussians into Splatter Image format, enabling direct neural processing for arbitrary message embedding. To ensure imperceptibility, we design a Gaussian-Uncertainty-Perceptual heatmap prediction strategy for preserving visual quality. For robust message recovery, we develop a dense segmentation-based extraction mechanism that maintains reliable extraction even when watermarked objects occupy minimal regions in rendered views. Project page: https://kevinhuangxf.github.io/marksplatter.

Authors:Dinh-Khoi Vo, Van-Loc Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: EVENT-Retriever: Event-Aware Multimodal Image Retrieval for Realistic Captions
Abstract:
Event-based image retrieval from free-form captions presents a significant challenge: models must understand not only visual features but also latent event semantics, context, and real-world knowledge. Conventional vision-language retrieval approaches often fall short when captions describe abstract events, implicit causality, temporal context, or contain long, complex narratives. To tackle these issues, we introduce a multi-stage retrieval framework combining dense article retrieval, event-aware language model reranking, and efficient image collection, followed by caption-guided semantic matching and rank-aware selection. We leverage Qwen3 for article search, Qwen3-Reranker for contextual alignment, and Qwen2-VL for precise image scoring. To further enhance performance and robustness, we fuse outputs from multiple configurations using Reciprocal Rank Fusion (RRF). Our system achieves the top-1 score on the private test set of Track 2 in the EVENTA 2025 Grand Challenge, demonstrating the effectiveness of combining language-based reasoning and multimodal retrieval for complex, real-world image understanding. The code is available at https://github.com/vdkhoi20/EVENT-Retriever.

Authors:Amartya Banerjee, Somnath Kar, Anirban Pal, Debabrata Maiti
Title: Valid Property-Enhanced Contrastive Learning for Targeted Optimization & Resampling for Novel Drug Design
Abstract:
Efficiently steering generative models toward pharmacologically relevant regions of chemical space remains a major obstacle in molecular drug discovery under low-data regimes. We present VECTOR+: Valid-property-Enhanced Contrastive Learning for Targeted Optimization and Resampling, a framework that couples property-guided representation learning with controllable molecule generation. VECTOR+ applies to both regression and classification tasks and enables interpretable, data-efficient exploration of functional chemical space. We evaluate on two datasets: a curated PD-L1 inhibitor set (296 compounds with experimental $IC_{50}$ values) and a receptor kinase inhibitor set (2,056 molecules by binding mode). Despite limited training data, VECTOR+ generates novel, synthetically tractable candidates. Against PD-L1 (PDB 5J89), 100 of 8,374 generated molecules surpass a docking threshold of $-15.0$ kcal/mol, with the best scoring $-17.6$ kcal/mol compared to the top reference inhibitor ($-15.4$ kcal/mol). The best-performing molecules retain the conserved biphenyl pharmacophore while introducing novel motifs. Molecular dynamics (250 ns) confirm binding stability (ligand RMSD < $2.5$ angstroms). VECTOR+ generalizes to kinase inhibitors, producing compounds with stronger docking scores than established drugs such as brigatinib and sorafenib. Benchmarking against JT-VAE and MolGPT across docking, novelty, uniqueness, and Tanimoto similarity highlights the superior performance of our method. These results position our work as a robust, extensible approach for property-conditioned molecular design in low-data settings, bridging contrastive learning and generative modeling for reproducible, AI-accelerated discovery.

Authors:Zihao Zheng, Zeyu Xie, Xuenan Xu, Wen Wu, Chao Zhang, Mengyue Wu
Title: PicoAudio2: Temporal Controllable Text-to-Audio Generation with Natural Language Description
Abstract:
Controllable text-to-audio generation (TTA) has attracted much attention recently. Although existing works can achieve fine-grained controllability based on timestamp information, sound event categories are limited to a fixed set. Moreover, since only simulated data is used for training, the generated audio quality and generalization performance on real data are limited. To tackle this issue, we propose PicoAudio2, improving temporal-controllable TTA via a new data processing pipeline and model architecture. Specifically, we use a grounding model to annotate event timestamps of real audio-text datasets to curate temporally-strong real data, in addition to simulation data from existing works. The model is trained on the combination of real and simulation data. Moreover, following PicoAudio, we encode timestamp information into a timestamp matrix to provide extra fine-grained time-aligned information to the model, on top of the coarse-grained textual description. Experiments show that PicoAudio2 exhibits superior performance in terms of temporal controllability and audio quality.

Authors:Gursimran Singh, Aviral Chharia, Rahul Upadhyay, Vinay Kumar, Luca Longo
Title: PyNoetic: A modular python framework for no-code development of EEG brain-computer interfaces
Abstract:
Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have emerged as a transformative technology with applications spanning robotics, virtual reality, medicine, and rehabilitation. However, existing BCI frameworks face several limitations, including a lack of stage-wise flexibility essential for experimental research, steep learning curves for researchers without programming expertise, elevated costs due to reliance on proprietary software, and a lack of all-inclusive features leading to the use of multiple external tools affecting research outcomes. To address these challenges, we present PyNoetic, a modular BCI framework designed to cater to the diverse needs of BCI research. PyNoetic is one of the very few frameworks in Python that encompasses the entire BCI design pipeline, from stimulus presentation and data acquisition to channel selection, filtering, feature extraction, artifact removal, and finally simulation and visualization. Notably, PyNoetic introduces an intuitive and end-to-end GUI coupled with a unique pick-and-place configurable flowchart for no-code BCI design, making it accessible to researchers with minimal programming experience. For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. PyNoetic also includes a rich array of analytical tools such as machine learning models, brain-connectivity indices, systematic testing functionalities via simulation, and evaluation methods of novel paradigms. PyNoetic's strengths lie in its versatility for both offline and real-time BCI development, which streamlines the design process, allowing researchers to focus on more intricate aspects of BCI development and thus accelerate their research endeavors. Project Website: https://neurodiag.github.io/PyNoetic

Authors:Yumeng Lin, Dong Li, Xintao Wu, Minglai Shao, Xujiang Zhao, Zhong Chen, Chen Zhao
Title: Face4FairShifts: A Large Image Benchmark for Fairness and Robust Learning across Visual Domains
Abstract:
Ensuring fairness and robustness in machine learning models remains a challenge, particularly under domain shifts. We present Face4FairShifts, a large-scale facial image benchmark designed to systematically evaluate fairness-aware learning and domain generalization. The dataset includes 100,000 images across four visually distinct domains with 39 annotations within 14 attributes covering demographic and facial features. Through extensive experiments, we analyze model performance under distribution shifts and identify significant gaps. Our findings emphasize the limitations of existing related datasets and the need for more effective fairness-aware domain adaptation techniques. Face4FairShifts provides a comprehensive testbed for advancing equitable and reliable AI systems. The dataset is available online at https://meviuslab.github.io/Face4FairShifts/.

Authors:Tung Nguyen, Harkanwar Singh, Nilay Naharas, Lucas Bandarkar, Aditya Grover
Title: IndiaWeatherBench: A Dataset and Benchmark for Data-Driven Regional Weather Forecasting over India
Abstract:
Regional weather forecasting is a critical problem for localized climate adaptation, disaster mitigation, and sustainable development. While machine learning has shown impressive progress in global weather forecasting, regional forecasting remains comparatively underexplored. Existing efforts often use different datasets and experimental setups, limiting fair comparison and reproducibility. We introduce IndiaWeatherBench, a comprehensive benchmark for data-driven regional weather forecasting focused on the Indian subcontinent. IndiaWeatherBench provides a curated dataset built from high-resolution regional reanalysis products, along with a suite of deterministic and probabilistic metrics to facilitate consistent training and evaluation. To establish strong baselines, we implement and evaluate a range of models across diverse architectures, including UNets, Transformers, and Graph-based networks, as well as different boundary conditioning strategies and training objectives. While focused on India, IndiaWeatherBench is easily extensible to other geographic regions. We open-source all raw and preprocessed datasets, model implementations, and evaluation pipelines to promote accessibility and future development. We hope IndiaWeatherBench will serve as a foundation for advancing regional weather forecasting research. Code is available at https://github.com/tung-nd/IndiaWeatherBench.

Authors:Aviral Chharia, Wenbo Gou, Haoye Dong
Title: MV-SSM: Multi-View State Space Modeling for 3D Human Pose Estimation
Abstract:
While significant progress has been made in single-view 3D human pose estimation, multi-view 3D human pose estimation remains challenging, particularly in terms of generalizing to new camera configurations. Existing attention-based transformers often struggle to accurately model the spatial arrangement of keypoints, especially in occluded scenarios. Additionally, they tend to overfit specific camera arrangements and visual scenes from training data, resulting in substantial performance drops in new settings. In this study, we introduce a novel Multi-View State Space Modeling framework, named MV-SSM, for robustly estimating 3D human keypoints. We explicitly model the joint spatial sequence at two distinct levels: the feature level from multi-view images and the person keypoint level. We propose a Projective State Space (PSS) block to learn a generalized representation of joint spatial arrangements using state space modeling. Moreover, we modify Mamba's traditional scanning into an effective Grid Token-guided Bidirectional Scanning (GTBS), which is integral to the PSS block. Multiple experiments demonstrate that MV-SSM achieves strong generalization, outperforming state-of-the-art methods: +10.8 on AP25 (+24%) on the challenging three-camera setting in CMU Panoptic, +7.0 on AP25 (+13%) on varying camera arrangements, and +15.3 PCP (+38%) on Campus A1 in cross-dataset evaluations. Project Website: https://aviralchharia.github.io/MV-SSM

Authors:Md Tanzib Hosain, Md Kishor Morol
Title: Can Multi-turn Self-refined Single Agent LMs with Retrieval Solve Hard Coding Problems?
Abstract:
Among the hardest tasks for humans are those found in competitive programming where problems require sophisticated algorithmic thinking, puzzle solving, and the creation of effective code. As a domain to assess language models (LMs), it has not received enough attention, though. This study presents the ICPC benchmark, which consists of 254 international collegiate programming contest (ICPC) tasks. Each problem includes official analysis, reference code, and sample, high-quality unit, and hidden tests. We are able to develop and evaluate a variety of LM inference techniques for competitive programming with these resources. With zero-shot chain-of-thought prompting, we find that o1 only achieves a 19.1\% pass@1 solve rate. With our best inference technique, which combines multi-turn self-judge with reflection and retrieval over episodic information, raises this to 42.2\%. Furthermore, we conduct a new human-in-the-loop investigation to gain a deeper understanding of the remaining difficulties. Surprisingly, we discover that o1 can solve 17 out of 18 problems that were previously unsolvable by any model or technique with just a few specific instructions. A footstep toward LMs with grounded, imaginative, and algorithmic thinking is provided by our quantitative findings and qualitative research. We open-source our code and data at https://github.com/kraritt/zolve.

Authors:Maggie Chen, Hala Lambdouar, Luca Marini, Laura Martínez-Ferrer, Chris Bridges, Giacomo Acciarini
Title: Towards Methane Detection Onboard Satellites
Abstract:
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.

Authors:Shiqiao Zhou, Holger Schöner, Huanbo Lyu, Edouard Fouché, Shuo Wang
Title: BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting
Abstract:
Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.

Authors:Osama Abu Hamdan, Hao Che, Engin Arslan, Md Arifuzzaman
Title: FLEET: A Federated Learning Emulation and Evaluation Testbed for Holistic Research
Abstract:
Federated Learning (FL) presents a robust paradigm for privacy-preserving, decentralized machine learning. However, a significant gap persists between the theoretical design of FL algorithms and their practical performance, largely because existing evaluation tools often fail to model realistic operational conditions. Many testbeds oversimplify the critical dynamics among algorithmic efficiency, client-level heterogeneity, and continuously evolving network infrastructure. To address this challenge, we introduce the Federated Learning Emulation and Evaluation Testbed (FLEET). This comprehensive platform provides a scalable and configurable environment by integrating a versatile, framework-agnostic learning component with a high-fidelity network emulator. FLEET supports diverse machine learning frameworks, customizable real-world network topologies, and dynamic background traffic generation. The testbed collects holistic metrics that correlate algorithmic outcomes with detailed network statistics. By unifying the entire experiment configuration, FLEET enables researchers to systematically investigate how network constraints, such as limited bandwidth, high latency, and packet loss, affect the convergence and efficiency of FL algorithms. This work provides the research community with a robust tool to bridge the gap between algorithmic theory and real-world network conditions, promoting the holistic and reproducible evaluation of federated learning systems.

Authors:Yannick Kirchhoff, Maximilian Rokuss, Fabian Isensee, Klaus H. Maier-Hein
Title: Promptable Longitudinal Lesion Segmentation in Whole-Body CT
Abstract:
Accurate segmentation of lesions in longitudinal whole-body CT is essential for monitoring disease progression and treatment response. While automated methods benefit from incorporating longitudinal information, they remain limited in their ability to consistently track individual lesions across time. Task 2 of the autoPET/CT IV Challenge addresses this by providing lesion localizations and baseline delineations, framing the problem as longitudinal promptable segmentation. In this work, we extend the recently proposed LongiSeg framework with promptable capabilities, enabling lesion-specific tracking through point and mask interactions. To address the limited size of the provided training set, we leverage large-scale pretraining on a synthetic longitudinal CT dataset. Our experiments show that pretraining substantially improves the ability to exploit longitudinal context, yielding an improvement of up to 6 Dice points compared to models trained from scratch. These findings demonstrate the effectiveness of combining longitudinal context with interactive prompting for robust lesion tracking. Code is publicly available at https://github.com/MIC-DKFZ/LongiSeg/tree/autoPET.

Authors:Osama Abu Hamdan, Hao Che, Engin Arslan, Md Arifuzzaman
Title: SmartFLow: A Communication-Efficient SDN Framework for Cross-Silo Federated Learning
Abstract:
Cross-silo Federated Learning (FL) enables multiple institutions to collaboratively train machine learning models while preserving data privacy. In such settings, clients repeatedly exchange model weights with a central server, making the overall training time highly sensitive to network performance. However, conventional routing methods often fail to prevent congestion, leading to increased communication latency and prolonged training. Software-Defined Networking (SDN), which provides centralized and programmable control over network resources, offers a promising way to address this limitation. To this end, we propose SmartFLow, an SDN-based framework designed to enhance communication efficiency in cross-silo FL. SmartFLow dynamically adjusts routing paths in response to changing network conditions, thereby reducing congestion and improving synchronization efficiency. Experimental results show that SmartFLow decreases parameter synchronization time by up to 47% compared to shortest-path routing and 41% compared to capacity-aware routing. Furthermore, it achieves these gains with minimal computational overhead and scales effectively to networks of up to 50 clients, demonstrating its practicality for real-world FL deployments.

Authors:Saumya Chaturvedi, Aman Chadha, Laurent Bindschaedler
Title: SQL-of-Thought: Multi-agentic Text-to-SQL with Guided Error Correction
Abstract:
Converting natural language queries into SQL queries is a crucial challenge in both industry and academia, aiming to increase access to databases and large-scale applications. This work examines how in-context learning and chain-of-thought can be utilized to develop a robust solution for text-to-SQL systems. We propose SQL-of-Thought: a multi-agent framework that decomposes the Text2SQL task into schema linking, subproblem identification, query plan generation, SQL generation, and a guided correction loop. Unlike prior systems that rely only on execution-based static correction, we introduce taxonomy-guided dynamic error modification informed by in-context learning. SQL-of-Thought achieves state-of-the-art results on the Spider dataset and its variants, combining guided error taxonomy with reasoning-based query planning.

Authors:Tao Jiang, Tianyuan Yuan, Yicheng Liu, Chenhao Lu, Jianning Cui, Xiao Liu, Shuiqi Cheng, Jiyang Gao, Huazhe Xu, Hang Zhao
Title: Galaxea Open-World Dataset and G0 Dual-System VLA Model
Abstract:
We present Galaxea Open-World Dataset, a large-scale, diverse collection of robot behaviors recorded in authentic human living and working environments. All demonstrations are gathered using a consistent robotic embodiment, paired with precise subtask-level language annotations to facilitate both training and evaluation. Building on this dataset, we introduce G0, a dual-system framework that couples a Vision-Language Model (VLM) for multimodal planning with a Vision-Language-Action (VLA) model for fine-grained execution. G0 is trained using a three-stage curriculum: cross-embodiment pre-training, single-embodiment pre-training, and task-specific post-training. A comprehensive benchmark spanning tabletop manipulation, few-shot learning, and long-horizon mobile manipulation, demonstrates the effectiveness of our approach. In particular, we find that the single-embodiment pre-training stage, together with the Galaxea Open-World Dataset, plays a critical role in achieving strong performance.

Authors:Filip J. Kucia, Bartosz Grabek, Szymon D. Trochimiak, Anna Wróblewska
Title: How to Make Museums More Interactive? Case Study of Artistic Chatbot
Abstract:
Conversational agents powered by Large Language Models (LLMs) are increasingly utilized in educational settings, in particular in individual closed digital environments, yet their potential adoption in the physical learning environments like cultural heritage sites, museums, and art galleries remains relatively unexplored. In this study, we present Artistic Chatbot, a voice-to-voice RAG-powered chat system to support informal learning and enhance visitor engagement during a live art exhibition celebrating the 15th anniversary of the Faculty of Media Art at the Warsaw Academy of Fine Arts, Poland. The question answering (QA) chatbot responded to free-form spoken questions in Polish using the context retrieved from a curated, domain-specific knowledge base consisting of 226 documents provided by the organizers, including faculty information, art magazines, books, and journals. We describe the key aspects of the system architecture and user interaction design, as well as discuss the practical challenges associated with deploying chatbots at public cultural sites. Our findings, based on interaction analysis, demonstrate that chatbots such as Artistic Chatbot effectively maintain responses grounded in exhibition content (60\% of responses directly relevant), even when faced with unpredictable queries outside the target domain, showing their potential for increasing interactivity in public cultural sites. GitHub project page: https://github.com/cinekucia/artistic-chatbot-cikm2025

Authors:Peirong Liu, Oula Puonti, Xiaoling Hu, Karthik Gopinath, Annabel Sorby-Adams, Daniel C. Alexander, W. Taylor Kimberly, Juan E. Iglesias
Title: A Modality-agnostic Multi-task Foundation Model for Human Brain Imaging
Abstract:
Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography (CT), yet they struggle to generalize in uncalibrated modalities -- notably magnetic resonance (MR) imaging, where performance is highly sensitive to the differences in MR contrast, resolution, and orientation. This prevents broad applicability to diverse real-world clinical protocols. Here we introduce BrainFM, a modality-agnostic, multi-task vision foundation model for human brain imaging. With the proposed "mild-to-severe" intra-subject generation and "real-synth" mix-up training strategy, BrainFM is resilient to the appearance of acquired images (e.g., modality, contrast, deformation, resolution, artifacts), and can be directly applied to five fundamental brain imaging tasks, including image synthesis for CT and T1w/T2w/FLAIR MRI, anatomy segmentation, scalp-to-cortical distance, bias field estimation, and registration. We evaluate the efficacy of BrainFM on eleven public datasets, and demonstrate its robustness and effectiveness across all tasks and input modalities. Code is available at https://github.com/jhuldr/BrainFM.

Authors:Yasser Benigmim, Subhankar Roy, Khalid Oublal, Imad Eddine Marouf, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière
Title: Make me an Expert: Distilling from Generalist Black-Box Models into Specialized Models for Semantic Segmentation
Abstract:
The rise of Artificial Intelligence as a Service (AIaaS) democratizes access to pre-trained models via Application Programming Interfaces (APIs), but also raises a fundamental question: how can local models be effectively trained using black-box models that do not expose their weights, training data, or logits, a constraint in which current domain adaptation paradigms are impractical ? To address this challenge, we introduce the Black-Box Distillation (B2D) setting, which enables local model adaptation under realistic constraints: (1) the API model is open-vocabulary and trained on large-scale general-purpose data, and (2) access is limited to one-hot predictions only. We identify that open-vocabulary models exhibit significant sensitivity to input resolution, with different object classes being segmented optimally at different scales, a limitation termed the "curse of resolution". Our method, ATtention-Guided sCaler (ATGC), addresses this challenge by leveraging DINOv2 attention maps to dynamically select optimal scales for black-box model inference. ATGC scores the attention maps with entropy to identify informative scales for pseudo-labelling, enabling effective distillation. Experiments demonstrate substantial improvements under black-box supervision across multiple datasets while requiring only one-hot API predictions. Our code is available at https://github.com/yasserben/ATGC.

Authors:Dongwon Son, Hojin Jung, Beomjoon Kim
Title: NeuralSVCD for Efficient Swept Volume Collision Detection
Abstract:
Robot manipulation in unstructured environments requires efficient and reliable Swept Volume Collision Detection (SVCD) for safe motion planning. Traditional discrete methods potentially miss collisions between these points, whereas SVCD continuously checks for collisions along the entire trajectory. Existing SVCD methods typically face a trade-off between efficiency and accuracy, limiting practical use. In this paper, we introduce NeuralSVCD, a novel neural encoder-decoder architecture tailored to overcome this trade-off. Our approach leverages shape locality and temporal locality through distributed geometric representations and temporal optimization. This enhances computational efficiency without sacrificing accuracy. Comprehensive experiments show that NeuralSVCD consistently outperforms existing state-of-the-art SVCD methods in terms of both collision detection accuracy and computational efficiency, demonstrating its robust applicability across diverse robotic manipulation scenarios. Code and videos are available at https://neuralsvcd.github.io/.

Authors:Saksorn Ruangtanusak, Pittawat Taveekitworachai, Kunat Pipatanakul
Title: Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
Abstract:
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.

Authors:Xiang Chen, Renjiu Hu, Jinwei Zhang, Yuxi Zhang, Xinyao Yue, Min Liu, Yaonan Wang, Hang Zhang
Title: Encoder-Only Image Registration
Abstract:
Learning-based techniques have significantly improved the accuracy and speed of deformable image registration. However, challenges such as reducing computational complexity and handling large deformations persist. To address these challenges, we analyze how convolutional neural networks (ConvNets) influence registration performance using the Horn-Schunck optical flow equation. Supported by prior studies and our empirical experiments, we observe that ConvNets play two key roles in registration: linearizing local intensities and harmonizing global contrast variations. Based on these insights, we propose the Encoder-Only Image Registration (EOIR) framework, designed to achieve a better accuracy-efficiency trade-off. EOIR separates feature learning from flow estimation, employing only a 3-layer ConvNet for feature extraction and a set of 3-layer flow estimators to construct a Laplacian feature pyramid, progressively composing diffeomorphic deformations under a large-deformation model. Results on five datasets across different modalities and anatomical regions demonstrate EOIR's effectiveness, achieving superior accuracy-efficiency and accuracy-smoothness trade-offs. With comparable accuracy, EOIR provides better efficiency and smoothness, and vice versa. The source code of EOIR is publicly available on https://github.com/XiangChen1994/EOIR.

Authors:Xuechao Zou, Shun Zhang, Xing Fu, Yue Li, Kai Li, Yushe Cao, Congyan Lang, Pin Tao, Junliang Xing
Title: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation
Abstract:
Controllable face generation poses critical challenges in generative modeling due to the intricate balance required between semantic controllability and photorealism. While existing approaches struggle with disentangling semantic controls from generation pipelines, we revisit the architectural potential of Diffusion Transformers (DiTs) through the lens of expert specialization. This paper introduces Face-MoGLE, a novel framework featuring: (1) Semantic-decoupled latent modeling through mask-conditioned space factorization, enabling precise attribute manipulation; (2) A mixture of global and local experts that captures holistic structure and region-level semantics for fine-grained controllability; (3) A dynamic gating network producing time-dependent coefficients that evolve with diffusion steps and spatial locations. Face-MoGLE provides a powerful and flexible solution for high-quality, controllable face generation, with strong potential in generative modeling and security applications. Extensive experiments demonstrate its effectiveness in multimodal and monomodal face generation settings and its robust zero-shot generalization capability. Project page is available at https://github.com/XavierJiezou/Face-MoGLE.

Authors:Minku Kang, Hogun Park
Title: Curriculum Guided Personalized Subgraph Federated Learning
Abstract:
Subgraph Federated Learning (FL) aims to train Graph Neural Networks (GNNs) across distributed private subgraphs, but it suffers from severe data heterogeneity. To mitigate data heterogeneity, weighted model aggregation personalizes each local GNN by assigning larger weights to parameters from clients with similar subgraph characteristics inferred from their current model states. However, the sparse and biased subgraphs often trigger rapid overfitting, causing the estimated client similarity matrix to stagnate or even collapse. As a result, aggregation loses effectiveness as clients reinforce their own biases instead of exploiting diverse knowledge otherwise available. To this end, we propose a novel personalized subgraph FL framework called Curriculum guided personalized sUbgraph Federated Learning (CUFL). On the client side, CUFL adopts Curriculum Learning (CL) that adaptively selects edges for training according to their reconstruction scores, exposing each GNN first to easier, generic cross-client substructures and only later to harder, client-specific ones. This paced exposure prevents early overfitting to biased patterns and enables gradual personalization. By regulating personalization, the curriculum also reshapes server aggregation from exchanging generic knowledge to propagating client-specific knowledge. Further, CUFL improves weighted aggregation by estimating client similarity using fine-grained structural indicators reconstructed on a random reference graph. Extensive experiments on six benchmark datasets confirm that CUFL achieves superior performance compared to relevant baselines. Code is available at https://github.com/Kang-Min-Ku/CUFL.git.

Authors:Shumpei Takezaki, Ryoma Bise, Shinnosuke Matsuo
Title: NoiseCutMix: A Novel Data Augmentation Approach by Mixing Estimated Noise in Diffusion Models
Abstract:
In this study, we propose a novel data augmentation method that introduces the concept of CutMix into the generation process of diffusion models, thereby exploiting both the ability of diffusion models to generate natural and high-resolution images and the characteristic of CutMix, which combines features from two classes to create diverse augmented data. Representative data augmentation methods for combining images from multiple classes include CutMix and MixUp. However, techniques like CutMix often result in unnatural boundaries between the two images due to contextual differences. Therefore, in this study, we propose a method, called NoiseCutMix, to achieve natural, high-resolution image generation featuring the fused characteristics of two classes by partially combining the estimated noise corresponding to two different classes in a diffusion model. In the classification experiments, we verified the effectiveness of the proposed method by comparing it with conventional data augmentation techniques that combine multiple classes, random image generation using Stable Diffusion, and combinations of these methods. Our codes are available at: https://github.com/shumpei-takezaki/NoiseCutMix

Authors:Ziyi Xia, Kun Luo, Hongjin Qian, Zheng Liu
Title: Open Data Synthesis For Deep Research
Abstract:
Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in \href{https://github.com/VectorSpaceLab/InfoSeek}{this repository}.

Authors:Zhenxin Li, Shuibing He, Jiahao Guo, Xuechen Zhang, Xian-He Sun, Gang Chen
Title: CRouting: Reducing Expensive Distance Calls in Graph-Based Approximate Nearest Neighbor Search
Abstract:
Approximate nearest neighbor search (ANNS) is a crucial problem in information retrieval and AI applications. Recently, there has been a surge of interest in graph-based ANNS algorithms due to their superior efficiency and accuracy. However, the repeated computation of distances in high-dimensional spaces constitutes the primary time cost of graph-based methods. To accelerate the search, we propose a novel routing strategy named CRouting, which bypasses unnecessary distance computations by exploiting the angle distributions of high-dimensional vectors. CRouting is designed as a plugin to optimize existing graph-based search with minimal code modifications. Our experiments show that CRouting reduces the number of distance computations by up to 41.5% and boosts queries per second by up to 1.48$\times$ on two predominant graph indexes, HNSW and NSG. Code is publicly available at https://github.com/ISCS-ZJU/CRouting.

Authors:Zhen Chen, Xingjian Luo, Kun Yuan, Jinlin Wu, Danny T. M. Chan, Nassir Navab, Hongbin Liu, Zhen Lei, Jiebo Luo
Title: SurgLLM: A Versatile Large Multimodal Model with Spatial Focus and Temporal Awareness for Surgical Video Understanding
Abstract:
Surgical video understanding is crucial for facilitating Computer-Assisted Surgery (CAS) systems. Despite significant progress in existing studies, two major limitations persist, including inadequate visual content perception and insufficient temporal awareness in surgical videos, and hinder the development of versatile CAS solutions. In this work, we propose the SurgLLM framework, an effective large multimodal model tailored for versatile surgical video understanding tasks with enhanced spatial focus and temporal awareness. Specifically, to empower the spatial focus of surgical videos, we first devise Surgical Context-aware Multimodal Pretraining (Surg-Pretrain) for the video encoder of SurgLLM, by performing instrument-centric Masked Video Reconstruction (MV-Recon) and subsequent multimodal alignment. To incorporate surgical temporal knowledge into SurgLLM, we further propose Temporal-aware Multimodal Tuning (TM-Tuning) to enhance temporal reasoning with interleaved multimodal embeddings. Moreover, to accommodate various understanding tasks of surgical videos without conflicts, we devise a Surgical Task Dynamic Ensemble to efficiently triage a query with optimal learnable parameters in our SurgLLM. Extensive experiments performed on diverse surgical video understanding tasks, including captioning, general VQA, and temporal VQA, demonstrate significant improvements over the state-of-the-art approaches, validating the effectiveness of our SurgLLM in versatile surgical video understanding. The source code is available at https://github.com/franciszchen/SurgLLM.

Authors:Xunpeng Yi, Yibing Zhang, Xinyu Xiang, Qinglong Yan, Han Xu, Jiayi Ma
Title: LUT-Fuse: Towards Extremely Fast Infrared and Visible Image Fusion via Distillation to Learnable Look-Up Tables
Abstract:
Current advanced research on infrared and visible image fusion primarily focuses on improving fusion performance, often neglecting the applicability on real-time fusion devices. In this paper, we propose a novel approach that towards extremely fast fusion via distillation to learnable lookup tables specifically designed for image fusion, termed as LUT-Fuse. Firstly, we develop a look-up table structure that utilizing low-order approximation encoding and high-level joint contextual scene encoding, which is well-suited for multi-modal fusion. Moreover, given the lack of ground truth in multi-modal image fusion, we naturally proposed the efficient LUT distillation strategy instead of traditional quantization LUT methods. By integrating the performance of the multi-modal fusion network (MM-Net) into the MM-LUT model, our method achieves significant breakthroughs in efficiency and performance. It typically requires less than one-tenth of the time compared to the current lightweight SOTA fusion algorithms, ensuring high operational speed across various scenarios, even in low-power mobile devices. Extensive experiments validate the superiority, reliability, and stability of our fusion approach. The code is available at https://github.com/zyb5/LUT-Fuse.

Authors:Wei Ao, Vishnu Naresh Boddeti
Title: CryptoFace: End-to-End Encrypted Face Recognition
Abstract:
Face recognition is central to many authentication, security, and personalized applications. Yet, it suffers from significant privacy risks, particularly arising from unauthorized access to sensitive biometric data. This paper introduces CryptoFace, the first end-to-end encrypted face recognition system with fully homomorphic encryption (FHE). It enables secure processing of facial data across all stages of a face-recognition process--feature extraction, storage, and matching--without exposing raw images or features. We introduce a mixture of shallow patch convolutional networks to support higher-dimensional tensors via patch-based processing while reducing the multiplicative depth and, thus, inference latency. Parallel FHE evaluation of these networks ensures near-resolution-independent latency. On standard face recognition benchmarks, CryptoFace significantly accelerates inference and increases verification accuracy compared to the state-of-the-art FHE neural networks adapted for face recognition. CryptoFace will facilitate secure face recognition systems requiring robust and provable security. The code is available at https://github.com/human-analysis/CryptoFace.

Authors:Renat Sergazinov, Shao-An Yin
Title: Chunked TabPFN: Exact Training-Free In-Context Learning for Long-Context Tabular Data
Abstract:
TabPFN v2 achieves better results than tree-based models on several tabular benchmarks, which is notable since tree-based models are usually the strongest choice for tabular data. However, it cannot handle more than 10K context tokens because transformers have quadratic computation and memory costs. Unlike existing approaches that rely on context compression, such as selecting representative samples via K-nearest neighbors (KNN), we introduce a tiled-block strategy to compute attention within the TabPFN framework. This design is compatible with standard GPU setups and, to the best of our knowledge, is the first to enable TabPFN to process long contexts without any pre-processing. We demonstrate the effectiveness of our approach on the standard TabArena benchmark, with code available at https://github.com/mrsergazinov/chunk_tabpfn.

Authors:Ezra Erives, Bowen Jing, Peter Holderrieth, Tommi Jaakkola
Title: Continuously Tempered Diffusion Samplers
Abstract:
Annealing-based neural samplers seek to amortize sampling from unnormalized distributions by training neural networks to transport a family of densities interpolating from source to target. A crucial design choice in the training phase of such samplers is the proposal distribution by which locations are generated at which to evaluate the loss. Previous work has obtained such a proposal distribution by combining a partially learned transport with annealed Langevin dynamics. However, isolated modes and other pathological properties of the annealing path imply that such proposals achieve insufficient exploration and thereby lower performance post training. To remedy this, we propose continuously tempered diffusion samplers, which leverage exploration techniques developed in the context of molecular dynamics to improve proposal distributions. Specifically, a family of distributions across different temperatures is introduced to lower energy barriers at higher temperatures and drive exploration at the lower temperature of interest. We empirically validate improved sampler performance driven by extended exploration. Code is available at https://github.com/eje24/ctds.

Authors:Hikmat Khan, Syed Farhan Alam Zaidi, Pir Masoom Shah, Kiruthika Balakrishnan, Rabia Khan, Muhammad Waqas, Jia Wu
Title: MorphGen: Morphology-Guided Representation Learning for Robust Single-Domain Generalization in Histopathological Cancer Classification
Abstract:
Domain generalization in computational histopathology is hindered by heterogeneity in whole slide images (WSIs), caused by variations in tissue preparation, staining, and imaging conditions across institutions. Unlike machine learning systems, pathologists rely on domain-invariant morphological cues such as nuclear atypia (enlargement, irregular contours, hyperchromasia, chromatin texture, spatial disorganization), structural atypia (abnormal architecture and gland formation), and overall morphological atypia that remain diagnostic across diverse settings. Motivated by this, we hypothesize that explicitly modeling biologically robust nuclear morphology and spatial organization will enable the learning of cancer representations that are resilient to domain shifts. We propose MorphGen (Morphology-Guided Generalization), a method that integrates histopathology images, augmentations, and nuclear segmentation masks within a supervised contrastive learning framework. By aligning latent representations of images and nuclear masks, MorphGen prioritizes diagnostic features such as nuclear and morphological atypia and spatial organization over staining artifacts and domain-specific features. To further enhance out-of-distribution robustness, we incorporate stochastic weight averaging (SWA), steering optimization toward flatter minima. Attention map analyses revealed that MorphGen primarily relies on nuclear morphology, cellular composition, and spatial cell organization within tumors or normal regions for final classification. Finally, we demonstrate resilience of the learned representations to image corruptions (such as staining artifacts) and adversarial attacks, showcasing not only OOD generalization but also addressing critical vulnerabilities in current deep learning systems for digital pathology. Code, datasets, and trained models are available at: https://github.com/hikmatkhan/MorphGen

Authors:Ghassen Baklouti, Maxime Zanella, Ismail Ben Ayed
Title: Language-Aware Information Maximization for Transductive Few-Shot CLIP
Abstract:
Transductive few-shot learning has triggered an abundant literature focusing on vision-only models, but is still at a nascent stage within the recent context of foundational vision-language models (VLMs). Only a few recent methods addressed the problem, pointing to the potential of tranduction in VLMs and to the need for VLM-tailored methods. Building on this momentum, we leverage information-theoretic concepts and recent progress in parameter-efficient fine-tuning (PEFT), developing a highly competitive transductive few-shot CLIP method. Specifically, we introduce a novel Language-aware Information MaximizatiOn (LIMO) loss integrating three complementary terms: (i) the mutual information between the vision inputs and the textual class descriptions; (ii) a Kullback-Leibler (KL) divergence penalizing deviation of the network's probabilistic outputs from the text-driven zero-shot predictions; and (iii) a standard cross-entropy loss based on the labeled shots. Furthermore, we challenge the commonly followed fine-tuning practices in the context of transductive few-shot learning, and explore PEFT strategies, completely overlooked in this context. Surprisingly, we observe substantial boosts in performances, which points to the potential of adapting a subset of the model's parameters in the transductive few-shot setting. We report comprehensive evaluations, which show that LIMO outperforms the very recent transductive few-shot CLIP methods by a large margin and yields significant gains over the best-performing inductive methods. Our code is publicly available at:\[ \href{https://github.com/ghassenbaklouti/LIMO}{\text{here}} \]

Authors:Yishu Li, Xinyi Mao, Ying Yuan, Kyutae Sim, Ben Eisner, David Held
Title: Learn from What We HAVE: History-Aware VErifier that Reasons about Past Interactions Online
Abstract:
We introduce a novel History-Aware VErifier (HAVE) to disambiguate uncertain scenarios online by leveraging past interactions. Robots frequently encounter visually ambiguous objects whose manipulation outcomes remain uncertain until physically interacted with. While generative models alone could theoretically adapt to such ambiguity, in practice they obtain suboptimal performance in ambiguous cases, even when conditioned on action history. To address this, we propose explicitly decoupling action generation from verification: we use an unconditional diffusion-based generator to propose multiple candidate actions and employ our history-aware verifier to select the most promising action by reasoning about past interactions. Through theoretical analysis, we demonstrate that employing a verifier significantly improves expected action quality. Empirical evaluations and analysis across multiple simulated and real-world environments including articulated objects, multi-modal doors, and uneven object pick-up confirm the effectiveness of our method and improvements over baselines. Our project website is available at: https://liy1shu.github.io/HAVE_CoRL25/

Authors:Joseph Amigo, Rooholla Khorrambakht, Elliot Chane-Sane, Nicolas Mansard, Ludovic Righetti
Title: First Order Model-Based RL through Decoupled Backpropagation
Abstract:
There is growing interest in reinforcement learning (RL) methods that leverage the simulator's derivatives to improve learning efficiency. While early gradient-based approaches have demonstrated superior performance compared to derivative-free methods, accessing simulator gradients is often impractical due to their implementation cost or unavailability. Model-based RL (MBRL) can approximate these gradients via learned dynamics models, but the solver efficiency suffers from compounding prediction errors during training rollouts, which can degrade policy performance. We propose an approach that decouples trajectory generation from gradient computation: trajectories are unrolled using a simulator, while gradients are computed via backpropagation through a learned differentiable model of the simulator. This hybrid design enables efficient and consistent first-order policy optimization, even when simulator gradients are unavailable, as well as learning a critic from simulation rollouts, which is more accurate. Our method achieves the sample efficiency and speed of specialized optimizers such as SHAC, while maintaining the generality of standard approaches like PPO and avoiding ill behaviors observed in other first-order MBRL methods. We empirically validate our algorithm on benchmark control tasks and demonstrate its effectiveness on a real Go2 quadruped robot, across both quadrupedal and bipedal locomotion tasks.

Authors:Marina Y. Aoyama, Joao Moura, Juan Del Aguila Ferrandis, Sethu Vijayakumar
Title: Poke and Strike: Learning Task-Informed Exploration Policies
Abstract:
In many dynamic robotic tasks, such as striking pucks into a goal outside the reachable workspace, the robot must first identify the relevant physical properties of the object for successful task execution, as it is unable to recover from failure or retry without human intervention. To address this challenge, we propose a task-informed exploration approach, based on reinforcement learning, that trains an exploration policy using rewards automatically generated from the sensitivity of a privileged task policy to errors in estimated properties. We also introduce an uncertainty-based mechanism to determine when to transition from exploration to task execution, ensuring sufficient property estimation accuracy with minimal exploration time. Our method achieves a 90% success rate on the striking task with an average exploration time under 1.2 seconds, significantly outperforming baselines that achieve at most 40% success or require inefficient querying and retraining in a simulator at test time. Additionally, we demonstrate that our task-informed rewards capture the relative importance of physical properties in both the striking task and the classical CartPole example. Finally, we validate our approach by demonstrating its ability to identify object properties and adjust task execution in a physical setup using the KUKA iiwa robot arm.

Authors:Faizan Farooq Khan, Vladan Stojnić, Zakaria Laskar, Mohamed Elhoseiny, Giorgos Tolias
Title: Category-level Text-to-Image Retrieval Improved: Bridging the Domain Gap with Diffusion Models and Vision Encoders
Abstract:
This work explores text-to-image retrieval for queries that specify or describe a semantic category. While vision-and-language models (VLMs) like CLIP offer a straightforward open-vocabulary solution, they map text and images to distant regions in the representation space, limiting retrieval performance. To bridge this modality gap, we propose a two-step approach. First, we transform the text query into a visual query using a generative diffusion model. Then, we estimate image-to-image similarity with a vision model. Additionally, we introduce an aggregation network that combines multiple generated images into a single vector representation and fuses similarity scores across both query modalities. Our approach leverages advancements in vision encoders, VLMs, and text-to-image generation models. Extensive evaluations show that it consistently outperforms retrieval methods relying solely on text queries. Source code is available at: https://github.com/faixan-khan/cletir

Authors:Manish Shukla
Title: Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Abstract:
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance [7]. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.

Authors:Abdullah Abdelfattah, Mahmoud I. Khalil, Hazem Abbas
Title: Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
Abstract:
Assessing spoken language is challenging, and quantifying pronunciation metrics for machine learning models is even harder. However, for the Holy Quran, this task is simplified by the rigorous recitation rules (tajweed) established by Muslim scholars, enabling highly effective assessment. Despite this advantage, the scarcity of high-quality annotated data remains a significant barrier. In this work, we bridge these gaps by introducing: (1) A 98% automated pipeline to produce high-quality Quranic datasets -- encompassing: Collection of recitations from expert reciters, Segmentation at pause points (waqf) using our fine-tuned wav2vec2-BERT model, Transcription of segments, Transcript verification via our novel Tasmeea algorithm; (2) 850+ hours of audio (~300K annotated utterances); (3) A novel ASR-based approach for pronunciation error detection, utilizing our custom Quran Phonetic Script (QPS) to encode Tajweed rules (unlike the IPA standard for Modern Standard Arabic). QPS uses a two-level script: (Phoneme level): Encodes Arabic letters with short/long vowels. (Sifa level): Encodes articulation characteristics of every phoneme. We further include comprehensive modeling with our novel multi-level CTC Model which achieved 0.16% average Phoneme Error Rate (PER) on the testset. We release all code, data, and models as open-source: https://obadx.github.io/prepare-quran-dataset/